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Effect of Nonunital Noise on Random-Circuit Sampling
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In this work, drawing inspiration from the type of noise present in real hardware, we study the output
distribution of random quantum circuits under practical nonunital noise sources with constant noise rates.
We show that even in the presence of unital sources such as the depolarizing channel, the distribution,
under the combined noise channel, never resembles a maximally entropic distribution at any depth. To
show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is
never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless
random quantum circuits or those with only unital noise, both of which anticoncentrate at sufficiently
large depths. As a consequence, our results shows that the complexity of random-circuit sampling under
realistic noise is still an open question, since anticoncentration is a critical property exploited by both
state-of-the-art classical hardness and easiness results.
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I. INTRODUCTION

The defining feature of quantum systems today is
noise [1]. A fundamental question in this era of noisy
intermediate-scale quantum (NISQ) computers is whether
noise renders any demonstration of quantum advantage
with these systems useless or whether some advantage is
still salvageable for specific tasks [2,3]. To study questions
related to quantum advantage, a popular paradigm is the
random quantum circuit model (see, e.g., Refs. [3–6]). This
is because for large system sizes, sampling from the output
distribution of these circuits is a task that is easy for quan-
tum computers but provably hard for classical computers,
under plausible complexity-theoretic assumptions [4,7].
Amongst other phenomena, these circuits can model quan-
tum chaos [8], quantum pseudorandomness [9], and the
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ansatz for certain types of variational quantum algorithms
used in optimization tasks [10,11]. An understanding of
the behavior of these circuits under physically motivated
noise models and limited system sizes is crucial to our
understanding of quantum advantage.

One central feature of the output distribution, found in
random quantum circuits of sufficiently high depth, is anti-
concentration: it is a “flatness property” or, more formally,
it means that the distribution is not concentrated on a suf-
ficiently small number of outcomes. Anticoncentration is
believed to be a key ingredient in both easiness and hard-
ness proofs of random-circuit sampling (see, e.g., Refs.
[6,11,12]). Importantly, anticoncentration is necessary for
the final state of the system to have an output distribu-
tion that mimics the uniform distribution. If the system
were to have that property, then the system would be sim-
ulable, because sampling from the uniform distribution
is classically easy. This naturally prompts the following
question:

Do random quantum circuits, under the influence of
physically motivated noise models, anticoncentrate?

In this work, we answer this question in the nega-
tive: we show how random quantum circuits, under noise
models inspired by real hardware, which is a mixture of
both unital and nonunital noise of certain types, exhibit a
lack of anticoncentration, regardless of the depth of the
circuit. This shows that the output distribution does not
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resemble the uniform distribution or close variants of the
same. Interestingly, we find that this behavior is exhibited
even when there are also unital noise sources, such as the
depolarizing noise present in the system, the property of
which is to push the system toward the maximally mixed
state—which, when measured in the standard basis, gives
the uniform distribution. In this sense, these nonunital
sources “dominate” the other sources.

Hence, our work emphasizes the importance and neces-
sity of investigations on whether there is a quantum signal
in these distributions and sampling from them is indeed
classically hard or whether the system tends toward a
more sophisticated classically simulable final state. Much
is unknown about random-circuit sampling under such
realistic noise models and our work provides one of the
first rigorous theoretical analyses of this regime.

II. OVERVIEW OF MAIN RESULTS AND
CONSEQUENCES

In this section, we give a brief overview of consequences
of this work. In Sec. II A, we provide a broad summary of
our results. In Sec. II B, we review the previous approaches
to put our results in context. In Sec. II C, we discuss impli-
cations of our results in the context developed in Sec.
II B.

A. Summary of main results

In this work, we prove the lack of anticoncentration
with respect to either of the two popular definitions: a
strong definition of anticoncentration with respect to the
convergence of scaled collision probabilities and a weak
definition of anticoncentration with respect to high prob-
ability mass of typical probabilities. The definitions and
connections between them are made explicit in Sec. IV.

Note that the terms “strong” and “weak” definition
are relics from studying these definitions with respect to
noiseless random circuits or random circuits with depolar-
izing noise, where the strong definition implies the weak
definition. However, this is not the case for the nonunital
noise channels that we consider, as we elaborate in Sec.
IV C. Hence, our proofs of lack of anticoncentration, with
respect to these two definitions, are independent. Nonethe-
less, we stick with the existing nomenclature to refer to
these definitions succinctly in different parts of the paper.

Broadly, we prove the following three categories of
results.

(1) First, in Sec. VI, we show how the scaled collision
probabilities for our noisy ensembles, where noise
is modeled as a mixture of amplitude-damping and
depolarizing noise, diverge: this means that anticon-
centration fails with respect to the strong definition.
This has a clean proof, which involves “removing”
the last layer of noise by using the adjoint of the

noise channel and then using properties of the local
Haar measure, such as translational invariance and
explicit formulas for second moments [13], to prove
a lower bound.

(2) Then, we show how typical output probabilities
for strings that have high Hamming weights are
small. This is done in Secs. VII, VIII, and IX.
This shows that anticoncentration fails with respect
to the weak definition. This has a more compli-
cated proof, involving light-cone arguments and a
statistical model.

(3) Finally, we discuss how extensions of our proofs
hold for a wide variety of generic noise models:
this is done in Secs. X and XI. In particular, we
prove how lack of anticoncentration, with respect
to the strong definition, is exhibited whenever the
noise channel, acting on the identity operator, puts
nonzero constant weight on the Pauli-Z operator.

B. Prior approaches and results

Here, we review previous results on random-circuit sam-
pling. Depending on how strong the noise is, we can
divide setups of random-circuit sampling into two different
complexity-theoretic regimes.

1. High-noise regime

The first regime is that of high noise, when the noise rate
is a constant that is independent of the system size, even
when the number of qubits grows asymptotically. Near-
term devices are susceptible to constant noise rates [14]. It
is an equally reasonable model for scaled-up fault-tolerant
systems, because to achieve fault tolerance, suppressing
the noise below a certain constant threshold suffices—one
does not need noise to go down with system size [15–17].

If we model the noise as only depolarizing noise in
the high-noise regime, then after sufficient depth, random-
circuit sampling becomes an easy task classically. It is
known that a trivial classical algorithm that just samples
from the uniform distribution achieves a total variation dis-
tance error, which exponentially decays with the circuit
depth, from the target noisy random-circuit distribution.
The upper bound is due to Aharonov and Ben-Or [18] and,
more recently, the lower bound has been found by Desh-
pande et al. [6]. As is evident, for depth strictly greater than
logarithmic, this trivial sampler achieves a total variation
distance error that is smaller than any inverse polynomial.

At logarithmic depth, in a recent work, Aharonov et al.
[19] have proposed another classical sampler from the out-
put distribution of random circuits with depolarizing noise,
which instead of achieving a total variation distance error
that is inversely proportional to a fixed polynomial, pro-
vides a way to fine tune the total variation distance error to
any polynomial function of our choice. In Appendix A, it
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is elaborated how, because of the special property of depo-
larizing noise, the guarantee that the noiseless ensemble
of Ref. [19] satisfies anticoncentration is necessary for the
authors’ current analysis to work. This is why their sampler
works well only for logarithmic depth and beyond, because
anticoncentration needs at least logarithmic depth to kick
in, and before that, anticoncentration fails [6,20].

Although depolarizing noise, along with anticoncentra-
tion, implies a classical sampler from random circuits,
such noise is not the only type of noise source present
in real hardware. There are nonunital effects in all known
experimental hardware, e.g., those in Refs. [21–25]. These
sources are fundamentally different from unital sources,
such as the depolarizing channel, in the following sense:
the depolarizing channel increases the entropy of the sys-
tem by pushing it toward the maximally mixed state; how-
ever, nonunital noise channels can decrease the entropy of
the system and actually push it toward a pure state. For
the low-noise regime, there is some evidence that depolar-
izing noise remains a good approximation to all the noise
sources present in the system [20], if the system only has
unital noise. However, apart from some very special cases
that we discuss in Sec. B, this approximation is not valid
in the high-noise regime, especially when the system also
has nonunital noise sources.

2. Low-noise regime

The second regime is that of low noise. Here, the
strength of the noise is inversely proportional to the num-
ber of qubits. This can be thought to be a good approxi-
mation of the noise present in relatively small fixed-sized
systems, such as those used in sampling hardness demon-
strations (see, e.g., Refs. [22,26]), where the number of
qubits is fixed, and the noise is a fixed constant that is
inversely related to the number of qubits. However, with-
out further investigation, it is unclear if asymptotic analysis
of the low-noise regime is relevant to studying the prop-
erties of finite system sizes: we cannot ensure by current
technology that the noise rate continues to go down with
the number of qubits when the latter is increased.

The low-noise regime provides advantages to tasks such
as benchmarking, where the fidelity of the output state is
a figure of merit: below a certain noise threshold, the lin-
ear cross-entropy test (XEB) [22,27,28] corresponds to the
fidelity of the output state of the noisy circuit and gives
us a sample efficient way of estimating the fidelity of that
state using only standard basis measurement. Originally,
linear cross-entropy was proposed as a heuristic proxy for
fidelity in Refs. [4,11,29]. Later, in Refs. [26,30,31], it has
been observed empirically that the XEB score is a good
proxy to circuit fidelity in a substantially low-noise regime,
for both unital and amplitude-damping noise. This sharply
contrasts with the high-noise regime, where XEB ceases
to be a good proxy for fidelity and is actually classically

spoofable for both these noise models, as found in Ref.
[30].

C. Implications of our results

Our results show that the phenomenon of anticoncen-
tration is a function of the noise present in the circuit: it
does not hold for reasonable physically motivated nonuni-
tal noise models in the high-noise regime. Many of our
techniques can be generalized to work for a wide variety of
noise models and setups, including when we do not have
the last layer of noise and only have noise in the middle
layers, which we discuss in Sec. XI.

The failure to anticoncentrate implies that the final state
of the system does not resemble a maximally mixed state
and the uniform distribution is not a good proxy for the
output distribution of the system, as elaborated on in
Appendix C. So, sampling from the uniform distribution,
or close variants of the same, no longer works as an effec-
tive strategy to classically spoof the output distribution.
Additionally, the failure to anticoncentrate also implies
that no known techniques can be harnessed to show that
more sophisticated samplers, such as the one in Ref. [19],
succeed in spoofing the output distribution.

Thus, our work leaves open whether sampling from this
distribution, in the asymptotic limit, is classically hard
under plausible complexity-theoretic hardness conjectures
or whether the final state converges to a classically simula-
ble fixed point that is much more sophisticated than just
a maximally mixed state. It could also be interesting to
investigate whether the lack of anticoncentration implies
any advantage in the computation of the expectation value
of certain cost functions in variational setups. We discuss
many more open problems in Sec. XII.

D. Other recent work on nonunital noise

Finally, we mention a few recent complementary works
on nonunital noise in NISQ devices.

1. Lack of noise-induced barren plateau under
nonunital noise

For a circuit ensemble, if the output distribution anti-
concentrates or is primarily “flat,” it renders the ensemble
useless for any gradient-descent-based optimization tasks,
because the optimization subroutine runs into the barren-
plateau problem [32–34]. More concretely, the gradient
of the cost function of the optimization task vanishes in
the “flat” landscape and the optimization gets stuck. On
the other hand, if a distribution lacks anticoncentration,
it could potentially escape this phenomenon because the
second moment of a distribution diverges with respect
to the number of qubits and convergence of the second
moment is necessary for barren plateaus for certain opti-
mization setups, as has been rigorously shown in Ref. [34].
Recently, in Ref. [35], it has indeed been shown that under
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nonunital noise, the “barren-plateau” phenomenon can be
escaped.

2. Classical estimation of expectation value of
observable under nonunital noise

Even though anticoncentration is a key ingredient of
existing easiness of sampling results from random quan-
tum circuits, easiness of computing the expectation value
of certain observables may not require anticoncentration.
In Ref. [36], a polynomial time classical estimator has
been proposed to compute such expectation values for ran-
dom quantum circuits with only depolarizing noise, by
exploiting a special property of the noise—the fact that
only polynomially many Pauli paths have nontrival path
weights. This is sketched in Appendix D and this tech-
nique does not require anticoncentration. Moreover, in Ref.
[35], a classical estimator has recently been proposed that
works for a noisy random circuit with nonunital noise and
arbitrary depth.

The proposed algorithm has a polynomial run time
for one-dimensional (1D) architecture and a quasipoly-
nomial run time for higher-dimensional architectures, for
computing expectation values up to inverse-polynomial
additive precision. However, very crucially, the run time
of this algorithm is inversely related to the desired addi-
tive precision. So, this algorithm only works for classically
computing expectation values and does not shed light on
the complexity of sampling from random circuits with
nonunital noise. For sampling, we usually simulate certain
quantities that can be written as expectation values—e.g.,
output probabilities and marginals—to inverse exponen-
tial additive precision. However, since the run time of
this algorithm is inversely proportional to the additive pre-
cision of the simulation, this results in an exponentially
worse running time if this algorithm is naively used to sam-
ple. Note that it still remains open if a cleverer algorithm
does any better or if classically sampling from these cir-
cuits is indeed complexity-theoretically hard, as we will
also mention in Sec. XII A.

III. PRELIMINARIES

In this section, we provide background materials for this
work.

A. Notation and general definitions

In this section, we introduce the notation used in this
paper. Throughout this paper, we use IN to denote the N ×
N identity matrix. For example, I2 represents the single-
qubit identity operator.

The single-qubit Pauli operators are defined as follows:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(1)

For a string p ∈ {0, 1, 2, 3}n, ωp is defined as the Hamming
weight of p , i.e., the number of nonzero symbols in p . For
a string p = p1p2 . . . pn with pk ∈ {0, 1, 2, 3} for each k, we
define

σp :=
n⊗

k=1

σpk , (2)

where we define σ0 = I2, σ1 = σx, σ2 = σy , and σ3 = σz.
A quantum channel is a linear map of operators that

is completely positive and trace preserving (CPTP). Any
quantum channel N has Kraus operators {Ni}i, with which
we may write

N (X ) =
∑

i

NiXN †
i (3)

for any input X . We use I to denote the single-qubit iden-
tity channel. A quantum channel N is a unital channel if
N (I) = I , where I denotes the identity operator.

Regarding the asymptotic notation, for x ∈ R and func-
tions f (x) and g(x), we write

f (x) = O(g(x)) (4)

if lim supx→∞ |f (x)|/g(x) < ∞. Also, we write

f (x) = ω(g(x)) (5)

if limx→∞ f (x)/g(N ) > ∞.

B. Circuit architectures

Here, we define the circuit architecture that we use in the
rest of the paper. We assume familiarity with basic termi-
nologies in quantum computing, such as qubits, quantum
circuits, and circuit depth. Unless otherwise stated, a quan-
tum circuit, usually denoted by C, is taken to be a CPTP
map and the final measurements, after applying a quantum
circuit, are always performed in the standard basis.

Definition 1 (Parallel quantum circuit). An n-qubit par-
allel quantum circuit is a quantum circuit in which every
qubit is involved in a one- or two-qubit gate, at every depth
instance.

Definition 2 (Geometrically local quantum circuit). An
n-qubit geometrically local quantum circuit is a quantum
circuit in which every quantum gate acts on nearest-
neighbor qubits.
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FIG. 1. The circuit model that we use for our analysis. Every
pink rectangle is a single-qubit noise channel. Every white rect-
angle is either a single-qubit or a two-qubit Haar-random gate. In
the end, the final state is measured in the standard basis.

Definition 3 (Noisy quantum circuit). An n-qubit noisy
quantum circuit is one in which every quantum gate is fol-
lowed by a single-qubit noise channel N on every qubit
involved in the gate.

Definition 4 (Random quantum circuit). An n-qubit ran-
dom quantum circuit is one in which every quantum gate,
acting on k qubits, for a constant k, is drawn from the Haar
measure on U(2k): this is the set of all unitary matrices, of
dimension 2k × 2k.

Alternatively, a random quantum circuit can be inter-
preted as a quantum circuit picked uniformly at random
from an ensemble of quantum circuits. In this paper, unless
otherwise stated, we consider parallel, geometrically local,
noisy, and random circuits, as depicted in Fig. 1. We usu-
ally use B to denote an ensemble of noisy random circuits.
In this work, we often compute the expectation value of
a function f of noisy random circuits C from an ensemble
B, which is denoted by E

B
[f (C)]. For example, we consider

the output probability distribution or the expectation value
of some observable as a function f .

C. Noise model

Quantum devices are affected by two sources of noise:
unital and nonunital quantum noise channels. Dephasing,
bit-flip, and depolarizing noise channels are examples of
unital quantum channels. On the other hand, the amplitude-
damping channel is an example of a nonunital quantum
channel, which models the T1 noise in superconducting
quantum devices (see also Ref. [37] for these examples of
noise). Unital and nonunital noise sources have the oppo-
site behavior. While amplitude-damping noise “biases” the
system toward a particular fixed state (|0〉 state), unital
sources push the system toward the maximally mixed state.

Note that in this paper, we will often consider properties
of noisy random quantum circuits in expectation: unless
otherwise stated, the expectation will always be taken only
over the choice of random gates and not over the noise
channels.

In the next few sections, we will use a combination
of the depolarizing channel and the amplitude-damping
channel to model the noise after each single-qubit gate.
Amplitude-damping noise is emblematic of the T1 noise
[25,38] and the depolarizing channel is emblematic of the
type of unital noise just described [19,22]. In later sections,
we discuss how our analysis and techniques are general
enough to apply to a wide variety of noise channels.

