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Dynamic Cooling on Contemporary Quantum Computers
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We study the problem of dynamic cooling whereby a target qubit is cooled at the expense of heating up
N − 1 further identical qubits by means of a global unitary operation. A standard back-of-the-envelope
high-temperature estimate establishes that the target qubit temperature can be dynamically cooled by at
most a factor of 1/

√
N . Here we provide the exact expression for the minimum temperature to which the

target qubit can be cooled and reveal that there is a crossover from the high initial temperature regime,
where the scaling is 1/

√
N , to a low initial temperature regime, where a much faster scaling of 1/N

occurs. This slow, 1/
√

N scaling, which was relevant for early high-temperature NMR quantum com-
puters, is the reason dynamic cooling was dismissed as ineffectual around 20 years ago; the fact that
current low-temperature quantum computers fall in the fast, 1/N scaling regime, reinstates the appeal of
dynamic cooling today. We further show that the associated work cost of cooling is exponentially more
advantageous in the low-temperature regime. We discuss the implementation of dynamic cooling in terms
of quantum circuits and examine the effects of hardware noise. We successfully demonstrate dynamic
cooling in a three-qubit system on a real quantum processor. Since the circuit size grows quickly with
N , scaling dynamic cooling to larger systems on noisy devices poses a challenge. We therefore propose
a suboptimal cooling algorithm, whereby relinquishing a small amount of cooling capability results in
a drastically reduced circuit complexity, greatly facilitating the implementation of dynamic cooling on
near-future quantum computers.
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I. INTRODUCTION

Quantum computers offer massive advantages over clas-
sical computers in terms of execution time and memory
efficiency for a subset of problems, such as optimization
and simulation [1,2]. While various physical implemen-
tations of quantum computers are still being explored
(e.g., superconducting circuits, ion traps, and neutral
atoms), all must fulfill a fundamental set of requirements
[3]. One of these requirements is the ability to initialize the
quantum bits, or qubits, into a pure, fiducial quantum state.
Furthermore, pure ancilla qubits will be required for fault-
tolerant quantum computers to perform quantum error
correction [1,4,5]. The preparation of pure state qubits is
therefore a key hurdle in the successful implementation of
quantum computers now and in the future.
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The problem of initializing a large set of qubits into a
pure state was first studied in the context of generating
highly polarized qubits in NMR systems to increase signal-
to-noise ratios [6–8]. Since large polarization in qubits can
be obtained by cooling them down to very low tempera-
tures, scientists began to explore techniques to cool qubits
below temperatures that can be achieved with direct, phys-
ical cooling methods (e.g., cooling with lasers or large
magnetic fields). Schulman and Varizani [9] were the first
to propose effective cooling of qubits for quantum com-
putation via the application of certain logic gates on the
qubits, which following Ref. [10] we refer to as “dynamic
cooling.” Their proposal, based on entropy manipulation
in a closed system, cools a subset of qubits (e.g., a single
target qubit) at the expense of heating the others by per-
forming unitary operations on the entire set of qubits (see
Fig. 1).

In the high initial-temperature regime, which was rel-
evant for the NMR-based quantum computers available
at the time dynamic cooling was proposed, the Shannon
bound establishes that the target qubit can be dynamically
cooled by a factor of at most 1/

√
N , where N is the total

number of qubits [11,12]. This slow scaling led to the dis-
missal of dynamic cooling as an impractical method for
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FIG. 1. Dynamic cooling of N identical qubits. Here the target
qubit is cooled at the expense of heating up the auxiliary qubits
via the application of the global unitary operator U.

cooling qubits, and gave thrust to further research aimed at
beating Shannon’s bound. Since the bound holds for closed
systems, subsequent proposals extended the scenario to
open systems by allowing a subset of qubits to interact
with the environment (i.e., a heat bath), thereby achieving
cooling beyond Shannon’s bound [11,12]. Such techniques
are usually referred to as “heat bath algorithmic cooling”
(or sometimes simply as “algorithmic cooling”) [13–27].

However, quantum computing technology has under-
gone a dramatic revolution in the last two decades, with
high-temperature NMR quantum computers falling out of
favor as newer models that operate at very low temper-
atures (e.g., superconducting circuits and ion traps) have
shown great promise [28,29]. In tandem, as a result of the
development of quantum thermodynamics, much interest
has grown within the scientific community in regard to
the possible advantage, in terms of energy consumption,
of quantum technology in general and quantum computing
in particular [30].

Here we reexamine dynamic cooling in light of the sci-
entific and technological advances that have been achieved
since its inception more than two decades ago. We con-
sider a set of N identical qubits, each initially in thermal
equilibrium at some initial temperature T, that undergoes
dynamic cooling via a global unitary transformation U, as
schematically represented in Fig. 1. After such a transfor-
mation, the ground state and excited state populations of
the target qubit change, thereby effecting a change in its
temperature. We analytically solve the problem of finding
the minimum final temperature T′ that can be achieved as
a function of the initial temperature T, qubit resonant fre-
quency ω, and total number of qubits N . This allows us to
unveil a crossover from the expected 1/

√
N scaling at high

T to a much faster, unexpected, 1/N scaling at low T.
We also provide an analytic expression for the minimal

work cost associated with maximal cooling and show that
it scales linearly with N (i.e., it is extensive) and displays
distinct behaviors at low and high temperature. While it
vanishes as 1/T in the high-T regime, it vanishes exponen-
tially as e−1/T in the low-T regime. These results evidence
that dynamic cooling behaves very differently at high and

low initial temperatures. In particular, at low T, it is much
more effective in terms of system-size scaling and energy
cost.

Since current quantum computers operate in the low-
T regime (unlike early NMR quantum computers), these
results reinstate the appeal of dynamic cooling for gen-
erating pure state qubits for quantum computation. Given
this renewed viability, we discuss the implementation of
dynamic cooling in terms of quantum circuits and exam-
ine the effect of noise on cooling on near-term quantum
computers. We successfully demonstrate dynamic cool-
ing on a real quantum processor on a system of N = 3
qubits. While scaling dynamic cooling up to larger sys-
tems on noisy quantum computers is a challenge due to
the rapid growth of circuit size with N , we demonstrate
how this can be overcome by accepting a suboptimal cool-
ing scheme, whereby increased cooling can be achieved
at a fixed (low) circuit complexity as the system size is
increased. Our reexamination of dynamic cooling suggest
that it is a promising technique for preparing pure state
qubits on near-future quantum computers.

II. MAXIMAL COOLING

The initial state of the global system reads

ρ =
N⊗

i=1

(
e−βHi

Z(β)

)
, (1)

where β = 1/kBT, kB is Boltzmann’s constant, and Z(β) =
Tr e−βHi = 2 cosh(βω/2) is the partition function of any of
the qubits, whose Hamiltonian Hi = �ωσ i

z/2, is expressed
here in terms of the Pauli operator σ i

z , the reduced Plank
constant �, and the resonant frequency ω. All qubits are
assumed to have the same resonant frequency.

Let |i1 i2 · · · iN 〉 denote the tensor product |i1〉1 ⊗
|i2〉2 ⊗ · · · ⊗ |iN 〉N of the eigenvectors |ik〉k, of the oper-
ators σ k

z , k = 1, 2, . . . , N , where ik = 0 (ik = 1) denotes
the ground (excited) state of qubit k. We assign qubit
k = 1 to be the target qubit to be cooled and let P0 =
eβ�ω/2/Z(β) and P1 = e−β�ω/2/Z(β) = 1 − P0 denote the
initial ground state and excited state populations of the tar-
get qubit, respectively. Similarly, let P′

0 and P′
1 = 1 − P′

0
denote the final ground state and excited state populations
of the target qubit after application of the cooling unitary.

To maximally cool the target qubit, the goal is to mini-
mize P′

1 over all possible global unitaries U. This problem
is equivalent to finding the set of unitaries that minimizes
the expectation value of the final energy of the target qubit
u′ = �ω(P′

1 − P′
0) = �ω(2P′

1 − 1). Thus, we must solve
the minimization problem

u′ = min
U

TrKUρU†, K = H1 ⊗ 1 ⊗ · · · ⊗ 1, (2)
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where K is the target qubit Hamiltonian expressed in the
Hilbert space of the total system. This problem is for-
mally identical to finding the ergotropy of a driven system
(ergotropy is the maximum work extractable from a quan-
tum system) [31]. The only difference is that solving for
the ergotropy addresses the total system energy, setting K
in Eq. (2) to the total system Hamiltonian. Here we address
the energy of a subsystem (i.e., the target qubit), using its
Hamiltonian for K . Since the specific form of the Hamil-
tonian is irrelevant to the objective minimization problem,
we may borrow techniques used to compute the ergotropy
and directly apply them to our problem.

