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Entanglement, measurement, and classical communication together enable teleportation of quantum
states between distant parties, in principle, with perfect fidelity. To what extent do correlations and entan-
glement of a many-body wave function transfer under imperfect teleportation protocols? We address this
question for the case of an imperfectly teleported quantum critical wave function, focusing on the ground
state of a critical Ising chain. We demonstrate that imperfections, e.g., in the entangling gate adopted for
a given protocol, effectively manifest as weak measurements acting on the otherwise pristinely teleported
critical state. Armed with this perspective, we leverage and further develop the theory of measurement-
altered quantum criticality to quantify the resilience of critical-state teleportation. We identify classes of
teleportation protocols for which imperfection (i) preserves both the universal long-range entanglement
and correlations of the original quantum critical state, (ii) weakly modifies these quantities away from their
universal values, and (iii) obliterates long-range entanglement altogether while preserving power-law cor-
relations, albeit with a new set of exponents. We also show that mixed states describing the average over
a series of sequential imperfect teleportation events retain pristine power-law correlations due to a “built-
in” decoding algorithm, though their entanglement structure measured by the negativity depends on errors
similarly to individual protocol runs. These results may allow one to design teleportation protocols that
optimize against errors—highlighting a potential practical application of measurement-altered criticality.
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I. INTRODUCTION

The groundbreaking 1993 work of Bennett et al. [1]
elevated teleportation from science fiction to a key con-
cept in modern quantum science. Quantum teleportation
refers to the transfer of an unknown wave function from
a sender, Alice, to a receiver, Bob, at a remote location.
The protocol proceeds roughly as follows. First, Alice and
Bob maximally entangle their qubits, e.g., by applying an
appropriate unitary gate. Alice then performs a projec-
tive measurement that destroys the quantum state that
she wishes to teleport, and communicates her measure-
ment outcome to Bob. Finally, Bob applies an outcome-
dependent unitary to his qubits to recover the target wave
function. Aside from revealing a fundamental aspect of
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quantum mechanics—relevant for phenomena including
black-hole evaporation [2]—teleportation admits potential
applications in quantum communication, quantum net-
works, and quantum computation [3]; for reviews, see
Refs. [4–6]. To date, quantum teleportation has been
demonstrated experimentally in numerous settings (e.g.,
Refs. [7–11]), including ground-to-satellite teleportation
over distances of 1400 kilometers [12].

Teleportation protocols are far from unique. In fact there
exists an infinite family of protocols—distinguished, for
instance, by the choice of initialization for Bob’s qubits,
the particular entangling gate employed, and Alice’s mea-
surement basis—all of which yield perfect teleportation in
the ideal case. Imperfections invariably occur, however, in
experimental implementations due to decoherence, mea-
surement and gate errors, etc. The generic presence of such
imperfections raises many practically relevant questions,
particularly in the context of teleporting many-body wave
functions. To what extent do protocol imperfections mod-
ify universal aspects of correlations and entanglement in
a teleported quantum state? Is there necessarily a sense in
which one can regard imperfections as benign when assess-
ing universal features, or can arbitrarily weak deviations
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from an ideal protocol qualitatively alter the teleported
state’s character? Among the infinite set of possible tele-
portation protocols, are some more resilient to certain types
of imperfections than others? Can one optimize against
expected errors with a judiciously chosen protocol? How
do errors manifest after averaging over many imperfect
teleportation runs?

We address these questions for the special case of
imperfect teleportation of quantum critical wave func-
tions. In particular, we focus on the ground state of the
one-dimensional transverse-field Ising model tuned to the
phase transition between paramagnetic and ferromagnetic
phases, described by an Ising conformal field theory (CFT)
with central charge c = 1/2. This setting offers an appeal-
ing test bed for diagnosing the influence of teleportation-
protocol imperfections: First, the critical state exhibits
universal power-law correlations among local observables,
as well as universal long-range entanglement; both features
provide useful diagnostics for assessing the quality of the
teleported wave function. Second, the fact that the critical
point is gapless implies sensitivity of physical properties
to perturbations—in turn hinting that protocol imperfec-
tions can potentially drastically alter the character of the
teleported quantum critical wave function.

We identify and analyze a class of protocol imper-
fections for which the teleported wave function received
by Bob corresponds to Alice’s original quantum critical
state modified by the application of a nonunitary opera-
tor (that reduces to the identity in the ideal case). Such
imperfections arise, for example, when Alice and Bob fall
short of maximally entangling their qubits, or when Alice
misaligns her measurement basis relative to the optimal
protocol. One can profitably view the resulting nonuni-
tary operator as effectively encoding the action of a weak
measurement on the critical wave function. In other words,
imperfectly teleporting the quantum critical wave function
is formally equivalent to perfectly teleporting a weakly
measured counterpart of that state. This perspective unites
the problem of quantum criticality under imperfect telepor-
tation with the developing theory of “measurement-altered
quantum criticality.”

The latter area has its roots in earlier works [13–20]
but came into sharp focus with Garratt et al.’s demon-
stration that even arbitrarily weak measurements can qual-
itatively alter long-distance correlations in a Luttinger
liquid [21]. In particular, these authors established that
weak measurements perturb the Luttinger-liquid action
with an “imaginary-time quantum impurity”—enabling
a renormalization group analysis of their effects similar
to the classic Kane-Fisher (real space) impurity problem
[22]. Soon after, Ref. [23] showed that measurement-
induced modifications of correlations are accompanied
by qualitative changes in the Luttinger liquid’s entan-
glement; see also Ref. [24]. These results have since
been extended to quantum Ising spin chains [25–30] and

(2+ 1)-dimensional quantum critical points [31] (see also
Ref. [32]). Various strategies have also been proposed
for experimentally detecting measurement-altered critical-
ity [21,27,33–36]. In passing, we note that many recent
works have explored measurement-induced phenomena
in related contexts including entanglement phase tran-
sitions in monitored systems [14,37–43], where unitary
dynamics intertwines with local measurements, and for
efficiently generating long-range entangled quantum states
[15,44–49].

By leveraging and advancing the theory of measure-
ment-altered criticality, we derive detailed predictions for
the fate of Ising quantum critical states under imper-
fect teleportation. We explicitly obtain a family of
imperfection-induced nonunitary operators—which indeed
depend on the choice of protocol, as well as the mea-
surement outcome that Alice communicates to Bob. These
nonunitary operators apply to teleportation of generic
many-body wave functions, as do some of the complemen-
tary tools that we employ to further analyze their impact
on quantum critical states in both the limits of “weak”
and “strong” imperfection. The weak regime admits a
renormalization group analysis of imperfection-induced
imaginary-time quantum impurities similar to Refs. [23,
25–27,29]; in the strong regime we show that the char-
acter of the imperfectly teleported wave function relates
deeply to “strange correlators” [50]. Our main results
are summarized in Fig. 1, and can be divided into three
categories:

Relevant imperfection. Protocols yielding an imper-
fection-induced nonunitary operator that breaks T × Z2,
where T denotes time reversal and Z2 is the spin-flip
symmetry for the Ising spin system, are the least resilient
to errors. Here, the associated imaginary-time quantum
impurity comprises a relevant perturbation, and in the ther-
modynamic limit any amount of imperfection qualitatively
alters both entanglement and correlations in the teleported
wave function received by Bob. Long-range entanglement
present in the original quantum critical state becomes
downgraded to area-law behavior [23,25], independent
of Alice’s measurement outcome. Moreover, power-law
correlations nevertheless persist—with apparently rigid
decay exponents distinct from those in the pristine Ising
theory. We explain the coexistence of these properties
through both the boundary CFT that incorporates the
relevant perturbation [21,25,26], and by deriving a long-
range-interacting parent Hamiltonian for the imperfectly
teleported wave function. We further quantify how imper-
fection immediately and sharply modifies the distribution
of order-parameter eigenvalues—i.e., full counting statis-
tics—in that state. (See also Ref. [51] for a discussion of
full counting statistics in a complementary setting with
measurements.)

Marginal imperfection. In the weak-imperfection
regime, teleportation protocols yielding nonunitary

030307-2



QUANTUM CRITICALITY UNDER IMPERFECT TELEPORTATION PRX QUANTUM 5, 030307 (2024)

FIG. 1. Executive summary. The first two columns, respectively, indicate Alice’s measurement basis and the imperfect entangling
gate used in the protocol, leading to the teleported wave function in the third column. Here u denotes the entangling gate strength,
with u = π/4 corresponding to the ideal protocol limit; aj denotes Alice’s measurement outcome for qubit j ; and |ψc〉 is Alice’s
original critical wave function. The remaining columns summarize the entanglement and correlations in the imperfectly teleported
state received by Bob. Colors (from good in green to bad in red) represent imperfections that we classify in the main text as irrelevant,
disguised marginal, marginal, and relevant. Tools used to obtain these results include exact algebraic calculations of the resulting
teleported states, analysis of an Ising CFT perturbed by an imperfection-induced “impurity,” parent Hamiltonians for imperfectly
teleported states, analytical calculations of correlations and entanglement based on Gaussian states, and tensor-network techniques.

operators that preserve T × Z2 symmetry disrupt correla-
tions and entanglement to a milder extent. For Alice’s most
likely measurement outcomes—which preserve translation
symmetry, in some cases with an enlarged unit cell—the
associated imaginary-time quantum impurity is gener-
ically marginal. Depending on the measurement basis
used in the teleportation protocol, the marginal impu-
rity can either arise at first order in the imperfection
(in a sense made precise later on), or emerge as a
higher-order effect under renormalization; we refer to the
latter scenario as “disguised marginal imperfection.” In
either case, Bob inherits an imperfectly teleported wave
function featuring both power-law correlations and long-
range entanglement, though the power-law exponents [21,
25–27] and effective central charge [23,25,29] charac-
terizing the long-range entanglement vary continuously
as one moves away from the ideal protocol limit. The
difference from relevant imperfection can be partly under-
stood through the gentler impact of imperfection on
full counting statistics. In the extreme limit of “strong”
imperfection—where the protocol transmits an asymptot-
ically small amount of information from Alice’s criti-
cal state—we recover the imperfectly teleported state’s
correlations and entanglement from a parent Hamilto-
nian (despite subtleties with convergence in the marginal
case).

Irrelevant imperfection. Weak protocol imperfections
yielding nonunitary operators that preserve T × Z2 sym-
metry generate irrelevant imaginary quantum impurities in
two scenarios: (i) for Alice’s “typical” measurement out-
comes (which we will define precisely) [21] and (ii) for
translation-invariant measurement outcomes provided one
fine tunes the measurement basis in a way that cancels
off the marginal contribution highlighted above. Irrele-
vant imperfections are optimal in the sense that Bob’s
wave function inherits Alice’s universal correlations and
entanglement, albeit at sufficiently long length scales; such
imperfections still inevitably corrupt short-distance prop-
erties. In scenario (ii) above, we show that a fine-tuned,
finite level of imperfection actually revives pristine uni-
versal properties in the imperfectly teleported state. We
further conjecture that Bob can, remarkably, continue to
inherit these universal features even arbitrarily deep in the
regime of strong imperfection, where the imperfection-
induced nonunitary operators corrupting Alice’s original
quantum critical state are far from the identity.

The hierarchy of imperfections that we identify—
relevant, marginal, disguised marginal, and irrelevant—are
associated with progressively greater resilience of the
teleported quantum critical state to protocol errors.
These results provide concrete guidelines for choos-
ing teleportation protocols that most faithfully transfer
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universal quantum critical properties between parties.
We stress that the imperfectly teleported wave function
received by Bob can overlap negligibly with the origi-
nal quantum critical wave function—while still (in the
irrelevant case) displaying the same universal features.
In essence, the metrics we study quantify the quality of
teleporting within a family of quantum critical wave func-
tions in the same universality class, rather than a specific
many-body state. Wave-function overlaps, by contrast, in
no way isolate long-distance characteristics, and at least
in this context do not appear to be the “right” metric for
assessing quality of the teleportation protocol. Finally, we
address the fate of the teleported (mixed) state when a
specific protocol is run many times, as would naturally
occur when Bob wants to perform tomography of the tele-
ported state with Alice obtaining different measurement
outcomes sampled according to the Born rule. We find
that power-law exponents encoded in the mixed state are
faithfully teleported by virtue of the outcome-dependent
unitary Bob applies in each teleportation run, which one
can view as a “decoding step” (as in, e.g., Ref. [52]) baked
into the protocol. Imperfections can, nevertheless, nontriv-
ially alter the entanglement structure of the mixed state
as measured by the negativity. More broadly, our work
highlights many open questions, ranging from studying
imperfect teleportation of other classes of entangled many-
body wave functions to identifying concrete applications
of this family of problems.