1. Amplitude-damping noise

This type of noise pushes a qubit toward the state |0〉〈0|.
It is represented by two Kraus operators, as given by
Definition 5. The first Kraus operator “dampens” the |1〉〈1|
term and the second Kraus operator takes the state |1〉 〈1| to
|0〉 〈0| state, with a prefactor. Both of the operators serve to
make the contribution of |0〉 〈0| dominate in the final state
that we obtain after the channel is applied.

Definition 5 (Amplitude-damping noise channel). Let
0 ≤ q ≤ 1 be a real parameter. A single-qubit amplitude-
damping noise N (amp)

q with noise strength q is a quantum
channel with the following Kraus operators:

K0 =
(

1 0
0

√
1 − q

)
, K1 =

(
0

√
q

0 0

)
. (6)

Therefore, for a single-qubit linear operator

X =
(

x00 x01
x10 x11

)
, (7)

the action of the amplitude-damping channel, N (amp)
q (X ),

is given by

N (amp)
q (X ) =

(
x00 + qx11

√
1 − qx01√

1 − qx10 (1 − q)x11

)
. (8)

2. Depolarizing noise

Definition 6 (Depolarizing noise channel). Let 0 ≤ p ≤
1 be a real parameter. A single-qubit depolarizing noise
N (dep)

p with noise strength p is a quantum channel with the
following Kraus operators:

K0 =
√

1 − 3p
4

(
1 0
0 1

)
, K1 =

√
p
4

(
0 1
1 0

)
,

K2 =
√

p
4

(
0 −i
i 0

)
, K3 =

√
p
4

(
1 0
0 −1

)
.

(9)

030317-5



BILL FEFFERMAN et al. PRX QUANTUM 5, 030317 (2024)

Therefore, for any single-qubit linear operator X ,

X =
(

x00 x01
x10 x11

)
, (10)

the action of the depolarizing channel, N (dep)
p (X ), is given

by

N (dep)
p (X ) =

(
(1 − p) x00 + p

2 x11 (1 − p)x01
(1 − p)x10 (1 − p) x11 + p

2 x00

)

(11)

= (1 − p)X + p
2

Tr(X )I2, (12)

with the single-qubit identity operator I2.
The notion that the amplitude-damping channel is fun-

damentally different from the depolarizing channel is elab-
orated on in works such as Ref. [39], where it is shown how
quantum circuits with an uncorrected amplitude-damping
channel can be used to do exponential-time quantum com-
putation, in the worst case, by using the noise as a resource
to generate fresh ancilla qubits. However, this cannot be
done for quantum circuits with the depolarizing noise
channel.

IV. ANTICONCENTRATION AND THE LACK
THEREOF

In this section, we introduce the notion of anticoncentra-
tion and discuss what it means to not anticoncentrate. First,
we will use the definition of anticoncentration in Ref. [20],
where it is defined with respect to the collision probability.
Then, we will talk about another definition of anticoncen-
tration, which is found in, e.g., Refs. [6,7,40], and discuss
connections between the two definitions.

A. Strong definition: With respect to the scaled
collision probability

Definition 7. The output probability px, of a string x ∈
{0, 1}n, for a quantum circuit C is given by

px = Tr
(|x〉〈x| C(|0n〉〈0n|)). (13)

Definition 8. For an ensemble B, the scaled collision
probability is defined as

Z = 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦− 1. (14)

In other words,

Z = 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

Tr(|x〉〈x| C(|0〉〈0|))2

⎤
⎦− 1. (15)

Definition 9. An ensemble B of n-qubit quantum cir-
cuits is defined to be anticoncentrated if

Z = O(1). (16)

Intuitively, Definition 9 says that the probability of see-
ing a collision, after sampling twice from the output distri-
bution of a circuit in B, is extremely small in expectation.
In other words, “most” n-bit strings have sufficiently high
probability weight in the output distribution. Definition 9
is a “stronger” definition of anticoncentration because, for
certain types of circuits, it implies another well-studied
“weaker” definition of anticoncentration, as we will see in
Sec. IV B.

Definition 10. An ensemble B of n-qubit quantum cir-
cuits is said to exhibit lack of anticoncentration if

Z = ω(1). (17)

The right-hand side means that the quantity is strictly
more than a constant: it grows as some function of n.
Intuitively, a distribution that satisfies Definition 10 is
not “evenly” supported on all n-bit strings: some strings
have much more probability weight than others. So, there
is a much larger probability of seeing a collision when
sampling multiple times from this distribution.

Remark 1. The connection of Definition 9 to easiness
proofs is elaborated on in Appendix A. In short, the guaran-
tee that ensembles satisfy Definition 9 is necessary for the
current techniques to analyze the accuracy of the classical
sampler, proposed by Aharonov et al. [19], to work. This is
why the sampler only works after logarithmic depth; loga-
rithmic depth is the threshold at which these ensembles are
known to start anticoncentrating [20].

B. Weak definition: With respect to individual
probabilities

There is another definition of anticoncentration, which
defines it in terms of how large individual probabilities are.
This can be found in works such as Refs. [4,6,7,41].

Definition 11. An ensemble B of n-qubit quantum cir-
cuits is defined to be anticoncentrated if, for every x ∈
{0, 1}n, there exists a choice of α, β ∈ (0, 1] such that

Pr
B

[
px ≥ α

2n

]
≥ β. (18)

We define the lack of anticoncentration in a similar way.

Definition 12. An ensemble B of n-qubit quantum cir-
cuits is defined to lack anticoncentration if there exists an
x ∈ {0, 1}n, such that, for any α ∈ (0, 1],

lim
n→∞Pr

B

[
px <

α

2n

]
= 1. (19)
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The form of anticoncentration in Sec. 11 is believed to
be useful in proving that the output distribution of some
random-circuit ensembles are hard to classically sample
from [4,7]. Section 11 is called the “weaker definition” of
anticoncentration because Definition 9 implies Sec. 11, as
we will now establish.

C. Connection between two definitions

Before establishing the connection between Definition 9
and Sec. 11, let us state a version of the “hiding” property.

Definition 13. Let B be an ensemble of random quan-
tum circuits. Then, B is said to satisfy hiding if

E
B
[
pk

x

] = E
B

[
pk

y

]
(20)

for x, y ∈ {0, 1}n, x 
= y, and for any k.

Note that for ensembles that satisfy hiding,

E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦ = 2n

E
B

[
p2

y

]
(21)

for any y ∈ {0, 1}n. Note that the hiding property follows
form the left and right invariance of the Haar measure
under unitary transformations. Furthermore, from Eq. (21),
for any ensemble B satisfying both hiding and anticoncen-
tration with respect to Definition 9,

E
B

[px] = 1
2n , E

B
[
p2

x

] = O(1)

4n (22)

for any x ∈ {0, 1}n. A number of ensembles satisfy hiding,
including noiseless random quantum circuits and circuits
with Pauli noise [6]. Let us state a proposition that follows
from our discussion so far.

Proposition 1. Let B be an ensemble of random quan-
tum circuits that satisfy hiding and anticoncentration with
respect to Definition 9. Then, it also satisfies anticoncen-
tration with respect to Sec. 11.

Proof. For any x ∈ {0, 1}n, by the Paley-Zygmund
inequality,

Pr[px ≥ αE
B

[px]] ≥ (1 − α)2

4nE
B
[
p2

x

] . (23)

Then, the proof follows from Eq. (22). �

In this sense, Definition 9 is stronger than Sec. 11.

Remark 2. When an ensemble B does not satisfy hiding,
the relation between Definition 9 and Sec. 11 is not clear.
Note that hiding is not satisfied in most of the setups that
we study in this paper, because of how we model our noise.
The details of our noise model are given in Sec. III C.

D. Fine graining the weak definition

One can consider a fine-grained version of Sec. 11. The
fine graining is important in setups in which hiding is not
satisfied and analyzing the typical probability weight for
one particular bit string does not tell us about the typical
behavior of other bit strings.

Definition 14. An ensemble B of n-qubit quantum cir-
cuits is defined to be k-anticoncentrated if there exists a
set S = {x : x ∈ {0, 1}n}, with |S| = k, such that, for every
x ∈ S, there exists a choice of α, β ∈ (0, 1] satisfying

Pr
B

[
px ≥ α

2n

]
≥ β. (24)

Note that after a sufficiently large depth, noiseless ran-
dom circuits, or random circuits with Pauli noise, are 2n

anticoncentrated [20].
Our work shows that for the setups we discuss in

the paper, anticoncentration fails both with respect to
Definition 9 and Sec. 11. Our analysis is fine grained, in
the spirit of Definition 14.

V. PROOF TECHNIQUES AND STRATEGY

A. Techniques

There are three main classes of techniques that we uti-
lize in our proofs. For many of our calculations, such as
those involving putting bounds on the expected collision
probability or those involving computing the first moment
of output probabilities, we first “remove” the last layer of
noise, compute relevant quantities for the modified circuit,
and then generalize our calculations to the actual circuit.

This is usually done by considering the adjoint map
of the last noise layer. For our calculations about typical
probabilities, we use light-cone arguments and a statistical
model.

1. Removing the last layer of noise

The technique of removing the last layer of noise by
considering the adjoint of the noise channel makes calcu-
lations convenient because if our circuit terminates with a
last layer of single-qubit Haar-random gates, instead of a
last layer of noise, then we can then use many properties
of the Haar measure directly, such as translational invari-
ance or explicit expressions of higher moments. Addition-
ally, this makes many of our results extremely general,
especially the ones involving lack of anticoncentration,
by proving divergence of scaled collision probabilities,
because this technique has no dependence on the under-
lying architecture, unlike similar divergence results, for
noiseless and unital noise models, in Ref. [20], which
involve a statistical model and, hence, are only known to
be applicable for certain specific architectures. Moreover,
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because of this proof technique, our proof of divergence
holds for any circuit depth, as long as there is a last layer
of noise.

To be more formal, suppose that we have an ensemble
B of noisy random quantum circuits with noise channel
N and pick a quantum circuit C ∈ B. In our analysis, we
usually “remove” the last layer of noise and deal with the
adjoint of the noise. More specifically, let C ′ be the quan-
tum circuit obtained by removing the last layer of noise;
i.e.,

C = N⊗n ◦ C ′. (25)

Let B′ be the set of quantum channels obtained by remov-
ing the last layer of noise from the circuits in B. The
expected probability of obtaining the result x ∈ {0, 1}n is

E
B

[Tr (|x〉〈x| C(|0〉〈0|))] . (26)

By the definition of the adjoint map, we have

E
B

[Tr (|x〉〈x| C(|0〉〈0|))]

= E
B′
[
Tr
(
(N †)⊗n(|x〉〈x|) C ′(|0〉〈0|))] . (27)

By the linearity of the trace and E,

E
B′
[
Tr
(
(N †)⊗n(|x〉〈x|) C ′(|0〉〈0|))]

= Tr
(

(N †)⊗n(|x〉〈x|) E
B′
[C ′(|0〉〈0|)]

)
. (28)

Hence, to analyze this expected probability, we may eval-
uate

(N †)⊗n(|x〉〈x|) and E
B′
[C ′(|0〉〈0|)] (29)

separately. (N †)⊗n(|x〉〈x|) can usually be evaluated
straightforwardly when the description of noise N is
given. Note that C ′ terminates with a last layer of two-qubit
Haar-random gates.

Remark 3. Just as in the computation of first-moment
quantities, the trick of “removing” the last layer of noise by
taking its adjoint is useful even in bounding certain second-
moment quantities, such as the collision probability, as we
detail in Sec. VI.

2. Light-cone arguments

The second class of techniques that we utilize to study
low-depth circuits are variants of light-cone-type argu-
ments. These techniques are popular in the study of low-
depth random circuits in different settings (see, e.g., Refs.
[6,42]).

The qualitative intuition behind light-cone arguments is
that by looking at the size of the light cone for each qubit
marginal at low depth, one could argue that the circuit
does not “scramble” the distribution too well for suffi-
ciently many strings to have high probability mass. Then,
by studying particular noise channels, one could argue that
specific noises do not assist in the “scrambling” either.
Additionally, because of small light-cone sizes, instead
of directly looking at the random variable px—the output
probability of a string x ∈ {0, 1}n—it suffices to look at the
random variable

−1
n

log px, (30)

and prove its concentration around the mean by Markov’s
inequality; stronger second-moment bounds are not
needed. Let us emphasize that we succeed in develop-
ing techniques that are more general than variants that
came before, which may be of independent interest. Pre-
viously, the analysis and application of these methods only
extended to the noiseless or the unital case, as discussed in
papers such as Refs. [6,20].

To use light-cone arguments to show how certain output
strings, with high Hamming weight, have very low proba-
bility mass at low depth, the key ingredient is to show that
the lower bound of the total variation distance between the
noisy distribution and the noiseless distribution is expo-
nentially decaying in the depth of the circuit. In Theorem
7, we prove how this holds true whenever the noise channel
N satisfies

〈|0〉〈0| ,N d(|0〉〈0|)〉 = κ + τλd, (31)

where d is the depth of the circuit, N d represents the quan-
tum channel obtained by concatenating the channel N d
times, and κ , τ , and λ are constants satisfying 1

2 ≤ κ ≤
1, 0 ≤ τ , λ ≤ 1. More specifically, this statement is true
when the noise channel under consideration is a mixture
of amplitude damping and depolarizing noise. This analy-
sis extends that in Ref. [6], where a similar technique has
been used for the noiseless case and the case with only
Pauli noise.

3. Mapping to classical partition functions

The third type of technique that we utilize, to study suf-
ficiently deep circuits, consists of mappings to classical
partition functions. These techniques have been developed
to study the output distribution of random quantum circuits
in different settings (see, e.g., Refs. [20,43]).

Since light-cone sizes blow up for superlogarithmic
depths, light-cone arguments are no longer tight and we
need stronger second-moment inequalities to study the out-
put distribution. To use these inequalities, we explicitly
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upper bound the second moment of the distribution. This
is done using mappings to classical partition functions.

To show that the same strings have low probability mass
at sufficiently high depths by applying second-moment
inequalities, we need to upper bound the second moment
of their output probabilities using a statistical model.

To do this, one standard way is to iteratively replace
each two-qubit random gate in the circuit with two copies
of a single-qubit random gate; show, using the statistical
model, that the collision probability of this modified circuit
upper bounds the collision probability of the actual circuit;
and then directly upper bound the collision probability of
the modified circuit. The steps are explained in detail in
Sec. IX, where we show the correctness of each step under
the condition that

M̃ U1,N(I4) = (1 − a)I4 + 2aS, (32)

M̃ U1,N(S) = bI4 + (1 − 2b)S, (33)

with a > 0, and b > 0, where I4 is the two-qubit identity
operator and S is the two-qubit SWAP gate,

MU1[ρ] = E
U1∼UHaar

[
U⊗2

1 ρU†⊗2
1

]
, (34)

N = N ⊗ N , and the operator

M̃ U1,N = MU1 ◦ N ◦ MU1 . (35)

Our analysis is inspired by the techniques in Refs. [6,20],
the analysis of which only covers the noiseless and the
unital cases. The authors’ analysis does not work for gen-
eral noise models, as it is nontrivial to prove that when
we iteratively replace each two-qubit gate with two copies
of a single-qubit gate in a noisy circuit, the statistical-
mechanics representation is still a valid one—i.e., that
there are no negative path weights for I and S—and the
original collision probability is upper bounded by that of
the modified circuits. We prove that this is indeed the case
in Lemma 6.

B. Proof strategy

In this section, we summarize our proofs. The proofs are
detailed in the subsequent sections. Just like Sec. II A, this
section gives a bird’s eye view of the rest of the paper—but
it is more formal than Sec. II A.

First, we will prove that the distribution exhibits a lack
of anticoncentration, according to Definition 10, at any
depth. In particular, we will show that for a noisy ensemble
B, the scaled collision probability

Z ≥ (1 + s)n − 1 (36)

for a non-negative constant s depends on the strength of
the noises present.

Then, we show how the distribution lacks anticoncen-
tration according to Definition 12, at any depth. Moreover,
our results show that the distribution is never 2n−1 anti-
concentrated, according to Definition 14. For this, first
we calculate the first moment of output probabilities to
show that, in expectation, the probability weight on a string
is exponentially suppressed with respect to the Hamming
weight of the string: strings with lower Hamming weight
have exponentially more weight than strings with higher
Hamming weight. Intuitively, this behavior comes from
the fact that the fixed point of an n-fold tensor product of a
single-qubit amplitude-damping channel is |0n〉〈0n| and the
fact that 0n is a string with a Hamming weight of 0. So, the
distribution is biased toward strings that are closer in Ham-
ming distance to 0n. We then show that for any string with
Hamming weight at least n/2, the probability weight on
that string is negligible, for most circuits in the ensemble
B. This calculation is divided into two parts: the low-depth
and the high-depth regime, with different techniques for
each regime. We use a variant of a light-cone argument
in the low-depth regime, whereas the high-depth regime is
analyzed using mappings to a statistical model. Note that
mapping random circuits to statistical models, to study var-
ious quantities of interest, is a useful analysis tool and has
been studied in Refs. [6,20,44]. Additionally, we general-
ize our techniques to an arbitrary noise channel. First, we
show that for an arbitrary noise channel with a nonunital
component, the distribution exhibits a lack of anticoncen-
tration according to Definition 10, for a wide range of
parameters. Thereafter, we derive a condition for which
the noisy distribution shows a lack of anticoncentration
according to Definition 12 and is never 2n−1 anticoncen-
trated. This result holds for a general noise model, when
the noise is modeled as any CPTP map.