To do so, we note the critical fact that for our system,
the initial state ρ commutes with the Hamiltonian K . As
discussed in Ref. [31], in such a case the optimization is
particularly simple: the minimum is achieved when U is a
permutation matrix that maps the eigenstate of ρ with the
largest eigenvalue to the eigenstate of K with the small-
est eigenvalue, the eigenstate of ρ with the second-largest
eigenvalue to the eigenstate of K with the second-smallest
eigenvalue, etc. In other words, if ei are the eigenener-
gies of K , then if we order the eigenvalues pi of ρ in
nonincreasing fashion, that is,

pi ≥ pk for i < k, (3)

the minimizing unitary U in Eq. (2) is one that performs
the permutation σ such that

eσ(i) ≤ eσ(k) for i < k. (4)

Note that this holds even in the case of degenerate spectra.
Indeed, in our case the spectrum of K is highly degenerate,
with only two distinct eigenvalues: ei = ±�ω/2. States of
the form |0 i2 · · · iN 〉, which are half of the total 2N states,
have an eigenenergy of K equal to −�ω/2, while states
of the form |1 i2 · · · iN 〉 have an eigenenergy of K equal to
+�ω/2. Maximal cooling can thus be implemented by the
mapping of the half of the states with the highest occupa-
tion probabilities to the half of the states with the lower
eigenenergy ei = −�ω/2. Because of the large degener-
acy in the spectrum of K (as well as degeneracy in the
spectrum of ρ), there will be many distinct permutations σ ,
and hence many distinct unitaries U, that achieve maximal
cooling. Illustrative examples for N = 3, 4 are provided in
Appendix A.

The maximum amount by which the target qubit can be
cooled is determined by calculating its final excited state
population P′

1. Note that P′
1 is simply the sum of the final

occupation probabilities of the states {|1 i2 · · · iN 〉}, which
are the exact set of states to which the lowest half of the
probabilities are mapped. Therefore, to compute P′

1, we
simply generate a list of all the occupation probabilities
in nondecreasing order and sum the first half of the list.

To do so, note that the occupation probability of a state
with k bits set to 0 is given by (1 − P1)

kPN−k
1 (where

P1 is given by the initial temperature of the qubits), and
there will be

(N
k

)
states with this probability. States with

more bits set to 0 (higher k) have higher initial occu-
pation probabilities. Therefore, we can generate a list of
the probabilities in nondecreasing order by appending the(N

k

)
probabilities of value (1 − P1)

kPN−k
1 to the list as we

increase k from 0 to N . Summing the first half of this list
will give P′

1(P1, N ).
When N is odd, there are an even number of distinct val-

ues of k ranging from 0 to N . The number of probabilities
for the first half of the k values (k = 0, . . . , �N/2	) is equal
to the number of probabilities for the second half of the k
values (k = 
N/2�, . . . , N ). Thus,

P′
1(P1, N ) =

∑

0≤k<N/2

(
N
k

)
(1 − P1)

kPN−k
1 , for odd N .

(5)

The calculation is slightly more complicated when N is
even, since now dividing the list of probabilities in half
involves splitting in half the degenerate group of proba-
bilities where k = N/2. This means that we must add to
Eq. (5) half of the

( N
N/2

)
degenerate probabilities with value

(1 − P1)
N/2PN/2

1 :

P′
1(P1, N ) =

∑

0≤k<N/2

(
N
k

)
(1 − P1)

kPN−k
1

+ 1
2

(
N

N/2

)
(1 − P1)

N/2PN/2
1 , for even N .

(6)

An intriguing observation is that if we start from an odd
number of qubits, adding one more qubit will not increase
maximal cooling:

P′
1(P1, 2s − 1) = P′

1(P1, 2s), s ∈ N (7)

(the proof is provided in Appendix B). This generalizes
the fact that a total of at least three (identical) qubits is
required to obtain some cooling [32]. To see this, note that
with a total of one qubit, no cooling is possible by means
of a unitary manipulation, so Eq. (7) implies that cooling
with a total of two identical qubits is likewise impossible;
a minimum of three qubits is required for dynamic cooling.

Figure 2 shows P′
1 as a function of P1 for increasing

system size N . Note that P′
1(P1, N ) is an increasing func-

tion of P1, meaning that the higher the initial temperature,
the higher the final temperature, which agrees with intu-
ition. Note also that in the interval [0, 1/2[, P′

1(P1, N ) is
a decreasing function of N , namely, the larger N is, the
greater is the cooling, in agreement with what one would
expect. We have

lim
N→∞

P′
1(P1, N ) = 0, P1 ∈ [0, 1/2[, (8)
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FIG. 2. Final probability of the excited state of the target qubit
after maximal cooling P′

1 versus its initial probability P1 for
increasing numbers of total system qubits N = 22, 23, . . . , 210.

meaning that as long as the initial temperature is finite
and non-negative, by increasing N , one can cool the target
qubit arbitrarily close to zero temperature. Note, however,
the crucial fact that P′

1(1/2, N ) = 1/2 for any N . This
is because any unitary evolution leaves the completely
mixed state unaltered; no cooling is possible if the initial
temperature is infinite, regardless of N . This constraint is
responsible for the low 1/

√
N scaling at high temperature,

which is discussed below.
Using the relation between the initial excited state pop-

ulation P1 and temperature T

kBT
�ω

= 1
ln(1/P1 − 1)

, (9)

as well as the analogous relation between the final, mini-
mal excited state population P′

1 and temperature T′, we can
write the final minimal temperature as a function of the
initial temperature T as:

T′ = �ω

kB

1

ln
([

P′
1

(
1

e�ω/(kBT)+1
, N

)]−1
− 1

) . (10)

Here the expression “final temperature” is not being used
in a strictly thermodynamic sense, i.e., to denote the tem-
perature of the thermal bath surrounding the qubit, but
rather it is being used in an “effective” sense, i.e., to denote
the temperature that the bath would have if it were in
equilibrium with the qubit.

Figure 3 shows a log-log plot of T′ versus T for various
system sizes N = 2s. The dashed black line plots T′ = T to
guide the eye in seeing the amount of cooling that occurs.
In both the low-T regime and the high-T regime, there is a
linear relationship between T′ and T (the slope of the log-
log plots is 1) but the coefficient of proportionality (i.e.,

FIG. 3. Log-log plot of the minimal final temperature T′ versus
the initial temperature T for various system sizes s = N/2. The
dashed black line plots T′ = T (slope equal to 1) to guide the
eye in seeing the amount of cooling that occurs. In the low-T
regime (bottom left), curves for various system sizes are parallel
with a slope of 1, implying a linear relationship between T′ and
T, and the curve for each system size s has a vertical shift of
ln s from the dashed black line. In the high-T regime (top right),
curves for various system sizes are also parallel with a slope of
1, but now the curve for each system size s has a vertical shift of
(ln s/2) + ln(2/

√
π) from the dashed black line.

the vertical shift of the plots) scales differently with s in
the two regimes.

In the high-T regime, P1 is close to 1/2, and hence we
Taylor-expand P′

1(P1, 2s − 1) = P′
1(P1, 2s) around P1 =

1/2 to obtain

P′
1 = 1/2 + cs(P1 − 1/2) + O[(P1 − 1/2)2], (11)

cs = 22−2s
s−1∑

k=0

(
2s − 1

k

)
(2s − 2k + 1). (12)

Expanding the expression eβ�ω = (1 − P1)/P1 to first
order around P1 = 1/2, we obtain β�ω � 4(1/2 − P1).
Similarly, for the inverse final temperature, we have
β ′�ω � 4(1/2 − P′

1) � cs4(1/2 − P1) � csβ�ω, or T′ �
T/cs. This explains the linear relationship between T′ and
T. It can be proven that cs = 22−2ss

(2s−1
s

)
. Then, using

Stirling’s approximation, N ! � √
2πN (N/e)N , one finds

that cs � (2/
√

π)
√

s in the large-s limit (see Appendix C).
Therefore,

T′ �
√

π

2
T√

s
=

√
π

2
T√
N

for kBT � �ω. (13)

Note that T′ > T/
√

N because
√

π/2 > 1, which means
that Shannon’s bound is obeyed as expected, but not sat-
urated. The finding that the scaling 1/

√
N is realized in
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the high-T regime (as opposed to just a theoretical bound-
ing limit) is per se a nontrivial result. This slow scaling is
clearly visible in the top-right corner of Fig. 3.