We organize the remainder of the paper as follows. As
a warm up, Sec. II briefly reviews imperfect teleporta-
tion at the single-qubit level. Section III then discusses the
imperfect many-body teleportation problem from a mostly
general viewpoint that sets the stage for our subsequent
analysis of imperfectly teleported quantum critical wave
functions. Section IV reviews the correlations, entangle-
ment structure, and full counting statistics for the ground
state of a critical quantum Ising chain; these properties pro-
vide the baseline that we compare against when exploring
the fate of Ising criticality under imperfect teleportation
in Sec. V. Section VI generalizes our imperfect telepor-
tation protocols by allowing an additional error source
with similar consequences. Section VII diagnoses errors
in mixed states describing an ensemble of imperfectly tele-
ported critical wave functions. Conclusions and an outlook
appear in Sec. VIII, followed by numerous appendices that
provide supplemental details of our analysis.

II. PRIMER: SINGLE-QUBIT TELEPORTATION

A. Canonical protocol

Imperfect teleportation of a single qubit [1] already con-
tains ingredients essential for the many-body case of our
interest, and hence we begin with this simpler problem.
Following the standard protocol, consider a three-qubit
Hilbert space HA1 ⊗HA2 ⊗HB; two qubits belong to

Alice (A1,2) and the third belongs to Bob (B). In what
follows Xq, Yq, Zq denote Pauli operators acting on qubit q.

Suppose that Alice wishes to transfer the state of qubit
A1 to Bob—without revealing her precise wave function.
In the computational (Z) basis, the state to be teleported
reads |ψA1〉 = c1 |↑A1〉 + c2 |↓A1〉 with c1, c2 ∈ C. Starting
from a product state |↑A2↑B〉 for the remaining two qubits,
applying a Hadamard gate on qubit A2 followed by a CNOT
entangling gate [53] yields the maximally entangled state
|φ+〉 = (|↓A2↓B〉 + |↑A2↑B〉)/

√
2 that provides a resource

for teleportation. Next, Alice performs a Bell measurement
on her two qubits. Adopting similar logic used to generate
maximal entanglement, Alice can accomplish this mea-
surement by performing a CNOT gate, then a Hadamard
gate on A2, and finally measuring her individual qubits in
the computational basis with outcomes zA1 and zA2 . (All
measurement outcomes appear with the same probability
of 1/4.) Bob’s resulting unnormalized single-qubit state
reads

|ψzA1 zA2
〉 = 〈zA1zA2 |UA1A2B |ψA1 ↑A2〉 |↑B〉 . (1)

Here UA1A2B ≡ HA2 CNOTA2A1 CNOTA2BHA2 incorporates the
Hadamard and CNOT gates used for entanglement gen-
eration and Bell measurement [54]. Using the fact that
HA2 squares to the identity, one can equivalently express
UA1A2B = C̃NOTA2A1 C̃NOTA2B as a product of two-qubit
entangling unitaries

C̃NOTij = ei π4 (1−Xi)(1−Xj ). (2)

After some algebra one finds that Bob’s wave func-
tion becomes |ψA1〉, up to a unitary WzA1 zA2

dependent
on Alice’s measurement outcomes zA1,2 , i.e., |ψzA1 zA2

〉 =
WzA1 zA2

|ψA1〉. After Alice classically communicates these
outcomes to Bob, he can “undo” that unitary—completing
the teleportation perfectly.

Notice that perfect teleportation can also arise upon
replacing C̃NOTij by Uπ/4

ij = ei(π/4)XiXj , which mods out
the single-qubit gates in Eq. (2) yet similarly generates
maximal entanglement when acting on |↑A2↑B〉. As before
Alice’s measurement outcomes remain equally likely, and
one finds that, after she performs her measurement, Bob’s
state reduces to |ψA1〉 up to a (different) measurement-
outcome-dependent unitary VzA1 zA2

that he can undo.
Below we consider the latter unitary entangling gate since
it simplifies the analysis of imperfect protocols.

As alluded to in the introduction, failure to perform the
preceding operations exactly yields imperfect fidelity of
the teleported state. Such imperfections can arise from dif-
ferent error sources. We primarily focus on imperfection
in the two-qubit entangling gate Uπ/4

ij ; that is, suppose that
the protocol unintentionally implemented Uij = eiuij XiXj ,
with uij ∈ [0,π/2]. For uij 
= π/4 this unitary does not
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maximally entangle computational-basis eigenstates, and
moreover leads to unequal probabilities for Alice’s mea-
surement outcomes. Hence, by repeatedly measuring,
Alice can acquire some information about the unknown
state |ψA1〉. Following the measurement phase of the pro-
tocol, Bob’s unnormalized state correspondingly becomes

|ψzA1 zA2
〉 = 〈zA1zA2 |UA1A2UA2B |ψA1 ↑A2〉 |↑B〉
= VzA1 zA2

PzA1 zA2
|ψA1〉 . (3)

On the second line, VzA1 zA2
is the same outcome-dependent

unitary from the preceding paragraph, while crucially

PzA1 zA2
= e

1
2 za1 (αA1A2+zA2αA2B)ẐB (4)

is a nonunitary operator dependent on the amount of
imperfection through the parameters

αij = − ln[tan(uij )]. (5)

For a perfect protocol with uij = π/4, αij vanishes, and
hence PzA1 zA2

reduces to the identity. For uij 
= π/4 the
imperfect protocol generically teleports to Bob a nonuni-
tarily modified cousin of Alice’s A1 qubit state [55]. In the
extreme limit where uij approaches 0, αij diverges; here the
nonunitary operator completely obliterates the content of
Alice’s original state, and Eq. (3) simply reduces to Bob’s
initial wave function. Incidentally, this limit shows why
entangling-gate imperfections nonunitarily (as opposed to
unitarily) corrupt the teleported state: when the protocol
altogether fails to entangle Alice’s and Bob’s qubits, Bob’s
wave function before and after Alice measures her qubits
must be unchanged for any choice of |ψA1〉, which can only
occur by modifying the latter with a nonunitary operator.

Imperfections in the initialization and measurement
stages provide additional error sources that also nonuni-
tarily corrupt the teleported state. Suppose, for instance,
that Alice inadvertently measures along a quantization
axis tilted away from the Z direction and with a finite
projection along X —thus no longer achieving a perfect
Bell measurement. The first line of Eq. (3) would then
be modified via 〈zA1zA2 | → 〈zA1zA2 | SA1SA2 , where SAj is
a spin-rotation operator acting on qubit Aj that encodes
the measurement misalignment. In the extreme case where
the quantization axis rotates all the way to the X direc-
tion, UA1A2 entirely fails to entangle Alice’s A1,2 qubits, and
once again no information about |ψA1〉 can be transmitted
to Bob. Following the above logic, PzA1 zA2

must again be
a nonunitary operator that erases the content of Alice’s A1
qubit state. Similar reasoning holds for misalignment in the
initialization of the A1 and B qubits.

Next we will explore a simplified version of the tele-
portation protocol reviewed here. This simplification will

turn out to greatly streamline explicit, closed-form deriva-
tion of imperfectly teleported quantum states both at the
single- and many-qubit levels.

B. Simplified protocol

Let us retain the key ingredients underlying quantum
teleportation—entanglement, measurement, and classical
communication—while distilling the setup by reducing the
number of degrees of freedom. Specifically, we replace
the three-qubit Hilbert space (HA1 ⊗HA2 ⊗HB) with that
of just two qubits (HA ⊗HB). Bob once again initializes
his qubit into the state |↑B〉. Alice’s now sole qubit, A,
realizes some general state |ψA〉 = c1 |↑A〉 + c2 |↓A〉 that
she would like to transfer to Bob in a similar vein as in
the previous subsection. (Alice need not know her precise
qubit state, e.g., she may have received it through a sepa-
rate teleportation protocol.) An ideal protocol proceeds by
entangling A and B via the unitary gate Uπ/4

AB = ei(π/4)XAXB

and then projectively measuring A in the computational
basis. Importantly, as for the standard protocol, in this per-
fect implementation all measurement outcomes are equally
likely. Upon Alice communicating her measurement out-
come to Bob, he can perform an outcome-dependent
unitary to perfectly recover Alice’s qubit state.

Imagine, however, that the actual entangling gate
employed had the form UAB = eiuXAXB for some u ∈
[0,π/2]. With u = π/4 we recover the ideal case, but oth-
erwise the protocol is imperfect. This unitary sends the
initial state |ψA〉 |↑B〉 to

|ψU〉 = |↑A〉 [cos(u)c1 |↑B〉 + i sin(u)c2 |↓B〉]
+ |↓A〉 [cos(u)c2 |↑B〉 + i sin(u)c1 |↓B〉]. (6)

Also as for the standard protocol, Alice’s measurement
outcomes become biased by imperfection. After Alice
measures her qubit with outcome zA = ±1, Bob’s unnor-
malized wave function becomes

|ψzA=+1〉 = cos(u)c1 |↑B〉 + i sin(u)c2 |↓B〉 ,
|ψzA=−1〉 = cos(u)c2 |↑B〉 + i sin(u)c1 |↓B〉 .

(7)

One can equivalently recast Eqs. (7), modulo an overall
normalization, in the compact form

|ψzA〉 = VzAPzA |ψA〉 . (8)

Here

VzA = ei π4 (1−zA)XBe−i π4 zAZB (9)

is an outcome-dependent unitary operator present even
in the optimal protocol, while imperfection is encoded
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through the nonunitary operator

PzA = e
α
2 zAZB (10)

dependent on u through the parameter

α = − ln[tan(u)]. (11)

Once Bob learns Alice’s measurement outcome and
undoes the WzA unitary, the final teleported wave function
reads

|ψ tele
zA
〉 = PzA |ψA〉 . (12)

The above analysis closely parallels the results from
Eqs. (3) through (5) for the canonical three-qubit teleporta-
tion protocol. Similar to the latter case, imperfection in our
simplified protocol, encoded through the single parameter
u 
= π/4, nonunitarily corrupts the teleported state, com-
pletely erasing the content of Alice’s qubit in the extreme
case where u→ 0 and α→∞. This similarity is not acci-
dental: in fact the upper line from Eq. (3) maps to Eq. (8)
(modulo a unitary that does not depend on the state being
teleported) in the limit where uA2B = π/4 and uA1A2 = u.
Thus our simplified teleportation protocol captures the sit-
uation in which imperfection appears in only one of the
two entangling gates employed in the canonical protocol.

III. MANY-BODY TELEPORTATION

Next we turn to the richer problem of imperfectly tele-
porting a many-body wave function from Alice to Bob.
Although we are primarily interested in teleporting quan-
tum critical states, in much of this section we keep our
discussion general. Many-body teleportation of an L-qubit
state can proceed by running the protocol reviewed in
Sec. II separately on each constituent qubit—respectively,
requiring a total of 3L and 2L qubits in the canonical and
simplified teleportation protocols. Figures 2(a) and 2(b)
sketch the corresponding protocols in the ideal case of
perfect teleportation.

In the following we focus on the simplified protocol
with imperfectly applied entangling gates and establish the
formalism that we will use to assess the nature of the result-
ing teleported state. Once again, this scenario accounts for
imperfection in one of the two entangling gates used in the
canonical protocol (see Sec. II A). For a many-body state
that breaks spin-rotation symmetry (always the case for the
present paper), the impact of such protocol imperfections
depends on the specific entangling gate used as we will
emphatically see later in the context of teleporting Ising
criticality. We, therefore, generalize the teleportation pro-
tocol from Sec. II B in a way that incorporates freedom in
the intialization of Bob’s qubits and the gate that entangles
with Alice’s qubits.