Note that a layer of random gates can, intuitively, be
thought to “scramble” the output distribution. On the other
hand, a layer of amplitude-damping noise can be thought
to “unscramble” the distribution and push it back to a pure
state. So, one might suspect that there is a “see-saw” effect
and whether the distribution exhibits a lack of anticoncen-
tration is dependent on whether we terminate our circuit
with a layer of noise or a layer of noiseless gates. However,
we do not think this is the case: we argue that amplitude-
damping noise in the middle layers is sufficient to cause
lack of anticoncentration. To elaborate on this conceptual
point that we want to make, at the end of our paper, we
discuss a setup in which we do not have the last layer of
noise and instead terminate with a last layer of noiseless
gates.

We argue how such setups also appear to lack anticon-
centration, according to Definitions 10 and 12. Our results
in this regime are not as general as they were before but,
nonetheless, they strongly suggest that the phenomenon of
lack of anticoncentration holds true even when we have
nonunital noise in only the middle layers.
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VI. LACK OF ANTICONCENTRATION USING
SCALED COLLISION PROBABILITY

In this section, we will show how our random-circuit
ensemble exhibits a lack of anticoncentration according
to Definition 10. The noise is modeled by a mixture of
amplitude damping and depolarizing noise. That is, the
combined noise channel could be either N (amp)

q ◦ N (dep)
p or

N (dep)
p ◦ N (amp)

q .
Let us observe the following identities:

|0〉〈0| = I2 + σz

2
, (37)

|1〉〈1| = I2 − σz

2
, (38)

where I2 is the single-qubit identity operator and σz is the
single-qubit Pauli-Z operator. Using these identities, for an
ensemble B, one could rewrite Eq. (14) as

Z = E
B

⎡
⎣ ∑

p∈{0,3}n,p 
=0n

Tr(σp C(|0〉〈0|))2

⎤
⎦ , (39)

where σp is an n-qubit Pauli operator. Note that σ0 = I2
and σ3 = σz. The derivation is shown in more detail in
Appendix E. Additionally, note that

E
B
[
Tr(σp C(|0〉〈0|))2]
= E

B
[
Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))] . (40)

We prove the following theorem, which shows a lack of
anticoncentration for our noise model.

Theorem 1. Let B be an ensemble of noisy random
quantum circuits with noise channel N , where N is either
N (amp)

q ◦ N (dep)
p or N (dep)

p ◦ N (amp)
q . Then,

Z ≥ (1 + r2)n − 1, (41)

where

r :=
{

q, N = N (amp)
q ◦ N (dep)

p ,
q(1 − p), N = N (dep)

p ◦ N (amp)
q .

(42)

Proof. For pedagogical reasons, before we generalize to
n qubits, let us first consider just the single-qubit case. In

the single-qubit case, we have

Z = E
B
[
Tr(σz C(|0〉〈0|))2] (43)

= E
B

[Tr(σz ⊗ σz C(|0〉〈0|) ⊗ C(|0〉〈0|))] (44)

by definition. Let N be either N (amp)
q ◦ N (dep)

p or N (dep)
p ◦

N (amp)
q . Let

ρ = N
(

U1(ρ̃)U†
1

)
, (45)

where ρ̃ is the state just before the last block. Additionally,
let

ρ ′ = U1(ρ̃)U†
1. (46)

By definition of the adjoint map, we have

Z = E
U1

[Tr(σz ⊗ σzρ ⊗ ρ)] (47)

= E
U1

[
Tr(σz ⊗ σz N (ρ ′) ⊗ N (ρ ′)

]
(48)

= E
U1

[
Tr(N †(σz) ⊗ N †(σz) ρ ′ ⊗ ρ ′)

]
. (49)

In Eq. (49), we have used the definition of the adjoint map
of a channel N . We can explicitly compute N †(σz) as

N †(σz) = rI2 + (1 − q)(1 − p)σz, (50)

where r is defined in Eq. (42). Using this expansion, we
have

E
U1

[
Tr(N †(σz) ⊗ N †(σz) ρ ′ ⊗ ρ ′)

]

= r2
E
U1

[
Tr(I2 ⊗ I2ρ

′ ⊗ ρ ′)
] + c1 E

U1

[
Tr(I2 ⊗ σzρ

′ ⊗ ρ ′)
]

+ c1 E
U1

[
Tr(σz ⊗ I2ρ

′ ⊗ ρ ′)
]

+ c2
2 E

U1

[
Tr(σz ⊗ σzρ

′ ⊗ ρ ′)
]

, (51)

where

c1 :=
{

q(1 − q)(1 − p), N = N (amp)
q ◦ N (dep)

p ,
q(1 − p)(1 − p)2, N = N (dep)

p ◦ N (amp)
q ,

(52)

c2 :=
{
(1 − q), N = N (amp)

q ◦ N (dep)
p ,

(1 − q)(1 − p), N = N (dep)
p ◦ N (amp)

q .
(53)

Now, we evaluate the terms one by one. The first term can
be exactly computed as

E
U1

[
Tr(I2 ⊗ I2ρ

′ ⊗ ρ ′)
] = 1, (54)

by definition.
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The second term is evaluated as

E
U1

[
Tr(I2 ⊗ σzρ

′ ⊗ ρ ′)
]

(55)

= E
U1

Tr
([

U†⊗2
1 (I2 ⊗ σz)U⊗2

1

]
ρ̃ ⊗ ρ̃

)
(56)

= Tr
(

E
U1

[
U†⊗2

1 (I2 ⊗ σz)U⊗2
1

]
ρ̃ ⊗ ρ̃

)
(57)

= 0. (58)

The second line follows because of the linearity of trace
and expectation to interchange the two operations suitably.
In the third line, we have used the fact that

MU1[σi ⊗ σj ] = E
U1

[
U†⊗2

1 σi ⊗ σj U⊗2
1

]
(59)

= E
U1

[
U⊗2

1 σi ⊗ σj U†⊗2
1

]
(60)

= 0, (61)

for i 
= j . The second line follows because the Hermitian
conjugate of a unitary is also a unitary and because the
expectation is only over the unitary U1. The third line is
obtained by a straightforward calculation with Eq. (F9)
in Sec. F. Here, let us give qualitative reasoning for this
relation. Observe that MU1 projects an input onto the sym-
metric subspace and the antisymmetric subspace (See Sec.
F). The projector 
sym onto the symmetric subspace and
the projector 
antisym onto the antisymmetric subspace can
be expressed as


sym = ∣∣�+〉 〈�+∣∣+ ∣∣�−〉 〈�−∣∣+ ∣∣�+〉 〈�+∣∣ (62)


antisym = ∣∣�−〉 〈�−∣∣ , (63)

where

∣∣�+〉 := |00〉 + |11〉√
2

, (64)

∣∣�−〉 := |00〉 − |11〉√
2

, (65)

∣∣�+〉 := |01〉 + |10〉√
2

, (66)

∣∣�−〉 := |01〉 − |10〉√
2

(67)

are the Bell states. In fact, for any Bell state |〉, we
have 〈| |σi ⊗ σj | |〉 = 0 when i 
= j . An intuitive jus-
tification can be given with the following simultaneous
measurement scenario. Suppose that two parties—Alice
and Bob—share a Bell state |〉. Alice has an observable σi
and Bob has an observable σj . They measure their observ-
ables with the state |〉. In this case, the expectation value

of this measurement is zero. Indeed, Bob obtains 1 with
probability 1

2 and obtains −1 with probability 1
2 regardless

of Alice’s measurement result, because they share a maxi-
mally entangled state and they locally have different Pauli
operators. Hence, from this observation, we have

〈σi ⊗ σj , 
sym〉 = 〈σi ⊗ σj , 
antisym〉 = 0. (68)

Hence, σi ⊗ σj has no component on the symmetric and
antisymmetric subspaces. Thus,

MU1[σi ⊗ σj ] = 0. (69)

Note that this does not contradict that MU1 is a CPTP map
because Tr[σi ⊗ σj ] = 0 when i 
= j .

By a similar reasoning as the second term, the third term
is

E
U1

[
Tr(σz ⊗ I2ρ

′ ⊗ ρ ′)
] = 0. (70)

The fourth term can be bounded as

E
U1

[
Tr(σz ⊗ σzρ

′ ⊗ ρ ′)
] = E

U1

[
Tr(σzρ

′)2] ≥ 0. (71)

This is because Tr(σzρ
′)2 is always a positive-valued ran-

dom variable. Putting these analyses together, Eq. (51) can
be lower bounded by r2; i.e.,

Z ≥ r2. (72)

With this observation for the single-qubit case, we consider
the general n-qubit case:

Z = E
B

⎡
⎣ ∑

p∈{0,3}n,p 
=0n

Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))
⎤
⎦.

(73)

Let us fix p ∈ {0, 3}n\{0n} and consider

E
B
[
Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))] . (74)

Letting C’ denote the circuit obtained by removing the last
layer of noise, we have

E
B
[
Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))]
= E

B
[
Tr(σp ⊗ σp N⊗n ◦ C ′(|0〉〈0|)

⊗ N⊗n ◦ C ′(|0〉〈0|))] (75)

= E
B′
[
Tr((N †)⊗n(σp) ⊗ (N †)⊗n(σp) C ′(|0〉〈0|)

⊗ C ′(|0〉〈0|))] , (76)

where B′ is the set of quantum channels obtained by
removing the last layer of noise from the circuits in
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B. Now, we consider the expansion of (N †)⊗n(σp). Let
us write p = p1p2 · · · pn, where pi ∈ {0, 3} for 1 ≤ i ≤ n.
Then,

(N †)⊗n(σp) =
n⊗

i=1

N †(σpi). (77)

Recalling Eq. (50),

N †(σpi) =
{

I2, pi = 0,
rI2 + (1 − q)(1 − p)σz, pi = 3.

(78)

Note that N †(I2) = I2, since the adjoint map of a quantum
channel is unital. Substituting this relation into Eq. (77),
we have

(N †)⊗n(σp) = rwp I2n +
∑

q∈{0,3}n\{0n}
wq≤wp

cqσq, (79)

where the cq are non-negative coefficients and wi is the
number of nonidentity Pauli operators in σi. Using this
expression,

E
B
[
Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))]

= r2wp E
B′
[
Tr(I2n ⊗ I2n C ′(|0〉〈0|) ⊗ C ′(|0〉〈0|))]

+
∑

q,q′∈{0,3}n\{0n}
wq≤wp

cqcq′E
B′
[
Tr(σq ⊗ σq′ C ′(|0〉〈0|)

⊗ C ′(|0〉〈0|))] . (80)

The first term is

r2wp E
B′
[
Tr(I2n ⊗ I2n C ′(|0〉〈0|) ⊗ C ′(|0〉〈0|))] = r2wp .

(81)

If q 
= q′, then, with a similar argument as in Eqs. (58) and
(70), we have

E
B′
[
Tr(σq ⊗ σq′ C ′(|0〉〈0|) ⊗ C ′(|0〉〈0|))] = 0. (82)

Here, we have used the fact that the average statistics do
not change even if one appends single-qubit Haar-random
unitary gates after a two-qubit Haar-random unitary gate.

In addition,

E
B′
[
Tr(σq ⊗ σq C ′(|0〉〈0|) ⊗ C ′(|0〉〈0|))] (83)

= E
B′
[
Tr(σqC ′(|0〉〈0|))2] (84)

≥ 0, (85)

by a similar discussion in Eq. (71). By combining these
observations,

Z ≥
∑

p∈{0,3}n,p 
=0n

r2wp . (86)

Hence, by computing the right-hand side with the binomial
theorem,

Z ≥ (1 + r2)n − 1, (87)

which completes the proof. �

The lower bound in Eq. (41), established in Theorem 1,
indicates that the scaled collision probability diverges in
the limit of n → ∞, i.e., the given circuit is not anticon-
centrated, if the noise parameter r 
= 0. For example, recall
that r = q when N = N (amp)

q ◦ N (dep)
p . Hence, the circuit

is not anticoncentrated as long as the circuit is affected
by the amplitude-damping noise, no matter how strong
the depolarizing noise is. On the other hand, when N =
N (dep)

p ◦ N (amp)
q , the noise parameter is r = q(1 − p). In

this case, the circuit is not anticoncentrated for any positive
q unless p = 1. This slight difference originates from the
order of the two kinds of noise. When the completely depo-
larizing noise comes after the amplitude-damping noise,
the completely depolarizing noise nullifies the effects of
the amplitude-damping noise.

Remark 4. If we only have the depolarizing channel,
then q = 0. Then, from Eq. (42), r = 0. Hence, from
Eq. (86),

Z ≥ 0. (88)

This gives us a vacuous bound and our techniques fail
to prove the lack of anticoncentration. This is consistent
with the observation that random quantum circuits with
depolarizing noise indeed anticoncentrate [6].

VII. USEFUL PROPERTIES OF OUTPUT
DISTRIBUTION OF NOISY RANDOM CIRCUITS

In the next sections, we will prove that our setup exhibits
a lack of anticoncentration according to Definition 12.
Before doing that, it will be helpful to prove some useful
results.
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To that effect, in this section, we calculate the first
moment of two different noise models. We divide our proof
into many subparts. First, let us calculate the exact expres-
sion for the first moment of the output probabilities of our
distribution. We will then argue about typical probabilities,
first in the low-depth regime, using a light-cone argument,
and then in the high-depth regime, using a second-moment
inequality.

A. First moment of output probabilities

Theorem 2. Let B be an ensemble of noisy random
quantum circuits with noise channel N . Furthermore, for a
particular x ∈ {0, 1}n, let px be the corresponding outcome
probability. Then, the following hold:

(1) If N = N (amp)
q ◦ N (dep)

p ,

E
B

[px] = (1 − q)wx (1 + q)n−wx

2n . (89)

(2) If N = N (dep)
p ◦ N (amp)

q ,

E
B

[px] = (1 − (1 − p)q)wx (1 + (1 − p)q)n−wx

2n .

(90)

Proof. We will prove the two cases separately. We first
prove Eq. (89). Observe that

(
N (dep)

p

)†
◦
(
N (amp)

q

)†
(|0〉〈0|) =

(
1 − p

2
+ pq

2

)
|0〉〈0|

+
(

q + p
2

− pq
2

)
|1〉〈1| , (91)

(
N (dep)

p

)†
◦
(
N (amp)

q

)†
(|1〉〈1|) =

(p
2

− pq
2

)
|0〉〈0|

+
(

1 − q − p
2

+ pq
2

)
|1〉〈1| , (92)

where for a quantum channel N , N † represents its adjoint
map. Now, construct a new ensemble B′ by removing the
last layer of the noise channel from the circuits in B. Let C
be a quantum circuit in B and let C ′ be the circuit obtained
by removing the last layer of noise, namely,

C = N⊗n ◦ C ′. (93)

By the definition of the adjoint map,

E
B

[px] = E
B

Tr
[|x〉〈x| C (∣∣0n〉〈0n

∣∣)]

= E
B′Tr

[(N †)⊗n
(|x〉〈x|) C ′ (∣∣0n〉〈0n

∣∣)] . (94)

By computing
(N †

)⊗n
(|x〉〈x|) using Eqs. (91) and (92),

we have

(N †)⊗n
(|x〉〈x|) =

∑
y∈{0,1}n

(
n∏

k=1

c(x,y)

k

)
|y〉〈y| , (95)

where c(x,y)

k is defined by

c(x,y)

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − p

2 + pq
2

)
, (xk, yk) = (0, 0),(

q + p
2 − pq

2

)
, (xk, yk) = (0, 1),( p

2 − pq
2

)
, (xk, yk) = (1, 0),(

1 − q − p
2 + pq

2

)
, (xk, yk) = (1, 1).

(96)

On the other hand, we have

E
B′
[C ′ (∣∣0n〉〈0n

∣∣)] = I2n

2n , (97)

by considering the expectation over the last layer of ran-
dom unitaries. Therefore, by combining these equations,

E
B

[px] =
∑

y∈{0,1}n

(
n∏

k=1

c(x,y)

k

)
Tr
[
|y〉〈y| I2n

2n

]

= 1
2n

∑
y∈{0,1}n

(
n∏

k=1

c(x,y)

k

)
. (98)

We can compute Eq. (98) as

E
B

[px] = 1
2n

∑
y∈{0,1}n

(
n∏

k=1

c(x,y)

k

)
(99)

= 1
2n

n−wx∑
l=0

(
n − wx

l

)(
1 − p

2
+ pq

2

)l

×
(

q + p
2

− pq
2

)(n−wx)−l wx∑
l′=0

(
wx

l′

)(p
2

− pq
2

)l′

×
(

1 − q − p
2

+ pq
2

)wx−l′
(100)

= 1
2n

(
1 − p

2
+ pq

2
+ q + p

2
− pq

2

)n−wx

×
(p

2
− pq

2
+ 1 − q − p

2
+ pq

2

)wx
(101)

= (1 + q)n−wx (1 − q)wx

2n , (102)

where to obtain Eq. (100), we have divided the cases
based on the Hamming weight of string x. Then, Eq. (101)
follows from the binomial theorem.
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Next, we show Eq. (90). In this case, we have

(
N (amp)

q

)†
◦
(
N (dep)

p

)†
(|0〉〈0|) =

(
1 − p

2

)
|0〉〈0|

+
(

q(1 − p) + p
2

)
|1〉〈1| , (103)

(
N (amp)

q

)†
◦
(
N (dep)

p

)†
(|1〉〈1|) =

(p
2

)
|0〉〈0|

+
(

1 − q(1 − p) − p
2

)
|1〉〈1| . (104)

With the same argument from case 1, we have

E
B

[px] = (1 + q(1 − p))n−wx (1 − q(1 − p))wx

2n . (105)

�

From Theorem 2, it is evident that the expected out-
put probabilities of strings with higher Hamming weights
are exponentially suppressed with respect to the Hamming
weight.

B. A discussion on marginal probabilities

Our calculations to prove lack of anticoncentration, with
respect to Definition 12, in the low-depth regime require
an argument based on light cones. As we will soon see,
this necessitates that we compute marginal probabilities,
where the order of the marginal is determined by the size of
the light cone. The following corollary is immediate from
Theorem 2.

