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Thermodynamically Ideal Quantum State Inputs to Any Device
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We investigate and ascertain the ideal inputs to any finite-time physical process. We demonstrate that
the expectation values of entropy flow, heat, and work can all be determined via Hermitian observables
of the initial state. These Hermitian operators encapsulate the breadth of behavior and the ideal inputs
for common thermodynamic objectives. We show how to construct these Hermitian operators from mea-
surements of thermodynamic output from a finite number of effectively arbitrary inputs. The behavior of
a small number of test inputs thus determines the full range of thermodynamic behavior from all inputs.
For any process, entropy flow, heat, and work can all be extremized by pure input states—eigenstates of
the respective operators. In contrast, the input states that minimize entropy production or maximize the
change in free energy are nonpure mixed states obtained from the operators as the solution of a convex-
optimization problem. To attain these, we provide an easily implementable gradient-descent method on the
manifold of density matrices, where an analytic solution yields a valid direction of descent at each itera-
tive step. Ideal inputs within a limited domain, and their associated thermodynamic operators, are obtained
with less effort. This allows analysis of ideal thermodynamic inputs within quantum subspaces of infinite-
dimensional quantum systems; it also allows analysis of ideal inputs in the classical limit. Our examples
illustrate the diversity of “ideal” inputs: distinct initial states minimize entropy production, extremize the
change in free energy, and maximize work extraction.

DOI: 10.1103/PRXQuantum.5.030318

I. INTRODUCTION

Throughout its history, thermodynamics has primarily
investigated the efficiency of various control processes
for implementing a desired functionality. However, the
complementary question of which initial physical states
produce the best thermodynamic behavior remains rela-
tively unexplored. Indeed, there is a historical reason for
this: in equilibrium transformations, the system always
stays infinitesimally close to equilibrium, so there is no
sense in asking about alternative inputs to the process. Yet
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modern devices transform quantum and classical systems
rapidly. These finite-time nonequilibrium transformations
have a highly nontrivial initial-state dependence. Here, we
explore the ideal thermodynamic inputs to such devices,
where the system can be arbitrarily far from equilibrium
throughout the transformation.

The initial-state dependence of entropy production and
associated thermodynamic quantities has been explored
only recently in relation to the ideal inputs, via mismatch
costs [1–5]. However, the minimally dissipative input has
only been characterized in the case of reset processes [4,5]
and, even then, a construction has only been given for
qubits [4]. In the following, we constructively identify
the thermodynamically ideal inputs for a much broader
class of objectives, including heat minimization, maximiz-
ing work extraction, and maximizing gain in free energy.
Moreover, the ideal inputs are characterized and construc-
tively identified for systems of arbitrary finite dimensions,
for any finite-time process.
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We find that common expectation values in
thermodynamics—heat, work, entropy flow, entropy
production, free-energy gain, etc.—all fall into two camps:
(i) a linear functional of the initial state or (ii) a linear
functional of the initial state plus a change in its von
Neumann entropy. The former is extremized by an eigen-
state of a Hermitian operator that can be inferred from
observed behavior, while the latter is extremized by a non-
pure mixed state obtained as the solution to a convex
constrained-optimization problem (for which we provide
a new algorithm).

With our suite of results in hand, it is finally possible to
compare against the many “optimization principles” that
have been proposed in thermodynamics over a century
[6,7]. For example, we show how to find the initial state
that extremizes entropy production. One can then check
if this extremal state is the same as the steady state. In a
trivial case, yes: the equilibrium state minimizes entropy
production for a static protocol in the presence of a single
bath. In other cases, no: in the case of multiple baths with
different temperatures or chemical potentials, the nonequi-
librium steady state (NESS) generally neither maximizes
nor minimizes entropy production.

In addition to identifying ideal inputs, we also iden-
tify the full breadth of thermodynamic behavior that can
be expected from different inputs to any quantum pro-
cess. These results can usefully be applied to quantum
subspaces or classical systems as well. The results thus
apply broadly, from biology to electronics to cosmology,
wherever finite-time thermodynamics is relevant.

II. OVERVIEW OF FRAMEWORK

It is often desirable for a physical device to implement
a fixed transformation on arbitrary input. For example,
in quantum technology, we often want to construct a
device that implements a prescribed completely positive
and trace preserving (CPTP) map. The device can achieve
this via a time-dependent protocol that partially controls
the Hamiltonian of the system and its interactions with its
environment.

It is important to note that thermodynamics is not deter-
mined by the CPTP map alone. However, a device implies
a fixed implementation of the CPTP map, which is deter-
mined by both the initial state of the environment and
the joint unitary acting on the system-environment super-
system. The choice of device thus has thermodynamic
implications. Here, we explore the thermodynamics, opti-
mal inputs, and breadth of behavior from any fixed device
for implementing a CPTP map.

More explicitly, we assume that the control protocol and
the initial state of the environment are fixed, while we are
free to select the initial (mixed or pure) state of the system
to input to our device. This implies that the initial joint

state of the system-environment supersystem is uncorre-
lated: ρ tot

0 = ρ0 ⊗ ρenv
0 . Nevertheless, correlations can be

established during the protocol due to system-environment
coupling and the system may have non-Markovian evo-
lution. In particular, the joint system-baths supersystem
evolves unitarily via U0:t, such that the joint state at any
later time t is given as ρ tot

t = U0:tρ
tot
0 U†

0:t. The reduced
states of the system and environment are given at any
time by the appropriate partial trace of the joint state: ρt =
trenv(ρ

tot
t ) and ρenv

t = trsys(ρ
tot
t ). Any CPTP transformation

of the system can be achieved this way, since such an
interaction with the environment instantiates Stinespring
dilation [8].

In the following sections, we will discover the ther-
modynamically ideal inputs to any such implementation
of any CPTP transformation. To achieve this, we first
introduce thermodynamic operators in Sec. III, general-
ized Bloch vectors in Sec. IV, and thermodynamic vec-
tors in Sec. V. We then show how to construct these
thermodynamic vectors and operators from experimental
observations in Sec. VI. This finally allows us to discuss
and construct the thermodynamically ideal inputs in Secs.
VII and VIII. Section IX shows how these results apply
to restricted subspaces—which is important for under-
standing the classical limit and for applying the results
to low-energy subspaces of infinite-dimensional systems.
Finally, the examples in Secs. X–XII illustrate physical
implications of our results.

III. THERMODYNAMIC OPERATORS

Thermodynamic quantities such as work, heat, and
entropy flow are notoriously path-dependent quantities.
Even their average values depend on the time-dependent
control protocol and the time-dependent density matrices
of system and environment. In fact, there are many com-
peting definitions for work, heat, and entropy flow that may
be more or less relevant in various scenarios [9]—our gen-
eral results will apply to them all. The point for now is that
these are all path-dependent quantities. For example, the
expectation value of entropy flow can very generally be
calculated as [4]

〈�〉ρ0
= −kB

∫ τ

0
tr
(
ρ̇env

t ln π env
t

)
dt, (1)

where π env
t is a tensor product of local-equilibrium refer-

ence states for the environment at time t and kB is Boltz-
mann’s constant. Familiar expressions such as 〈�〉ρ0

=∫
(〈δQ(b)〉/T(b)t ) dt and 〈�〉ρ0

= 〈Q(b)〉/T(b) + 〈Q(b′)〉/T(b′)

are special cases of Eq. (1), where Q(b) is the change in
energy of bath b and T(b)t is the temperature of bath b at
time t [10,11]. Notably, entropy flow to the environment,
plus the change in entropy of the system, yields entropy
production—the notorious quantity of the famous second
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law of thermodynamics—from which we can obtain Lan-
dauer’s bound, Carnot’s bound, and much more [3,12–14].
With Ht as the time-dependent Hamiltonian of the system,
similar integral expressions for work—typically defined in
the weak-coupling limit as

〈W〉ρ0
=
∫ τ

0
tr
(
ρtḢt

)
dt (2)

—and heat absorbed by the system

〈Q〉ρ0
=
∫ τ

0
tr (ρ̇tHt) dt (3)

are familiar centerpieces of the thermodynamic arsenal. In
this path-dependent spirit, it has been famously empha-
sized that “work is not an observable” [15].

It is therefore perhaps surprising that the expectation
values of work, heat, and entropy flow can all be deter-
mined via Hermitian observables of the initial state. As we
show in Appendix A, since the above expectation values
are all linear functionals of the initial density matrix of the
system, they can be expressed as

〈�〉ρ0
= tr(ρ0�), 〈W〉ρ0

= tr(ρ0W),

and 〈Q〉ρ0
= tr(ρ0Q), (4)

where �, W , and Q are Hermitian operators, which
we refer to as the expected-entropy-flow operator, the
expected-work operator, and the expected-heat operator,
respectively.

Importantly, we do not assume that these thermody-
namic operators are known a priori. Instead, we will show
how they can be constructed from experimental observa-
tions using a finite number of arbitrary inputs, given a
general finite-time physical process. These thermodynamic
operators in turn reveal the special collection of initial
states that minimize entropy flow, minimize heat, and max-
imize work extraction. The operators also allow direct
calculation of thermodynamic expectation values from any
initial state.

The expressions in Eq. (4) all clearly take the form

〈X 〉ρ0
= tr(ρ0X ), (5)

which we will study in general. We will say that a ther-
modynamic quantity is “type I” when its expectation value
can be expressed as a linear functional of the initial state
tr(ρ0X ), as in Eq. (5). As an added benefit of studying
this general formulation, our methods can also be applied
to reconstruct the Hamiltonian, the expected-change-of-
energy operator, and infinitely many other linear operators
that conform to this general linear structure for expectation
values. If the expectation value is always real valued, then

X is guaranteed to be Hermitian (see Ref. [16, Theorem
2.4.3]).

Notably, Eq. (5) accommodates any of the prominent
definitions for work and heat, including those discussed
in Refs. [17–20], some of which are relevant for arbitrar-
ily strong coupling between system and baths, and with
nonequilibrium environments. For any candidate definition
of work and heat, one only needs to verify that its expec-
tation value is a linear functional of the initial state to
confirm that it is indeed a type-I quantity amenable to our
analysis.

To give a concrete example, an alternative definition of
work in the strong-coupling regime is W(∗): the net change
in energy of the system-bath supersystem during a protocol
of duration τ [12]. Let H tot

t be the total Hamiltonian includ-
ing the system, environment, and coupling contributions;
over time, it induces the net unitary evolution operator
U0:τ . The expectation value for this version of work is thus

〈W(∗)〉ρ0
= tr(ρ tot

τ H tot
τ )− tr(ρ tot

0 H tot
0 ), (6)

which, as we show in Appendix A, can be written as a
linear functional of the initial state of the system alone
when the initial state of the environment is fixed. By our
Theorem 6 of Appendix A, this thus implies that there
exists an input-independent thermodynamic operator W (∗)
such that

〈W(∗)〉ρ0
= tr(ρ0W (∗)). (7)

It is known that invasive measurements can change the
expected value of work and other thermodynamic vari-
ables [21]. We emphasize that different measurement
schemes must be treated as distinct quantum processes,
since each implies a unique sequence of dynamic inter-
ventions. Accordingly, each measurement scheme induces
its own set of thermodynamic operators. For example,
in Appendix B, we address the two-point-measurements
(TPM) scheme and give an explicit construction of the
expected-TPM-work operator WTPM, for which

〈WTPM〉ρ0
= tr(ρ0WTPM). (8)

Indeed, for any measurement scheme—TPM [22], one-
point measurement [23–25], or any other scheme—
thermodynamic operators can be constructed and our
framework can be applied to identify both the breadth of
behavior and the ideal inputs within the scheme.

It is important to note that each of these thermodynamic
operators X contains all the information needed for expec-
tation values of the relevant thermodynamic quantity X
but does not contain the information that would be needed
for expectation values of functions of the thermodynamic
quantity, such as X 2 or eX. As a point of nomenclature,
we note that this is not about whether the operators are
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“observable,” as has been suggested [15], but is, rather, an
elementary fact about expectation values—〈X 〉 does not
determine 〈f (X )〉. The source of insufficiency is simple to
see if we take work as an example: the full work distribu-
tion of a process, whether classical or quantum, has support
on a space much larger than the dimension d of the sys-
tem. Accordingly, the d eigenvalues of the thermodynamic
operator cannot represent the full probability distribution
of the thermodynamic quantity.

Instantaneous thermodynamic quantities—such as
energy, position, momentum, angular momentum, or
spin—offer a familiar exception, since they describe vari-
ables with the same (or smaller) dimension as the sys-
tem. Accordingly, their d × d operators can be used to
calculate all moments of their representative quantity.
Similarly, sufficiently high-dimensional representations of
other thermodynamic operators would allow their encapsu-
lation of higher moments [26]. In future studies, it would
be worth exploring how quasiprobabilities relate to these
higher-dimensional work operators, since each enables an
investigation of fluctuations [27,28]. Indeed, quasiproba-
bilities are linear functionals of the initial state [28] and
so the real and imaginary parts of each quasiprobabil-
ity are thus type-I expectation values amenable to our
framework.

To address a final nuance, we note that a random
variable X in the quantum domain may depend on fur-
ther specification of subensembles, since a density matrix
can be decomposed in many ways [29]. Nevertheless, as
discussed in Appendix C, all decompositions of the ini-
tial density matrix lead to the same expectation value
for a fixed quantum process. Accordingly, our notation
“〈X 〉ρ0

” unambiguously refers to the expectation value of
the relevant thermodynamic quantity X for all possible
decompositions of the quantum state.

Despite these caveats, the thermodynamic operators
serve immense utility. Their d eigenstates represent the
only d features that influence the expected value of the
thermodynamic variable. Once inferred for a process, the
thermodynamic operators tell the full breadth of expected
behavior from any input and identify the unique pure
states leading to extremal behavior. Moreover, the perfor-
mance of any of the infinitely many possible inputs can
be calculated simply and directly from the thermodynamic
operator, without needing to run a new experiment each
time.

IV. GENERALIZED BLOCH VECTOR

We have promised that thermodynamic operators are the
key to identifying thermodynamically ideal inputs to any
process. It will be important, then, to be able to construct
these operators. Our construction will lean on general-
ized Bloch vectors and related thermodynamic vectors,
introduced in this section and in Sec. V, respectively.