In the low-T regime, we have P1 � 1. Taylor expansion
of P′

1(P1, 2s − 1) = P′
1(P1, 2s) around P1 = 0 gives

P′
1 = asPs

1 + O(Ps+1
1 ), as =

(
2s − 1

s

)
. (14)

For small P1, we have e−β�ω = P1/(1 − P1) � P1, and
a small P′

1. Therefore, e−β ′
�ω = P′

1/(1 − P′
1) � P′

1 �
asPs

1 = e−sβ�ω+ln as . This implies �ωβ ′ � s�ωβ − ln as.
Using Stirling’s approximation, we obtain as � s ln 4 +
O(ln s) (see Appendix D); hence, �ωβ ′ � s(�ωβ − ln 4).
At low temperature (i.e., �ωβ � 1) the term ln 4 is negli-
gible; therefore β ′ � sβ, or

T′ � T
s

= 2
T
N

for kBT � �ω. (15)

This reveals that in the low-T regime, a much faster, 1/N
scaling holds for dynamic cooling. This superior scaling is
clearly visible in the bottom-left corner of Fig. 3.

A characteristic value of kBT/�ω for contemporary
quantum computers based on superconducting qubits, ion
traps, or neutral atoms is approximately 0.2, which places
them within the start of the low-T regime. For example,
current superconducting qubit quantum computers typi-
cally operate at ω = 5 GHz and P1 = 0.01, which equates
to an initial temperature T of 8.3 mK. Given these val-
ues, we find T′ = 2.1 mK for s = 5 (N = 9, 10), which is
slightly above the scaling value of T/s = 8.3/5 mK = 1.66
mK. However, in accordance with our analysis above, the
estimate T/s becomes better and better as N increases
and/or as T decreases further.

III. MINIMAL WORK

Because of the large degeneracy of the spectrum of
K [defined in Eq. (2)], there are many distinct permuta-
tions that achieve the desired ordering of eigenvectors for
maximal cooling. A natural question is then which among
all these permutations have the smallest cost in terms of
energy injection into the system, i.e., the work performed
on the system, given by

W = Tr
[
H(UρU†−ρ)

]
, (16)

where H = ⊗
i Hi denotes the total system Hamiltonian.

We recall that, since the initial state is passive, we have
W ≥ 0. When U realizes a permutation σ , Eq. (16) boils

down to

W =
∑

i

Ei(pσ(i) − pi), (17)

where Ei are the eigenvalues of H . Minimal work cost is
thus determined by the following minimization problem:

W = min
σ∈C

∑

i

Ei(pσ(i) − pi), (18)

where C denotes the set of permutations that realize maxi-
mal cooling.

Solving this further minimization problem is straight-
forward. As described above, to achieve maximal cooling
it is sufficient to map the half of the states with the highest
occupation probabilities to the set of states {|0 i2 · · · iN 〉}.
To simultaneously achieve minimal work cost, within this
set of states the highest probability should be assigned to
the state with the lowest total system energy, the second-
highest probability should be assigned to the state with the
second-lowest total system energy, etc. The probabilities
should be mapped in an analogous way for the other half
of the states in the set {|1 i2 · · · iN 〉}. This works because
states with lower total system energies have higher ini-
tial occupation probabilities by definition. So assigning
the highest final probability to the state with the lowest
total system energy within each half-list minimizes the dif-
ferences of the initial and final probabilities pσ(i) − pi in
Eq. (17), thereby minimizing work (see Appendix A for
more details).

Computing the minimal value of work W that must be
invested to obtain maximal cooling is conceptually a sim-
ple task, but, in practice, it presents some challenges. Note
that due to memory limitations, writing the 2N -dimensional
arrays that list the energy eigenvalues Ei, and the pop-
ulations pi and pσ(i) quickly becomes intractable as N
increases (on a desktop computer this happens at around
N � 26). We overcome this bottleneck by exploiting the
sparsity of these arrays, which allows us to encode the
relevant information into arrays whose sizes scale lin-
early, thereby allowing the evaluation of W for N into the
thousands.

Figure 4 shows the rescaled work W/N as a function of
P1 for various values of N . For P1 ∈ [0, 1/2], our numeri-
cal calculations clearly evidence that as N is increased the
solid curves approach the black dashed curve, which plots
the following analytic expression:

lim
N→∞

W(P1, N )

N
.= w̄(P1) = �ω

2
(P1 − 2P2

1). (19)

The minimal work is extensive, which evidences a trade-
off between cooling power and energetic cost: the further
one cools a qubit, the more energy one must expend.
At low T, this trade-off is balanced, as the product
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FIG. 4. Rescaled minimum work versus P1 for various system
sizes N . The dashed black line corresponds to Eq. (19).

WT′ ∼ 2w̄T is of order 1. However, in the high-T limit, the
trade-off is disadvantageous because the product WT′ ∼
(
√

π/2)w̄T
√

N scales as
√

N .
Note that W goes to zero as it should for P1 = 1/2

(at infinite initial temperature, any U will leave ρ unal-
tered), and for P1 = 0 (at zero initial temperature, the best
you can do is to leave ρ unaltered, i.e., U = 1). It is
instructive to rewrite the scaling function w̄ in terms of
initial temperature T:

w̄(T) = �ω

2

tanh( �ω
2kBT )

e�ω/kBT + 1
, (20)

FIG. 5. Rescaled minimum work in the thermodynamic limit
versus initial temperature T. The inset shows an enlargement of
the exponential vanishing of work at low initial temperatures.
Symbols denote state-of-the-art values for qubits on various
contemporary quantum computers, including superconducting
qubits (black circle), neutral-atom qubits (white triangle), and
trapped-ion qubits (black cross).

which is plotted in Fig. 5. In the high-T regime, w̄ vanishes
as 1/T, while in the low-T regime, w̄ vanishes exponen-
tially, e−�ω/T. The inset in Fig. 5 shows an enlargement of
the low-T behavior of w̄ and marks state-of-the-art values
for qubits on various contemporary quantum computers
[33], including superconducting qubits (black circle) [34],
neutral-atom qubits (white triangle) [35], and trapped-ion
qubits (black cross) [36]. All of them are in the low-T
region of the curve, while early NMR qubits are far beyond
the full scale of the plot in the high-T regime.

IV. IMPLEMENTATION

To perform dynamic cooling on quantum computers, the
cooling unitary U must be translated into a quantum cir-
cuit. As stated above, there is a large family of unitaries
that can achieve maximal cooling, and different quantum
circuits will result from different choices of U. Near-term
quantum computers are noisy, with larger circuits accumu-
lating more errors than smaller ones. Therefore, from an
implementation perspective, cooling unitaries that can be
translated into smaller circuits are more desirable (here and
below, the size of a quantum circuit refers to the number of
constituent elementary one-qubit and two-qubit gates).

Various protocols exist for generating maximally cool-
ing unitaries. A few protocols of interest include (1) the
partner-pairing algorithm (PPA), described in Ref. [13], (2)
a minimum work protocol, which generates a unitary with
minimal work cost, and (3) a protocol we call the “mir-
ror protocol.” The mirror protocol is convenient as it can
quickly and automatically generate a unique maximally
cooling unitary for arbitrarily large N (other protocols
can be significantly more computationally difficult, can
be more heuristic, or can have degenerate solutions), the
downside being that it generates the largest circuits (see
Appendix A for more details on the various protocols). The
design of a protocol for generating a maximally cooling
unitary with minimal circuit size remains an open question
for future research.

It is expected that the size of the cooling circuits will
grow exponentially with system size N , as the number of
states that must be permuted for maximal cooling like-
wise grows exponentially in N (subexponential growth,
however, has not been disproved). See Appendix E for
an expanded discussion of the circuit sizes for dynamic
cooling. This scaling has major implications for the practi-
cal implementation of dynamic cooling on noisy quantum
computers. Namely, while increasing N increases the the-
oretically optimal cooling capability, increasing N also
increases the depth of the associated circuit, and therefore
the accumulated error due to noise.

Figure 6 shows the final temperature of the target qubit
versus a noise probability parameter p for various sys-
tem sizes N for two different initial temperatures. The
results are derived from quantum circuits simulated with
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K
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(a) (b)

FIG. 6. Final temperatures T′ of the target qubit versus noise probability p of the quantum computer for various system sizes N
initialized at (a) T = 15 mK or (b) T = 100 mK. We assume a value of ω = 5 GHz, which is a typical value for superconducting
qubits. The dashed black lines denote initial temperatures of the system. Simulation results from quantum circuits derived from the
mirror protocol and executed on a noisy quantum simulator.

a noisy quantum simulator (a classical computer used to
simulate the performance of a noisy quantum computer)
[37] with the use of a noise model based on a depolariz-
ing channel [38], which can be tuned with a single noise
parameter p that effectively sets the probability of error.
It is implemented by insertion of a random Pauli operator
after each gate in the circuit with probability p . The model
is commonly used to emulate the performance of circuits
on noisy quantum computers as it approximates well the
average noise for large circuits [39–42]. Furthermore, as it
is parameterized by only one parameter, the model facil-
itates study of the scaling of performance versus noise.
The quantum circuits were generated with use of the mir-
ror protocol, which was chosen because (1) it generates a
unique cooling unitary for each system size N , providing
a fair comparison across various system sizes, and (2) it
produces larger circuits than other protocols, meaning that
if cooling is possible with the mirror protocol, it will cer-
tainly be possible with cooling unitaries better optimized
for circuit size.