Corollary 1. Let B be an ensemble of noisy random
quantum circuits with noise channel N . For a binary string
x ∈ {0, 1}n, consider a substring y of x with length |y| and
Hamming weight wy . Let py be the corresponding marginal
probability. Then, the following hold:

(1) If N = N (amp)
q ◦ N (dep)

p ,

E
B

[py] = (1 − q)wy (1 + q)|y|−wy

2|y| . (106)

(2) If N = N (dep)
p ◦ N (amp)

q ,

E
B

[py] = (1 − (1 − p)q)wy (1 + (1 − p)q)|y|−wy

2|y| .

(107)

Proof. We only show the proof for |y| = n − 1. The
other cases also follow similarly. Without loss of gener-
ality, we may assume y = x1x2 · · · xn−1, where xi denotes
the ith bit of x; i.e., y is the substring obtained by dis-
carding the last bit of x. Consider the case in which N =
N (amp)

q ◦ N (dep)
p . The other case holds similarly.

Since the marginal probability px1x2···xn−1 is the sum of
px1x2···xn−10 and px1x2···xn−11, we have

E
B
[
py
] = E

B
[
px1x2···xn−1

]
(108)

= E
B
[
px1x2···xn−10 + px1x2···xn−11

]
(109)

= E
B
[
px1x2···xn−10

]+ E
B
[
px1x2···xn−11

]
. (110)

Now, from Theorem 2,

E
B
[
px1x2···xn−10

] = (1 + q)n−wy (1 − q)wy

2n , (111)

E
B
[
px1x2···xn−11

] = (1 + q)n−(wy+1)(1 − q)wy+1

2n . (112)

Therefore,

E
B
[
py
] = (1 + q)n−wy (1 − q)wy

2n

+ (1 + q)n−(wy+1)(1 − q)wy+1

2n (113)

= (1 + q)(n−1)−wy (1 − q)wy

2n ((1 + q) + (1 − q))

(114)

= (1 + q)(n−1)−wy (1 − q)wy

2n−1 (115)

= (1 + q)|y|−wy (1 − q)wy

2|y| , (116)

where the last equality follows because |y| = |x1x2 · · ·
xn−1| = n − 1. �

VIII. LACK OF ANTICONCENTRATION WITH
TYPICAL PROBABILITIES: LOW DEPTH

In this section, we prove that for a sublogarithmic depth
noisy random-circuit ensemble, the probability weight on
strings with Hamming weight at least n/2 is negligible
in most circuits of the ensemble. This means that these
circuits exhibit a lack of anticoncentration, as defined in
Definition 12. Our analysis is fine grained, in the spirit of
Definition 14.

We observe that by introducing random variables Xi,
corresponding to the ith bit of n-bit string x, for any
n-symbol permutation σ , we may write

px = Pr[Xσ(1) = xσ(1)]Pr[Xσ(2) = xσ(2)|Xσ(1) = xσ(1)]

× · · · × Pr[Xσ(n) = xσ(n)|Xσ(1) = xσ(1), Xσ(2)

= xσ(2), . . . , Xσ(n−1) = xσ(n−1)]. (117)
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Hence, we have

− log px = − 1
n!

∑
σ∈Sn

n∑
i=1

log Pr
(

Xσ(i) = xσ(i)|Xσ(1) = xσ(1), . . . , Xσ(i−1) = xσ(i−1)

)
, (118)

where Sn is the permutation group on n qubits. For a set of
non-negative integers Ji, such that i /∈ Ji, define

〈Zi〉Ji = 2Pr
(
Xi = xi|{Xj = xj }j ∈Ji

)− 1. (119)

If there is no conditional dependence, then we drop the
subscript Ji. Finally, let

Aσ = −
n∑

i=1

〈Zσ(i)〉σ(1,2,...,i−1). (120)

Using a light-cone-type argument, the following lemma
follows in a similar way to Ref. [6].

Lemma 1 ([6], Eq. (58)). For a quantum circuit C, and
for any x ∈ {0, 1}n, let px be the probability of obtaining x
in the output. Then,

− log px ≥ n log 2 + 1
n!

∑
σ∈Sn

Aσ + 1
4 × 4d

n∑
i=1

〈Zi〉2. (121)

Now, we prove our main theorem, showing that when
the depth of the noisy random circuit with the mixture of
the amplitude-damping channel and the depolarizing chan-
nel is o(log n), the circuit is never 2n−1 anticoncentrated.

Theorem 3. Let B be an ensemble of noisy random
quantum circuits of depth d, with noise channel N =
N (amp)

q ◦ N (dep)
p or N = N (dep)

p ◦ N (amp)
q . Let x ∈ {0, 1}n

and wx be the Hamming weight of x. Then, there exists a
constant t for every x with wx ≥ n/2, and α ∈ (0, 1], such
that,

lim
n→∞Pr

B

[
px <

α

2n

]
= 1, (122)

when d < t log n.

Proof. From Appendix G, we have

E
B
[
Pr
(
Xi = xi|{Xj = xj }j ∈Ji

)] = 1
2

[〈xi|N (I2) |xi〉] .

(123)

Here, 〈xi|N (I2) |xi〉 can be evaluated as follows:

(1) If N = N (amp)
q ◦ N (dep)

p ,

〈xi|N (I2) |xi〉 =
{

1 + q (xi = 0),
1 − q (xi = 1). (124)

(2) If N = N (dep)
p ◦ N (amp)

q ,

〈xi|N (I2) |xi〉 =
{

1 + (1 − p)q (xi = 0),
1 − (1 − p)q (xi = 1). (125)

Let us write

〈xi|N (I2) |xi〉 =
{

1 + r, (xi = 0),
1 − r, (xi = 1), (126)

with 0 ≤ r ≤ 1, so that we can cover both cases. The
expectation value of Aσ over B is computed as

E
B

[Aσ ] =
n∑

i=1

(1 − [〈xi|N (I2) |xi〉])

= (n − wx) (1 − (1 + r)) + wx (1 − (1 − r))

= 2wxr − nr. (127)

Additionally, from Appendix H,

E
Bd

[〈Zi〉2] ≥ be−ad (128)

for some positive constants a and b, for any i ∈ [n].
Moreover, letting

X = − log px, (129)

from Ref. [6], it follows that

Var
B

(X ) ≤ 2n. (130)

From Lemma 1 and Eq. (127),

E
B

[X ] ≥ n log 2 + (2wxr − nr) + b
4

ne−cd (131)

for c = log 4 + a. By Chebyshev’s inequality,

Pr[|X − E
B

[X ]| ≥ k] ≤
Var
B

(X )

k2 . (132)
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Taking, say, k = n0.01
√

Var
B

(X ), we have

Pr[|X − E
B

[X ]| ≤ O(n0.51)] ≥ 1 − 1
n0.0001 . (133)

Hence,

lim
n→∞ Pr[−X ≤ −E

B
[X ] + O(n0.51)] = 1. (134)

Putting back the values, from Eqs. (129) and (131),

lim
n→∞Pr

B

[
px ≤ 2−n exp

(
−2wxr + nr

−b
4

ne−cd + O(n0.51)

)]
= 1. (135)

Now, if

2r
(

wx − n
2

)
+ b

4
ne−cd = ω(n0.51), (136)

then

exp
(

−2wxr + nr − b
4

ne−cd + O(n0.51)

)
= O(1), (137)

and we have Eq. (122). For wx ≥ n/2, when we pick d <

0.49/c log n, Eq. (136) is satisfied and thus the theorem
follows. �

IX. LACK OF ANTICONCENTRATION WITH
TYPICAL PROBABILITIES: HIGH DEPTH

We need a different technique to analyze sufficiently
deep circuits and show that they satisfy Definition 10. This
is because the light-cone-type arguments, in Lemma 1,
break down when the light-cone sizes become too large
for sufficiently deep circuits. Because of this, the technique
that we use is to bound the second moment of the output
probabilities and then use Chebyshev’s inequality to show
concentration around the mean for our desired probabili-
ties. Just as in Sec. VIII, our results are fine grained, in the
spirit of Definition 14. In the following theorem, we upper
bound the second moment of an n-qubit depth-d noisy cir-
cuit. In the proof, we obtain the upper bound by repeatedly
replacing a two-qubit Haar random unitary gate with two
single-qubit Haar random unitary gates. We give the proof
in Appendix I, using a statistical model.

Theorem 4. Consider an ensemble B of depth-d noisy
random quantum circuits characterized by a noisy chan-
nel N = N (amp)

q ◦ N (dep)
p or N (dep)

p ◦ N (amp)
q . Suppose that

noise parameters (p , q) satisfies (p , q) 
= (0, 0); i.e., we

will not consider the noiseless case. Then, for x ∈ {0, 1}n

with the Hamming weight wx ≥ n
2 ,

E
B

[p2
x ] ≤ μnηn exp

[
n

ν

μ
e−c(d−1)

]
, (138)

where

μ := 1
4

+ r2

12c
(≥0), (139)

ν := 1
12

− r2

12c
(≥0), (140)

η = 1 − r2 (≥0), (141)

with

c := 1 − (1 − p)2(1 − q)
(

1 − q
3

)
(142)

r :=
{

q, N = N (amp)
q ◦ N (dep)

p ,
q(1 − p), N = N (dep)

p ◦ N (amp)
q .

(143)

Remark 5. In the statement, since (p , q) 
= (0, 0), c is
always larger than 0 by definition. Thus, μ and ν are
always well defined.

With the bound provided in Theorem 4, we can now
show the lack of anticoncentration in the high-depth
regime, which is formally stated below.

Theorem 5. Let B be an ensemble of noisy random
quantum circuits of depth d. Let the noise channel be
N and let d = �(log n). Then, the following statements
hold:

(1) When N = N (amp)
q ◦ N (dep)

p , then, for every x ∈
{0, 1}n with wx ≥ n/2 and α ∈ (0, 1],

lim
n→∞Pr

B

[
px <

α

2n

]
= 1, (144)

as long as

q2 + 2
(q − 3)(q − 1)

> (1 − p)2. (145)

(2) When N = N (dep)
p ◦ N (amp)

q , then, for every x with
wx ≥ n/2 and α ∈ (0, 1],

lim
n→∞Pr

B

[
px <

α

2n

]
= 1, (146)

as long as

q >
3
4

− 1
2(1 − p)2 . (147)
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Proof. From Theorem 2, we can write

E
B

[px] = (1 − r)wx (1 + r)n−wx

2n . (148)

If wx ≥ n/2,

E
B

[px] = (1 − r)wx(1 + r)n−wx

2n ≤ (1 − r2)
n
2

2n . (149)

Hence, for any β ∈ (0, 1), there exists α ∈ (0, 1) and suffi-
ciently large n such that

E
B

[px] + α

2n <
β

2n , (150)

unless r = 0. Now, recalling Chebyshev’s inequality, we
have

Pr[|X − E[X ]| < k] ≥ 1 − Var(X )

k2 ≥ 1 − E[X 2] (151)

for k > 0. With a choice of α and n satisfying Eq. (150),
letting k = α/2n in Eq. (151), we have

Pr
B

[
px <

α

2n + E
B
(px)

]
≥ 1 −

4n
E
B

[p2
x ]

α2 . (152)

By Eq. (152) and Theorem 4,

Pr
B

[
px <

β

2n

]
≥ 1 − (4μη)n

α2 exp
[

n
ν

μ
e−c(d−1)

]
. (153)

Since c > 0, when

d ≥ log n
c

, (154)

we have

exp
[

n
ν

μ
e−c(d−1)

]
= exp

[
ν

μ
O(1)

]
= O(1). (155)

Therefore, for such depth d, if

0 ≤ 4μη < 1, (156)

Eq. (144) is satisfied, because

Pr
B

[
px <

β

2n

]
≥ 1 − (4μη)n

α2 O(1)
n→∞−−−→ 1. (157)

Thus, to satisfy Eq. (144), we have to make sure that r 
= 0
and 0 ≤ 4μη < 1.

We first consider the case N = N (amp)
q ◦ N (dep)

p . Since
r 
= 0, we must have q 
= 0. By definition, we have

4μη = (1 − q2)
q2 + 3 − (1 − p)2(3 − q)(1 − q)

3 − (1 − p)2(3 − q)(1 − q)
. (158)

Obviously, 0 ≤ 4μη. Thus, given parameters 0 ≤ p , q ≤ 1,
we only have to check if

(1 − q2)
q2 + 3 − (1 − p)2(3 − q)(1 − q)

3 − (1 − p)2(3 − q)(1 − q)
< 1. (159)

This is equivalent to

0 <
[
1 − (1 − p)2] q2 + 4(1 − p)2q + (2 − 3(1 − p)2).

(160)

If this condition is satisfied, we satisfy Eq. (146). Simpli-
fying this, we obtain Eq. (145).

Next, we consider N = N (dep)
p ◦ N (amp)

q . Since r 
= 0, it
must follow that p 
= 1 and q 
= 0. We have

4μη = (1 − q2(1 − p)2)
q2(1 − p)2 + 3 − (1 − p)2(3 − q)(1 − q)

3 − (1 − p)2(3 − q)(1 − q)
. (161)

By definition, 0 ≤ 4μη. Thus, given parameters 0 ≤ p , q ≤ 1, we only have to check if

(1 − q2(1 − p)2)
q2(1 − p)2 + 3 − (1 − p)2(3 − q)(1 − q)

3 − (1 − p)2(3 − q)(1 − q)
< 1. (162)

Indeed, we can solve this inequality with respect to q as

q >
3
4

− 1
2(1 − p)2 . (163)

If this condition is satisfied, we have Eq. (146). �

Remark 6. Note that the restrictions on p and q, as
given by Eqs. (145) and (147), are limitations of the proof
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technique and do not necessarily mean that the output dis-
tribution behaves any differently for values of p and q that
do not satisfy these constraints.

Remark 7. Our results in Secs. VIII and IX mean that
provided that the constraints in Secs. VIII and IX are satis-
fied, our setup is never 2n−1 anticoncentrated, according to
Definition 14.

X. GENERALIZING TO ARBITRARY NOISE
CHANNELS

In this section, we consider a general case, where the
noise map N is characterized using parameters tij with 0 ≤
i ≤ 3 and 1 ≤ j ≤ 3 as

I2 → I2 + t01σx + t02σy + t03σz, (164)

σx → t11σx + t12σy + t13σz, (165)

σy → t21σx + t22σy + t23σz, (166)

σz → t31σx + t32σy + t33σz. (167)

Since a set {I2, σx, σy , σz} forms a basis for the space of
single-qubit operators, an arbitrary single-qubit quantum
channel can be expressed in this form. Note that, con-
versely, a map expressed in this form is not necessarily a
quantum channel.

A. Lack of anticoncentration using collision
probability

We show an extension of Theorem 1 and prove that the
ensemble B fails to anticoncentrate.

Theorem 6. Let B be an ensemble of noisy random
quantum circuits with the general noise channel N . Then,

Z ≥ (1 + t203)
n − 1. (168)

Proof. For simplicity, let us first consider just the
single-qubit case as in Theorem 1. Let

ρ = N
(

U1(ρ̃)U†
1

)
(169)

and let

ρ ′ = U1(ρ̃)U†
1, (170)

where ρ̃ is the state just before the last block. For a single
qubit, by the definition of the adjoint map,

Z = E
U1

[Tr(σz ⊗ σzρ ⊗ ρ)] (171)

= E
U1

[
Tr(σz ⊗ σz N (ρ ′) ⊗ N (ρ ′))

]
(172)

= E
U1

[
Tr(N †(σz) ⊗ N †(σz) ρ ′ ⊗ ρ ′)

]
(173)

= t203 E
U1

[
Tr(I2 ⊗ I2ρ

′ ⊗ ρ ′)
]+ t213 E

U1

[
Tr(σx ⊗ σxρ

′ ⊗ ρ ′)
]

(174)

+ t223 E
U1

[
Tr(σy ⊗ σyρ

′ ⊗ ρ ′)
]+ t233 E

U1

× [Tr(σz ⊗ σzρ
′ ⊗ ρ ′)

]
(175)

+
∑
i
=j

ti3tj 3 E
U1

[
Tr(σi ⊗ σj ρ

′ ⊗ ρ ′)
]

. (176)

By using Eq. (59),

E
U1

[
Tr(σi ⊗ σj ρ

′ ⊗ ρ ′)
] = 0 (177)

for all i 
= j . In addition, for p = x, y, z,

E
U1

[
Tr(σp ⊗ σpρ

′ ⊗ ρ ′)
] = E

U1

[
Tr(σpρ

′)2] ≥ 0. (178)

Therefore,

Z ≥ t203 E
U1

[
Tr(I2 ⊗ I2ρ

′ ⊗ ρ ′)
] = t203. (179)

With this observation, by a similar discussion as in
Theorem 1, we analyze the general n-qubit case:

Z = E
B

⎡
⎣ ∑

p∈{0,3}n,p 
=0n

Tr(σp ⊗ σp C(|0〉〈0|) ⊗ C(|0〉〈0|))
⎤
⎦

(180)

≥
∑

p∈{0,3}n,p 
=0n

t2wp
03 (181)

= (1 + t203)
n − 1, (182)

which completes the proof. �

Theorem 6 implies that for any noise channel such that
t03 is a nonzero constant, the ensemble B fails to anticon-
centrate. By a similar argument to Theorem 6, one can
show that for any noise channel such that t01 is a nonzero
constant, the ensemble B fails to anticoncentrate when
the collision probabilities are defined with respect to the
Hadamard basis.

Note that for any unital channel, t01 = t02 = t03 = 0, so,
by plugging into Eq. (182), Z ≥ 0 gives a vacuous bound.

