
PRX QUANTUM 5, 030313 (2024)

Quantum Lego Expansion Pack: Enumerators from Tensor Networks

ChunJun Cao ,1,2,3,* Michael J. Gullans,1 Brad Lackey,4 and Zitao Wang5

1
Joint Center for Quantum Information and Computer Science, NIST/University of Maryland,

College Park, Maryland 20742, USA
2
Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA

3
Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, USA

4
Microsoft Quantum, Redmond, Washington 98052, USA

5
Meta Platforms Inc., Menlo Park, California 94025, USA

 (Received 9 November 2023; revised 1 March 2024; accepted 23 May 2024; published 22 July 2024)

We provide the first tensor-network method for computing quantum weight enumerator polynomials
in the most general form. If a quantum code has a known tensor-network construction of its encoding
map, our method is far more efficient, and in some cases exponentially faster than the existing approach.
As a corollary, it produces decoders and an algorithm that computes the code distance. For non-(Pauli)-
stabilizer codes, this constitutes the current best algorithm for computing the code distance. For degenerate
stabilizer codes, it can be substantially faster compared to the current methods. We also introduce novel
weight enumerators and their applications. In particular, we show that these enumerators can be used to
compute logical error rates exactly and thus construct (optimal) decoders for any independent and identi-
cally distributed single qubit or qudit error channels. The enumerators also provide a more efficient method
for computing nonstabilizerness in quantum many-body states. As the power for these speedups rely on a
quantum Lego decomposition of quantum codes, we further provide systematic methods for decomposing
quantum codes and graph states into a modular construction for which our technique applies. As a proof of
principle, we perform exact analyses of the deformed surface codes, the holographic pentagon code, and
the two-dimensional Bacon-Shor code under (biased) Pauli noise and limited instances of coherent error
at sizes that are inaccessible by brute force.

DOI: 10.1103/PRXQuantum.5.030313

I. INTRODUCTION

Topological and geometrical insights have led to a num-
ber of recent breakthroughs in quantum error correction,
e.g., Refs. [1–3]. On the other hand, quantum weight
enumerator polynomials [4] provide a complementary,
algebraic perspective on quantum error-correcting codes
(QECCs). Quantum weight enumerators contain crucial
information of the code property. A number of variants
and generalizations have also been applied to derive linear
programming bounds [5–7], to understand error detection
under symmetric [8] and asymmetric [9] Pauli errors, and
for generating magic state distillation protocols [10]. In
quantum many-body physics, enumerators, also known as
sector lengths, have been used to study the entanglement

*Contact author: ccj991@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

structure [11] of quantum states. The weight distribu-
tions of operators have also played an important role in
quantum chaos [12]. However, wider applications of the
quantum weight enumerators have been relatively limited
beyond codes or states of small sizes compared to the other
approaches partly to due their prohibitive computational
costs.

Building upon the previous framework of quantum
Lego (QL) [13] and the recently developed tensor-
weight-enumerator formalism [14], we revisit the weight-
enumerator perspective of quantum error correction and
provide a more efficient method to compute them. We
present new results in both formalism and in algorithm
that enable a number of novel applications for quantum
error correction, measurement-based quantum computa-
tion, and quantum many-body physics. On the formal-
ism level, we review abstract weight enumerators and
their corresponding MacWilliams identities [14]. We then
introduce mixed enumerators, higher genus enumerators,
coset enumerators, and generalized enumerators, which
are useful for the study of subsystem codes, decoders,
and logical error probability under general independent

2691-3399/24/5(3)/030313(43) 030313-1 Published by the American Physical Society

https://orcid.org/0000-0002-5761-5474
https://ror.org/02048n894
https://ror.org/05dxps055
https://ror.org/02smfhw86
https://ror.org/00d0nc645
https://ror.org/01zbnvs85
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.030313&domain=pdf&date_stamp=2024-07-22
http://dx.doi.org/10.1103/PRXQuantum.5.030313
https://creativecommons.org/licenses/by/4.0/

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

and identically distributed (i.i.d.) single-qubit error
channels.

On the algorithmic level, we provide a tensor-network
method for computing these quantum weight enumerators
in their most abstract forms. Because one can read off
the code distance from weight enumerators, the problem
of finding them is at least as hard as the minimal dis-
tance problem for classical linear codes, which is NP hard
[15–18]. We show that quantum weight enumerators also
produce optimal decoders, hence the general problem is
at least #P complete, which is the hardness of evaluating
weight enumerators for classical linear codes [19]. How-
ever, more efficient algorithms are possible if additional
structures are known. To the best of our knowledge, our
work constitutes the best current algorithm for generating
quantum weight-enumerator polynomials as long as a good
QL construction for the quantum code is known. Com-
pared to the brute-force method, our algorithm provides up
to a substantial speedup.

The enumerators immediately induce a protocol to com-
pute quantum code distances. To the best of our knowl-
edge, it provides the first such protocol for general quan-
tum codes beyond (Pauli) stabilizer codes, which can
be exponentially faster than brute-force search in many
instances. For nondegenerate Pauli stabilizer codes, the
complexity scaling is roughly comparable with existing
algorithms for classical linear codes under reasonable
assumptions, which implies that it scales exponentially
with the code distance. For degenerate codes, our method
can be exponentially faster in certain instances compared
to known methods based on classical linear codes.

Finally, we introduce novel applications and new
abstract enumerators that have not been discussed in the
literature. We generalize [8] and connect enumerators to
logical error probabilities when the code is subjected to
any i.i.d. single-qudit error channel. We then provide the
optimal decoder for any code that admits a known QL con-
struction and propose a more accurate method to compute
effective distances and error thresholds. Our arguments
hints at a general connection between the hardness of dis-
tance calculation, optimal decoding, and the amount of
entanglement present in the system. Because the speedup
relies on a tensor-network construction of the quantum
code or quantum state in question, we also provide a sys-
tematic method for building all stabilizer codes and graph
states using quantum Lego. This also includes the cases
where the stabilizer group is non-Abelian, such as the
quantum double models. These breakthroughs lift a long-
standing computational barrier for the exact analyses of
quantum codes and resource states in measurement-based
quantum computation. Additionally, we show that the
higher genus weight enumerator of pure states computes
the nonstabilizerness of a state, thus providing an another
efficient method for the challenging task of computing
quantum many-body magic.

FIG. 1. Summary of contributions. Topic dependencies are
red-green-blue color coded. If all three colored topics in the for-
malism section are used, then the color is white. Cyan indicates
green and blue topics. Yellow indicates red and green topics.
Black indicates that it does not use any of the new formalism,
but is a new tensor-network construction. Half shaded grey and
blue indicates it uses grey and blue topics. Half shaded grey and
white indicates that it uses all four formalism topics.

As a proof of principle, we derive weight enumerators,
compute (biased) distances, and obtain exact analytical
expressions for logical error probabilities under depolar-
izing and coherent noise for a few well-known stabilizer
and subsystem codes that are of order a hundred qubits
or so. The novel contributions in this paper are summa-
rized in Fig. 1. Overall, the tensor-network-based approach
to quantum weight enumerators provides both a unified
framework and the practical means for studying code prop-
erties, decoding, entanglement, and magic in quantum
codes and quantum many-body systems at large.

In Sec. II, we review the basics of weight-enumerator
polynomials in the most abstract form and introduce their
generalizations. In Sec. III, we discuss their existing appli-
cations for computing code distance and extend their appli-
cations for error detection under general error channels.
We present novel constructions, such as mixed enumer-
ators, higher genus enumerators, and coset enumerators.
We introduce new applications of these enumerators in
building optimal decoders, in analyzing subsystem codes,
and in computing nonstabilizerness in quantum states.
We show that the error-detection threshold for a large
class of codes have a universal value of 1/6 and sug-
gest improvements for threshold computations based on
existing sampling-based methods when used in conjunc-
tion with enumerators. Then we discuss the computational
cost of this method and provide some entanglement-based
intuition in Sec. V. As a proof of principle, and to provide

030313-2

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

novel analysis of existing codes, we study some com-
mon examples and explain their significance in Sec. VI.
In Sec. VI A we construct various weight enumerators of
the (rotated) surface code and its deformations. We com-
pare their performances under biased noise and coherent
error channels. In Sec. VI B we provide a new tensor-
network construction of the two-dimensional (2D) color
code using Steane codes as basic building blocks and com-
pute its enumerators. In Sec. VI C we study different bulk
qubits with mixed enumerators in the holographic HaPPY
code. We obtain their (biased) distances and performance
under (biased) Pauli noise. In Sec. VI D we apply the
mixed enumerator technology to the Bacon-Shor code and
showcase its computation for subsystem codes. Finally, we
make some summarizing comments in Sec. VII and pro-
vide insights on the connection with the stat mech model
and graph states.

We prove the relevant theorems, discuss technical
implementations and clarify practical simplifications in
the Appendices. Although not stated explicitly, the dis-
tance finding protocol introduced in Ref. [20] effectively
computes the Shor-Laflamme enumerators for a subset
of stabilizer codes known as local tensor-network codes.
Their approach also shares a number of similarities with
our own, which we explain in Appendix C 3. For such
stabilizer codes, our protocol generally offers a quadratic
speedup in the form of reduced bond dimensions. In the
regime where the stabilizer code has a high rate and code
words are highly entangled, our method can lead to an
exponential advantage using the quantum MacWilliams
identities.

II. GENERAL FORMALISM

Throughout the paper, we represent multi-indexed
objects like vectors and tensors in bold face letters A, B
to avoid clutter of indices. Scalar objects are written in
regular fonts like A, B.

A. Abstract scalar weight enumerator

Abstract scalar weight enumerators introduced in Ref.
[14] include common enumerators discussed in the liter-
ature [4,6,9]. Let E be an error basis on Hilbert space H
with local dimension q. A weight function is any function
wt : E → Z

k
≥0. We extend this (without introducing new

notation) to wt : En → Z
k
≥0 by

wt(E1 ⊗ · · · ⊗ En) = wt(E1)+ · · · + wt(En). (2.1)

For a k tuple of indeterminates u = (u1, . . . , uk) we write

uwt(E) = uwt(E)1
1 · · · uwt(E)k

k . (2.2)

We can then define abstract enumerators of Hermitian
operators M1, M2 for a weight function wt as

A(u; M1, M2) =
∑

E∈En

Tr(EM1)Tr(E†M2)uwt(E)

B(u; M1, M2) =
∑

E∈En

Tr(EM1E†M2)uwt(E).
(2.3)

These polynomials satisfy a quantum MacWilliams iden-
tity. Let us restrict to the case where our error basis satisfies
EFE†F† = ω(E, F)I for a phase ω(E, F). This includes
the Pauli basis (of local dimension q) as well as general
Heisenberg representations. Consider the (polynomial-
valued) function f (E) = uwt(E) for a weight function wt :
E → Z

k
≥0. Then the discrete Wigner transform of this

function is

f̂ (D) = 1
q

∑

E

ω(E, D)f (E) = 1
q

∑

E

ω(E, D)uwt(E).

(2.4)

Theorem 1. Suppose there exists an algebraic mapping
�(u) = (�1(u), . . . ,�k(u)) such that

�(u)wt(D) = f̂ (D) = 1
q

∑

E

ω(E, D)uwt(E). (2.5)

Then for any M1, M2 we have

B(u; M1, M2) = A(�(u); M1, M2). (2.6)

Proof. See Ref. [14]. �

The map � is a generalization of the discrete Wigner
transform. For the remainder of the work, we take E to
be the Pauli group. By considering different forms of the
variable u, abstract weight function wt, and transformation
�, one can recover existing scalar enumerator polynomi-
als and their MacWilliams identities. For completeness, we
review a few common enumerators in Appendix A that are
used in this work.

B. Generalized abstract weight enumerators

Slightly extending the form in the previous section, we
define a novel generalized weight enumerator.

Ā(u; M1, M2) =
∑

E,F∈En

Tr[EM1] Tr[F†M2]uwt(E,F),

B̄(u; M1, M2) =
∑

E,F∈En

Tr[EM1F†M2]uwt(E,F),
(2.7)

where wt(E, F) is an abstract function of the operators
E, F and u is a set of variables. It has no obvious classical

030313-3

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

analogues as far as we know. These types of enumerators
are useful in analyzing qudit-wise general error chan-
nels. We further elaborate this connection in Sec. III B
for coherent noise and other single-qubit errors such as
amplitude damping channels. We are not able to iden-
tify MacWilliams identities for these types of enumerator
polynomials in general.

C. Tensor weight enumerators

One can generalize the above scalar enumerator formal-
ism to vectors and tensors. The reasons for this extension
is twofold: (1) the novel vector or tensor enumerators can
probe code properties unavailable to their scalar counter-
parts and (2) the cost for computing scalar enumerators is
generally expensive and scales exponentially with n − k.
However, by contracting suitable tensor weight enumer-
ators, one can break down the computation of scalar enu-
merators into manageable pieces and render the process far
more efficient. In this section, we briefly review the basic
definitions of these vectorial and tensorial enumerators and
introduce their graphical representations.

From Ref. [14], we define tensor enumerators

A(J)(u; M1, M2) =
∑

E,Ē∈Em

∑

F∈En−m

Tr((E ⊗J F)M1)

× Tr((Ē† ⊗J F†)M2)uwt(F)eE,Ē , (2.8)

B(J)(u; M1, M2) =
∑

E,Ē∈Em

∑

F∈En−m

Tr((E ⊗J F)M1

× (Ē† ⊗J F†)M2)uwt(F)eE,Ē , (2.9)

where {eE,Ē} are orthonormal basis vectors of a q4-
dimensional vector space. Here, wt(F) is an abstract
weight function we discussed in the previous section and
u can be an n tuple of variables, and J ⊆ {1, . . . , n} is a
set of m qudits and locations. We write ⊗J denotes the
tensor product of length m Pauli string E interlaced with
Pauli string F of length n − m at the positions marked in
the set J . Later we will also use En−m[d] as the set of Pauli
operators F on n − m sites that have weight d.

To give a more concrete illustration of these objects
consider the case of a rank-1 tensors (m = 1), which we
refer to as vector enumerators. For simplicity consider the
usual (quantum) Hamming weight where u = z and wt(E)
returns the number of nonidentity tensor factors in the
Pauli operator E. For J = {j } the vector enumerators along
leg j read

A(j)(z; M1, M2) =
∑

E,Ē∈E

n∑

d=0

A(j)d (E, Ē; M1, M2)zdeE,Ē ,

(2.10)

FIG. 2. Vector enumerators.

B(j)(z; M1, M2) =
∑

E,Ē∈E

n∑

d=0

B(j)d (E, Ē; M1, M2)zdeE,Ē ,

(2.11)

with coefficients (weights) here are defined as

A(j)d (E, Ē; M1, M2)

=
∑

F∈En−1[d]

Tr((E ⊗j F)M1)Tr((Ē† ⊗j F†)M2),

(2.12)

B(j)d (E, Ē; M1, M2)

=
∑

F∈En−1[d]

Tr((E ⊗j F)M1(Ē† ⊗j F†)M2). (2.13)

The En−1[d] here is the set of operators that have weight
d on the n − 1 qubits except the j th one, and E ⊗j F is a
Pauli string that has E inserted on the j th position of the
Pauli string:

E ⊗j F = F1 ⊗ F2 ⊗ . . .Fj −1 ⊗ Ej ⊗ Fj +1 ⊗ · · · ⊗ Fn.

Formally, it is also convenient to express these coefficients
in coordinates, once we have chosen a standard basis {êj }.
For example, one can denote

A(j)d (E, Ē; M1, M2) → Aj
d, (2.14)

B(j)d (E, Ē; M1, M2) → Bj
d, (2.15)

by identifying j = 0, . . . , q4 where E, Ē each has q2 dis-
tinct values. For simplicity, we abuse notation and use j
as an open index that labels the dangling leg that comes
from the j th qudit. The corresponding vector enumer-
ator polynomials are Aj (z; M1, M2), Bj (z; M1, M2), which
we represent graphically as rank-1 tensors in Fig. 2.

In the same vein, the coefficients for a tensor enumerator
of rank m may be written as
∑

d

A(J)d (E, E; M1, M2)zd →
∑

d

Aj1...jm
d zd = Aj1,j2,...,jm(z),

(2.16)

∑

d

B(J)d (E, E; M1, M2)zd →
∑

d

Bj1...jm
d zd = Bj1,j2,...,jm(z),

(2.17)

030313-4

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 3. WEP from tracing [[4, 2, 2]] codes.

where each tensor coefficient Aj1,j2,...,jm(z), Bj1,j2,...,jm(z)
is a scalar enumerator. A graphical representation of
Aj1,j2,...,jm(z) is given below in Fig. 4 (top left).

In practice, it is often sufficient to consider reduced
versions of these enumerators that only keep the diago-
nal terms with E = Ē, which we represent using the same
graphical form, but now with reduced bond dimension j� =
1, . . . , q2. Such enumerators are known as the reduced enu-
merators and they are sufficient for studying Pauli errors in
stabilizer codes. See Ref. [14] and Appendix B 3. In this
work, we use the color blue to denote A-type enumera-
tors and orange to denote B-type enumerators. We often
drop the variable z or u to avoid clutter, but it should be
understood that the tensor components of these objects are
polynomials.

One can also easily define other tensor enumerators such
as the double and complete enumerators by choosing dif-
ferent expressions for the abstract forms u and weight
functions wt(E). An extension to the generalized abstract
tensor enumerator is also possible. Details are found in
Appendix B.

D. Tracing tensor enumerators

Let us define a trace operation ∧j ,k over the tensor enu-
merators, which connects any two legs j , k in the tensor
network. Graphically, it is represented by a connected edge

FIG. 4. Graphical representation of a type-A tensor enumerator
(box). Tracing the type-A tensors as in Eq. (19). Green region can
be seen as Aj1,j2,...,jl ,...,jm(u). Traced legs are red.

in the dual enumerator tensor network. Acting on the basis
element eE,Ē we define

∧j ,keE,Ē = eE\{Ej ,Ek},Ē\{Ēj ,Ēk} (2.18)

when Ej = E∗
k and Ēj = Ē∗

k and zero otherwise.
Each contraction can be understood as tracing together

two tensors. However, we can also view the two tensors as
a single tensor enumerator (using the tensor product) then
performing a self-trace, which is necessary and sufficient
to build up any tensor network. Informally, the trace of the
tensor enumerator is the tensor enumerator of the traced
network, which is formally stated as the following.

Theorem 2. Suppose j , k ∈ J ⊆ {1, . . . , m}. Then

∧jkA(J)(u; M1, M2) = A(J\{j ,k})(u; ∧j ,kM1, ∧j ,kM2),

and similarly for B(J).

Proof. See Theorem 7.1 of Ref. [14]. �

Theorem 2 allows us to compute the weight enumerator
of a contracted tensor network by contracting the tensor
enumerators of each QL block. For example, to construct a
scalar enumerator given the QL representation of an encod-
ing map in Fig. 3, we first lay down its “shadow” that is
the tensor enumerator for each [[4, 2, 2]] atomic code. Then
we trace together these blocks following the same network
connectivity.

The component form of contracting tensor enumerators
can be expressed as the conventional sum over indices for
a tensor trace. For reduced enumerators at q = 2 this reads,

Ajl+1,...,jm,rl+1,...,rk (u)

=
∑

j1,j2,...,jl

Aj1,j2,...,jl,...jm(u)Aj1,j2,...jl,rl+1...rk (u) (2.19)

and similarly for B(u; M1, M2), where the only difference
from a traditional tensor network is the variables u asso-
ciated with the polynomial. One can connect these tensors
sequentially; at each step an atomic code is glued to the
(generically) bigger connected component, Fig. 4. For the
full tensor enumerator, or when q > 2, we need to take
more care in raising and lowering the indices to recast them
into the proper covariant and contravariant forms before
summing over repeated indices.

While it is natural to use symbolic packages to imple-
ment this formalism, we will also elaborate in Appendix C
how to implement these objects as the usual multilinear
function without symbolic packages using conventional
tensor-network methods.

030313-5

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

III. APPLICATIONS OF WEIGHT
ENUMERATORS

A. Code distance from enumerators

The genesis of quantum weight enumerators came from
the case M1 = M2 = �, the projection onto a stabilizer
code, and uwt(E) = zwt(E). After an appropriate normal-
ization, the enumerators Anorm(z) = A(z)/K2, Bnorm(z) =
B(z)/K encode the weight distributions of stabilizers (log-
ical identities) and normalizers (all logical operators) of
the code, respectively [4]. The normalized polynomi-
als Anorm(z), Bnorm(z) have B0 = A0 = 1. It follows that
Bnorm(z)− Anorm(z) yields the weight distributions of non-
trivial logical Pauli operators. Therefore, the smallest d
for which Bd 	= Ad is thus the (adversarial) code distance.
This observation also generalizes to any quantum code [8].
Formally we capture this in the following result for later
reference.

Theorem 3. Let C be a quantum code, �C be the
projection onto its code subspace and

A(z;�C ,�C) =
∑

d

Adzd, (3.1)

B(z;�C ,�C) =
∑

d

Bdzd (3.2)

be its weight enumerator polynomials properly normal-
ized. Then

(a) A0 = B0 = 1,
(b) Bd ≥ Ad ≥ 0 for all d, and
(c) the code distance is t + 1 where t is the largest

integer for which Bi = Ai for all 0 ≤ i ≤ t.

A similar version holds for the refined enumerator, as
shown by Ref. [9], from which one can determine the
biased distances for the code (Theorem 6).

As one can read off the distances from the enumerators,
our tensor-network method provides a straightforward way
to compute and verify adversarial distances for all quan-
tum codes whose QL description is known. This provides
the first viable method to compute distances for a quantum
code that need not be a stabilizer code.

B. Error detection

With weight enumerators in hand, we can easily obtain
the probability for uncorrectable errors [8]. For any quan-
tum code C, let�C be the projector onto the code subspace,
and write the orthogonal projector onto C⊥ as �⊥

C . We
say an error E uncorrectable if it cannot be detected,
that is �CE�C ∝ �C , and is not proportional to the log-
ical identity. Operationally, one performs a measurement
with respect to (�C ,�⊥

C). An error is detected if the

result is contained in C⊥. For stabilizer codes, this corre-
sponds to errors with trivial error syndrome that perform a
nonidentity logical operation.