It is well known that the state of a qubit ρt can be
expressed via its Bloch vector �at:

ρt = I/2 + �at · �σ/2, (9)

where �σ = (σx, σy , σz) is the vector of Pauli matrices. For a
quantum system of arbitrary finite dimension—i.e., a qudit
ρt acting on a d-dimensional vector space Vd—we achieve
something similar via a slight adaptation of Ref. [30].
We choose any complete basis (I/d,�1,�2, . . . ,�d2−1) for
linear operators acting on Vd, such that the Hermitian
operators �n are all traceless and mutually orthogonal,
satisfying

tr(�n) = 0 and (10a)

tr(�m�n) = η δm,n, (10b)

where we will choose the normalizing constant to be η =
(d − 1)/d. Any density matrix then has a unique decom-
position in the operator basis �� = (�1,�2, . . . ,�d2−1),
described by the generalized Bloch vector �bt ∈ R

d2−1 via

ρt = I/d + �bt · ��. (11)

Since the magnitude of the Bloch vector is bt =√
[tr(ρ2

t )d − 1]/(d − 1), the density matrix represents a
pure state if and only if the magnitude of its corresponding
Bloch vector is one. For d > 2, not all points in the Bloch
ball correspond to physical states, but the set of all physical
states is nevertheless a convex set—the convex hull of the
pure states, which all lie on a 2(d − 1)-dimensional sub-
manifold of the (d2 − 2)-dimensional surface of the Bloch
sphere [30].

For concreteness, we can choose the ordered opera-
tor basis to be a scaled ordering of generalized Gell-
Mann matrices—the generators of SU(d) (for details, see
Appendix E). The standard Bloch vector is then recov-
ered in the familiar two-dimensional case of a qubit, where
then �� = �σ/2 = (σx/2, σy/2, σz/2) and η = 1/2. Alterna-
tively, Appendix F shows how to construct valid composite
operator bases.

V. THERMODYNAMIC VECTORS

Leveraging the general Bloch decomposition in Eq. (11)
of the initial state, we find that we can express each
expectation value in Eq. (4) as
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〈X 〉ρ0
= 〈X 〉I/d + �b0 · �x, (12)

where �x ∈ R
d2−1 is the relevant thermodynamic vector

�x = tr(��X ). (13)

In particular, the thermodynamic vector could be the
entropy-flow vector �ϕ = tr(���), the work vector �w =
tr(��W), or the heat vector �q = tr(��Q).

Conversely, the thermodynamic operators can be con-
structed from the thermodynamic vectors:

X = 〈X 〉I/d I + �x · ��/η. (14)

Using Eqs. (10a) and (10b), it is easy to verify that Eq. (14)
satisfies tr(ρ0X ) = 〈X 〉I/d + �b0 · �x.

In the next sections, we show how both 〈X 〉I/d and the
thermodynamic vector �x can be obtained via linear algebra
from experimental measurements of thermodynamic out-
put from a finite number of almost arbitrary inputs [31].
Via Eq. (14), this allows us to experimentally reconstruct
the thermodynamic operators from observations of any
process.

VI. CONSTRUCTING THERMODYNAMIC
VECTORS AND OPERATORS FROM

OBSERVATIONS

Suppose that an experimentalist has an apparatus to
transform the state of a finite-dimensional quantum sys-
tem. (We will address infinite-dimensional systems in Sec.
IX.) This experimentalist measures the expectation value
of the thermodynamic random variable X that results from
each of d2 linearly independent inputs to their device; i.e.,
they record the average quantity from each of the initial
states (ρ(n)0 )d

2

n=1 with corresponding generalized Bloch vec-
tors (�b(n)0 )

d2

n=1. Note that the generalized Bloch vectors can
be obtained as �b(n)0 = tr(ρ(n)0

��)/η. From Eq. (12), we see
that

⎡
⎢⎢⎢⎢⎣

1 �b(1)0
1 �b(2)0
...

...
1 �b(d2)

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:B

[〈X 〉I/d
�x
]

=

⎡
⎢⎢⎢⎢⎣

〈X 〉
ρ
(1)
0〈X 〉
ρ
(2)
0

...
〈X 〉

ρ
(d2)
0

⎤
⎥⎥⎥⎥⎦ . (15)

Note that the B matrix defined in Eq. (15) is invert-
ible, since the d2 initial states are all linearly indepen-
dent. Hence, with the d2 measurements in hand and some
simple linear algebra, we can find both (i) the expecta-
tion value from the reference input 〈X 〉I/d and (ii) the
input-independent thermodynamic vector �x:

[〈X 〉I/d
�x
]

= B−1

⎡
⎢⎢⎢⎢⎣

〈X 〉
ρ
(1)
0〈X 〉
ρ
(2)
0

...
〈X 〉

ρ
(d2)
0

⎤
⎥⎥⎥⎥⎦ . (16)

〈X 〉I/d and �x can now be used in Eq. (14) to construct
the thermodynamic operator of interest: X = 〈X 〉I/d I +
�x · ��/η. This constitutes a type of “operator tomography,”
which is distinct but reminiscent of both quantum state
tomography and process tomography.

It is worth briefly noting that our framework also
offers an alternative approach to standard quantum pro-
cess tomography [32], since we can directly reconstruct
the generalized Bloch representation of the process using
the above Bloch matrix B. As always, we can identify any
quantum channel through the preparation and evolution
of any d2 linearly independent inputs to the channel. Let
T denote the unknown d2-by-d2 matrix that maps (input)
generalized Bloch vectors to (output) generalized Bloch
vectors via

[
1 �bτ

]
=
[
1 �b0

]
T . (17)

Stacking the solutions for d2 linearly independent inputs,
with output vectors �b(n)τ = tr(ρ(n)τ ��)/η, we can invert B to
construct this linear Bloch representation of the channel:

T = B−1B′, (18)

where the nth row of the matrix B′ is
[
1 �b(n)τ

]
. Spectral

analysis of T yields modes of decay, unitary subspaces,
and stationary states of the map, if they exist.

We are now equipped to identify and construct the
thermodynamically ideal inputs to any device.

VII. IDEAL INPUTS FOR TYPE-I OBJECTIVES

Recall that a thermodynamic quantity is “type I” when
its expectation value can be expressed as a linear functional
of the initial state tr(ρ0X ). It is often desirable to mini-
mize or maximize type-I quantities, e.g., to minimize heat
or maximize work extraction.

An immediate observation can be drawn from Eq. (5)
for any finite-dimensional quantum system, by considering
the spectral decomposition of the bounded operator X =∑d

n=1 λn |vn〉〈vn|, where �X = (λn)n is the tuple of X ’s
eigenvalues with corresponding eigenstates VX = (|vn〉)n.

Theorem 1. There is always a pure-state input that
extremizes the expectation value of type-I quantities
〈X 〉ρ0

= tr(ρ0X ). This pure state corresponds to an eigen-
state of the thermodynamic operator X with extremal
eigenvalue.
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For example: there is always a pure-state input that
minimizes heat; there is always a pure-state input that
maximizes heat; there is always a pure-state input that
minimizes entropy flow; and so on.

The implications are important and somewhat surpris-
ing. For instance, consider the work extracted Wextracted =
−W during a finite-time cyclic work-extraction protocol
from a finite-dimensional quantum system. Theorem 1
asserts that maximal work can be extracted from the pure-
state input |wmin〉 ∈ argmin|v〉∈VW {〈v|W|v〉} [33]. When
the minimal-eigenvalue eigenspace of W is degenerate,
maximal work extraction can be achieved by both pure and
mixed inputs. In contrast, as we will see later, the state that
minimizes entropy production is generically a mixed state.
Therefore, pure-state inputs that maximize work extraction
imply nonminimal entropy production. Similarly, pure-
state inputs that minimize heat imply nonminimal entropy
production.

One broad lesson from this analysis is that maximizing
work extraction, minimizing heat, minimizing entropy pro-
duction, etc., are all distinct concepts that should not be
conflated. There is a great diversity in optimality among
different thermodynamic goals. This will be emphasized
again in our first example in Sec. X.

It is worth noting that the smallest and largest eigenval-
ues of each thermodynamic operator demarcate the range
of corresponding expectation values that can be achieved
via alternative inputs:

〈X 〉ρ0
∈ [min(�X ), max(�X )]. (19)

All values in this continuous range are achievable by some
input.

VIII. IDEAL INPUTS FOR TYPE-II OBJECTIVES

Not all thermodynamic expectation values can be
expressed like Eq. (5), as a linear functional of the ini-
tial state. In particular, entropy production, reduction in
nonequilibrium free energy, and change in entropy all have
expectation values that are nonlinear functions of the initial
state. However, in each of these three cases, the nonlinear-
ity is of the same form, since it derives from the change
of von Neumann entropy S(ρ) = −tr(ρ ln ρ). Accord-
ingly, the initial states that extremize this second class of
thermodynamic quantities all share similar features.

The expectation value of entropy production, 〈�〉ρ0
=

〈�〉ρ0
+ kBS(ρt), plays a central role in nonequilibrium

thermodynamics. When the environment begins in local
equilibrium and is uncorrelated with both itself and the
system, then the famous second law of thermodynam-
ics is valid: 〈�〉ρ0

≥ 0. In the appropriate circumstances,
entropy production can alternatively be expressed as the
work performed beyond the change in nonequilibrium
free energy T 〈�〉ρ0

= 〈W〉ρ0
−Ft, where T is the initial

temperature of the environment.

The expectation values of (i) entropy production, (ii)
change in free energy, and (iii) change in entropy are each
proportional to

f (X )ρ0
:= tr(ρ0X )+ S(ρτ )− S(ρ0) (20)

for the appropriate linear operators X . We will say that a
thermodynamic quantity is “type II” when its expectation
value is proportional to f (X )ρ0

for some linear operator X
and some positive constant of proportionality. In particular,

〈�〉ρ0
= kBf (�/kB)

ρ0
and St = f (0)ρ0

and

−Ft = kBTf (−(Q+W)/kBT)
ρ0

. (21)

A. General processes

1. Inputs that minimize type-II functions

Theorem 2. An initial state that locally minimizes a
type-II quantity also globally minimizes it.

This is because type-II quantities are convex in the
initial state.

For general processes, the nonlinearity of type-II objec-
tives makes it difficult to find a closed-form expression
for ideal inputs argminρ0

f (X )ρ0
. Nevertheless, since type-II

quantities are convex in the initial state, any number of
simple algorithms, including gradient descent and related
variations, are guaranteed to converge to the ideal input
upon iteration. By convexity, a local minimum in f (X )ρ0

,
when minimizing over the set of density matrices, is also
the global minimum.

However, constrained optimization—restricting to the
set of density matrices in this case—is nontrivial. Although
some techniques for gradient descent on the manifold
of density matrices have been developed (see, e.g.,
Refs. [34,35] and references therein), we have found
a more direct solution to our problem, which we pro-
vide in this section. Our resulting algorithm for gradient
descent provides a quantum generalization of the Frank-
Wolfe algorithm [36], with a simple analytically solvable
direction for descent at each step.

Using techniques introduced in Ref. [3], we can ana-
lytically calculate the gradient of type-II expectation val-
ues around any initial state, given any parametrization
of the state space. If we consider arbitrary infinitesimal
changes in the initial generalized Bloch vector, then the
partial derivative of f (X )ρ0

, with respect to each Bloch-vector
component, can be expressed as

∂

∂b0m
f (X )ρ0

= tr(�mX )+ tr(�m ln ρ0)

− tr
{
trenv

[
U(�m ⊗ ρenv

0 )U†] ln ρτ
}

. (22)

This follows via an adaptation of the derivation that led to
Eqs. (C16) and (O4) in Ref. [3].
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It is useful to note how the elements of an arbitrary
matrix basis can be expressed as a linear combination of
the d2 test inputs:

�m =
d2∑

n=1

(B−1)m+1,n ρ
(n)
0 , (23)

where we have included the reference state as �0 = I/d.
We can likewise express the time evolution of these matri-
ces, as the same linear combination of the time-evolved
test inputs:

�′
m := trenv

[
U(�m ⊗ ρenv

0 )U†] =
d2∑

n=1

(B−1)m+1,n ρ
(n)
τ .

(24)

Partial derivatives of f (X )ρ0
can thus be calculated via

∂

∂b0m
f (X )ρ0

= tr(�mX )+ tr(�m ln ρ0)− tr(�′
m ln ρτ ),

(25)

where ρτ = �′
0 + 1/η

∑d2−1
n=1 tr(ρ0�n) �

′
n.

A gradient can be constructed as the Hermitian operator,

�∇f (X )ρ0
=

d2−1∑
m=1

�m
∂

∂b0m
f (X )ρ0

. (26)

However, extra care must be taken to stay along the mani-
fold of valid density matrices. To achieve this, one can use
the directional derivative

ρ ′
0 − ρ0

‖ρ ′
0 − ρ0‖ · �∇f (X )ρ0

= tr
[
(ρ ′

0 − ρ0) �∇f (X )ρ0

]
/‖ρ ′

0 − ρ0‖,

(27)

which is the linear change in f (X )ρ0
at ρ0 when moving in the

direction of ρ ′
0. Since density matrices are a convex set, a

change in this direction is guaranteed to move along the
manifold of density matrices. For simplicity, ‖ · ‖ can be
chosen to be the trace norm.

Recall that since f (X )ρ0
is convex over initial states,

descent always benefits its global minimization; there are
no nonglobal local minima in which to get stuck. If ρ0
does not minimize f (X )ρ0

, then we can find directions (along
the manifold of density matrices) with negative slope and
these directions will lead toward the minimizer. Note that
moving infinitesimally from ρ0 toward ρ ′

0 will reduce f (X )ρ0

whenever tr
[
(ρ ′

0 − ρ0) �∇f (X )ρ0

]
< 0. Accordingly, we can

always find a valid direction of descent by identifying
the ρ ′

0 that minimizes tr
[
(ρ ′

0 − ρ0) �∇f (X )ρ0

]
. Fortunately,

this desired ρ ′
0—call it σmin—can be found explicitly and

analytically, since

σmin := argminρ′
0
tr
[
(ρ ′

0 − ρ0) �∇f (X )ρ0

]
(28)

= argminρ′
0
tr
(
ρ ′

0
�∇f (X )ρ0

)
(29)

= |ξ〉 〈ξ |
〈ξ |ξ 〉 , (30)

where

|ξ〉 = argmin|λ〉 〈λ| �∇f (X )ρ0
|λ〉 (31)

is the minimal-eigenvalue eigenstate of the Hermitian
operator �∇f (X )ρ0

.
Putting this all together, we can now propose a simple

descent method for finding the optimal quantum state:

�

�

�

�

Algorithm to obtain argminρ0
f (X )ρ0

From d2 linearly independent test inputs, record the initial Bloch matrix B, construct the thermodynamic operator X , and
record the time-evolved test states (ρ(n)τ )

d2

n=1 to obtain (�′
n)

d2−1
n=0 .