We emphasize that these results should be understood
only qualitatively, since the noise model does not describe
the precise noise present on any particular quantum pro-
cessor. Moreover, optimizations in terms of selecting a
cooling unitary with minimal circuit size and advanced cir-
cuit transpilation techniques were not implemented, which
would result in shorter, less noisy circuits. As a result,
quantitative conclusions from the plots cannot be drawn;
rather, Fig. 6 serves to reveal trends in how performance
scales with noise.

The initial temperature in each plot is indicated with a
horizontal dashed black line. The colored lines indicate
the final temperature of the target qubit versus the noise
probability p for a range of different system sizes. Given a

system with an odd number of qubits N , both plots show
that the addition of one more qubit (which theoretically
should exhibit identical cooling capability) impairs cooling
capability at higher noise probabilities. While the addition
of more than one qubit to the system increases cooling
capability at low noise, we see this can actually decrease
cooling capability when noise is sufficiently high. Further-
more, for a given system size, the noise probability p at
which addition of qubits becomes detrimental as opposed
to advantageous is smaller when the system is initialized at
a lower temperature. In other words, a system initialized at
a lower temperature will be more sensitive to noise.

We conclude that in practice there will be an optimal
(finite) number of qubits to use for dynamic cooling, which
depends on the level of noise in the quantum hardware as
well as the initial temperature of the qubits.

V. DEMONSTRATION

We demonstrate dynamic cooling with N = 3 qubits on
the IBM quantum computer. Advanced circuit optimiza-
tion was performed with BQSKit [43] to reduce the cooling
circuit down to only nine two-qubit elementary gates.
The circuits were executed on the ibmq_brisbane quantum
processor, which contains 127 qubits. Dynamic cooling
was individually performed within 12 different three-qubit
clusters on the chip simultaneously. Figure 7 plots the pre-
sumed initial temperature of each target qubit (black curve)
and the final temperature of each target qubit (blue curve)
after dynamic cooling had been executed within each clus-
ter. The presumed initial temperature was computed by
execution of an empty circuit that measured only the target
qubit. The measurements allowed us to compute the initial
population of the excited state of the target qubit, which
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FIG. 7. Initial (black curve) and final (blue curve) effective
temperatures of various three-qubit clusters on the IBM quantum
computer after dynamic cooling.

was then converted into an initial temperature with use of
Eq. (9). This calibration circuit was run five separate times,
each with 1024 shots, with the black dots denoting the
average value and error bars denoting one standard devi-
ation. The clusters are indexed from 1 to 12, in increasing
order of initial temperature. Dynamic cooling was exe-
cuted in 36 separate runs, each with 1024 shots, on each
of the three-qubit clusters, with the blue dots denoting the
averaged value and error bars denoting one standard devi-
ation. The final temperature is analogously calculated with
use of Eq. (9) with measurements of the final population of
the excited state of the target qubit after dynamic cooling.
The black and blue curves are drawn to guide the eye in
seeing the successful cooling in cluster 12.

The fact that cooling occurs only in the cluster with
the highest initial temperature is in line with the trends
revealed in Sec. IV; namely, qubits at lower temperature
are more sensitive to noise, making them harder to cool at
a given level of noise. These results suggest that dynamic
cooling might best be used in a scheme that scans the initial
temperatures of the qubits (or some estimate thereof) and
applies dynamic cooling to only those qubits above some
threshold initial temperature.

As noise levels continue to decrease on quantum com-
puters, larger circuits will become more feasible to exe-
cute, allowing dynamic cooling to be scaled up to larger
system sizes N , thereby cooling the target qubit down to
even lower temperatures. While the rapid growth of cir-
cuit size with increasing N poses a challenge, the fact that
cooling scales much better with system size in the low-
T regime may enable sufficient cooling with moderately
low N . Another path forward to ameliorate large circuit
size is a suboptimal cooling scheme, whereby giving up a

small amount of cooling power results in a large decrease
of circuit complexity, as we describe next in Sec. VI.

VI. SUBOPTIMAL DYNAMIC COOLING AT
FIXED COMPLEXITY

Currently, the biggest hurdle to the success of dynamic
cooling on near-term quantum computers is the size of the
cooling circuit. While there is a balanced trade-off between
the amount of cooling and energy expenditure at low T,
circuit size appears to grow exponentially with N (see
Appendix E). While this may seem to be an insurmount-
able obstacle, here we will see that it can be overcome by
relaxing the requirement of optimal (i.e., maximal) cool-
ing and agreeing to achieve a suboptimal final temperature.
We find that suboptimal cooling can still (ideally) cool
the target qubit down to arbitrarily low temperatures by
increasing N , but at a fixed circuit complexity and with a
lower work expenditure as compared with optimal cool-
ing. The price that needs to be paid is that the scaling of
the final temperature with system size will be slower than
1/N .

To see this, consider the following suboptimal cooling
protocol. Take a system with a total of N = n2 qubits,
divided into n clusters, each containing n qubits. Cooling
can then be executed in two steps, where first, dynamic
cooling is performed within each of the n clusters. Assum-
ing we are operating in the low-T regime, this will bring
a total of n qubits to T′ � (2/n)T (one qubit from each
of the n clusters). In the second step, dynamic cooling is
performed among these n cooled qubits, bringing one of
them to T′′ � (4/n2)T = (4/N )T. While this is less than
the maximal cooling T′ � (2/n2) = (2/N )T, it requires
cooling unitaries acting in a space of dimension only

√
N ,

drastically reducing the associated circuit complexity. Here
and below, the “complexity” of the circuit refers to the
maximum Hilbert space dimension on which any of the
associated cooling unitaries acts. If we take, for example,
N = 9, optimal cooling requires a circuit to be generated
from a unitary acting on a Hilbert space of dimension 29,
whereas the suboptimal cooling circuit is generated from
unitaries acting on Hilbert spaces of dimension only 23.
This algorithm can be generalized to N = nr, with use
of r steps to obtain a final suboptimal temperature T(r) =
(2r/N )T. For a fixed dimension of the clusters n, and hence
for a fixed circuit complexity, this amounts to a cooling that
scales as

T(r) = N
ln 2
ln n −1T. (21)

For n > 2 (which is necessary for cooling to occur in the
first place) this implies a negative exponent, ensuring that
the qubit can be taken to arbitrarily low final tempera-
ture by increasing N , affected by increasing the number
of cooling steps r [44].
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The key feature here is that cooling of the target qubit
can be augmented by increasing N without increasing the
complexity of the circuit, which remains fixed. Note that
in suboptimal cooling, the total circuit comprises a num-
ber of n-qubit subcircuits equal to

∑r
k=1 nr−k ≤ rnr−1 =

rN/n = N ln N/(n ln n) . Therefore, while the circuit size
still grows with increasing N , it does so only quasilinearly,
as opposed to exponentially with N , amounting to a major
reduction in circuit size for a given total system size N .

The reduction in circuit complexity of suboptimal cool-
ing significantly increases the feasibility of dynamic cool-
ing on noisy quantum hardware, as evidenced in Fig. 8. For
the same total number of qubits N = 9, while suboptimal
cooling with n = 3 and r = 2 (dashed-dotted black curve)
relinquishes a small amount of cooling capability at very
low levels of noise, it has a significant performance advan-
tage for moderate to high levels of noise when compared to
optimal cooling (solid black curve). This is due to the sub-
stantially reduced circuit complexity. Notice how optimal
cooling at the same circuit complexity (N = 3, solid blue
curve) achieves significantly less cooling than the subop-
timal routine. Remarkably, the suboptimal cooling routine
achieves more cooling than optimal cooling with N = 5
(solid green curve), even though it has a smaller circuit
complexity. The advantage of the smaller circuit complex-
ity can also be seen by comparing the noise level at which
adverse effects begin to impair cooling: reduction in cool-
ing capability begins at a noise level that is an order of
magnitude larger for the suboptimal cooling with n = 3

T
 (

m
K

)

FIG. 8. Comparison of final temperatures for optimal cooling
(solid curves) versus suboptimal cooling (dashed-dotted curve)
versus noise probability p . We compare optimal cooling with
N = 3 qubits (solid blue curve), N = 5 qubits (solid green
curve), and N = 9 qubits (solid black curve) with suboptimal
cooling with r = 2 steps of cooling with clusters of size n = 3
for a total of N = 9 qubits (dashed-dotted black curve). An ini-
tial temperature of 15 mK is assumed, denoted by the horizontal
dashed black line.

and r = 2 versus optimal cooling with N = 5, confirming
that suboptimal cooling is more resilient to noise.