Consider depolarizing channel with unbiased noise,
which acts identically on any single qubit with

ρj → (1 − 3p)ρj + pX ρj X + pYρj Y + pZρj Z, (3.3)

where ρj is the reduced density matrix on site j . For stabi-
lizer codes, it is easy to check that the probability of the
random Pauli errors coinciding with a nontrivial logical
operator is nothing but pne = (Bnorm − Anorm)(z = p , w =
1 − 3p) because a Pauli error with weight d occurs with
probability pd(1 − 3p)n−d. As in Theorem 3, we have
taken the enumerators to be normalized such that A0 =
B0 = 1. In general, Ref. [8] shows that the error probability
for any code with dim C = K is

pne = K
(K + 1)

(
Bnorm(p , 1 − 3p)− Anorm(p , 1 − 3p)

)
.

(3.4)

Note the overall multiplicative factor compared to our ini-
tial estimation using stabilizer code because some logical
errors takes the initial codeword to a nonorthogonal state,
but only the orthogonal component is counted as nontrivial
logical error in this construction.

We can extend the argument of Ref. [8] to more general
error models. Suppose the error channel is given by

ρj →
q2∑

i=1

Kiρj K†
i , (3.5)

which acts identically across all physical qudits, then on
the whole system, the errors act as

E(ρ) =
∑

i

KiρK†
i , (3.6)

where

Ki = Ki1 ⊗ Ki2 ⊗ · · · ⊗ Kin , (3.7)

and i is summed over all q2-nary strings of length n. It is
important to note that for each i, the Kraus operator and its
conjugate are the same, there are no cross terms.

Theorem 4. The nondetectable error probabilities of any
error channel with the form of Eq. (25) is given by

pnd = K
K + 1

(1
K

∑

i

Tr[K†
i�Ki�]

− 1
K2

∑

i

Tr[K†
i�] Tr[Ki�]

)
(3.8)

for a quantum code with dimension K with projector �.

030313-6

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

Proof. See Appendix D. �

For instance, in the depolarizing channel Eq. (22) each
Ki is simply a Pauli string E ∈ En weighted by pwt(E)(1 −
3p)n−wt(E). Substituting we find that the two terms in
Eq. (27) are simply the enumerator polynomials A and B
evaluated at z = p and w = 1 − 3p as expected.

1. General error channels in the Pauli basis

For each Ka, its Pauli decomposition Ka = ∑
E ca

EE
allows us to re-express the error probability in terms of the
generalized weight enumerators in Sec. II B. In such cases,
we can reorganize the sum over i by Pauli types. Again,
let the noise model be single-qubit errors that are identical
across all physical qubits such that

ρ →
q2∑

i

KiρK†
i =

∑

P,P̄

kPP̄PρP̄†. (3.9)

Let us label each PP̄ pair as G so that |{G}| = q4 and
so write kG = kPP̄. For example, {G} = {II , IX , XI , IZ,
ZI , XX , ZZ . . . } (all 16 arrangements) for q = 2.

Then let wtnG be a weight function

wtnG(E ⊗ F) =
n∑

i=1

wtG(Ei ⊗ F†
i), (3.10)

where

wtG(Ei ⊗ Fi) =
{

1 if Ei ⊗ Fi = G
0 otherwise,

(3.11)

and E ⊗ F = ⊗
i Ei ⊗ Fi. Thus wtnG counts the number of

times G = P ⊗ P̄ appears in a string E ⊗ F where E, F
each has length n. The relevant terms can then be expanded
in this basis as

B({kG};�,�) =
∑

i

Tr[Ki�K†
i�]

=
∑

E,F∈En

Tr[E�F†�]
∏

G

k
wtnG(E⊗F)
G ,

(3.12)

A({kG};�,�) =
∑

i

Tr[Ki�] Tr[K†
i�]

=
∑

E,F∈En

Tr[E�] Tr[F†�]
∏

G

k
wtnG(E⊗F)
G .

(3.13)

We can then distill a set of enumerators sufficient in
describing the effect of all error channels

Ā(uG; M1, M2) =
∑

E,F∈En

Tr[EM1] Tr[F†M2]uwtnG(E⊗F),

(3.14)

B̄(uG; M1, M2) =
∑

E,F∈En

Tr[EM1F†M2]u
wtnG(E⊗F)
G , (3.15)

where

u
wtnG(E⊗F)
G = u

wtnII (E⊗F)
II u

wtnIP1
(E⊗F)

IP1
· · · u

wtnPqPq (E⊗F)

PqPq︸ ︷︷ ︸
all q4 terms

.

We see this is nothing but a specific form of the general-
ized enumerator we introduced in Sec. II B. Note that we
need only to compute the relevant enumerators once. The
effects of different error models are now completely cap-
tured by the polynomials and can be evaluated by inserting
the relevant values of cG.

By substituting the proper expressions for Kraus oper-
ators, we are now in a position to rephrase all identical
single qubit error channels in the form of weight enumer-
ators. In practice, computing the generalized enumerator
that accommodates arbitrary error channels can be rather
expensive. Even for qubits, we would in general require
16 different variables in a polynomial. Fortunately for com-
mon channels, the computation simplifies and it is possible
to express them with a much smaller set. As the Kraus rep-
resentations are not unique it may be possible that some
representations yield more succinct expressions than oth-
ers. For pedagogical reasons, let us apply this to a few
common error channels on qubits.

2. Biased Pauli errors

For a noise model where bit-flip (X) error and phase
(Z) error can occur independently on physical qubits with
probability px, pz, respectively. The error channel is

ρ → (1 − px − pz + pxpz)ρ + (px − pxpz)X ρX

+ pxpzYρY + (pz − pxpz)ZρZ.

For stabilizer codes, the probability that the Pauli error
coincides with a nontrivial logical operation is given by
the normalized double weight enumerator of [9]

(D − D⊥)(x, y, z, w), (3.16)

evaluated at x = 1 − px, y = px, z = 1 − pz and w = pz.
Applying Theorem 4, we see that the actual noncorrectable
logical error probability is given by Eq. (35) but again
modified by multiplicative factor K/(K + 1) when taken
into account the effect of nonorthogonal states.

030313-7

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

Similarly, a channel where all Pauli errors have different
independent error probabilities

ρ → (1 − px − py − pz)ρ + pxX ρX + pyYρY + pzZρZ

have noncorrectable error probability given by the com-
plete enumerators,

pne = K
K + 1

(
F(px, py , pz, 1 − px − py − pz)

− E(px, py , pz, 1 − px − py − pz)
)

. (3.17)

For definitions of D, D⊥, E, F , see Refs. [9,14] or
Appendix A.

3. Coherent error

Pauli errors are in some sense classical; for a coherent
quantum device, unitary errors are also relevant. Compared
to Pauli errors, studies of the impact of coherent errors
are less common [21–23] partly hampered by the com-
putational costs. Nevertheless various methods exist. Here
we examine a special case of single-qubit coherent error
and express it in terms of weight-enumerator polynomi-
als. Suppose we have single qubit and qudit coherent error
applied identically to all physical qubits

ρi → UiρiU
†
i (3.18)

acting on each qubit i, where each unitary can be decom-
posed as

Ui = aIi + bXi + cYi + dZi. (3.19)

The logical error probability is

p̄nd = K
K + 1

(1
K

Tr[U†�U�] − 1
K2 Tr[U†�] Tr[U�])

)
.

(3.20)

Expanding U = ⊗
i Ui in the Pauli basis, we have U† =∑

E k∗
EE and U = ∑

F kFF where we sum E, F over all
length n Pauli strings. As coefficients kE , kF depend only
on the number of Paulis that appear in F

kF = an−w(F)bwx(F)cwy (F)dwz(F), (3.21)

each term in the overall probability is

Tr[U†�U�] =
∑

E,F∈En

Tr[E�F�]k∗
EkF

=
∑

E,F∈En

Tr[E�F�]an−w(F)bwx(F)

× cwy (F)dwz(F)ān−w(E)b̄wx(E)c̄wy (E)d̄wz(E)

(3.22)

Tr[U†�] Tr[U�] =
∑

E,F∈En

Tr[E�] Tr[F�]k∗
EkF

=
∑

E,F∈En

Tr[E�] Tr[F�]an−w(F)bwx(F)

×cwy (F)dwz(F)ān−w(E)b̄wx(E)c̄wy (E)d̄wz(E).
(3.23)

These are nothing but the generalized versions of the
complete weight enumerators

A(u1, u2; M1, M2) =
∑

E,F∈En

Tr[E†M1] Tr[FM2]uwt(F)
1 uwt(E)

2 ,

(3.24)

B(u1, u2; M1, M2) =
∑

E,F∈En

Tr[E†M1FM2]uwt(F)
1 uwt(E)

2

(3.25)

evaluated at M1 = M2 = �, w1 = a, x1 = b, y1 = c, z1 =
d and w2, x2, y2, z2 at their complex conjugates. To sim-
plify the notation, we absorbed each 4 tuple of variables
into abstract variables ui and weight functions wt(·) such
that

uwt(E)
i = xwtx(E)ywty (E)zwtz(E)wn−wt(E). (3.26)

4. Amplitude damping and dephasing channels

Amplitude damping channel is relevant for supercon-
ducting qubits. Its has a Kraus representation with oper-
ators

K0 =
(

1 0
0

√
1 − γ

)

= 1
2
(1 +

√
1 − γ)I + 1

2
(1 −

√
1 − γ)Z,

K1 =
(

0
√
γ

0 0

)
=

√
γ

2
X + i

√
γ

2
Y

(3.27)

In this case, we only need to keep eight distinct variables
{uII , uIZ , uZI , uZZ , uXX , uXY, uYX , uYY} as the remaining coef-
ficients kG are 0. In fact, the nonzero coefficients further
satisfy kIZ = kZI = λIλZ , kPP = |λP|2, kXY = k̄YX = λX λ̄Y
where λP are the coefficients in the Pauli expansion of
the Kraus operators. Therefore, the end polynomial would
only require four independent variables {λI , λX , λY, λZ}. In
other words, when summing the polynomial in practice, we
only sum over the qudit strings of local dimension 4 where
the coefficients for G are nonvanishing. Furthermore, one

030313-8

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

can rewrite the nonzero coefficients as
∏

G

kwtG(E⊗F)
G =

∏

P

λ
wtP(E)
P

∏

P̄

λ̄
wtP̄(F)
P̄ , (3.28)

which depends on four parameters and is no more compli-
cated than the complete enumerator.

For a dephasing channel, K0 remains the same while

K1 = √
γ

(
0 0
0 1

)
=

√
γ

2
(I − Z). (3.29)

Expanding and simplifying, we find that it only depends on
two nonzero coefficients cII = (1 + √

1 − γ)/2 and cZZ =
(1 − √

1 − γ)/2. Thus this is even easier than computing
the original weight enumerator! Furthermore, instead of
summing over the full Pauli group, we only need to sum
over E ∈ Zn where Z is the set of Pauli strings that only
contains I or Z.

C. Effective distance

While adversarial distance is a useful measure of the
goodness of a code, it is also informative to devise more
refined measures like effective distances [24,25] that serve
as useful benchmarks of code performance with respect to
different error profiles. For example, recall that Ref. [25]
defines an effective distance

d′ = N−1 log(p0(1 − p)−n) (3.30)

for codes under depolarizing channel, where p = pX +
pY + pZ and N is some normalization factor that depends
on the physical error probabilities. In the original
definition, p0 is the probability where the Pauli noise
implements the most likely nontrivial logical operator.
Using enumerators, we can also produce more precise
effective distances under depolarizing noise, where p0 is
replaced by the probability pne where Pauli noise imple-
ments any nontrivial logical operator. Similar measures
have been used to quantify effective code performance
[24,26]. For example, one can define another effective
distance for some c1, c2

deff = c1 log(pL)+ c2 (3.31)

such that deff is higher for lower error rate pL.
Similar to Ref. [26], we also use the normalized logical

error probability

pnorm
L = pL/ps=0 (3.32)

as a measure of code performance throughout this work.
Here ps=0 is the probability of error nondetection and bet-
ter protection corresponds to a smaller normalized error
rate. This is not a distance measure and it corresponds
to the probability of uncorrectable error where the “error-
correction” protocol simply discards the quantum state
upon detecting an error.

D. Subsystem codes and mixed enumerator

The above applications are general and can be used for
any quantum code. Let us now focus on a few more appli-
cations that are most closely tied to stabilizer codes and
subsystem codes.

Mixed enumerators are made by tracing together tensor
enumerator of both A(u) and B(u) types.

Proposition 1. Let M (u) be a mixed enumerator poly-
nomial obtained from tracing tensor enumerators of A and
B types. MacWilliams transform on M (u) produces a dual
polynomial M⊥(u), which, up to normalization, can be
built from the same tensor network where we exchange the
A- and B-type tensors.

Proof. The MacWilliams transform commutes with
trace as long as the generalized Wigner transform is its own
self-inverse up to a constant multiple. This is clearly the
case when the tensor enumerators are diagonal, when the
generalized Wigner transform reduces to regular Wigner
transform. The same must also hold true for the general-
ized transform, as the MacWilliams transform commutes
with trace when the tensor enumerators are not mixed. �

A key application is finding the distance of subsystem
codes where we need to enumerate all gauge-equivalent
representations of the logical operators. It is convenient to
think of the subsystem code as a stabilizer code encoding
multiple logical qubits where some of them are demoted to
gauge qubits. To obtain its distance, we first enumerate all
logical operators, which is given by B(u) of the stabilizer
code. This can again be obtained by A(u) and applying
the MacWilliams identity. We then need to enumerate all
gauge-equivalent logical identities of this subsystem code
I(u). Technical details in obtaining I(u) can depend on the
specific tensor network in question. However, it is rather
straightforward if all logical legs in the network are inde-
pendent, i.e., the encoding map defined by the QL tensor
network has trivial kernel. For example, this is the case for
holographic code, but not for the Bacon-Shor code tensor
network.

For encoding tensor networks that have trivial kernel,
we can divide the input legs, which we call logical legs in
Ref. [13], into two categories: (i) the ones where operator
pushing produce logical operators, which we now call logi-
cal legs, and (ii) the ones that alter the state of gauge qubits,
which we now call gauge legs. Let us first assume that each
tensor has only one such an input leg that is either logical
or gauge, which is the case for the holographic code. To
enumerate the logical identity, we construct a mixed enu-
merator—for each tensor in the QL network whose input
leg is logical, we contract the tensor enumerator A(u) of
the local atomic code (e.g., the [[5, 1, 3]] code in HaPPY)
on the corresponding vertex in the enumerator tensor net-
work. If the tensor in the QL network has a gauge leg,

030313-9

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

FIG. 5. Left: tensor network for a mixed enumerator of the
holographic HaPPY pentagon code, where blue indicates inser-
tion of A(z) and orange B(z). Right: different tensor networks
compute the different distribution of logical operators. The same
exercise can be repeated for logical qubits at different distances
from the center (labeled 0,1,2,3,4).

then we contract the B(u) tensor enumerator of the local
atomic code (Fig. 5). The resulting tensor network enu-
merates the weights of all gĪ for g ∈ G. Then the difference
C̃(u) = B(u)− I(u) between these enumerators only con-
tains the weights of nonidentity logical operators, which
informs us about the distance. This is also known as the
word distance [27,28].

Similarly, if we want to compute the distance of a log-
ical qubit in the stabilizer code (i.e., all logical, no gauge
qubits), then we only enumerate the stabilizer equivalent
logical operations that act nontrivially on that qubit. For
this we insert B(u) on the vertex containing the logical
qubit of interest and A(u) everywhere else. This enu-
merator now only counts the stabilizer equivalent of that
particular logical qubit, instead of all logical qubits, like
B(u). This can be quite relevant in the holographic code,
where the central bulk qubit can have a distance that scales
with system size, whereas the ones on the peripheral have
constant distance [27].

For instance, in the holographic HaPPY code, Fig. 5, one
can treat the system as a stabilizer code. Then the stabilizer
distance can be determined by counting all nonidentity
logical operators associated with a particular bulk qubit. In
the figure we choose the logical qubit living on the central
tile. The stabilizer distance is then the minimum power of
z in C0(z) for which the coefficient is nonzero. If we treat
it as a subsystem code, then the distance should instead be
counted by including the logical operators of other bulk
qubits as gauge qubits using the enumerator C̃0(z).

If each tile has multiple input legs, some of which are
gauge and others logical, we then need to make slight
modifications to the tensor enumerators used in the above
prescription. For a word distance computation, we send
A(u) → A′(u) such that A′(u) enumerates all logical iden-
tity operators of the local atomic code, e.g., the [[4, 2, 2]]
atomic code on even columns of a 2D Bacon-Shor code
tensor network (Fig. 20). In other words, we enumerate
all elements of the non-Abelian gauge group G. For Pauli
operators, this modification is rather straightforward as we

simply count the number of operators that act as identity
on the logical legs. More precisely, let

�′ = 1
|G|

∑

g∈G
g (3.33)

and prepare A′(u) = A(J)(u; M1 = �′, M2 = �′) as a
reduced tensor enumerator.

For stabilizer distance computations, we send B(u) →
B′(u), the latter of which enumerates the number of logical
operators that act as the identity on gauge qubits. This can
be prepared by a similar reduced tensor enumerator such
that B′(u) = A(J)(u; M1 = �′′, M2 = �′′) where

�′′ ∝
∑

g∈G′
g (3.34)

and G ′ is generated by the center of G and logical operators
{Llogical ⊗ Igauge} that act as identity on the gauge qubits. In
other words, we construct a new gauge group G ′ where we
swapped the roles of the gauge and logical qubits in the
original code defined by G.

Finally, for a tensor network whose encoding map has a
nontrivial kernel, i.e., the logical legs are interdependent,
one should take extra care in applying the above recipe for
building a useful mixed enumerator. For instance, in the
Bacon-Shor code tensor network (Fig. 20), multiple input
legs are interdependent and several of them correspond to
the same logical or gauge degree of freedom. One then
needs to make sure that the type of the legs (gauge vs log-
ical) is being tracked consistently across different tensors
when contracting the tensor network.

Instead of the mixed enumerators introduced above, we
can also directly use tensor enumerators to study subsys-
tem codes. This is similar to the approach by Refs. [14,20].
The recipe for building a relevant tensor enumerator of the
code is quite similar. For each tensor that contains the log-
ical leg and qubit, we put down a tensor enumerator B(z)
of the encoding tensor at that node (e.g., the tensor of the
[[6, 0, 4]] state in the HaPPY code) in the tensor network,
except now that we keep the logical index open in addition
to the contracted legs of the tensor. The components of the
resulting tensor enumerator B(z) now contains the weight
distribution for each logical Pauli operator. This allows us
to read off the distances for each logical operator, after sub-
tracting off the part that enumerates the logical identity by
fixing certain tensor indices to 0. This can be performed
efficiently if the number of open logical legs is not too
many although the number of gauge qubits can still be
high [29].

E. Higher genus enumerator

There is a well understood link between multiple weight
enumerators of classical codes and modular forms in num-
ber theory, wherein the degree of the modular form is

030313-10

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

the number of codewords whose weight is being enumer-
ated [30,31]. Consequently, that number is now typically
referred to as the “genus” of the enumerator. Just as in the
classical case, we can extend this to higher genus quantum
weight enumerators by introducing weight functions that
count the number of factors where tuples of error operators
realize specific error patterns. We can also study subsystem
codes using genus two enumerators.

For concreteness, consider genus g = 2. We introduce
q4 variables u = (uG1,G2 : G1, G2 ∈ E), and weight func-
tion wt : En → Z

q4
that counts factors

wt(E, F) = #{i : Ei = G1, Fi = G2, G1, G2 ∈ E}.
(3.35)

The genus-2 weight enumerators of Hermitian operators
M1, M2 on H ⊗ H are

A(2)(u; M1, M2)

=
∑

E,F∈En

Tr((E ⊗ F)M1)Tr((E ⊗ F)†M2)uwt(E,F)

(3.36)

B(2)(u; M1, M2)

=
∑

E,F∈En

Tr((E ⊗ F)M1(E ⊗ F)†M2)uwt(E,F). (3.37)

Notice the coefficients of these enumerators are just what
would use for a systems with 2n factors. The interesting
addition is the additional variables to track correlations in
the weights of E and F . Indeed if we were to ignore these
correlations and evaluate uG1,G2 = uG1uG2 then we recover
the ordinary enumerators:

A(2)({uG1uG2}; M1 ⊗ M ′
1, M2 ⊗ M ′

2)

= A({uG}; M1, M2) · A({uG}; M ′
1, M ′

2),

= A({uG}; M1 ⊗ M ′
1, M2 ⊗ M ′

2), (3.38)

and similarly for B(2).
To capture new information in the higher genus enumer-

ators, we evaluate their variables in interesting ways. For
example, consider the case where M1 = M2 = �1 ⊗�2
where �1 and �2 are projections that need not commute.
Evaluating

uG1,G2 =
{

uG1 if G1 = G2
0 if G1 	= G2, (3.39)

we have

uwt(E,F) =
∏

G1,G2

u
wtG1,G2 (E,F)
G1,G2

=
{∏

G uwtG(E)
G if E = F

0 if E 	= F .
(3.40)

Thus

A(2)(u;�1 ⊗�2) =
∑

E∈En

Tr(E�1)
2 Tr(E�2)

2uwt(E),

(3.41)

B(2)(u;�1 ⊗�2) =
∑

E∈En

Tr(E�1E�1)

× Tr(E�2E�2)uwt(E). (3.42)

In particular, consider a subsystem code whose gauge
group decomposes as G = G1 ∪ G2 where each of G1 and
G2 are maximal Abelian subgroups and C(G) = G1 ∩ G2.
This is the case for generalized Bacon-Shor codes [32]
where G1 consists of the X -type generators of G and the
row operators, while G2 is the Z-type generators and the
column operators [33]. Each of G1 and G2 could be con-
sidered a stabilizer in its own right, however the weight
enumerators of these have little to do with subsystem code
of G.