Choose an arbitrary initial density matrix ρ0, which will be updated iteratively.
At each iterative step k:

(1) Calculate the gradient �∇f (X )ρ0
via Eq. (25).

(2) Determine the descent direction n̂ = (σmin − ρ0)/‖σmin − ρ0‖, with σmin = |ξ〉 〈ξ |/〈ξ |ξ 〉, from the minimal-
eigenvalue eigenstate |ξ〉 of the Hermitian operator �∇f (X )ρ0

.
(3) Update the initial state ρ0 to approach argminρ0

f (X )ρ0
, according to:

ρ0 �→ ρ0 − akn̂ tr
(
n̂ �∇f (X )ρ0

)
, (32)

where ak is a small positive value that diminishes with large k.
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Note that n̂ is a traceless operator. We take ak =
2/(k + 2), as suggested by the Frank-Wolfe algorithm
[36]. In the limit of many iterations, the algorithm
then converges toward its unique fixed point α0 =
argminρ0

f (X )ρ0
with error on the order of O(1/k).

The minimizing input is generically a mixed state with
full support. In these cases, success in the type-II mini-
mization can be verified through the mismatch theorem:

f (X )ρ0
− f (X )α0

= D[ρ0‖α0] − D[ρτ‖ατ ], (33)

where D[ρ‖α] = tr(ρ ln ρ)− tr(ρ lnα) is the quantum rel-
ative entropy, and α0 = argminρ0

f (X )ρ0
is the ideal input

[3,5].

2. Inputs that maximize type-II functions

Theorem 3. A pure state input maximizes a type-II
quantity.

This is because type-II quantities are convex functions
of the initial state and the maximum of a convex function
over a convex set (set of mixed states) is achieved on the
boundary of the convex set (the pure states).

Local maximization can be achieved by a slight adap-
tation of the above algorithm, by ascending rather than
descending the gradient. The only difference is that the
ascent direction is obtained via the maximal-eigenvalue
eigenstate of the Hermitian operator �∇f (X )ρ0

, whereas gra-
dient descent uses its minimal-eigenvalue eigenstate.

However, local maxima of type-II quantities are not
necessarily global maxima. In our simulations, we have
found the global maxima by seeding our algorithm with
argmaxρ0

tr(ρ0X ), which has been found via spectral
decomposition of the thermodynamic operator X .

For completeness and clarity, we provide this ascent
algorithm explicitly:

�

�

�

�

Algorithm to obtain argmaxρ0
f (X )ρ0

From d2 linearly independent test inputs, record the initial Bloch matrix B, construct the thermodynamic operator X , and
record the time-evolved test states (ρ(n)τ )

d2

n=1 to obtain (�′
n)

d2−1
n=0 .

Choose the initial density matrix to be ρ0 = argmaxρ0
tr(ρ0X ), which will be updated iteratively.

At each iterative step k:

(1) Calculate the gradient �∇f (X )ρ0
via Eq. (25).

(2) Determine the ascent direction n̂ = (σmax − ρ0)/‖σmax − ρ0‖, with σmax = (|ψ〉 〈ψ |/〈ψ |ψ〉), from the maximal-
eigenvalue eigenstate |ψ〉 of the Hermitian operator �∇f (X )ρ0

.
(3) Update the initial state ρ0 to approach argmaxρ0

f (X )ρ0
, according to:

ρ0 �→ ρ0 + akn̂ tr
(
n̂ �∇f (X )ρ0

)
, (34)

where ak is a small positive value that diminishes with large k.

In the limit of many iterations, the algorithm converges toward a local maximum of f (X )ρ0
.

B. Overwriting processes

Processes that overwrite the physical state of the sys-
tem are an important class of processes, including memory
reset, state preparation, work extraction, and processes that
lead to either equilibrium or nonequilibrium steady states.
We find that their thermodynamically ideal inputs can all
be found directly and analytically.

For reliable overwriting processes, for which the
final state rτ is very nearly independent of the input,

S(ρτ ) = S(rτ ) will effectively be a constant. In this case,
as shown in Appendix D, f (X )ρ0

can be expressed as

f (X )ρ0
= D[ρ0‖ω(X )] − ln[tr(e−X )] + S(rτ ) where ω(X ) :=

e−X /tr(e−X ). Thus, for reliable overwriting processes, it
is clear that ω(X ) uniquely minimizes f (X )ρ0

. It is worth not-
ing that if X is a bounded finite-dimensional operator, ω(X )

has full rank. Physically, this tells us that ω(X ) is a nonpure
mixed state.
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Theorem 4. For any overwriting process, the expec-
tation value of any type-II quantity 〈X 〉ρ0

= pf (X )ρ0
=

p[tr(ρ0X )+ S(ρτ )− S(ρ0)] is uniquely minimized by the
mixed-state input

ω(X ) = e−X /tr(e−X ). (35)

The corresponding minimal value is 〈X 〉ω(X ) = pS(rτ )−
p ln[tr(e−X )], where rτ is the input-independent final state
of the overwriting process.

Recall that the thermodynamic operator can be
expressed as X = 〈X 〉I/d I + �x · ��/η. In terms of the ther-
modynamic vector �x, we find that

ω(X ) = e−�x· ��/η/tr(e−�x· ��/η). (36)

For a qubit in the standard Pauli-matrix basis �� = �σ/2,
this further reduces to

ω(X ) = e−�x·�σ /tr(e−�x·�σ ) (37)

= I/2 − x̂ · �σ
2

tanh x. (38)

Intuitively, Eq. (38) tells us that the minimizing Bloch
vector �a∗ = − tanh(x)x̂ points in the opposite direction
to the thermodynamic vector �x to reduce entropy flow
or promote energy gain, as the case may be. However,
this tendency to reduce heat or increase energy is bal-
anced against the entropy gain incurred when tarnishing a
pure state. As the magnitude of the thermodynamic vec-
tor x grows beyond unity, the minimizing Bloch vector
converges exponentially to the edge of the Bloch sphere.

For example, for any reliable overwriting process oper-
ating on a qubit, this tells us that the unique initial
state leading to minimal entropy production is I/2 −
(ϕ̂ · �σ/2) tanhϕ, in agreement [37] with Ref. [Eq. (25)]
[4] obtained by different means. Whereas Ref. [4] has
identified the initial state of a qubit that would lead to min-
imal entropy production during any qubit-reset process,
the current result provides a significant generalization. We
now identify the ideal input to any overwriting process in
any finite dimension for any type-II objective, including
maximizing free-energy gain.

While the initial states leading to minimal entropy pro-
duction or maximal gain in free energy are nontrivial
mixed states, the input leading to the largest reduction in
entropy is always the same for any overwriting process.
Note that the largest reduction in entropy is achieved by
the fully mixed input state ω(0) = I/d for any overwriting
process in any dimension d.

We have so far found the ideal inputs to minimize the
expectation values of type-II quantities during an overwrit-
ing process—e.g., the inputs leading to minimal entropy

production or maximal increase in nonequilibrium free
energy. It is just as natural and important to ask: Which
inputs maximize the expectation values of type-II quanti-
ties, leading, e.g., to maximal entropy production or the
biggest reduction in nonequilibrium free energy?

Since S(ρτ ) = S(rτ ) is independent of the input to
an overwriting process, maximizing f (X )ρ0

= tr(ρ0X )+
S(ρτ )− S(ρ0) asks us to simultaneously minimize S(ρ0)

and maximize tr(ρ0X ). Note that S(ρ0) is minimized for
any pure state, whereas tr(ρ0X ) is maximized by some
pure state, according to Theorem 1. Accordingly, the two
objectives can be simultaneously satisfied by identifying
the pure state that maximizes tr(ρ0X ). We thus inherit an
answer from Theorem 1, when seeking to maximize the
expectation value of a type-II quantity.

Theorem 5. For any overwriting process, the expec-
tation value of any type-II quantity 〈X 〉ρ0

= pf (X )ρ0
=

p[tr(ρ0X )+ S(ρτ )− S(ρ0)] is maximized by a pure-state
input that maximizes tr(ρ0X ). This is satisfied by any
eigenstate of X with maximal eigenvalue.

For example, for any overwriting process, the input
that maximizes entropy production is the pure state that
maximizes entropy flow, which is an eigenstate of the
expected-entropy-flow operator � with maximal eigen-
value. Similarly, the biggest reduction in nonequilibrium
free energy will be achieved for any overwriting process
from the pure-state input that maximizes the reduction in
energy, which is an eigenstate of the change-of-energy
operator Q + W with minimal eigenvalue.

C. Perturbative correction to type-II minimizers

Here, we find a closed-form expression for the approx-
imate minimizer of any type-II functional—e.g., the input
state that minimizes entropy production or maximizes the
change in nonequilibrium free energy—for any process,
via a second-order expansion of the type-II functional
around a reference state. This method becomes exact in the
limit that the true minimizer is a small perturbation from
the reference state—e.g., in the case of small changes to a
protocol with known minimizer.

To obtain our result, we minimize f (X )ρ0
over the space

of valid generalized Bloch vectors. It is convenient to
introduce the function ρ̃ with ρ̃(�b) = I/d + �b · ��, which
maps Bloch vectors to their corresponding density matri-
ces, and the function ρ̃ ′ with ρ̃ ′(�b) = �′

0 + �b · ��′, which
maps initial Bloch vectors (at time 0) to their correspond-
ing time-evolved density matrices at time τ . To simplify
the notation, we introduce the function f̃ such that f̃ (�b) =
f (X )
ρ̃(�b) .

We seek the optimal �b∗ = argmin�b f̃ (�b) in the perturba-
tive regime, where the optimal ρ̃(�b∗) is a small perturbation
away from some reference initial state ρ̃(�π). For instance,
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f̃ may represent entropy production and ρ̃(�π) may be an
initial equilibrium state such that ρ̃(�b∗) ≈ ρ̃(�π) in the limit
of slow time-dependent driving.

Assume that the density matrix ρ(�π) is positive definite.
By continuity, for any �b sufficiently close to �π , ρ̃(�b) is also
positive definite and therefore a valid density matrix [38].
Now expand f̃ to second order in �ε := �b − �π ,

f̃ (�b) ≈ f̃ (�π)+ �ε��j + 1
2
�ε�H�ε, (39)

where �j is the gradient vector and H is the Hessian matrix
of f̃ evaluated at �π . The elements of the gradient vector
are given by

jn = ∂bn f̃
∣∣∣
�π

= tr(�nX )+ tr [�n ln ρ̃(�π)] − tr
[
�′

n ln ρ̃ ′(�π)] . (40)

The elements of the Hessian matrix are Hm,n =
(∂bm∂bn f )|�π . The Hessian follows by considering the sec-
ond derivatives of the von Neumann entropy, which we
calculate in Appendix H, to find

∂bm∂bnS(ρ̃)
∣∣
�π = −

∑
k,�

φ(νk, ν�)〈k|�n|�〉〈�|�m|k〉, (41)

where we have used the eigendecomposition ρ̃(�π) =∑
k νk|k〉〈k| and defined φ(a, b) := (ln a − ln b)/(a − b)

(with φ(a, a) = 1/a by continuity), which is the reciprocal
of the logarithmic mean. We note that this second-order
expansion has some resemblance to the Kubo-Mori-
Bogoliubov metric of quantum information geometry [39].
We derive a similar expression for ∂bm∂bnS(ρ̃ ′), which
gives the following form for the matrix elements of the
Hessian:

Hm,n =
⎡
⎣∑

k,�

φ(νk, ν�)〈k|�n|�〉〈�|�m|k〉
⎤
⎦

−
⎡
⎣∑

k,�

φ(ν ′
k, ν ′

�)〈k′|�′
n|�′〉〈�′|�′

m|k′〉
⎤
⎦ , (42)

where we have used the eigendecomposition ρ̃ ′(�π) =∑
k ν

′
k|k′〉〈k′|. Note that H is positive semidefinite since f̃

is a convex function. For simplicity, assume for now that f̃
is strictly convex, in which case H is positive definite and
has an inverse H−1. (We give the generalization later.)

Finally, we minimize Eq. (39) in closed form. First,
complete the square to write

�ε��j + 1
2
�ε�H�ε = 1

2
(�ε + H−1�j )�H(�ε + H−1�j )

− 1
2
�j �H−1�j (43)

≥ −1
2
�j �H−1�j , (44)

where the last inequality is achieved by setting �ε∗ =
−H−1�j . This implies that in the perturbative regime, the
optimal state is given by

ρ̃(�b∗) = ρ̃(�π)− (H−1�j ) · ��, (45)

which achieves the optimal value

min f̃ (�b) = f̃ (�π)− 1
2
�j �H−1�j . (46)

The above expressions for the optimal state generalize to
allow for a singular Hessian if we replace H−1 with the
Drazin inverse HD (or the group inverse, since we can
diagonalize the Hessian) [40].

IX. GENERALIZED BLOCH VECTORS,
THERMODYNAMIC OPERATORS, AND IDEAL

INPUTS WITHIN A RESTRICTED SUBSPACE

It will often be useful to know the ideal input to a device,
within a restricted subspace of possible inputs. For exam-
ple, when operating on a system with a countably infinite
number of energy eigenstates, we may care about inputs
with nonzero probability amplitude only in the lowest N
energy eigenstates, for some finite N . Or, we may be inter-
ested in the best classical inputs to a device, when coherent
states cannot be readily prepared. In such cases, we can
find the thermodynamically ideal input to the transfor-
mation within this finite-dimensional subspace via a very
straightforward adaptation of the above techniques.