(a) (b) (c)

FIG. 2. Many-body quantum teleportation. (a) Perfect quan-
tum teleportation of an L-qubit wave function |ψA〉. After cou-
pling Alice’s qubits A1, A2 to Bob’s B (via two consecutive
entangling unitaries C̃NOT), performing properly aligned single-
qubit measurements, and implementing an outcome-dependent
unitary, |ψA〉 (light green prism) is perfectly teleported to Bob.
(b) The same perfect setup can be simplified—see Sec. II B—by
reducing Alice’s number of degrees of freedom from 2L to L.
(c) Errors in the “strength” of the entangling unitary (deviations
from u = π/4), or improper alignment of the measurement basis
(m not parallel to n⊥), leads to imperfect teleportation where Bob
receives a nonunitarily corrupted wave function e−(α/2)Hã |ψA〉
(deformed dark green solid) with α = − ln[tan(u)] and Hã a
Hermitian operator.

Suppose that Bob’s initial wave function is a prod-
uct state |ψB〉 = |b̃, n〉. On the right side we introduced
short-hand notation b̃ = {bj }, where bk = ±1 is the spin
eigenvalue for qubit k along the quantization axis set by
the unit vector n; in other words, bk is the eigenvalue
for the Pauli operator ÔB

k (n) = n · σ B
k . Alice’s initial wave

function—which we leave unspecified for now—can be
expanded in the analogous basis as |ψA〉 =

∑
ã cã |ã,n〉;

as above ã = {aj }, and the cã coefficients encode Alice’s
entanglement and correlations. En route to teleportation,
Alice and Bob employ the unitary

U =
∏

j

eiuÔA
j (n
⊥)ÔB

j (n
⊥) (13)

that pairwise entangles their respective qubits, transform-
ing their combined state to |ψU〉 = U |ψA〉 |ψB〉. Here n ·
n⊥ = 0 such that Ôk(n⊥) = n⊥ · σk acting on |s̃, n〉 sends
sk →−sk [56]; the A, B superscript designates whether
the operator acts on Alice or Bob; and u specifies the
strength of the entangling gate. Next, Alice projectively
measures all of her spins along the same quantization axis
n used for Bob’s initial state—obtaining particular mea-
surement outcomes ã with probability pã. All measurement
outcomes are equally likely in the ideal u = π/4 protocol
limit—similar to single-qubit teleportation—but imperfec-
tion biases the distribution as we discuss further in Sec. V.
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The wave function correspondingly evolves via |ψU〉 →
|ã, n〉 |ψã〉, where

|ψã〉 = 1√
pã
〈ã, n|U |ψA〉 |b̃, n〉 (14)

is Bob’s normalized wave function after the measurement
stage of the protocol.

One can alternatively view Eq. (14) as the wave func-
tion resulting from weakly measuring Bob’s initial qubit
state. From this perspective, Alice’s qubits constitute ancil-
lary degrees of freedom that are entangled with Bob via
the unitary U and then projectively measured—thereby
mediating the weak measurement. Reference [27] indeed
encountered expressions similar to Eq. (14) in the con-
text of measurement-altered Ising criticality. There, both
Alice’s and Bob’s initial wave functions exhibited nontriv-
ial quantum correlations; analytical progress in treating the
analogue of Eq. (14) could then be carried out only pertur-
batively for entangling gates close to the identity. Here, by
contrast, any entanglement in |ψã〉 descends exclusively
from Alice’s initial state |ψA〉—enabling further nonper-
turbative evaluation. As detailed in Appendix A, using
properties of Pauli operators for the unitary in Eq. (13),
and the fact that Alice’s and Bob’s Hilbert spaces are
isomorphic, Bob’s wave function can be exactly recast as

|ψã〉 = 1√
N

ei π4 Hb̃←ã(n
⊥)ei π4 Hã(n)e−

α
2 Hã(n) |ψA〉 . (15)

Above α parametrizes the degree of protocol imperfec-
tion and once again depends on u through Eq. (11); we
will often interchangeably refer to the entangling gate
strength by quoting α and/or u depending on context. The
exponentials acting on |ψA〉 involve Hermitian operators

Hb̃←ã(n
⊥) =

∑

j

(1− aj bj )ÔB
j (n
⊥), (16)

Hã(n) = −
∑

j

aj ÔB
j (n). (17)

Notice that {Ôj (n⊥), Ôj (n)} = 0. The normalization factor
N relates to the probability pã according to

N = [sin(u) cos(u)]−Lpã. (18)

For u = π/4 (perfect teleportation protocol), equal proba-
bility of all measurement outcomes implies pã = 2−L and
hence N = 1, consistent with the fact that the nonunitary
operator becomes trivial in that limit.

Equation (15) closely resembles Eq. (8) and simi-
larly involves unitary and nonunitary operators acting on
Alice’s wave function |ψA〉. As in the one-qubit limit,

knowledge of Alice’s measurement outcome allows Bob
to undo the unitaries—yielding the final teleported state

|ψ tele
ã 〉 =

1√
N

e−
α
2 Hã(n) |ψA〉 . (19)

[Later we will examine both Eqs. (15) and (19) to ana-
lyze the impact of teleportation imperfections, since each
form offers advantages in different regimes.] Also as in the
one-qubit example, the measurement-outcome-dependent
nonunitary factor e−(α/2)Hã(n) becomes the identity at u =
π/4 (i.e., α = 0) but otherwise becomes nontrivial, spoil-
ing perfect teleportation. See Fig. 2(c) for a sketch of the
imperfect teleportation protocol discussed here.

As highlighted already in the introduction, subtle ques-
tions arise when specifically addressing imperfect telepor-
tation of a quantum critical wave function. To what extent
is Bob’s final wave function |ψ tele

ã 〉 the ground state of
a critical chain? Under what conditions can one regard
the imperfect teleportation as weak? That is, does small
nonzero α perturbatively modify the structure of |ψ tele

ã 〉
compared to the ideal α = 0 case, or is the effect inherently
nonperturbative? What is the relation between changes in
entanglement and changes in critical correlations resulting
from imperfect teleportation? In the thermodynamic limit
where system size L→∞, does |ψ tele

ã 〉 necessarily tend to
a simple product state as α increases?

A. Imperfection-induced modification of full counting
statistics

At α 
= 0, the imperfection-induced nonunitary opera-
tor in Eq. (19) redistributes the weight on the elements
of Alice’s original wave function |ψA〉. This redistribution
becomes particularly transparent upon expanding |ψA〉 in
terms of Hã(n) eigenstates, since the nonunitary operator
acts very simply in that basis. Below we explore general
properties of Alice’s imperfectly teleported wave function
from this vantage point—leading to additional metrics,
complementary to correlations and entanglement, for diag-
nosing the quality of the teleported state. Our discussion
here will additionally allow us to anticipate various sce-
narios for the impact of both weak and strong protocol
imperfections.

Since Hã(n) in Eq. (17) is just a sum of L com-
muting Pauli operators, Hã(n)/2 admits eigenvalues
m = −L/2,−L/2+ 1, . . . , L/2− 1, L/2 with degeneracy
Dm =

( L
m+L/2

)
[57]. The corresponding eigenvalue dis-

tribution in a many-body wave function is known as
full counting statistics and, at least for quantum critical
states, exhibits universal features [58,59] (for a review see
Sec. IV). Alice’s initial state can always be decomposed
into different m sectors via |ψA〉 =

∑
m cm |ψm〉. Here cm

denotes the amplitude for the normalized component |ψm〉
that has Hã(n)/2 eigenvalue m, and determines the full
counting statistics through |cm|2. In terms of the intensive
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variable f = m/L+ 1/2—which ranges from 0 to 1—the
function P(f , L) = L|cm=(f −1/2)L|2 [60] gives the probabil-
ity density for finding Alice’s initial state with quantum
number f in system size L. We stress that a quantum
critical initial state |ψA〉 will generically superpose all pos-
sible m sectors compatible with symmetries. Furthermore,
given that Dm grows combinatorially as |m| decreases from
L/2 towards zero, P(f , L) is expected to invariably peak
at some intermediate O(1) value(s) of f and eventually
decay to zero at both f = 0 and 1 in the thermodynamic
limit.

Applying the nonunitary operator e−(α/2)Hã(n) to |ψA〉
restructures the wave function by sending cm → e−αmcm
and hence yields a modified probability density

Pmodified(α, f , L) ∝ e−2αLf P(f , L). (20)

In particular, the new exponential heavily favors f ’s in the
interval 0 to approximately (αL)−1 (which for any fixed
nonzero α becomes vanishingly small as L→∞) and
exponentially suppresses weight for larger f ’s. That expo-
nential suppression, however, competes with the growth
in P(f , L) as f increases from 0. Upon turning on α to
nominally small values, one can then ask whether the
most probable f values predicted by Pmodified (w1) evolve
smoothly with α or (w2) nonperturbatively shift, for any
nonzero α, toward the interval near zero favored by the
exponential in Eq. (20). We will encounter examples of
both types later in this paper.

In either case (w1) or (w2), increasing α to large values
shifts the probability weight captured by Pmodified deep into
the left tail of the distribution near f = 0. Taking α→∞
at fixed L generically yields a product state. In particu-
lar, here we obtain e−(α/2)Hã(n) |ψA〉 → |ψm=−L/2〉 = |ã, n〉,
corresponding to Alice’s measured state. Upon account-
ing also for the unitaries in Eq. (15), Bob’s wave function
|ψã〉 reduces to his initialized product-state wave function
|b̃, n〉. Since α→∞ implies u→ 0, corresponding to the
limit where Alice and Bob’s entangling unitary approaches
the identity, this result appears trivial—yet need not apply
in the order of limits of interest here wherein L→∞
first, followed by α→∞. The naively expected product
state with m = −L/2 is nondegenerate, whereas the next
m = −L/2+ 1 sector exhibits degeneracy L that diverges
in the thermodynamic limit; hence we expect that correc-
tions to the naively expected product state persist in the
above order of limits. Similar in spirit to (w1) and (w2)
above, two possible cases also appear in the regime of
strongly imperfect teleportation: with L→∞, the tele-
ported wave function at large α, namely small u, (s1)
may be perturbatively accessible starting from the naively
expected product state, and thus exhibit properties such as
full counting statistics that evolve smoothly with u, or (s2)
may undergo nonperturbative changes for any nonzero u.

The remainder of this section further explores the small-
α and large-α regimes.

B. Small-α regime

To make analytical progress at small α, corresponding
to u near π/4, we now specialize to the case where |ψA〉
is the ground state of a quantum critical chain governed
by a CFT. We can then formulate a continuum field-
theoretic description of correlations in the teleported state
received by Bob that highlights universal consequences of
protocol imperfections—similar to techniques employed
for measurement-altered quantum criticality [21]. We will
attack the final teleported state |ψ tele

ã 〉 from Eq. (19); this
form proves most illuminating in the weak-imperfection
regime where comparison with Alice’s initial state is
natural.

Long-distance correlations in Alice’s original quantum
critical state can be extracted from a Euclidean path inte-
gral with accompanying CFT action SCFT. For an infinite
chain, SCFT describes fields living at spatial coordinate x
and imaginary time τ each spanning the range (−∞,∞).
One can view imaginary-time evolution from τ = −∞
to 0 as preparing Alice’s initial ket |ψA〉, while imag-
inary time evolution from τ = 0 to +∞ prepares the
dual bra 〈ψA|. The measurement-induced nonunitary fac-
tor e−(α/2)Hã(n) in Eq. (15) disrupts the pristine CFT action
via a “defect-line” perturbation acting at all spatial posi-
tions x but only at τ = 0 [21]. To leading order in α, the
defect-line action takes the form

δS = α
∫

x
ω(x)χ(x, τ = 0). (21)

Here ω(x) is a scalar function and χ(x) is a CFT field such
that ω(x)χ(x) represents the continuum limit of aj ÔB

j (n)
appearing in Hã(n) [Eq. (17)]. The detailed structure of
ω and χ depends on Alice’s measurement basis (i.e., the
vector n) and particular measurement outcome.