Nonetheless, consider them as stabilizers of codes and
write the projections onto their code subspaces as �1 =
1/2n−k1

∑
S∈G1

S and �2 = 1/2n−k2
∑

S∈G2
S where k1, k2

are the dimensions of these codes. Then

Tr(E�1)
2 =

{
4k1 if E ∈ G1
0 otherwise, (3.43)

and similarly for Tr(E�2)
2, and therefore

A(2)(u;�1 ⊗�2) = 4k1+k2
∑

E∈G1∩G2

uwt(E)

= 4k1+k2

n∑

d=0

#(En[d] ∩ C(G))wn−dzd

(3.44)

is the enumerator of the stabilizer of the subsystem code of
G. Also

Tr(E�1E�1) =
{

2k1 if E ∈ N (G1)

0 otherwise, (3.45)

and similarly for Tr(E�2E�2). Hence

B(2)(u;�1 ⊗�2) = 2k1+k2
∑

E∈N (G1)∩N (G2)

uwt(E)

= 4k1+k2

n∑

d=0

#(En[d] ∩ N (G))wn−dzd

(3.46)

is the enumerator for the logical operators of the subsystem
code.

030313-11

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

Notice that up to taking a logarithm and a constant offset,
Eq. (61) is also the stabilizer Renyi-2 entropy when q = 2,
uwt(E) → constant for � = |ψ〉〈ψ |. The stabilizer Renyi
entropy is a computable measure of non-stabilizerness.

Definition 1. The α-stabilizer Renyi entropy [34] is
given by

Mα(|ψ〉) = (1 − α)−1 log
∑

E∈Pn

�αE(|ψ〉)− n log 2 (3.47)

where

�E(|ψ〉) = 1
2n 〈ψ |E|ψ〉2 = 1

2n Tr[E�]2. (3.48)

We see that �E(|ψ〉)α is precisely the coefficient of the
type A genus-α weight enumerator Eq. (59).

As a corollary, because the higher genus enumerators
can be computed using the tensor-network method, this
provides a method for computing the stabilizer Renyi
entropy also. While there are existing methods based on
matrix product state [35,36] that computes stabilizer Renyi
entropy, the enumerator tensor network provides an alter-
native and more general method for computing the magic
of a quantum many-body system.

Physically, this also establishes a new connection
between weight enumerator and quantum many-body
magic, in addition to the entanglement angle that has been
explored in the form of sector length.

F. Coset enumerator and errors with nontrivial
syndrome

Until now, we have been working with particular
instances of weight-enumerator polynomials, that is, M1 =
M2 = � or related operators. For stabilizer codes, they
recover the weight distributions of error operators that have
trivial syndrome. However, for the purpose of decoding, it
is also useful to learn the probability P(E|s) for any error
syndrome s.

Let E be a Pauli error that gives syndrome σ(E) = s. We
consider the probability P(EL̄) of errors that are stabilizer
equivalent to EL̄, where L̄ is any logical operator. If we
have this distribution, then we can construct a maximum-
likelihood decoder by undoing the EL̄ with the maximal
probability of P(EL̄) given syndrome s. Similarly, one
could apply a Bayesian decoder where EL̄ is applied with
the probability p(EL̄|σ(E)) for error correction.

Definition 2. A coset weight enumerator for a stabilizer
code is given by As(u; Es,�) = A(u; M1, M2) where M1 =
M †

2 = Es� for some (Pauli) operator Es with syndrome
s. Its “dual” enumerator is Bs(u; Es,�) = B(u; M1, M2)

where M1 = �, M2 = Es�E†
s . Their tensorial versions are

similarly defined with M1, M2 taking on these specific

values. The same definition applies for the generalized
enumerators Ās, B̄s.

Note that M1, M2 here are no longer hermitian for A and
the operators used for A, B are different. As a result, the
“dual” enumerator is very different from its usual form.
We do not use or prove a MacWilliams identity in this
work, though it may be interesting to see if an analo-
gous relation exists. More generally, the coset enumerators
can be defined for Es that are not Pauli operators so long
as �s = Es�E†

s projects onto the error subspace. As the
definition of such subspaces and syndromes can be highly
code dependent, here we focus on the instance where Es
are Paulis.

Proposition 2. Up to an overall normalization, the coef-
ficients of the coset enumerator As(u; Es,�) counts the
number of coset elements in EsS while Bs(u; Es,�) enu-
merates the number of elements EsN (S).

Proof. Let

�s = 1
|S|

∑

D∈EsS
D (3.49)

then for any E ∈ En

Tr[E�s] Tr[E†�†
s] = | Tr[E�s]|2 = q2n/|S|2 (3.50)

if E ∈ EsS and zero otherwise. Hence, up to a constant
normalization factor, the coefficient of the coset enumer-
ator counts the number of coset elements of a particular
weight. As we do not track signs in the distribution, no
generality is lost by choosing the left vs right coset.

The B-type enumerators have coefficients

Tr[E�E†�s] = Tr[�E�s], (3.51)

where �s = Es�E†
s ,�E = E�E†. As these projectors are

orthogonal for different syndromes in stabilizer codes, this
coefficient is only nontrivial when E ∈ EsN (S), i.e., when
E is any logical error with syndrome s. Therefore, up to
normalization, we again obtain an enumerator that captures
the weight distribution of EsN (S). �

Practically, the process of preparing this enumerator
using tensor network is the same as before except we mod-
ify the values of M1 and M2. First we identify the physical
qubits on which Es has support. Suppose Es acts on a par-
ticular atomic code nontrivially with ET

s , then we prepare
the A-type tensor coset enumerator of this code with M1 =
M †

2 = ET
s �

T where�T is the projection onto the code sub-
space of the local QL. Such a tensor enumerator counts
elements in the coset ET

s ST. We then repeat this for all such

030313-12

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

tensors. For ones that Es does not have support, we com-
pute their tensor enumerator with M1 = M2 = �T as usual.
Then we contract these tensor enumerators in the same
way as we did for building A(u; M1, M2), e.g., Fig. 10. The
resulting enumerator polynomial is the desired As(u; Es�).
Also note that M1, M2 take on a special form that satisfy
Proposition 3, hence we can compute it more efficiently
using a tensor network with reduced bond dimension,
much akin to its weight-enumerator counterparts.

With these weight distributions, it is obvious that we
can then compute P(E|s). For example, suppose we are
given the coset enumerator As(z, w; Es,�) for a code space
defined by �, then under symmetric depolarizing channel
with physical error rate p ,

ps = Bs(z = p , w = 1 − 3p)/K (3.52)

is the probability of returning an error syndrome s with
noiseless checks and As(z = p , w = 1 − 3p)/K2 is the
probability of errors that are stabilizer equivalent to Es.
Indeed, this also extends trivially to double and complete
enumerators by evaluating the polynomial at the respec-
tive parameters we used for the trivial syndrome examples
in Sec. III B.

In fact, such kinds of error probabilities generalize to
any error channel. Similar to the nondetectable errors we
have analyzed in the previous section, it is possible to com-
pute p(L̄|s) using generalized enumerators as long as we
replace M1, M2 by the appropriate values used in the coset
enumerators.

Theorem 5. Consider a stabilizer code where � is the
projection onto its code subspace of dimension K and let Es
be an error operator with syndrome s. Let the error channel
be given by the Kraus form E(·) = ∑

i Ki · K†
i . Then

p(EsS ∩ s) = 1
K(K + 1)

(∑

i

Tr[Ki�K†
i�s]

+
∑

i

Tr[Ki�E†
s] Tr[K†

i Es�]
)

(3.53)

ps = 1
K

∑

i

Tr[�K†
i�sKi], (3.54)

where �s = Es�E†
s .

Note that Es need not be a Pauli operator but can take on
a general form PsL̄ where Ps is a Pauli error with syndrome
s and L̄ is any unitary logical operation. For proof and
generalization where the logical error is a general quan-
tum channel, see Appendix D 3. We see that these terms
in the expression share a great deal of similarities with
Theorem 4, which computes the logical error probabil-
ity for trivial syndromes. Indeed, by expanding the Kraus

operators in the Pauli basis, we see that these expressions
can again be written as generalized weight enumerators
Eq. (33) that we used to compute the uncorrectable error
rates. To obtain these error probabilities, we follow the
identical recipe by decomposing the Kraus operators in
the Pauli basis

∑
i Ki · K†

i = ∑
PP̄ kPP̄P · P̄ and evaluate

u(kPP̄) at the appropriate values based on that decomposi-
tion [c.f. Eq. (28)]. Finally, we set M1 = �, M2 = Es�E†

s

for the B-type enumerator and M1 = �E†
s , M2 = M †

1 for
the A type.

Formally,

p(EsS ∩ s) = 1
K(K + 1)

(
B(k;�,�s)

+ A(k;�E†
s , Es�)

)
(3.55)

ps = 1
K

B(k;�,�s), (3.56)

where k = {kPP̄} are the coefficients from the Pauli expan-
sion. With these coset enumerators in hand, we are now
ready to discuss optimal decoders for general noise chan-
nels.

G. Decoders from weight enumerators

We see that one can express the probability

p(ESS|s) = p(EsS ∩ s)/ps (3.57)

entirely in terms of weight enumerators. Suppose Es = PsL̄
where Ps is any Pauli error with syndrome s, which can
be obtained by solving a set of n − k linear equations,
and L̄ is a logical operator, then the set of probabilities
Ps = {p(PsL̄S|s)}, as L̄ runs over logical operators, is suf-
ficient for us to perform error correction. It is customary
to generate the set Ps for the set of L̄ that are logical Pauli
operations as they form an operator basis for the code sub-
algebra and are thus sufficient to generate the conditional
probabilities for any unitary logical operators.

1. Maximum-likelihood and Bayesian decoders

It is straightforward to implement a maximum-
likelihood decoder where we identify the logical operator
L̄m for which p(PsL̄mS|s) = maxPs. Then error correction
is performed by acting L̄ and Ps following the syndrome
measurements. In this case, it is sufficient to compute just
the A enumerator because the B enumerators are indepen-
dent of L̄ and only add to an overall normalization that
not impact our choice of the maximum element. When
multiple global maxima exist, then we choose one at
random.

One can also correct errors based on the probabil-
ity distribution of p(PsL̄S|s) where we act on the state

030313-13

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

using operator PsL̄ with the self-same probability. We
call this the Bayesian decoder. As we require that

∑
L̄ p

(PsL̄S|s) = 1 when summing over all Paulis, it is again
sufficient to only compute the type-A enumerator as the
constant from B can be obtained by solving the normaliza-
tion condition.

For each syndrome s, the complexity in implementing
these decoders is therefore the complexity C(As) of com-
puting As from tensor contractions. For some codes this
can be performed efficiently, which we further elaborate
in Sec. V. Nevertheless, even if each such contraction is
efficient, we would still have to compute q2k number of
enumerators as there are q2k number of distinct logical
Pauli operators. Therefore, the overall complexity estimate
for such a decoder is O(C(As)q2k).

2. Marginals

For a code where k is large, building the above
maximum-likelihood decoder remains challenging. How-
ever, it is possible to compute the “marginals” efficiently.
Let us write any logical Pauli operator L̄ as

L̄(a, b) ∝
k⊗

i=1

X ai
i Zbi

i , ai, bi = 0, . . . , q − 1, (3.58)

where a, b are k tuples with a = (a1, a2, . . . , ak) and the
same for b. Let L̄i(ai, bi) be the logical Pauli acting on the
i th logical qubit. Consider the marginal error probability

p(EL̄i) =
∑

aj ,bj ;∀j 	=i

p(EL̄(a, b)). (3.59)

This can be computed using the mixed enumerator. Recall
that one can compute p(Īi|s = 0) by inserting B-type ten-
sor enumerators for all atomic blocks whose logical leg
correspond to qubits j 	= i, and A type for blocks whose
logical legs correspond to qubit i. This enumerator, which
we called Ii(z), records the weight distribution of logical
operators Ni ⊂ N (S), which consists of all Pauli logical
operators in the code that act as the identity on the i th log-
ical qubit. If we treat the other qubits 	= i as gauge qubits,
we can think of it as recording all gauge-equivalent rep-
resentations of the identity operator. For example, this is
what we have done for the Bacon-Shor code and the holo-
graphic code. For general cosets of operator Es, we now
compute mixed coset enumerator for operator Es such that
σ(Es) = s. Let us construct the mixed enumerators

M (u; Es,�) = ∧J ,Jj

[
AJ
(i)(u; EA

s ,�)
⊗

j

B
Jj
	=i(u; EB

s ,�)
]
,

(3.60)

where Es = EA
s ⊗ EB

s and EA,B
s are the Pauli substrings that

only have support on physical legs of the atomic codes

that are mapped to type-A or B tensor enumerators, respec-
tively. We take ∧J ,Jj to be tracing over the appropriate legs
required by the tensor network. This now enumerates the
weights of EsNi. We can repeat this a number of times for
different Es = L̄iPs s, and the resulting enumerators would
provide the requisite error probabilities p(PsL̄i|σ(Ps)).

For example, under symmetric depolarizing noise with
probability p ,

p(PsL̄i|σ(Ps)) = M (z = p , w = 1 − 3p; PsL̄i,�).
(3.61)

For other error models, we again select the appropriate
parameters for the abstract n-tuple k and weight function.
See Sec. III B and Appendix A.

A decoder can then choose an operator with the highest
probability then correct the error by acting EL̄i on the sys-
tem. In the case where no other logical qubits are present,
this reduces to the maximum-likelihood decoder.

It is easy to generalize this such that L̄i can include
multiple qubits logical qubits in some set κ such that

M (u; Es,�) = ∧Ji,Jj

⊗

i∈κ
AJi

i (u; EA
s ,�)

⊗

j

B
Jj
	∈κ(u; EB

s ,�).

(3.62)

However, in general, if we include |κ| qudits in the mixed
enumerator such that we only integrate out j 	∈ κ , then we
need to check q2|κ| terms to find the error operator with the
highest marginal probability.

H. Logical error rates

1. Exact computations

We have seen previously how one can compute the triv-
ial syndrome enumerators, which yield the uncorrectable
error probability. We can interpret the value pD = 1 − A/B
as a logical error rate for a decoder with perfect syndrome
measurements such that one discards the state whenever a
nontrivial syndrome is measured. For such processes, one
can define an error-detection threshold pth such that pD
is suppressed as a function of d for error rates below the
threshold. One such example is shown in Fig. 17 for the
surface code and 2D color code.

Remark 1. If a class of quantum codes has an error-
detection threshold under i.i.d. depolarizing error, then the
threshold is pth = 1/6.

Proof. Let A∗(z), B∗(z) be the enumerators with nor-
malization such that A∗

0, B∗
0 = 1. Then for a quantum code

with dimension K , A(z) = K2A∗(z) and B(z) = KB∗(z).

030313-14

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

Thus

B∗(z)− A∗(z)
B∗(z)

= 1 − 1
K

A(z)
B(z)

. (3.63)

Now, homogenizing, the MacWilliams identity has
B(w, z) = A((w + 3z)/2, (w − z)/2), and using z = p =
1/6 and w = (1 − 3p) = 1/2, we see A(1/2, 1/6) =
B(1/2, 1/6) for every quantum code. Therefore, all curves
pL(p , 1 − 3p) cross at (1/6, 1 − 1/K). �

We may similarly ask whether the current tensor-
network method can efficiently compute the exact logical
error rate under other decoders. We do not provide such a
method in this work, though it may be an interesting direc-
tion. A simple application of the current method fails to be
efficient in the following examples.

The exact logical error rate with maximum-likelihood
decoder can be expressed as

pL =
∑

s

[Bs(u; Ps,�)− max
∀L̄∈L

{As(u; PsL̄,�)}] (3.64)

and the error rate for a Bayesian decoder is

pL = 1 −
∑

s

1
Bs(u; Ps,�)

∑

L̄

As(u; PsL̄,�)2. (3.65)

We see that both of them involve nonlinear functions
of the weight enumerators, which makes it difficult to
compute efficiently through a tensor-network method. It
would appear that one has to sum over exponentially
many syndromes even if each enumerator can be produced
efficiently.

This does not mean that enumerators cannot improve
the computation of logical error rates. In practical decod-
ing, it is far more relevant to consider a sample with only
polynomially many distinct syndromes after running the
decoder for a reasonable amount of time. It is also the case
for all sampling-based simulations that are currently used
for error and threshold computations.

2. Error-rate estimation

In addition to computing exact error probabilities given
syndrome s, one can also use enumerators to provide more
accurate estimates for logical error rates in conjunction
with sampling-based methods.

Conventional sampling methods generate errors E based
on particular noise models. Once the error is generated, its
associated syndromes σ(E) are determined. Note that for
noiseless syndrome measurements, σ(E) always outputs
a syndrome s deterministically. However, for more real-
istic models with faulty measurements, the outcome s can
depend also on the noisy measurement process. A decoder

D(σ (E)) then takes the syndrome and suggests a recov-
ery operator R with probability pD(R|s),∑R p(R|s) = 1. If
RE ∼ L̄ is equivalent to a nonidentity logical operator, then
a logical error has occurred and this adds to the error prob-
ability pL. This process is repeated until a large enough
sample size has been established such that the overall pL
estimate is believed to have sufficiently converged.

We can improve up this method, especially those
derived from rare events and syndromes with enumera-
tors. Given an error model (e.g., depolarizing noise with
fixed error probability p) a set of errors are generated
using existing sampling methods. Subsequent syndrome
measurements (either noiseless or noisy) lead to a sam-
pled syndrome distribution P(s) such that

∑
s P(s) = 1

and only has support over polynomially many distinct syn-
dromes. In our case, we assume that we are given the
distribution P(s), the error-correcting code (along with its
tensor-network construction), the error model in question,
and a decoder D of the user’s choice.

The logical error rate estimates are thus given by

p̄L(k) =
∑

s

P(s)
∑

R

pD(R|s)
(

1 − As(k; R,�)
Bs(k;�,�s)

)
,

(3.66)

where As(R)/Bs is precisely the expected probability
where the decoder’s choice of R successfully corrects the
error based on the syndrome. For a maximum-likelihood
decoder, pD(R|s) is also trivial except for one R. For a pure
sampling-based method, the probability As(R)/Bs would
usually require a large number of events before the esti-
mate converges to its true value. Therefore, its estimate
for rare syndromes can be wildly inaccurate. Here with
the enumerator method, we can compute these quanti-
ties exactly, thereby improving the accuracy for p̄L. It is
also useful sometimes to further sort the logical error rate
by operator types. This can be done by excluding cer-
tain terms in Eq. (85) from the summation over R. We
do not provide its explicit forms here as the extension is
somewhat trivial and situation dependent.

In scenarios where the computation cost of enumer-
ators are relatively expensive, one can complement, for
instance, the Monte Carlo method, where only error rates
associated with rare syndromes are computed using weight
enumerators.

Faulty measurements: With logical error probabilities
in hand, we can compute error thresholds in the usual
way by repeating such calculations or estimations for a
class of codes with different distances. Note that the use
of enumerators above is compatible with any error model
composed of identical single-qubit error channels. The
computation also fully accommodates different models of

030313-15

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

noisy syndrome measurements, as they only affect the dis-
tribution P(s). Furthermore, the impact of each decoder
can be independently evaluated to produce the conditional
probability p(R|s). We hasten to point out that the choice
of decoder here is completely arbitrary and not limited to
the decoders we constructed in Sec. III G based on weight
enumerators.

Since the contributions from the error channel, noisy
measurements, decoders, and enumerators can be sepa-
rated into independent modules, one can prepare them
separately. For example, one can prepare a syndrome
distribution P0(s) with noiseless measurements. If the
measurements are noisy, they are given by some set of tran-
sition probabilities p(sf |si), which depend solely on the
noise model associated with the measurement. Composing
these probabilities we get

P(s) =
∑

si

P0(si)p(s|si). (3.67)

Once the set of relevant syndromes have been established,
which we take to be poly(n − k), we create the decoding
table from which pD(R|s) can be obtained. At the same
time, the enumerators that depend on s and R may be
prepared in parallel, if needed. In many cases, exact con-
tractions may not be needed as we may not require the
same level of accuracy for distance verification. In such
cases, approximate but efficient contraction algorithms
maybe sufficient.

IV. TENSOR NETWORKS FOR CODES

As our primary tool for speedup comes from the QL
description of the code, to make use of these methods, one
also needs a modular construction for the codes. For codes
created from QL, this is automatically true. Here we also
provide a general method for decomposing known codes
and states into smaller “quantum Lego blocks.” We give
two approaches for performing this decomposition based
on how the code or state is prepared. As the enumerator for
graph states [11] is of interest, we also provide an explicit
QL decomposition of all graph states.

A. Quantum codes from quantum Tanner graph

For any stabilizer code with Abelian and non-Abelian
stabilizer group (such as XP stabilizer codes [37–39]),
the codewords can be defined by the simultaneous +1
eigenspace of the stabilizer elements.

Any such code can be rewritten with a QL decomposi-
tion where the tensor network is isomorphic to the Tanner
graph of the code [Fig. 6(a)]. For each check node con-
nected to � qubits and qudits, we place a degree GHZ
tensor, which is the encoding tensor of a repetition code.
The GHZ tensor is also known as a Z spider in ZX calculus
[40]. A similar repetition code with H applied to each leg

(a) (b)

(c)

FIG. 6. (a) A quantum code written as a Tanner graph where
qubits are nodes and checks are squares. A tensor network iso-
morphic to this graph can be constructed from Z spiders (red) and
local QL codes (green). (b) Each local code has two dangling legs
where L marks the logical leg and P marks the physical leg. The
remaining legs are contracted with the check node tensors. (c)
For the special case of a CSS code, the local code simplifies to
the contraction of Hadamard tensors and X spiders (blue).

is known as an X spider. For each physical node checked
by m checks with operators {gi, i = 1, . . . , m} acting on the
physical node, we place a tensor (green) with degree m + 2
shown in Fig. 6(b) where each of the m contracted legs is
connected to the corresponding check node tensor the qubit
is checked by. The remaining two dangling legs represent
the logical and physical degrees of freedom associated with
the atomic code at each physical node. The specific Ti ten-
sor of degree 3 is completely determined by the type of
operator gi that is present in the stabilizer check. If the
code is a Calderbank-Shor-Steane (CSS) code, then the
local tensor takes the simple form of Fig. 6(c), where it is a
contraction between X spiders (blue), which are repetition
codes in a different basis, and Hadamard tensors. With this
construction, one can easily build up tensor networks for
existing codes with known stabilizer checks. When applied
to topological codes, the quantum Tanner graphs are struc-
turally similar to existing constructions with similar bond
dimension, e.g., [41] for the toric code, which is CSS, and
for the twisted quantum double model [42,43], which has
a non-Abelian stabilizer group. Details of this construction
are given in Appendix E. The number of seed codes from
the quantum Tanner graph are essentially optimal where
we have 2n − k atomic Legos for an [[n, k]] code, identical
to the usual Tanner graph description. If the code is a low-
density parity-check (LDPC) code, then each tensor node
also has bounded degree.