B. Lack of anticoncentration using typical
probabilities

We can use similar arguments to what we have done in
Secs. VIII and IX to argue about the nature of the distri-
bution. Just as there, here too the distribution has a lot of
strings with very low probability weight. First, define the
following quantities:
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a = t201 + t202 + t203

3
, (183)

b = 1
2

− t201 + t202 + t203 + t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233

6
, (184)

c = a + 2b = 1 − t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233

3
, (185)

μ = −t201 − t202 − t203 + t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233 − 3
4(t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233 − 3)

, (186)

ν = 3(t201 + t202 + t203) + t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233 − 3
12(t211 + t212 + t213 + t221 + t222 + t223 + t231 + t232 + t233 − 3)

, (187)

η =
√√√√max

{
(1 + t03)

2 ,
t213

2
+ t223

2
+ t233

2
+ (1 + t03)

2

2

}
. (188)

1. Lack of anticoncentration at low depth

We have an analogue of Theorem 3, which shows a lack
of anticoncentration for low-depth circuits.

Theorem 7. Let B be an ensemble of noisy random
quantum circuits of depth d, with general noise channel
N . Let x ∈ {0, 1}n and let wx be the Hamming weight of x.
Suppose further that

〈|0〉〈0| ,N d(|0〉〈0|)〉 = κ + τλd, (189)

with some κ > 1
2 , τ > 0, and λ ≥ 0. Then, if t03 > 0, there

exists a constant t for every x with wx ≥ n/2, and α ∈ (0, 1]
such that

lim
n→∞Pr

B

[
px <

α

2n

]
= 1, (190)

when d < t log n.

In general, if we write

N n(|0〉〈0|) = 1
2
(
I2 + xnσx + ynσy + znσz

)
, (191)

xn, yn, and zn are defined recursively as

xn+1 = t01 + t11xn + t21yn + t31zn, (192)

yn+1 = t02 + t12xn + t22yn + t32zn, (193)

zn+1 = t03 + t13xn + t23yn + t33zn, (194)

for n ≥ 0 with

x0 = 0, (195)

y0 = 0, (196)

z0 = 1. (197)

Thus, given noise N with parameters {tij : i = 0, 1, 2, 3;
j = 1, 2, 3}, we may check if the conditions κ > 1

2 , τ > 0,
and λ ≥ 0 are satisfied by explicitly solving the recurrence
relation introduced above.

2. Lack of anticoncentration at high depth

Theorem 8. Let B be an ensemble of noisy random
quantum circuits of depth d, where each single-qubit noisy
channel N is modeled as an arbitrary CPTP map with
parameters {tij }. Let d = �(log n). Then, for any α ∈
(0, 1],

lim
n→∞Pr

B

[
px <

α

2n

]
= 1, (198)

as long as wx ≥ n/2 and

μ ≥ 0, (199)

ν ≥ 0, (200)

0 < c ≤ 1, (201)

0 ≤ 4μη < 1. (202)

Proof. Recalling that

S = 1
2
(
I2 ⊗ I2 + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz

)
, (203)

we have

M̃ U1,N(I4) = (1 − a)I4 + 2aS, (204)

M̃ U1,N(S) = bI + (1 − 2b)S, (205)
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where the operators are as defined in Sec. IX. With a
discussion similar to that in Sec. IX, we have

E
B

[p2
x ] ≤ μnηn exp

[
n

ν

μ
e−c(d−1)

]
(206)

if μ, ν ≥ 0 and 0 < c ≤ 1. Then, following the argument
in Sec. IX, with the constraints being

μ ≥ 0, (207)

ν ≥ 0, (208)

0 < c ≤ 1, (209)

0 ≤ 4μη < 1, (210)

we obtain Eq. (198). �

Remark 8. Just as in Remark 7, our calculations in Sec.
X indicate that the setup in Sec. X is not 2n−1 anticoncen-
trated, provided that the constraints in Theorems 7 and 8
are satisfied.

XI. EFFECT OF THE LAST LAYER OF NOISE

Note that noises such as the amplitude-damping
noise—our emblematic nonunital noise—try to push the
output distribution toward a fixed state. However, a layer
of random gates tries to “scramble” the distribution. In this
sense, there are two opposite effects at play. This might
lead one to conjecture that the behavior of the final dis-
tribution depends on which layer we end with—if ending
with a layer of noiseless random gates causes anticoncen-
tration and if ending with a layer of amplitude-damping
noise causes lack of anticoncentration.

However, we provide strong evidence that this is not the
case and that lack of anticoncentration occurs even if we
terminate with a last layer of noiseless gates. Our results
in this section are not as general as those of the other
sections: they are only meant to justify our intuition. Fur-
thermore, note that terminating with a last layer of gates
is not a realistic assumption, as all known hardware has
measurement noise immediately before the measurement
operators, which can also be modeled as the amplitude-
damping channel (see, e.g., Refs. [10,22]). Because of this,
the circuit model that follows is just a toy model for anal-
ysis. What we will show is that if we “fix” a last layer
of noiseless single-qubit gates, then for all choices of this
layer, apart from a set of choices with measure zero, we
obtain provable lack of anticoncentration, according to
Definition 10.

In the following, we repeatedly use the characterization
of a single-qubit gate U as

U(θ , φ) =
(

cos θeiφ sin θ

− sin θ cos θe−iφ

)
. (211)

FIG. 2. The last layer of fixed single-qubit gates. In the circuit
diagram, N is a noise channel and U1, U2, . . . , Un are single-
qubit gates.

Let Ui(θi, φi) be the unitary applied to the ith qubit in the
last layer.

We will consider a fixed last layer of single-qubit gates,
as shown in Fig. 2, and show that for almost all choices
of this layer, the output distribution exhibits a lack of
anticoncentration.

Corollary 2. Let B be an ensemble of amplitude-
damped random quantum circuits, with noise strength q.
Additionally, before measurement, for every i ∈ [n], let
Ui(θi, φi)—a single-qubit noiseless gate—be applied to
qubit i. Then,

Z ≥ (1 + q2 cos2 2θ)n − 1, (212)

where

θ := arg min
θj :j ∈[n]

| cos 2θj |. (213)

Proof. Note that by the action of UiN (·)U†
i , the single-

qubit identity operator I2 will evolve as

I2 → I2 − q cos φ sin 2θiσx + q sin φ sin 2θiσy

+ q cos 2θiσz. (214)

Therefore, this last layer can be regarded as a noise map
with t03 = q cos 2θi, from which the statement follows
directly using Theorem 6. �

From Corollary 2, it holds that for any value of θ ,
apart from those where cos 2θ = 0, the output distribution
exhibits a lack of anticoncentration. The set of points for
which this happens is a set of measure zero.

Note that we can also characterize the nature of the out-
put distribution, for certain parameter regimes, and argue
about lack of anticoncentration with respect to Definition
12, as shown in Appendix J 1. In fact, as we discuss later
in Appendix J 2, which strings have low probability weight
and which ones have higher probability weight is now
determined not by the Hamming weight of the strings but
by which gates have been applied in the last layer.
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Qualitatively, we believe that if a layer of amplitude-
damping noise is followed by a sufficiently shallow geo-
metrically local random circuit, then the overall circuit still
exhibits lack of anticoncentration. This is because ampli-
tude damping “unscrambles” the output distribution and
a shallow-depth geometrically local random circuit is not
enough to counterbalance that and “scramble” it again,
because shallow-depth random circuits themselves show
lack of anticoncentration [6].

XII. OPEN PROBLEMS

Our paper motivates a number of open problems regard-
ing the behavior of random circuits under nonunital noise.

A. Existence of efficient classical sampler

The most pertinent open question is whether the output
distribution of random quantum circuits, with the nonuni-
tal noise models that we have studied, is classically hard
to sample from. To answer this question, one potential
approach is to figure out whether anticoncentration is
a necessary feature in the classical sampling procedure
devised in Refs. [19,45,46] or whether it just comes up as a
proof artifact during analysis of the sampler and a different
technique of analysis can potentially extend the authors’
results to regimes for which there is no anticoncentration.
If proof of classical hardness of sampling can be found,
it might help in harnessing our results to design quan-
tum advantage demonstrations with ensembles that have
nonunital noise, which will complement existing quantum
advantage demonstrations where the focus is on depolar-
izing noise [22]. To the best of our knowledge, no trivial
sampling algorithm, e.g., one that samples from the fixed
point of the noise channel, works for our nonunital noise
models. While circuits with the depolarizing noise chan-
nel after every gate are at least inverse quasipolynomially
close, in trace distance, to the maximally mixed state—the
fixed point of the depolarizing channel—at sufficiently
large depths, noise models such as amplitude damping are
not known to show such behavior. Certain standard tech-
niques to show this closeness [2,33,47] do not hold for
the amplitude-damping channel. Note that if the nonunital
noise present is only in the last layer and the rest of the cir-
cuit only has depolarizing noise, then techniques from Ref.
[19] apply to classically sample from this circuit in poly-
nomial time. One just stores an efficient truncated Fourier
basis representation of the state, until the last layer of noise
is encountered, and then just brute-force simulates the last
layer of noise. But this trick does not work when every
gate is followed by a noise channel that has a nonunital
component.

Additionally, even though we obtain lack of anticoncen-
tration, our results are different from those in Ref. [6] in
the sense that the lack of anticoncentration, for our case, is
not “catastrophic enough” to ensure easiness of computing

output probabilities to additive precision 2−n. It remains
open whether that is a classically hard task.

Moreover, is there any dependence on classical simu-
lation complexity and the rate of the noise? Is there a
“percolation threshold”? That is, if the amplitude-damping
noise strength is above a sufficiently high enough constant,
do we obtain any phase transition in classical simulation
complexity?

B. “Local” anticoncentration

Even though the global distribution does not show
anticoncentration, could it still be “locally” anticoncen-
trated—i.e., could there be collections of bit strings such
that the distribution looks flat “locally” when we consider
the probability mass of only those bit strings? Depend-
ing on how much locally anticoncentrated the distribution
is, one could either design new hardness conjectures or
modify the existing classical samplers to work in this
regime.

C. Nonunital noise at the low-noise regime

In Ref. [43], it has een observed that certain types of
unital noise can be approximated by a global depolar-
izing noise in the low-noise regime: this is also known
as the “white-noise approximation.” However, it remains
open whether this is also the case for nonunital noise; e.g.,
amplitude-damping noise. While techniques from Ref.
[43] indicate that this might be true for circuits that only
have a last layer of amplitude-damping noise, it remains
open whether the authors’ techniques could be generalized
to circuits with the middle layer of amplitude-damping
noise.

Rigorously proving the observation of Ref. [30]—which
shows that linear cross entropy tracks fidelity in this
regime—also remains open.

D. Strengthening our results

For our circuits, with respect to restricted parameter
regimes, we have shown what certain strings of the output
distribution look like, in Secs. IX and X and Appendix J 1.
We believe that the fact that we have to restrict our param-
eter regimes is just an artifact of the proof technique. It
remains open whether we could extend our results to a
wider set of parameters.

Furthermore, our results in Secs. VI and VIII are agnos-
tic to the choice of architecture, as long as the circuits
are parallel and geometrically local. However, our calcu-
lations in Sec. IX make use of statistical models, which are
known to work for 1D geometrically local circuits, but the
techniques do not generalize to 2D architectures. An open
question is whether architecture agnostic techniques help
us in proving the bound in Sec. IX.
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E. Finding a good benchmark for sampling

It is known that in the high-noise regime, the linear
cross-entropy score can be classically spoofed for ran-
dom circuits with the amplitude-damping noise [30]. This
leaves open the question of finding a good benchmark
that is not classically spoofable and that can be used to
certify the results of a sampling experiment. It is also
open whether the techniques of Ref. [30] extend beyond
amplitude-damping noise to other noise models.
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APPENDIX A: NOTE ON THE EASINESS OF
SAMPLING RESULTS

In this appendix, we will sketch the easiness results of
Ref. [19] and why anticoncentration is believed to be an
important criterion for the current analysis techniques to
go through. This is just a sketch, so we will not be too
formal with the definitions and proofs.

Without loss of generality, let C be a unitary quantum
circuit. By px(C), for x ∈ {0, 1}n, let us denote the probabil-
ity of obtaining string x in the output distribution of C|0n〉.
Using techniques from Ref. [19], we can rewrite px(C) in
terms of Pauli paths as

px(C) =
∑

s

f (C, x, s), (A1)

where f (C, x, s) are as defined in Ref. [19]—they are path
weights for each Pauli path—and s is the number of

nonidentity Pauli terms for each Pauli path. Similarly, let

p̃x(C) =
∑

s

f̃ (C̃, x, s) (A2)

be the output probability, written as Pauli paths, for the
noisy version of C, denoted by C̃. Now, to sample from the
output distribution of C̃|0n〉, we consider a new distribution
˜̃q, given by

˜̃qx(C̃) =
∑

s,|s|≤l

f̃ (C̃, x, s), (A3)

where l is some threshold that we choose. Consider an
ensemble B of such noisy circuits. Now, let us calculate
the total variation distance between p̃ and ˜̃q:

E
B
[|p̃ − ˜̃q|21

] ≤ 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

(
p̃x(C) − ˜̃qx(C̃)

)2
⎤
⎦ (A4)

≤ 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

∑
s,|s|>l

f̃ (C̃, x, s)2

⎤
⎦ , (A5)

where the first line follows from the Cauchy-Schwarz
inequality and the second line follows from definitions.
Note that for any choice of the cutoff l,

2n
E
B

⎡
⎣ ∑

x∈{0,1}n

∑
s,|s|>l

f̃ (C̃, x, s)2

⎤
⎦ (A6)

≤ 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

∑
s

f̃ (C̃, x, s)2

⎤
⎦ (A7)

≤ 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

p̃2
x

⎤
⎦ , (A8)

where the last line follows from the orthogonality of Pauli
paths in a random circuit.

1. Special case of the depolarizing channel

For the special case of the depolarizing channel,

f̃ (C̃, x, s) = (1 − q)|s|f (C, x, s). (A9)

So, for a choice of cutoff l, using steps similar to Eqs. (A7)
and (A8), Eq. (A6) can be upper bounded with the quantity
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(1 − q)2l2n
∑

x∈{0,1}n

p2
x . (A10)

It is known that for sufficiently deep circuits [20], the
scaled noiseless collision probability,

2n
E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦ , (A11)

is O(1). So, by appropriately choosing l, one can make the
total variation distance an inverse polynomial or less.

As another direction, one could also have directly upper
bounded the noisy collision probability

2n
∑

x∈{0,1}n

p̃2
x (A12)

for the depolarizing channel. Indeed, this is done in Ref.
[6]. However, in Ref. [6], the bound is O(1) and not as
tight as the analysis in Appendix A 1. This is necessary
for inverse-polynomial closeness in total variation distance
but is not sufficient. So, we still need the techniques from
Appendix A 1 to prove our bound.

Remark 9. The expression in Eq. (A9) is only true for
the special case of the depolarizing channel and not true in
general. So, this analysis, where it suffices to look at the
convergence of the noiseless collision probability because
that can, essentially, be “factored out” of the actual expres-
sion and dealt with separately, does not work in general. In
such a general case, directly bounding the noisy collision
probability is the best that we can hope for, which may not
always give us tight bounds.

2. Lack of anticoncentration implies failure of proof
technique

When the noisy ensemble B is anticoncentrated, with
respect to Definition 9, then this means that

2n
E
B

⎡
⎣ ∑

x∈{0,1}n

p̃2
x

⎤
⎦ = O(1), (A13)

which implies

E
B
[|p̃ − ˜̃q|21

] ≤ 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

∑
s,|s|>l

f̃ (C̃, x, s)2

⎤
⎦ ≤ 2n

E
B

×
⎡
⎣ ∑

x∈{0,1}n

p̃2
x

⎤
⎦ = O(1). (A14)

This alone does not guarantee that the classical sam-
pler, from Appendix A, samples from a distribution that

is inverse-polynomially close, in total variation distance,
to the actual distribution. However, the satisfaction of
Definition 9 is a necessary condition for present proof tech-
niques to go through, in the following sense: if an ensemble
were to exhibit lack of anticoncentration, according to
Definition 10, then the quantity

2n
E
B

⎡
⎣ ∑

x∈{0,1}n

p̃2
x

⎤
⎦ (A15)

would diverge with n, and the chain of inequalities in Eq.
(A14) would not hold, no matter where we chose the cutoff
l. This does not mean that there could not be better analysis
techniques that do not need anticoncentration: however, to
the best of our knowledge, no such technique is known.

APPENDIX B: EFFECT OF TWIRLING

In this appendix, we explain how twirling can be used to
estimate the first moment of certain expressions related to
random quantum circuits.

1. Preliminaries

Let N be an arbitrary single-qubit noise channel. For a
density matrix ρ and a single-qubit Haar-random gate U,
consider the following identity [48]:

�(ρ) = E
U

[
U† N (UρU†)U

]

= (1 − λ)ρ + λ

2
I2, (B1)

for an appropriate choice of a constant λ. Note that the
expression on the left-hand side is the expression of a depo-
larizing channel with noise strength λ. This operation, of
averaging out an arbitrary error channel to convert it into a
depolarizing channel, is known in literature as “twirling,”
and finds use in randomized benchmarking, randomized
compiling, error mitigation, etc. [48,49].

Twirling is a useful tool to gain insight into the first
moments of quantities of interest for random quantum
circuits. However, it is not useful to analyze second or
higher-order moments. Thus, it is not a valid tool with
which to analyze collision probabilities.

We will show this with four examples. A brief com-
ment about notation: all gates shown in the figures below
are Haar-random gates, either single-qubit ones or two-
qubit ones depending on the context, and all noise channels
shown are arbitrary single-qubit CPTP maps.

