
PRX QUANTUM 5, 030314 (2024)

Symmetry Breaking in Geometric Quantum Machine Learning
in the Presence of Noise

Cenk Tüysüz ,1,2,* Su Yeon Chang ,3,4 Maria Demidik ,1,5 Karl Jansen ,1,5 Sofia Vallecorsa,3 and
Michele Grossi 3,†

1
Deutsches Elektronen-Synchrotron DESY, Zeuthen 15738, Germany

2
Institut für Physik, Humboldt-Universität zu Berlin, Berlin 12489, Germany

3
European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland

4
Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

5
Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus

 (Received 5 February 2024; revised 8 May 2024; accepted 20 June 2024; published 23 July 2024)

Geometric quantum machine learning based on equivariant quantum neural networks (EQNNs) recently
appeared as a promising direction in quantum machine learning. Despite encouraging progress, studies are
still limited to theory, and the role of hardware noise in EQNN training has never been explored. This
work studies the behavior of EQNN models in the presence of noise. We show that certain EQNN models
can preserve equivariance under Pauli channels, while this is not possible under the amplitude damping
channel. We claim that the symmetry breaks linearly in the number of layers and noise strength. We
support our claims with numerical data from simulations as well as hardware up to 64 qubits. Furthermore,
we provide strategies to enhance the symmetry protection of EQNN models in the presence of noise.
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I. INTRODUCTION

Variational quantum algorithms (VQAs) appear to be
one of the promising algorithms of the noisy intermediate-
scale quantum (NISQ) era [1] in the literature [2]. Fur-
thermore, recent results showed noise resilience of VQAs,
which further increased hope [3]. However, there exist
many roadblocks to making this promise a reality. Some
problems that are common to most VQAs are barren
plateaus (BPs), i.e., the number of shots needed to esti-
mate the sufficiently precise values of the cost function
grows exponentially [4,5], many local minima [6–8], and
the lack of efficient gradient computation (e.g., parameter
shift rules require circuit executions that scale linearly in
the number of parameters) [9]. While certain issues can be
partially alleviated through a range of methods [10–14],
faithfully running these algorithms on NISQ hardware,
beyond what is classically simulable [e.g., n > 40 qubits
and at least log(n) depth], is still a practical challenge.
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Proposals of geometric quantum machine learning
(GQML) opened new avenues, which in theory bring
VQAs closer to practicality [15]. This has attracted
the attention of the community and many applications
have appeared [16–18]. The GQML framework leverages
inductive biases on problems and uses this to construct
algorithms with improved trainability and generalization
[19]. This requires the circuit to have a certain struc-
ture from the initial state until the final measurements.
However, this is where NISQ hardware fails due to the
presence of coherent and incoherent errors [1,20]. Issues
such as noise-induced BPs [21] and their implications for
statistical learning of VQAs [22] are among the studied
complications. General behavior of VQAs in the presence
of noise has also been a topic of study in the literature
[23,24], including state preparation and time evolution
of quantum systems, in which many physical symmetries
arise [25,26]. However, these results do not directly trans-
late to the setting of GQML. For this reason, we study
the behavior of these algorithms, specifically equivariant
quantum neural networks (EQNNs), under hardware noise
in this work.

In this paper, we study the behavior of EQNN models
in the presence of noise. Our theoretical and numerical
results indicate that, for the models considered, equiv-
ariance can be protected under realistic Pauli channels.
We further show that the symmetry is broken under the
nonunital amplitude damping channel. We characterize
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this with metrics that we introduce and show that symme-
try breaks approximately linearly in the number of layers
and the noise strength. Moreover, we provide strategies
such as choice of representation and adaptive thresholding
to improve performance.

We structure the paper as follows. In Sec. II, we intro-
duce the necessary preliminary definitions from how to
construct EQNNs, to how the hardware noise is modeled.
Then, in Sec. III, we start by constructing a toy model and
use it to show how hardware noise can break the equivari-
ance. After establishing the theoretical intuition, we define
data-driven metrics to quantify the symmetry breaking.
Section IV consists of numerical experiments performed
with classical simulators as well as NISQ hardware. In
Sec. V, we share our point of view on what error mit-
igation means for the results that we establish, and we
conclude by giving suggestions for deploying EQNN mod-
els on hardware and discussing future directions and some
open questions.

II. FRAMEWORK

A. Equivariant quantum neural networks

This paper focuses on the supervised learning task over a
classical data space R, where the data point xi ∈ R is asso-
ciated with a label yi ∈ Y following the hidden distribution
f : R → Y . In the most general framework of quantum
machine learning (QML) manipulating the classical data,
we embed each data point x into a quantum state ρx ∈ M
with a certain quantum feature map � : R → M, where
M is the space of density matrices [27].

The input state is transformed via a quantum map Uθ (ρ),
which is the adjoint action of Uθ on state ρ,

Uθ (ρx) = UθρxU†
θ (1)

with Uθ the quantum neural network (QNN) parameter-
ized by a set of trainable parameters θ . Without losing
generality, we consider the most general setup where the
final prediction of the QNN is the expectation value of an
observable O:

ŷ(x) = f̂θ (ρx) = Tr[Uθ (ρx)O]. (2)

Throughout the training process, the model learns the hid-
den data distribution within the training set, aiming for f̂θ
to closely approximate the target function f . At the end of
the training, we expect that Uθ can also predict the labels
of the unseen test set.

The key idea behind geometric quantum machine learn-
ing (GQML) is to design models that capture meaningful
relations in the dataset by incorporating the architecture
with geometric priors. In the case of geometric supervised
learning, we consider the label symmetry of the dataset
given as the following definition.

Definition 1 (Invariance). Let us consider a symme-
try group S with representation R : S → Aut(R), where
Aut(R) is the automorphism group acting on the classical
data space R. We say that a function h has a label symme-
try if and only if h remains invariant under the action of
the elements in S , i.e.,

h(ρR(g)·x) = h(ρx) for all g ∈ S , (3)

with R(g) the representation of a group element g.

GQML aims to construct a QNN ansatz that guaran-
tees this label symmetry so that the final prediction ŷ(x) is
invariant under the action of any symmetry group element
g ∈ S . Recent papers suggest approaching the GQML with
an S-equivariant quantum model [15,19].

Definition 2 (Equivariant embedding). We call an
embedding� : R → M with�(x) = ρx equivariant with
respect to a symmetry element g if and only if there exists
a unitary representation Rq(g) such that

ρR(g)·x = Rq(g)ρxR†
q(g). (4)

We call Rq(g) the unitary representation of g induced by
embedding� [19]. The group symmetry emerges naturally
in the QNN architecture via the equivariant embedding
and can be captured by the equivariant quantum gates. For
simplicity, let us focus on a set of quantum gates of the
form

UG(θ) = exp(−iθG), G ∈ G, (5)

where G is a Hermitian generator and G is the generator set
of U.

Definition 3 (Equivariant gate). A quantum gate
UG(θ) = exp(−iθG)with θ ∈ R is called equivariant with
respect to S if and only if it commutes with Rq(g) for all
g ∈ S , i.e.,

[UG(θ), Rq(g)] = 0 for all θ ∈ R and all g ∈ S , (6)

or, equivalently,

[G, Rq(g)] = 0 for all g ∈ S . (7)

Different methods have been proposed to construct the
equivariant gateset [28], such as the twirling method,
which is the most common and practical method for a finite
symmetry group.

Similarly, a QNN ansatz is said to be equivariant if
and only if it consists of equivariant quantum gates. By
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combining the equivariant embedding and the equivariant
QNN ansatz with an equivariant observable O, i.e.,

Rq(g)OR†
q(g) = O for all g ∈ S , (8)

we construct an invariant quantum classifier model that
guarantees this label symmetry.

Lemma 1 (Invariance from equivariance). A quantum
learning model that consists of equivariant embedding
layer, an equivariant quantum circuit ansatz and an equiv-
ariant observable with respect to a symmetry group S , is
invariant with respect to S:

ŷ(R(g) · x) = Tr[UθρR(g)·xU†
θO]

= Tr[UθRq(g)ρxR†
q(g)U

†
θO]

= Tr[Rq(g)UθρxU†
θOR†

q(g)]

= Tr[R†
q(g)Rq(g)Uθ (ρx)O]

= Tr[Uθ (ρx)O] = ŷ(x) for all g ∈ S . (9)

The equivariant QNN leads to the trade-off between
the gain of expressibility and the loss of expressibility by
constraining the search space that the model can explore.
In the previous studies, GQML has shown promising
results in various problem setups leveraging the advan-
tage in terms of complexity, trainability, and generalization
[15,18,28–32]. However, all the tests have been under-
taken in the absence of hardware noise and the impact of
noise on the EQNN has never been studied before.