B. Circuit-based tensor network

The quantum Tanner graph tensor network covers the
vast majority of the existing quantum codes. For codes
and states with an encoding circuit, then one can also con-
vert the circuit into a tensor network [44] as it is simply
the contraction of tensors of unitary gates and product |0〉

030313-16

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

(a)

(b)

FIG. 7. Any graph state (yellow) can be converted to a tensor
network using its encoding circuit constructed from CZ s acting
on |+〉 s. The tensor network consists of the GHZ tensors (red),
Hadamard tensors (H), and contraction with |+〉 (blue triangles).
Note that multiple GHZ tensors, which are also Z spiders, can
be merged to create a larger Z spider. (a) Example: a 1D cluster-
state tensor network from encoding circuit. (b) Any graph state
can be converted to such a tensor network using the procedure
above. A purple tensor is the GHZ tensor contracted with a |+〉
tensor.

states. For Clifford gates, the states dual to these tensors
are stabilizer states. For instance, concatenated codes can
naturally yield a log-depth tree tensor network. In gen-
eral, the connectivity of a subregion of the network can
scale linearly as the number of gates and tensors inside the
region. For a one-dimensional (1D) (spatially) local circuit,
it is in principle possible to cut through the network in the
time direction. The edge cuts are upper bounded by the
circuit depth T, and hence each contraction is no costlier
than O(exp(T)). For log depth, this clearly yields exponen-
tial speedup. For d spatial dimensions, the number of edge
cuts is upper bounded by the surface area of the space-time
region �d−1T where �d � n. Therefore, the upper bound for
the cost for each contraction is O(exp(n1−1/dT)). This can
still lead to a subexponential speedup as long as T � n1/d−ε
asymptotically.

A simple procedure of such a circuit-to-tensor-network
conversion is constructed in Fig. 7 for all graph states.
Each CZ gate can be converted into the fusion of three
tensors, which can then be individually simplified through
local recombinations [Fig. 7(a)]. This produces a tensor
network with the same graph connectivity as the graph
state with GHZ tensors (Z spiders) on the nodes and
Hadamard tensors inserted on the edges [Fig. 7(b)].

It is important to note that given the level of general-
ity of our method, not all tensor networks will be exactly
contractible in polynomial time as we see in the next
section. This is because finding enumerators is NP hard
and exponential time for general tensor-network contrac-
tion is unavoidable.

V. COMPUTATIONAL COMPLEXITY

A. General comments

1. Brute-force method

For a generic stabilizer code, the construction of its
weight-enumerator polynomial is at least NP hard. We thus
expect the same for a generic quantum code. Indeed, as
we see that constructing enumerators solves the optimal
decoding problem [45], such tasks must be at least #P
complete. A simple brute-force algorithm is exponential
in the system size. For stabilizer codes, one can enumer-
ate all of its stabilizer or normalizer elements, which is of
O(qn−k) and O(qn+k), respectively. This extracts the rele-
vant coefficients Ad, Bd. For a general quantum code, each
coefficient Ad, Bd is already hard, as it involves qn × qn

matrix multiplications. One then has to repeat this O(q2n)

times for each error basis element. Therefore, the com-
plexity for the brute-force method is O(qO(n)) for general
quantum codes of local dimension q. A slightly better
strategy computes only the coefficients of Ad and then per-
forms a MacWilliams transform, which is polynomial in n.
Therefore, for complexity estimates, it is sufficient that we
provide the estimate for computing A(u).

2. Tensor-network method

Now we analyze how our method improves this picture
assuming the QL constructions are known.

a. Tensor preparation overhead. Let us first revisit the
encoding tensor network of an [[n, k]] stabilizer code with
local dimension q where each tensor is obtained from
a small stabilizer code. We assume that the degree of
each tensor (including dangling legs) is bounded by some
constant c. This is to ensure that the complexity in con-
structing the tensor enumerator of each node is upper
bounded by a constant overhead [46]. Then consider the
graph G = (V, E) produced from the tensor network by
removing all dangling legs such that the tensors are ver-
tices and contracted legs are edges. Suppose the tensor-
network representation is one such that |V| ≤ C(n + k) for
some constant C, then preparation of the atomic blocks
has worst-case complexity O((n + k)q5c). In fact, many
tensor networks consist of only a few types of tensors,
e.g., recall that any QL structure is constructible from
a constant number distinct blocks, making even O(q5c)

sufficient. Therefore, the overhead for tensor preparation
is usually constant while a generous upper bound is at
most linear in the system size. Here we assume that the
tensor network does not contain an overwhelming num-
ber of tensors that have no dangling legs, e.g., a deep
quantum circuit. This assumption can always be satisfied
(e.g., MPS).

030313-17

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

b. Tensor contraction We now contract these tensors
to build up the tensor network. Recall that each tensor
contraction may be construed as a matrix multiplication.
Suppose we have two tensors of p ≤ m legs, respectively,
while we contract n ≤ p legs. For the most general quan-
tum code, we need to use the full tensor enumerators as
building blocks, which have bond dimension χ = q4 and
can be reshaped as a multiplication of two matrices of
size χ(p−n) × χn and χn × χ(m−n). Hence each contrac-
tion step with the same parameters above has worst case
O(χ(p+m−n)). For codes that only needed reduced enumer-
ators, this can be done with χ = q2. For stabilizer codes,
these matrices are especially sparse and have at most qp , qm

nonzero elements, thus each such contraction is loosely
upper bounded by O(qp+m+min(p ,m)). Therefore, the compu-
tational complexity scales exponentially with the number
of uncontracted legs during tensor contraction.

To incorporate the symbolic functions, additional
degrees of freedoms are often needed. The specifics can
depend on the implementation. One method is to introduce
a separate index with bond dimension (n + 1)� to track the
power of the polynomial (Appendix C). This adds another
factor of n� to the complexity counting above. The power
� depends on the number of independent variables one
needs to track. For Shor-Laflamme enumerators � = 1, but
� > 1 for the refined enumerators. As this cost can vary
depending on the treatment of symbolic objects, we do not
include their contributions in the following estimates. One
can easily restore them when needed.

c. Fully contracted tensor network Aside from minor
corrections related to symbolic manipulations and those
associated with storing and manipulating for large num-
bers, the computational complexity would be determined
by the contractibility of the tensor network, which is
ultimately dominated by the cost of multiplying large
matrices. Heuristically, the cost of tensor contraction scales
linearly with the bond dimension of the uncontracted
indices, or exponentially with the number of minimal edge
cuts in the tensor network.

In the ensuing discussion, we will use base e expo-
nential for complexity. For a tensor network with bond
dimension χ , we can generally set e → χ to obtain the
worst-case complexity estimate. As we discussed earlier,
the general rule of thumb for bond dimension is χ = q4

for the full tensor enumerator, χ = q2 for codes that only
requires reduced enumerators. However, using a sparsity
argument in stabilizer codes, the effective bond dimension
needed in an efficient representation can even be as low
as q.

Let us represent a sequence SG of tensor contrac-
tions by a sequence of induced subgraphs Hi = (VH

i , EH
i)

where VH
i ⊂ V, VH

i+1 = VH
i ∪ {vi+1 ∈ V \ VH

i }, and VH
0 =

{v0 : v0 ∈ V}. In other words, we construct a sequence

of subgraphs by adding one additional vertex at a time.
The sequence terminates at i = |V| − 1, when the sub-
graph contains G. Let Ec(W, W′) = {e = {va, vb} ∈ E :
va ∈ W, vb ∈ W′} denote the set of edges connecting any
two sets of vertices W, W′ and let Mi+1 be the connected
component of Hi+1 containing vi+1.

Then the complexity for the i th step of contraction is

Ci � exp(|Ec(VHi ∩ VMi+1 , V \ VHi)| + deg(vi+1)

− |Ec(VHi ∩ VMi+1 , {vi+1})|) � O(exp(|Cmax|)),
(5.1)

where |Cmax| = maxi |Ec(VHi , V \ VHi)| is the largest pos-
sible cut through the tensor network during contraction.
Then we see that the number of computations needed
for calculating the final tensor enumerator of the tensor
network is given by

C =
|V|−1∑

i=0

Ci � O(|V| exp(|Cmax|)). (5.2)

The upper bound is a pretty drastic overcounting especially
if Hi contains many disconnected components, as many
do not enter the contraction. In other words, as long as
each connected component of the induced subgraph has
only log |V| connectivity with its complement throughout
the sequence SG, then the complexity is polynomial in |V|.

B. Cost for common codes

a. Tree tensor network. Tree tensor networks can be used
to describe concatenated codes over n qubits (leaves). It is
also known that these tensor networks can be contracted
with polynomial complexity. A contraction algorithm
would start from the leaves of the tree and contract into
O(n) disconnected components of the graph. Each piece
in this first layer of contraction has at most E ∼ O(c)
open legs where c is the maximum degree or branch-
ing factor in the tree. Then at each iteration, we join
the ≤ c − 1 branches with another tensor. The maximum
number of open legs on each connected component is
always bounded by c, therefore the complexity for each
contraction is at most O(e2c). For a tree with n leaves,
the overall complexity is O(ne2c) for tensors of bounded
degree, Fig. 8. If the codes on each node are identical,
then we only have to perform a separate contraction at
each layer, yielding a complexity O(log n), Table I (general
and symmetric). The latter would be doubly exponentially
faster than brute-force enumeration.

b. Holographic code. For tensor networks of holographic
codes [47–50], the network is taken from a tessellation of
the hyperbolic disk. This is slightly more connected than

030313-18

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 8. Tree tensor network for concatenated code. It is effi-
ciently contractible from the bottom up and can be parallelized.

the tree tensor network (TTN) as it contains loops. The
contraction strategy is similar to that of the TTN, except
now minimum cuts depend on the system size such that
each connected component has at most O(α log n) open
legs during the contraction. The parameter α depends on
the tessellation. Then

C ∼
n∑

m=1

exp(α log m + 2c) ≤ exp(2c)nα+1

∼ O(nα+1). (5.3)

A similar counting argument holds for the hyperbolic sur-
face code, where minimal cuts remain logarithmic in the
system size.

c. Codes with shallow local circuits. If the encoding cir-
cuit of a code is known (e.g., stabilizer code once the check
matrices are given), then we can easily convert the circuit
into a tensor network. If these circuits are shallow, say, of
constant or log n depth, then one can contract the circuit-
induced tensor network in the spacelike direction where
the minimal number of edge cuts would be given by the
circuit depth. Thus the enumerators of such codes can be
prepared in poly(n) time.

d. Codes on a flat geometry. These are codes on an
Euclidean geometry of dimension D such as ones where
the code words may be described by a PEPS. Some exam-
ples include the 2D color code, the surface code, Haah
code [51], etc. Constructions like the Bacon-Shor code also
fall under this category. Note that the worst-case complex-
ity holds for any such tensor network regardless of the
specific tensor construction or its symmetries.

For codes whose discrete geometry are embeddable
in the D-dimensional Euclidean space, we simply “foli-
ate” the lattice with co-dimension 1 objects. Each
such object can be built up from O(n1−1/D) contrac-
tions where each contraction retains at most O(n1−1/D)

open legs. Then C ∼ O(n exp(n1−1/D)). Compared to
the brute-force method, this permits a subexponential
speedup.

If the geometry of the network allows for fewer open
edges during tensor contraction, then it is possible to get
further speedups. Note the above counting assumes n ∼ LD

for a system that has similar lengths in different directions.
If all but one direction have bounded length L then we
obtain an exponential speedup. For example, consider a
rectangular surface code of size L × n/L on a long strip
where L is bounded, then each contraction along its shorter
side is only O(exp(L)).

Note that the hardness of evaluating the weight-
enumerator polynomial here is directly tied to the hard-
ness of the tensor-network contraction. It was shown in
Ref. [52] that contraction of PEPS is average case #P
complete. Therefore, there is strong reason to believe
that an exponential speedup of this process is unlikely
for both classical and quantum algorithmic approaches
using tensor networks if one disallows postselection and
chooses the tensors in a Gaussian random fashion. How-
ever, we also note that often the tensors are strictly
derived from stabilizer codes. Therefore, it is not impos-
sible that these added structures in the discrete symmetry
and contractible 2D tensor networks may permit further
speedups.

TABLE I. Tabulates the computational cost for enumerator preparation from tensor-network contractions. There is additional com-
plexity associated with the symbolic manipulation of the polynomial, storage of large numbers, and MacWilliams transforms, which
can also contribute an additional cost that can be superlinear.

Network architecture TN cost Code examples

Tree O(log n) Concatenated (symmetric)
Tree, 1D area law O(n) Concatenated (general), convolutional
2D hyperbolic O(nα+1),α > 0 Holographic, surface code (hyperbolic)
(Hyper)cubic O(n exp(n1−1/D)) Topological (Euclidean), Bacon-Shor
(Hyper)cubic (bounded L) O(n exp(LD−1)) Rectangular surface code
δ-volume law O(n exp(δn)), δ < 1 Nondegenerate code, random code
Generic encoding circuit O(n2 exp(n)/ log n) Generic stabilizer code

030313-19

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

e. Codes with volume-law entanglement. For states that
have volume-law entanglement for any subsystem, let us
assume that the number of edges connected to vertices in a
subregion is proportional to the number of vertices in that
region, i.e., η|V|. For simplicity, let us also assume that the
number of tensors and qubits are roughly equal. In general,
η need not be less than one. This is because each node
may be connected to multiple nodes in the complementary
region, while the entanglement captured in each bond is not
maximal. However, if a carefully crafted tensor network
is efficiently capturing the entanglement of the state, such
that each bond is roughly maximally entangled, then we
could expect the number of bonds cut to be less than or
equal to the total number of qubits in the region for large
enough subregions. Then the cost for each contraction is
O(η|V|). For η < 1, this provides a polynomial speedup.
If the number of bonds cut ≤ d for any subsystem and the
code distance d = δn, δ < 1, which is the case for random
codes, then the overall complexity would be

C ∼ O(n exp(δn)), (5.4)

which again admits a polynomial speedup.
However, if the number of bonds cut for a subsystem

is ≥n, then we do not get any speedup. This would be the
case for all-to-all connected graphs where the edge cuts can
be of size (n/2)2, our algorithm at O(exp(n2/4)) will actu-
ally be slower than the brute-force algorithm. For another
example, consider the encoding circuit of any stabilizer
code has n2/ log n complexity, which can be thought of
as a tensor network. Suppose we simply contract the cir-
cuit tensor-network timeslice by time slice, then we expect
|Cmax| ∼ n because each time slice would correspond to
a tensor network with O(n) legs and the worst-case com-
plexity scales as approximately O(n2 exp(n)/ log n). This
is fully expected, as we should not be able to solve a #P-
complete problem in polynomial time. Therefore, in this
regime, even if its tensor network description is optimal
and minimizes the number of edge cuts for any subre-
gion, the tensor-network method would still only provide
a polynomial speedup at best.

C. Entanglement and cost

In this work, we say that a tensor-network representation
is good if its graph connectivity reflects the entanglement
structure of the underlying state. In other words, the entan-
glement entropy of any subsystem can be reasonably well
approximated by the number of edge cuts when bipartition-
ing the graph into the subsystem and its complement. This
definition does not require the network to be efficiently
contractible [52,53]. If we use the tensor-network connec-
tivity interchangeably with subsystem entanglement then
we see that the complexity for computing the weight
enumerator can be connected with the amount of entangle-
ment present in the codewords. For more highly entangled

codewords and states, its tensor network will be more
connected, and hence the number of edge cuts for each sub-
system will be higher. This provides us a heuristic where
the general expectation of its weight-enumerator compu-
tation should scale as approximately exp(S) where S is
roughly the maximum amount of entanglement for sub-
systems we generate during tensor tracing. We see that
this is indeed the case for our examples—the complex-
ity is polynomial for codes whose code words are weakly
entangled, i.e., S � log n and generally subexponential for
states that satisfy an area law S ∼ n1−1/D for systems with
D-dimensional Euclidean geometry.

For nondegenerate quantum codes, the (d − 1)-site sub-
system are maximally mixed, hence d ∼ S. Therefore, up
to polynomial-factor corrections, we expect the complex-
ity lower bound for computing the enumerator polynomial
to be comparable to that of finding the minimal distance in
classical linear codes [17,54], i.e.,

C ∼ exp(O(S)) ∼ exp(O(d)). (5.5)

For this high-level analysis, we will neglect other sub-
leading terms and the dependence on rate R = k/n.
Because stabilizer codes can be identified with classical
linear codes over GF(4) [54], it means that the tensor-
network method should have comparable complexity scal-
ing with existing algorithms for nondegenerate stabilizer
codes.

In degenerate codes, however, there exist subsystems
where S � d. For example, a gauge fixed Bacon-Shor code
can be constructed from a TTN (Sec. VI D). Although
certain subsystems are highly entangled, its much weaker
entanglement for some other subsystems allows one to
engineer the network such that it is written in an efficiently
contractible form, such that each step of the contraction is
bounded by a constant. Depending on the gauge, we can
get away with an enumerator with as few as 2

√
n such

contractions. Although the code has overall distance d ∼√
n, the cost in preparing its enumerator is only O(

√
n)

time, compared to a naive distance scaling of O(exp(
√

n))
(Fig. 22). Therefore, we expect some degenerate codes
to have C � exp(O(d)), which is a substantial speedup
compared to known methods.

VI. EXAMPLES

Now we examine a few examples by computing the enu-
merators for codes that have order a hundred qubits or
so. These analyses are to showcase the tensor enumerator
method; they are not meant to be exhaustive nor do they
represent the largest possible codes one can study with this
method.

030313-20

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 9. A surface code and the tensor network of its weight
enumerator.

A. Surface code

a. Kitaev’s surface code. Recall from [1] that the tensor
network for the surface code encoding map, Fig. 9(left), is
one where each tensor is a [[5, 1, 2]] code and the bound-
aries are contracted with |0〉, |+〉 states (red and blue trian-
gles). The upward pointing dangling legs denote the logical
inputs and downward pointing legs denote physical qubits,
therefore the encoding map has a nontrivial kernel and a
physical qubit sits on each node. For each atomic block,
we construct its tensor enumerator and contract them col-
umn by column to generate the entire network, Fig. 9
(right). For example, the quantum weight enumerators of
a [[181, 1, 10]] surface code are

A(z) = 1 + 36z3 + 180z4 + 136z5 + 1344z6 + 7084z7

+ 24001z8 + 60432z9 + 286748z10 + . . . (6.1)

B(z) = 1 + 36z3 + 180z4 + 136z5 + 1344z6 + 7084z7

+ 24001z8 + 60432z9 + 286768z10 + . . . , (6.2)

where we count only 20 representations of nontrivial
logical operators at weight 10.

Using a similar network, we can also find the coset
weight distribution. Suppose a Pauli error acts on physi-
cal qubits in the form of Fig. 10(left). Note that we do not
contract the Pauli errors into the encoding tensor network
when defining the encoding map; if we actually contract
the Pauli errors onto the physical legs in the tensor-network

FIG. 10. The coset enumerator of a particular error string that
acts trivially on some qubits.

FIG. 11. Double enumerator of a 4 by 8 surface code at n =
53. Plotting log of operator weight distribution for nontrivial log-
ical operators. A relatively small code is chosen for clarity in the
figure.

construction then obtain enumerators from those networks,
it would correspond to finding the stabilizer weight distri-
bution for surface codes that have extra minus signs on
certain generators. To build the coset enumerator, we swap
out the original tensors in Fig. 9 (right) for the proper
coset-tensor weight enumerator of each error node (red).
The modified tensor network then computes the weight
distribution of coset elements. For example, the coset dis-
tribution for a single X error at the bottom left corner for a
[[113, 1, 8]] surface code, is

AsXbl(z) = z + z2 + 2z3 + 31z4 + 146z5 + 284z6

+ 1258z7 + 5180z8 + 17627z9 + . . . (6.3)

These exercises can be easily repeated for the double
and complete weight enumerators where the weights are
counted differently. For example, see Fig. 3 of Ref. [14]
and Fig. 11.

b. Rotated surface code. In practice, it is easier to deal
with rotated surface code as the distance scaling is better
by a constant factor for a similar value n, Fig. 12. Note that
one only has to modify the boundary conditions compared
to the original surface code. The rotated surface-code ten-
sor network is also easier to contract exactly. For reference,
the enumerator for the [[256, 1, 16]] rotated surface code at
d = 16 can be computed on a laptop with a run time of
approximately equal to 20 min. The weight enumerators

030313-21

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

FIG. 12. Tensor network of a rotated surface code where the atomic codes are identical to those of the surface code. Only the
boundary conditions are modified. One can also modify each tensor by contracting some other single qubit gate and tensor. The
checks are given on the right where qubits (vertices) adjacent to red regions indicate Z checks and blue indicate X checks. For the
derandomized local Clifford deformed code [55], white and yellow dots indicate local HSH and H deformations, respectively.

for this code are

A(z) = 1 + 30z2 + 776z4 + 15538z6 + 276801z8

+ 4431408z10 + 65676619z12 + 912021486z14

+ 12003931907z16 + 150911390280z18 + . . .

(6.4)

B(z) = 1 + 30z2 + 776z4 + 15538z6 + 276801z8

+ 4431408z10 + 65676619z12 + 912021486z14

+ 12004980483z16 + 150970896992z18 + . . .

(6.5)

Indeed, we see that the two coefficients start deviating at
d = 16.