There is also a reduction in the work cost with subopti-
mal cooling. The total work cost W(r) is given by the sum
of the work costs associated with each step

W(r)(P1, n) =
r∑

k=1

nr−kW(f k−1
n (P1), n), (22)

where f k
n (x) = (fn ◦ fn ◦ · · · ◦ fn)(x) stands for the k-fold

application of the function fn(x)
.= P′

1(x, n), which we
introduce for clarity of notation, and W is given in Eq. (18).

The solid curves in Fig. 9 plot the minimal work for
suboptimal cooling W(r)(P1, n)/nr as a function of P1 for
n = 3, with either r = 3 (black) or r = 4 (red). The corre-
sponding values for work at optimal cooling W(P1, nr)/nr

obtained with the same total number of qubits N = nr

are also plotted for reference with dotted curves and cor-
responding colors. Note how, as anticipated, the work
associated with the suboptimal r-step cooling is less than
the minimal work associated with optimal cooling for the
same total system size N . (We remark that a different
form of suboptimal cooling was also studied in Ref. [10],
where it was also shown to lead to a dramatically reduced
work cost.) Note also that the curves W(r)(P1, n)/nr col-
lapse onto a single curve for increasing N , meaning that for
large N , W(r)(P1, n) scales linearly with N , namely, W(r) �
Nw̄(r). This linear scaling can be understood by noting
that the sum in Eq. (22) is dominated by the first term
nr−1W(P1, n), which is upper-bounded by nrw̄(P1), which
is linear in N = nr. Subsequent terms are upper-bounded
by nr−kw̄(f k−1

n (P1)). While the factor nr−k = N 1−k/r is
evidently sublinear, the overall scaling is much slower than
that, because the factor w̄ is evaluated at points f k−1

n (P1)

FIG. 9. Rescaled work for r-step suboptimal cooling with clus-
ter size n = 3 (solid curves) and the associated optimal cooling
with equal total system sizes (dotted curves) for total system sizes
N = 27 (black) and N = 81 (red).
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that quickly vanish as k increases [note that w̄(x) � x/2 for
small x, Eq. (19)].

We have thus shown the nontrivial fact that one can,
in principle, cool a target qubit down to arbitrarily low
temperature with fixed circuit complexity and at fixed
work cost per qubit. The price that must be paid is that
of a slower than linear scaling of cooling with system
size, Eq. (21)—a price that is, however, counterbalanced
by a smaller energy cost and significantly reduced circuit
complexity and, therefore, resilience to noise.

VII. CONCLUSION AND OUTLOOK

In light of the major developments in quantum technol-
ogy, which have moved contemporary quantum computers
into the low-temperature regime, we have reexamined
dynamic cooling as an effective technique for cooling
qubits beyond what is practically achievable with direct,
physical cooling methods. We found an analytic expres-
sion for the minimum final temperature T′ that can be
achieved for the target qubit as a function of the initial
temperature T. We explored the high-T and low-T regimes
and discovered a crossover from a problematic scaling of
1/

√
N at high T to a much more efficient scaling of 1/N

at low T. We also proposed an analytic expression for
the minimal work cost W associated with dynamic cool-
ing, which scales linearly with N . In particular, while the
work cost vanishes as 1/T in the high-T regime, it vanishes
exponentially in the low-T regime as e−�ω/T.

We then turned to the implementation of dynamic cool-
ing on noisy quantum computers. We noted that different
protocols for generating cooling unitaries will give rise to
differing quantum circuit sizes, leaving for future work the
problem of finding the cooling unitary with minimal quan-
tum circuit size. We acknowledge that circuit sizes grow
rapidly with system size N , and explore the implications
with simulations of dynamic cooling on a noisy quantum
simulator. The results indicate that there exists an optimal,
finite value of N with which to perform dynamic cooling,
dependent on the level of noise on the quantum hardware
and the initial temperature of the qubits.

Despite high levels of noise of current quantum comput-
ers, we were nevertheless able to successfully demonstrate
dynamic cooling on the IBM quantum processor. Using
a system size of N = 3, we performed dynamic cool-
ing on 12 separate three-qubit clusters on the 127-qubit
chip, observing cooling in just one of the clusters, which
is presumed to have been at a higher initial temperature
than all the others. These results suggest that a prudent
approach for implementing dynamic cooling on noisy
quantum devices may be to scan the initial temperatures
(or an estimate thereof) of all the qubits and apply dynamic
cooling to only those qubits above a threshold temperature.
As noise levels continue to decrease, we expect dynamic
cooling will be capable of cooling qubits initialized at

lower temperatures and achieve greater cooling with larger
system sizes N .

Because of the superior scaling of dynamic cooling
with system size in the low-T regime, it may be suffi-
cient to perform dynamic cooling with few-enough qubits
to maintain reasonable circuit sizes in near-future quan-
tum devices. However, to overcome the hurdle posed by
the rapid growth of circuit size in the near term, we
proposed an algorithm for suboptimal dynamic cooling,
whereby instead of reaching the optimal final tempera-
ture for a given N , we agree to reach a somewhat higher
final temperature at the gain of drastically reduced cir-
cuit complexity. Surprisingly, cooling a target qubit down
to arbitrarily low temperatures is still possible, in princi-
ple. While cooling scales more slowly that 1/N with this
suboptimal routine, the circuit complexity remains fixed
while increasing N , yielding the ability to increase cooling
capability without increasing the complexity cost.

Recent progress in quantum computing technology has
resulted in a slow but steady decrease in noise levels,
but a relatively fast increase in the total number of avail-
able qubits. Large numbers of moderately-low-noise qubits
render the suboptimal cooling described above a very
viable scheme for near-future quantum devices. Further-
more, given the demonstration of cooling with a three-
qubit cluster on a considerably noisy quantum processor,
there is hope that suboptimal cooling with cluster sizes
of n = 3 could soon be a realizable path for cooling. It
should be noted, however, that such schemes may require
the connectivity of qubits to be reconsidered in super-
conducting qubit implementations, which usually provide
lattice-shaped connectivity. Instead, a fractal-like network
of clustered qubits could greatly facilitate the suboptimal
cooling algorithm. Trapped-ion and neutral-atom quantum
computers, which provide all-to-all qubit connectivity, are
better suited for both optimal and suboptimal dynamic
cooling.

All our results support the conclusion that in the low-
temperature regime, dynamic cooling is much more effec-
tive in terms of scaling and energy cost than at high initial
temperatures, and is capable of achieving cooling when
noise is reduced to low-enough levels. Given that current
quantum computers operate in the low-T regime (unlike
early NMR quantum computers), these results reinstate
the interest in dynamic cooling for quantum computing
applications.

Note added. After submission of our manuscript, it was
brought to our attention that Eqs. (5) and (6) had previously
been derived using a majorization technique in the Ph.D.
thesis of Rodríguez-Briones [45].
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APPENDIX A: ILLUSTRATIVE EXAMPLES OF
MAXIMAL DYNAMIC COOLING

A simple procedure to implement maximal cool-
ing among N qubits is as follows: Consider list-
ing all 2N states in increasing lexicographic order,
i.e., |0 · · · 000〉 , |0 · · · 001〉 , |0 · · · 010〉 , |0 · · · 011〉 , . . . ,
|1 · · · 111〉. The states in the first half of this list all have
the target qubit set to 0 (i1 = 0), and thus have the lower
eigenenergy of K , −�ω/2. To maximize cooling, we there-
fore need to construct a unitary U that maps the 2N /2 states
of ρ with the highest occupation probabilities to the states
in the first half of this lexicographically ordered list. We
emphasize that, for the case of cooling a single target qubit,
the order of probabilities within the first half of the list does
not matter; all that matters is that the half of the states with
the highest probabilities are mapped to the first half of the
lexicographically ordered list.

Among the family of degenerate maximally cooling
unitaries, there is a special transformation, which can be
derived with the so-called partner-pairing algorithm, which
was demonstrated to be optimal in the entropy manipula-
tion step of (heat bath) algorithmic cooling protocols. The
PPA generates a permutation such that states in increas-
ing lexicographic order have nonincreasing probabilities.
This automatically ensures that the highest probabilities
reside in the first half of the lexicographically ordered list.
The other special transformations we will examine are the
mirror protocol, which allows simple preparation of the
cooling unitary, and the minimal work protocol, which per-
forms maximal cooling with minimal work cost. These
will be explained in more detail through the following
illustrative examples with N = 3 and N = 4 qubits.

1. Maximal cooling with N = 3 qubits

Consider three identical qubits all initialized at the same
temperature T. Our goal is to maximally cool the first qubit
below this temperature with the application of a unitary U
on all three qubits.