B. Noise models

In this work, we only consider quantum channels act-
ing locally on qubits. Some examples of these channels
are the bit flip (BF) channel, depolarizing (DP) channel,
and amplitude damping (AD) channel. One way to define
the action of a noise channel N on the quantum state ρ
is through the Kraus operators K [33]. Then this can be
written as

N (ρ) =
∑

i

KiρK†
i . (10)

Bit flip channel. The BF channel with probability p can be
described using two Kraus operators K0 = √

1 − pI and
K1 = √

pX . The action of the BF channel on the single-
qubit state simply becomes

N (ρ) = (1 − p)ρ + pX ρX . (11)

This can be extended to multiqubit systems. In the
two-qubit case, the action of the noise channel can be

written as

N (ρ) = (1 − p0)(1 − p1)ρ

+ p0(1 − p1)(X ⊗ I)ρ(X ⊗ I)

+ (1 − p0)p1(I ⊗ X )ρ(I ⊗ X )

+ p0p1(X ⊗ X )ρ(X ⊗ X ), (12)

where p0 and p1 are the probabilities of acting on qubit
0 and qubit 1, respectively. Following this logic, all local
noise channels can be generalized to multiqubit systems.

Depolarizing channel. The Kraus operators of the DP
channel are K0 = √

1 − pI , K1 = √
p/3X , K2 = √

p/3Y,
K3 = √

p/3Z. The single-qubit DP channel shrinks the
Bloch sphere from all directions symmetrically. Hence,
any quantum state moves towards the maximally mixed
state under the action DP channel.

Pauli channel. Both the BF and DP channels are spe-
cial cases of Pauli channels. The Kraus operators of
the Pauli channel are K0 = √

1 − px − py − pzI , K1 =√
px/3X , K2 = √

py/3Y, K3 = √
pz/3Z. One can recover

the BF channel by setting py = pz = 0 and the DP channel
by setting px = py = pz = p .

Amplitude damping channel. The picture changes sig-
nificantly under the AD channel. The Kraus operators of
the AD channel can be written as

K0 =
[

1 0
0

√
1 − γ

]
, K1 =

[
0

√
γ

0 0

]
, (13)

with γ the amplitude damping probability.
The action of single-qubit AD channel shrinks the Bloch

sphere towards the ground state (|0〉), creating an asym-
metry on the Hilbert space along the z direction. Another
common way of describing the noise channels is through
the Pauli transfer matrix (PTM) formalism [34]. This sim-
plifies some computations and is used in this work. We
refer the reader to Appendix A 2 for more details on the
PTM formalism.

With these definitions, we can now describe the action
of noise on the quantum circuit. Let us consider a quantum
system with initial state ρ0 and at every layer the circuit
acts with unitary Ui, such that ρi = Ui(ρi−1) = Uiρi−1U†

i .
Then, the quantum state, after layer d, becomes

ρd = N ◦ Ud ◦ · · · ◦ N ◦ U2 ◦ N ◦ U1(ρ0). (14)

This can be visualized as the circuit picture in Fig. 1,
where � is the local action of the noise channel N . On
the real hardware, the action of� is different for all qubits,
but, for simplicity, we assume that they are the same for
simulations.

An extended description of the noise channels can be
found in Appendix A.
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FIG. 1. Schematic of the local noise model. A circuit with
input ρ and layers Ui, where the local � representing the action
of noise are applied after each layer.

III. EQUIVARIANCE UNDER NOISE

Writing down analytical expressions for noisy quan-
tum circuits is a difficult task in general. The expressions
are unique to each circuit and noise model, resulting in
complicated equations with just a few layers of gates.
Nonetheless, this offers a good understanding of the behav-
ior of the model in simple settings. To be able to do this,
we construct a toy model. This allows us to build a the-
oretical understanding and give us an intuition of what to
expect from numerical results.

A. Toy model

Let us consider the following circuit, where the one-
dimensional input data x ∈ R are encoded using the RY
rotation gate. Then, we apply an identity gate that we
decompose into the form UU†, d times. This formulation
will allow us to incorporate the effects of gate decom-
positions on the behavior of the circuit. When designing
algorithms in the NISQ era, we should keep in mind that
we only have access to a limited set of native gates on hard-
ware. The noise channel� will be applied between each U
and U† gates, as described in Fig. 2.

We consider a dataset with the Z2 = {e, σ } symmetry,
such that R(e) · x = x and R(σ ) · x = −x. Then, one can
use any rotation gate RG, such that the twirl with repre-
sentation Rq(σ ) is Rq(σ )GR†

q(σ ) = −G. Then, one can use
the RY rotation gate to encode this symmetry simply due to
the fact that XYX = −Y and, similarly, ZYZ = −Y. This
means that we have the freedom to choose either X or
Z as representation Rq(σ ). The choice of representation
is also going to put a constraint on the input state. For
this walk-through, let us choose the input state |ψ〉 = |+〉,
Rq(σ ) = X , and U = RY(θ), and the choice of representa-
tion requires us to have the observable O = X . Here, we
refer the reader to Refs. [15,19,28] for more details on
constructing EQNNs.

FIG. 2. One qubit toy model under noise with identity gates
decomposed into unitaries U and U†, d times, i.e., I = (UU†)d.

Having defined our complete model, we can now choose
a noise model and express the model outputs analytically.
We refer the reader to Appendix B for step-by-step calcu-
lations in this section. First, we consider the Pauli channel.
Then, the output of the model can be written as

ŷ(x) = 1
2 [(f d

x + f d
z ) cos(x)+ (f d

x − f d
y ) cos(x + 2θ)],

(15)

where fi is the Pauli fidelity of the Pauli-σi channel [e.g.,
fx = 1 − 2(py + pz) according to the definition in Sec. II B;
see Appendix A for more details]. The first term of the
equation gives us the noiseless outcome that is suppressed
exponentially in the number of layers around zero (i.e.,
{|fx|, |fy |, |fz|} ≤ 1). This result is also known as noise-
induced barren plateaus [21]. The second term of the
equation constitutes the motivation of this work. We see
that this term breaks the equivariance for some values.
On real hardware, it is often observed that the Pauli
fidelities have similar values to one another for a chosen
qubit [35]. Therefore, on a realistic setting it is expected
to have fx 	 fy and this would make the impact of this
term minimal. Consequently, for Pauli channels, which are
depolarizinglike (fx 	 fy 	 fz), the symmetry breaking is
minimal.

Last but not least, the value of θ also plays a role in
the amount of symmetry breaking. It may, in fact, make
the symmetry breaking zero regardless of the values of fx
and fy . This is a natural result, as there will be decomposi-
tions that improve robustness against noise. However, such
decompositions of gates may not be available on hardware,
and one should keep this in mind during the transpilation
process.

Now, let us consider the nonunital AD channel with
probability γ . Then, the outcome of the circuit can be
written as

ŷ(x) = 1
2 [(1 − γ )d/2 + (1 − γ )d] cos(x)

+ 1
2 [(1 − γ )d/2 − (1 − γ )d] cos(x + 2θ)

+ [1 − (1 − γ )d] sin(θ). (16)

We observe that the AD channel results in a more com-
plicated form. The first and second terms jointly result in
the exponential concentration induced by the AD channel.
This can be easily seen by setting θ = 0. Furthermore, we
observe a new term [sin(θ)] that shifts the mean of the
distribution.

The amplitude of the shift behaves approximately linear
(∝ γ d) for practically relevant depths and noise levels and
is upper bounded, i.e., O(γ d). Current superconducting
hardware has γ 	 10−2 and a controlled-NOT (CNOT) gate
depth of 10–20. Note that the values are approximate and
vary from device to device. We provide a brief discus-
sion on how to obtain these values in Appendix H 1. This
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behavior can be observed better if we rewrite it using the
binomial theorem as

1 − (1 − γ )d =
d∑

k=1

(
d
k

)
γ k(−1)k+1. (17)

The contribution of the higher-order terms is negligible
since γ in general is less than the inverse of d [36]. This
means that the term [1 − (1 − γ )d] will behave linearly
in the low-noise regime, where it is expected to get a
reasonable signal from the hardware.

We observe that the term responsible for the shift of the
mean also corresponds to the only off-diagonal entry in the
PTM of the AD channel. We denote this term as �(d)

AD(4,1)
.

The upper index (d) denotes the dth power of this matrix.
We refer the reader to Appendices A 2 and B for details.

Last but not least, we consider the term responsible
for symmetry breaking. The term [(1 − γ )d/2 − (1 − γ )d]
behaves asymptotically similar to the �(d)

AD(4,1)
term, e.g., is

approximately linear for the parameters considered above.
Furthermore, it is upper bounded by O(γ d), and, thus,
the symmetry breaks approximately linearly in the num-
ber of layers d or noise strength γ under the AD channel.
This can be seen by considering the approximate scal-
ing of [1 − (1 − γ )d] ≈ γ d. Then, using this, we can see
that [(1 − γ )d/2 − (1 − γ )d] ≈ γ d/2. We provide further
details regarding the scaling in Appendix C.