One can also obtain an error-detection threshold by
assuming a decoder that performs no active error correc-
tion, but discards all instances that return a nontrivial syn-
drome assuming perfect measurements. Recall (Remark 1)
that this threshold is at p = 1/6 ≈ 16.67%, which is quite
similar to the code-capacity thresholds [56] across various
decoders under depolarizing noise.

c. Local Clifford deformations. We can perform local
modifications [13] on each tensor to perturb the (rotated)
surface code. These are represented by the circle tensors
that act on each qubit. For the vanilla surface code, these
tensors are trivial (identity). However, we may choose
them at will. For instance, if they are random single-qubit
Clifford operators, then the tensor network reproduces the
Clifford-deformed surface codes [25]. Similarly, if choos-
ing every other tensor to be a Hadamard, then one arrives
at the XZZX code [57].

Because the Shor-Laflamme enumerator is invariant
under local unitary deformations, it is clear that the log-
ical error probabilities of such locally deformed codes
would be identical under unbiased noise. However, this

local unitary invariance is broken when we consider more
general enumerators with other weight functions, which
indicate that their performances under biased noise differ.
In Fig. 13, we see that the derandomized Clifford deformed
code (right) has fewer logical operators that have low Z
weight, which is to be contrasted with the rotated surface
code (left) and the XZZX code (middle). We use a deran-
domized Clifford deformed code like the one shown in
Fig. 12 (right) where yellow and white dots indicate local
HSH and H rotations [55]. More general dimensions of the
code follow from repeating the local patterns on the 3 × 3
blocks (enclosed by dashed lines) periodically.

For example, using the double enumerators, we contrast
the performance of the XZZX code and the derandom-
ized Clifford deformed code, Fig. 14, under biased noise
with p = pX + pY + pZ and pX = pY = pZ/(2η). It is clear
from the normalized uncorrectable error rate (and hence
effective distances) that the Clifford deformed construc-
tion vastly outperforms the XZZX at high bias and small
p . Note that the weight function for these double enumera-
tors is slightly different from the one used in Appendix A or
Ref. [9] because it enumerates the X , Y weight separately
from the Z weights.

d. Coherent error. General quantum errors are not lim-
ited to random Pauli noise, which are somewhat “classi-
cal.” Here we compute the coherent error probability of the
rotated surface code using techniques introduced earlier.

Efficient methods for computing unitary rotations along
X or Z have been introduced by Ref. [23] using a Majorana
fermion mapping. Here we instead consider i.i.d. coherent
error of the form U = exp(itY) = cos(t)I + i sin(t)Y. Note
that the normalized logical error rate differs for codes with
even or odd X and Z distances because the abundance of
Y-only operators differ for these codes, Fig. 15 (left).

When dx, dz are odd, the normalized logical error rate
under coherent noise with rotation angle t coincides
with that under the Y-only Pauli noise with probability

030313-22

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 13. Truncated X , Z weight distribution of nontrivial logical operators for the 9 × 9 surface code (left), XZZX code (middle),
and the Clifford deformed code (right). Horizontal axis, X weight; vertical axis, Z weight. Note that nonzero weights are invisible in
this scale.

pY = sin2(t). This is because at odd distances, the only Y-
type logical operator acts globally on the system. When at
least one of dX or dZ is even, then the coherent noise yields
slightly higher logical error probability, Fig. 15 (right).
However this only incurs a small correction with a similar
order of magnitude, consistent with earlier results but in
different settings [23]. A similar result holds for the XZZX
code with coherent noise of Y-only rotations because up to
a phase, Y is invariant under Hadamard conjugation.

Although the impact of coherent noise with Z or X only
rotations produce very different logical error profiles than
those produced by the Z- or X -only Pauli noise in the
rotated surface code, there exist XZZX codes where their
impact are identical. For instance, for the system sizes
tested, the effect of such coherent errors and Pauli errors
coincide when we have a square lattice where the width
is equal to height. It also holds for some rectangular lat-
tices, though not all. The reason is similar as before, where
there is a sole logical operator consisting of only I and X
(or Z), but the operator need not act globally. This may be

FIG. 14. The ratio between the XZZX code normalized uncor-
rectable error rate pXZZX and that of the Clifford deformed code
pCD as a function of physical error parameter p at different biases
η for d = 7.

due to special symmetries of the XZZX code, which indi-
cates that local deformations can be tuned to reduce the
impact of coherent noise. Though it is also likely that such
symmetries are restricted to the s = 0 sector. We leave
a more systematic characterization of such behaviors to
future work.

B. 2D color code

We first provide a novel tensor-network construction
for the hexagonal 2D color code, which is a self-dual
CSS code constructed entirely from Steane codes, Fig. 16.
The class of such tensor networks constructs a family
of [[3�(�+ 1)+ 1, 1, 2�]] codes. Similar color codes with
hexagonal plaquettes can also be constructed by follow-
ing the same contraction pattern in the bulk and imposing
different boundary conditions. Just like the surface-code
construction, this tensor network represents an encoding
map with a nontrivial kernel [58]. One can similarly con-
struct a codeword of this code, e.g., |0̄〉 by contracting all
the dangling logical legs with |0〉. Recall that each Steane
code can be built from contracting two [[4, 2, 2]] atomic
codes, which was used to construct the surface code. As
such, this tensor network can indeed be construed as a
double copy [59] of the surface code in some sense.

Each tensor in the left figure is a Steane code where the
logical leg is suppressed. For the remaining seven physi-
cal legs, six are drawn in-plane while the remaining one is
represented as a dot that corresponds to a physical qubit in
the color code. Each stabilizer generator that acts on the
plaquette of the [[7, 1, 3]] code is mapped to a stabilizer
that acts on the four physical legs adjacent to a colored
quadrilateral in the tensor description. Given this QL con-
struction, its enumerator can be computed using the same
method. For example, the enumerators for a [[91, 1, 11]]
code are

A(z) = 1 + 54z4 + 297z6 + 2889z8 + 24258z10

+ 197493z12 + 1629738z14 + 13287999z16

+ 108647952z18 + . . . (6.6)

030313-23

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

FIG. 15. Left: normalized logical error rate as a function of the rotation angle t for codes with size n = dx × dz. Right: differences
in normalized logical error rates �pL = pcoherent

L − pY only
L . The plots shown are for trivial syndromes.

B(z) = 1 + 54z4 + 297z6 + 2889z8 + 24258z10 + 4176z11

+ 197493z12 + 67242z13 + 1629738z14

+ 1066740z15 + 13287999z16 + 14401674z17

+ 108647952z18 + . . . (6.7)

We see that the two coefficients start deviating at d = 11,
thus verifying its adversarial distance. The computation
time is only tens of seconds, but a better encoding is
needed to avoid unnecessary allocation of memory space
for 0s in the sparse matrix. Also note that the cancellation
at even weights between A and B.

As we discussed in Remark 1, these codes admit a com-
mon error detection threshold at p = 1/6 (Fig. 17) thanks
to the MacWilliams identity, and is close to the known
code capacity threshold.

C. Holographic code

To demonstrate the usefulness of mixed enumerators,
we now look at a class of finite rate holographic code [47]
also known as the HaPPY (pentagon) code, originally con-
ceived as a toy model of the AdS/CFT correspondence.

Different versions of this code have been proposed in
various contexts [27,49] where preliminary studies have
examined some of its behaviors under erasure errors and
symmetric depolarizing noise. However, the application of
such codes in quantum error correction is far less under-
stood compared to the surface code. Here we analyze
the HaPPY code as a useful benchmark using our mixed
weight-enumerator technology and present some novel
results.

This code can be constructed from purely [[5, 1, 3]]
atomic codes. It is known that, as a stabilizer code, it
has an adversarial distance 3 regardless of n because of
the bulk qubits that are close to the boundary. However,
from AdS/CFT, we expect the logical qubits deeper in the
bulk to be better protected and hence having different “dis-
tances.” We can analyze the distances of these bulk qubits
in different ways.

First as a stabilizer code, we define the stabilizer dis-
tance dS of each bulk qubit as the minimal weight of
all stabilizer equivalent nonidentity logical operator that
acts on a bulk leg and qubit [27]. To enumerate such
operators, we can build a mixed enumerator by contract-
ing a B-type tensor enumerator associated with the bulk

FIG. 16. A [[37, 1, 7]] 2D color code (left) tensor-network construction where (right) its stabilizer generators are all X or all Z
operators acting on the vertices of each colored plaquette.

030313-24

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 17. Error-detection thresholds coincide for the 2D color
code (CC) and the surface code (RS). Zoomed out plot on the
corner shows the error probability in a greater range. Only two
distinct distances are shown in the plot, since other distances
cross at the same value.

tile that contains the logical qubit for which we compute
the distance, with A-type tensor enumerators on the other
tiles. Subtracting the enumerator polynomial A(u) of the
stabilizers, we then obtain a distribution for all the non-
identity logical operators acting on that bulk qubit Fig. 5
(top right).

One can also define the word distance of this code, as
in Ref. [27], where it is simply the distance of the result-
ing subsystem code if we isolate one bulk qubit as the
logical qubit and the rest as gauge qubits. To compute
the word distance, we construct an Ã(u) enumerator by
contracting A-type tensor enumerator on the central tile
with B-type tensor enumerator on the rest of the network.
This enumerates the logical identities in the gauge code.
Then subtracting it from the scalar B(u) enumerator of the
whole code yields the distribution of all gauge-equivalent
nontrivial logical operators, Fig. 5 (bottom right).

For each code of a fixed size n, we then repeat this
for bulk qubits at different radii from the center of the
graph measured in graph distance. An explicit labeling

of the qubits we study is shown in Fig. 5 (left) [60]. We
give a summary for n = 25 and n = 85 in Table II, where
NS,NW denote the number of minimal weight stabilizer or
gauge-equivalent representations of the nonidentity logical
operators.

Although the stabilizer distance decreases as a func-
tion of radius, the word distance is more or less constant
with respect to the radius. This is a particular consequence
of the tiling and the atomic codes, such that erasure of
four certain boundary qubits can lead to the erasure of the
innermost bulk qubit [47]. Under depolarizing noise with
probability p , the normalized uncorrectable error probabil-
ity pL is shown in Fig. 18(left). We see that the central
bulk qubit in fact suffers from more errors because it has a
greater number of minimal weight-equivalent representa-
tions despite having the same word distance as most other
bulk qubits. We see a crossing because the outermost bulk
qubit has a slightly lower distance compared to the rest.

Despite the constant word distance as a function of sys-
tem size for logical qubits that are deep in the bulk, and
presumably the lack of erasure threshold for the central
bulk qubit [61], a larger n does hint at a greater degree of
error suppression. Let �pL = pL(n = 85)− pL(n = 25),
we see that the error rate difference for the inner most bulk
qubit has a slight suppression at small p while the outer-
most bulk qubit is the opposite. Intuitively, this is expected
for general holographic codes as its construction is a slight
generalization of code concatenation. As such, a crossing
is expected, where adding more layers of code would gen-
erally lead to noisier bulk qubits in the deep IR when the
physical error rates are sufficiently large while the opposite
happens for the logical qubits in the UV. A more in-depth
analysis of other holographic codes with varying word
distances can be interesting as future work.

Let us also briefly examine its properties under biased
noise using the double enumerator. The asymmetric dis-
tances dX /dZ are recorded in Table II. The XZ weight
distribution is not symmetric, but the normalized logi-
cal error probability is fairly symmetric with respect to
pX , pZ . Here we compare the logical error probability
�pL = pr=0

L − pr=3
L for the n = 85 code, Fig. 19. Like the

TABLE II. Tabulated stabilizer distances dS and word distances dW for two HaPPY pentagon codes at different sizes. NS ,NW denote
the number of minimal weight stabilizer equivalent and gauge-equivalent representations of nontrivial logical operators, respectively.
We also provide the corresponding asymmetric stabilizer and word distances sorted by X and Z weights. Radial distance r is the graph
distance of the bulk qubit from the central tile for a code of fixed n. The qubits we studied are labeled according to Fig. 5.

[[25, 11, 3]] [[85, 41, 3]]

r dS NS dW NW dX
S /d

Z
S dX

W/d
Z
W dS NS dW NW dX

S /d
Z
S dX

W/d
Z
W

0 9 30 4 60 5/5 2/2 23 240 4 60 13/13 2/2
1 5 6 4 54 3/3 2/2 13 48 4 36 7/7 2/2
2 3 3 3 3 1/2 1/2 9 12 4 24 5/5 2/2
3 n/a n/a n/a n/a n/a n/a 3 12 3 12 1/2 1/2

030313-25

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

FIG. 18. Left: logical error probability of bulk qubits at different radii for a [[85, 41, 3]] HaPPY code. Right: the difference between
logical error rates for two HaPPY codes of radii 3 and 2. At higher n, the innermost bulk qubit has lower logical error rate while that
for the outermost is higher for sufficiently low physical error rate p . The opposite is true at higher p .

symmetric depolarizing noise, the bulk qubit deeper in the
bulk provides slightly better protection for the encoded
information, but becomes noisier at higher physical error
rates. However, the bulk qubit at r = 0 does not provide
better protection compared to the bulk qubits close to the
boundary for any noise parameter in the heavily biased
regime.

D. 2D Bacon-Shor code

For another example of the subsystem code, we study
the 2D Bacon-Shor code. The tensor network for this code
is identical to that of the surface code except we des-
ignate the physical legs every other row as gauge legs;
see Appendix G.4 of Ref. [13]. It is conceptually conve-
nient to think of these blocks as [[4, 2, 2]] stabilizer codes
or [[4, 1, 2]] Bacon-Shor codes. As a subsystem code, it is

FIG. 19. �pL = pr=0
L − pr=3

L as a function of px, pz the bit-flip
and phase-error probabilities. The blue translucent plane marks
�pL = 0, below which the bulk qubit at r = 0 provides better
protection.

most relevant to obtain its word distance. To that end, we
construct its mixed enumerator I(z) for the logical identity.
The enumerator for the nontrivial logical operators (non-
identity logical operators multiplying any element of the
gauge group) is C(z) = B(z)− I(z). It is most convenient
to express these enumerators graphically, Fig. 20.

Computing B(z) is relatively straightforward, as we
build it by contracting all B(z) of the [[5, 1, 2]] and [[4, 2, 2]]
codes in the tensor network and then renormalize B0 to 1.
Practically, we compute A(z) by contracting all the A(z)
of these tensors then perform a MacWilliams transform.
However I(z) requires extra care as we need to place B(z)
on the odd number rows for the regular [[5, 1, 2]] codes and
A′(z) for the [[4, 1, 2]] Bacon-Shor codes on even rows.
Although these tensors in the encoding map are identi-
cal, the downward pointing legs in the [[5, 1, 2]] code now
maps to a gauge leg in the [[4, 1, 2]] code. Therefore, we
must account for its weight distributions appropriately. It
can be checked that the logical legs on the odd rows and
columns are correlated with the logical legs on the even
rows and columns. Therefore, they only contribute to an
overall normalization.

Above computations can also be easily generalized to
double and complete enumerators for the Bacon-Shor
code. For example, the X , Z weight distributions of all
nontrivial logical Pauli operator representations in this sub-
system code is shown in Fig. 21 for the 2D Bacon-Shor
code of different sizes.

Note that it has a very different structure from the
surface-code operator weight distribution, a likely conse-
quence of the even weight gauge generators.

1. 2D compass code

Now we examine different instances of gauge fixed
Bacon-Shor codes. For an �× �′ Bacon-Shor code, let

030313-26

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

FIG. 20. Distribution of nonidentity logical operators in the 2D Bacon-Shor code, where blue tensors indicate A(z) of the [[5, 1, 2]]
code (odd columns) and [[4, 2, 2]] codes (even columns). Green tensors are A′(z) of the [[4, 1, 2]] subsystem code while orange tensors
are B(z) of the [[5, 1, 2]] codes.

us fix the XX gauge by promoting (�− 1)(�′ − 1)
weight-2 X -type gauge operators to stabilizer generators.
This yields a stabilizer group with (�− 1)+ (�′ − 1)+
(�− 1)(�′ − 1) = �+ �′ − 2 + ��′ − �− �′ + 1 = ��′ − 1
generators, which is a [[��′, 1, min(�, �′)]] stabilizer code.

The tensor network for this gauge can be built from the
tensor of two different repetition codes

WR = |00〉〈0| + |11〉〈1|
WB = (|00〉 + |11〉)〈0|/

√
2 + (|10〉 + |01〉)〈1|/

√
2.
(6.8)

(a)

(b)

FIG. 21. Plotting log(Cwx ,wz) in log scale, where X and Z
weights are labeled by the vertical and horizontal axes, respec-
tively. (a) 7 by 7 Bacon-Shor code. (b) 6 by 8 Bacon-Shor
code.

The code defined by WR has stabilizer ZZ, and X̄ =
XX , Z̄ = IZ and the one with WB has X ↔ Z with stabi-
lizer XX , X̄ = IX , Z̄ = ZZ. Their tensors are colored red
and blue, respectively. The output legs of the tensors are
connected into a ring while leaving the inputs dangling.
This constructs tensors in the tree tensor network, Fig. 22.
Each of the bigger red nodes corresponds to a stabilizer
state with stabilizer group 〈all X , even weight ZZ〉. The
same holds for the big blue nodes but with X ↔ Z.

Although the code has d ∼ √
n, the entanglement for

some subsystems of size approximately d can be much
weaker. This allows us to write down a more efficiently
contractible tensor network by taking advantage of these
low entanglement cuts [62]. The total time complexity
for obtaining the enumerator is thus O(�+ �′) ∼ O(d) if
� ≈ �′.

By fixing the gauges in other ways, one produces a
class of codes known as the 2D compass codes [63],
which includes a gauge that reproduces the surface code
and the XX (or ZZ) gauge we examined. Coincidentally,
these are also two gauges of the Bacon-Shor code with
the highest (O(n exp(

√
n))) and lowest (O(

√
n)) computa-

tional cost, respectively. The entanglement structure of the
underlying quantum state generally depends on the gauge
choice. While this speedup is not surprising, as the exam-
ple can be built from code concatenation, we can estimate
how cost would scale for other patterns of gauge fixings
that are everywhere-in-between provided we have tensor
networks whose connectivity captures the entanglement
feature. Intuitively, we can roughly understand the speedup
as a statement about entangled clusters. When the code
is fixed in the pure XX gauge, for instance, there is lit-
tle entanglement across the columns or rows of the code.
If we now introduce gauge fixing such that ZZ stabilizers
can occur with some nonvanishing fraction, this introduces
more entanglement across these clusters and the result-
ing tensor-network minimal cut now has to cut through
these additional bridges of entanglement. Generally, we
then expect the complexity to scale exponentially as the
width of these bridges, or the minimal cuts that separates
these clusters. In the extreme case of the surface code, the
bridges are of

√
n, and in the pure XX or ZZ gauge, the

bridge is of O(1). By slowly deforming from the XX or

030313-27

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

FIG. 22. Tree tensor network for a m × n Bacon-Shor code in the XX gauge. Some stabilizers are shown via operator pushing. The
tensors are obtained from repetition code encoding maps.

ZZ gauge, one may also explore the intermediate regime
of complexities O(

√
n) → poly(n) → O(exp(

√
n)) [64].

A more comprehensive study of this complexity transition
and gauge fixing can be an interesting subject for future
exploration.

VII. DISCUSSION

In this work, we generalize the existing weight-
enumerator formalism to study cosets, subsystem codes,
and all single-qubit error channels. In conjunction with
tensor networks, we extend their applications in quan-
tum error correction. We show that weight enumerators
can be computed more efficiently using tensor-network
methods once a QL construction of the code is known.
The complexity can vary depending on the tensor-network
connectivity, and is dominated by the cost of tensor con-
tractions. For a QL construction that faithfully reflects the
entanglement structure of the code words, the cost for
finding their enumerator is approximately O(exp(d)) for
nondegenerate codes and up to exponentially faster for
degenerate codes. As a novel distance-finding protocol, our
proposal constitutes the only and the best current algorithm
for finding the distance beyond stabilizer codes. In the case
of Pauli stabilizer codes, this provides a comparable per-
formance for nondegenerate codes, and up to exponential
speedup for degenerate codes.

Using the generalized coset enumerators, we also con-
struct (optimal) decoders for all codes using weight enu-
merators for all i.i.d. single-qubit error channels. As a
corollary, it improves the simulation accuracy when esti-
mating fault-tolerant thresholds if used in conjunction with
existing methods. Since QL includes all quantum codes,
and thus stabilizer codes, the enumerator method can
also be understood as a generalization of tensor-network
decoders. Finally we applied our method numerically to
codes with sizes of order 100 to 200 qubits, showing that
it is practical to study codes of relevant sizes in near-to-
intermediate term devices. We also provide novel analysis
of the surface code, color code, holographic code, and the
Bacon-Shor code using exact analytical expressions. These
include their full operator weight distributions and certain
code performance under coherent or biased noise. For the

holographic code, we also present new results on asym-
metric distances and the varied behavior of different bulk
qubits under (biased) Pauli error.

This advance also has a wide range of applications
in the context of measurement-based quantum computa-
tion quantum many-body physics. We have shown that
higher genus weight enumerators computes the stabilizer
Renyi entropy, or magic, of a quantum state. It is also
known that Shor-Laflamme enumerator, or sector length,
is a powerful tool to study the entanglement structure
of cluster states. With these novel connections between
coding-theoretic objects and quantum resource-theoretic
quantities, our method provides a far more efficient method
to characterize entanglement and magic in quantum many-
body systems compared to brute-force evaluation. For the
case of graph states, existing methods to compute sector
lengths have been limited to order 30 qubits. Our numer-
ics from the 2D tensor network suggests that this may be
pushed to about 10 times higher with modest hardware
requirements on 2D cluster states. Numerical computation
of quantum many-body magic is also widely recognized
as a challenging problem. Here we provide an alterna-
tive method that is readily implementable for a variety of
tensor-network architectures.

We also provided a systematic method for building QL
decomposition of existing quantum codes, filling the void
left by our previous work [13]. In particular, our novel
tensor-network construction applied to quantum LDPC
codes provides a simple algorithmic method to analyze
such codes from the perspective of quantum many-body
systems using bounded-degree tensor networks.