Within this continuum formulation, we can utilize renor-
malization group techniques to efficiently assess the extent
to which the final teleported state |ψ tele

ã 〉 obtained by
Bob showcases the distinguishing features of Alice’s crit-
ical behavior at α � 1. More precisely, weakly imper-
fect teleportation yields profoundly different consequences
depending on whether the defect-line action is relevant,
marginal, or irrelevant. [We caution that, as we will
encounter later, properly assessing relevance in some cases
requires considering O(α2) corrections that are not dis-
played in Eq. (21).] The relevance or otherwise of the
defect-line perturbation influences critical correlations and
entanglement, as well as full counting statistics captured
by the probability density Pmodified, in ways that we will
later characterize in detail.
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C. Large-α regime

At α � 1 (equivalently u ≈ e−α � 1), further analyti-
cal progress is possible without specifying Alice’s initial
wave function |ψA〉. Here it is more natural to examine
Bob’s wave function |ψã〉 given in Eq. (15). The reason
is that at u = 0, for which Alice and Bob remain unentan-
gled throughout, Eq. (15) reduces precisely to Bob’s initial
state |b̃, n〉—whereas |ψ tele

ã 〉 in Eq. (19) contains additional
outcome-dependent unitary factors that somewhat mask
the triviality of the teleportation protocol in this extreme
limit. We will assume for the remainder of this subsection
that at small nonzero u, Bob inherits only faint imprints
of Alice’s state that can be captured by applying a “weak”
entanglement-generating operator to |b̃, n〉. In other words,
we postulate that small u represents either a marginal or
irrelevant perturbation to the trivial protocol that transmits
no information about Alice’s state.

As detailed in Ref. [27], assuming 〈ã, n|ψA〉 
= 0 we can
exactly write |ψã〉 as

|ψã〉 = 1√
N
〈ã, n|ψA〉

L∑

Nf =0

e−αNf ei π2 Nf

×
∑

i1<···<iNf

q(i1, . . . , iNf )

⎛

⎝
Nf∏

j=1

ÔB
ij (n
⊥)

⎞

⎠ |b̃, n〉 .

(22)

Here Nf counts the number of spin flips on Bob’s initial
state generated by a given piece of the entangling gate U,
and we have defined the generalized “strange correlator”
[50]

q(i1, . . . , iNf ) ≡
〈ã, n|∏Nf

j=1 ÔA
ij (n
⊥)|ψA〉

〈ã, n|ψA〉 (23)

involving normalized matrix elements between Alice’s
(generally very different) initial and postmeasurement
wave functions. Expanding about the α→∞ (u = 0)
limit allows one to recast the expression above as

|ψã〉 ≈ 1√
N

exp

⎛

⎝iu
∑

j

q(j )ÔB
j (n
⊥)

⎞

⎠

︸ ︷︷ ︸
=U′

× exp

⎛

⎝−u2

2

∑

j 
=k

VjkÔB
j (n
⊥)ÔB

k (n
⊥)

⎞

⎠

︸ ︷︷ ︸
=e−

u2
2 H ′ã

|b̃, n〉 .

(24)

In the first line we absorbed constants into the normaliza-
tion, and in the second line

Vjk = q(j, k)− q(j )q(k) (25)

can be viewed as a connected strange correlator.
Equation (24) is consistent with Ref. [27], where we
performed a similar analysis but starting from a critical
state for Bob, i.e., replacing |b̃, n〉 with a quantum critical
wave function. As we discussed there, the large-α, small-
u expansion employed above is expected to hold provided
Vjk is sufficiently local. In some cases Alice’s measured
state |ã, n〉 may yield Vjk that does not decay to zero suf-
ficiently rapidly with |j − k|, spoiling the validity of the
expansion in Eq. (24) (likely indicating that Bob’s state
|ψã〉 cannot be obtained by perturbatively modifying his
initial state, contrary to our assumption).

Equations (15) and (24) encode quantum correlations for
Bob’s wave function |ψã〉 in a very different manner. In
Eq. (15) correlations are encoded primarily through Alice’s
initial state |ψA〉, while in Eq. (24) they are captured by the
structure of q(j ) and Vjk—where information about Alice’s
state is embedded. One advantage of the latter representa-
tion is that, when the large-α expansion is valid, it permits
using a variant of Witten’s conjugation method [61] to
find a parent Hamiltonian for which |ψã〉 is the unique
ground state. Let us specialize to the case where q(j ) and
Vjk are purely real, so that in Eq. (24) U′ is a unitary
operator and H ã

m is Hermitian. (The case with imaginary
parts can be treated by re-partitioning the exponentials
to factor out a purely unitary component.) First observe
that |b̃, n〉 is the unique ground state of the commuting-
projector Hamiltonian H0 =

∑
j �

†
j �j =

∑
j �j with pro-

jectors �j = 1
2 [1− bj ÔB

j (n)]. Physically, H0 represents a
position-dependent Zeeman field of uniform strength 1/2
pointing along or against n such that Bob’s initial state is
energetically optimal. Using e−(u

2/2)H ′ã(U′)† |ψã〉 ∝ |b̃, n〉,
the state |ψã〉 is annihilated by the new set of operators
�j = U′e(u

2/2)H ′ã�j e−(u
2/2)H ′ã(U′)†, which satisfy �

2
j = �j

but are not Hermitian and do not commute at different
sites. It follows that |ψã〉 is the unique ground state of
the frustration-free parent Hamiltonian Hparent =

∑
j �

†
j �j ,

which explicitly reads (modulo a constant)

Hparent = 1
4

U′

⎡

⎣
∑

j

e2u2ÔB
j (n
⊥)
∑

k 
=j VjkÔB
k (n
⊥)

−
∑

j

bj

{
ÔB

j (n), e−u2ÔB
j (n
⊥)∑k 
=j VjkÔB

k (n
⊥)
}
⎤

⎦ (U′)†.

(26)

Equation (26) in general is not a sum of local operators.
Nonetheless, boldly expanding the terms in brackets to
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O(u2) yields the illuminating form

Hparent ≈ U′
[
− 1

2

∑

j

bj ÔB
j (n)

]
(U′)†

+ u2
∑

j 
=k

VjkÔB
j (n
⊥)ÔB

k (n
⊥). (27)

Nonzero u manifests in two ways at this order. First,
already at order u the orientations of the local Zeeman
fields in Hparent rotate slightly compared to their orien-
tations in H0—though their magnitudes remain fixed at
1/2. This contribution originates entirely from the U′ uni-
tary in Eq. (24). Teleportation-wise, these rotations imprint
information about Alice’s initial state only at the single-
qubit level, i.e., with this effect alone, Bob’s wave function
|ψã〉 would remain a product state and thus not inherit
any of Alice’s correlations and entanglement. Second, and
much more importantly, the nonunitary piece e−(u

2/2)H ′ã
from Eq. (24) generates Ising spin-spin interactions of
strength u2Vjk in Hparent. These Ising interactions couple
spin components that are orthogonal to the spin compo-
nents appearing in the Zeeman field terms from the top
line of Eq. (27), even when accounting for the U′ rota-
tions. One can, therefore, always (for any measurement
outcome ã and any initialization b̃) unitarily transform the
parent Hamiltonian to recast the Zeeman terms in the top
line as spatially uniform without altering the bottom-line
interactions. It follows that when the large-α expansion
holds, Bob’s wave function |ψã〉 is the ground state of
a transverse-field Ising model with weak but long-range
Ising interactions dependent on both Alice’s initial state
and her particular measurement outcome. The Ising inter-
actions, albeit weak, enrich the structure of |ψã〉 beyond a
simple product-state form and thus do impart some infor-
mation about Alice’s correlations and entanglement. We
will later exploit such parent Hamiltonians to intuitively
understand the character of teleported states in highly
imperfect protocols.

Earlier we remarked that the large-α expansion is
expected to be controlled provided Vjk decays sufficiently
rapidly with |j − k|. The structure of Eq. (27) more quanti-
tatively suggests that the expansion is controlled provided
Vjk decays faster than 1/|j − k|. In that case the Ising inter-
action term in Hparent is an extensive operator—just like the
Zeeman term—with eigenvalues generically scaling lin-
early with system size. One can then always make the Vjk
contribution a small perturbation by taking u sufficiently
small (i.e., α sufficiently large). Conversely, if Vjk decays
as or slower than 1/|j − k|, then the Ising interactions
are no longer extensive and may exhibit eigenvalues that
grow faster than extensively with system size, thus poten-
tially dominating over the Zeeman contribution for any
nonzero u. The large-α expansion is expected to break
down in the latter case.

Hereafter we specialize to imperfect teleportation of
Ising quantum criticality realized in the transverse-field
Ising chain (see next section for a review). Our spe-
cific goals include (1) characterizing the final teleported
state received by Bob for different protocols, considering
both Alice’s most likely measurement outcomes as well
as typical outcomes; (2) identifying optimal teleportation
protocols in the sense of resilience to imperfections; and
(3) characterizing the mixed state describing the average
over a series of sequential runs of a specific teleportation
protocol via correlations and the entanglement negativity.

IV. ISING QUANTUM CRITICALITY REVIEW

Suppose now that Alice’s initial wave function |ψA〉
realizes the ground state |ψc〉 of a quantum Ising spin chain
tuned to criticality, described by the Hamiltonian

Hc = −J
∑

j

(Zj Zj+1 + Xj ). (28)

We take J > 0 and consider a chain of length L with peri-
odic boundary conditions; moreover, here and below we
ease the notation by neglecting superscripts A/B on Pauli
operators whenever the qubits that they act on is clear from
context. In this section we briefly review the phenomenol-
ogy of Ising criticality needed to investigate imperfect
teleportation of Alice’s quantum critical state.

Equation (28) preserves translation symmetry, global
Z2 spin-flip symmetry generated by G ≡∏j Xj , and an
antiunitary time-reversal symmetry T that leaves Xj and
Zj invariant but sends Yj →−Yj . By applying a Jordan-
Wigner transformation to Majorana fermion operators

γAj =
⎛

⎝
∏

k<j

Xk

⎞

⎠ Zj , γBj =
⎛

⎝
∏

k<j

Xj

⎞

⎠ iXj Zj , (29)

the Hamiltonian maps to a free-fermion problem:

H = iJ
∑

j

(γAj+1 − γAj )γBj . (30)

One can correspondingly express all correlation functions
in terms of two-point fermion correlators using Wick’s
theorem. Taking into account the nonlocal strings present
in the Jordan-Wigner transformation, correlation functions
of the physical spin operators X , Z, and Y can be expressed
in terms of Toeplitz matrices, whose entries depend only
on the difference between the two indices of the matrix
[62,63]. Long-distance ground-state spin-spin correlations
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follow from the asymptotic behavior of Toeplitz determi-
nants and are given by

〈XiXj 〉c ∼ 1
|i− j |2 , 〈YiYj 〉 ∼ 1

|i− j |9/4 ,

〈ZiZj 〉 ∼ 1
|i− j |1/4 .

(31)

The subscript c indicates a connected correlator and is only
needed for X , given that one-point Y and Z expectation val-
ues vanish by symmetry. Note that Z correlations exhibit
by the far the slowest decay, followed by X and then Y. For
a general Pauli operator Ôj (n) = n · σj , its two-point cor-
relation function 〈Ôi(n)Ôj (n)〉 will be dominated at long
distances by the slowest-decaying contribution.

The free-fermion representation in Eq. (30) also enables
an efficient computation of the entanglement entropy.
Bipartitioning the system between a subregion R and
its complement R, the reduced density matrix in R is
given by ρR = TrR(|ψc〉 〈ψc|). Then the entanglement
between R and its complement reads SR = −Tr(ρR ln ρR).
A more general family of functions quantifying the entan-
glement—dubbed Rényi entropies—are given by S(n)R =
1/(1− n) ln Trρn

R. We notice the relation SR = limn→1 S(n)R
known as the replica limit [64]. For the critical Ising chain,
the leading-order contributions in the subsystem size |R| =
� for a single interval on the infinite line (L→∞) read
[64]

S(n)R =
c
6

(
n+ 1

n

)
ln(�/ε), SR = c

3
ln(�/ε), (32)

where ε is an ultraviolet cutoff. The logarithm prefactors
are universal and are related to the central charge c = 1/2
of the underlying Ising CFT governing long-distance, low-
energy properties at criticality.