Let PP be the convex subspace of the possible density
matrices P of the system, induced by the set of orthogonal
projectors P = {�j }j with �j�k = δj ,k�j , such that

PP :=
{
ρ ∈ P : ρ =

∑
�∈P

�ρ�

}
. (47)

Density matrices in this subspace act on a dP-dimensional
vector space VP, where dP =∑�∈P tr(�). The identity
operator on VP is given by IP =∑�∈P �.

Each projector �j ∈ P has an associated dimension
dj = tr(�j ). The restricted subspace PP is spanned by a
basis of L linearly independent density matrices, where
L =∑|P|

j =1 d2
j . In general, dP ≤ L ≤ d2

P.
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By creating an appropriate operator basis and general-
ized Bloch vector for initial density matrices restricted to
PP, we can easily adapt and leverage all results of pre-
vious sections in this restricted setting. To achieve this,
the following development closely parallels the previous
introduction of generalized Bloch vectors.

When the initial density matrix ρ0 is restricted
to PP, it is useful to choose a complete basis
(IP/dP,�1,�2, . . . ,�L−1) for linear operators acting on VP,
such that the Hermitian operators �n are all traceless and
mutually orthogonal, satisfying tr(�n) = 0 and tr(�m�n) =
ηP δm,n, where we will choose the normalizing constant
to be ηP = (dP − 1)/dP. Any initial density matrix then
has a unique decomposition in the operator basis ��P =
(�1,�2, . . . ,�L−1), described by the generalized Bloch
vector �b0 ∈ R

L−1 via

ρ0 = IP/dP + �b0 · ��P. (48)

Since the magnitude of the Bloch vector is b0 =√
[tr(ρ2

0)dP − 1]/(dP − 1), the density matrix represents a
pure state if and only if the magnitude of its corresponding
Bloch vector is one.

For concreteness, we can choose the ordered operator
basis to begin with a scaled ordering of the dP diagonal
generalized Gell-Mann matrices, followed by dj (dj − 1)/2
nondiagonal symmetric Gell-Mann matrices and dj (dj −
1)/2 antisymmetric Gell-Mann matrices for each projector
�j ∈ P with dj > 1. Recall that these matrices are given
explicitly in Appendix E.

It is now productive to consider the restriction of a ther-
modynamic operator to this subspace XP :=∑�∈P �X�.
It is easy to check that the expectation value for any type-I
thermodynamic quantity satisfies

tr(ρ0XP) = tr(ρ0X ) = 〈X 〉ρ0
for all ρ0 ∈ PP. (49)

Notably, XP can be constructed directly, just as X was in
the previous sections—but now in the finite-dimensional
restricted subspace PP, using the operator basis ��P, the
generalized Bloch vector, and the thermodynamic opera-
tor �xP associated with this restricted subspace. For general
processes, the thermodynamic operator restricted to this
subspace is constructed as

XP = 〈X 〉IP/dP IP + �xP · ��P/ηP. (50)

The thermodynamically ideal inputs within the sub-
space of interest are constructed just as before, with the
extremal eigenvalues and associated eigenstates of XP
playing the special role indicated in Theorems 1 and 5.
For overwriting processes, the minimal value of type-II
quantities is achieved within subspace PP by ω(XP) =
e−XP/tr(e−XP ) = e−�xP · ��P/ηP/tr(e−�xP · ��P/ηP ), which extends

an analogous result of Ref. [5] that was formulated for the
case of entropy production.

It is interesting to note that these methods—restricting
to the dP-dimensional subspace—work even though the
states are not restricted to this subspace during their
evolution. Indeed, the protocol can spread these initially
restricted inputs across infinite dimensions but our finite-
dimensional inference of the ideal input within this initial
subspace remains valid.

To pursue the example of inputs with support restricted
to the N lowest-energy eigenstates {|En〉}N

n=1 of some
initial system Hamiltonian H0, we would consider the
density matrices with support on the Hilbert subspace of
the system, Hsub = span

({|En〉}N
n=1

)
; i.e., we would con-

sider the restricted set of initial density matrices Psub ={
ρ =∑� p�(|ψ�〉 〈ψ�|/〈ψ�|ψ�〉) : p� ∈ (0, 1],

∑
� p� = 1,

|ψ�〉 ∈ Hsub}, which is induced by the single rank-N pro-
jector� =∑N

n=1 |En〉 〈En|. Within this subspace, there are
L = d2

{�} = N 2 linearly independent initial states (com-
pared to the d2 = ∞ linearly independent initial states
within the full Hilbert space).

A. Classical systems

If we define classical inputs as those states restricted to
be initially incoherent in a particular “classical” orthonor-
mal basis C, then we can see how the general quantum
problem simplifies significantly, if we seek the classical
thermodynamic operators and ideal classical inputs. Clas-
sical density matrices are those induced by the set of
orthonormal rank-1 projectors P = {|b〉〈b|}b∈C . Classical
density matrices are diagonal in the classical basis and can
be regarded as a representation of a probability distribution
over these classical states. Note that for d-dimensional sys-
tems, there are only L = d linearly independent classical
density matrices, in contrast to the d2 linearly independent
quantum density matrices over the same space. Accord-
ingly, each classical thermodynamic vector has d − 1 com-
ponents, rather than the d2 − 1 components of its quantum
counterpart. Similarly, each classical thermodynamic oper-
ator will be fully determined by the behavior of d, rather
than d2, initial states.

X. EXAMPLE 1: NONEQUILIBRIUM
THERMODYNAMICS OF A QUBIT-RESET

DEVICE

Quantum computing requires a mechanism for resetting
each qubit to the computational-basis state |0〉 = σz |0〉.
Different implementations of the same task will, how-
ever, have distinct sets of thermodynamically ideal inputs.
Nonequilibrium thermodynamic quantities are determined
less by what you do than how you do it.

The following provides a paradigmatic illustration of
our results, for a straightforward qubit-reset mechanism,
highlighting (i) the diversity of ideal inputs depending on
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the thermodynamic objective and (ii) how the behavior of
a small number of test inputs bounds the thermodynamic
behavior of all possible inputs to the device.

Section X A gives the particular dynamics for our exam-
ple. Section X B covers how to build the thermodynamic
vectors and operators, for any operation on a qubit. Subse-
quent subsections then demonstrate the diversity of ideal
inputs and that the breadth of possible thermodynamic
behaviors is determined by the behavior of a small number
of inputs.

A. Dynamical equations for a qubit-reset device

As in Refs. [4,41], our example qubit-reset device works
by changing both the energy gap and spatial orientation
of the energy eigenstates of the qubit while it is in weak

contact with a thermal reservoir at inverse temperature β =
1/(kBT). Over the finite-time protocol, from time 0 through
τ = 50β�, the time-varying Hamiltonian is

Ht = Et

2
[cos(θt)σz + sin(θt)σx] , (51)

where Et = kBT[1 + 49 sin2 (π t/100β�)]/5 and θt = π t/
(50β�). While Et quantifies the energy gap between
the instantaneous energy eigenstates of the system, θt
parametrizes the instantaneous orientation of the energy
eigenbasis relative to the “computational” z-basis. We
assume idealized conditions (large baths, weak coupling,
etc.) such that the dynamics are well described by a
time-dependent quantum master equation,

ρ̇t = Lt(ρt) = i
�

[ρt, Ht] + cEt

�
(Nt + 1)D[Lt](ρt)+ cEt

�
NtD[L†

t ](ρt), (52)

whereD[L](ρ) = LρL† − 1
2 {L†L, ρ}, Nt = (eβEt − 1)−1,

and c = 1/5 is the coupling strength to the bath. The
time-dependent lowering operator can be represented as

Lt = 1
2
[
cos(θt)σx − iσy − sin(θt)σz

]
(53)

and satisfies the detailed-balance condition [Lt, Ht] = EtLt
[41,42]. Transitions thus occur between instantaneous
energy eigenstates of the system. In particular, D[Lt](ρt)

takes the excited population and shifts it to the ground
state, while D[L†

t ](ρt) takes the ground-state population
and shifts it to the excited state. Moreover, the ratio
of transition rates between the excited- and ground-state
populations satisfies detailed balance since (Nt + 1)/Nt =
eβEt .

B. Thermodynamic operators for a qubit

When the system of interest is a single qubit then,
regardless of the size of the environment or the dynam-
ics under consideration, a standard Bloch matrix can
be employed. We can choose ρ(1)0 = I/2, ρ(2)0 = I/2 +
σx/2 = |+〉〈+|, ρ

(3)
0 = I/2 + σy/2, and ρ

(4)
0 = I/2 +

σz/2 = |0〉〈0|. Recall that the standard Bloch vectors can
be obtained as �b(n)0 = tr(ρ(n)0 �σ). From our proposed choice
of initial density matrices above, we then obtain a standard

Bloch matrix for qubits:

B =

⎡
⎢⎢⎢⎢⎣

1 �b(1)0

1 �b(2)0

1 �b(3)0

1 �b(4)0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎥⎦ , (54)

which is easily inverted to yield

B−1 =

⎡
⎢⎣

1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤
⎥⎦ . (55)

To find the thermodynamic vectors and thermodynamic
operators, we need to now either experimentally or analyt-
ically obtain the expectation values for the thermodynamic
variables under these four initial system states, 〈X 〉

ρ
(n)
0

for
n ∈ {1, 2, 3, 4}. We then find the thermodynamic vectors
via Eq. (16),

[〈X 〉I/2
�x
]

= B−1

⎡
⎢⎢⎢⎢⎢⎣

〈X 〉
ρ
(1)
0

〈X 〉
ρ
(2)
0

〈X 〉
ρ
(3)
0

〈X 〉
ρ
(4)
0

⎤
⎥⎥⎥⎥⎥⎦

, (56)

and finally obtain the thermodynamic operators via
Eq. (14):
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X = 〈X 〉I/2 I + �x · �σ . (57)

C. Diversity among ideal inputs for thermodynamic
objectives

To determine how the thermodynamic behavior of the
device depends on the input state, we track the evolu-
tion of four randomly sampled initial density matrices,
together with the thermodynamic output from each of these
four inputs. From the Bloch matrix B and the measured
thermodynamic output, we construct the Hermitian ther-
modynamic operators. For example, the expected-heat and
expected-work operators, Q and W , allow us to determine
(i) the ideal inputs leading to minimal and maximal heat
and work and (ii) the full range of heat and work that can
be attained by any input to the device. These are obtained
from the extremal eigenvalues and associated eigenstates
of the thermodynamic operators.

Simple combination and manipulation of the heat and
work operators reveals the diversity of ideal inputs for a
multitude of different thermodynamic objectives, as shown
in Fig. 1.

In the figures, we emphasize the heat exhausted to the
environment −Q, rather than the heat Q directly. In this
example, with a single environmental bath at constant tem-
perature T, note that entropy flow to the environment is
simply related to heat out of the system via � = −Q/T.
The expected-entropy-flow operator is thus simply related
to the expected-heat operator in this case, via � = −Q/T.
Meanwhile, the expected-energy-change operator is sim-
ply Q + W .

D. Bounding the behavior of all inputs

Continuing our example of the qubit-reset dynamics,
we now leverage our results to identify the extremal ther-
modynamic behavior that can be attained by any input
throughout the process.

In Fig. 2, we demonstrate that thermodynamic obser-
vations from just four inputs yield the full range of ther-
modynamic behavior from any input. For example, the
minimum and maximum expected work at any time t ∈
[0, τ ], obtainable from alternative inputs, is determined by
the expected-work operator at that time. The expected-
work operator at any time is constructed from the expected
work performed on each of the four test inputs up to that
time. Determining the ranges of work, energy change, and
heat thus reduces to determining eigenvalue ranges of the
respective Hermitian operators.

Determining the range of entropy production through-
out the process is somewhat more complicated, although it
still only requires the data from four test inputs. Notably,
in Fig. 2(b), we find the states of minimal and maximal
entropy production at times before the state is fully reset.
This employs the gradient-descent algorithm developed in
Sec. VIII A.

XI. EXAMPLE 2: STRONG INTERACTIONS WITH
SMALL ENVIRONMENTS

We emphasize that we can find the ideal inputs and
breadth of behavior in terms of thermodynamic opera-
tors that act on the system alone, even when the system
is strongly coupled to an arbitrarily small (or arbitrarily

. .
.

.

(1, 0, 0)

(0, 1, 0)

|0〉 ↔ (0, 0, 1)

|1〉 ↔ (0, 0, −1)

Objective Ideal input

min. entropy production argminρ0
〈Σ〉ρ0

mixed �a0 ≈ (−0.02, 0.03, −0.15)
max. free-energy gain argmaxρ0

ΔFt mixed �a0 ≈ (0, 0, −0.10)
min. entropy change argmaxρ0

ΔSt mixed �a0 = (0, 0, 0)
max. heat exhausted argmaxρ0

〈−Q〉ρ0
=

max. entropy production argmaxρ0
〈Σ〉ρ0

= pure �a0 ≈ (0.13, −0.20, 0.97)
max. entropy flow argmaxρ0

〈Φ〉ρ0

min. heat exhausted argminρ0
〈−Q〉ρ0

= pure �a0 ≈ (−0.13, 0.20, −0.97)
min. entropy flow argminρ0

〈Φ〉ρ0

min. free-energy change argminρ0
ΔFt = pure �a0 ≈ (0, 0, 1)

min. energy change argminρ0
〈Q + W 〉ρ0

max. energy change argmaxρ0
〈Q + W 〉ρ0

pure �a0 ≈ (0, 0, −1)
min. work argminρ0

〈W 〉ρ0
pure �a0 ≈ (−0.32, 0.49, −0.81)

max. work argmaxρ0
〈W 〉ρ0

pure �a0 ≈ (0.32, −0.49, 0.81)
max. entropy change argmaxρ0

ΔSt pure anywhere on Bloch shell

FIG. 1. The diversity of ideal inputs for a finite-time qubit-reset process, displayed on and in the Bloch sphere. The states extremizing
heat, work, and energy change all lie on the surface of the Bloch sphere, in the direction of a maximal eigenstate of the corresponding
thermodynamic operators. The entire surface of the Bloch sphere maximizes entropy gain. Minimal entropy production and maximal
free energy gain are achieved by nontrivial mixed-state inputs. The change in entropy is minimized by the fully mixed input. Entropy
production is maximized by the same pure-state input that maximizes heat exhaustion. The greatest loss of free energy occurs for the
same pure-state input that loses the most energy.
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〈−
Q

〉 ρ 0
/
(k

B
T

)
〈Σ

〉 ρ 0
/k

B

kBT t/�

(a)

(b)

FIG. 2. Tracking the behavior of four inputs is enough to
bound the behavior of all other inputs to a qubit process. Here,
we show the range of expectation values for exhausted heat and
entropy production throughout a finite-time qubit-reset process.
The expectation values from four random inputs are shown as
dashed lines. This allows construction of the thermodynamic
operator Q throughout time. (a) The maximal and minimal heat,
corresponding to extremal eigenvalues of Q, shown as thick red
solid lines. (b) The maximal and minimal entropy production,
obtained from gradient descent or ascent, shown as thick red
solid lines. These extrema bound the behavior of all other inputs,
including the behavior of 100 other random initial conditions
shown as thin gray solid lines.

large) environment. The following example aims to make
this clear, by analyzing a sequence of partial SWAPs of
system and environmental subsystems, where each is rep-
resented by a single qubit.