If one lists the 2N = 8 states of the total system in lex-
icographic order, shown in column 2 of Table I, one sees
that they are listed in order of increasing eigenenergies of
K : the states in the first half of the list, of the form |0 i2 i3〉,
have eigenenergy −�ω/2, while the states in the second
half of the list, of the form |1 i2 i3〉, have eigenenergy
+�ω/2. Initial occupation probabilities of each state pi are
given in column 3, where x ≡ P1 is the initial occupation

TABLE I. All states of the N = 3 qubit system listed in lexico-
graphic order (column 2) with their initial occupation probabili-
ties pi (column 3). Columns 4 and 6 give various permutations,
while columns 5 and 7 give the final occupation probabilities of
each state after the respective permutation. For better readability
the states that are not being displaced by the permutation are in
gray.

i |i〉 pi |σ(i)〉 pσ(i) |σB(i)〉 pσB(i)

0 |000〉 (1 − x)3 |000〉 (1 − x)3 |001〉 x(1 − x)2

1 |001〉 x(1 − x)2 |001〉 x(1 − x)2 |100〉 x(1 − x)2

2 |010〉 x(1 − x)2 |010〉 x(1 − x)2 |010〉 x(1 − x)2

3 |011〉 x2(1 − x) |100〉 x(1 − x)2 |000〉 (1 − x)3

4 |100〉 x(1 − x)2 |011〉 x2(1 − x) |101〉 x2(1 − x)
5 |101〉 x2(1 − x) |101〉 x2(1 − x) |111〉 x3

6 |110〉 x2(1 − x) |110〉 x2(1 − x) |110〉 x2(1 − x)
7 |111〉 x3 |111〉 x3 |011〉 x2(1 − x)

probability of the excited state for the target qubit. Notice
that the 2N /2 = 4 largest occupation probabilities are not
in the first half of the list. Specifically, the four-highest
probabilities are (1 − x)3, x(1 − x)2, x(1 − x)2, and x
(1 − x2). However, one of these values appears in the
lower half of the list. Using the PPA, one can achieve
maximal cooling by reordering the probabilities in nonin-
creasing order, which can be accomplished by swapping
the two states |011〉 and |110〉.

This permutation can be done with a unitary operator U,
defined in the computational basis, as

U011↔100 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

To gain a better understanding of how this unitary performs
optimal cooling, we examine how the population of the
excited state of the target qubit changes before and after
this transformation. Recall that P1 and P′

1 denote the occu-
pation probability of the target qubit’s excited state before
and after the application of U, respectively. Thus,

P1 = P100 + P101 + P110 + P111, (A2)

P′
1 = P′

100 + P′
101 + P′

110 + P′
111, (A3)

where Pi1i2i3 is the occupation probability of the state
|i1i2i3〉. Now, U implements a transformation that swaps
the state |100〉 with the state |011〉. Accordingly, it
exchanges the populations of the two states, that is, P′

100 =
P011 and P′

011 = P100, while leaving all other populations
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unaltered. It follows that

P′
1 = P′

100 + P′
101 + P′

110 + P′
111

= P011 + P101 + P110 + P111

< P100 + P101 + P110 + P111

= P1 (A4)

because the probability P011 = e−�ωβ/2/Z3, featuring two
excitations, is lower than the probability P100 = e�ωβ/2/Z3,
featuring only one excitation. From Eq. (A4) it follows that

P′
1(P1, 3) = 3P2

1 − 2P3
1 . (A5)

Thus, for 0 < P1 < 1/2 (i.e., T > 0), we have P′
1 <

P1—namely, the target qubit is cooled.
Because of the degeneracy in the spectra of ρ and

K , there exists a family of degenerate unitaries that can
achieve maximal cooling. For example, any unitary of the
form in Eq. (A1), but with arbitrary phases replacing the
1’s, can also achieve maximal cooling. Furthermore, any
unitary that swaps states with equal occupation probabili-
ties (in addition to the swap |100〉 ↔ |011〉) also achieves
maximal cooling. There even exist unitaries performing
maximal cooling that implement permutations with cycle
lengths greater than 2 (note that a swap is a permuta-
tion cycle of length 2). An example of such a unitary is
given by σB in column 6 of Table I, featuring the sin-
gle cycle of length 6 given by |000〉 → |001〉 → |100〉 →
|101〉 → |111〉 → |011〉 → |000〉. In this case, the proba-
bilities are no longer in nonincreasing order. However, the

four-largest probabilities reside in the first half of the lexi-
cographically ordered list, which implies maximal cooling
of the target qubit.

In the case of N = 3 qubits, the mirror protocol and the
minimal work protocol use the same cooling unitary as the
PPA. Therefore, we reserve explanation of these two proto-
cols until the next illustrative example with N = 4 qubits,
where all three protocols can generate different maximally
cooling permutations.

Finally, we remark that cooling cannot be achieved
with a total of N = 2 identical qubits. If the 22 =
4 states are ordered in increasing lexicographic order,
|00〉 , |01〉 , |10〉 , |11〉, the states are automatically listed in
order of increasing eigenenergy of K (i.e., energy of the
target qubit), and we see that the two-highest probabilities
already occupy the first half of the list. Thus, the target
qubit cannot be cooled.

2. Maximal cooling with N = 4 qubits

We now consider the case of N = 4 qubits. As before,
we list the 2N = 16 states of the total system in increas-
ing lexicographic order, as shown in column 2 of Table II.
Again, this automatically orders the states by increasing
eigenenergies of K : the states in the first half of the list, of
the form |0 i2 i3 i4〉, have eigenenergy −�ω/2, while the
states in the second half of the list, of the form |1 i2 i3 i4〉,
have eigenenergy +�ω/2. The occupation probabilities of
the states pi are now denoted by symbols in column 4 of
Table II to guide the eye to more quickly recognize pat-
terns, where � .= (1 − x)4, � .= (1 − x)3x, | .= (1 − x)2x2,
• .= (1 − x)x3, and _ .= x4. Again, x ≡ P1 is the initial

TABLE II. All states of the N = 4 qubit system listed in lexicographic order (column 2) with total state energy (column 3) and their
initial occupation probabilities (column 4). Columns 5, 7, and 9 give various permutations, while columns 6, 8, and 10 give the final
occupation probabilities of each state after the respective permutation. Occupation probabilities are represented by symbols, where
� .= (1 − x)4, � .= (1 − x)3x, | .= (1 − x)2x2, • .= (1 − x)x3, and _ .= x4. For better readability the states that are not being displaced
by the permutation are in gray.

i |i〉 Ei[�ω/2] pi |σPPA(i)〉 pσPPA(i) |σW(i)〉 pσW(i) |σM (i)〉 pσM (i)

0 |0000〉 −4 � |0000〉 � |0000〉 � |0000〉 �
1 |0001〉 −2 � |0001〉 � |0001〉 � |0001〉 �
2 |0010〉 −2 � |0010〉 � |0010〉 � |0010〉 �
3 |0011〉 0 | |1000〉 � |0011〉 | |0011〉 |
4 |0100〉 −2 � |0100〉 � |0100〉 � |0100〉 �
5 |0101〉 0 | |0101〉 | |0101〉 | |0101〉 |
6 |0110〉 0 | |0110〉 | |1000〉 � |0110〉 |
7 |0111〉 2 • |1100〉 | |1010〉 | |1000〉 �
8 |1000〉 −2 � |0011〉 | |0110〉 | |0111〉 •
9 |1001〉 0 | |1001〉 | |1001〉 | |1001〉 |
10 |1010〉 0 | |1010〉 | |0111〉 • |1010〉 |
11 |1011〉 2 • |1011〉 • |1011〉 • |1011〉 •
12 |1100〉 0 | |0111〉 • |1100〉 | |1100〉 |
13 |1101〉 2 • |1101〉 • |1101〉 • |1101〉 •
14 |1110〉 2 • |1110〉 • |1110〉 • |1110〉 •
15 |1111〉 4 _ |1111〉 _ |1111〉 _ |1111〉 _
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occupation probability of the excited state for the tar-
get qubit. Roughly, the more vertices the symbol has, the
higher the probability it represents. The 2N /2 = 8 largest
occupation probabilities can thus be represented by a set
containing one �, four �’s, and three of the six |’s. The
energy of the total system Ei for each state is given in col-
umn 3, which is relevant for determining permutations that
maximally cool a target qubit with minimal work cost.

There are a number of permutations that will trans-
form the probabilities in the first half of the list into the
eight-largest probabilities, three of which are shown in
Table II. The first is a permutation generated according
to the PPA σPPA, which permutes all the probabilities into
nonincreasing order. Note that there is a degenerate fam-
ily of permutations that can be generated by the PPA.
One such permutation, given in column 5 of Table II, fea-
tures two cycles of length 2 (i.e., two swaps) given by
|0011〉 ↔ |1000〉 and |0111〉 ↔ |1100〉.