The CFT description follows upon changing variables to
left-moving (γL) and right-moving (γR) Majorana fermion
fields via γA = γR + γL and γB = γR − γL, and then taking
the continuum limit of Eq. (30). This procedure yields the
continuum Hamiltonian

H = −iv
∫

x
(γR∂xγR − γL∂xγL) (33)

with v ∝ J ; the associated Euclidean action describes pre-
cisely the c = 1/2 Ising CFT. The Ising CFT admits three
primary fields: the identity 1, the spin field σ (scaling
dimension �σ = 1/8), and the energy operator ε = iγRγL
(scaling dimension �ε = 1). Physically, σ represents the
continuum limit of the microscopic order parameter Zj ,
while ε represents the perturbation generated by mov-
ing off of criticality in a Z2-preserving manner (e.g.,
by increasing or decreasing the transverse-field strength).

Microscopic spin components relate to CFT fields accord-
ing to the following dictionary:

Xj − 〈X 〉 ∼ ε + · · · ,

Yj ∼ i∂τσ + · · · ,

Zj ∼ σ + · · · .

(34)

On the left side, 〈X 〉 = 2/π is the ground-state expectation
value of Xj ; subtracting this factor merely removes a con-
tribution proportional to the identity field 1. On the right
side, the fields are evaluated on coarse-grained positions
corresponding to lattice site j , τ denotes imaginary time,
and the ellipses account for subleading terms with higher
scaling dimension. Equation (34) is not only compati-
ble with symmetries, but also immediately reproduces the
scaling behavior in Eq. (31) given the scaling dimensions
for the CFT fields provided above.

Finally, we briefly review the full counting statistics for
the critical ground state of the Ising spin chain studied
previously in Refs. [58,59]. As anticipated in Sec. III A,
this property will yield insight about the resilience of Ising
criticality under imperfect teleportation protocols. We will
first examine how eigenvalues for the global operator

M ã
X =

∑

j

aj Xj /2 (35)

are distributed in the critical ground state. Here the aj ’s
take on ±1 values, and hence M ã

X admits eigenvalues m =
−L/2,−L/2+ 1, . . . , L/2; later we will associate aj with
Alice’s measurement outcomes. In the special case where
aj = +1 for all j , M ã

X reduces to the global transverse
magnetization.

The mean 〈M ã
X 〉 depends nonuniversally on the choice

of aj while the variance reads

〈(M ã
X )

2〉 − 〈M ã
X 〉2 =

1
4

∑

i,j

aiaj 〈XiXj 〉c. (36)

Given that the connected two-point X correlator decays
faster than 1/|i− j |, the right-hand side is dominated
by the short-distance region with i near j (for any pat-
tern of aj signs). One thus generically obtains 〈(M ã

X )
2〉 −

〈M ã
X 〉2 ∝ L, i.e., the variance grows linearly with system

size. In terms of the intensive variable f = m/L+ 1/2
used in Sec. III A, these properties are compatible with M ã

X
exhibiting full counting statistics of a Gaussian form

P(f , L) ∝ e−κL(f −f )2 , (37)

where κ and f are aj -dependent constants. This conclu-
sion is consistent with Ref. [58] in the limit of uniform aj .
Due to the even faster decay of two-point Y correlators, we
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expect M ã
Y =

∑
j aj Yj /2 to similarly exhibit Gaussian-like

full counting statistics.
Next we consider the global longitudinal magnetization

M+Z =
∑

j

Zj /2. (38)

[Contrary to Eq. (35), we do not allow for unspecified aj
signs above since drawing conclusions about full count-
ing statistics in the general case is not straightforward
here.] The mean 〈M+Z 〉 vanishes by symmetry while the
variance is

〈(M+Z )2〉 =
1
4

∑

i,j

〈ZiZj 〉. (39)

Slow decay of the two-point Z correlator implies that
the right side, unlike Eq. (36), is dominated by the long-
distance region with |i− j | � 1. This contribution yields
a variance 〈(M+Z )2〉 ∝ L7/4 that diverges with system size
faster than the linear growth obtained for M ã

X . Thus the lon-
gitudinal magnetization eigenvalues are distributed more
broadly in the critical ground state relative to the transverse
magnetization eigenvalues: the characteristic spread of the
intensive variable f is δf ∼ 1/L1/8 for the former versus
δf ∼ 1/L1/2 for the latter. Full counting statistics for the
longitudinal magnetization is non-Gaussian, however, and
exhibits a universal double-peak structure [59] discussed
in more detail in Appendix B.

V. IMPERFECT TELEPORTATION OF ISING
CRITICALITY

We are now in position to examine Bob’s final wave
function in Eq. (19) resulting from imperfect teleporta-
tion of Alice’s Ising quantum critical state |ψA〉 = |ψc〉.
The nonunitary operator e−(α/2)Hã(n) encoding imperfec-
tion depends on the quantization axis n defining Bob’s
initial wave function and Alice’s measurement basis, her
particular measurement outcome ã, and the imperfection
strength quantified by α. We will specifically address the
extent to which the universal features of Ising criticality
reviewed in the previous section survive with protocols
employing different n vectors, assuming for simplicity
throughout this section that Bob initializes his qubits into
the uniform state |ψB〉 = |b̃, n〉 with all bj = +1. Sec-
tions V A through V C analyze the impact of protocol
imperfections upon postselecting for Alice’s highest prob-
ability measurement outcomes; Sec. V D then examines
typical outcomes.

One can anticipate the hierarchy of protocol imperfec-
tions that we uncover by viewing the problem through the
lens of full counting statistics. For n = x̂, the nonunitary
operator becomes e−(α/2)Hã(n) = eαMã

X and hence alters full
counting statistics of the global operator M ã

X defined in

Eq. (35). In Sec. IV we argued that, for any ã, the distribu-
tion of M ã

X eigenvalues in Alice’s original quantum critical
wave function obeys a Gaussian distribution, Eq. (37). Fol-
lowing Eq. (20), Bob’s final wave function exhibits the
modified eigenvalue distribution

Pmodified ∝ e−2αLf e−κL(f −f )2 (40)

that remains Gaussian. Imperfection merely shifts the peak
location via f → f − α/κ; L-independence of the shift
descends from the fact that 〈(M ã

X )
2〉 − 〈M ã

X 〉2 ∝ L. The
gradual change of full counting statistics with α in the
thermodynamic limit implies that with n = x̂, imperfec-
tions smoothly restructure the weight in Alice’s original
wave function, regardless of which measurement outcome
she obtains during the teleportation protocol. This prop-
erty, in turn, hints that correlations and entanglement in
the imperfectly teleported state generically also evolve
smoothly with α relative to the ideal case. (We caution that
full counting statistics by itself does not reveal whether
long-distance properties, e.g., scaling dimensions, evolve
nontrivially with α, though short-distance properties cer-
tainly will.) Analogous conclusions apply to protocols
utilizing n = ŷ.

Protocols with n = ẑ, by contrast, can behave qualita-
tively differently in this regard. Let us consider uniform ã
with all aj = +1—which, along with the all aj = −1 state,
corresponds to Alice’s most probable measurement out-
come (see below). In this case, the imperfection-induced
nonunitary operator instead becomes e−(α/2)Hã(n) = eαM+Z ,
now modifying full counting statistics of M+Z from
Eq. (38). Recall that in this case the full counting statistics
for Alice’s original critical wave function exhibits a uni-
versal double-peak structure whose variance is parametri-
cally broader with system size compared to the distribution
for M ã

X . Full counting statistics for Bob’s imperfectly tele-
ported wave function is once again modified according
to Eq. (20), though the broader variance now translates
into a more effective reshaping of the distribution by the
imperfection-induced exponential factor e−2αLf .

In Appendix B we introduce an analytical function
that approximates the pristine double-peak distribution
obtained in Ref. [59]; we then use that function to sim-
ply extract the imperfection-modified distribution that Bob
inherits. This analysis reveals that in the thermodynamic
limit arbitrarily small α obliterates the double-peak struc-
ture—yielding a single peak located in the distribution’s
tail near f = 0. (The precise peak location in this altered
distribution nevertheless varies smoothly with α.) Con-
sequently, such protocol imperfections nonperturbatively
restructure the weights in Alice’s original quantum critical
state in a manner that, owing to the explicit breaking of
f → 1− f symmetry, yields a net nonzero magnetization
in Bob’s final state. The nonperturbative restructuring fur-
ther strongly suggests that long-distance correlations and
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entanglement in Bob’s state are no longer captured by the
Ising CFT—even for arbitrarily weak imperfection.

A. Relevant imperfection

We proceed by exploring protocols with n = ẑ, for
which full counting statistics suggests the most dramatic
impact of imperfection. Numerically, we find that when-
ever the entangling unitary eiuX A

j X B
j employed in the proto-

col is imperfect, i.e., with u 
= π/4, Alice’s most probable
measurement outcomes are uniform states |ã, ẑ〉 with all
aj = +1 or all aj = −1. Focusing for concreteness on
the aj = +1 uniform outcome, Bob’s final state explicitly
reads

|ψ tele
ã 〉 =

1√
N

eαM+Z |ψc〉 , (41)

where M+Z is the global longitudinal magnetization defined
in Eq. (38). Neither correlation functions nor entangle-
ment scaling are amenable to exact analytical computa-
tions since M+Z does not map to a local operator under
a Jordan-Wigner transformation. Nevertheless, below we
pursue several strategies for diagnosing universal aspects
of these quantities.

As a first approach we appeal to a parent Hamiltonian
for the imperfectly teleported state |ψ tele

ã 〉. Section III C
already previewed a parent Hamiltonian operative in the
large-α limit—which we revisit shortly—but here we seek
an alternative form valid at any α. While the existence of
a general Hermitian parent Hamiltonian is not guaranteed,
one can construct a strictly local non-Hermitian parent Hα ,
which has |ψ tele

ã 〉 as its unique (right) ground state:

Hα ≡ eαM+Z He−αM+Z

= −J
∑

j

Zj Zj+1 −
∑

j

(
hxXj − ihyYj

)
(42)

with hx = J cosh(α) and hy = J sinh(α). Since H and Hα

are related by a similarity transformation, they share the
same (purely real) gapless energy spectrum for any value
of α; their corresponding wave functions, however, are
nonunitarily related to one another. This viewpoint sug-
gests that imperfectly teleported critical states can exhibit
atypical behavior inherited from non-Hermiticity of their
parent Hamiltonians. In fact, Ref. [65] studied a nonunitar-
ily perturbed free-fermion Hamiltonian that also features
a gapless spectrum yet exhibits a finite “non-Hermitian
coherence length” ξNH, beyond which two striking features
emerge: First, correlations remain power law, albeit with
enhanced exponents encoding faster decay, and second,
the spatial entanglement entropy saturates to a finite value
S ∼ c/3 ln(ξNH) with increasing subsystem size. We will
show that the state in Eq. (41) similarly exhibits anomalous

power-law correlations coexisting with area-law entangle-
ment.

Following Sec. III B, we can gain further quantitative
insight at small α by translating the nonunitary operator in
Eq. (41) into a defect-line action δS [Eq. (21)] perturbing
the pristine Ising CFT at imaginary time τ = 0. Using the
continuum-limit expansion M+Z ∼

∫
x σ , one obtains

δS ∼ α
∫

x
σ(x, τ = 0). (43)

Equation (43) constitutes a strongly relevant perturba-
tion that induces a flow to a new fixed point far from
the Ising CFT [25,27]. That is, arbitrarily weak telepor-
tation imperfection of the type studied here—which we
dub relevant imperfection—qualitatively alters the univer-
sal long-distance properties encoded in Alice’s original
quantum critical wave function, consistent with the dra-
matic restructuring of full counting statistics arising for
any α 
= 0.

The Ising CFT specifically flows to a fixed point that
pins 〈σ 〉 
= 0 along the defect line, yielding a bound-
ary condition that chops the 1+ 1-dimensional Euclidean
spacetime into decoupled upper (τ > 0) and lower (τ <
0) halves. Scaling arguments [27] reveal that Bob’s final
wave function exhibits a net longitudinal magnetiza-
tion that grows nonanalytically with α: 〈Zj 〉 ∼ 〈σ(xj , τ =
0)〉 ∼ α1/7. Furthermore, using the dictionary in Eq. (34),
connected two-point X and Z correlators in Bob’s final
state can be calculated by evaluating the correlators
〈σ(x)σ (x′)〉 and 〈ε(x)ε(x′)〉 along the boundary at the
new fixed point. Appendix C details the boundary CFT
calculation, which yields power-law correlations

〈XiXj 〉c ∼ 1
|i− j |4 , 〈ZiZj 〉c ∼ 1

|i− j |4 (44)

with entirely different exponents from those of the unper-
turbed Ising CFT. (As we show below, Y correlators also
admit power-law exponent 4, again in contrast to the pure
Ising CFT.)