One final important setting to consider is the combi-
nation of the Pauli channel with the AD channel. It is
straightforward to compose this effective channel using the
PTM picture. We obtain the noisy prediction as

ŷ(x) = 1
2 [f d

x (1 − γ )d/2 + f d
z (1 − γ )d] cos(x)

+ 1
2 [f d

x (1 − γ )d/2 − f d
z (1 − γ )d] cos(x + 2θ)

+�
(d)
P+AD(4,1)

sin(θ), (18)

and the term �
(d)
P+AD(4,1)

reads

�
(d)
P+AD(4,1)

	
( d∑

k=1

f k
z

)
γ −

( d∑

k=1

(k − 1)f k
z

)
γ 2. (19)

This term determines the shift of the mean. We see that it
behaves the same except that this time it is modulated with
the Pauli fidelity fz at every layer. Similarly, the amplitude
of symmetry breaking depends on the second term as

ŷ(x)− ŷ(−x)

= −[f d
x (1 − γ )d/2 − f d

z (1 − γ )d] sin(θ) sin(x). (20)

This means that the symmetry breaking is also modulated
with the Pauli fidelities fx and fz in each layer. Note that

we can recover the term for the pure AD channel if we
set fx = fz = 1. Overall, the behavior of the term does not
change, and it grows approximately linear in the AD chan-
nel noise strength γ with minor contributions from the
Pauli channel.

The linearity argument can be generalized to multiqubit
systems under local noise channel assumptions. In this
setting, the contribution of adding new qubits is negligi-
ble. This can be seen in Eq. (12), where the action of a
local BF channel is given for a two-qubit system. One can
observe that the bit flip probability of only the first qubit is
p0 − p0p1 and the bit flip probability of both qubits is p0p1,
which together sums to p0. The probability of the bit flip
term that acts on all qubits at the same time has a vanishing
amplitude in the number of qubits (e.g., p = ∏

i pi for all
pi � 1).

Combining all the intuition we have developed so far,
we conjecture that a generic EQNN model experiences
symmetry breaking dominantly under nonunital channels,
and scales linearly in the noise strength γ and depth d. In
Sec. IV below, we perform numerical experiments to con-
firm the implications of the toy model and present evidence
directly from hardware experiments. For this purpose, we
continue by introducing metrics that can be computed
using the simulation and hardware data such that we can
decouple the symmetry-breaking terms from the rest of the
terms in the model outputs.

B. Quantifying symmetry breaking

Preserving symmetries and quantifying the amount of
symmetry are paramount for the success of tasks such as
state preparation and time evolution of quantum systems
in the presence of hardware noise. In fact, there is a grow-
ing literature that studies these aspects [25,26]. Although
this may look like a very similar problem in GQML, there
is a fundamental difference. In the former, the state belongs
to a subspace that is governed by the symmetry of the cor-
responding system, while in the latter, what matters is the
relative positions of the symmetric inputs in the subspace
that is governed by the label symmetry. Furthermore, in
tasks such as binary classification, the continuous output of
a model is mapped to a binary decision based on a thresh-
old. This means that small deviations in the expectation
value may not change the binary decision. Overall, these
points relax the conditions to preserve the symmetry in the
context of GQML. Ragone et al. [5] recently introduced g
purity, which can be used to measure the symmetry break-
ing in GQML, but g purity is expensive to compute and
does not account for binary decisions. Thus, there is a need
to define metrics that can capture all of these aspects.

We start by defining a metric that can use the contin-
uous outputs of a model (i.e., ŷi for input xi [37]). For
this purpose, we have to choose the symmetry group. In
this paper, we focus on the discrete Z2 = {e, σ } symmetry,
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such that R(e) · (xi) = (xi) and R(σ ) · (xi) = (xj ), where
R is the representation of the symmetry group element in
the data space R. Then, the equivariance implies that ŷi =
ŷj . We accordingly define the Z2-symmetry generalized
McNemar-Bowker (MB) test [38] as follows.

Definition 4 (Z2 generalized MB test). Consider the
Z2 = {e, σ } symmetry, such that R(e) · (xi) = (xi) and
R(σ ) · (xi) = (xj ). Then, the normalized MB test [38] of
a model with predictions ŷi for input xi over M samples
can be defined as

χ2 = 1
M

M∑

i=1

(ŷi − ŷj )
2

ŷi + ŷj
. (21)

This definition can be further extended to binary predic-
tions. For this purpose, we define the threshold function
τ , which is a step function that has the transition point
t. A naïve choice for the value of t is the center point of
the two binary class predictions (e.g., t = 0.5 if the classes
are defined as 0 and 1, t = 0 if the classes are defined as
−1 and 1). However, as we illustrated earlier, the predic-
tions of a model may shift towards a value under hardware
noise, and, thus, the central and fixed t value becomes a
bad choice. Furthermore, this value is often optimized by
following the area under the curve of the receiver opera-
tion characteristics of a model [39]. Unsuitably, this makes
the choice data dependent. With these points in mind, we
choose threshold t such that it is the median of the contin-
uous outputs of a model for the inputs from the training
set. This allows us to update the value and account for the
shift in the center of the expectation values. Then, we can
use the binary predictions τ(ŷi) to compute χ2. We refer to
this value as label misassignment, as it counts the amount
of the predictions that have a different prediction than their
Z2 counterparts.

Definition 5 (Label misassignment). Consider the Z2 =
{e, σ } symmetry, such that R(e) · (xi) = (xi) and R(σ ) ·
(xi) = (xj ). Let us take a model returning binary predic-
tions τ(ŷi), where the ŷi are the continuous predictions
of the model for input xi and τ is a step function that
has a transition point at the median of all ŷi. Then, label
misassignment (LM) of a model over M samples can be
defined as

LM = 1
M

M∑

i=1

[τ(ŷi)− τ(ŷj )]2

τ(ŷi)+ τ(ŷj )
. (22)

Note that each term in the sum is either 0 [40] (if the
model prediction is the same for xi and xj ) or 1 (if the pre-
dictions are different). This allows LM to count the amount
of misassigned predictions. For example, a model that has
perfectly symmetric outputs will be 0% of LM, while a

model that produces random outputs 50% of LM. A model
that predicts the opposite label for all symmetric inputs will
have 100% of LM.

Furthermore, 1 − LM/2 can be used to upper bound
the accuracy of a model. Consider the model that predicts
the opposite label each time (i.e., LM = 1.0); this model
can have, at best, 50% accuracy. Similarly, a model with
random outputs (i.e., LM = 0.5) cannot have an accuracy
larger than 75%. Note that 1 − LM/2 does not predict the
accuracy of a model, but only upper bounds it; otherwise,
one would expect the completely random model to have
50% accuracy.

Definition 5 assumes a binary classifier, which only
admits Z2 symmetries. This definition can easily be mod-
ified to account for multiple classes and other discrete
symmetry groups. For instance, the equation can be mod-
ified to be a sum over the Dirac delta function over a
collection of symmetric data samples. Consider the contin-
uous prediction ŷi for the data sample xi that has K many
symmetric samples x(j )i , and let τ : R → Z be the predic-
tion function that takes the continuous prediction as input
and returns the integer for a dataset that has L many labels
such that τ(ŷi) ∈ {1, 2, . . . , L}. Then, for a dataset over M
total data samples, LM can be computed as

LM = 1
M

M/K∑

i=1

K∑

j =1

δ
τ(ŷi)τ (ŷ

(j )
i )

. (23)

Last but not least, we compute χ2 and LM values for the
toy model presented in Sec. III A. For this purpose, we
consider the model under the AD channel [see Eq. (16)]
and choose the parameter θ = π/4. We consider the input
x ∈ [−π/2,π/2] and choose 1000 linearly separated val-
ues such that we have 500 data points as well as their Z2
symmetric counterparts. Then, the continuous predictions
[ŷ(x)] are linearly mapped to be in the range [0, 1] [i.e.,
(ŷ + 1)/2].

Figure 3 presents χ2 and LM values for various noise
strengths (γ ) and circuit depths (d). The value of χ2

increases following the increase in the noise strength or the
circuit depth. We observe that the value tends to converge
in the high-noise regime. This is due to the concentration
of the expectation values. Contrary to χ2, the values of
LM continue to increase even in the high-noise regime.
Furthermore, they show a linear scaling with respect to
the noise strength and the circuit depth, matching our
theoretical insight.