The second permutation, σW, given in column 7 of
Table II, features one of a degenerate family of mini-
mal work protocols, which achieves maximal cooling with
minimal work cost. In short, after maximal cooling is
achieved by the moving of the highest half of the probabil-
ities to the top half of the lexicographically ordered list, the
minimal work protocol sorts the probabilities within each
half of the list separately. Within each half-list, the high-
est probability is assigned to the state with the lowest total
system energy, the second-highest probability is assigned
to the state with the second-lowest total system energy, etc.
It turns out that in the case of N = 4 qubits, the PPA also
belongs to the family of minimal work protocols, but this
is not generally the case.

The third permutation, σM , given in column 9 of
Table II, enacts what we call the “mirror protocol.” In the
mirror protocol, states that have the target qubit set to 0
and have a total of k < N/2 bits set to 0 are swapped with
their mirror image (also called the “negative image”). The
idea is that these are the states in the top half of the lexico-
graphically ordered list that have lower probabilities than
their mirror-image state in the bottom half of the list. This
is because a state with k < N/2 bits set to 0 will neces-
sarily have fewer bits set to 0 than its mirror image, and
thereby have a lower occupation probability. These mirror-
image swaps ensure that all states with the target qubit set
to 0 are assigned a higher probability than their mirror-
image state, which necessarily has the target qubit set to
1. In turn, this means the highest half of the probabilities
will reside in the first half of the lexicographically ordered
list. The advantage of the mirror protocol is twofold: (1)
the ease with which one can automatically generate the
maximally cooling unitary for any system size N and (2)
the protocol generates a single, unique cooling unitary for
each system size N , as opposed to the PPA and minimum
work protocols, which can generate a family of degenerate
cooling unitaries.

In the mirror protocol for the case of N = 4, we seek
states that start with 0 and have k < N/2 = 2 total bits
set to 0. The only state that adheres to these criteria is the
state |0111〉, which we swap with its mirror image, |1000〉.
Notice that it is not a minimal work protocol as the state in
the first half of the list with the highest total energy |0111〉
is not assigned the lowest probability in the top half of the
list. Note, also, that the permutation σ on N = 3 qubits,
given in Table I, is an instance of the mirror protocol, as
well as a minimal work protocol.

To convince ourselves that all three permutations in
Table II perform maximal cooling, we can compute the
probability of the excited state of the target qubit P′

1 after
each transformation. In this case, P′

1 = P′
1000 + P′

1001 +
P′

1010 + P′
1011 + P′

1100 + P′
1101 + P′

1110 + P′
1111. By con-

sulting what these constituent probabilities are after each
permutation in Table II, one finds that in all cases

P′
1(P1, 4) = 3P2

1 − 2P3
1. (A6)

This is exactly the same expression found for the N = 3
case. Namely, addition of a fourth qubit did not increase
the cooling power. This is a special case of a more gen-
eral result: there is no cooling gain in going from an
odd N to N + 1. Adding a fourth qubit, however, has the
adverse effect of increasing the complexity of the unitary
operation needed to implement the cooling (in general,
operators acting on larger Hilbert spaces are more com-
plex). For a given system size N , different permutations
will carry different complexities in terms of their imple-
mentation in quantum circuits. Notice that the permutation
σM in Table II contains one permutation cycle of length 2
(i.e., a swap), which acts on all the qubits, while σW con-
tains two swaps, but each swap acts on only three of
the four qubits. Such characteristics of the permutation
will alter the complexity of the final quantum circuit, and
should therefore be considered from a practical standpoint
when one is implementing dynamic cooling on quantum
computers.

Another crucial point is that distinct permutations that
achieve maximal cooling are generally accompanied by
distinct energy costs. For example, the work accompany-
ing the permutation σM [see Eq. (16)] is given by

WσM = (�ω/2)[2(� − •) + (−2)(•−�)]

= 2�ω[P3
0P1 − P0P3

1]. (A7)

Similarly, the work accompanying the permutation σW is
given by

WσW = (�ω/2)[2(| − •) + (−2)(| − �)]

= �ω[(P0)
3P1 − P0P3

1]. (A8)
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Note that the minimal work permutation costs half the work of the mirror protocol. σW is more energy efficient than σM ,
while achieving the same cooling power P′

1(P1, 4). Hence, σW may be preferable when it comes to practical applications.

APPENDIX B: PROOF THAT P ′
1(P1, 2s − 1) = P ′

1(P1, 2s)

Below we give the proof that, in general, P′
1(P1, 2s − 1) = P′

1(P1, 2s) for s ∈ N. For ease of notation we set x ≡ P1 and
y ≡ P′

1. Note that in this notation, (1 − x) ≡ P0. For N = 2s, we have

y(x, N ) =
∑

0≤k≤ N
2 −1

(
N
k

)
(1 − x)kxN−k + 1

2

(
N
N
2

)
(1 − x)

N
2 x

N
2

=
(

N
0

)
xN +

∑

1≤k≤ N
2 −1

[(
N − 1

k

)
+

(
N − 1
k − 1

)]
(1 − x)kxN−k + 1

2

(
N
N
2

)
(1 − x)

N
2 x

N
2

= x

⎡

⎢⎣
(

N
0

)
xN−1 +

∑

1≤k≤≤ N
2 −1

(
N − 1

k

)
(1 − x)kxN−k−1

⎤

⎥⎦ +
∑

1≤k≤ N
2 −1

(
N − 1
k − 1

)
(1 − x)kxN−k + 1

2

(
N
N
2

)
(1 − x)

N
2 x

N
2

= xy(x, N − 1) + (1 − x)

⎡

⎢⎣
∑

0≤q≤ N
2 −1

(
N − 1

q

)
(1 − x)qxN−1−q + 1

2

[(N − 1
N
2 − 1

)
+

(
N − 1

N
2

)]
(1 − x)

N−2
2 x

N
2

⎤

⎥⎦

= xy(x, N − 1) + (1 − x)

⎡

⎢⎣
∑

0≤q≤ N
2 −1

(
N − 1

q

)
(1 − x)qxN−1−q +

(
N − 1
N
2 − 1

)
(1 − x)

N
2 −1x

N
2

⎤

⎥⎦

= xy(x, N − 1) + (1 − x)

⎡

⎢⎣
∑

0≤q≤ N
2

(
N − 1

q

)
(1 − x)qxN−1−q

⎤

⎥⎦

= xy(x, N − 1) + (1 − x)y(x, N − 1)

= y(x, N − 1). (B1)

In the second line we used the identity
(N

k

) = (N−1
k

) +(N−1
k−1

)
. In the fourth line we used a change of variable q =

k − 1. In the sixth line we used that fact that
( N−1
(N/2)−1

) =
(N−1

N/2

)
for even N .

APPENDIX C: DERIVATION OF cs � (2/
√

π)
√

s

We have

s−1∑

k=0

(
2s − 1

k

)
(2s − 1 − 2k)

= (2s − 1)

s−1∑

k=0

(
2s − 1

k

)
− 2

s−1∑

k=0

k
(

2s − 1
k

)
. (C1)

Using the identity

n∑

k=0

(
n
k

)
= 2n, (C2)

we obtain

s−1∑

k=0

(
2s − 1

k

)
= 1

2

2s−1∑

k=0

(
2s − 1

k

)
= 1

2
22s−1 = 22s−2,

(C3)

where we used the fact that the binomial coefficient is
symmetric with respect to reflection about its maximum
point.

Using the identity

k
(

n
k

)
= n

(
n − 1
k − 1

)
, (C4)
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we get

s−1∑

k=0

k
(

2s − 1
k

)
=

s−1∑

k=1

k
(

2s − 1
k

)
= (2s − 1)

s−1∑

k=1

(
2s − 2
k − 1

)
.

(C5)

Furthermore,

22s−2 =
2s−2∑

k=0

(
2s − 2

k

)
= 2

s−2∑

k=0

(
2s − 2

k

)
+

(
2s − 2
s − 1

)
,

(C6)

where we used the reflection symmetry of the binomial
coefficient and kept in mind not to count the mid value(2s−2

s−1

)
twice. From the above equation it follows that

s−1∑

k=1

(
2s − 2
k − 1

)
=

s−2∑

k=0

(
2s − 2

k

)
= 1

2

(
22s−2 −

(
2s − 2
s − 1

))
.