The modified power-law correlations captured above
assuming small α hold for any α 
= 0 in the thermody-
namic limit. In the opposite regime of large α we can
exploit the asymptotic expansion developed in Sec. III C
to express the penultimate form of Bob’s wave function
(prior to applying the final outcome-dependent unitary) in
the useful form [Eq. (24)]

|ψã〉 ≈ 1√
N

eiu
∑

j q(j )Xj e−
u2
2
∑

j 
=k VjkXj Xk |ψB〉 . (45)

Recall that u ≈ e−α at α � 1, q(j ) is defined in Eq. (23),
Vjk is a connected strange correlator defined in Eq. (25),
and |ψB〉 is Bob’s initial state with all Zj = +1. Due to
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translation symmetry q(j ) is just a constant; the strange
correlator was evaluated in Ref. [27] and scales as Vjk ∼
1/|j − k|4. As discussed in Appendix D, one can equiv-
alently express two-point X correlators evaluated in the
wave function (45) as

〈ψã|XiXj |ψã〉c =
1
Z

∑

{xk}=±1

xixj e−βH, (46)

where Z is a classical partition function correspond-
ing to the classical power-law-interacting Hamiltonian
H =∑j 
=k Vjkxj xk with inverse temperature β = u2. The
leading contribution in a high-temperature series expan-
sion gives 〈XiXj 〉c ≈ u2Vij ∼ 1/|i− j |4 in harmony with
Eq. (44) obtained at small α. We further argue in
Appendix D that, given the fast decay of Vjk with sepa-
ration, Z and Y correlators also display the same power
law,

〈ZiZj 〉c ∼ 1
|i− j |4 , 〈YiYj 〉 ∼ 1

|i− j |4 , (47)

which for Z also agrees with Eq. (44).
Our DMRG simulations presented in Fig. 3 support uni-

versality of the anomalous power laws captured above at
small- and large-α. Curves in each panel cover α ∈ [0, 2]
in steps of 0.2, while, as a guide, the dashed black line rep-
resents the slope for a power law with exponent 4. (Details
of our DMRG simulations presented here and below can
be found in Appendix H.) The simulations agree well with
our predictions for X , Y, and Z correlators. To summarize,
with any degree of imperfection in the protocol considered
here, two-point correlators of an arbitrary Pauli operator
display “fast” algebraic decay with a common exponent
that does not depend on α and differs strongly relative to
pristine Ising CFT expectations.

Does logarithmic growth of entanglement entropy sur-
vive relevant imperfect teleportation? Reference [25] pro-
vided numerical results together with CFT arguments sug-
gesting that even arbitrarily weak nonunitary operators of
the form in Eq. (41) destroy logarithmic growth in favor
of area-law entanglement entropy that saturates to a value
dependent on α but not subsystem size. We can further
justify this conclusion at the lattice level in the large-α
regime. Consider again the state in Eq. (45). Upon fur-
ther expanding this perturbative expression to order O(u2),
which we expect is legitimate given the fast power-law
decay of Vjk, we can explicitly obtain the reduced den-
sity matrix ρR and evaluate the second Rényi entropy S(2)R

at O(u4). The result (derived in Appendix E) reads S(2)R ∝
u4∑

j∈R,k∈R V2
jk and indeed saturates to a constant that does

not depend on the subsystem size |R|. Figure 4 shows
that this expansion is well behaved in the large-α regime
(as expected), with the difference between the entangle-
ment entropies numerically computed from the exact wave
function |ψ tele

ã 〉 in Eq. (41) using DMRG, and from the pre-
ceding perturbative treatment, decreasing with increasing
system size and with increasing α.

Therefore, the imperfectly teleported wave function
|ψ tele

ã 〉 showcases power-law decaying correlations yet
exhibits short-range area-law entanglement, as hinted at
earlier from our non-Hermitian parent Hamiltonian dis-
cussion. Additional insight into this unusual coexistence
emerges by examining the Hermitian parent Hamiltonian
derived in the large-α, small-u limit in Sec. III C [Eq. (27)].
In the present context the parent Hamiltonian (after apply-
ing a unitary to undo the unimportant U′ rotation) explicitly
reads

Hparent ≈ −
∑

j

Zj + u2
∑

j 
=k

VjkXj Xk. (48)
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FIG. 3. Correlations with relevant imperfection. Correlations in the teleported state received by Bob [Eq. (41)] following an imper-
fect protocol with n = ẑ and with Alice’s most probable measurement outcome. Data points were obtained using infinite DMRG
for α ∈ [0, 2] in steps of 0.2. For all α 
= 0 shown, we obtain nonperturbatively altered power-law correlations with apparently rigid
exponents that agree well with the analytical predictions in Eqs. (44) and (47) (dashed lines).
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(a)

(b)

FIG. 4. Area-law entanglement for relevant imperfection. (a)
Second Rényi entropy of the teleported state in Eq. (41) for
system size L = 40 with periodic boundary conditions and dif-
ferent α’s obtained using finite DMRG. The dashed line refers to
the perturbative analytical prediction in Eq. (E10). (b) System-
size dependence of the difference in the half-chain entangle-
ment entropy between the perturbative analytical approach [as
obtained by expanding Eq. (45)] and numerical evaluation of
Eq. (41) using finite DMRG. The data show excellent agreement
with area-law entanglement emerging from relevant imperfection
as calculated analytically in the large-α limit.

The dominant Zeeman field in the first term reflects the
fact that at u = 0, the protocol trivially returns Bob’s
initial state with all Zj = +1; the subdominant second
term is an O(u2) antiferromagnetic Ising-like interaction
with power-law decay dictated by the strange correlator
Vjk that encodes information about Alice’s critical state.
References [66,67] analyzed the phase diagram of such
long-range-interacting Hamiltonians for general power-
law behavior of Vjk. In particular, for our Zeeman-field-
dominated model with fast-decaying Vjk ∼ |j − k|−4, the
ground state realizes an area-law-entangled paramagnetic
gapped phase but with connected correlation functions dis-
playing algebraic decay at long distances—precisely as
found above. Given these atypical properties, it is interest-
ing to ask whether the imperfectly teleported state received
by Bob can be efficiently expressed as a matrix product
state (MPS). Using the expression of the parent Hamil-
tonian in Eq. (48), and the proof in Ref. [68], one finds

that this state can indeed be efficiently approximated by an
MPS (see Appendix F for details.)

B. Marginal imperfection

Here we examine protocols with n = x̂. Similar to the
previous subsection, we find numerically that Alice’s most
probable measurement outcome for any imperfect strength
of the entangling unitary eiuZA

j ZB
j is the uniform state |ã, x̂〉

with all aj = +1. Focusing on this measurement outcome,
Bob’s final state reads

|ψ tele
ã 〉 =

1√
N

eαM+X |ψc〉 (49)

with M+X =
∑

j Xj /2 the global transverse magnetization.
In the weak-imperfection limit α � 1 one can again map
the nonunitary operator acting on Alice’s pristine quan-
tum critical state to a defect-line action perturbing the Ising
CFT. Expanding M+X ∼

∫
x ε yields

δS ∼ α
∫

x
ε(x, τ = 0), (50)

which is marginal (hence the name marginal imperfec-
tion). Marginality indicates that in this case imperfection
in the teleportation protocol smoothly modifies universal
aspects of correlations and entanglement as Refs. [25–27]
established in the context of measurement-altered critical-
ity. Specifically, Refs. [26,27] exploited CFT calculations
[69,70] to compute two-point Z correlators in the presence
of an ε line defect. Reference [25] evaluated Z correlators
as well as the von Neumann entanglement entropy of the
state in Eq. (49) for arbitrary α by mapping the problem
to a single-bond-defect Ising model and using the results
of Ref. [71]. We will pursue a complementary approach
that allows explicit microscopic computation, for any α,
of two-point X , Y, and Z correlators together with Rényi
entropies with any index n.

Our approach views Bob’s final state in Eq. (49) as
the result of evolving the critical wave function |ψc〉 with
a non-Hermitian Hamiltonian iαM+X , similar to what has
been done in Ref. [72]. As we show in Appendix G, this
time evolution can be exactly computed upon mapping
the model to free fermions through the Jordan-Wigner
transformation in Eq. (29), followed by a Fourier trans-
form to momentum space. Both the von Neumann and
Rényi entanglement entropies as well as all correlation
functions of Bob’s final state |ψ tele

ã 〉 can be expressed as
determinants of matrices with a special structure, known
as Toeplitz matrices—just as for the ground state of the
critical Ising model. The asymptotic behavior of block-
Toeplitz determinants can be studied using a generalization
of the Fisher-Hartwig conjecture [73]. We refer the inter-
ested reader to Appendix G for all technical details; here
we simply report the main results.
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In the thermodynamic limit L→∞, the Rényi entropies
for a large interval of size �� 1 read

S(n)R =
c(n)eff

6

(
n+ 1

n

)
ln �+O(1), (51)

where c(n)eff is given by the real integral

c(n)eff =
12
π2

∫ 1

tanh(2α)
gn(λ)

× ln

√
1− λ2

√
λ2 − tanh2(2α)+ sech(2α)

dλ (52)

with

gn(λ) = n2

1− n2

(λ+ 1)(1− λ)n + (λ− 1)(λ+ 1)n(
λ2 − 1

)
[(1− λ)n + (λ+ 1)n]

.

(53)

At α = 0 one obtains c(n)eff = 1/2, i.e., the coefficients
reduce to the central charge of the Ising CFT for any n
in agreement with Eq. (32). In the limit n→ 1, where
S(n)R reduces to the von Neumann entanglement entropy,
c(1)eff defines an effective central charge. For this case the
integral in Eq. (52) explicitly evaluates to

c(1)eff = −
3
π2

[(x + 1)Li2(−x)+ (1− x)Li2(x)

+ ln(x)((1− x) ln(1− x)+ (x + 1) ln(x + 1))] ,
(54)

where x = cosh−1(2α) and Li2 denotes the dilogarithm
function [74]. Figure 5 shows the α dependence of
c(1)eff —which decays from the ideal value of 1/2 to zero as
α increases (see caption for details). Consequently, while
for any finite α the von Neumann entanglement entropy
still follows a logarithmic law, its coefficient—the effective
central charge—is diminished by protocol imperfection
relative to Alice’s original critical state. This result agrees
with that of Ref. [25], where the mapping to a single-
bond-defect Ising model was used. To our knowledge, the
general expression in Eq. (52) for c(n)eff characterizing log-
arithmic growth of Rényi entropies with n 
= 1 for the
state (49) has not been reported previously. These coef-
ficients similarly decay smoothly to zero as the protocol
imperfection increases in a manner that depends (some-
what weakly) on n and yields a finite α-dependent value
at n→∞. The situation should be contrasted to Eq. (32)
for the pristine Ising theory, where a single parameter c
characterizes the logarithmic entanglement growth for any
n. We will return to these general Rényi entropies shortly
from the perspective of the α � 1 limit.

FIG. 5. Effective central charge resulting from marginal
imperfection. The solid line corresponds to the analytical pre-
diction in Eq. (54) while the symbols are obtained using the
numerical techniques described in Appendix G. In particular, for
each value of α, we calculated numerically S(1)R for several val-
ues of the subsystem size � up to 300; the results were fitted with
a ln �+ b, and we plot here c(1)eff extracted from the best fit of a as
a function of α. These results imply that teleportation protocols
corrupted by marginal imperfection preserve long-range entan-
glement of Alice’s original critical state, but with a prefactor that
decays smoothly to zero with the degree of imperfection.

We now report the results of two-point correlation func-
tions arising from marginally imperfect teleportation. In
the limit |i− j | � 1 they read

〈XiXj 〉c = sech2(2α)
π2|i− j |2 ,

〈YiYj 〉 ∝ 1
|i− j |2�Y(α)

, �Y(α) = 2[arctan(e2α)− π ]2

π2

〈ZiZj 〉 ∝ 1
|i− j |2�Z (α)

, �Z(α) = 2 arctan2(e2α)

π2 .