A. Partial SWAP with the environment

As its name implies, the SWAP gate is defined by the uni-
tary USWAP |α〉 |β〉 = |β〉 |α〉 for any two qudit states |α〉
and |β〉 of the same dimension [43]. More generally, the
partial SWAP gate is defined by the unitary [44,45]

Uε
SWAP = e−iεπ/2 (cI + isUSWAP) , (58)

where c := cos(επ/2) and s := sin(επ/2), although the
overall phase e−iεπ/2 is physically irrelevant. For qubits,
the Heisenberg exchange Hamiltonian naturally imple-
ments this partial SWAP operation [46]. When ε = 1/2,
the

√
SWAP gate is implemented which, together with

single-qubit gates, is capable of universal quantum com-
putation [46].

We consider an environment made up of M qudits
that are of the same finite dimension d as the sys-
tem. The system has some time-dependent unitary evo-
lution interrupted at regular intervals by a sequence of

Environment

ε ε ε

. . .

. . .

. . .

. . .

. . .

ρ0 U1 U2 UN

π1 U (1) U (1) U (1)

π2 U (2) U (2) U (2)

πN U (N) U (N) U (N)

πM U (M) U (M) U (M)

0 τ/N 2τ/N τ

FIG. 3. A flexible toy model for interactions with an arbitrarily
small environment, with time-dependent system dynamics regu-
larly interrupted by partial SWAPs with a sequence of (potentially
distinct) Gibbs states. Vertical slices through the quantum circuit
indicate equal-time segments of duration τ/N . Each bath has a
time-homogenous Hamiltonian inducing the unitary time evolu-
tion U(m) = e−iH (m)τ/�N , while the system can be controlled to
evolve more arbitrarily according to some (Un)

N
n=1.

N ≤ M nearly instantaneous partial SWAPs with differ-
ent parts of the environment. Each part of the environ-
ment is in local equilibrium but each can be a Gibbs
state πm = e−H (m)/kBTm/tr

(
e−H (m)/kBTm

)
relative to its own

Hamiltonian H (m) at its own temperature Tm. The ini-
tial local-equilibrium state of the environment is thus
π env =⊗M

m=1 σ
(m)
0 =⊗M

m=1 πm, while σ
(m)
t will denote

the reduced state of each bath throughout the protocol. The
general setup for this physical interaction between system
and environment is depicted via the annotated circuit dia-
gram of Fig. 3. In various special cases, this setup can
be related to the frameworks of thermal operations [47],
“repeated interactions” [48], and collision models [43].

Assuming an implicit work reservoir, we can quantify
the work supplied or extracted as the change in total energy
of the system-environment supersystem, as in Eq. (6):

〈W(∗)〉ρ0
= tr(ρ tot

τ H tot
τ )− tr(ρ tot

0 H tot
0 )

= tr(ρτHτ )− tr(ρ0H0)+
N∑

n=1

tr
[
(σ (n)τ − πn)H (n)]

(59)

= tr(ρτHτ )− tr(ρ0H0)

+
N∑

n=1

tr
[
(σ

(n)
nτ/N − πn)H (n)

]
, (60)
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where the last line follows from U(n)†H (n)U(n) = H (n). To
make further progress, we find that

σ
(n)
nτ/N = tr1

[
Uε

SWAP
(
ρ̆(n−1)τ/N ⊗ πn

)
Uε †

SWAP

]
(61)

= tr1
[
(cI + isUSWAP)

(
ρ̆(n−1)τ/N ⊗ πn

)
× (cI − isUSWAP)] (62)

= c2πn + s2ρ̆(n−1)τ/N + ics
[
ρ̆(n−1)τ/N , πn

]
(63)

and

ρnτ/N = tr2

[
Uε

SWAP
(
ρ̆(n−1)τ/N ⊗ πn

)
Uε †

SWAP

]
(64)

= tr2
[
(cI + isUSWAP)

(
ρ̆(n−1)τ/N ⊗ πn

)
× (cI − isUSWAP)] (65)

= c2ρ̆(n−1)τ/N + s2πn + ics
[
πn, ρ̆(n−1)τ/N

]
, (66)

where we have used the shorthand notation ρ̆nτ/N :=
Unρnτ/N U†

n, and we use the fact that

tr1 ([USWAP, ρ ⊗ σ ]) = [ρ, σ ] (67)

and

tr2 ([USWAP, ρ ⊗ σ ]) = [σ , ρ] , (68)

where tr1(·) traces over the first subsystem (here, the
“system” of interest) and tr2(·) traces over the second
subsystem (here, the relevant bath subsystem).

For any choice of baths (πn)
N
n=1 and time-inhomo-

geneous unitaries (Un)
N
n=1 acting on the system, the system

state can be simply iterated forward via Eq. (66) as a time-
inhomogeneous transition operator (which is most obvious
to see in the matrix representation acting on the general-
ized Block vector). Moreover, the relevant bath states, after
interacting with the system, can be obtained from Eq. (63),
which allows us to calculate the work in Eq. (60).

1. A simple
√

SWAP engine

As an explicit example, we analyze the simple thermo-
dynamic process shown in Fig. 4, which can function as an
engine. We take U1 = U2 = I , while ε = 1/2 implements
the

√
SWAP gate with c = s = 1/

√
2. The system first inter-

acts with a hot bath, with Hamiltonian H (1) = Hτ/2 =
2E |1〉〈1| and temperature T1 = 10T2, where E/kBT1 > 0.
At the end of the cycle, the system interacts with a cold
bath, with Hamiltonian H (2) = H0 = Hτ = E |1〉〈1| and
temperature T2. Under these conditions, we find that the
work operator is diagonal in the computational basis,

W (∗) = wmin |0〉〈0| + wmax |1〉〈1| , (69)

where wmin ≈ −0.225E and wmax ≈ 0.275E. Maximum
work can be extracted from the pure input state |0〉 but it

Environment

ε ε

ρ0 U1 U2

π1 U (1) U (1)

π2 U (2) U (2)

0 τ/2 τ

FIG. 4. One cycle through a simple thermodynamic process
that can function as a quantum engine. Fresh environmental
subsystems would be used for subsequent cycles. The system
Hamiltonian is Ht = wt |1〉〈1|, where wt increases from E to 2E
during the first stroke and decreases from 2E to E after the
first partial SWAP, with the net effect that U1 = U2 = I . The
system interacts first with a hot bath, with Hamiltonian H (1) =
Hτ/2 = 2E |1〉〈1| and temperature T1 = 10T2. At the end of the
cycle, the system interacts with a cold bath, with Hamiltonian
H (2) = H0 = Hτ = E |1〉〈1| and temperature T2.

is natural to wonder whether work can also be extracted
asymptotically in the steady state if the channel is applied
repeatedly.

Combining Eqs. (66) and (18) yields the matrices
that update the Bloch vector of the system:

[
1 �bτ/2

]
=[

1 �b0

]
T1 and

[
1 �bτ

]
=
[
1 �bτ/2

]
T2. Adapting Eq. (18)

of Ref. [44], we find that

Tn =

⎡
⎢⎣

1 0 0 qn/2
0 1/2 −qn 0
0 qn 1/2 0
0 0 0 1/2

⎤
⎥⎦ , where qn = tr(πnσz).

(70)

Each Tn has eigenvalues �n = {1, 1/2, 1/2 ± iqn}, while
the composite map

T = T1T2

=

⎡
⎢⎣

1 0 0 q1/4 + q2/2
0 1/4 − q1q2 −(q1 + q2)/2 0
0 (q1 + q2)/2 1/4 − q1q2 0
0 0 0 1/4

⎤
⎥⎦

(71)

has eigenvalues � = {1, 1/4, 1/4 − q1q2 ± i(q1 + q2)/2}.
Moreover, the left eigenvector of T associated with
the eigenvalue of unity yields the stationary Bloch vec-
tor of the system after full application of the protocol:[
1 �b∗

]
T =

[
1 �b∗

]
= [1 0 0 (q1 + 2q2)/3], revealing

the stationary quantum state to this channel, ρ∗ = I/2 +
(q1 + 2q2)σz/6, which is an attractor upon repeated appli-
cation of the channel. Work can indeed be extracted
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in the steady state, regardless of the initial input,
since 〈W(∗)〉ρ∗ = tr(ρ∗W (∗)) ≈ −0.06E of work can be
extracted asymptotically in each cycle.

For any initial input ρ0 with Bloch vector �b0, the state
of the system after k ∈ {0, 1, 2, . . .} applications of the
channel will be

ρkτ =
[([

1 �b0

]
T k
)

⊗ I
]
⎡
⎢⎣

I/2
σx
σy
σz

⎤
⎥⎦ . (72)

This assumes that we use fresh bath subsystems for each
application of the channel, but reuse the system in its new
state as the “working medium” of the engine. We can
then analytically determine the work expected upon the kth
application of the channel:

〈W(∗)〉ρkτ
= tr(ρkτW (∗))

=
[
1 �b0

]
T k
[〈W(∗)〉I/2

�w(∗)
]

(73)

=
∑
λ∈�

λk
[
1 �b0

]
Tλ
[〈W(∗)〉I/2

�w(∗)
]

, (74)

where Tλ = �λR�λL/�λL�λR is the spectral projection opera-
tor of T constructed from the outer product of right and
left eigenvectors �λR�λL normalized by their inner product
�λL�λR, where λ�λR = T �λR is a column vector, and λ�λL =
�λLT is a row vector [40]. Equation (74) shows how the
extractable work per application of the channel converges
to the steady-state value 〈W(∗)〉ρ∗ via a sum of decaying
exponentials for any initial input.

XII. EXAMPLE 3: EXTRACTING WORK FROM A
SPATIALLY EXTENDED STATE

Let us now turn to the analysis of an infinite-dimensional
quantum system: a charged particle in a time-dependent
potential, in the presence of electromagnetic background
radiation. This can be interpreted as an idealized model of
a double quantum dot in the single-particle zero-current
regime. In this example, we use time-dependent Lind-
bladian dynamics, with a time-modulated double well of
potential energy across one spatial dimension. The proto-
col is capable of extracting work from some states that are
initially localized in the right well. We consider the ideal
input (for the task of work extraction) and how it compares
to the performance of other inputs, within the Hilbert space
spanned by the eight lowest-lying energy eigenstates of the
initial Hamiltonian.

We will quantify work extraction simply as the negative
work performed. In principle, this work can be extracted
by a more explicit mechanism, as proposed in Ref. [49].

Given any protocol for work extraction, we can con-
struct the expected-work operator to determine its breadth
of behavior on all possible inputs. The device will be best
at extracting work from the lowest-lying eigenstate of the
expected-work operator; when the corresponding minimal
eigenvalue is negative, its magnitude reports the maximal
possible expected value of extractable work.

In particular, we simulate a work-extraction protocol via
the time-dependent system Hamiltonian Ht = (p2

x /2m)+
Vt where px = −i�∂x is the momentum operator and m is
the mass of the single-particle system. The time-dependent
potential-energy landscape is

Vt = 16h0

(
x

w0

)4

− 8h0

(
x

w0

)2

gt − h0
x

w0
ft, (75)

where gt and ft are non-negative scalar functions of time,
with g0 = gτ = 1 and f0 = fτ = 0. To enter an interest-
ing thermodynamic regime, we choose the initial energy
barrier between the two wells to be h0 = 8kBT, where
kBT = 1/β is the thermal energy of the environment. To
enter an interesting quantum regime, we choose the ini-
tial separation between the bottom of the two wells to
be w0 = 3λth, where λth = �

√
2πβ/m is the thermal de

Broglie wavelength.
As depicted in Fig. 5, gt controls the height of the bar-

rier while ft controls the tilt of the energetic landscape
throughout the protocol. For a semiconductor-based dou-
ble quantum dot, the barrier height and tilt could plausibly
be modulated by applied voltages, gating the barrier and
the bias across the device, respectively [50]. Note that the
protocol is cyclic, since the initial and final Hamiltonian
are both the same symmetric double-well potential. During
the protocol, the potential is tilted to the right, the bar-
rier is lowered, the potential is untilted, and the barrier is
then reintroduced, in that order [51]. The exact form of the
control protocol is given in Appendix I.

The system is coupled to a thermal environment
throughout the protocol. For our demonstration, we model
the excitation and relaxation dynamics when the system
interacts with the photon bath of an ideal black body
at temperature T. The resulting dynamics of the system
during the protocol can be described by a Lindblad mas-
ter equation ρ̇t = Lt(ρt), given explicitly in Appendix I,
which satisfies detailed balance in bath-mediated transi-
tions between instantaneous energy eigenstates. Our finite-
time protocol induces nonequilibrium quantum dynamics
but we assume that the driving is sufficiently slow such that
the assumptions that justify the Lindbladian description are
justified.