A. Connection with stat mech mapping

We comment on the connection between optimal decod-
ing and distance from the point of view of the statistical
mechanical mapping and weight enumerators. Recall that
the coset weight enumerator polynomial A(Ē, u) of E
captures the weight distribution of all operators that are
stabilizer equivalent to E. By plugging in the correspond-
ing coefficients k from decomposing the error channels,
one obtains the probability of incurring any errors that are
equivalent to E. This is nothing but the partition function
ZE by solving the stat mech mapping [65] associated with

030313-28

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

a noise model that satisfies the Nishimori condition for all
parameters βJi where β is the inverse temperature and {Ji}
are coupling strengths of the model.

Conversely, if the error probability from the stat mech
model can be obtained exactly, then it must agree with
A(Ē, u) in some domain that is a connected region near
the origin. Since if two polynomials f , g agree in an
infinite number of points, f − g must have an infinite num-
ber of roots. This cannot happen for any nontrivial f − g
because the degree deg(f − g) ≤ max(deg(f), deg(g)) is
bounded. This implies that the solution ZE = A(Ē, u) must
be unique. Therefore, by solving the stat mech model and
obtaining its partition function for different values of βJi,
we must also have sufficient information to uniquely fix the
enumerator polynomial. For example, for symmetric Pauli
noise, one can in principle fix the coefficients of the poly-
nomial by computing the values of ZE(β) at different tem-
peratures. As there are only finitely many coefficients for
As, one can solve an overconstrained system of equations
with integer solutions.

In practice, however, the expression for ZE = Pr(Ē) in
the stat mech model is often obtained numerically. There-
fore, unless P = NP (or NP = RP) the reverse process
going from the stat mech output to the enumerator can
only be trusted to produce the correct results only when
the values of Pr(Ē) hold to exponential accuracy gener-
ally. This is expected, because otherwise one can solve
the minimal distance problem approximately [66] using the
stat mech model in polynomial time with approximate ten-
sor contraction. In instances where the partition functions
can be (or have been) obtained with relatively high accu-
racy such that the cost is less expensive compared to the
current enumerator method, one can also acquire polyno-
mially many values of the partition functions at different
coupling strengths. One can then fit the coefficients of the
enumerator polynomial to these data points. This allows
us to derive (an approximation of) the enumerator and
thus also extrapolat the error probabilities to other regimes
instead of evaluating those points individually using the
stat mech model.

B. Future directions

Recently, it was shown that asymptotically good quan-
tum LDPC codes like Ref. [67] have a circuit depth
lower bound that is log n. Since these codes are highly
degenerate and some may sustain linear distances even
with a much lower entanglement along some cuts, it
is possible that a good tensor-network description may
lead to a more efficient distance-verification protocol for
codes whose code words saturate the entanglement lower
bound. However, we also note that small-sized examples,
their tensor-network descriptions, and a tight entanglement
lower bound are still open problems as of the time of writ-
ing, the advantage our method provides only remains a

theoretical possibility [68]. Therefore, a general QL recipe
for building quantum LDPC codes would be useful.

As weight enumerators are applicable for non-(Pauli)-
stabilizer codes, they can be used to study or search for
such codes while providing crucial information on their
distances. This would extend the examples in this work
beyond stabilizer codes and would also have relevant
applications in optimization-based methods that need not
produce stabilizer codes [24]. For example, XS or XP
codes [37,38] do not have Abelian stabilizer groups and
currently lack a protocol for computing their code dis-
tances. However, for general codes, reduced enumerators
are likely insufficient, and a higher bond dimension will be
needed.

Note that beyond QECC literature, Shor-Laflamme enu-
merators, also known as sector lengths in graph states
[11,69], have been used to study the structure as well as the
robustness of entanglement in entangled resource states.
Sector lengths of graph states are difficult to compute using
the brute-force method. Given our tensor-network decom-
position of all graph states, we expect our method to carry
immediate impact in the analysis of 2D or planar cluster
states with >100 qubits using sector lengths as well as
more general applications in the context of fault-tolerant
resource state preparation for measurement and fusion-
based quantum computations and quantum networks.

In the context of quantum many-body magic, nonsta-
bilizerness has been difficult to compute numerically. As
stabilizer Renyi entropy and other measures have been
related to quantum chaos, entanglement spectrum and the
emergence of gravity in AdS/CFT correspondence, it is
interesting to explore whether the tensor-network methods
based on enumerators are advantageous for more efficient
magic computations. It is also intriguing to understand
whether the quantum MacWilliams identity can provide
important constraints for quantum many-body entangle-
ment and magic.

Tensor-enumerator methods are also useful when
used in conjunction with machine-learning (especially
reinforcement-learning)-based methods for QECC search
[26,70]. As one would typically need to evaluate cer-
tain code properties, such as distance, that are resource
intensive, the tensor enumerator method can be used to
drastically decrease the time needed to evaluate the cost
function. It is also of interest to study the effect of approxi-
mate tensor contractions and how they impact the accuracy
of the weight distribution and related distance information.

While we have treated all i.i.d. single-qubit errors, the
current formalism does not tackle general location-based
or correlated error efficiently. For the former, a straightfor-
ward extension exists where one can either introduce an
additional variable for each location that has independent
error pattern. This remains efficient as long as the types
of distinct error channels is small, but can quickly become
intractible if it scales with the system size. Alternatively,

030313-29

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

one can precontract the tensor with a fixed error
parameter {pi} instead of describing them as variables.
The latter reduces to a more general tensor-network
decoder [21,71–74]. In particular, [74] shows that corre-
lated errors can be efficiently studied using PEPO with
approximate tensor contraction. Both correlated noise and
approximate contraction schemes can be interesting future
avenues of research in the context of tensor weight enu-
merators. In the same vein, further extension is needed to
describe fault-tolerant processes, which are fundamentally
dynamical. Therefore, an enumerator framework compati-
ble with space-time quantum error correction that incorpo-
rates gadgets that includes measurement errors, midcircuit
noise and POVMs will be needed.

Finally, while enumerators were first defined in classical
coding theory, one yet needs an efficient method to com-
pute them for classical codes. Therefore, it is natural to
extend the current QL-based approach to classical codes
and compute their weight-enumerator polynomials. Such
tasks may be accomplished by directly applying the cur-
rent formalism for classical codes and rephrasing them as
quantum stabilizer codes with trivial generators, or devis-
ing a more efficient method that performs the analog of the
trace or conjoining operation for classical codes.

ACKNOWLEDGMENTS

We thank Y.D. Li, D. Miller, G. Sommers, and Y.J. Zou
for helpful discussions and comments on the manuscript.
C.C. acknowledges the support by the U.S. Department
of Defense and NIST through the Hartree Postdoctoral
Fellowship at QuICS, the Air Force Office of Scientific
Research (Grant No. FA9550-19-1-0360), and the National
Science Foundation (Grant No. PHY-1733907). M.J.G.
acknowledges support from the National Science Foun-
dation (QLCI Grant No. OMA-2120757). The Institute
for Quantum Information and Matter is an NSF Physics
Frontiers Center. Certain commercial equipment, instru-
ments, or materials are identified in this paper in order
to specify the procedure adequately and do not reflect any
endorsement by NIST.

APPENDIX A: COMMON SCALAR
ENUMERATORS

For completeness, we review a few examples below that
we we have used in this work.

1. Shor-Laflamme weight enumerator

The original weight enumerators [75,76] are important
objects in classical coding theory. Their quantum counter-
parts were introduced by Shor and Laflamme [4], which
capture some key properties of an error-correcting code.

They feature a duo of polynomials that take the forms of

A(z, w) =
n∑

d=0

Ad(M1, M2)zdwn−d, (A1)

B(z, w) =
n∑

d=0

Bd(M1, M2)zdwn−d, (A2)

where

Ad(M1, M2) =
∑

E∈E[d]

Tr(EM1)Tr(EM2), and (A3)

Bd(M1, M2) =
∑

E∈E[d]

Tr(EM1EM2) (A4)

for some Hermitian M1, M2, and E[d], which denotes uni-
tary errors of weight d. Here without loss of generality
we can simply choose the Pauli basis. Note that they are
a special case of the abstract enumerator [14], and we may
recover them by setting u = (w, z) and

wt(E) =
{
(1, 0) if E = I
(0, 1) otherwise. (A5)

So that uwt(E) = wn−wt(E)zwt(E), where wt(E) is simply the
operator weight of the Pauli string E.

These polynomials are related by the MacWilliams iden-
tity

B(w, z) = A
(

w + (q2 − 1)z
q

,
w − z

q

)
. (A6)

Therefore, it is sufficient to obtain one of them, and per-
form MacWilliams transform to get the other. In practice,
for a brute-force algorithm, it is often easier to recover
A(z, w).

Note that these polynomials are sometimes expressed in
the inhomogeneous form where A(z) = A(w = 1, z), B(z)
= B(w = 1, z). As it is simple to recover the homogenized
form by setting A(z) → wnA(z/w) and similarly for B, we
refer to both of them weight enumerators as they contain
the same information as encoded by the coefficients.

2. Refined enumerators

We can also consider a generalization of the Shor-
Laflamme polynomial (A1) where we separate the weights
by type [9]. One such example is the double weight

030313-30

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

enumerator. Using variables u = (w, x, y, z)

wt(E) =

⎧
⎪⎨

⎪⎩

(0, 1, 0, 1) if E = I
(0, 0, 1, 1) if E = X
(1, 0, 1, 0) if E = Y
(1, 1, 0, 0) if E = Z

. (A7)

This is useful when, for instance, we consider a biased
error model where bit flip (X) and phase (Z) errors occur
independently with different probabilities. Depending on
the form of the biased Pauli noise, other weight functions
may be used for the weight function. Such double enu-
merators may be used as long as the biased Pauli noise
only admits two independent physical error parameters.
The polynomials are

D(x, y, z, w; M1.M2) =
n∑

wx ,wz

Dwx ,wz y
wx wwz xn−wx zn−wz ,

(A8)

D⊥(x, y, z, w; M1, M2) =
n∑

wx ,wz

D⊥
wx ,wz

ywx wwz xn−wx zn−wz ,

(A9)

where

Dwx ,wz =
∑

E∈E[wx ,wz]

Tr[EM1] Tr[E†M2], (A10)

D⊥
wx ,wz

=
∑

E∈E[wx ,wz]

Tr[EM1E†M2], (A11)

and E[wx, wz] is the set of Paulis that have X and Z weights
wx, wz, respectively.

The MacWilliams identity was derived in Ref. [9] for
local dimension 2 where M1 = M2 are projection opera-
tors onto the code subspace. In Ref. [14], it was extended
arbitrary local dimension q and M1, M2. We reproduced the
relation here for convenience

D⊥(x, y, z, w)

= D
(

x + (q − 1)y√
q

,
z − w√

q
,

z + (q − 1)w√
q

,
x − y√

q

)
.

(A12)

The inhomogeneous forms are

D(y, w) =
n∑

wx ,wz

Dwx ,wz y
wx wwz , (A13)

D⊥(y, w) =
n∑

wx ,wz

D⊥
wx ,wz

ywx wwz . (A14)

One can easily restore the x, z dependence as their powers
are fixed by n, wx, wz.

Theorem 6. If tx, tz are the two largest integers such that
Dwx ,wz = D⊥

wx ,wz
for wx < tx, wz < tz, then dx = tx, dz = tz.

Proof. See Theorem 8 of Ref. [9]. �

An even more refined weight function distinguish all the
Pauli operators by their types

wt(E) =

⎧
⎪⎨

⎪⎩

(1, 0, 0, 0) if E = I
(0, 1, 0, 0) if E = X
(0, 0, 1, 0) if E = Y
(0, 0, 0, 1) if E = Z

. (A15)

This is known as the complete weight enumerator [9].
Again, let u = (w, x, y, z)

E(x, y, z, w; M1, M2)

=
∑

wx ,wy ,wz

Ewx ,wy ,wz x
wx ywy zwz wn−wx−wy−wz (A16)

F(x, y, z, w; M1, M2)

=
∑

wx ,wy ,wz

Fwx ,wy ,wz x
wx ywy zwz wn−wx−wy−wz , (A17)

where

Ewx ,wy ,wz =
∑

Q∈E[wx ,wy ,wz]

Tr[QM1] Tr[Q†M2]uwt(Q), (A18)

Fwx ,wy ,wz =
∑

Q∈E[wx ,wy ,wz]

Tr[QM1Q†M2]uwt(Q), (A19)

and E[wx, wy , wz] are the Pauli operators with those X , Y,
and Z weights, respectively. See Ref. [14] for general
MacWilliams identities at any q.

3. Applications to stabilizer codes

Before we move on to tensor enumerators, let us build
up some intuition as to what these polynomials are enu-
merating. Let us examine a special case where we set
M1 = M2 = � to be the projection onto the code subspace
of a quantum code. Furthermore, let us suppose that this is
a [[n, k]] stabilizer code, meaning that

� = 1
2n−k

∑

S∈S
S. (A20)

It is clear that Tr[E�] 	= 0 if and only if E ∈ S is a sta-
bilizer element and Tr[E�E†�] 	= 0 if and only if E ∈
N (S) is a normalizer element. Therefore, we see that,
up to a constant normalization factor, the coefficients Ad
of A(z;�,�) is simply enumerating the number of sta-
bilizer elements with weight d and Bd enumerating the
number of logical operators with weight d. Consequently,∑

d Ad = 2n−k and
∑

d Bd = 2n+k for a [[n, k]] code.

030313-31

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

For the refined enumerators, the coefficients of the double enumerator D, D⊥ are simply recording the number of
stabilizer and normalizer elements that have X , Z weights (wx, wz). Similarly, the complete enumerator coefficients
Ewx ,wy ,wz , Fwx ,wy ,wz count the elements with those corresponding X , Y, and Z weights.

One can also set M1, M2 to different operators to extract different information about the code. For example, in coset
enumerators, As

d counts the number of coset elements with a particular weight.

APPENDIX B: INSTANCES OF TENSOR ENUMERATORS

We have seen previously particular instances of tensor enumerators with u = z. One can extend examples in the main
text to other enumerators, which we have used to study other error models.

1. Refined tensor enumerators

Similar to the scalar forms, we apply u = (w, x, y, z) and the weight function Eqs. (A7) to (8). The tensor coefficients
are

D(J)
wx ,wz

(E, Ē; M1, M2) =
∑

F∈En−m[wx ,wz]

Tr((E ⊗J F)M1)Tr((Ē ⊗J F)†M2),

D⊥(J)
wx ,wz

(E, Ē; M1, M2) =
∑

F∈En−m[wx ,wz]

Tr((E ⊗J F)M1(Ē† ⊗J F†)M2),
(B1)

where J ⊆ {1, 2, . . . n} are the locations of open legs in the tensor enumerator. As in the main text, ⊗J denotes the operation
where we insert E s at corresponding positions of J indices to form a n-qubit Pauli string with F which has length n − m
for m open indices.

For complete tensor enumerators, we replace E[wx, wz] → E[dx, dy , dz] and

D(J)
wx ,wz

(E, Ē, M1, M2) → E(J)dx ,dy ,dz
(E, Ē, M1, M2),

D⊥(J)
wx ,wz

(E, Ē, M1, M2) → F (J)
dx ,dy ,dz

(E, Ē, M1, M2)
(B2)

in Eq. (B1). E[dx, dy , dz] is the set of Pauli operators with X , Y, Z weights given by dx, dy , dz, respectively.

2. Generalized tensor enumerators

For the most general noise model, it is also useful to define generalized abstract enumerator

Ã(J)(u; M1, M2) =
∑

E,Ē∈Em

∑

F ,F̄∈En−m

Tr((E ⊗J F)M1)Tr((Ē† ⊗J F̄†)M2)uwt(F ,F̄)eE,Ē , (B3)

B̃(J)(u; M1, M2) =
∑

E,Ē∈Em

∑

F∈En−m

Tr((E ⊗J F)M1(Ē† ⊗J F̄†)M2)uwt(F ,F̄)eE,Ē , (B4)

where the forms are similar to the conventional tensor enumerator but the sum and weight function now depend on two
independent variables F , F̄ . These are useful for computing generalized scalar weight enumerators (Sec. II B), which finds
applications in noise models such as coherent noise or amplitude damping channel (Sec. III B).

Theorem 7. Suppose j , k ∈ J ⊂ {1, . . . , n}. Then

∧j ,kÃ(J)(u; M1, M2) = Ã(J\{j ,k})(u; ∧j ,kM1, ∧j ,kM2) (B5)

and similarly for B̃.

030313-32

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

Proof.

∧jkÃ(J)(u; M1, M2) =
∑

E,Ē,F ,F̄

[
Tr((E ⊗J F)M1)Tr((Ē ⊗J F̄)†M2

]
uwt(F ,F̄) [∧j ,keE,Ē

]

=
∑

F ,F̄

∑

E\{Ej ,Ek},
Ē\{Ēj ,Ēk}

∑

G

{
Tr([((G ⊗ G∗)⊗j ,k E \ {Ej , Ek})⊗J F]M1)

×
∑

Ḡ

Tr([((Ḡ ⊗ Ḡ∗)⊗j ,k Ē \ {Ēj , Ēk})⊗J F̄]†M2)
}

uwt(F ,F̄)eE\{Ej ,Ek},Ē\{Ēj ,Ēk}

=
∑

E′,Ē′,F

Tr((E′ ⊗J\{j ,k} F)(|β〉〈β|j ,kM1))] Tr((Ē′ ⊗J\{j ,k} F̄)†(|β〉〈β|j ,kM2))uwt(F ,F̄)eE′,Ē′

=
∑

E′,Ē′,F

Tr((E′ ⊗J\{j ,k} F)(∧j ,kM1))Tr((Ē′ ⊗J\{j ,k} F̄)†(∧j ,kM2))uwt(F ,F̄)eE′,Ē′

= Ã(J\{j ,k})(u; ∧jkM1, ∧jkM2), (B6)

where the wedge acts on the vector basis in the usual way.
We used the fact that

|β〉〈β| = 1
q

∑

P∈P
P ⊗ P∗. (B7)

Similarly, we can repeat this argument for B-type generalized enumerators. We do not use MacWilliams identity for this
proof as we have not been able to identify any. �

Note that it is often possible to cut down the computational cost when the weight function satisfies the form

uwt(E,F) = uwt(E)
1 uwt(F)

2 . (B8)

Then we can write the generalized enumerator as

Ā(u; M1, M2) =
∑

E∈En

Tr[EM1]uwt(E)
1

∑

F∈En

Tr[F†M2]uwt(F)
2 (B9)

that factorize into two separate sums such that each piece can be computed separately. For each Mi, we can rewrite as
a tensor network. This allows us to compute either sum using a tensor network of χ = q2 by tracing reduced tensor
enumerators. We see that for stabilizer codes, the coefficients for each term are identical to the usual A-type scalar weight
enumerator up to a constant factor normalization.

3. Stabilizer codes and reduced enumerators

Again, let us come back to stabilizer codes for intuition behind these constructions. Consider the reduced tensor
enumerator polynomial with open indices J = {j1, . . . , jm} where we set M1 = M2 = � to be the projection onto sta-
bilizer code subspace. We see that each coefficient Aj1,...,jm

d simply enumerates, up to a constant normalization, the
number of stabilizer elements that has Pauli string σ (j1) ⊗ . . .⊗ σ (jm) on the first through m th qubit and qudit and
has weight d on the remaining qubit and qudits. Similarly for the reduced double, complete, and the generalized enu-
merators, the same intuition applies, except the weights are separated and recorded according to the types of the Pauli
operators.

030313-33

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

The tracing of reduced enumerators for stabilizer codes
can be understood as a simple consequence of operator
matching. Recall that stabilizers and logical operators in
the QL construction come from matching such operators
on the smaller tensors. Since the tensor enumerator is
counting the number of stabilizers with weight d and a par-
ticular Pauli type on the open legs, tracing it with another
tensor enumerator retains precisely the weight distribution
of Pauli elements that are matching on the legs being glued.
This in turn produces the desired weight distribution of
the larger tensor network. Although Theorem 2 provides a
construction that is sufficient for building weight enumera-
tor of any quantum code, the above intuition suggests that
the reduced enumerators are sufficient for stabilizer codes,
which allows us to reduce the bond dimension from q4 to
q2.

Definition 3. A diagonal trace is defined by

∧DT
j ,k eE,Ē =

{
eE\{Ej ,Ek},Ē\{Ēj ,Ēk} if Ej = E∗

k = Ēj = Ē∗
k

0 otherwise.
(B10)

Proposition 3. Suppose

M1 = 1
|S|

∑

S∈PS
S, (B11)

M2 = 1
|S|

∑

S∈PS
ωSS (B12)

for any coset PS of Pauli operator P and ωS ∈ C. Let ∧all
be the set of self-contractions that reduce an even rank
tensor enumerator to a scalar, then

∧DT
all AJ (u; M1, M2) ∝ A(u; ∧allM1, ∧allM2) (B13)

and similarly for B. The same holds if the forms of M1, M2
are switched.

Proof. The proof is similar to Theorem 7.1 of Ref. [14].
Let us begin with the case where there are only two open
legs in the tensor enumerator. It is clear that

Tr[(G ⊗ G∗ ⊗ F)Mi] 	= 0 (B14)

if and only if G ⊗ G∗ ⊗ F is a coset element.
Suppose G is the set of all G s for which the trace

Eq. (B14) is nonzero, then
∑

G,Ḡ∈E
Tr[(G ⊗ G∗ ⊗ F)M1] Tr[(Ḡ ⊗ Ḡ∗ ⊗ F)†M2]

= |G|
∑

G

Tr[(G ⊗ G∗ ⊗ F)M1] Tr[(G ⊗ G∗ ⊗ F)†M2],

(B15)

which is proportional to the diagonal trace ∧DT. We can
see this by the following. For each G ∈ G, we sum over
Ḡ, which leads to some constant ∝ ∑

S ωS. Repeating for
each G, we simply get back the same constant |G| times. If
we only sum over the diagonal terms with G = Ḡ, then
we obtain the constant ∝ ∑

S ωS once. This only works
because one of M1, M2 is an equal superposition of Pauli
operators.

Furthermore, note that for the F in Eq. (B15), each
Ḡ ∈ G, Ḡ = PG, P 	= I , it is clear that P ⊗ P∗ is a stabi-
lizer of the code. Therefore, for any other F such that
G ⊗ G∗ ⊗ F ∈ PS , it must follow that (P ⊗ P∗ ⊗ I)(G ⊗
G∗ ⊗ F) = Ḡ ⊗ Ḡ∗ ⊗ F ∈ PS for each Ḡ ∈ G. Therefore,
the overcounting is identical for all F s by a factor of
|G|. Therefore, the diagonal elements contain sufficient
information to reproduce the scalar enumerator.