(55)

Compared to the correlations in Eq. (31) operative for per-
fect teleportation, the following salient features arise: the
power-law exponent for the connected 〈XiXj 〉c correlator
does not vary upon turning on nonzero α, although the
amplitude is suppressed and vanishes smoothly as α→
∞. Power-law exponents for two-point Y and Z corre-
lators, by contrast, do depend on the degree of protocol
imperfection: as α increases from 0 to ∞, �Y decreases
from 9/8 to 1/2 while �Z increases from 1/8 to 1/2.
DMRG simulations presented in Fig. 6 confirm the scal-
ing behavior predicted by Eq. (55). As an aside, although
we focus on α ≥ 0, our analytical results for both the c(n)eff
entanglement coefficients and the correlators in Eq. (55)
apply for either sign of α; the c(n)eff coefficients are invariant
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FIG. 6. Correlations with marginal imperfection. Correlations in the teleported state received by Bob [Eq. (49)] following an imper-
fect protocol with n = x̂ and with Alice’s most probable measurement outcome. Data points were obtained using infinite DMRG for
α ∈ [0, 2] in steps of 0.2. (a) Two-point X correlators exhibit unmodified power-law exponents (dashed line shows the slope arising
with decay exponent 2), though imperfection suppresses the amplitude. Inset: same correlations scaled by sech(2α)−2; the collapse
indicates that Eq. (55) indeed captures the amplitude’s α dependence. (b),(c) Two-point Y and Z correlators exhibit modified power-
law exponents dependent on the imperfection strength. Dashed lines correspond to the analytical predictions in Eqs. (55), after fitting
the overall scale from numerical data.

under α→−α while the scaling dimensions �Z and �Y
are not.

Using the formalism from Sec. III C, we can approx-
imate Bob’s penultimate wave function (again prior to
applying the final outcome-dependent unitary) as

|ψã〉 ≈ 1√
N

e−
u2
2
∑

j 
=k VjkZj Zk |ψB〉 . (56)

The unitary operator in Eq. (24) is absent here since q(j )
vanishes by symmetry. In the nonunitary operator, the
strange correlator Vjk was evaluated in Ref. [27] and shown
to scale as Vjk ∼ 1/|j − k|. In Sec. III C we argued that the
perturbative expansion leading to Eq. (45)—and the asso-
ciated Hermitian parent Hamiltonian from Eq. (27)—was
expected to be controlled provided Vjk decays faster than
1/|j − k|. Nevertheless, we can recover asymptotic fea-
tures present in our earlier nonperturbative computations
by boldly calculating correlations and entanglement using
the above large-α form of Bob’s penultimate state. Meth-
ods similar to Sec. V A and detailed further in Appendix D
show that 〈YiYj 〉 and 〈ZiZj 〉 both scale as u2Vij whereas
〈XiXj 〉c scale as u4V2

ij . Power-law exponents for the Y and
Z correlators agree with the asymptotic α→∞ limit of
Eq. (55); the X correlator recovers the exact exponent as
well as the leading large-α dependence of the prefactor
in Eq. (55) upon using u ≈ e−α . We can, moreover, ana-
lytically calculate the n = 2 Rényi entropy upon Taylor
expanding the exponential in Eq. (56) (see Appendix E).
To leading nontrivial order we obtain

S(2)R =
4u2

π2 ln �+O(1), (57)

which agrees with Eq. (51) in the α � 1 regime.

To summarize, compared with relevant imperfection
treated in Sec. V A, in the imperfect protocol studied here
Bob inherits a far more faithful version of Alice’s criti-
cal wave function: power-law correlations and long-range
entanglement both persist, albeit with modifications that
vary smoothly with α. In the next subsection, we will see
how resilience to imperfection can be further improved by
following a protocol that employs yet a different quantiza-
tion axis n—though, as we will see, the improvement is
not quite to a degree that a naive analysis would initially
suggest.

C. Disguised marginal imperfection

Consider now a teleportation protocol with n = ŷ. In
this case we find that whenever the entangling gate U =
∏

j eiuZA
j ZB

j is imperfect, Alice’s most probable measure-
ment outcomes are the two symmetry-related Néel states
|ã, ŷ〉 with aj = ±(−1)j (at least for an even number of
sites with periodic boundary conditions [75]). For these
outcomes Bob’s final wave function is

|ψ tele
ã 〉 =

1√
N

eαMs
Y |ψc〉 , (58)

where we defined the staggered Y magnetization M s
Y =∑

j (−1)j Yj /2. What is the appropriate defect-line per-
turbation δS generated by the nonunitary operator above
at small α? Given that the low-energy expansion Yj ∼
i∂τσ contains only smoothly varying field components,
the (−1)j in the staggered magnetization M s

Y appears to
imply that only highly oscillatory—and thus strongly irrel-
evant—terms appear in δS. Actually, had we postselected
for (lower-probability) uniform outcomes rather than
staggered measurement outcomes, the (−1)j oscillatory
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factor would disappear, yielding δS ∼ α ∫x i∂τσ (x, τ =
0)—which is still irrelevant. One might be tempted to con-
clude then that, for either the uniform or staggered mea-
surement outcomes, Bob faithfully inherits the universal
features of Alice’s critical correlations and entanglement
over at least a finite window of protocol imperfection.

Such a conclusion would be incorrect, however. Under
renormalization, additional symmetry-allowed terms will
be generated that may be more relevant than those in the
“bare” theory (see, e.g., Ref. [76]). In our context, with
either the uniform or staggered measurement outcomes,
symmetry allows generation of the marginal term

δS′ ∼ α2
∫

x
ε(x, τ = 0) (59)

at O(α2). For instance, one can view α in Eq. (58) as odd
under time reversal T , Z2 spin-flip symmetry, and single-
site translations; α2 is then invariant under all symmetries,
so that δS′ is indeed symmetry allowed. For another per-
spective on Eq. (59), let us examine further the uniform
measurement outcome. Using Lorentz invariance of the
unperturbed continuum theory, we can Wick rotate to inter-
change imaginary time and space to obtain a defect-line
action that acts at one spatial position x = 0 but all τ .
This Wick-rotated defect describes a conventional static
quantum impurity that microscopically descends from a
critical Hamiltonian with a Y perturbation of strength αJ
at a single site:

Himp = −J
(∑

j

Zj Zj+1 +
∑

j 
=0

Xj

)
− J (X0 + αY0).

(60)

Note that we grouped the transverse field and the Y per-
turbation at the impurity site, j = 0. Locally rotating the

j = 0 spin about Z by an angle θ satisfying tan(2θ) = α
yields the unitarily equivalent form

eiθZ0Himpe−iθZ0 = −J
(∑

j

Zj Zj+1 +
∑

j 
=0

Xj

)

− J
√

1+ α2X0 ≈ Hc − J
2
α2X0. (61)

On the bottom right, we assumed α � 1 to arrive at the
uniform critical Ising Hamiltonian Hc from Eq. (28) per-
turbed solely by a local O(α2) shift in the transverse field.
In this form it is clear that the original O(α) Y pertur-
bation indeed germinates an O(α2) ε perturbation in the
low-energy theory, as previously deduced on symmetry
grounds.

Because a marginal perturbation appears only upon a
careful inspection that accommodates higher-order terms,
we refer to this situation as “disguised marginal imper-
fection.” Section V B already analyzed the impact of a
marginal defect-line action on the teleported state. Here
we similarly expect that imperfection smoothly modi-
fies long-distance entanglement and correlations away
from their ideal universal forms, but to a still less dra-
matic degree at α � 1 since corruption kicks in only at
O(α2). Figure 7 presents two-point correlators obtained
with DMRG assuming the most-likely staggered measure-
ment outcome and confirms this expectation. Indeed, in the
small-α regime, the correlations in Fig. 7 behave qualita-
tively similarly to those for the n = x̂ protocol in Fig. 6.
[The main difference arises for two-point X correlators,
whose power-law exponent does now evolve nontrivially
with α. This feature can be understood from the large-α
limit. We observe that in the present case q(j ) is nonzero
in Eq. (24), which produces different behavior with respect
to measuring in the x̂ basis.]

0.0

0.4

0.8

1.2

1.6

2.0
(a) (b) (c)

FIG. 7. Correlations with disguised marginal imperfection. Correlations in the teleported state received by Bob [Eq. (58)] following
an imperfect protocol with n = ŷ and with Alice’s most probable measurement outcome. Data points were obtained using infinite
DMRG with for α ∈ [0, 2] in steps of 0.2. Setup with Bob’s initial wave function as a product state in the ŷ basis. All correlators
exhibit continuously modified power-law exponents as the imperfection strength increases—in agreement with naively irrelevant
imperfections generating marginal corrections under renormalization.
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(a)

(b)

FIG. 8. Scaling dimension and effective central charge with
disguised marginal imperfection. (a) Power-law dependence of
the scaling dimension of Z as a function of α. Red stars represent
data obtained from infinite DMRG [Fig. 7(c)], while the dashed
line is a power-law fit �z(α)− 1/8 ∼ α1.92. The fit agrees well
with the α2 scaling expected from the generation of a marginal
term at second order in the imperfection strength α; see Eq. (59).
(b) Dependence of the effective central charge on α. Red stars
represent the data obtained using finite DMRG from fitting SL/2
versus ln L for L = [20, 40, 60, 80, 100, 150, 200]. Dashed line
represents a power-law fit |c− 1/2| ∼ α3.78—which agrees rea-
sonably well with α4 scaling expected from an O(α2) marginal
imperfection term.

To further bolster our predictions, Fig. 8(a) presents the
imperfection-induced change in the 〈ZiZj 〉 ∼ 1/|i− j |2�Z

scaling dimension relative to the ideal value of �Z = 1/8.
We numerically find the relation �Z(α)− 1/8 ∼ α1.92 at
small α, in good agreement with the scaling �Z(α)−
1/8 ∼ α2 that follows from Eq. (59). One can also recover
that scaling directly from Eq. (55) upon sending α→ α2.
Figure 8(b) shows that the change in the effective central
charge characterizing logarithmic entanglement growth
scales approximately as |c(1)eff − 1/2| ∼ α4—as expected
from Eq. (54) upon similarly replacing α→ α2. There-
fore, protocols with n = ŷ yield additional resilience to
weak imperfection when post-selecting for the highest-
probability measurement outcomes, despite universal fea-
tures still undergoing modifications.

Further improvement is technically possible even when
postselecting for similar measurement outcomes. Suppose
that we generalize Eq. (58) to

|ψ tele
ã 〉 =

1√
N

eαxM+X +αy Ms
Y |ψc〉 . (62)

The above form of Bob’s final state arises upon replac-
ing n = ŷ with a position-dependent quantization axis
nj = (−1)j sinϕx̂+ cosϕŷ and again postselecting for
a staggered outcome with aj = ±(−1)j . In the weak-
imperfection limit, we have seen that both M+X and M s

Y
generate marginal ε defect-line perturbations—the former
at O(αx) and the latter at O(α2

y ). When the two ε con-
tributions come with opposite sign, one can cancel off
the marginal term by fine tuning αx,y to values satisfy-
ing |αx| ∼ α2

y . Here the imperfectly teleported state retains
the quantized central charge c = 1/2 and power-law cor-
relations characteristic of the pristine Ising theory. By
continuity this fine-tuned limit must persist also in the
limit where αx,y are not necessarily weak. We support
this scenario in Fig. 9, which shows the αx,y dependence
of the effective central charge of Eq. (62) obtained using
DMRG. An extended region with c = 1/2 is clearly visible
in agreement with our predictions. Although this limit is
doubly fine tuned in the sense of requiring both postselec-
tion and tuning of αx given some αy , we learn two lessons:
First, it serves as a nontrivial check on our theory of dis-
guised marginal imperfection. And second, it shows that in
principle one can teleport the ideal long-distance universal
Ising criticality properties even with simple, spatially peri-
odic measurement outcomes and with superficially “large”
protocol imperfections (the c = 1/2 line in Fig. 9 indeed

FIG. 9. Cancellation of marginal imperfections. Effective cen-
tral charge for the generalized teleported state in Eq. (62) as a
function of αx and α2

y . Data were obtained using infinite DMRG
(see Appendix H for details). The bright yellow arc highlights
fine-tuned parameters for which imperfection-induced marginal
terms cancel—in turn producing a teleported state with pristine
central charge c = 1/2. Note the persistence of this fine-tuned
arc even for sizable imperfection strengths αx,y .
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persists to sizable |αx| values where one might naively
anticipate dramatically altered critical properties).