We simulate a regime—w0 ≈ 13-nm interwell separa-
tion, and thermal relaxation rate of γ = 366 kHz at room
temperature—that could plausibly be demonstrated in a
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FIG. 5. The control protocol to extract work from the nonequilibrium state of a particle on the right-hand side of a double-well
potential, via a time-varying one-dimensional potential-energy landscape in the quantum regime. (a) The potential-energy landscape at
five representative times along the protocol, staggered so that they share the same energy axis. We show a spatial representation of the
lowest-lying energy eigenstates in these potentials, at the height of their respective energy eigenvalues. (b),(c) The protocol for tilting
the potential and lowering the energetic barrier, respectively.

room-temperature laboratory experiment using a nanofab-
ricated device. The resulting dynamics exhibits a sepa-
ration of time scales, where the relaxation dynamics are
much slower than the time scale of coherent oscillations
between energy eigenstates. (Dissipative transitions occur
approximately only once per 100 million periods of phase
oscillation between energy levels with a kBT energy spac-
ing.) We develop special methods to efficiently simulate
the quantum dynamics (Appendix I 1) and thermodynam-
ics (Appendix I 2) over the extended duration τ = 4 ×
109β� ≈ 100 µs of the nonequilibrium protocol.

Which initial state yields the most extracted work
given this protocol? To determine this, we construct the
expected-work operator W acting on the Hilbert space
spanned by the eight lowest-lying initial energy eigen-
states, via simulating the behavior of 64 random linearly
independent initial states within this subspace. In our sim-
ulations, these initially restricted states evolve through the
Hilbert space spanned by the 20 lowest-lying instantaneous
energy eigenstates throughout the protocol.

These energy eigenstates, in turn, are determined numer-
ically via an eigendecomposition of a discretized approx-
imation of the instantaneous Hamiltonian represented in
the spatial basis. In our numerical simulations, we partition
the continuous spatial basis into 249 discrete spatial states
of width δx = 2λth/83. In this discretization, the quantum
state |x, x + δx〉 describes the system if it were localized in
the spatial bin between location x and x + δx. In general,

a pure quantum state (like one of the energy eigenstates or
an eigenstate of the expected-work operator) is delocalized
in a superposition of these spatial states.

In Fig. 6, we depict the eigenvalues and eigenstates of
the expected-work operator, via their spatial probability
density functions. Two eigenmodes of the expected-work
operator allow for work extraction, while the other six

β
w

+
p

v
(x

/λ
th

)

x/λth

FIG. 6. The spatial probability density pv(x/λth) =
limδx→0(λth/δx) |〈x, x + δx|v〉|2 for the eigenstates |v〉 of
the expected-work operator W , offset by the corresponding
work eigenvalue w, such that W |v〉 = w |v〉.
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0 τ/2 τ = 4×109β�−→ t

β
〈W

〉
β

〈W
〉

FIG. 7. Upper panels: snapshots of the spatial evolution of a random input to the protocol, along with the resulting trajectory of
expected work. Bottom panels: snapshots of the spatial evolution of the ideal input to the work-extraction protocol, along with the
resulting trajectory of expected work. The top and bottom panels show the spatial probability density of the state in thick solid blue,
compared to the probability density for the instantaneous equilibrium state in thin dashed green; the instantaneous potential-energy
landscape, which starts and ends as a symmetric double well, is shown in thin solid gray. The two long middle panels show the time
evolution of the expected work from each of these two initial states.

modes require a work investment. As one might expect,
the ideal initial state leading to maximal work extraction
is initially localized in the right well. This state is approx-
imately formed from equal parts of the two lowest-lying
energy eigenstates. It is also intuitive that the worst input
begins purely in the left well.

The remaining six nonextremal eigenstates of the
expected-work operator are less immediately intu-
itive—yet they yield interesting insights once properly
understood. As suggested by the spatial probability density
functions in Fig. 6, each work eigenstate is approximately
a linear combination of up to two energy eigenstates
(although in detail, they contain contributions from all).
Some investigation has revealed that each work eigenstate
roughly corresponds to a relative phase combination of
energy eigenstates that leaves the particle either mostly in
the right well (for small eigenwork) or mostly in the left
well (for large eigenwork) during the first half of the pro-
tocol. In Fig. 6, we display some kind of symmetry in the

vertical spacing of work eigenvalues that could likely be
related to fluctuation relations, although that investigation
remains an open opportunity.

The ideal input to this particular work-extraction
protocol yields approximately 0.3472 kBT of extracted
work (〈W〉 = −0.3472 kBT), which is about half of the
nonequilibrium addition to free energy (approximately
kBT ln 2) available from that initial state. This work-
extraction value has initially been found via the minimal
eigenvalue of the expected-work operator and subse-
quently verified via direct simulation of this ideal input.
The spatial evolution of this ideal state and the correspond-
ing work trajectory are shown in the bottom half of Fig. 7.
There, it is apparent that the ideal state remains on the right
well for the first half of the work-extraction protocol.

For comparison, the top half of Fig. 7 shows the spatial
evolution and corresponding work trajectory of a random
input (in particular, we have chosen one of the initial
energy eigenstates). No work is extracted when operating
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on this state; rather, about 4.138 kBT of work must be
expended in the process. We have verified that this same
work value is obtained (through ten significant digits)
both from the full simulation and from the simple alge-
braic employment of the expected-work operator [52]:
tr(ρ0W) ≈ 4.138 kBT. The series of panels in the top half
of Fig. 7 reveal the work penalty for populating the left
well during the first half of the protocol. The chronolog-
ically second snapshot reveals a slow local equilibration
within each well. Subsequent snapshots reveal an even
slower tendency toward global equilibration throughout
the protocol.

As anticipated by the general theory, the initial state
leading to maximal work extraction is a pure state. In this
case, this state is close to, but distinct from, the input lead-
ing to minimal entropy production—the latter of which is
a nonpure mixed state. As a final note, we emphasize that
we have been able to identify the ideal input within the
initial low-energy subspace, although the evolving states
have not been limited to this subspace during their natural
dynamics.

XIII. CONCLUSIONS

We have determined the ideal inputs that minimize
or maximize various thermodynamic quantities for any
fixed process that transforms a physical system in finite
time. Many of these optimal inputs turn out to be pure
states corresponding to eigenstates of Hermitian ther-
modynamic operators. We have shown how to recon-
struct these operators via observed behavior from a
finite number of experimentally accessible input states.
Another class of thermodynamic quantities, based on
entropies, have mixed-state minimizers but pure-state
maximizers. The Hermitian thermodynamic operators
determine these ideal states too. Our examples illustrate
the incompatibility of common objectives: the “ideal”
input depends on whether one intends to minimize
heat, minimize entropy production, maximize free-
energy gain, maximize work extraction, etc. As simple
demonstrations, our examples have made simplifying
assumptions of Markovianity and sometimes weak
coupling; however, we emphasize that our results apply
much more generally in non-Markovian scenarios with
strong coupling, so long as the system and environment
begin uncorrelated.

This investigation of ideal initial states complements
the centuries-old tradition of rather seeking ideal pro-
tocols with an assumed initial state. Whether or not
a protocol is ideal, our results highlight the initial-
state dependence of the performance of a device across
thermodynamic metrics and expose the breadth of its
possible behavior. These results thus enable a full ther-
modynamic characterization of any classical or quan-
tum device—including which inputs will extremize its

thermodynamic behavior. Meanwhile, this set of results
enables concrete answers to foundational questions
in nonequilibrium thermodynamics, where sometimes
conflicting claims of optimality principles have become
folklore.

While we have emphasized thermodynamics, the results
of this paper extend easily to other domains—in which
the ideal inputs, as judged by some other criteria, such as
maximizing the yield of a desired output state [53], will
be obtained from the linear operators induced by those
criteria.
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APPENDIX A: EXISTENCE OF
THERMODYNAMIC OPERATORS

Type-I expectation values—for expected work, heat,
entropy flow, etc.—are linear functionals of the initial
state, since they can all be written as

〈X 〉ρ0
= tr[�X (ρ0)], (A1)

where �X is a linear superoperator acting on the initial
density matrix of the system. tr[�X (·)] is a linear func-
tional since �X and the trace operation are both linear
and the trace returns a scalar value. The superoperator �X
is, however, relatively unwieldy, since it acts on the d2-
dimensional vector space spanned by density matrices that
in turn act on a d-dimensional vector space V . The fol-
lowing theorem shows that the same linear functional can
be represented via the lower-dimensional operator X act-
ing on V . This assures the existence of our thermodynamic
operators.

Theorem 6. For any linear functional � acting on a finite
d2-dimensional vector space Vbig of linear operators, which
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in turn operate on a d-dimensional vector space Vsmall,
there exists a linear operator X acting on Vsmall such that

�(·) = tr(X · ). (A2)

Proof. There are only d2 linearly independent linear
functionals acting on the d2-dimensional vector space Vbig.
Let K = {|k〉}d

k=1 be an arbitrary orthonormal basis for
Vsmall, with 〈k| = |k〉†. Note that the d2 linearly indepen-
dent linear functionals {tr( |j 〉 〈k| · )}|j 〉,|k〉∈K form a com-
plete basis for the dual space of Vbig. An arbitrary linear
functional acting on Vbig can thus be written as a linear
combination of these basis functionals:

�(·) =
∑
j ,k

xj ,ktr( |j 〉 〈k| · ) = tr(X · ) (A3)

where X =∑j ,k xj ,k |j 〉 〈k| and xj ,k = �(|k〉 〈j |). �

Hence, for type-I expectation values:

〈X 〉ρ0
= tr[�X (ρ0)] = tr(ρ0X ). (A4)

Whenever the random variable X is real valued, its expec-
tation value must also be real valued and so X is guaran-
teed to be Hermitian (see Ref. [16, Theorem 2.4.3]).

Sometimes, the linear superoperator�X can appear very
complicated; but only its existence matters to guarantee the
existence of the simpler operator X . For example, entropy
flow can generically be written as

〈�〉ρ0
= −kB

∫ τ

0
tr
(
ρ̇env

t ln π env
t

)
dt,

where π env
t is assumed to be independent of ρ0. If we write

out ρ̇env
t more explicitly, we find that

〈�〉ρ0
= −kB

∫ τ

0
tr
(
ρ̇env

t ln π env
t

)
dt

= −kB

∫ τ

0
tr
[
(

d
dt
ρenv

t ) ln π env
t

]
dt (A5)

= −kB

∫ τ

0
tr
{[

d
dt

trsys(Utρ0 ⊗ ρenv
0 U†

t )

]
ln π env

t

}
dt

(A6)

= tr
{
−kB

∫ τ

0

[
d
dt

trsys(Utρ0 ⊗ ρenv
0 U†

t )

]
ln π env

t dt
}

.

(A7)

Hence, we have found the relevant linear superoperator
��(·) = − kB

∫ τ
0

[
(d/dt)trsys(Ut · ⊗ ρenv

0 U†
t )
]

ln π env
t dt,

which is somewhat complicated. No matter: its mere exis-
tence proves the existence of some simpler linear operator
� such that 〈�〉ρ0

= tr(ρ0�) for any initial state ρ0.

A similar procedure reveals the existence of the rele-
vant linear superoperator �(·) for work and heat, which
in turn implies the existence of the simpler expected-work
operator W and expected-heat operator Q.

Expanding the expression for expected work, we find

〈W〉ρ0
=
∫ τ

0
tr
(
ρtḢt

)
dt

= tr
[∫ τ

0
trenv(Utρ0 ⊗ ρenv

0 U†
t )Ḣt dt

]
. (A8)

Hence, the linear superoperator �W(·) = ∫ τ0 trenv(Ut ·
⊗ρenv

0 U†
t )Ḣt dt implies the existence of the simpler

expected-work operator W .
Expanding the expression for expected heat, we find

〈Q〉ρ0
=
∫ τ

0
tr (ρ̇tHt) dt

= tr
{∫ τ

0

[
d
dt

trenv(Utρ0 ⊗ ρenv
0 U†

t )

]
Ht dt

}
. (A9)

Hence, the linear superoperator �Q(·) = ∫ τ0
[
(d/dt)trenv

(Ut · ⊗ρenv
0 U†

t )
]

Ht dt implies the existence of the simpler
expected-heat operator Q.

An alternative definition of work in the strong-coupling
regime is W(∗): the net change in energy of the system-bath
supersystem during a protocol of duration τ [12]. Let H tot

t
be the total Hamiltonian including the system, the environ-
ment, and the coupling contributions; over time, it induces
the net unitary evolution operator Uτ . The expectation
value for this version of work is thus

〈W(∗)〉ρ0
= tr(ρ tot

τ H tot
τ )− tr(ρ tot

0 H tot
0 )

= tr
[
Uτ (ρ0 ⊗ ρenv

0 )U†
τH

tot
τ

] − tr
[
(ρ0 ⊗ ρenv

0 )H tot
0

]
(A10)

= tr
[
(ρ0 ⊗ ρenv

0 )(U†
τH

tot
τ Uτ − H tot

0 )
]

, (A11)

which is a linear functional of the initial state of the sys-
tem. By our Theorem 6, this thus implies that there exists
a thermodynamic operator W (∗) such that

〈W(∗)〉ρ0
= tr(ρ0W (∗)).

We note that this is a type-I expectation value on the
system subspace alone, even though the d2 physical mea-
surements (of work required to infer this thermodynamic
operator) are not restricted to act on the d-dimensional
system subspace.
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APPENDIX B: THERMODYNAMIC OPERATORS
CHARACTERIZE ANY MEASUREMENT

SCHEME

Invasive measurements change not only the probabil-
ity distribution for work but also the expected value for
work under the prescribed measurement protocol [21]. Our
framework applies just as well to these alternative proto-
cols with measurement interventions. For example, let us
briefly describe how our framework applies to the famous
two-point-measurement (TPM) scheme for driven isolated
quantum systems, which projects the state onto the instan-
taneous energy eigenbasis at both the beginning and end of
the protocol [22].

If we are interested in the TPM scheme for a driven
isolated quantum system, the relevant expected-TPM-work
operator is

WTPM =
∑

|E〉∈VH

|E〉〈E|
∑

|E′〉∈VH ′

(E′ − E)
∣∣〈E′|Uτ |E〉∣∣2 ,

(B1)

where H and H ′ are the initial and final Hamiltonians for
the system, respectively, and Uτ unitarily evolves the sys-
tem between the two projective measurements. In the TPM
scheme, the system transitions from initial energy eigen-
state |E〉 to final energy eigenstate |E′〉 with probability
〈E|ρ0|E〉 ∣∣〈E′|Uτ |E〉∣∣2, resulting in a TPM work value of
E′ − E. It is easy to verify that

〈WTPM〉ρ0
=
∑

w

w Pr(WTPM = w) = tr(ρ0WTPM), (B2)

where WTPM is the random variable for the TPM work
outcome and the sum runs over all w ∈ {E′ − E : E ∈
�H , E′ ∈ �H ′ }.