(C7)

Summing up, we obtain

s−1∑

k=0

(
2s − 1

k

)
(2s − 1 − 2k)

= (2s − 1)22s−2 − (2s − 1)

(
22s−2 −

(
2s − 2
s − 1

))

= (2s − 1)

(
2s − 2
s − 1

)

= s
(

2s − 1
s

)
, (C8)

where we use Eq. (C4) in the last equality. Therefore,

cs = 22−2s
s−1∑

k=0

(
2s − 1

k

)
(2s − 1 − 2k)

= 22−2ss
(

2s − 1
s

)

= 22−2s s as, (C9)

where we used as = (2s−1
s

)
. Using Eq. (D2), we get

ln cs � 2 ln 2 − 2s ln 2 + ln s − ln 2 − ln
√

π

− ln
√

s + s ln 4

= ln 2 − ln
√

π + ln
√

s, (C10)

and therefore

cs � 2√
π

√
s. (C11)

APPENDIX D: DERIVATION OF as � s ln 4 + O(ln s)

Using Stirling’s approximation

N ! �
√

2πN (N/e)N , (D1)

one finds

ln as = ln
(

2s − 1
s

)

� 1
2

ln(2π) + 1
2

ln(2s − 1) + (2s − 1) ln(2s − 1)

− (2s − 1)

− 1
2

ln(2π) − 1
2

ln s − s ln s + s

− 1
2

ln(2π)− 1
2

ln(s − 1)− (s−) ln(s − 1)+ s − 1

� − ln(2π) − 1
2

ln s + s ln 4; (D2)

that is, as � s ln 4 + O(ln s), where O(ln s) stands for terms
that scale at most as ln s.

APPENDIX E: QUANTUM CIRCUIT
COMPLEXITY OF DYNAMIC COOLING

We can compare the circuit sizes between various cool-
ing unitaries by defining a systematic way to construct
the quantum circuits from the particular unitary. To do
this, note that every cooling unitary is defined by a set
of cyclic permutations between specified states. The total
quantum circuit can be constructed by one building a sub-
circuit for each permutation cycle and then concatenating
all subcircuits.

To describe the construction of a subcircuit for a given
permutation cycle, we focus on a swap (a cyclic permuta-
tion of length 2), and later explain how to generalize this
procedure to cycles of greater lengths. Suppose we wish
to construct the quantum circuit that swaps the two states
defined by bitstrings b1 and b2. First, we define a Gray
code between the two bitstrings, which is an ordered list
of bitstrings beginning with b1 and ending with b2, where
each intermediate bitstring differs by only one bit from the
previous one [38].

We define the length of the Gray code m as the num-
ber of bitstrings in the series. The length of the Gray
code will be equal to one more than the number of qubits
that differ between the two bitstrings (also known as the
“Hamming distance”). Given the Gray code, a quantum
circuit that implements the swap can easily be constructed
with use of a series of multi-controlled-X (MCX) gates,
controlled on N − 1 qubits, where N is the number of
qubits in the system [46]. For a swap with a Gray code of
length m, the quantum circuit will contain 2m − 3 MCX
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gates (see Ref. [38] and Appendix E for an illustrative
example).

Construction of the subcircuit for a cyclic permutation
with a length greater than 2 is only slightly more involved.
Consider, for example, the cyclic permutation of length
3: |i1〉 → |i2〉 → |i3〉 → |i1〉. Let the Gray code length
between |i1〉 and |i2〉 be m1→2 and the Gray code length
between |i1〉 and |i3〉 be m1→3. To generate the subcircuit
for this permutation, we first apply the 2m1→2 − 3 MCX
gates to transform the bitstring i1 to i2. Next, we apply the
2m1→3 − 3 MCX gates to transform the bitstring i1 to i3.
For a general permutation of length l, the total number of
MCX gates required will be

∑
i[2m1→i − 3], where m1→i

is the Gray code length from the first bitstring in the cycle
to the i th bitstring in the cycle, where i goes from 2 to l.

To construct the entire circuit, it is only necessary
to concatenate all subcircuits for each permutation cycle
together in any order. The total circuit will therefore con-
tain a total number of MCX gates equal to

∑
c
∑

ic[2mic −
3], where the outer sum runs over all permutation cycles
c in the cooling unitary and the inner sum runs over all
constituent Gray code lengths mic of permutation cycle c.

The mirror protocol (see the definition in Sec. A 2) is,
by definition, composed of swaps between states that dif-
fer in every qubit. Therefore, the Gray code length of each
swap for a system of size N will be the maximum length
of m = N + 1. In general, the minimal work protocols con-
tain permutations between states that do not differ in every
qubit. Therefore, we expect circuits generated with the mir-
ror protocol to be more complex than those generated with
minimal work protocols. By tailoring the permutations in
the cooling unitary to minimize Gray code lengths, one
can minimize circuit sizes. The trade-off is that designing
these sets of permutations is currently a heuristic proce-
dure, whereas the mirror protocol can easily and uniquely
generate a maximally cooling permutation for each system
size N .

We demonstrate the generation of the subcircuit for per-
mutation between the two states |01111〉 and |10000〉. To
implement the subcircuit for this swap, we let b1 = 01111
and b2 = 10000 and define a Gray code from b1 to b2, such
as the following:

01111

11111

10111 (E1)

10011

10001

10000.

Here the length m of the Gray code is 6. To construct the
circuit for the swap, we insert one MCX gate to trans-
form each bitstring to the subsequent one in the Gray code.

After insertion of m − 1 MCX gates, the circuit will suc-
cessfully transform an input state b1 to b2. To implement
the reverse transformation (since we wish to swap the two
states), and uncompute any changes made to other input
states not involved in the swap, it is necessary to add the
first m − 2 MCX gates in reverse order. Thus, a quantum
circuit implementing a swap between states with a Gray
code of length m will contain 2m − 3 MCX gates. The
quantum circuit implementing the swap between b1 and
b2 using the Gray code given in Eq. (E1) is depicted in
Fig. 10.

Once the quantum circuit has been built with MCX
gates, it is necessary to decompose these complex gates
into the native gates of the quantum computer (generally
these include a two-qubit gate, such as the CNOT gate, and
some set of single-qubit gates that render the native gate
set universal). Reference [47] describes how such MCX
gates can be decomposed into a number of elementary
gates (the CNOT gate and arbitrary one-qubit gates) that
scales quadratically with system size N . However, if we
are not concerned about relative phases between the qubits
being conserved, the number of elementary gates scales
linearly with N . For cooling, we are concerned not about
the relative phases between qubits, rather just about the
populations of each state, and thus this linearly scaling
transformation can be used.

While the number of elementary gates needed for each
MCX gate scales only linearly with N , unfortunately, the
total number of MCX gates in the circuit is expected to
grow exponentially with N (since the number of permuta-
tions in the cooling unitary is expected to grow exponen-
tially with N ). This clearly poses a problem for near-term
quantum computers with high levels of noise. However,

FIG. 10. Quantum circuit implementing a swap between states
|01111〉 and |10000〉 using the Gray code shown in Eq. (E1).
Each wire represents a qubit in the system. The circuit comprises
2m − 3 MCX gates, where m = 6 is the length of the Gray code
and N = 5 is the number of qubits in the system. Open circles
with a cross in the MCX gates are the X (i.e., NOT) gate. closed
circles imply the X gate is applied when the corresponding con-
trol qubit is in the |1〉 state, while open circles imply the X gate is
applied when the corresponding control qubit is in the |0〉 state.
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since the amount of cooling scales better with system size
in the low-T regime, it may be sufficient to cool a target
qubit with few-enough auxiliary qubits to maintain rea-
sonable circuit sizes on near-future quantum devices with
lower levels of noise. It is also possible to suboptimally
cool a target qubit with a fixed complexity, as discussed in
Sec. VI.

While it is difficult to derive an analytic expression
for the minimal number of elementary gates required for
dynamic cooling, Fig. 11 plots a (loose) upper bound on
the number of CNOT gates required for dynamic cooling
for various system sizes N . The black curve plots the num-
ber of CNOT gates calculated with the Gray code method
with the mirror protocol, as described above. The red curve
plots the number of CNOT gates in circuits derived from
circuit synthesis using quantum transpilers (such IBM’s
Qiskit transpiler and the BQSKit transpiler [43]), which
take as input a unitary matrix and as output a circuit. We
emphasize that neither of these gate counts describes the
minimal gate count for each system size. There is plenty of
room for optimization in terms of selecting a cooling uni-
tary with minimal circuit complexity (indeed, we know the
mirror protocol is not optimal for complexity), as well as
in terms of circuit transpilation techniques. They do, how-
ever, reproduce the expected exponential scaling of CNOT
gate count with system size. We note that while the circuit
transpilation gets extremely computationally expensive as
N is increased (we could go up to only N = 11 in a rea-
sonable amount of compute time), the CNOT gate count
can easily be computed up to any N with use of the Gray
code method. Therefore, while computation of the circuit
complexity with the Gray code method will not necessar-
ily give the optimal complexity (as evidenced in Fig. 11), it

C
N

O
T
 g

at
e 

co
un

t

N

FIG. 11. Number of CNOT gates required for optimal dynamic
cooling versus system size N . The black curve plots the gate
count derived from the Gray code method, while the red curve
plots the gate counts derived from use of a circuit transpiler to
synthesize the circuit from the input cooling unitary.

can be useful for quickly comparing complexities between
different protocols for large N .
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