Here, we see that χ2 fails to capture the symmetry break-
ing in the high-noise regime. This is because it is not
solely measuring the symmetry breaking and is affected
by the concentration. LM can successfully do this as it
is not biased by the exact value of the continuous predic-
tions. Another thing to note is that χ2 is biased towards the
0-label. This can be seen by comparing prediction pairs of
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FIG. 3. Symmetry breaking of the toy model considered in
Sec. III A with respect to various noise strengths (γ ) and circuit
depths (d). The output of the model is obtained using Eq. (16)
with θ = π/4 in the presence of amplitude damping noise.

{0, 0.2} and {1.0, 0.8}, which have contributions of 0.2 and
0.022, respectively. This makes LM a more suitable mea-
sure for symmetry breaking. Nevertheless, χ2 still informs
us about the relationship between symmetry breaking and
concentration. Therefore, we provide the measurements for
χ2 in the next sections for completeness.

To complete the analysis of the toy model, we provide
χ2 and LM measurements for the Pauli channel case for
realistic scenarios. As expected, the depolarizing channel
does not induce symmetry breaking and depolarizinglike
Pauli channels induce negligible amounts of symmetry
breaking. We refer the reader to Appendix D for more
details.

IV. EXPERIMENTS

In this section, we provide numerical experiments to
validate our findings. To this end, we perform binary clas-
sification experiments, and compute χ2 and LM values
that we previously defined in Sec. III B, utilizing both
simulated and hardware results.

For the experiments, we consider datasets with Z2 sym-
metry as described before. Accordingly, we choose the
symmetry transformation such that R(σ ) · (xi) = −xi. We
generate a dataset, as depicted in Fig. 4, that carries this
symmetry for the classification experiments. The dataset
comprises 1000 samples, divided into training and testing
sets with a ratio of 8/2.

As illustrated earlier, the choice of an equivariant data
embedding induces a specific unitary representation of the
symmetry group element, which will restrict the choices of
the parametrized gates and the observable. We define two
different two-qubit EQNN models, EQNN-Z and EQNN-
XY, as shown in Figs. 5(a) and 5(b). In both models the data
encoding is performed with the Pauli rotation gates RY and
RX , inducing the representation Rq(σ ) = Z0Z1. EQNN-XY

FIG. 4. An ad-hoc dataset with Z2 label symmetry such that
R(σ ) · (xi) = −xi. The dataset has been generated by sampling
1000 points with equal class split. Although the sampled data
points do not have explicit symmetric counterparts explicitly,
sampling from the Z2 symmetric distribution ensures label sym-
metry. Note that applying R(σ ) to any of the clusters does not
change its class.

data encoding uses the same gate at each layer, while
in the EQNN-Z case, the order of RX and RY gates are
alternated.

(a)

(b)

(c)

(d)

EQNN-Z

EQNN-XY

FIG. 5. Two-qubit circuits used in the experiments. The parts
in the dashed boxes depict the parametrized layers, which
are repeated d times, each having independent parameters. (a)
EQNN-Z model, (b) EQNN-XY model, (c) XX decomposition,
(d) BEL.
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The parametrized gates in both cases are the same. We
select three generators G ∈ {X0X1, Z0I1, I0Z1} from the set
of commutators of representation Z0Z1. These generators
are used to obtain parametrized gates of the form UG =
exp(−iθG/2). It is sufficient to use only these three gen-
erators, because the nested set of commutators of these
three generators is equivalent to the set of commutators of
representation Z0Z1. The three gates form a parametrized
layer and each layer is repeated d times, having inde-
pendent parameters. Lastly, we choose the equivariant
observable O = (Z0 + Z1)/2 for the EQNN-Z ansatz and
O = X0Y1 for the EQNN-XY ansatz. Expectation values of
these observables are linearly mapped to be ŷ(x) ∈ [0, 1]
and called the continuous prediction. The same mapping is
performed for all models.

Spurious symmetries may arise when building EQNN
models. This appears as an unwanted SWAP symmetry
(i.e., x0

i → x1
i , x1

i → x0
i ) in our example. We handle this

in different ways in two models. The EQNN-XY model
breaks the unwanted symmetry by employing the observ-
able X0Y1, which does not commute with the SWAP gate.
In the case of the EQNN-Z model, this is broken at the
data encoding level, since the order of the RX and RY
gates is alternated. The choice of breaking it at the data
encoding level or the measurement level will impact the
performance of the model, as we will see later.

Additionally, we define a nonequivariant model, which
consists of, namely, basic entangler layers (BELs), which
does not encompass any symmetrical property from the
dataset, as shown in Fig. 5(d). This model is compared to
the equivariant one using the same observables. Similar to
EQNN, the models with Z and XY observables are defined
as BEL-Z and BEL-XY, respectively.

Last but not least, to model the effect of noise for EQNN
circuits, we decompose the exp(−θXX /2) gate using a
CNOT-based decomposition, as depicted in Fig. 5(c), and
apply noisy gates after each layer, as was shown in Fig. 1.
Furthermore, we simulate the EQNN-Z circuit without any
decomposition to discern the noise effect, and we refer to
this experiment as EQNN-Z native.

A. Binary classification

Numerical experiments for classification are conducted
using two-qubit circuits, described previously. To compare
the accuracy of the model under different noise channels,
we run all circuits up to ten layers for a given noise
strength and plot the value of the best-performing layer
averaged over ten runs. This is to find the best-case sce-
nario for each model as each model will have different
effective depth and experience noise differently for a given
number of layers d. The binary cross-entropy loss func-
tion was minimized using the Adam optimizer [41] with
the hyperparameters {lr = 0.02,β1 = 0.7,β2 = 0.99}. The
hyperparameters have not been optimized for each case.
The results may be improved in all cases by performing
a dedicated hyperparameter optimization. The simulations
are performed in the absence of shot noise using the
PYTHON library Pennylane [42].

We showcase the results of models trained on the train
set for 100 epochs under varying strengths of the DP and
AD channels in Figs. 6(a) and 6(b), respectively, illustrat-
ing the accuracy assessed on the separate test set. We have
not observed overfitting (see Appendix G). In the absence
of noise, all models can show more than 90% accuracy. We
see a discrepancy between the EQNN-XY and EQNN-Z
models. This is due to the location of the spurious sym-
metry breaking we mentioned earlier. Since the EQNN-Z
model breaks this spurious symmetry at the data encoding
level, it is more expressive and, hence, can perform better.

In the case of the DP channel, all models experience
a similar performance drop. This is a natural outcome of
the gradients getting smaller as the noise strength increases
due to the emergence of noise-induced barren plateaus.

When considering the AD channel, the performance
drops more significantly, characterized by a sharper
decline in accuracy. In particular, the BEL-Z, EQNN-
Z, and EQNN-XY models demonstrate more pronounced
effects compared to other models, while the BEL-XY
model performs the best among the four models. There
are two reasons for this. The first reason is the symmetry
breaking, which impacts both EQNN models. This effect

(a) (b) (c)

FIG. 6. Binary classification results under noise channels. All models are trained with ten different initializations and layers varied
from 1–10. The test accuracy, averaged over the runs, is plotted for the best-performing layer of the corresponding model. Noise
strength p in the case of the DP channel and γ in the case of the AD channel is varied from 0.0 to 0.1 with 0.01 increments. (a)
Results under the DP channel. (b) Results under the AD channel. (c) Results under the AD channel with and without using adaptive
thresholding (AT) during training.
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can be observed better when we compare the EQNN-Z-
native and EQNN-Z models. Our intuition from the toy
model was that the symmetry breaking should be observed
in the case of the AD channel and not in the DP channel.
We observe that, under the DP channel, these models per-
form more similarly than they do under the AD channel.
Since the EQNN-Z-native model results in a shorter depth,
it is also expected to perform better under the DP channel.

The second reason is the shift of the mean for the
Z observable under the AD channel. This results in the
model having a bias towards one label, when a fixed
threshold function is used. To alleviate the effects of the
shift of the mean, a simple practical trick called adaptive
thresholding is employed. Using prior knowledge on the
dataset labels (e.g., a balanced dataset has equal amounts
of both classes), one can adaptively change the predic-
tion threshold throughout training. The threshold value
can be computed as the median over the predictions of
the training set at every iteration. Our results depicted in
Fig. 6(c) indicate significant improvement in model per-
formance, particularly in the case when measurements are
affected asymmetrically in the z direction. Consequently,
this improvement would not be limited to equivariant mod-
els. This result shows that adaptive thresholding is a useful
and cheap technique to improve model performance for
binary classification under hardware noise.

One final point worth noting is the exceptional per-
formance of the EQNN-Z-native model. It consistently
outperforms all other models under both the DP and AD
channels. The impact of the DP channel on both equivari-
ant and nonequivariant models is expected to be similar.
However, what stands out is that the EQNN-Z-native
model shows no significant performance drop under the
AD channel. This resilience is attributed to the specific
choice of the Z0Z1 representation, which commutes with
the AD channel (cf. Appendix A for details). Despite
its impressive performance, it is important to note that
the model faces implementation challenges on current
quantum hardware due to limitations in the native gate set.