Reference [21] shows that W �= WTPM. Invasive mea-
surements can change the expectation value for work (and,
indeed, for other thermodynamic variables too).

If desired, our framework can be employed to find
the ideal inputs leading to minimal or maximal TPM
work, from the minimal and maximal eigenstates of
WTPM. Indeed, for any measurement scheme—including
also the one-time-measurement scheme [23–25] or any
other—thermodynamic operators can be constructed and
our framework can be applied to identify both the breadth
of behavior and the ideal inputs within the scheme.

APPENDIX C: EXPECTATION-VALUE
INVARIANCE TO SUBENSEMBLE

DECOMPOSITION

Our contributions in the main text exclusively involve
expectation values and so are invariant to density-matrix
decompositions. Here, we show this invariance explic-
itly. As an added benefit, it can be useful to see how

the quantum random variables induced by a subensem-
ble decomposition relate to and generalize their classical
counterparts.

In the classical case, fluctuations are primarily due to
subjective uncertainty about which state the environment
is in (although uncertainty of the system state also plays
a role). Since quantum results should include classical
results as a special case, we must also consider the role
of subjective uncertainty in the quantum case. In gen-
eral, this can be addressed via a probability distribution
over (possibly nonorthogonal) subensembles of the joint
system-environment supersystem [29].

There are many ways to decompose the initial joint
density matrix of the system-environment supersystem. In
fact, for a nonpure mixed state ρ tot

0 , there are infinitely
many pairs ((pn)n, (σn)n) of probability distributions (pn)n
over constituent density matrices (σn)n, for which ρ tot

0 =∑
n σnpn. Each of these decompositions can represent a

physically relevant preparation of the supersystem [29,54].
Each subensemble decomposition ((pn)n, (σn)n) induces

a random variable X ((pn)n, (σn)n) [55]. With probability
pn, the subensemble σn will be realized, in which case the
random variable X takes on the value x(σn). When the
thermodynamic quantity is a linear functional of the initial
state—as is the case for work, heat, entropy flow, etc.—it
is easy to see that

〈X ((pn)n, (σn)n)〉n =
∑

n

x(σn)pn = x

(∑
n

σnpn

)

= x(ρ tot
0 ), (C1)

independent of the decomposition. In the main text, we
always consider ρ tot

0 = ρ0 ⊗ ρenv
0 for a fixed initial state

of the environment ρenv
0 . For these thermodynamic linear

functionals, we thus use the shorthand notation

〈X 〉ρ0
= x(ρ0 ⊗ ρenv

0 ). (C2)

As a consequence, the expectation value 〈X 〉ρ0
and ther-

modynamic operator X are both invariant to subensemble
decompositions.

Let us take thermodynamic work (without measurement
interventions) as an example. From Eq. (A8), we see that
work can be quantified for any initial joint state σ of the
supersystem via

w(σ ) = tr
[∫ τ

0
trenv(UtσU†

t )Ḣt dt
]

. (C3)

If the system and environment are unmeasured, then it is
natural for eigenvalues of the uncorrelated density matrix
to represent subjective uncertainty. We can thus take
((pn)n, |n〉〈n|) as our subensemble decomposition, where
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|n〉 is an eigenstate of ρ tot
0 . In this case, work will be a ran-

dom variable W which takes on the value w(n) = w (|n〉〈n|)
with probability

∑
m pmδw(m),w(n) . We can then write

〈W〉ρ0
=
∑

n

w(n)pn = w(ρ0 ⊗ ρenv
0 ) = tr(ρ0W). (C4)

We see that the expectation value and the thermodynamic
operator are both independent of the chosen subensemble
decomposition.

APPENDIX D: OPERATOR EXPRESSIONS FOR
TYPE-II EXPECTATION VALUES

The expectation values of entropy production, the reduc-
tion in nonequilibrium free energy, and the change in von
Neumann entropy can all be written as

f (X )ρ0
= tr(ρ0X )+ S(ρτ )− S(ρ0) (D1)

= tr(ρ0 ln ρ0)− tr(ρ0 ln e−X )+ S(ρτ ) (D2)

= tr(ρ0 ln ρ0)− tr{ρ0 ln[e−X /tr(e−X )]}
− ln[tr(e−X )] + S(ρτ ) (D3)

= D[ρ0‖ω] − ln[tr(e−X )] + S(ρτ ), (D4)

where ω := e−X /tr(e−X ).
For reliable reset processes, for which ρτ ≈ rτ is very

nearly independent of the input, it is clear that ωminimizes
f (X )ρ0

, where it takes on the minimal value f (X )ω = S(rτ )−
ln[tr(e−X )].

In Ref. [5], it has been pointed out that entropy produc-
tion can be written in this form. Here, we note that this type
of relation also applies to a larger family of thermodynamic
quantities.

APPENDIX E: GENERALIZED GELL-MANN
MATRICES AS A STANDARD OPERATOR BASIS

For concreteness, we will describe an operator basis that
can be used in any finite dimension d.

Let {|1〉 , . . . , |d〉} be an orthonormal basis for the d-
dimensional Hilbert space of our system under study. We
can then construct the generalized Gell-Mann matrices to
complete a matrix basis for density matrices acting on this
Hilbert space.

Let n ∈ R be any convenient constant. �� will contain
d − 1 diagonal matrices

n
(

2
�2 + �

)1/2
⎡
⎣
⎛
⎝ �∑

j =1

|j 〉 〈j |
⎞
⎠− � |�+ 1〉 〈�+ 1|

⎤
⎦ ,

(E1)

with � ∈ {1, . . . , d − 1}. It will contain (d2 − d)/2 distinct
nondiagonal symmetric matrices

n (|k〉 〈j | + |j 〉 〈k|) , (E2)

with 1 ≤ j < k ≤ d. It will also contain (d2 − d)/2 distinct
antisymmetric matrices

in (|k〉 〈j | − |j 〉 〈k|) , (E3)

with 1 ≤ j < k ≤ d. The ordering of these d2 − 1 matrices
is arbitrary.

Note that these operators are traceless and satisfy
tr(�m�n) = 2n2δm,n. Hence, η = 2n2. If we choose n =√
(d − 1)/2d, then η = d−1

d , pure states will always have
a generalized Bloch vector of unit length [56] and the gen-
eralized Bloch vector will reduce to the standard Bloch
vector in d = 2.

APPENDIX F: COMPOSITE OPERATOR BASES

Suppose that we have normalized Hermitian opera-
tor bases, (Id/d, ��) for a d-dimensional subsystem and
(Id′/d′, ��′) for a d′-dimensional subsystem. The operator
bases satisfy

tr(�n) = 0 and tr(�m�n) = ηδm,n (F1)

and

tr(�′
n) = 0 and tr(�′

m�
′
n) = η′δm,n. (F2)

We can then construct a normalized Hermitian basis for
operators acting on the composite d′′-dimensional Hilbert
space, where d′′ = dd′: The new operator basis (Id′′/d′′, ��′′)
satisfies

tr(�′′
n ) = 0 and tr(�′′

m�
′′
n ) = η′′δm,n, (F3)

where the new composite operator basis contains

��′′ =
(√

η′′

η′d
Id ⊗ ��′,

√
η′′

ηd′
�� ⊗ Id′ ,

√
η′

ηη′
�� ⊗ ��′

)
.

(F4)

Equation (F3) can be verified via the identities (A ⊗
B)(C ⊗ D) = (AC)⊗ (BD) and tr(A ⊗ B) = tr(A)tr(B).

This allows us to, e.g., build up a normalized Hermitian
operator basis for:

(a) many qubits, using tensor products of the local Pauli
operators, or

(b) a qubit and qutrit, using tensor products of their
local Pauli and Gell-Mann operators

(c) etc.
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APPENDIX G: EXISTENCE OF, AND EXPRESSION FOR, THE ENTROPY-FLOW VECTOR

Leveraging the decomposition of the system state in terms of its generalized Bloch vector, ρt = I/d + �bt · ��, we can
expand the general expression for entropy flow given in Ref. [4] and discussed in the main text to express entropy flow in
terms of the entropy-flow vector and initial Bloch vector:

〈�〉ρ0
= −kB

∫ τ

0
tr
(
ρ̇env

t ln π env
t

)
dt (G1)

= −kB

∫ τ

0
tr
{[

d
dt

trsys

(
U0:tρ0 ⊗ ρenv

0 U†
0:t

)]
ln π env

t

}
dt (G2)

= −kB

∫ τ

0
tr
{[

d
dt

trsys

(
U0:t(I/d + �b0 · ��)⊗ ρenv

0 U†
0:t

)]
ln π env

t

}
dt (G3)

= −kB

∫ τ

0
tr
{[

d
dt

trsys

(
U0:tI/d ⊗ ρenv

0 U†
0:t

)]
ln π env

t

}
dt

︸ ︷︷ ︸
=〈�〉I/d

+�b0

×

⎛
⎜⎜⎜⎝−kB

∫ τ

0
tr
{[

d
dt

trsys

(
U0:t �� ⊗ ρenv

0 U†
0:t

)]
ln π env

t

}
dt

︸ ︷︷ ︸
=: �ϕ

⎞
⎟⎟⎟⎠ (G4)

= 〈�〉I/d

+ �b0 · �ϕ. (G5)

Other thermodynamic quantities can be decomposed similarly.

APPENDIX H: EXPRESSION FOR THE SECOND DERIVATIVE OF VON NEUMANN ENTROPY

The second derivative of the von Neumann entropy, with respect to the elements of the Bloch vector of the quan-
tum state, can be calculated via the spectral decomposition of the quantum state ρ̃(�b) =∑k λk |k〉 〈k| and its logarithm
ln ρ̃(�b) =∑k ln(λk) |k〉 〈k|. Assuming nondegeneracy of the eigenvalues, we find

∂bm∂bnS[ρ̃(�b)] = −∂bm tr
[
�n ln ρ̃(�b)

]
(H1)

= −tr
[
�n ∂bm ln ρ̃(�b)

]
, (H2)

where

∂bm ln ρ̃(�b) =
∑

k

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
λk
(∂bmλk)︸ ︷︷ ︸
〈k|�m|k〉

|k〉 〈k| + ln(λk)

⎡
⎢⎢⎢⎣
(
∂bm |k〉)︸ ︷︷ ︸∑

� �=k
〈�|�m|k〉
λk−λ� |�〉

〈k| + |k〉(∂bm 〈k|)︸ ︷︷ ︸∑
� �=k

〈k|�m|�〉
λk−λ� 〈�|

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (H3)

Hence,

∂bm∂bnS[ρ̃(�b)] =
(∑

k

1
λk

〈k|�n|k〉 〈k|�m|k〉
)

+

⎛
⎜⎝∑

k,�
� �=k

ln λk

λk − λ�
〈k|�n|�〉 〈�|�m|k〉

⎞
⎟⎠+

⎛
⎜⎝∑

k,�
� �=k

ln λk

λk − λ�
〈�|�n|k〉 〈k|�m|�〉

⎞
⎟⎠ .

(H4)
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Upon swapping the names of the indices in the last of the three terms on the right-hand side of Eq. (H4), we find

∑
k,�
� �=k

ln λk

λk − λ�
〈�|�n|k〉 〈k|�m|�〉 =

∑
�,k

k �=�

ln λ�
λ� − λk

〈k|�n|�〉 〈�|�m|k〉 (H5)

=
∑

k,�
� �=k

− ln λ�
λk − λ�

〈k|�n|�〉 〈�|�m|k〉 . (H6)

Noting that limb→a (ln a − ln b)/(a − b) = 1/a, we can thus combine all three terms on the right-hand side of Eq. (H4) to
find

∂bm∂bnS[ρ̃(�b)] = −
∑
k,�

φ(λk, λ�) 〈k|�n|�〉 〈�|�m|k〉 , (H7)

where we have defined φ(a, b) := (ln a − ln b)/(a − b) (with φ(a, a) = 1/a by continuity). Note that φ(a, b) is the
reciprocal of the logarithmic mean of the eigenvalues a and b.

Similarly, using the spectral decomposition of ρ̃ ′(�b) =∑k λ
′
k |k′〉 〈k′|, we find

∂bm∂bnS[ρ̃ ′(�b)] = −
∑
k,�

φ(λ′
k, λ′

�) 〈k′|�′
n|�′〉 〈�′|�′

m|k′〉 . (H8)

APPENDIX I: TIME-DEPENDENT DOUBLE-WELL
DYNAMICS

Here, we construct a simple model for the dynamics of a
nonrelativistic charged particle in a time-dependent double
well of potential energy across one spatial dimension while
it is immersed in a bosonic bath at temperature T. The pro-
tocol is capable of extracting work from some states that
are initially localized in the right well.

In particular, we simulate a work-extraction protocol via
the time-dependent system Hamiltonian:

Ht = p2
x

2mq
+ Vt, (I1)

where px = −i�∂x is the momentum operator and mq is
the mass of the system with charge q. The time-dependent
potential-energy landscape is

Vt = 16h0

(
x

w0

)4

− 8h0

(
x

w0

)2

gt − h0
x

w0
ft, (I2)

where gt and ft are non-negative scalar functions of time,
with g0 = gτ = 1 and f0 = fτ = 0. To enter an interesting
thermodynamic regime, we choose the initial energy bar-
rier between the two wells to be h0 = 8kBT, where kBT =
1/β is the thermal energy of the environment. To enter an
interesting quantum regime, we choose the initial separa-
tion between the bottom of the two wells to be w0 = 3λth,
where λth = �

√
2πβ/mq is the thermal de Broglie wave-

length. To induce nonequilibrium quantum dynamics, we
choose a sufficiently fast protocol.

gt controls the height of the barrier while ft controls
the tilt of the energetic landscape throughout the protocol.
During the protocol, the potential is tilted to the right, the
barrier is lowered, the potential is untilted, and the barrier
is then reintroduced, in that order. The exact form of the
control protocol is given by

gt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if 0 ≤ t < τ/4,
sin2(2π t/τ), if τ/4 ≤ t < τ/2,
0, if τ/2 ≤ t < 3τ/4,
cos2(2π t/τ), if 3τ/4 ≤ t ≤ τ ,

(I3)

and

ft/f max =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2(2π t/τ), if 0 ≤ t < τ/4,
1, if τ/4 ≤ t < τ/2,
cos2(2π t/τ), if τ/2 ≤ t < 3τ/4,
0, if 3τ/4 ≤ t ≤ τ .