For any tensor enumerator with four open legs that needs
two self-traces on two pairs a0 and a1. From the above
arguments we know that a full trace on a1 followed by
diagonal trace on a0 produces the correct scalar enumer-
ator. Therefore, it is sufficient to show that a diagonal trace
on a1 produce the correct diagonal elements for the pair a0.
Let E denote the Pauli for open legs associated with pair
a0. Under a full trace on a1, the diagonal elements of the
remaining tensor then come from coefficients of the form

∑

G,Ḡ∈E
Tr[(G ⊗ G∗ ⊗ E ⊗ F)M1]

× Tr[(Ḡ ⊗ Ḡ∗ ⊗ E ⊗ F)†M2], (B16)

where the sum comes from tracing over the legs of a1.
We notice that the same argument above applies by setting
E ⊗ F → F since F is arbitrary. Hence we conclude that
the full trace on a1 produce the same diagonal elements on
a0 as a diagonal trace up to a constant multiple. Proceed
inductively with 2k open legs, it is clear that the diagonal
components are sufficient for generating the scalar weight
enumerators.

To show that the B type enumerator is also correctly pro-
duced via diagonal trace, recall that diagonal trace is linear
and commutes with the generalized Wigner transform as
shown in the proof of Prop. VI.1, it can also be generated
with only diagonal trace operations. �

Therefore, for practical analysis of Pauli stabilizer
codes, we only need to consider the reduced tensor enu-
merators, that is, restricting to the diagonal elements E =
Ē of each tensor enumerator in Definition 4.2 of Ref. [14].

The same proof does not apply for tracing generalized
enumerators Ã, B̃ because two separate sums are required
separately for F and F̄ whereas the argument is valid only
when F = F̄ . Therefore, we have to perform a full tensor
trace even for stabilizer codes. Such is needed to analyze
more general error channels like coherent noise.

030313-34

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

APPENDIX C: TENSOR-ONLY
IMPLEMENTATION

1. Multilinear formulation

Although the enumerator polynomials can be imple-
mented symbolically, it is also possible to rephrase them
purely as tensors with complex coefficients.

For each tensor enumerator, one can take the coeffi-
cients in the polynomial, as a tensorial object by itself. For
example, for Shor-Laflamme enumerators, coefficient Ad
in the scalar enumerator can be treated as a rank-1 ten-
sor with bond dimension ≤n + 1. Similarly, Aj

d in vector
enumerator has two indices where j marks a bond dimen-
sion q4 index (or q2 in reduced enumerators) and d has
bond dimension ≤ n + 1. Generally, a(n) (abstract) tensor
enumerators can be represented by the tensor components

Aj1,...,ji
du

and Bj1,...,ji
du

,

where du can be l tuple of indices that tracks the powers
of the monomials. For instance, for complete enumerator,
du → (dx, dy , dz). For now, let us focus on reduced enu-
merators over q = 2 where the upper and lower indices
carry no additional physical meaning. To avoid clutter,
let us also drop the subscript of du. For concreteness
one can take d to be the usual operator weight, but it is
straightforward to restore it to the most general form.

In a tensor network, instead of tracing the tensor enu-
merator polynomials, we now trace together these tensors.
However, we need an additional operation on the two
legs d1, d2 that add the powers of the monomials during
polynomial multiplication.

Ajl+1,...,ji,rl+1,rk
d =

n1,n2∑

d1,d2

M d1d2
d

∑

j1,j2,...,jl

Aj1,j2,...,jl,...ji
d1

Aj1,j2,...jl,rl+1...rk
d2

,

(C1)

where M d1d2
d is a tensor such that

M d1d2
d =

{
1 if d = d1 + d2

0 else.
(C2)

On the formalism level, this trace with M tensor can be
completed at any time. In practice, however, we perform
such an operation every time a tensor trace like Eq. (C1) is
completed.

The modified trace operation T̃r that reduces the tensor
rank can also be performed by contracting another rank-3
tensor

Td′dj =
{
δd′d if j = 0
δd′d−1 else.

(C3)

FIG. 23. Modified trace operation.

For example, to recover the scalar enumerator from a
vector enumerator (Fig. 23), we use Ad′ = Td′dj Aj

d, where
repeated indices are summed over.

The method for tracing other tensor enumerators, such
as the double and complete tensor weight enumerators, is
largely the same.

For example, the contraction of two reduced double
enumerator is

Djl+1,...,ji,rl+1,rk
dx ,dz = M

dx
1dx

2
dx M

dz
1dz

2
dz Dj1,j2,...,jl,...ji

dx
1,dz

1
Dj1,j2,...jl,rl+1...rk

dx
2,dz

2
,

(C4)

where repeated indices are summed. The modified trace is

Dd′
x ,d′

z
=
∑

dx ,dz ,j

Td′
x ,d′

z ,dx ,dz ,j Dj
dx ,dz

, (C5)

with

Td′
xd′

zdxdzj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δd′
xdxδd′

zdz if j = 0
δd′

x−1dxδd′
zdz if j = 1

δd′
x−1dxδd′

z−1dz if j = 2
δd′

xdxδd′
z−1dz if j = 3

. (C6)

If u carries more variables, then an additional M contrac-
tion is needed for each separate variable index [77].

For the full tensor enumerator polynomial, one has to
take extra care of potential sign changes where we have
I ↔ I , X ↔ X , Z ↔ Z but −Y ↔ Y matchings. Suppress-
ing the d index for now, we can think of each tensor
enumerator index in a representation Aj → Aα,ᾱ with α =
1, . . . , q2 = 4. Furthermore, we prepare the Minkowski
metric ηα,β = diag(1, 1, −1, 1) so that tensor contractions
are only performed between upper and lower indices.
Indices are raised and lowered in the usual way with Aββ̄ =
ηαβηᾱβ̄Aαᾱ and contracting the two vector enumerators is
by contracting the covariant vector with the contravariant
one, i.e., AαᾱA′

αᾱ . We see the raised or lowered index does
not matter for reduced enumerators because the diagonal
elements for ηαβηᾱβ̄ at α = ᾱ,β = β̄ only carry positive
signs.

2. MacWilliams identity as a linear transformation

We derive the matrix representation of MacWilliams
identities in the polynomial basis {zdwn−d : 0 ≤ d ≤ n} to
facilitate MATLAB numerics.

030313-35

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

By Corollary 5 of Ref. [5],

A′(w, z) = A((w + z)/q, z/q),

B′(w, z) = B((w + z)/q, z/q).
(C7)

By Theorem 3 of Ref. [5], A′(w, z) = B′(z, w) and A′
d =

B′
n−d, which is equivalent to the quantum MacWilliams

identity (Theorem 7 of Ref. [5]):

B(w, z) = A
(

w + (q2 − 1)z
q

,
w − z

q

)
. (C8)

We chose to work with A′ and B′ because the relation
A′

d = B′
n−d can be easily expressed by an antidiagonal

matrix with every element equal to 1 in the polynomial
basis {zdwn−d : 0 ≤ d ≤ n}.

To express Bd in terms of Ad, we only need to express
Ad in terms of A′

d, and B′
d in terms of Bd. By Corollary 5 of

[5],

A′(w, z) =
n∑

d=0

Ad

(
z
q

)d (
w + z

q

)n−d

=
n∑

d=0

Ad

(
z
q

)d
(

n−d∑

e=0

(
n − d

e

)(
z
q

)n−d−e

we

)

=
n∑

d=0

n−d∑

e=0

Ad

(
n − d

e

)(
z
q

)d (z
q

)n−d−e

we

=
n∑

d=0

n−d∑

e=0

Ad

(
n − d

e

)(
z
q

)n−e

we

=
n∑

e=0

n−e∑

d=0

Ad

(
n − d

e

)(
z
q

)n−e

we

=
n∑

e=0

(
n−e∑

d=0

Ad

(
n − d

e

))(
z
q

)n−e

we

=
n∑

e′=0

⎛

⎝
e′∑

d=0

Ad

(
n − d
n − e′

)⎞

⎠
(

z
q

)e′

wn−e′

=
n∑

d=0

(
1
qd

d∑

m=0

Am

(
n − m
n − d

))
zdwn−d. (C9)

Since

A′(w, z) =
n∑

d=0

A′
dzdwn−d, (C10)

we have

A′
d = 1

qd

d∑

m=0

Am

(
n − m
n − d

)
, 0 ≤ d ≤ n. (C11)

In other words,

A′
d =

d∑

m=0

TdmAm, (C12)

where

Tdm = 1
qd

(
n − m
n − d

)
, 0 ≤ m ≤ d, 0 ≤ d ≤ n. (C13)

Similarly, B′(w, z) = B(w + z/q, z/q) implies that

B′
d =

d∑

m=0

TdmBm. (C14)

Hence

Ad =
n∑

d′=0

(T−1JT)dd′Bd′ , 0 ≤ d, d′ ≤ n, (C15)

where

J =

⎛

⎜⎜⎝

0 · · · 0 1
0 · · · 1 0
...

. . .
...

...
1 · · · 0 0

⎞

⎟⎟⎠

(n+1)×(n+1)

T =

⎛

⎜⎜⎜⎝

(n
n

)
0 · · · 0

1
q

(n
n−1

) 1
q

(n−1
n−1

) · · · 0
...

. . .
...

...
1
qn

(n
0

) 1
qn

(n−1
0

) · · · 1
qn

(0
0

)

⎞

⎟⎟⎟⎠

(n+1)×(n+1)

.

Similarly,

Bd =
n∑

d′=0

(T−1JT)dd′Ad′ , 0 ≤ d, d′ ≤ n, (C16)

because

A = T−1JTB ⇐⇒ B = T−1JTA. (C17)

3. Connection with Farrelly, Tuckett, and Stace

Reference [20] proposed a method to compute distance
in local tensor-network codes, which are qubit stabilizer
codes obtained from contracting other smaller stabilizer
codes in a manner similar to Ref. [13]. In particular, we see
that when applied to an [[n, k]] stabilizer code, the tensor
Cl1,...,lk

w in Ref. [20] is exactly a reduced tensor enumera-
tor in the multilinear form where w is precisely the degree
of the monomial and li = 0, 1, 2, 3 are the open indices that
track the Pauli type I , X , Y, Z. This corresponds to comput-
ing the tensor weight enumerator B(z)l1,...,lk if we keep all

030313-36

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

the logical legs open. Similarly, C0,...,0
w is the coefficient of

an A-type tensor enumerator. Indeed, Dw which is obtain-
able from Cl1,...,lk

w is precisely the tensor coefficients of the
scalar enumerators Bd − Ad. Both enumerators are in the
usual Shor-Laflamme form.

Although both approaches rely on the tensor-network
method to produce weight distributions, the detailed con-
struction differs somewhat in how the tensors in the net-
work is implemented—we construct the enumerator from
encoding maps while Ref. [20] directly enumerates the log-
ical operators of an encoding tensor and then computes
their weights by contracting with another weight tensor
that tabulates 4n Pauli weights. Reference [20] also pro-
duces a tensor network [see Fig. 4(d)] with a double bond
on each contraction where each edge has bond dimen-
sion 4. Naively this appears to lead to bond dimension
16 objects [Figs. 4(b) and 4(c)]. While such a descrip-
tion is sufficient, we know from the tensor enumerator
formalism that it is possible to obtain the enumerator
for Pauli stabilizer codes with a reduced bond dimen-
sion 4 (Thm 6), hence enabling more efficient tensor
contractions.

It is unclear how the complexity estimates for these
methods compare, as none was performed for Ref. [20]
except for 1D codes that are prepared by log depth cir-
cuits. However, given the similarities in their structure and
their overall efficiency for tree tensor networks and holo-
graphic codes, they should be polynomially equivalent in
that regime. In practice, however, we note that even a con-
stant factor difference can be quite substantial. Therefore,
a more in-depth comparison in their performance can be
an interesting problem for future work. In particular, it is
important to understand whether these methods are optimal
with respect to different networks.

Although Ref. [20] does not discuss weight distribu-
tions for other error models, it is possible to adapt their
formalism to produce double and complete weight enu-
merators by modifying their weight tensor. For example,
to obtain the double enumerator, one can replace Wg1,...,gm

w
with Wg1,...,gm

wx ,wz such that the tensor coefficient is unity
when a Pauli string σ g1 ⊗ · · · ⊗ σ gm has X and Z weights
wx, wz, respectively. A similar extension should be possi-
ble for abstract enumerators. It is currently unclear whether
a similar extension is possible for generalized abstract
enumerators.

Another key difference lies in the use of MacWilliams
transform in our work, which is polynomial [78] in n.
Generally, the MacWilliams identity can help reduce com-
putational cost. When the tensor network is efficiently
contractible, and when we overlook the cost in manip-
ulating large integers, the difference of keeping B- vs
A-type tensor enumerators should be relatively insignifi-
cant. However, when the minimal cuts are large, e.g., when
the tensor network represents a volume law or even some

area law states, the B-type tensor can become far more
populated than the A type by as much as O(ek). For
instance, in the limiting case where the cost of tensor-
network contraction approaches that of the brute-force
method [79], e.g., in random stabilizer codes, we see that
B is 22k more expensive to compute compared to A. Hence
in some instances, the MacWilliams identities can help
reduce computational cost that is exponential in k.

The decoder [20] uses is formally similar to the usual
tensor network decoder where error probability is com-
puted for some fixed p using a tensor contraction whereas
the enumerator method produces an analytical expression
for the error probability as a function of u. The former is
computationally advantageous when the error probabilities
are heavily inhomogeneous and carry a strong locational
dependence. The latter is more powerful for obtaining a
continuous range of error probabilities when the physical
errors are relatively uniform across the entire system.

Overall, the formalism based on tensor weight enumer-
ator is more general as it applies to all quantum codes
with uniform local dimensions. When specialized to the
case of Pauli stabilizer codes over qubits, both methods
can compute scalar and tensor enumerators associated with
the code using tensor-network methods. In this case, our
method improves upon Ref. [20] with a reduced bond
dimension and with the use of the MacWilliams iden-
tities. The former provides a polynomial speedup while
the latter can provide an O(ek) speedup in some regimes.
With the extension to biased error and general noise mod-
els, we also extend the maximum-likelihood decoders for
such stabilizer codes to general error channels. However,
the enumerator method is less efficient in tackling highly
inhomogeneous errors.

APPENDIX D: ERROR DETECTION FOR
GENERAL NOISE CHANNELS

1. Nondetectable error

Proof. Let us compute here the probability of incurring
a noncorrectable (logical) error. Suppose the error chan-
nel is E(ρ), which can be written as the Kraus form in
Theorem 4 being the tensor product of single site errors.
Let the initial state be ρ = |ψ̃〉〈ψ̃ | ∈ L(C), and dim C = K .
Then the probability of a nondetectable error is

pnd(ρ) = Tr[(�− ρ)�E(ρ)�]

=
∑

i

||(I − |ψ̃〉〈ψ̃ |)�Ki|ψ̃〉||2, (D1)

where � is the projection onto the code subspace. It is
simply the overlap between the error state and the part
of the code subspace that is orthogonal to the original
codeword. �

030313-37

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

Now averaging over all initial codewords |ψ̃〉 with respect to the normalized uniform measure μ(|ψ̃〉), we have

pnd =
∑

i

∫

˜|ψ〉∈C
||(I − |ψ̃〉〈ψ̃ |)�Ki|ψ̃〉||2dμ(|ψ̃〉)

=
∑

i

∫

˜|ψ〉∈C
〈ψ̃ |K†

i�(I − |ψ̃〉〈ψ̃ |)(I − |ψ̃〉〈ψ̃ |)�Ki|ψ̃〉dμ(ψ̃)

=
∑

i

∫

˜|ψ〉∈C
〈ψ̃ |K†

i�Ki|ψ̃〉dμ(|ψ̃〉)−
∑

i

∫

˜|ψ〉∈C
〈ψ̃ |K†

i�|ψ̃〉〈ψ̃ |�Ki|ψ̃〉dμ(|ψ̃〉). (D2)

Similar to Ref. [80], the integral in Eq. (D2) can be evaluated. The first term is

∑

i

∫

˜|ψ〉∈C
〈ψ̃ |K†

i�Ki|ψ̃〉dμ(|ψ̃〉) =
∑

i

Tr[K†
i�Ki

∫

˜|ψ〉∈C
|ψ̃〉〈ψ̃ |dv(|ψ̃〉)]

= 1
K

∑

i

Tr[K†
i�Ki�], (D3)

where we use Lemma 7 in Ref. [80] for the last step, which evaluates the integral.
The second term is

∑

i

∫

˜|ψ〉∈C
〈ψ̃ |K†

i�|ψ̃〉〈ψ̃ |�Ki|ψ̃〉dμ(|ψ̃〉) = 1
K(K + 1)

(
∑

i

Tr[K†
i�Ki�] +

∑

i

Tr[K†
i�] Tr[Ki�]

)
, (D4)

where we integrate over the same measure and use Lemma 8 in Ref. [80]. This completes our proof for Theorem 4.

2. Errors with nontrivial syndromes

Proof. When C is a stabilizer code, we can talk about syndrome measurements and decoding in the usual sense. While
� denotes the projection onto the code subspace, i.e., measuring trivial syndromes, we can similarly ask what the proba-
bility is for measuring some other syndromes s where the state is taken to a subspace �s = Es�E†

s , where Es is an error
with syndrome s. �

Again, this is given by the overlap between the state suffering from the error and some final state in the error subspace.

p̄s =
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[�sKiρK†

i�s]

=
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[Es�E†

sKiρK†
i Es�E†

s]

=
∑

i

Tr[
∫

|ψ̃〉∈C
dμ(|ψ̃〉)|ψ̃〉〈ψ̃ |K†

i�sKi]

= 1
K

∑

i

Tr[�K†
i�sKi]. (D5)

Therefore, this quantity can be easily obtained from the B-type generalized complete enumerator when we replace one of
� by �s. Note that this recovers the syndrome probability with Pauli errors using the coset enumerator.

030313-38

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

It is also useful for decoding purposes to consider the probability p(L̄|s) so as to correct the most likely logical error.
The probability that Ẽs = EsL̃ occurs is

p̄(L̃ ∩ s) =
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[Ẽs|ψ̃〉〈ψ̃ |Ẽ†

s�sKi|ψ̃〉〈ψ̃ |K†
i�s]

=
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)(〈ψ̃ |Ẽ†

s�sKi|ψ̃〉)(〈ψ̃ |K†
i�sẼs|ψ̃〉). (D6)

Because �sẼs|ψ̃〉 = Ẽs|ψ̃〉.

p̄(L̃ ∩ s) =
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)(〈ψ̃ |Ẽ†

sKi|ψ̃〉)(〈ψ̃ |K†
i Ẽs|ψ̃〉)

= 1
K(K + 1)

(∑

i

Tr[Ẽ†
sKi�K†

i Ẽs�] +
∑

i

Tr[Ẽ†
sKi�] Tr[K†

i Ẽs�]
)

= 1
K(K + 1)

(∑

i

Tr[Ki�K†
i�s] +

∑

i

Tr[Ki�Ẽ†
s] Tr[K†

i Ẽs�]
)

. (D7)

Hence

p̄(L̃|s) = p̄(L̃ ∩ s)/p̄s = 1
K + 1

(
1 +

∑
i Tr[Ki�Ẽ†

s] Tr[K†
i Ẽs�]

∑
i Tr[Ki�K†

i�s]

)
. (D8)

Each term in Eq. (D8) can be computed by setting M1, M2 to the appropriate values in the weight enumerator M1 =
�Ẽ†

s , M2 = Ẽs� for the Ā-type enumerator and M1 = �, M2 = �s for the B̄-type enumerator.
For the purpose of building a decoder, we do not care about the overall normalization, hence computing the Ā-type

enumerator will be sufficient. The first term in p̄(L̃ ∩ s) is independent on the logical operation L̃, and thus does not
modify our decision based on the maximum likelihood.

3. General logical error channel

Nonunitary logical error: Under this more general channel, it is also natural to consider a more general logical error
where for some ρs in the error subspace with syndrome s beyond the kind of coherent logical error L̃. For instance, we can
discuss the error probability that the logical information suffers from a logical error channel in that subspace

Ñ (ρ̃) = ρ̃ →
∑

j

η̃j ρ̃η̃
†
j , (D9)

after obtaining syndrome s by measuring the checks. More precisely, we find that

p̄(Ñ (·) ∩ s) =
∑

i

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[EsÑ (ρ̃)E†

s�sKi|ψ̃〉〈ψ̃ |K†
i�s]

=
∑

i,j

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[Esη̃j |ψ̃〉〈ψ̃ |η̃†

j E†
sKi|ψ̃〉〈ψ̃ |K†

i]

=
∑

i,j

∫

|ψ̃〉∈C
dμ(|ψ̃〉)Tr[Os

j i|ψ̃〉〈ψ̃ |Os†
j i |ψ̃〉〈ψ̃ |]

= 1
K(K + 1)

∑

i,j

(
Tr[Os†

j ,i�Os
j ,i�] + Tr[Os†

j ,i�] Tr[Os
j ,i�]

)
, (D10)

030313-39

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

where we defined Os
j ,i = K†

i Esη̃j . Note that just like for
calculating error probability of syndrome s under depolar-
izing noise with B-type enumerators, the first term can be
expressed as a B type and one can perform the sum over j
in defining

�s
η =

∑

j

Esη̃j�η̃
†
j E†

s (D11)

and then substitute and compute the first term as
∑

i

Tr[Ki�K†
i�

s
η], (D12)

which is basically identical to our computation of the non-
detectable error probability except we set M2 = �s

η and
the remaining procedures for decomposing Ki carries over
identically.

For the second term, however, we have to repeat the
enumerator computations for each j by summing over
i. If we set Ẽj

s = Esη̃j , then it has the identical form as
the coset enumerator we analyzed earlier except for the j
dependence,

Tr[Ki�Ẽj †
s] Tr[K†

i Ẽj
s�]. (D13)

For generic errors, j = 1, . . . , 4k, so it is more relevant for
k small.