B. Symmetry breaking

In this section, we quantify the level of symmetry break-
ing across the entire parameter space in the presence of
noise. To do so, the model parameters are randomly drawn
from the uniform distribution between [−π/2,π/2] at each
run. Similarly, we sample M = 200 [see Eq. (21)] unique
inputs from the same uniform distribution. Using these
samples, we obtain 400 predictions for each setting such
that each unique data point has its Z2 counterpart included.
Here, we emphasize that one does not need a trained model
to measure the symmetry breaking. Since the amount of
symmetry breaking is parameter dependent, we integrate
over the input and parameter space to give an average-case
estimate of the symmetry breaking.

1. Two-qubit case

In order to explain the discrepancy of performance in
training, we measure the proposed metrics χ2 and LM
using simulated data as well as data collected from super-
conducting quantum computers.

We start by considering the two-qubit EQNN-XY model
and collect predictions with ten random initializations for
400 input data samples under different strengths of the
AD channel. We plot the variance of the output predic-
tions, χ2, and LM averaged over the ten runs for a varying
number of layers in Fig. 7. The exponential decay of
the variance numerically confirms the existence of noise-
induced BPs. The value of χ2 first increases and then
decreases for small values of γ and completely decreases
for larger values. This is a joint result of symmetry break-
ing and noise-induced BPs. The χ2 metric can measure
the symmetry breaking until the exponential concentration
dominates the landscape and brings all predictions closer
to the same value. In fact, it is upper bounded by the vari-
ance. One can use the LM metric to decouple these two
effects. LM can measure the symmetry breaking separately
since it uses the adaptive threshold t. LM grows linearly
in the noise strength γ and the number of layers d. This
perfectly matches the analytical expression we obtained
in Eq. (16) and gives numerical evidence for our linear
symmetry-breaking conjecture.

Using this result, we can also comment on the binary
classification performance. From the bottom right panel of
Fig. 7, we see that LM reaches 20% in the shortest depth
scenario. We can use this line to compare the performance
of the EQNN-XY model. As mentioned earlier, LM upper
bounds the accuracy with 1 − LM/2. Based on this, we
can say that at γ = 0.1 the EQNN-XY model should expe-
rience a 10% drop in accuracy, only caused by symmetry

)

)

FIG. 7. Simulated two-qubit symmetry breaking for the
EQNN-XY model under the AD channel. Both columns show the
same data points: on the left metrics are plotted against the num-
ber of layers d; on the right metrics are plotted against the noise
strength γ .
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FIG. 8. Two-qubit symmetry breaking for the EQNN-XY and
EQNN-Z models measured on the ibmq_cairo superconducting
quantum computer. Plots of χ2 (top) and LM (bottom) against
the number of layers d.

breaking. It is difficult to comment on the impact of a single
factor, as there are many factors contributing to the drop in
performance in the presence of noise. Nonetheless, look-
ing at Fig. 6, this value appears reasonable. We provide an
extended discussion of symmetry breaking before and after
training in Appendix G.

Next, we repeat this experiment on the ibmq_cairo
superconducting quantum computer using the EQNN-Z
and EQNN-XY models with 4000 shots. For this purpose,
we use the same dataset and the same parameters for the
circuits. We report χ2 and LM values for the number of
layers up to 35 in Fig. 8. These results show that both
models behave similarly, matching the numerical simula-
tions that were conducted only using the AD channel. This
confirms our prediction of the fact that the AD channel
dominantly contributes to the symmetry breaking for this
setting.

There is a discrepancy between the χ2 and LM values of
the two models. In the case of χ2, both models observe the
increase and then later the decrease due to concentration.
However, it is not enough to look at the value of χ2 to com-
ment on the amount of symmetry breaking. This is because
the scale of this metric is controlled by the variance of the
observable, and one should keep this in mind when com-
paring observables with different variances. Next, looking
at the LM plot, we see that the EQNN-Z model, in gen-
eral, suffers more symmetry breaking compared to the
EQNN-XY model. This is mainly due to the fact that the z
direction is asymmetric in the AD channel. This result also
agrees with Fig. 8, in which EQNN-Z performance dete-
riorates faster. Furthermore, we observe that LM behaves
linearly in the number of layers while approaching 50%.
The LM values this time converge to 50% since we have
shot noise, and the output becomes completely random at
a large depth. All of these results combined align with the

predictions of the AD channel dominating the symmetry
breaking.

2. Multiqubit case

So far, we have considered only the two-qubit case in
our experiments, yet our primary interest revolves around
the behavior of symmetry breaking at a large scale. Per-
forming simulations on a larger scale imposes significant
challenges, becoming computationally expensive. In this
section, we focus on obtaining empirical results from the
127-qubit ibmq_cusco superconducting chip. For this pur-
pose, we use the nearest-neighbor qubits, as shown in
Appendix H 2.

In order to run experiments on hardware, we define a
hardware-efficient multiqubit circuit, EQNN HWE, illus-
trated in Fig. 9. Data encoding is performed using RX
and RY gates. This results in representation Z⊗n, similar to
all other ansatzes we studied so far. A hardware-efficient
brick-work layer, constructed from exp(−θXX /2) gates,
followed by RZ gates, is repeated d times. Notably, observ-
ables are measured on central qubits to maximize the
amount of gates captured by the light cone. Our exper-
iments include probing observables with varying body-
ness: {Z, XY, XYZ, XYZZ}. Note that all the observables
commute with representation Z⊗n to ensure equivariance.
Figure 10 presents the χ2 and LM values obtained for
log-depth (d = log2n) circuits with varying observables.

Results obtained for χ2 highlight disparities in the
bodyness of the observables. As the locality of the observ-
able increases, the measured expectation values demon-
strate a significantly accelerated concentration, leading to
a decrease in χ2. This is expected as the locality of an
observable is directly related to the variance of an observ-
able [5,43] in general. We note that there are exceptions to
this statement in the literature [44]. Furthermore, the trend
for χ2 with respect to the number of qubits aligns with
the two-qubit models that were simulated using only the
AD channel. The behavior of LM is consistent with prior
findings, showcasing that a log-depth equivariant circuit
approaches almost 50% in LM starting from n = 8 qubits,
corresponding to random outcomes.

FIG. 9. Hardware-efficient circuit used in the experiments to
measure symmetry breaking. The part inside the dashed box is
repeated d times with different parameters. Here, a five-qubit
circuit is plotted for reference. The measurements are always per-
formed on the central qubits and the amount of qubits measured
depends on the observable choice (e.g., two qubits are measured
for XY). This model is denoted EQNN HWE.
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FIG. 10. Log-depth EQNN-HWE results from ibmq_cusco.
Hardware-efficient circuits defined in Fig. 9 with the number of
layers d = log2n, where n is the number of qubits. Each model
uses a different observable denoted in the legend. The x axis is
plotted on a log scale, such that it is linear in the number of layers.

These results indicate that log-depth EQNN models are
not scalable on this hardware due to the combination of
concentration and symmetry breaking. This should not be
surprising since there is always a cutoff depth for reason-
able output on noisy devices. Although this cutoff depth
does not look very promising, it can be further improved
with various methods.

Pulse-efficient implementation is one of the possible
methods to improve the results at the hardware level.
The default IBM Qiskit [45] transpilation only exposes
fixed pulse gates, such as the calibrated CNOT gate, or
echoed cross-resonance (ECR) gate, which is equivalent
to the CNOT gate up to single-qubit prerotations [46,47].
Thus, any two-qubit gates are decomposed into a decom-
position of CNOT and ECR gates and single-qubit gates.
Although not ideal, this way of automated transpilation
is less time consuming and is a favorable application-
agnostic approach. However, these fixed pulse gates have
relatively long gate times for low entangling angles, and
thus lead to large errors. Thus, in order to improve the
hardware result, it is possible to create RZX (θ) gates by
controlling pulses in a continuous way, instead of using
the fixed pulse gates.

Following Earnest et al. [46], we use the pulse-efficient
implementation where the two-qubit quantum gates are
decomposed into the hardware-native RZX gates. This
allows us to implement the same circuit almost twice as
fast using arbitrary parameterization of the pulse control.
To show the effectiveness of this approach, we repeat
the same experiment with the EQNN-HWE-XY model
using this scheme and report the results in Fig. 11. As
expected from our linearity argument, the symmetry break-
ing reduces to half of the previous experiment since twice
faster execution can be thought of as half the AD channel

)

)

FIG. 11. Label misassignment of the EQNN-HWE-XY model
using different transpilation methods. The label EQNN-HWE-
XY refers to the standard transpilation used throughout this
work. The EQNN-HWE-XY pulse refers to the pulse-efficient
transpilation [46].

strength. We refer the reader to Appendix H 3 for more
details on the pulse-efficient execution.