(I4)

We have chosen the maximal tilt to be f max = 8/(3
√

2π).
The system Hamiltonian Ht = p2

x /2mq + Vt has a count-
ably infinite orthonormal set of instantaneous energy
eigenstates {|E(n)t 〉}n with corresponding instantaneous
energy eigenvalues {E(n)t }n, ordered such that E(n)t ≥
E(m)t if n > m. Hence, Ht |E(n)t 〉 = E(n)t |E(n)t 〉 and the
Hamiltonian has the simple eigenrepresentation Ht =∑∞

n=1 E(n)t |E(n)t 〉〈E(n)t |. It is useful to represent differences
among eigenenergies via the relevant angular frequencies
ω
(n,m)
t , such that �ω

(n,m)
t = E(n)t − E(m)t .
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The system is immersed in a photon bath throughout the
protocol. Photons in the environment can induce transi-
tions among the instantaneous energy eigenstates of the
system, with absorption and stimulated-emission transi-
tion rates proportional to the number of photons with
the relevant transition energy E(n)t − E(m)t . In general, this
expected number of bath photons, per mode with fre-
quency ω/2π , can be a function of time 〈N (ω)〉, which is
related to the intensity.

Suppose for now that the energy eigenstates of the
system are nondegenerate [57]. Let L(m,n)

t = |E(m)t 〉 〈E(n)t |.
If E(n)t > E(m)t , this can be interpreted as the lowering
operator between these two instantaneous energy eigen-
states. It is useful to reflect on the physical implications of
the mathematical dissipator D[L](ρ) = LρL† − 1

2 {L†L, ρ}.

Note that the dissipator

D[L(m,n)
t ](ρt) = |E(m)t 〉 〈E(n)t | ρt |E(n)t 〉 〈E(m)t |

− 1
2

|E(n)t 〉 〈E(n)t | ρt − 1
2
ρt |E(n)t 〉 〈E(n)t |

(I5)

fully removes the |E(n)t 〉 population and shifts it down to
|E(m)t 〉. Analogously, D[(L(m,n)

t )†](ρt) = D[L(n,m)
t ](ρt) fully

removes the |E(m)t 〉 population and shifts it up to |E(n)t 〉. The
rates at which these two processes happen can be denoted
by r(n→m)

t and r(m→n)
t , respectively. This can then be inte-

grated into a quantum master equation that takes on the
Lindblad form:

ρ̇t = Lt(ρt) = i
�

[ρt, Ht] +
∑

n

∑
m<n

r(n→m)
t D[L(m,n)

t ](ρt)+ r(m→n)
t D[L(n,m)

t ](ρt). (I6)

As already mentioned, the rate of excitation r(m→n)
t will

be proportional to the expected number of bath parti-
cles 〈N (ω)〉 with the relevant energy �ω

(n,m)
t . The rate of

emission is, however, more subtle, since it involves both
stimulated and spontaneous emission.

A standard quantum electrodynamic calculation (intro-
duced a century ago by Dirac [58]) relates absorption and
emission between any two energy eigenstates of a system,
given the photon intensity of the environment. In partic-
ular, following Fermi’s golden rule for transitions on the
joint state space of the system and the photons [59, Sec.
1.3], for E(m)t < E(n)t , the rate of absorption is given by

r(m→n)
t = 2π

�
|M(m,n)

t |2 〈N (ω
(n,m)
t )〉 , (I7)

while the net rate of both stimulated and spontaneous
emission is given by

r(n→m)
t = 2π

�
|M(m,n)

t |2
(
〈N (ω

(n,m)
t )〉 + 1

)
. (I8)

Here, M(m,n)
t is the transition amplitude between |E(m)t 〉

and |E(n)t 〉 induced by the background radiation. We use the
standard interaction Hamiltonian HI = (−q/mqc)Ax ⊗ px
on the joint state space of photons and system, where c
is the speed of light and Ax is the x component of polar-
ization of the quantum field for the electromagnetic vector
potential �A(�r, t). For simplicity, we assume that the sys-
tem is some distance z from the photon source, so that
the wave vector of radiation is �k = kẑ = (ω/c)ẑ ⊥ x̂. In
the standard electric dipole approximation, the absorp-
tion cross section—i.e., (power absorbed by the m → n

transition)/(incident power per area)—is given by σabs =
4π2(q/e)2αω

∣∣∣〈E(m)t |x|E(n)t 〉
∣∣∣2 δ(ω − ω

(n,m)
t ), where e is the

charge of a single electron, and α ≈ 1/137 is the fine-
structure constant [60]. Hence the transition rate of absorp-
tion is related to the spectral intensity (power per area per
angular frequency) I(ω) via

r(m→n)
t =

∫
ω

I(ω)σabs

�ω
dω (I9)

= 4π2α

�

(q
e

)2 ∣∣∣〈E(m)t |x|E(n)t 〉
∣∣∣2 I(ω(n,m)

t ). (I10)

Arbitrarily far from equilibrium, the intensity and the
expected occupation are related by I(ω) = �ω3/π2c2

〈N (ω)〉. Incorporating this, we find

r(m→n)
t = 4α

c2 (q/e)
2(ω

(n,m)
t )3

∣∣∣〈E(m)t |x|E(n)t 〉
∣∣∣2 〈N (ω

(n,m)
t )〉

(I11)

= kBT
�

8πα(q/e)2
kBT
mqc2

(
�ω

(n,m)
t

kBT

)3

×
∣∣∣〈E(m)t |(x/λth)|E(n)t 〉

∣∣∣2 〈N (ω
(n,m)
t )〉 (I12)
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for n > m. Comparing with Eqs. (I7) and (I8), this also
implies

r(n→m)
t = kBT

�
8πα(q/e)2

kBT
mqc2

(
�ω

(n,m)
t

kBT

)3

×
∣∣∣〈E(m)t |(x/λth)|E(n)t 〉

∣∣∣2
(
〈N (ω

(n,m)
t )〉 + 1

)
(I13)

for n > m.
The dynamics can thus be expressed as

ρ̇t = i
�

[ρt, Ht] + γ
∑

n

∑
m<n

(
�ω

(n,m)
t

kBT

)3 ∣∣∣∣〈E(m)t | x
λth

|E(n)t 〉
∣∣∣∣
2

×
{(

〈N (ω
(n,m)
t )〉 + 1

)
D[L(m,n)

t ](ρt)+ 〈N (ω
(n,m)
t )〉

× D[L(n,m)
t ](ρt)

}
, (I14)

where γ = (kBT/�)8πα(q/e)2(kBT/mqc2).
In the main text, we assume that the photon bath is

always in equilibrium at temperature T. In this case,
the photons exhibit the standard Bose-Einstein statistics
〈N (ω)〉 = (eβ�ω − 1)−1 and the dynamics reduce to

ρ̇t = i
�

[ρt, Ht] + γ
∑

n

∑
m<n

(
�ω

(n,m)
t

kBT

)3 ∣∣∣∣〈E(m)t | x
λth

|E(n)t 〉
∣∣∣∣
2

×
{

eβ�ω
(n,m)
t

eβ�ω
(n,m)
t − 1

D[L(m,n)
t ](ρt)

+ 1

eβ�ω
(n,m)
t − 1

D[L(n,m)
t ](ρt)

}
. (I15)

Note that in the presence of the equilibrium photon bath,
the relative transition rates between the instantaneous
energy eigenstates of the system satisfy detailed balance,
such that

r(n→m)
t

r(m→n)
t

= eβ(E
(n)
t −E(m)t ). (I16)

We have chosen a regime for the quantum nonequilibrium
thermodynamics that is, at least plausibly, experimentally
accessible. Note that coherent quantum dynamics are very
fast, since kB/� = 131 GHz/K. Meanwhile, for a single
electron, q/e = 1, kB/(mec2) = 1.69 × 10−10/K and λth =
74.6 nm/

√
T/K. At T = 300 K, the thermal energy is

kBT = 25.9 meV and the thermal wavelength of the elec-
tron is λth = 4.31 nm, while the coherent dynamics occur
on the very fast time scale of β� = 25.4 fs and the relax-
ation dynamics occur at the much slower rate on the order
of γ = 9.3 × 10−9/(β�) = 366 kHz.

1. Quantum evolution with separation of time scales

The factor kB/(mec2) = 1.69 × 10−10/K (in the dissipa-
tive γ term) induces a separation of time scales between
the coherent dynamics and the consequently much slower
relaxation dynamics. In particular, if, over the time scale
β�, the Hamiltonian is approximately constant and the
approximately constant relaxation rates are very small
(such that β�r(m→n) � 1), then it is useful to derive and
employ the following discrete-time dynamics.

It will be fruitful to write the full Lindblad superoperator
of Eq. (I6) as

L = C + D (I17)

and explore the discrete-time evolution superoperator etL

over a duration t where L is approximately unchanging,
and in a regime where (tD)2 is negligible. In our case,
C(·) = (i/�)[·, H ] is the typical coherent superoperator
and D describes the dissipative dynamics. Employing the
Lie product formula and noting that etD/N = I + tD/N +
O
(
(tD)2

)
, we find

etL = et(C+D) = lim
N→∞

(
etC/N etD/N )N (I18)

≈ etC + lim
N→∞

N−1∑
n=0

entC/N t
N

De(N−n−1)tC/N (I19)

= etC +
∫ t

0
dt′ et′CDe(t−t′)C. (I20)

Using Eq. (I20) together with Eq. (I6) explicitly, a long
calculation yields

etL(ρ) = UρU†−1
2

t
∑

n

[I − |n〉〈n| tr]

×
⎛
⎝
⎧⎨
⎩
∑
m �=n

r(m→n) |m〉〈m| , UρU†

⎫⎬
⎭
⎞
⎠ , (I21)

where U = e−iHt/� and {·, ·} is the anticommutator.
In our simulations, we have restricted the dynamics at

each time step to the 20 lowest-lying instantaneous energy
eigenstates, so that m and n in Eq. (I21) both range over
these 20 states. To approximate the dynamics, we have
compounded a sequence of many discrete steps—each of
the form e(δt)Lt of Eq. (I21) but with each step using the
instantaneous Lindblad superoperator Lt induced by (i)
the instantaneous energy eigenstates of the Hamiltonian
Ht and (ii) the instantaneous transition rates given by Eqs.
(I12) and (I13).

Recall that our simulations assume room temperature
(300 K) and so the transition rates are on the order of
γ = 9.3 × 10−9/(β�) = 366 kHz. Accordingly, we have
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taken δt = 4 × 105β� ≈ 10 ns as the duration of each dis-
crete time step [61]. Each step of the discrete dynamic thus
allows for many coherent oscillations with only perturba-
tive decoherence. We have chosen the total duration of the
protocol to be τ = 4 × 109β� ≈ 100 µs, which is long
enough to allow for many transitions, yet short enough
to keep the system away from equilibrium throughout the
protocol.

2. Work with separation of time scales

Recall that the expectation value of work can be cal-
culated as 〈W〉ρ0

= ∫ τ0 tr
(
ρtḢt

)
dt. During a simulation,

the integral is approximated numerically via breaking time
into many bins, each much smaller than τ . In typical sim-
ulations, with N time steps of duration τ ′ = τ/N , the
expected work can be approximated as [62]

〈W〉ρ0

?≈
N−1∑
n=0

tr
[
ρnτ ′(H(n+1)τ ′ − Hnτ ′)

]
, (I22)

which implicitly assumes that the density matrix does not
change appreciably during the time step.

However, because of the separation of time scales in
our simulations, the density matrix goes through many
coherent oscillations (in the relative phase between energy
eigenstates) during a single time step. Accordingly, treat-
ing the density matrix as a constant during each time step,
as done in Eq. (I22), would not be appropriate in our
situation.

Rather—with N time steps of duration τ ′ = τ/N , and in
a regime in which the rate of change of the Hamiltonian
is approximately constant throughout each time step—the
expected work is well approximated by

〈W〉ρ0
=
∫ τ

0
tr
(
ρtḢt

)
dt

=
N−1∑
n=0

∫ (n+1)τ ′

nτ ′
tr
(
ρtḢt

)
dt (I23)

≈
N−1∑
n=0

tr

[(∫ (n+1)τ ′

nτ ′
ρnτ ′ dt

)
H(n+1)τ ′ − Hnτ ′

τ ′

]

(I24)

=
N−1∑
n=0

tr
[
ρnτ ′

(
H(n+1)τ ′ − Hnτ ′

)]
, (I25)

where

ρnτ ′ := 1
τ ′

∫ (n+1)τ ′

nτ ′
ρt dt (I26)

is the time-averaged density matrix, averaged over the
duration of the nth time step. (Recall that our simulations

use a time step of 4 × 105β�.) It is easy to see how Eq.
(I25) would reduce to Eq. (I22) in a regime in which ρt is
approximately constant throughout the duration of a time
step.

As a first-order approximation to the time-averaged den-
sity matrix within a single time step, we can assume that
the system does not make any dissipative transition. In this
case, etL = et(C+D) ≈ etC and the time-averaged density
matrix will be well approximated by

ρnτ ′ ≈ 1
τ ′

∫ (n+1)τ ′

nτ ′
e(t−nτ ′)Cnτ ′ (ρnτ ′) dt (I27)

= 1
τ ′

∫ τ ′

0
etCnτ ′ (ρnτ ′) dt (I28)

= 1
τ ′

∑
E,E′∈VHnτ ′

|E〉〈E| ρnτ ′ |E′〉〈E′|
∫ τ ′

0
ei(E′−E)t/� dt

(I29)

=
∑

E∈VHnτ ′

|E〉〈E| ρnτ ′ |E〉〈E|

+
∑

E′∈VHnτ ′ \{E}

sin(ωτ ′/2)
ωτ ′/2

eiωτ ′/2 |E〉〈E| ρnτ ′ |E′〉〈E′| ,

(I30)

where we have used the shorthand ω = (E′ − E)/�. Note
that energetic coherences get averaged out via a decaying
envelope with magnitude 2/(ωτ ′).
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