2. Computing the first moment with a last layer of
noiseless gates

Consider a noisy random quantum circuit ensemble B
and let N be the noise after every gate, as shown in Fig. 3.
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FIG. 3. A portion of the circuit drawn from the ensemble B.
U1 and U2 are two-qubit Haar-random gates and N1 and N2 are
arbitrary noise channels.

Since the Haar measure is left and right invariant with
respect to composition by a unitary, one could rewrite
the entire circuit, without loss of generality, by doing the
following before and after every noise channel.

Let ρ(1) be the marginal density matrix of the first qubit
of Fig. 4 immediately before applying U3 and let ρ

(1)

f be

the same immediately after applying U†
3. As is evident,

ρ
(1)

f = E
U3

[
U†

3 N1(U3ρ
(1)U†

3) U3
]
, (B2)

which, from Eq. (B1), is a depolarizing channel. Every
noise channel in the circuit can be equivalently modeled
as a depolarizing channel in this way and calculating the
first moment of the equivalent circuit suffices to calculate
the first moment of the original circuit.

3. Computing the first moment with a last layer of
noisy gates

If the circuit terminates with a last layer of noise, before
the measurement layer, as illustrated in Fig. 5, then there is
no way to twirl the last layer of noise, using the technique
in Sec. B 2. Hence, these circuits cannot be twirled.

4. Computing the expected linear cross-entropy score

The linear cross entropy is given by the following
quantity:

XEB = E
B

⎡
⎣ ∑

x∈{0,1}n

pideal(x)pnoisy(x)

⎤
⎦

= 2n
E
B
[
pideal(0n)pnoisy(0n)

]
, (B3)

where pideal(x) is the probability of seeing bit string x in
the output distribution of a circuit drawn from B with all

FIG. 4. An equivalent expression of the circuit shown in
Fig. 3. In the circuit diagram, U1 and U2 are two-qubit Haar-
random gates, U3 and U4 are single-qubit Haar-random gates,
and N1 and N2 are arbitrary noise channels.

FIG. 5. If the circuit terminates with a last layer of noiseless
gates, then there is no way to “sandwich” the last layer of noise
between a Haar-random single-qubit unitary and its adjoint. So,
twirling does not work.

the noise channels removed and pnoisy(x) is the probability
of seeing bit string x in the noisy output distribution. We
have assumed that there is no last layer of noise. Note that
Eq. (B3) can be written as

XEB = 2n
E
B

[
Tr
(|0n〉〈0n| ⊗ |0n〉〈0n|ρ ⊗ ρ̃

) ]
, (B4)

where ρ is the density matrix corresponding to the final
state of the circuit with all the noise channels removed and
ρ̃ is the density matrix corresponding to the circuit with
noise. Twirling can be used to estimate this quantity, as is
shown in Fig. 6.

5. Computing the second moment

For a noisy ensemble B, let the task be to compute

E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦ = 2n

E
B
[
p2

0n
]

, (B5)

where we have assumed that there is no last layer of noise.
Note that Eq. (B5) can be written as

2n
E
B
[
p2

0n
] = 2n

E
B

[
Tr
(|0n〉〈0n| ⊗ |0n〉〈0n| ρ̃ ⊗ ρ̃

) ]
, (B6)

where ρ̃ is the density matrix corresponding to the final
state of the noisy circuit. Here, we cannot hope to “twirl”

(a) (b)

FIG. 6. (a) A portion of the circuit that prepares ρ̃ and a por-
tion of the circuit that prepares ρ. (b) Note that UU∗ = I, where
I is the single-qubit identity operator and U is any unitary opera-
tor. This means that there is no dependence of U3 and U4 on the
“noiseless copy” of the circuit. Because of that, the quantity that
we are evaluating can be simplified with Eq. (B1), just as we did
for first-moment quantities previously.
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FIG. 7. Two copies of a portion of the circuit that prepares ρ̃.

the noise because both copies of the state are noisy, as
illustrated in Fig. 7. So, checking whether the distribu-
tion anticoncentrates or not cannot be done by twirling.
In Fig. 7, if we were to twirl N1 in a similar way as in
Sec. B 4, we would need to evaluate

E
U

[
U† ⊗ U† N⊗2

1 (U ⊗ Uρ ⊗ ρU† ⊗ U†)U ⊗ U
]
, (B7)

where U is a single-qubit Haar-random unitary, which no
longer simplifies to the depolarizing channel.

APPENDIX C: ANTICONCENTRATION AND
CLOSENESS TO THE UNIFORM DISTRIBUTION

In this appendix, we show the relation between anticon-
centration, according to Definition 9, and closeness to the
uniform distribution. Let B be an ensemble of noisy ran-
dom quantum circuits and let C be a random circuit from
B. Let

ρ = C(
∣∣0n〉〈0n

∣∣). (C1)

For x ∈ {0, 1}n, let

E
B

[px] = E
B

[Tr(|x〉〈x|ρ)] . (C2)

Note that

E
B

⎡
⎣ ∑

x∈{0,1}n

∣∣∣∣px − 1
2n

∣∣∣∣
2
⎤
⎦ = E

B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦− 2

1
2n + 1

2n

(C3)

= E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦− 1

2n . (C4)

Hence, if

E
B

⎡
⎣ ∑

x∈{0,1}n

∣∣∣∣px − 1
2n

∣∣∣∣
2
⎤
⎦ = O(2−n), (C5)

then

E
B

⎡
⎣ ∑

x∈{0,1}n

p2
x

⎤
⎦ = O(2−n), (C6)

which means that Definition 9 is satisfied—and vice versa.
Now, let us analyze when Eq. (C5) is satisfied. Let �n

be the n-qubit completely dephasing channel with respect
to the computational basis; i.e., for any n-qubit state σ ,

�n(σ ) :=
∑

x∈{0,1}n

〈x| σ |x〉 |x〉〈x| . (C7)

Now, assume that the following equation holds:

E
B

∥∥∥∥ρ − I2n

2n

∥∥∥∥
2

1
= O(2−n). (C8)

Then, from monotonicity of trace distance, we obtain that

E
B

∥∥∥∥�n(ρ) − I2n

2n

∥∥∥∥
2

1
= O(2−n). (C9)

We have used the fact that �n(I2n) = I2n . Then, since the
2-norm is smaller than the trace norm, from Eq. (C9) we
obtain

E
B

∥∥∥∥�n(ρ) − I2n

2n

∥∥∥∥
2

2
= O(2−n), (C10)

leading to Eq. (C5).

APPENDIX D: EASINESS OF COMPUTING
EXPECTATION VALUES

In this appendix, we will, very broadly, sketch the argu-
ment of Ref. [36] about computing the expectation value
of certain observables, for random quantum circuits with
depolarizing noise. The ideas are extremely similar to that
of Appendix A but the argument does not require anti-
concentration. To start with, note that for the depolarizing
channel,

f̃ (C̃, x, s) = (1 − q)|s|f (C, x, s), (D1)

where f is a Pauli path of the noiseless circuit C, f̃ is
a Pauli path of the noisy circuit C̃, x ∈ {0, 1}n, and s ∈
{0, 1}2n is the number of nonidentity Pauli terms in the
path. In Ref. [36], it is shown how the expectation value
of any observable can be written as

∑
s

f̃ (C̃, x, s). (D2)

Now, using Eq. (D1), any path such that s = ω(log n)

is at least inverse-superpolynomially suppressed and
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only polynomially many paths—those for which s =
O(log n)—have at least 1/poly(n) weight. Then, just by
classically estimating those paths, which can be done in
classical polynomial time, we obtain an estimate of the
expectation value that is approximately 1/poly(n) close to
the original expectation value. Here, we emphasize that
this technique does not need anticoncentration. Note that
Eq. (D1) is a special property of the depolarizing channel:
it is not evident whether the strategy described works for
other noise channels.

APPENDIX E: DERIVATION OF EXPRESSION OF
COLLISION PROBABILITY USING PAULI

OPERATORS

In this appendix, we show the expression given in Eq.
(39):

Z = E
B

⎡
⎣ ∑

p∈{0,3}n,p 
=0n

Tr(σp C(|0〉〈0|))2

⎤
⎦ , (E1)

where Z is the collision probability, defined as

Z = 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

Tr(|x〉〈x| C(|0〉〈0|))2

⎤
⎦− 1. (E2)

First, we rewrite |x〉〈x| using Pauli operators. Let us
write |x〉〈x| = |x1〉〈x1| ⊗ |x2〉〈x2| ⊗ · · · ⊗ |xn〉〈xn|, where

xi ∈ 0, 1 for i = 1, 2, . . . , n. Since

|0〉〈0| = I2 + σz

2
, (E3)

|1〉〈1| = I2 − σz

2
, (E4)

we can write

|xi〉 〈xi| = 1
2

∑
pi∈{0,3}

(−1)b
(xi)
pi σpi , (E5)

where b(xi)
i is a binary digit defined by

b(xi)
i :=

{
0, xi = 0 or pi = 0,
1, x1 = 1 and pi = 3.

(E6)

Hence,

|x〉〈x| =
n⊗

i=1

⎛
⎝1

2

∑
pi∈{0,3}

(−1)b
(xi)
pi σpi

⎞
⎠

= 1
2n

∑
p∈{0,3}n

(−1)b(x)
p σp , (E7)

where

b(x)
p :=

n∑
i=1

b(xi)
pi

. (E8)

Next, using this relation, we have

Z = 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

Tr(|x〉〈x| C(|0〉〈0|))2

⎤
⎦− 1 (E9)

= 2n
E
B

⎡
⎣ ∑

x∈{0,1}n

Tr((|x〉〈x| ⊗ |x〉〈x|)(C(|0〉〈0|) ⊗ C(|0〉〈0|)))
⎤
⎦− 1 (E10)

= 1
2n E

B

⎡
⎣ ∑

x∈{0,1}n

∑
p ,p ′∈{0,3}n

(−1)
b(x)

p +b(x)
p ′ Tr((σp ⊗ σp ′) (C(|0〉〈0|) ⊗ C(|0〉〈0|)))

⎤
⎦− 1 (E11)

= 1
2n E

B

⎡
⎣ ∑

p ,p ′∈{0,3}n

⎛
⎝ ∑

x∈{0,1}n

(−1)
b(x)

p +b(x)
p ′

⎞
⎠Tr((σp ⊗ σp ′)(C(|0〉〈0|) ⊗ C(|0〉〈0|)))

⎤
⎦− 1. (E12)

Now, we evaluate the term
∑

x∈{0,1}n(−1)
b(x)

p +b(x)
p ′ . By the definition given in Eq. (E8), we have

∑
x∈{0,1}n

(−1)
b(x)

p +b(x)
p ′ =

n∏
i=1

⎛
⎝ ∑

xi∈{0,1}
(−1)

b
(xi)
pi +b

(xi)
p ′

i

⎞
⎠ . (E13)
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Due to the definition given in Eq. (E6),

∑
xi∈{0,1}

(−1)
b
(xi)
pi +b

(xi)
p ′

i =
{

2, pi = p ′
i ,

0, pi 
= p ′
i ,

(E14)

and thus we obtain

∑
x∈{0,1}n

(−1)
b(x)

p +b(x)
p ′ =

{
2n, p = p ′,
0, p 
= p ′.

(E15)

Therefore,

Z = E
B

⎡
⎣ ∑

p∈{0,3}n

Tr((σp ⊗ σp) (C(|0〉〈0|) ⊗ C(|0〉〈0|)))
⎤
⎦− 1 = E

B

⎡
⎣ ∑

p∈{0,3}n

Tr(σp C(|0〉〈0|))2

⎤
⎦− 1. (E16)

Since

Tr(I⊗n
2 C(|0〉〈0|)) = 1, (E17)

we finally have

Z = E
B

⎡
⎣ ∑

p∈{0,3}n,p 
=0n

Tr(σp C(|0〉〈0|))2

⎤
⎦ (E18)

as desired.

APPENDIX F: DISCUSSION ON THE EFFECT OF
NOISE IN NOISY RANDOM CIRCUITS

In this appendix, we show that for any given noise N ,
we may express the action of M̃ U1,N on I4 and S as

M̃ U1,N(I4) = (1 − a)I4 + 2aS, (F1)

M̃ U1,N(S) = bI + (1 − 2b)S, (F2)

using some a and b. The action of MU1 can be given as (see
Example 7.25 of Ref. [50])

MU1(X ) = 〈X , 
sym〉
3


sym + 〈X , 
antisym〉
antisym, (F3)

where


sym := I4 + S
2

, (F4)


antisym := I4 − S
2

(F5)

are the projection operators onto the symmetric and anti-
symmetric subspaces, respectively. Suppose that X is
given as

X =
∑

i,j ,k,l=0,1

xijkl |ij 〉〈kl| . (F6)

A simple calculation leads to

〈X , 
sym〉 = x0000 + x1111 + x0101 + x1010 + x0110 + x1001

2
, (F7)

〈X , 
antisym〉 = x0101 + x1010 − x0110 − x1001

2
. (F8)

Thus,

MU1(X ) =
(

x0000

6
+ x1111

6
+ x0101 + x1010

3
− x0110 + x1001

6

)
I4

+
(

x0000

6
+ x1111

6
− x0101 + x1010

6
+ x0110 + x1001

3

)
S. (F9)
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When

X = N ◦ MU1 [I4] = N [I4] , (F10)

since Tr[X ] = x0000 + x0101 + x1010 + x1111 = Tr[I4] = 4, by setting

a = x0000

12
+ x1111

12
− x0101 + x1010

12
+ x0110 + x1001

6
, (F11)

we have

M̃ U1,N [I4] = (1 − a)I4 + 2aS. (F12)

Similarly, when

X = N ◦ MU1 [S] = N [S] , (F13)

since Tr[X ] = x0000 + x0101 + x1010 + x1111 = Tr[S] = 2, by setting

b = x0000

6
+ x1111

6
+ x0101 + x1010

3
− x0110 + x1001

6
, (F14)

we have

M̃ U1,N [S] = bI + (1 − 2b)S. (F15)

We see the cases of N = N (amp)
q ◦ N (dep)

p and N = N (dep)
p ◦ N (amp)

q as illustrative examples. When N = N (amp)
q ◦ N (dep)

p ,
we have

N[I4] =

⎛
⎜⎜⎝

(1 + q)2 0 0 0
0 1 − q2 0 0
0 0 1 − q2 0
0 0 0 (1 − q)2

⎞
⎟⎟⎠ , (F16)

N[S] =

⎛
⎜⎜⎝

(1 − q)2
(

p2
2 − p + 1

)
+ 2q 0 0 0

0 1−q2−(1−q)2(1−p)2
2 (1 − q)(1 − p)2 0

0 (1 − q)(1 − p)2 1−q2−(1−q)2(1−p)2
2 0

0 0 0 (1 − q)2
(

p2
2 − p + 1

)

⎞
⎟⎟⎠ . (F17)

Therefore, we have

a = q2

3
, b = 1

2
− q2

6
− 1

6
(1 − p)2(1 − q)(3 − q). (F18)

Similarly, when N = N (dep)
p ◦ N (amp)

q ,

N[I4] =

⎛
⎜⎜⎝

(1 + (1 − p)q)2 0 0 0
0 1 − (1 − p)2q2 0 0
0 0 1 − (1 − p)2q2 0
0 0 0 (1 − (1 − p)q)2

⎞
⎟⎟⎠ , (F19)

N[S] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q2(1 − p)2 + 1 + p2

2− p(1 + (1 − p)q)
0 0 0

0 q(1 − q)(1 − p)2 − p2

2 + p (1 − q)(1 − p)2 0
0 (1 − q)(1 − p)2 q(1 − q)(1 − p)2 − p2

2 + p 0

0 0 0 (q(1 − p) − 1)2 + p2

2− p(1 + (1 − p)q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(F20)
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Therefore,

a = q2(1 − p)2

3
, b = 1

2
− q2(1 − p)2

6
− 1

6
(1 − p)2(1 − q)(3 − q). (F21)

APPENDIX G: DISCUSSION ON CONDITIONAL PROBABILITIES

In this appendix, we will evaluate the first moment of conditional probability.

Lemma 2. Let B be an ensemble of noisy random quantum circuits with noise channel N . Let i ∈ {1, 2, . . . , n} and let
Ji be a subset of {1, 2, . . . , n} that does not contain i. Then,

E
B
[
Pr
(
Xi = xi|{Xj = xj }j ∈Ji

)] = 1
2

[〈xi|N (I2) |xi〉] . (G1)

Proof. We only give proof for

E
B
[
Pr
(
Xi = xi|{Xj = xj }j ∈{1,2,...,i−1}

)] = 1
2

[〈xi|N (I2) |xi〉] . (G2)

The other cases follow similarly.
Let C be the given quantum circuit. We may assume that C can be written in the following form:

C = N⊗n ◦
(

n⊗
i=1

Ui

)
◦ C̃, (G3)

where N is the noise channel, Ui is a single-qubit Haar-random unitary channel, and C̃ is the circuit without the last layer
of noise.