V. CONCLUSION

In this work, we studied the behavior of EQNN models
in the presence of noise. We highlight that these models
experience symmetry breaking in the presence of realistic
hardware noise. This adds another noise-induced compli-
cation to EQNN models, while the major one is noise-
induced BPs [21] and the hardness of learning caused by
it [22]. Notably, we demonstrated that the impact of Pauli
channels on symmetry breaking could be negligible, while
the AD channel induces a symmetry breaking that is lin-
ear in the number of layers and noise strength. This further
enables predicting the performance of an EQNN model on
hardware prior to execution.

Our numerical results highlight the fact that a simple
model with no geometric priors can outperform the EQNN
models in the presence of noise. This brings doubts to the
practicality of GQML and their applicability on near-term
devices.

To address these challenges, we proposed effective
strategies for mitigating performance drops caused by
hardware noise. The first of these was adaptive threshold-
ing that can cope with the shift of the mean. Furthermore,
we showed that choosing the Z⊗n representation is bene-
ficial since it commutes with the AD channel. While our
focus was on the Z2 symmetry for simplicity, our conclu-
sions can be extended to other discrete symmetry groups.
However, the implications for continuous groups remain
uncertain and this makes it an interesting future research
direction. Moreover, we demonstrated that more efficient
hardware implementation can contribute to reducing sym-
metry breaking.

The symmetry protection under the Pauli channel result
raises the question of employing Pauli twirling to convert
nonunital noise channels to Pauli channels [35]. How-
ever, the scalability of the amount of twirls to preserve
equivariance remains unclear, posing an open question for
future exploration.
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In our experiments, we have not considered error-
mitigation methods. This was an intentional choice. Our
target in this manuscript was to investigate the scalabil-
ity of GQML on hardware, rather than just being able to
execute circuits. This means that error-mitigation methods
such as probabilistic error cancelation (PEC) are not suit-
able for this study due to their exponential overhead [35].
Furthermore, a naïve implementation of PEC may result in
further loss of equivariance. This opens up new avenues to
explore whether we can perform PEC by preserving given
group symmetries. Additionally, we briefly explore the
potential of zero noise extrapolation (ZNE) in Appendix F,
revealing its effectiveness when provided with analyti-
cal expectation values, but highlighting challenges with a
limited number of shots.

We would also like to point out the fact that artifi-
cially added symmetry breaking can be beneficial when
it is used in moderation. Le et al. [17] recently showed
that the performance can be improved by injecting a con-
trolled amount of symmetry breaking by adding an extra
nonequivariant gate to the equivariant ansatz. However,
the study was performed in the absence of noise and,
thus, may not be practical in the presence of noise on real
quantum hardware.

In conclusion, our study not only advances our under-
standing of the intricate interplay between hardware noise
and GQML models, but also lays the groundwork for
informed strategies to enhance their resilience. As we
navigate the challenges posed by noise in QML, our find-
ings open new avenues for further exploration and opti-
mization, offering a promising trajectory for the future
development of robust and scalable GQML on quantum
hardware.
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APPENDIX A: NOISE MODELS

1. Amplitude damping channel

In Sec. II B, we introduced the AD channel with the
Kraus operators

K0 =
[

1 0
0

√
1 − γ

]
, K1 =

[
0

√
γ

0 0

]
. (A1)

These were given as matrices. Here, we also give them in
the Pauli basis:

K0 = 1 + √
1 − γ

2
I + 1 − √

1 − γ

2
Z,

K1 =
√
γ

2
X − i

√
γ

2
Y. (A2)

This allows us to see the commutation of the AD channel
with the Z gate.

2. Pauli transfer matrix formalism

Working with the Kraus operators can become messy
very quickly. The PTM formalism allows us to simplify
this process [34]. In this formalism, we start by choos-
ing the normalized Pauli basis P̂ = {I , X , Y, Z}/√2. Then,
the n-qubit operator P̂ ∈ P̂

⊗n can be represented as a basis
vector |P〉〉 ∈ R

4n
.

We can also write the density matrix of a quantum state
using this formalism. Consider the state |ψ〉 = |0〉, which
has the density matrix ρ = |ψ〉〈ψ | = |0〉〈0|. The density
matrix ρ can be simply written as [1/

√
2, 0, 0, 1/

√
2]. This

can easily be seen when |0〉〈0| is explicitly written as (I +
Z)/2.

Following this, a quantum channel E ∈ R
4n×4n

becomes
a matrix. Finally, the expectation value of the operator
on the density matrix is simply tr(ρP̂). Then, using the
PTM formalism, we can compute the adjoint action of the
unitaries as well as the noise channels as simple matrix
multiplications.
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Now, let us recall that the Kraus operators of the
Pauli channel NP are given as K0 = √

1 − px − py − pzI ,
K1 = √

pxX , K2 = √pyY, K3 = √
pzZ. To obtain the PTM

matrix of the Pauli channel, we can write the action
of the channel on all Pauli operators and perform state
tomography. This will be fairly simple in this case:

NP(I) = I , (A3)

NP(X ) = [1 − 2(py + pz)]X , (A4)

NP(Y) = [1 − 2(px + py)]Y, (A5)

NP(Z) = [1 − 2(px + py)]Z. (A6)

We define the Pauli fidelity fP of a Pauli operator P as the
coefficient we observe in front [e.g., fx = 1 − 2(py + pz)].
Then, the PTM of the Pauli channel becomes

�P =

⎡

⎢⎣

1 0 0 0
0 fx 0 0
0 0 fy 0
0 0 0 fz

⎤

⎥⎦ . (A7)

Following this, we can recover the BF, phase flip (PF), DP
channels’ Kraus operators and the corresponding PTMs.

The BF channel with probability p becomes K0 =√
1 − pI , K1 = √

pX . Then its PTM reads

�BF =

⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 1 − 2p 0
0 0 0 1 − 2p

⎤

⎥⎦ . (A8)

The PF channel with probability p becomes K0 =√
1 − pI , K1 = √

pZ. Then its PTM reads

�PF =

⎡

⎢⎣

1 0 0 0
0 1 − 2p 0 0
0 0 1 − 2p 0
0 0 0 1

⎤

⎥⎦ . (A9)

The DP channel with probability p becomes K0 =√
1 − pI , K1 = √

p/3X , K2 = √
p/3Y, K3 = √

p/3Z.
Then its PTM reads

�DP =

⎡

⎢⎣

1 0 0 0
0 1 − 2p/3 0 0
0 0 1 − 2p/3 0
0 0 0 1 − 2p/3

⎤

⎥⎦ . (A10)

The PTM of the AD channel can also be obtained follow-
ing the same procedure. Here we skip this step and directly

give the matrix:

�AD =

⎡

⎢⎢⎣

1 0 0 0
0

√
1 − γ 0 0

0 0
√

1 − γ 0
γ 0 0 1 − γ

⎤

⎥⎥⎦ . (A11)

Finally, we can use the PTM formalism to show the
commutation of the Pauli-Z operator with the AD chan-
nel. Recall that we need to satisfy the following for the
commutation:

NAD ◦ AdZ(·) = AdZ ◦ NAD(·). (A12)

Then, it is easy to show this using the PTM formalism:

⎡

⎢⎢⎣

1 0 0 0
0

√
1 − γ 0 0

0 0
√

1 − γ 0
γ 0 0 1 − γ

⎤

⎥⎥⎦

⎡

⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎦

=

⎡

⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎦

×

⎡

⎢⎢⎣

1 0 0 0
0

√
1 − γ 0 0

0 0
√

1 − γ 0
γ 0 0 1 − γ

⎤

⎥⎥⎦ . (A13)

Since we are considering local noise models, the PTM
of the n-qubit AD channel can be obtained by taking the
nth Kronecker power of the single qubit �AD, i.e., it is
�⊗n

AD. Similarly, this also applies to AdZ(·), and as a result,
we can conclude that Z⊗n commutes with the n-qubit AD
channel.

APPENDIX B: CALCULATIONS FOR THE TOY
MODEL

In this appendix, we give the details for the calculations
in Sec. III A. Let us start by recalling the definition of the
toy model, which was described in Fig. 2. The data are
encoded using the RY gate and the redundant computation
of UU† is repeated d times. The input state is chosen to be
|+〉. The noise is modeled by applying the noisy operation
between each U and U† gate. For simplicity, U is chosen
to be RY(θ), and the output of the model is considered to
be the expectation value of the Pauli-X operator. Then the
final state of the model, before measurement, for input data
x is given as

ρ = AdRY(−θ) ◦ N ◦ AdRY(θ) ◦ AdRY(−θ) ◦ · · · ◦ AdRY(θ)

◦ AdRY(−θ) ◦ N ◦ AdRY(θ) ◦ AdRY(x)(|+〉〈+|). (B1)
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The terms AdRY(θ) and AdRY(−θ) that appear next to each
other will be the identity. Then, this reduces to

ρ = AdRY(−θ) ◦ N ◦ · · ·N︸ ︷︷ ︸
d times

◦AdRY(θ) ◦ AdRY(x)(|+〉〈+|).