For a fixed error channel, the enumerator fully captures
the likelihood of all error channels by decomposing η̃j into
Paulis and varying their coefficients. It could be interesting
to analyze the extrema of error probabilities with respect
to these variables to find the most likely error channel. We
can imagine building a decoder that seeks to undo the effect
of the most likely error channel, though it is unclear when
such recovery procedures exist in general. To correct such
errors, we apply first a coset element of Es. Then depending
on the availability of the recovery map given the logical
error, we (partially) reverse the effect of the logical error
channel based on the relevant information of the code and
syndrome measurement outcomes.

APPENDIX E: QUANTUM TANNER GRAPH
FROM QUANTUM LEGO

Given any [[n, k]] stabilizer code whose codewords can
be obtained from measuring the check operators and posts-
electing on the trivial syndrome outcome, one can express
the encoding or state-preparation process as a tensor net-
work.

Consider a measurement-based state-preparation pro-
cess where we entangle all physical qubits with a reference
using Bell pairs |00〉 + |11〉. Then to apply the checks by
measuring them. The measurement process is straightfor-
ward—the physical qubits on which the check has support

FIG. 24. An ancillary is prepared and projected onto |+〉 (blue
triangle). This condenses the ancillary into a check node tensor
that is simply the encoding tensor of a repetition code (Z spi-
der). The data qubit condenses into another tensor node (green)
by combining the degree 3 tensors Ti. Here IN or L labels the
input and logical degrees of freedom while OUT or P labels the
output and physical degrees of freedom in the final atomic code
it produces. The bottom row indicates that the qubit is checked
by other checks, e.g., gi, i = 4 ∼ 7.

is entangled with a ancillary qubit using the usual circuit.
Then one measures and postselects on the trivial syn-
drome. Although the actual preparation of such a state in a
quantum computer requires either adaptive measurements,
decoding, and/or postselection, thus rendering the actual
process much more complicated, there is no such obstacle
in the classical tensor-network description where postse-
lection simply corresponds to contraction of a particular
type of tensor.

Suppose each check acts with a unitary gi on the phys-
ical qubit (bottom wire of Fig. 24), then the action of this
gate on the wire can be converted into a tensor [Fig. 25(a)].
The resulting tensor for common gates used in the prepa-
ration process for XP stabilizer codes are also given in
Fig. 25(b). Generally, this conversion can be performed for
any two-qubit controlled gate by choosing the appropriate
tensor T in purple.

Here ϕ is a tensor with elements

ϕij ∝
(

1 1
1 eiϕ

)
, (E1)

(a)

(b)

FIG. 25. (a) Depending on the nature of the controlled-g gate,
the target action can be condensed into a tensor. (b) The action
of a controlled-phase gate and that of a controlled X gate can be
simplified into the corresponding tensors with ϕ defined below.
Red and blue tensors are Z and X spiders, respectively.

030313-40

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

where an overall normalization is added as needed. For
ϕ = π it is the Hadamard gate and tensor.

Note that a code prepared this way has a nontrivial ker-
nel in the encoding map. This is the same for the tensor
network we built for the surface code or color code in the
main text.

For CSS codes, without loss of generality, one can per-
form first the Z checks then the X checks. By suitably
substituting g, one can simplify the data nodes (green) into
the form of Fig. 6(c).

[1] A. Yu. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (N. Y.) 303, 2 (2003).

[2] Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell,
in Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing (Association for Computing
Machinery, New York, NY, USA, 2021), pp. 1276–1288.

[3] Pavel Panteleev and Gleb Kalachev, in Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Com-
puting (Association for Computing Machinery, New York,
NY, USA, 2022), pp. 375–388.

[4] Peter Shor and Raymond Laflamme, Quantum analog of the
MacWilliams identities for classical coding theory, Phys.
Rev. Lett. 78, 1600 (1997).

[5] E. M. Rains, Quantum weight enumerators, IEEE Trans.
Inf. Theory 44, 1388 (1998).

[6] E. M. Rains, Quantum shadow enumerators, IEEE Trans.
Inf. Theory 45, 2361 (1999).

[7] E. M. Rains, Shadow bounds for self-dual codes, IEEE
Trans. Inf. Theory 44, 134 (1998).

[8] Alexei Ashikhmin, Alexander Barg, Emanuel Knill, and
Simon Litsyn, Quantum error detection I: Statement
of the problem, IEEE Trans. Inf. Theory 46, 778
(2000).

[9] Chuangqiang Hu, Shudi Yang, and Stephen S.-T. Yau,
Weight enumerators for nonbinary asymmetric quantum
codes and their applications, Adv. Appl. Math. 121, 102085
(2020).

[10] Patrick Rall, Signed quantum weight enumerators charac-
terize qubit magic state distillation, ArXiv:1702.06990.

[11] Daniel Miller, Daniel Loss, Ivano Tavernelli, Hermann
Kampermann, Dagmar Bruß, and Nikolai Wyderka, Shor-
Laflamme distributions of graph states and noise robustness
of entanglement, J. Phys. A- Math. Theor. 56, 335303
(2023).

[12] Thomas Schuster and Norman Y. Yao, Operator growth
in open quantum systems, Phys. Rev. Lett. 131, 160402
(2023).

[13] ChunJun Cao and Brad Lackey, Quantum Lego: Building
quantum error correction codes from tensor networks, PRX
Quantum 3, 020332 (2022).

[14] ChunJun Cao and Brad Lackey, Quantum weight enumera-
tors and tensor networks, IEEE Trans. Inf. Theory 70, 3512
(2024).

[15] Alexander Vardy, in Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, STOC
’97 (Association for Computing Machinery, New York, NY,
USA, 1997), p. 92.

[16] Ilya Dumer, Alexey A. Kovalev, and Leonid P. Pryadko,
in 2014 IEEE International Symposium on Information
Theory (2014), pp. 1086–1090.

[17] Alexey A. Kovalev, Ilya Dumer, and Leonid P. Pryadko, in
2013 Information Theory and Applications Workshop (ITA)
(2013), pp. 1–6.

[18] Ilya Dumer, Alexey A. Kovalev, and Leonid P. Pryadko,
Distance verification for classical and quantum LDPC
codes, IEEE Trans. Inf. Theory 63, 4675 (2017).

[19] M. N. Vyalyi, Hardness of approximating the weight enu-
merator of a binary linear code, ArXiv:cs/0304044.

[20] Terry Farrelly, David K. Tuckett, and Thomas M. Stace,
Local tensor-network codes, New J. Phys. 24, 043015
(2022).

[21] Andrew S. Darmawan and David Poulin, Tensor-network
simulations of the surface code under realistic noise, Phys.
Rev. Lett. 119, 040502 (2017).

[22] Yasunari Suzuki, Keisuke Fujii, and Masato Koashi, Effi-
cient simulation of quantum error correction under coherent
error based on the nonunitary free-fermionic formalism,
Phys. Rev. Lett. 119, 190503 (2017).

[23] Sergey Bravyi, Matthias Englbrecht, Robert König, and
Nolan Peard, Correcting coherent errors with surface codes,
npj Quantum Inf. 4, 55 (2018).

[24] Chenfeng Cao, Chao Zhang, Zipeng Wu, Markus Grassl,
and Bei Zeng, Quantum variational learning for quantum
error-correcting codes, Quantum 6, 828 (2022).

[25] Arpit Dua, Aleksander Kubica, Liang Jiang, Steven
T. Flammia, and Michael J. Gullans, Clifford-deformed
surface codes, PRX Quantum 5, 010347 (2024).

[26] Vincent Paul Su, ChunJun Cao, Hong-Ye Hu, Yariv Yanay,
Charles Tahan, and Brian Swingle, Discovery of optimal
quantum error correcting codes via reinforcement learning,
ArXiv:2305.06378.

[27] Robert J. Harris, Elliot Coupe, Nathan A. McMahon, Gavin
K. Brennen, and Thomas M. Stace, Decoding holographic
codes with an integer optimisation decoder, Phys. Rev. A
102, 062417 (2020).

[28] Fernando Pastawski and John Preskill, Code properties
from holographic geometries, Phys. Rev. X 7, 021022
(2017).

[29] In practice, it may be more efficient to compute the ten-
sor enumerator A(z) of the entire code, then perform a
MacWilliams transform on the tensor enumerator.

[30] William Duke, On codes and Siegel modular forms, Int.
Math. Res. Not. 1993, 125 (1993).

[31] Bernhard Runge, Codes and Siegel modular forms, Discrete
Math. 148, 175 (1996).

[32] Sergey Bravyi, Subsystem codes with spatially local gener-
ators, Phys. Rev. A 83, 012320 (2011).

[33] In fact this is true of every subsystem code: Using the usual
symplectic formalism of stabilizer groups, the gauge group
becomes a subspace, and a Darboux basis for this subspace
provides the two isotropic subspaces that characterize G1
and G2.

[34] Lorenzo Leone, Salvatore F. E. Oliviero, and Alioscia
Hamma, Stabilizer Rényi entropy, Phys. Rev. Lett. 128, 00
(2022).

[35] Tobias Haug, Soovin Lee, and M. S. Kim, Efficient quan-
tum algorithms for stabilizer entropies, Phys. Rev. Lett.
132, 240602 (2024).

030313-41

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1145/3519935.3520017
https://doi.org/10.1103/PhysRevLett.78.1600
https://doi.org/10.1109/18.681316
https://doi.org/10.1109/18.796376
https://doi.org/10.1109/18.651000
https://doi.org/10.1109/18.841162
https://doi.org/10.1016/j.aam.2020.102085
https://arxiv.org/abs/1702.06990
https://doi.org/10.1088/1751-8121/ace8d4
https://doi.org/10.1103/PhysRevLett.131.160402
https://doi.org/10.1103/PRXQuantum.3.020332
https://doi.org/10.1109/TIT.2023.3340503
https://doi.org/10.1109/ISIT.2014.6875000
https://doi.org/10.1109/ITA.2013.6502967
https://doi.org/10.1109/TIT.2017.2690381
https://arxiv.org/abs/cs/0304044
https://doi.org/10.1088/1367-2630/ac5e87
https://doi.org/10.1103/PhysRevLett.119.040502
https://doi.org/10.1103/PhysRevLett.119.190503
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.22331/q-2022-10-06-828
https://doi.org/10.1103/PRXQuantum.5.010347
https://arxiv.org/abs/2305.06378
https://doi.org/10.1103/PhysRevA.102.062417
https://doi.org/10.1103/PhysRevX.7.021022
https://doi.org/10.1155/S1073792893000121
https://doi.org/10.1016/0012-365X(94)00271-J
https://doi.org/10.1103/PhysRevA.83.012320
https://doi.org/10.1103/PhysRevLett.128.050402
https://doi.org/10.1103/PhysRevLett.132.240602

CHUNJUN CAO, GULLANS, LACKEY, and WANG PRX QUANTUM 5, 030313 (2024)

[36] Poetri Sonya Tarabunga, Emanuele Tirrito, Mari Car-
men Bañuls, and Marcello Dalmonte, Nonstabilizerness
via matrix product states in the Pauli basis, ArXiv:2401.
16498.

[37] Xiaotong Ni, Oliver Buerschaper, and Maarten Van den
Nest, A non-commuting stabilizer formalism, J. Math.
Phys. 56, 052201 (2015).

[38] Mark A. Webster, Benjamin J. Brown, and Stephen
D. Bartlett, The XP stabiliser formalism: a generalisation
of the Pauli stabiliser formalism with arbitrary phases,
Quantum 6, 815 (2022).

[39] Ruohan Shen, Yixu Wang, and ChunJun Cao, Quantum
Lego and XP stabilizer codes, ArXiv:2310.19538.

[40] Bob Coecke and Ross Duncan, Interacting quantum observ-
ables: Categorical algebra and diagrammatics, New J. Phys.
13, 043016 (2011).

[41] Zheng-Cheng Gu, Michael Levin, and Xiao-Gang Wen,
Tensor-entanglement renormalization group approach as
a unified method for symmetry breaking and topo-
logical phase transitions, Phys. Rev. B 78, 205116
(2008).

[42] Michael A. Levin and Xiao-Gang Wen, String-net con-
densation: A physical mechanism for topological phases,
Phys.Rev. B 71, 045110 (2005).

[43] Oliver Buerschaper, Miguel Aguado, and Guifré Vidal,
Explicit tensor network representation for the ground states
of string-net models, Phys. Rev. B 79, 085119 (2009).

[44] In the context of stabilizer codes, its Clifford encoding
circuit is also easily obtainable [81].

[45] Pavithran Iyer and David Poulin, IEEE Trans. Inf. Theory
61, 5209 (2015).

[46] For stabilizer codes, if there are kv logical legs on a tensor
on a node v, then building Av(z) is upper bounded by com-
plexity O(qc−2kv) and is less expensive compared to that
of Bv(z). For general quantum codes where one uses the
full tensor enumerator, preparing the coefficients of Av(z)
requires a worst case of O(q(5c−4kv)) operations.

[47] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and
John Preskill, Holographic quantum error-correcting codes:
Toy models for the bulk/boundary correspondence, J. High
Energy Phys. 2015, 149 (2015).

[48] Robert J. Harris, Nathan A. McMahon, Gavin K. Bren-
nen, and Thomas M. Stace, Calderbank-Shor-Steane holo-
graphic quantum error-correcting codes, Phys. Rev. A 98,
052301 (2018).

[49] ChunJun Cao and Brad Lackey, Approximate Bacon-Shor
code and holography, J. High Energy Phys. 2021, 127
(2021).

[50] M. Steinberg, S. Feld, and A. Jahn, Holographic codes from
hyperinvariant tensor networks, Nat. Commun. 14, 7314
(2023).

[51] Jeongwan Haah, Local stabilizer codes in three dimensions
without string logical operators, Phys. Rev. A 83, 042330
(2011).

[52] Jonas Haferkamp, Dominik Hangleiter, Jens Eisert, and
Marek Gluza, Contracting projected entangled pair states
is average-case hard, Phys. Rev. Res. 2, 013010 (2020).

[53] Yimin Ge and Jens Eisert, Area laws and efficient descrip-
tions of quantum many-body states, NJP 18, 083026
(2016).

[54] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A.
Sloane, Quantum error correction via codes over GF(4),
IEEE Trans. Inf. Theory 44, 1369 (1998).

[55] Arpit Dua, Private communication, 2023.
[56] Kitaev surface code, in The Error Correction Zoo, edited

by Victor V. Albert and Philippe Faist (2023).
[57] J. Pablo Bonilla Ataides, David K. Tuckett, Stephen

D. Bartlett, Steven T. Flammia, and Benjamin J. Brown,
The XZZX surface code, Nat. Commun. 12, 2172 (2021).

[58] A previous tensor network construction of the [[19, 1, 5]]
color code can be found Ref. [20], which requires both
the [[7, 1, 3]] codes and [[9, 0, 3]] stabilizer states as building
blocks. However, the protocol does not generalize to d > 5
due to concavity of the polygonal region.

[59] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski,
Unfolding the color code, New J. Phys. 17, 083026 (2015).

[60] Note that this radius is different from that in [27] where on
the central bulk qubit is singled out and its distances are
computed with respect to codes of different n s.

[61] This result assumes a particular decoder applied to small
sized systems using Monte Carlo methods. It is possible
that a different asymptotic behaviour can emerge with larger
codes and greater accuracy.

[62] Note that this speedup would not be possible for nonde-
generate codes as all subsystems of size d has the same
entanglement approximately d.

[63] Muyuan Li, Daniel Miller, Michael Newman, Yukai Wu,
and Kenneth R. Brown, 2D compass codes, Phys. Rev. X 9,
021041 (2019).

[64] In this way, the approximately exp(d) cost of computing
the Bacon-Shor weight enumerator is not surprising as the
unfixed tensor network encompasses all 2D compass code
configurations.

[65] Christopher T. Chubb and Steven T. Flammia, Statisti-
cal mechanical models for quantum codes with correlated
noise, Ann. Inst. Henri Poincare D 8, 269 (2021).

[66] I. Dumer, D. Micciancio, and M. Sudan, Hardness of
approximating the minimum distance of a linear code, IEEE
Trans. Inf. Theory 49, 22 (2003).

[67] Anurag Anshu, Nikolas P. Breuckmann, and Chinmay
Nirkhe, in Proceedings of the 55th Annual ACM Sympo-
sium on Theory of Computing (Association for Computing
Machinery, New York, NY, USA, 2023), pp. 1090–1096.

[68] The expansion property of these codes may naively indicate
the edge cut to scale with volume. However, as they are not
the corresponding tensor networks, and that edge cuts are
only upper bounds of entanglement, it may be possible that
a sparser tensor network can be found that permits fewer
cuts.

[69] Christopher Eltschka and Jens Siewert, Maximum N -body
correlations do not in general imply genuine multipartite
entanglement, Quantum 4, 229 (2020).

[70] Caroline Mauron, Terry Farrelly, and Thomas M. Stace,
Optimization of tensor network codes with reinforcement
learning, ArXiv:2305.11470.

[71] Andrew J. Ferris and David Poulin, Tensor networks and
quantum error correction, Phys. Rev. Lett. 113, 030501
(2014).

[72] Christopher T. Chubb, General tensor network decoding of
2D Pauli codes, ArXiv:2101.04125.

030313-42

https://arxiv.org/abs/2401.16498
https://doi.org/10.1063/1.4920923
https://doi.org/10.22331/q-2022-09-22-815
https://arxiv.org/abs/2310.19538
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.79.085119
https://doi.org/10.1109/TIT.2015.2422294
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevA.98.052301
https://doi.org/10.1007/JHEP05(2021)127
https://doi.org/10.1038/s41467-023-42743-z
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevResearch.2.013010
https://doi.org/10.1088/1367-2630/18/8/083026
https://doi.org/10.1109/18.681315
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1103/PhysRevX.9.021041
https://doi.org/10.4171/aihpd/105
https://doi.org/10.1109/TIT.2002.806118
https://doi.org/10.1145/3564246.3585114
https://doi.org/10.22331/q-2020-02-10-229
https://arxiv.org/abs/2305.11470
https://doi.org/10.1103/PhysRevLett.113.030501
https://arxiv.org/abs/2101.04125

QUANTUM LEGO EXPANSION PACK. . . PRX QUANTUM 5, 030313 (2024)

[73] Sergey Bravyi, Martin Suchara, and Alexander Vargo,
Efficient algorithms for maximum likelihood decod-
ing in the surface code, Phys. Rev. A 90, 032326
(2014).

[74] Andrew S. Darmawan and David Poulin, Linear-time gen-
eral decoding algorithm for the surface code, Phys. Rev. E
97, 051302 (2018).

[75] Jessie MacWilliams, A theorem on the distribution of
weights in a systematic code, Bell Syst. Tech. J. 42, 79
(1963).

[76] Florence Jessie MacWilliams and Neil James Alexan-
der Sloane, The Theory of Error Correcting Codes
(North-holland Publishing Company, Amsterdam, 1977),
Vol. 16.

[77] In the MATLAB code implementation, j = 3 and j = 2 are
swapped in the indexing convention such that Y is mapped
to the last index and Z is mapped to the second last.

[78] The complexity roughly scales as O(n3) from matrix multi-
plication. However, this is not counting the cost needed to
manipulate large integers.

[79] Intuitively, computing B enumerators of an [[n, k]] sta-
bilizer code involves enumerating 2n+k elements instead
of 2n−k.

[80] A. E. Ashikhmin, A. M. Barg, E. Knill, and S. N. Litsyn,
Quantum error detection I: Statement of the problem, IEEE
Trans. Inf. Theory 46, 778 (2000).

[81] Scott Aaronson and Daniel Gottesman, Improved simula-
tion of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

030313-43

https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevE.97.051302
https://doi.org/10.1002/j.1538-7305.1963.tb04003.x
https://doi.org/10.1109/18.841162
https://doi.org/10.1103/PhysRevA.70.052328

	I.. INTRODUCTION
	II.. GENERAL FORMALISM
	A.. Abstract scalar weight enumerator
	B.. Generalized abstract weight enumerators
	C.. Tensor weight enumerators
	D.. Tracing tensor enumerators

	III.. APPLICATIONS OF WEIGHT ENUMERATORS
	A.. Code distance from enumerators
	B.. Error detection
	1.. General error channels in the Pauli basis
	2.. Biased Pauli errors
	3.. Coherent error
	4.. Amplitude damping and dephasing channels

	C.. Effective distance
	D.. Subsystem codes and mixed enumerator
	E.. Higher genus enumerator
	F.. Coset enumerator and errors with nontrivial syndrome
	G.. Decoders from weight enumerators
	1.. Maximum-likelihood and Bayesian decoders
	2.. Marginals

	H.. Logical error rates
	1.. Exact computations
	2.. Error-rate estimation

	IV.. TENSOR NETWORKS FOR CODES
	A.. Quantum codes from quantum Tanner graph
	B.. Circuit-based tensor network

	V.. COMPUTATIONAL COMPLEXITY
	A.. General comments
	1.. Brute-force method
	2.. Tensor-network method

	B.. Cost for common codes
	.

	C.. Entanglement and cost

	VI.. EXAMPLES
	A.. Surface code
	.

	B.. 2D color code
	C.. Holographic code
	D.. 2D Bacon-Shor code
	1.. 2D compass code

	VII.. DISCUSSION
	A.. Connection with stat mech mapping
	B.. Future directions

	. ACKNOWLEDGMENTS
	. APPENDIX A: COMMON SCALAR ENUMERATORS
	1.. Shor-Laflamme weight enumerator
	2.. Refined enumerators
	3.. Applications to stabilizer codes

	. APPENDIX B: INSTANCES OF TENSOR ENUMERATORS
	1.. Refined tensor enumerators
	2.. Generalized tensor enumerators
	3.. Stabilizer codes and reduced enumerators

	. APPENDIX C: TENSOR-ONLY IMPLEMENTATION
	1.. Multilinear formulation
	2.. MacWilliams identity as a linear transformation
	3.. Connection with Farrelly, Tuckett, and Stace

	. APPENDIX D: ERROR DETECTION FOR GENERAL NOISE CHANNELS
	1.. Nondetectable error
	2.. Errors with nontrivial syndromes
	3.. General logical error channel

	. APPENDIX E: QUANTUM TANNER GRAPH FROM QUANTUM LEGO
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