Then, the expectation over B is decomposed as

E
B

= E
U1,...,Un∼Haar

E
B′, (G4)

where Haar represents the set of single-qubit Haar unitaries and B′ is the set of noisy random quantum circuits without
the last layer of noise. Then,

Pr
(
Xi = xi|{Xj = xj }j ∈{1,2,...,i−1}

)
(G5)

= Pr
(
X1 = x1, . . . , Xi = xi

)
Pr
(
X1 = x1, . . . , Xi−1 = xi−1

)) (G6)

=
〈x1 · · · xi−1xi|N⊗i ◦

(⊗i
j =1 Uj

) (
ρ

(i)
C̃

)
|x1 · · · xi−1xi〉

∑
y∈{0,1} 〈x1 · · · xi−1y|N⊗i ◦

(⊗i
j =1 Uj

) (
ρ

(i)
C̃

)
|x1 · · · xi−1y〉

, (G7)

where

ρ
(i)
C̃ = Tri+1···n

⎡
⎣(I⊗i ⊗ N⊗(n−i)) ◦

⎛
⎝I⊗i ⊗

n⊗
j =i+1

Uj

⎞
⎠ ◦ C̃ (∣∣0n〉〈0n

∣∣)
⎤
⎦ . (G8)

Now, let us write

(N⊗(i−1) ⊗ I) ◦
⎛
⎝ i−1⊗

j =1

Uj ⊗ I
⎞
⎠(ρ(i)

C̃

)
=

∑
y1···yi−1,z1···zi−1∈{0,1}i−1

η
(y1···yi−1)

(z1···zi−1) |y1 · · · yi−1〉 〈z1 · · · zi−1| ⊗ σ
(y1···yi−1)

(z1···zi−1) , (G9)
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where the η
(y1···yi−1)

(z1···zi−1) are appropriately defined coefficients so that σ
(y1···yi−1)

(z1···zi−1) will be density operators when y1 · · · yi−1 =
z1 · · · zi−1. Then, we may write

Pr
(
Xi = xi|{Xj = xj }j ∈{1,2,...,i−1}

)
(G10)

=
η

(x1···xi−1)

(x1···xi−1) 〈xi| (N ◦ Ui)
(
σ

(x1···xi−1)

(x1···xi−1)

)
|xi〉

η
(x1···xi−1)

(x1···xi−1)

(
〈0| (N ◦ Ui)

(
σ

(x1···xi−1)

(x1···xi−1)

)
|0〉 + 〈1| (N ◦ Ui)

(
σ

(x1···xi−1)

(x1···xi−1)

)
|1〉
) (G11)

=
η

(x1···xi−1)

(x1···xi−1) 〈xi| (N ◦ Ui)
(
σ

(x1···xi−1)

(x1···xi−1)

)
|xi〉

η
(x1···xi−1)

(x1···xi−1)Tr
[
(N ◦ Ui)

(
σ

(x1···xi−1)

(x1···xi−1)

)] (G12)

=
η

(x1···xi−1)

(x1···xi−1) 〈xi| (N ◦ Ui)
(
σ

(x1···xi−1)

(x1···xi−1)

)
|xi〉

η
(x1···xi−1)

(x1···xi−1)

(G13)

= 〈xi| (N ◦ Ui)
(
σ

(x1···xi−1)

(x1···xi−1)

)
|xi〉 . (G14)

Here, we have used the fact that σ
(x1···xi−1)

(x1···xi−1) is a single-qubit density operator. Therefore,

E
B
[
Pr
(
Xi = xi|{Xj = xj }j ∈{1,2,...,i−1}

)]
(G15)

= E
U1,...,Un∼Haar

E
B′
[
Pr
(
Xi = xi|{Xj = xj }j ∈{1,2,...,i−1}

)]
(G16)

= E
U1,...,Un∼Haar

E
B′

[
〈xi| (N ◦ Ui)

(
σ

(x1···xi−1)

(x1···xi−1)

)
|xi〉
]

(G17)

= E
U1,...,Ui−1∼Haar

E
Ui+1,...,Un

∼Haar

E
B′

[
〈xi| E

Ui∼Haar

[
(N ◦ Ui)

(
σ

(x1···xi−1)

(x1···xi−1)

)]
|xi〉
]

(G18)

= E
U1,...,Ui−1∼Haar

E
Ui+1,...,Un

∼Haar

E
B′

[
〈xi|N

(
I2

2

)
|xi〉
]

(G19)

= 1
2

[〈xi|N (I2) |xi〉] , (G20)

which we aimed to show. �

APPENDIX H: COMPUTATION OF THE SECOND MOMENT OF A SPECIAL OBSERVABLE FOR NOISY
RANDOM QUANTUM CIRCUITS

In this appendix, we give a lower bound on the second moment of the single-qubit Pauli-z operator and describe
applications of the lower bound to our setup.

Lemma 3. Consider the single-qubit channel N applied d times to |0〉〈0|. Denote the resultant channel by N d :=
N ◦ N ◦ · · · ◦ N︸ ︷︷ ︸

d times

. Suppose that

〈|0〉〈0| ,N d(|0〉〈0|)〉 = κ + τλd, (H1)

with some κ ≥ 1
2 , τ , λ ≥ 0. Then,

E
B
[〈Zi〉2] ≥ 4

(
κ − 1

2 + τλd
)2

30d , (H2)
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where B is an ensemble of noisy random quantum cir-
cuits of depth d, in which the noise is modeled by N , and
〈Zi〉 := 2pi − 1, with pi being the marginal probability of
obtaining outcome i for a single qubit.

Proof. The proof of this lemma proceeds similarly to
Theorem 1 of Ref. [6]. Indeed, in Theorem 1 of Ref. [6], a
special case of this lemma is shown with κ = 1

2 , τ = 1
2 , and

λ = (1 − p), where p is the strength of the depolarizing
channel. �

We may apply the above lemma to the noise models that
we consider:

(1) When N = N (amp)
q ◦ N (dep)

p , a simple calculation
leads to

κ = q + p
2 (1 − q)

1 − (1 − p)(1 − q)
(H3)

τ = 1 − q + p
2 (1 − q)

1 − (1 − p)(1 − q)
(H4)

λ = (1 − p)(1 − q). (H5)

It is obvious that λ ≥ 0. To show κ ≥ 1
2 and τ ≥ 0,

we show that

1
2

≤ q + p
2 (1 − q)

1 − (1 − p)(1 − q)
≤ 1. (H6)

The left inequality can be shown as

q + p
2 (1 − q)

1 − (1 − p)(1 − q)
= q + p

2 (1 − q)

q + p(1 − q)
(H7)

≥
q
2 + p

2 (1 − q)

q + p(1 − q)
(H8)

= 1
2

. (H9)

Similarly, the right inequality can be shown as

q + p
2 (1 − q)

1 − (1 − p)(1 − q)
= q + p

2 (1 − q)

q + p(1 − q)
(H10)

≤ q + p(1 − q)

q + p(1 − q)
(H11)

= 1. (H12)

(2) When N = N (dep)
p ◦ N (amp)

q , we have

κ =
p
2 + (1 − p)q

1 − (1 − p)(1 − q)
(H13)

τ = 1 −
p
2 + (1 − p)q

1 − (1 − p)(1 − q)
(H14)

λ = (1 − p)(1 − q). (H15)

With a similar argument, we have

1
2

≤
p
2 + (1 − p)q

1 − (1 − p)(1 − q)
≤ 1, (H16)

so κ ≥ 1
2 and τ , λ ≥ 0.

This lemma implies that if a given noise channel N
satisfies

κ − 1
2

+ τλd > 0, (H17)

then there exist positive numbers a, b > 0 such that

E
B
[〈Zi〉2] ≥ be−ad. (H18)

APPENDIX I: SECOND MOMENT OF OUTPUT
PROBABILITIES

In this appendix, we provide proof of Theorem 4, which
gives an upper bound on the second moment of a noisy
random-circuit ensemble. In Appendix I 1, we show tech-
nical lemmas analyzing the effect of randomized noise,
which are used in the proof. In Appendix I 2, we show our
technique to evaluate the second moment by considering a
slightly simplified circuit. In Appendix I 3, we finally give
a full proof of Theorem 4.

1. Technical lemmas characterizing the effect of noise

In this section, we show intermediate lemmas used in
the proof of Theorem 4. First, we characterize the effect of
noise randomized by 2-copy single-qubit random unitaries
on the input state.

Lemma 4. Let N be a single-qubit noise channel and
let N = N ⊗ N be two copies of a single-qubit channel
N . Define a two-qubit operator

M̃ U1,N = MU1 ◦ N ◦ MU1 (I1)

with

MU1[ρ] = E
U1∼UHaar

[
U⊗2

1 ρU†⊗2
1

]
. (I2)
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Suppose that

M̃ U1,N(I4) = (1 − a)I4 + 2aS, (I3)

M̃ U1,N(S) = bI4 + (1 − 2b)S (I4)

with a > 0 and b > 0, where I4 is the two-qubit identity
operator and S is the two-qubit SWAP gate. Then,

MU1 ◦ (N ◦ MU1) ◦ (N ◦ MU1) ◦ · · · ◦ (N ◦ MU1)︸ ︷︷ ︸
m times

[|0〉〈0|⊗2]

= 1
10

(2I + S) +
[ −2a + b

10(a + 2b)

+ (1 − a − 2b)m
(
− 1

30
− −2a + b

10(a + 2b)

)]
(I4 − 2S).

(I5)

Remark 10. As discussed in Appendix F, without loss
of generality, for any noise N , the effect of noise versus I4
and S in the noisy random circuit can be expressed as in
Eqs. (I3) and (I4).

Proof. First, note that by properties of the Haar mea-
sure,

MU1 [ρ] = MU1 ◦ MU1[ρ]. (I6)

Hence,

MU1 ◦ (N ◦ MU1) ◦ (N ◦ MU1) ◦ · · · ◦ (N ◦ MU1))︸ ︷︷ ︸
m times

× [|0〉〈0|⊗2] (I7)

= (MU1 ◦ N ◦ MU1) ◦ · · · ◦ (MU1 ◦ N ◦ MU1)︸ ︷︷ ︸
m times

× [|0〉〈0|⊗2] (I8)

= M̃ U1,N ◦ · · · M̃ U1,N︸ ︷︷ ︸
m times

◦MU1

[|0〉〈0|⊗2] (I9)

= M̃ U1,N ◦ · · · M̃ U1,N︸ ︷︷ ︸
m times

[
1
6
(I4 + S)

]
. (I10)

In the fourth line, we have used the fact that

MU1

[|0〉〈0|⊗2] = 1
6
(I4 + S). (I11)

Note that

1
6
(I4 + S) = 1

10
(2I + S) − 1

30
(I4 − 2S). (I12)

It can be verified that

M̃ U1,N [2I + S] = (2I + S) + (−2a + b) (I4 − 2S) ,
(I13)

M̃ U1,N [I4 − 2S] = (1 − a − 2b) (I4 − 2S) . (I14)

Thus, using Eqs. (I13) and (I14) repeatedly, we have the
following relation:

M̃ U1,N ◦ M̃ U1,N ◦ · · · M̃ U1,N︸ ︷︷ ︸
m times

[
1
6
(I4 + S)

]
(I15)

= 1
10

M̃ U1,N ◦ M̃ U1,N ◦ · · · M̃ U1,N︸ ︷︷ ︸
m times

[(2I + S)] (I16)

− 1
30

M̃ U1,N ◦ M̃ U1,N ◦ · · · M̃ U1,N︸ ︷︷ ︸
m times

[(I4 − 2S)]

= 1
10

(2I + S) + xm(I4 − 2S), (I17)

where {xn}n is defined by the recurrence relation

x0 = − 1
30

, (I18)

xn+1 = (1 − a − 2b)xn + −2a + b
10

(n ≥ 0). (I19)

Solving this relation, we have

xm = −2a + b
10(a + 2b)

+ (1 − a − 2b)m
(
− 1

30
− −2a + b

10(a + 2b)

)
,

(I20)

which leads to Eq. (I5). �

Next, we derive formulas for the effect of noise on the
identity operator and the SWAP operator.

Lemma 5. Let N be a single-qubit noise channel and
let N = N ⊗ N be two copies of N acting on two qubits.
Define a two-qubit operator

M̃ U1,N = MU1 ◦ N ◦ MU1 (I21)

with

MU1 [ρ] = E
U1∼UHaar

[
U⊗2

1 ρU†⊗2
1

]
. (I22)

Suppose that

M̃ U1,N(I4) = (1 − a)I4 + 2aS, (I23)

M̃ U1,N(S) = bI4 + (1 − 2b)S (I24)
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with a > 0 and b > 0, where I4 is the two-qubit identity
operator and S is the two-qubit SWAP gate. Then,

M̃ U1,N ◦ M̃ U1,N ◦ · · · ◦ M̃ U1,N︸ ︷︷ ︸
m times

(I4)

=
(

1 − 1 − (1 − a − 2b)m

1 + 2b
a

)
I4

+
(

1 − (1 − a − 2b)m

1
2 + b

a

)
S, (I25)

M̃ U1,N ◦ M̃ U1,N ◦ · · · ◦ M̃ U1,N︸ ︷︷ ︸
m times

(S)

=
(

1
2

−
1
2 + b

a (1 − a − 2b)m

1 + 2b
a

)
I4

+
(

1
2 + b

a (1 − a − 2b)m

1
2 + b

a

)
S. (I26)

Proof. Let us write

M̃ U1,N ◦ M̃ U1,N ◦ · · · ◦ M̃ U1,N︸ ︷︷ ︸
m times

(I4) = xmI4 + ymS. (I27)

Using Eqs. (I23) and (I24),

xm+1 = (1 − a)xm + bym, (I28)

ym+1 = 2axm + (1 − 2b)ym. (I29)

This is equivalent to

xm+1 + 1
2

ym+1 = xm + 1
2

ym, (I30)

xm+1 − b
a

ym+1 = (1 − a − 2b)

(
xm − b

a
ym

)
. (I31)

Therefore, we have

xm + 1
2

ym = x0 + 1
2

y0 = 1, (I32)

xm − b
a

ym = (1 − a − 2b)m
(

x0 − b
a

y0

)
= (1 − a − 2b)m.

(I33)

Hence,

xm = 1 − 1 − (1 − a − 2b)m

1 + 2b
a

, (I34)

ym = 1 − (1 − a − 2b)m

1
2 + b

a

. (I35)

With a very similar argument, letting us write

M̃ U1,N ◦ M̃ U1,N ◦ · · · ◦ M̃ U1,N︸ ︷︷ ︸
m times

(S) = zmI4 + wmS, (I36)

we have

zm = 1
2

−
1
2 + b

a (1 − a − 2b)m

1 + 2b
a

, (I37)

wm =
1
2 + b

a (1 − a − 2b)m

1
2 + b

a

. (I38)

�

2. Replacement of two-qubit random gate by
single-qubit gates

In the proof of Theorem 4, instead of directly evaluating
the second moment of the original circuit, we consider a
slightly simplified circuit, in which two-qubit random uni-
tary gates are replaced with single-qubit random gates and
the last layer of noise is removed. The circuit obtained by
this replacement is composed solely of single-qubit Haar-
random unitary gates and noise channel N , without the
last layer of noise. We prove that the second moment of
the simplified circuit gives an upper bound of the original
second moment that we desired to evaluate.

Lemma 6. Consider an ensemble B of noisy random
quantum circuits with noise channel N satisfying Eqs. (I3)
and (I4). Let B′ denote the ensemble of circuits obtained
by removing the last layer of noise from the noisy random
circuits in B. Consider another ensemble B̃′ of circuits that
can be obtained by replacing each two-qubit Haar-random
gate U2 in the circuits of B′ as

U2 → (
U1 ⊗ U′

1

)
, (I39)

where U1 and U′
1 are independent single-qubit Haar-

random gates. In this setup, if 0 ≤ 1 − a − 2b ≤ 1, then
EB′[p2

x ] ≤ EB̃′[p2
x ] for any x ∈ {0, 1}n.

Proof. Any circuit C in B′ can be written in the follow-
ing form:

030317-33



BILL FEFFERMAN et al. PRX QUANTUM 5, 030317 (2024)

Let s be the number of two-qubit Haar-random gates in given circuit C ∈ B′. Let us introduce a numbering of the two-
qubit Haar-random gates in C: U(k)

2 refers to the kth two-qubit Haar-random gate, where the counting starts from the top
gate at the last layer. Rewiring the circuit C, we have

(I40)

Construct a sequence of circuits {Cj : j = 0, 1, 2, . . . , s}
in the following recursive way.

(a) C0 = C ∈ B′.
(b) For j = 1, 2, . . . , s, Cj is a circuit obtained by replac-

ing the leading two-qubit Haar-random gate in Cj −1,
i.e., U(j )

2 , by two parallel independent single-qubit
Haar-random gates.

By construction, Cs consists only of single-qubit Haar-
random gates and noise channels and Cs ∈ B̃′. Let x ∈
{0, 1}n be any n-bit string. Here, we aim to show that

E
C0∼B′[p

2
x ] ≤ E

Cs∼B̃′
[p2

x ] (I41)

and, to this end, it suffices to show that

E
Cj

[p2
x ] ≤ E

Cj +1
[p2

x ] (I42)

for all j = 0, 1, 2, . . . , s − 1. For this purpose, fix j and let
us look at Cj and Cj +1. We will show that

E
Cj

[p2
x ] ≤ E

Cj +1
[p2

x ] (I43)

for this j . Suppose that U(j )
2 acts on the kth and lth qubits.