(B2)

We can compute this using the PTM of these terms.
We already defined the PTM of the noise channels in
Appendix A 2. Then, we give the definitions for the
remaining terms here. The density matrix of |+〉〈+| can
be written as (I + X )/2. Then, it can be expressed with
the vector [1/

√
2, 1/

√
2, 0, 0]. The PTM that represents the

adjoint action of the RY(θ) gate can be expressed as

AdRY(θ) =

⎡

⎢⎣

1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)

⎤

⎥⎦ . (B3)

Furthermore, we need to point to the fact that repetitive
application of the noise channel will appear as the dth
power of the PTM matrix of the corresponding noise chan-
nel. Finally, the expectation value of X in the PTM picture
will correspond to a dot product of the vector [0,

√
2, 0, 0]

with the final state. Then, let us write the full expression to
obtain the expectation value under the Pauli channel, as it
was given in Eq. (15):

ŷ(x) =

⎡

⎢⎢⎣

0√
2

0
0

⎤

⎥⎥⎦

⎡

⎢⎣

1 0 0 0
0 cos(θ) 0 sin(θ)
0 0 1 0
0 − sin(θ) 0 cos(θ)

⎤

⎥⎦

⎡

⎢⎢⎣

1 0 0 0
0 f d

x 0 0
0 0 f d

y 0
0 0 0 f d

z

⎤

⎥⎥⎦

⎡

⎢⎣

1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)

⎤

⎥⎦

×

⎡

⎢⎣

1 0 0 0
0 cos(x) 0 − sin(x)
0 0 1 0
0 sin(x) 0 cos(x)

⎤

⎥⎦

⎡

⎢⎢⎣

1/
√

2
1/

√
2

0
0

⎤

⎥⎥⎦ . (B4)

After matrix multiplication, one obtains

ŷ(x) = [(f d
x + f d

z ) cos(x)+ (f d
x − f d

y ) cos(x + 2θ)]/2. (B5)

Next, we would like to compute the output of the model under the AD channel. The PTM of the dth power of the AD
channel results in a different structure, since it is not a diagonal matrix. This matrix can be given as

�
(d)
AD =

⎡

⎢⎢⎣

1 0 0 0
0 (1 − γ )d/2 0 0
0 0 (1 − γ )d/2 0

[1 − (1 − γ )d] 0 0 (1 − γ )d

⎤

⎥⎥⎦ . (B6)

Then, this can be used to compute the expectation value
under the AD channel. Using this, we can obtain the noisy
prediction under the AD channel as

ŷ(x) = 1
2 [(1 − γ )d + (1 − γ )d/2] cos(x)

+ 1
2 [(1 − γ )d − (1 − γ )d/2] cos(x + 2θ)

+ [1 − (1 − γ )d] sin(θ). (B7)

Next, we consider the combination of the Pauli channel
with the AD channel. In the PTM formalism, their joint
action can be represented as a matrix multiplication, such

that �P+AD = �P ·�AD and it can be written as

�P+AD =

⎡

⎢⎢⎣

1 0 0 0
0 fx

√
1 − γ 0 0

0 0 fy
√

1 − γ 0
fzγ 0 0 fz(1 − γ )

⎤

⎥⎥⎦ .

(B8)

Then,�P+AD can be used to calculate the noisy predictions
under the joint action of the Pauli and AD channels. This
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becomes

ŷ(x) = 1
2 [f d

x (1 − γ )d/2 + f d
z (1 − γ )d] cos(x)

+ 1
2 [f d

x (1 − γ )d/2 − f d
z (1 − γ )d] cos(x + 2θ)

+�
(d)
P+AD(4,1)

sin(θ), (B9)

where the term �
(d)
P+AD(4,1)

corresponds to the matrix ele-
ment of index (4, 1) and the first two leading terms can be
written as

�
(d)
P+AD(4,1)

	
( d∑

k=1

f k
z

)
γ −

( d∑

k=1

(k − 1)f k
z

)
γ 2. (B10)

APPENDIX C: ANALYTICAL SCALING OF
SYMMETRY BREAKING

In Sec. III A, we argued that the symmetry breaking term
(1 − γ )d/2 − (1 − γ )d in the case of the AD channel scales
as γ d/2 for the parameters we considered, e.g., γ ≈ 10−2

and d ≈ 10–20. Here, we first show the exact analytical
expression for this term:

γ − γ 2 (d = 2),
2γ − 5γ 2 + 4γ 3 − γ 4 (d = 4),
3γ − 12γ 2 + 19γ 3 − 15γ 4 + 6γ 5 − γ 6 (d = 6).

(C1)

Here, it can be seen that the contribution of the higher-
order terms are negligible. We visualize this in Fig. 12 by
plotting the (1 − γ )d/2 − (1 − γ )d along with γ d/2. It can
be seen that this term follows γ d/2 in the low-noise regime
and the behavior does not deviate much from linear even
when the noise level is increased.

APPENDIX D: SYMMETRY BREAKING UNDER
PAULI CHANNELS

Here, we compute χ2 and LM values for the toy model
presented in Sec. III A. For this purpose, we consider

FIG. 12. The scaling of the values of the term responsible for
the symmetry breaking in the toy model considered in Sec. III A
for the amplitude damping channel.

)

)

FIG. 13. Symmetry breaking of the toy model considered in
Sec. III A with respect to four Pauli channel scenarios. The out-
put of the model is obtained using Eq. (15) with θ = π/4 in the
presence of Pauli noise. The noise strengths are reported as Pauli
infidelities (e.g., �x = 1 − fx).

the model under the Pauli channel [see Eq. (15)] and
choose the parameter θ = π/4. We consider the input
x ∈ [−π/2,π/2] and choose 1000 linearly separated val-
ues such that we have 500 data points as well as their Z2
symmetric counterparts. Then, the continuous predictions
[ŷ(x)] are linearly mapped to be in the range [0, 1] [i.e.,
(ŷ + 1)/2].

We consider four cases to depict different scenarios. The
first two channels are depolarizing channels with Pauli
fidelities (fx = fy = fz) 0.99 and 0.95, respectively. The
other two cases are deviations from the depolarizing chan-
nel. The values here are chosen according to van den Berg
et al. [35], who learn the Pauli fidelities of a supercon-
ducting quantum computer, which is a similar device to
what has been considered in this work. They reported Pauli
infidelities (1 − fi = �i) to be in the range (1–2)× 10−2.

Figure 13 presents χ2 and LM values for the four sce-
narios with respect to increasing circuit depth (d). There
is no symmetry breaking in the two depolarizing chan-
nel scenarios. We measure nonzero symmetry breaking
in the other two cases, although the values appear to be
small compared to the AD channel cases (see Fig. 3). This
matches our theoretical insight and shows that the contri-
bution of realistic Pauli channels to symmetry breaking is
negligible.

Here, we emphasize that there exists Pauli channels
that can induce symmetry breaking much larger than what
we considered for the AD channel. Our observations and
claims following them are based on the noise characteris-
tics of the currently available hardware. According to the
specifications of such devices, the AD channel appears as
the main contributor to symmetry breaking compared to
the depolarizinglike Pauli channels.
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)

)

FIG. 14. Comparison of symmetry breaking measurements
with (4000 shots) and without shot noise. The EQNN-Z model
is simulated under the AD channel with γ = 0.01.

APPENDIX E: IMPACT OF SHOT NOISE

All simulations in the main text of the manuscript
are performed with analytic expectation values omitting
shot noise. All of the hardware runs are performed with
4000 shots. Here in Fig. 14, we present the simulation
of the EQNN-Z model simulated with the AD channel
using noise strength γ = 0.01 to show that the number of
shots chosen is enough to match analytic results with high
confidence.

APPENDIX F: ZERO NOISE EXTRAPOLATION

Zero noise extrapolation is an error-mitigation method
that uses the expectation values measured at different noise
strengths [48]. These values can be extrapolated to the
zero noise level using Richardson’s extrapolation method
to obtain noiseless expectation values.

We perform two separate numerical experiments to
compare the effectiveness of ZNE. In the first one, the
expectation values are computed analytically, while in the
other one, the expectation values are computed using 4000
shots. In both experiments, the base noise level (λ = 1) is
chosen to be γ = 0.01. Then, the experiments are repeated
using increasing levels of γ ∈ {0.015, 0.020, 0.025, 0.030}.
These five expectation values for all noise scale factors
are then extrapolated using Richardson’s extrapolation to
obtain the noiseless expectation values. Results for a vary-
ing number of layers in the presence of AD channel noise
are presented in Fig. 15.

An important side note here is that ZNE may some-
times cause the values to go beyond their allowed values
[e.g., ŷ(x) ∈ [0, 1]], especially in the cases it fails. We have
observed that this is happening often in the case with 4000
shots. To prevent this, we have assigned predictions below
zero to be exactly 0.0 and predictions above one to be
exactly 1.0 in all cases.

)

)

FIG. 15. Symmetry breaking experiments with ZNE in the
presence of AD channel noise (γ = 0.01). The EQNN-Z model
used in Sec. IV B 1 is employed with (4000 shots) and without
(analytical) shot noise.

It is clear that ZNE can improve the accuracy of the
results and bring LM values down significantly in the ana-
lytical case. However, when the number of shots is limited,
ZNE fails and even worsens the results. This highlights the
fact that ZNE requires many shots to work properly and
the number of shots required will inevitably grow expo-
nentially in the number of layers due to noise-induced
BPs.

APPENDIX G: DETAILS ON BINARY
CLASSIFICATION EXPERIMENTS

In this appendix, we give more details on the binary clas-
sification results discussed in Sec. IV A. We start by pro-
viding the training curves for one of the settings. Results
for the EQNN-Z model with d = 3 layers in the pres-
ence of various values of AD channel noise are plotted
in Fig. 16. There is no clear impact to generalization in

FIG. 16. Training curves of the EQNN-Z model with d = 3
layers in the presence of the AD channel.
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TABLE I. LM values of the two-qubit EQNN-XY model for
d = 2 before and after training. The values under the column
“bef. train.” correspond to LM values computed using the ten
random parameter sets used to initialize the model. The val-
ues under “after training” correspond to values computed for
models trained under different values of the AD channel noise
strength and re-evaluated at various noise strengths. The LM val-
ues are presented as averaged over the ten runs and the variance
is reported as the error.

LM (bef. train.) LM (after training with γt)

γ N/A γt = 0.0 γt = 0.01 γt = 0.02

0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
0.01 2.9 ± 0.2 9.9 ± 0.1 10.9 ± 0.0 10.7 ± 0.1
0.02 6.2 ± 0.4 21.2 ± 1.0 22.7 ± 0.6 22.7 ± 0.5
0.03 9.8 ± 0.6 31.6 ± 2.2 33.5 ± 1.6 33.1 ± 1.5
0.04 12.1 ± 0.9 40.3 ± 3.1 42.4 ± 2.1 41.8 ± 1.6
0.05 14.8 ± 1.2 46.1 ± 2.9 47.9 ± 1.7 49.5 ± 2.2

the presence of noise. The overall performance steadily
worsens as the noise level is increased.

Next, we compare the LM measured on the EQNN-
XY model before and after training, both on noiseless and
noisy devices. For this purpose, we consider the EQNN-XY
model with d = 2 layers. Then, we consider ten runs as in
previous classification experiments. We train the model in
the presence of the AD channel with γt ∈ {0.0, 0.01, 0.02}.
After training, we use the trained parameters to evaluate
the LM values in the absence and presence of noise with
γ ∈ {0.0, 0.01, 0.02, 0.03, 0.04, 0.05}. We also consider the
same measurements on the initial random parameters,
which are randomly drawn from the uniform distribution
U ∼ [−π/2,π/2]. The measured values are presented in
Table I.

These results show that the value of LM is larger after
training both with and without noise. This points to the fact
that the symmetry breaking is independent of the training
procedure. The model parameters that result in good per-
formance may result in high symmetry breaking. In gen-
eral, the training procedure is expected to find a reasonable
trade-off between the two to maximize the model perfor-
mance. Furthermore, we observe that the model trained
without noise exhibits similar symmetry breaking com-
pared to the models trained in the presence of noise, when
LM is measured afterwards at the same level of noise. This
indicates that the training procedure is not able to learn
the noise to be able to account for the symmetry break-
ing. Noise-aware training procedures may be an interesting
avenue to explore in future work.

APPENDIX H: HARDWARE EXPERIMENTS

In this appendix, we give details of the hardware exper-
iments. All experiments are performed with the same
settings using 4000 shots and no error-mitigation method

TABLE II. Properties of the physical quantum hardware used
in this work. All values are reported as the median across all
qubits on the chip. The values may change daily with each
calibration.

Name T1(µs) T2(µs)
Gate time

(ns)
Readout

length (ns)

ibmq_cairo 91.99 92.4 321.778 732.444
ibmq_cusco 126.78 78.77 460 4000

is used. The light optimization is used to transpile the cir-
cuits, which includes the SABRE method [49], single-qubit
gate optimization, and dynamical decoupling [50]. The list
of devices, along with some of their properties, is presented
in Table II.

1. Connecting noise model parameters to hardware
specifications

The amplitude damping channel strength can be
obtained as [33]

γ = 1 − e(−t/T1), (H1)

where t is the duration of the circuit. Since we model the
noise after each gate, we can assume that the circuit will
have total time = 1 gate time + readout time. Then we can
use Table II to compute γ for the ibmq_cairo as

γ = 1 − e−1.054 222/91.990 	 0.011. (H2)

FIG. 17. Coupling map of ibmq_cusco and the qubit configu-
ration chosen to run the quantum circuit of 64 qubits. The colors
represent the readout error for each qubit and the two-qubit ECR
gate for each qubit connection.
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FIG. 18. PYTHON code to construct the “PassManager” used for RZX transpilation in the Qiskit implementation. The code is derived
from Ref. [54]. The code is licensed under the Apache License 2.0.

Similarly, if we consider two gates, then we get γ 	 0.015.
We can repeat this for ibmq_cusco. Then, we obtain γ 	
0.035 and γ 	 0.038 for one and two gates, respectively.

We should still pay attention to the fact that there is a
model mismatch in this computation. Amplitude damping
acts continuously on a system, while we model it to act
discretely after each gate. Furthermore, the noise model
assumes that the noise strength is constant and independent
of the circuit depth. Nevertheless, we can approximate the
value of γ with this method and conclude that it will be of
the order of 10−2.

2. Hardware topology

The coupling map of ibmq_cusco used for the 64-qubit
experiments is presented in Fig. 17. We choose a suitable
nearest-neighbor set of qubits to have one-dimensional
connectivity.

3. Pulse-efficient transpilation

In order to run a generic quantum circuit on the real
IBM Quantum hardware, the circuit should first be tran-
spiled into the set of basis gates, which are precalibrated on
the corresponding hardware. The automatic IBM quantum

transpilation only exposes precalibrated fixed-frequency
cross-resonance gates [51] such as CNOT or ECR gates.
Instead of the fixed-frequency gates, we can use the contin-
uous gate native to the quantum hardware. For low rotation
angles, the circuit duration becomes shorter using continu-
ous gates, leading to less decoherence noise on the overall
circuit and, thus, more accurate results.

The calibrated CNOT gates are built with a Gaussian-
Square pulse, which is a flat-top pulse with area

α∗ = ‖A∗‖
[

w∗ +
√

2πσ · erf
(

rf√
2σ

)]
, (H3)

where A∗ is the amplitude, w∗ is the width, rf is the rise-
fall, and σ is the standard deviation of the corresponding
Gaussian flanks [46]. The pulse of the RZX (θ) gate is
created by rescaling the area α as [52]

α(θ) = 2θα∗

π
. (H4)

In the Qiskit implementation, the RZX -based transpila-
tion works as shown in Fig. 18. First of all, we collect all
the consecutive two-qubit operations and consolidate them

(a) (b)

ECR ECR

FIG. 19. Circuit decomposition of the RXX (θ) gate on ibmq_cusco. In (b) θ ′
1 and θ ′

2 are the single-qubit rotation angles computed
by Cartan’s decomposition. (a) ECR decomposition, (b) RZX -based decomposition with the built-in echo.
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(a) (b)

FIG. 20. Pulse schedule for the ECR-based decomposition and pulse-efficient RZX -based decompositions (cf. Fig. 19). The symbol
� indicates the virtual Z gates [55]. (a) Pulse schedule for ECR decomposition. (b) Pulse schedule for RZX decomposition.

into a general two-qubit SU(4) operation. Then, the cor-
responding two-qubit gate is decomposed in terms of the
echoed RZX gates thanks to Cartan’s decomposition [53].
Those gates are calibrated by scaling the Gaussian square
pulses of the fixed-frequency CNOT or ECR gates following
Eq. (H4). Finally, all the single-qubit gates are simplified
and optimized to reduce the total circuit depth.

Figures 19 and 20 display the decomposed circuits of the
RXX gate for ECR-based and RZX -based decomposition
using the basis gates on ibmq_cusco and the corresponding
pulse schedule, respectively. As shown in Fig. 20, the pulse
schedule with RZX decomposition is much shorter com-
pared to that with ECR decomposition, resulting in less
decoherence and better results, as mentioned previously.
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