Recall the characterization shown in Eq. (I40).
Then, by absorbing the action of the single-qubit Haar-

random gates and noise channels acting on qubits other

than the kth or lth one to the preceding gates, we may write

(I44)

and

(I45)

where

Ũ (m)
U1,N := (U1 ◦ N ◦ U1) ◦ · · · ◦ (U1 ◦ N ◦ U1)︸ ︷︷ ︸

m times

, (I46)

with some non-negative integer m. Here, we consider a sta-
tistical model with {I4, S}n bit-string representation, which
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has been introduced in Ref. [20]. Suppose that we have
γ ∈ {I4, S}n just before the red dashed line. Suppose that γ

will change as

γ
Cj :After red line−−−−−−−−→

∑
γ ′∈{I4,S}n

c(γ ′)
j γ ′ (I47)

γ
Cj +1:After red line−−−−−−−−−→

∑
γ ′∈{I4,S}n

c(γ ′)
j +1γ

′. (I48)

Define

a(γ )

j :=
∑

γ ′∈{I4,S}n

c(γ ′)
j (I49)

a(γ )

j +1 :=
∑

γ ′∈{I4,S}n

c(γ ′)
j +1. (I50)

It suffices to show that

a(γ )

j ≤ a(γ )

j +1 (I51)

for all γ . Observe that after the red line, the gates only act
on the kth and the lth qubits. So, let us focus on these two
qubits:

(1) If γk,l = II , SS, since

II
U(j +1)

2−−−→ II , (I52)

II
U1⊗U1−−−−→ II (I53)

and

SS
U(j +1)

2−−−→ SS, (I54)

SS
U1⊗U1−−−−→ SS, (I55)

we have

a(γ )

j = a(γ )

j +1 (I56)

in this case.
(2) If γk,l = IS, SI , without loss of generality, we may

assume that γk,l = IS. The proof for γk,l = SI fol-
lows similarly. We have

IS
U(j +1)

2−−−→ 2
5

(II + SS) , (I57)

IS
U1⊗U1−−−−→ IS. (I58)

By Lemma 5,

IS
Cj :after red line−−−−−−−−→ 2

5
((xmI4 + ymS)(xmI4 + ymS)

+(zmI4 + wmS)(zmI4 + wmS)) , (I59)

IS
Cj +1:after red line−−−−−−−−−→ (xmI4 + ymS)(zmI4 + wmS),

(I60)

where

xm = 1 − 1 − (1 − a − 2b)m

1 + 2b
a

, (I61)

ym = 1 − (1 − a − 2b)m

1
2 + b

a

, (I62)

zm = 1
2

−
1
2 + b

a (1 − a − 2b)m

1 + 2b
a

, (I63)

wm =
1
2 + b

a (1 − a − 2b)m

1
2 + b

a

. (I64)

Therefore,

a(γ )

j = 2
5
(
u2

m + v2
m

)
, (I65)

a(γ )

j +1 = umvm, (I66)

where

um = xm + ym = 1 + 1 − (1 − a − 2b)m

1 + 2b
a

, (I67)

vm = zm + wm = 1
2

+
1
2 + b

a (1 − a − 2b)m

1 + 2b
a

. (I68)

Now,

a(γ )

j ≤ a(γ )

j +1

⇔ 2
5
(
u2

m + v2
m

) ≤ umvm

⇔ 0 ≤ (2vm − um)(2um − vm).

(I69)

Here, if 0 ≤ 1 − a − 2b,

2vm − um =
( b

a + 2
)
(1 − a − 2b)m

1 + 2b
a

≥ 0, (I70)
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and if 0 ≤ 1 − a − 2b ≤ 1,

2um − vm =
(

2 + 2 − 2(1 − a − 2b)m

1 + 2b
a

)
−
(

1
2

+
1
2 + b

a (1 − a − 2b)m

1 + 2b
a

)
≥ 2 − 1 = 1 ≥ 0. (I71)

Hence, if 0 ≤ 1 − a − 2b ≤ 1, a(γ )

j ≤ a(γ )

j +1, which completes the proof.

�

3. Main proof

Now, we finally give our proof of Theorem 4. In the noise models that we consider, we have

a =
{q2

3
, N = N (amp)

q ◦ N (dep)
p ,

q2(1 − p)2

3
, N = N (dep)

p ◦ N (amp)
q ,

(I72)

b =
{1

2
− q2

6
− 1

6
(1 − p)2(1 − q)(3 − q), N = N (amp)

q ◦ N (dep)
p ,

1
2

− q2(1 − p)2

6
− 1

6
(1 − p)2(1 − q)(3 − q), N = N (dep)

p ◦ N (amp)
q .

(I73)

We can easily verify that

1 − a − 2b = (1 − p)2 (1 − q)
(

1 − q
3

)
(I74)

in both cases. Hence, 0 ≤ 1 − a − 2b ≤ 1. Now, we rewrite the second-moment probability by using the weighted tra-
jectories of the strings in {I4, S}n (see also the proof of Lemma 6 in Ref. [6]). Suppose that the circuits in B′ contain s
Haar-random gates. A trajectory γ := (γ 1γ 2 · · · γ sγ s+1) ∈ {I4, S}n×(s+1) is a sequence of n-bit string γ i ∈ {I4, S}n. For
i = 1, 2, . . . , s, γ i ∈ {I4, S}n represents the n-bit string right before the sth Haar-random gate in the trajectory γ . In partic-
ular, γ 1 is the initial string of the trajectory γ . γ s+1 ∈ {I4, S}n represents the final bit string of the trajectory γ at the end
of the circuit. For each trajectory γ ∈ {I4, S}n×(s+1), we define the weight wtB′(γ ) as

wtB′(γ ) := c1c2c3 · · · cs, (I75)

where for i = 1, 2, . . . , s,

ci :=
{

coefficient of transformation γ i → γ i+1, γ i → γ i+1 is possible,
0, γ i → γ i+1 is impossible. (I76)

Thus, the second-moment probability with respect to B′ can be expressed as

EB′[p2
x ] =

∑
γ1,γ2,...,γn∈{I4,S}

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∑
γ∈{I4,S}n×(s+1)

γ s+1=γ1γ2···γn

wtB′(γ )

⎞
⎟⎟⎟⎠ 〈x| 〈x| (γ1γ2 · · · γn) |x〉 |x〉

⎤
⎥⎥⎥⎦ , (I77)

where in the right-hand side, we divide the cases based on the final bit string γ s+1 = γ1γ2 · · · γn. We may further rewrite
as

EB′[p2
x ] =

∑
γ1,γ2,...,γn∈{I4,S}

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∑
γ∈{I4,S}n×(s+1)

γ s+1=γ1γ2···γn

wtB′(γ )

⎞
⎟⎟⎟⎠
⎛
⎝ n∏

j =1

〈
xj
∣∣ 〈xj
∣∣ γj
∣∣xj
〉 ∣∣xj
〉⎞⎠
⎤
⎥⎥⎥⎦ . (I78)
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For γj ∈ {I4, S}, 〈0| 〈0| γi |0〉 |0〉 = 〈1| 〈1| γi |1〉 |1〉 = 1. Therefore,

EB′[p2
x ] =

∑
γ1,γ2,...,γn∈{I4,S}

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∑
γ∈{I4,S}n×(s+1)

γ s+1=γ1γ2···γn

wtB′(γ )

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ . (I79)

On the other hand, the second-moment probability with respect to the original ensemble B can be obtained by considering
the last layer of noise. Thus, in this case, instead of Eq. (I78), we have

EB[p2
x ] =

∑
γ1,γ2,...,γn∈{I4,S}

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

∑
γ∈{I4,S}n×(s+1)

γ s+1=γ1γ2···γn

wtB′(γ )

⎞
⎟⎟⎟⎠
⎛
⎝ n∏

j =1

〈
xj
∣∣ 〈xj
∣∣N(γj )

∣∣xj
〉 ∣∣xj
〉⎞⎠
⎤
⎥⎥⎥⎦ . (I80)

Here, observe that
〈
xj
∣∣ 〈xj
∣∣N(γj )

∣∣xj
〉 ∣∣xj
〉 ≤ max{〈xj

∣∣ 〈xj
∣∣N(I4)

∣∣xj
〉 ∣∣xj
〉
,
〈
xj
∣∣ 〈xj
∣∣N(S)

∣∣xj
〉 ∣∣xj
〉} =: ej (I81)

for each j . Hence,

EB[p2
x ] ≤

⎡
⎢⎢⎢⎣

∑
γ1,γ2,...,γn∈{I4,S}

⎛
⎜⎜⎜⎝

∑
γ∈{I4,S}n×(s+1)

γ s+1=γ1γ2···γn

wtB′(γ )

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ (e1e2 · · · en) . (I82)

Using Eq. (I79),

EB[p2
x ] ≤ EB′[p2

x ] (e1e2 · · · en) . (I83)

By Lemma 6, since EB′[p2
x ] ≤ EB̃′[p2

x ],

EB[p2
x ] ≤ EB̃′[p2

x ] (e1e2 · · · en) . (I84)

Now, by the construction of B̃′ and Lemma 4,

EB̃′[p2
x ] =

(
3

10
−
[ −2a + b

10(a + 2b)
+ (1 − a − 2b)d−1

(
− 1

30
− −2a + b

10(a + 2b)

)])n

. (I85)

Here, we have used the fact that 〈0| 〈0| (2I + S) |0〉 |0〉 = 〈1| 〈1| (2I + S) |1〉 |1〉 = 3 and 〈0| 〈0| (I4 − 2S) |0〉 |0〉 =
〈1| 〈1| (I4 − 2S) |1〉 |1〉 = −1. By definition of a and b, letting

c := 1 − (1 − p)2(1 − q)
(

1 − q
3

)
, (I86)

r :=
{

q, N = N (amp)
q ◦ N (dep)

p ,
q(1 − p), N = N (dep)

p ◦ N (amp)
q ,

(I87)

we have

EB̃′[p2
x ] =

((
1
4

+ r2

12c

)
+ (1 − c)d−1

(
1

12
− r2

12c

))n

. (I88)

By taking
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μ = 1
4

+ r2

12c
, (I89)

ν = 1
12

− r2

12c
, (I90)

we obtain

EB̃′[p2
x ] = (μ + (1 − c)d−1ν

)n
. (I91)

Here, we will check μ, ν ≥ 0. It follows trivially that μ ≥
0 from the definition. Next, we evaluate ν. Since r ≤ q by
definition,

ν = 1
12

− r2

12c
(I92)

≥ 1
12

− q2

12c
(I93)

= c − q2

12c
. (I94)

By substituting Eqs. (I86) and (I87),

c − q2

12c
= 1 − (1 − p)2(1 − q)

(
1 − q

3

)− q2

12c
. (I95)

Since (1 − p)2 ≤ 1,

1 − (1 − p)2(1 − q)
(
1 − q

3

)− q2

12c

≥ 1 − (1 − q)
(
1 − q

3

)− q2

12c
(I96)

=
4q
3 (1 − q)

12c
(I97)

= q(1 − q)

9c
. (I98)

Since q ≥ 0 and 1 − p ≥ 0, we have

ν ≥ 0. (I99)

Since 1 + x ≤ ex for all x ∈ R,

EB̃′[p2
x ] ≤ μn exp

[
n

ν

μ
e−c(d−1)

]
. (I100)

Using Eqs. (I84) and (I100),

EB[p2
x ] ≤ μn exp

[
n

ν

μ
e−c(d−1)

]
(e1e2 · · · en) . (I101)

Now, we evaluate ej :

ej := max
{〈

xj
∣∣ 〈xj
∣∣N(I4)

∣∣xj
〉 ∣∣xj
〉
,
〈
xj
∣∣ 〈xj
∣∣N(S)

∣∣xj
〉 ∣∣xj
〉}

=
{
(1 + r)2, xj = 0,
(1 − r)2, xj = 1. (I102)

That is, if wx ≥ n
2 ,

e1e2 · · · en = (1 + r)2(n−wx)(1 − r)2wx

≤ (1 + r)n(1 − r)n = (1 − r2)n = ηn. (I103)

Combining Eqs. (I101) and (I103),

EB[p2
x ] ≤ μnηn exp

[
n

ν

μ
e−c(d−1)

]
, (I104)

which completes the proof.

APPENDIX J: THE EFFECT OF LAST LAYER OF
NOISELESS GATES

In this appendix, we analyze the effect of a layer of
single-qubit gates that immediately follows the last layer of
noise. This setup is equivalent to arbitrarily locally rotating
the measurement basis. Moreover, we assume that these
gates are noiseless. A single-qubit gate U is parametrized
as

U(θ , φ) =
(

cos(θ)eiφ sin(θ)

− sin(θ) cos(θ)e−iφ

)
. (J1)

Let Ui(θi, φi) be the unitary applied to the ith qubit in the
last layer.

1. Lack of anticoncentration via weak definition

In Corollary 2, we have seen that a noisy random circuit
with the last layer of noiseless gates is not anticoncen-
trated in terms of the collision probability (Definition 10)
under a certain condition. Here, we investigate whether a
noisy random circuit with the last layer of noiseless gates
is anticoncentrated in the sense of Definition 12. We suc-
ceed in giving a condition on the last layer of noiseless
gates under which the given circuit shows the lack of
anticoncentration.

Theorem 9. Let B be an ensemble of amplitude-
damped random quantum circuits, with noise strength q.
Additionally, before measurement, for every i ∈ [n], let
Ui(θi, φi)—a single-qubit noiseless gate—be applied to
qubit i. If

4 −
√

15 < | cos 2θi| (J2)

for all i ∈ [n], then there exists a string x ∈ {0, 1}n such that
for any q > 0 and d = �(log n),

lim
n→∞Pr

B

[
px <

α

2n

]
= 1 (J3)

for any α ∈ (0, 1].
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Proof. Following the same argument as in the proof of
Theorem 4 in Appendix I, for sufficiently large depth and
sufficiently large n, we have

E
B

[p2
x ] ≤

((
1

4 − q

)n

(e1e2 · · · en)

)
× O(1), (J4)

where

ej = max
{〈

xj
∣∣ 〈xj
∣∣ (Uj ⊗ Uj )N(I4)(Uj ⊗ Uj )

†
∣∣xj
〉 ∣∣xj
〉
,〈

xj
∣∣ 〈xj
∣∣ (Uj ⊗ Uj )N(S)(Uj ⊗ Uj )

†
∣∣xj
〉 ∣∣xj
〉}

=
{
(1 + q cos 2θj )

2, xj = 0,
(1 − q cos 2θj )

2, xj = 1 (J5)

for j = 1, 2, . . . , n. Choose x so that

ej = (1 − q| cos 2θj |)2. (J6)

In this case,

E
B

[p2
x ] ≤

(
(1 − q| cos 2θ |)2

4 − q

)n

× O(1), (J7)

where

θ := arg min
θj :j ∈[n]

| cos 2θj |. (J8)

To see the concentration, it suffices to check if

4
(1 − q| cos 2θ |)2

4 − q
< 1, (J9)

which is equivalent to

q
(
4| cos 2θ |2q − (8| cos 2θ | − 1)

)
< 0. (J10)

When q = 0, this inequality cannot be satisfied, so q > 0.
Under this condition, we have

4| cos 2θ |2q − (8| cos 2θ | − 1) < 0. (J11)

When

4 −
√

15 < | cos 2θ |, (J12)

all q > 0 satisfy this condition, which completes the proof.
�

2. Bias in output distribution

In this section, we see how the last layer of single-qubit
noiseless gates introduces bias in the output distribution.

Theorem 10. Let B be an ensemble of amplitude-
damped random quantum circuits, with noise strength q.
Additionally, before measurement, for every i ∈ [n], let
Ui(θi, φi)—a single-qubit, noiseless gate—be applied to
qubit i. Then,

E
B

[pi,b] = 1
2

+ (−1)bq cos 2θi

2
, (J13)

where pi,b is marginal probabilities of obtaining b ∈ {0, 1},
in the ith qubit.

Proof. As per the earlier convention, let N be the
single-qubit noise channel and let K0 and K1 be the cor-
responding Kraus operators. Let C ∈ B be a noisy random
circuit. Let C̃ be the quantum circuit without the last layer;
i.e.,

C = N⊗n ◦ C̃. (J14)

For i ∈ [n], define ρi as follows:

ρi = E
B

[Tr1,...,i−1,i+1,...n(C̃(
∣∣0n〉〈0n

∣∣))], (J15)

where I2 is the single-qubit identity matrix. In other words,
ρi is the expected reduced density matrix on just the ith
qubit. By definition, we have

ρi = I2

2
. (J16)

In the last noiseless layer, since the parameters are implicit,
we will drop the subscripts and refer to the ith single-qubit
gate as just Ui. Then, by the definition of the adjoint map,

E
B

[pi,0] = E
B

[Tr(|0〉〈0| UiN (ρi)U
†
i )] (J17)

= E
B

[Tr(U†
i |0〉〈0| UiN (ρi))] (J18)

= E
B

[Tr(U†
i |0〉〈0| UiN (ρi))] (J19)

= E
B

[Tr(K†
0 U†

i |0〉〈0| UiK0ρi)]

+ E
B

[Tr(K†
1 U†

i |0〉〈0| UiK1ρi)], (J20)

where we have repeatedly used the cyclic property of trace.
In Eq. (J20), we have used the Kraus operators K0 and
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K1 of the amplitude-damping noise channel. Since ρi = I2
2 ,

Eq. (J20) is equal to

1
2

(
Tr(K†

0 U†
i |0〉〈0| UiK0) + Tr(K†

1 U†
i |0〉〈0| UiK1)

)
.

(J21)

By explicitly computing each term, we have

E
B

[pi,0] = 1
2
(
(cos2 θi + (1 − q) sin2 θi) + q cos2 θi

)

= 1 + q(cos2 θi − sin2 θi)

2

= 1
2

+ q cos 2θi

2
. (J22)

�

Let us define the “bias” βi of qubit i as

βi = q cos 2θi. (J23)

Note that βi ∈ [−q, q]. Hence,

E
B

[pi,b] = 1
2

+ βi

2
, E

B
[pi,b] = 1

2
− βi

2
. (J24)

One way to interpret Theorem 10 is to observe that there is
an “effective” amplitude-damping channel acting on each
qubit but each such channel has a “tunable” noise strength,
which can now also be negative.

A negative noise strength means that the outcome 0 is
suppressed and the outcome 1 is assigned higher weight.
However, which strings are suppressed, and by how much,
depends on the “bias” of each qubit. By changing the
single-qubit gates, we can control the bias.
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