D. Imperfect teleportation with typical measurement
outcomes

Above we focused on the effects of an imperfect telepor-
tation protocol when Alice obtains her most likely mea-
surement outcomes. However, the probabilities for such
outcomes, while maximal, are still exponentially small
in the number of teleported qubits. Hence, it is impor-
tant to investigate the quality of teleportation in the case
of typical measurement outcomes ã—i.e., those appearing
when sampling according to the (α-dependent) Born prob-
ability distribution pã corresponding to the state |ψU〉 =
U |ψc〉 |b̃, n〉 obtained after Alice and Bob entangle their
qubits. Reference [21] already addressed a related ques-
tion when probing measurement-altered criticality in a
Luttinger liquid. We will repeat and adapt their findings
to our teleportation protocols with quantization axis and
measurement basis n.

Let ã now denote a typical outcome consisting of bits
aj = ±1 associated with the Pauli operators OA

j (n) that
Alice measures. We would like to use a coarse-graining
procedure to take the continuum limit of the nonuni-
tary operator e−(α/2)Hã(n) encoding teleportation-protocol
imperfection, obtain a corresponding defect-line action in
the α � 1 regime, and analyze its effect on the long-
distance properties of Bob’s final wave function. For a
perfect teleportation protocol with α = 0, all outcomes
are equally likely, and hence the aj bits are completely
uncorrelated. An imperfect protocol with α 
= 0—which
we assume hereafter—biases the measurement-outcome
distribution, yielding correlations among the bits that are
inherited from structure in the premeasurement entan-
gled state |ψU〉. For instance, averaging a given aj over
measurement outcomes gives

aj =
∑

ã

pãaj = cos(2u) 〈ψc| ÔA
j (n) |ψc〉 , (63)

while similarly averaging aj ak for j 
= k yields the con-
nected correlation

aj ak − aj ak = cos2(2u) 〈ψc| ÔA
j (n)Ô

A
k (n) |ψc〉c . (64)

(Both quantities above vanish in the perfect protocol limit
u = π/4 as required.) Equation (64), in particular, limits
the spatial extent of correlations among bit strings in a
typical measurement outcome: on average, they decay at
long distances according to the leading power-law contri-
bution ∼1/|j − k|2�sl arising from the critical correlation
of Alice’s initial state on the right-hand side.

Following Kadanoff’s decimation argument [77], next
we analyze the block-spin variable a(x; b) = 1/b

∑x+b/2
j=x−b/2

aj , which reduces the number of degrees of freedom by
grouping the ã variables within a block of size b� 1. Intu-
itively, the more rapidly correlations among different aj ’s
decay with their separation, the faster the block-spin vari-
able averages to zero as b increases. One can estimate the
decay rate with b for a typical measurement outcome by
examining the variance of a(x; b):

[a(x; b)]2 − [a(x; b)]2 = 1
b2

x+b/2∑

j ,k=x−b/2

(aj ak − aj ak)

∝ 1
b2

x+b/2∑

j ,k=x−b/2

〈ψc| ÔA
j (n)Ô

A
k (n) |ψc〉c . (65)

For large b, in the regime �sl < 1/2 the second line scales
as (1/b2)× b2(1−�sl) = 1/b2�sl due to the power-law con-
tribution from the long-distance |j − k| � 1 part of the
sums. With �sl > 1/2, however, the long-distance part
vanishes sufficiently quickly that the short-distance part
dominates, yielding the faster scaling (1/b2)× b = 1/b.
Thus we obtain

[a(x; b)]2 − [a(x; b)]2 ∼
{

b−2�sl , �sl < 1/2
b−1, �sl > 1/2

. (66)

Notice that the scaling with b in the lower line is the same
as one would obtain at α = 0, where all measurement out-
comes are equally likely and the aj ’s at different sites are
completely uncorrelated. The key upshot is that a(x; b)
realizes a smoothly varying function whose scaling dimen-
sion follows from the square root of Eq. (66); in other
words, the dimension is either �a = �sl (for �sl < 1/2)
or �a = 1/2 (for �sl > 1/2).

We can now take the continuum limit of e−(α/2)Hã(n).
Recalling the definition of Hã(n) in Eq. (17), the coarse-
grained function a(x; b) couples to the low-energy expan-
sion of Ôj (n) given by the dictionary in Eq. (34). Hence,
if Ôj (n) ∼ Osl is the leading contribution (which has
the same scaling dimension �sl from earlier), then the
corresponding defect-line action reads

δS ∼ α
∫

x
a(x; b)Osl(x, τ = 0). (67)

For �sl < 1/2, the integrand has scaling dimension �sl +
�sl < 1—implying that δS constitutes a relevant perturba-
tion. For �sl > 1/2, in contrast, the dimension becomes
1/2+�sl > 1 so that δS is then irrelevant.

Teleportation protocols with n = x̂ yield Osl = ε and
�sl = 1. Postselecting for typical measurement outcomes
thereby demotes the marginal defect-line action studied in
Sec. V B to an irrelevant perturbation. At least on suffi-
ciently long length scales, Bob inherits Alice’s universal
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FIG. 10. Correlations with typical measurement outcomes. Correlations in the teleported state received by Bob following an imper-
fect protocol with n = x̂, now with a typical measurement outcome randomly sampled from Born’s probability distribution as
prescribed in Ref. [25]. Data were obtained using finite DMRG with bond dimension χ = 800 and system size L = 120 with periodic
boundary conditions. Results shown in blue correspond to u = 0.7 (α ≈ 0.17) after averaging the correlation functions over the center

of mass coordinate, i.e., 〈Ôj Ôj+d〉 =
∑L

j=1〈Ôj Ôj+d〉/L. For comparison, the green points show correlations obtained with Alice’s most
probable measurement outcome for the same value of u. Contrary to the latter case, with typical outcomes imperfections are irrelevant,
and hence the averaged correlators are consistent with power laws expected for pristine Ising criticality.

correlations and entanglement despite imperfection in the
protocol. We numerically tested this prediction by comput-
ing two-point X , Y, and Z correlators in Bob’s final state
obtained for an imperfect entangling gate with u = 0.7 and
when Alice measures a typical outcome randomly sampled
according to Born’s probability distribution. Specifically,
following Ref. [25] we measured one of Alice’s qubit
(sampled according to Born’s rule), obtained the result-
ing postmeasurement state, then moved on to measure her
next qubit, and so on. Our results for the spatially aver-
aged quantities

∑L
j=1〈Oj Oj+d〉/L with Oj = X , Y and Z

are shown in the blue curves from Fig. 10; for refer-
ence, the green curves correspond to correlators obtained
with Alice’s most probable outcome (Sec. V B). The blue
curves in the X and Y panels appear noisier than for Z.
We attribute this behavior to their faster power-law decay,
which in turn suppresses averaging out of the random-
ness from the measurement outcome. Nevertheless, in all
three panels, power-law behavior for the typical outcome
is indeed compatible with the results of Eq. (31) obtained
for the pure Ising CFT.

Using similar logic, δS is also irrelevant for protocols
with n = ŷ. In Sec. V C we saw for the highest-probability
outcome that an irrelevant term appearing at leading order
in α generated a marginal ε term [Eq. (59)] at O(α2).
With typical outcomes, we also expect an ε term to
be generated—but now with a prefactor [αa(x; b)]2. The
appearance of a(x; b), in particular, renders that second-
order term irrelevant as well. Thus protocols with n = ŷ

also enjoy resilience against imperfection in the case of
typical measurement outcomes.

When n = ẑ, however, imperfection continues to yield
dramatic consequences even for typical outcomes. Here
Osl = σ and �sl = 1/8, and consequently δS is relevant
(albeit less so compared to the case of uniform measure-
ment outcomes). Here we expect 〈Zj 〉 to take on a nonzero,
position-dependent expectation value that roughly follows
the sign of the imperfection-induced longitudinal-field-
like perturbation encoded in δS. Two-point correlators and
entanglement can be attacked from the large-α limit using
the parent Hamiltonian formalism from Sec. III C. We saw
in Sec. V A that this formalism captures both power-law
correlations and area-law entanglement when postselecting
for the highest-probability measurement outcome; recall
Eq. (48) and the accompanying discussion. With typical
outcomes, the main difference stems from the form of
the strange correlator Vjk that governs “weak” long-range
interactions in the parent Hamiltonian. At large separation
|j − k|, the mean of Vjk is exactly 0, while the variance
of Vjk vanishes approximately as 1/|j − k|4 (see Ref. [27]
for the computation). This relatively fast power-law decay
suggests that (i) the perturbative treatment underlying the
large-α analysis is valid, (ii) the entanglement entropy
exhibits area-law behavior also for typical outcomes, and
(iii) spatially averaged spin-spin correlations decay as the
square root of the variance of Vjk, i.e., approximately as
1/|j − k|2. (Verifying this power-law decay numerically,
however, is challenging.) We conclude that regardless of
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whether Alice obtains the most probable measurement
outcome or a typical outcome, even weak imperfection
in protocols using n = ẑ qualitatively alters the univer-
sal correlations and entanglement of the Ising critical state
undergoing teleportation.

VI. GENERALIZED PROTOCOL

In our imperfect teleportation protocol treated so far we
restricted to entangling on-site unitaries U =∏j Uj with
Uj generated by the tensor product of two Pauli operators
ÔA

j (n
⊥)ÔB

j (n
⊥). Recall that n⊥ is orthogonal to the vector

n specifying the basis for Alice’s measurement and Bob’s
initialization. We will now generalize the protocol to incor-
porate an additional possible imperfection by assuming
that Alice and Bob entangle their qubits via

Uj = eiuÔA
j (m)Ô

B
j (m), (68)

where m is now a general unit vector not necessarily
orthogonal to n. As in the previous, more restricted pro-
tocol, Bob is allowed to perform a unitary dependent on
Alice’s measurement outcome ã (as well as b̃, n, and m) to
obtain the final teleported state. In what follows we discuss
how the quality of teleportation is altered by imperfections
in both the entangling gate strength (parametrized by u)
and “orientation” (parametrized by m). Other error sources
may of course also arise and can be studied similarly.

We first examine the structure of Bob’s penultimate
wave function |ψã〉, prior to applying the final outcome-
dependent unitary. With details consigned to Appendix A,
the expression—valid for an arbitrary initial state |ψA〉 for
Alice—can be written as

|ψã〉 = 1√
N

ei π4 Hb̃(n)e−
α
2 Hb̃(n)

× Ub̃(m× n⊥)Ub̃←ãU
†
ã (m× n⊥) |ψA〉 . (69)

The first two exponentials involve the Hermitian opera-
tor Hb̃(n) = −

∑
j bj Ôj (n), while Ud̃(m× n⊥) (for d =

a, b) are on-site transformations that are in general
nonunitary. They take the explicit form Ud̃(m× n⊥) =∏

j [eiθ((m×n⊥)/||m×n⊥||)·σj Pd
j + 1(1− Pd

j )], where θ is the
angle between m and n⊥, and Pd

j are projectors defined
as Pd

j = 1
2 [1− d̃j Ôj (n)]. Thus the U factors in Eq. (69)

either act as the identity, or rotate the spins about the
axis m× n⊥. Notice that these rotations become trivial
if m was chosen parallel to n⊥ (as arose in our previ-
ously treated protocols). When they act nontrivially, the
projectors Pd

j correct the “mismatch” in Eq. (68) that pre-
vents Uj from performing a full flip from aj →−aj and/or
bj →−bj . With these definitions, we can view the first
three operators acting on |ψA〉 in Eq. (69) as follows:
First, U†

ã (m× n⊥) “readjusts” the m direction such that

it lies along n⊥. Next, Ub̃←ã = ei(π/4)Hb̃←ã(n
⊥) is a unitary

that flips the measurement outcome ã to b̃ as in Eq. (15).
Finally, Ub̃(m× n⊥) readjusts m by rotating it into the n⊥
direction.

Deducing the fate of the imperfectly teleported wave
function as written in Eq. (69) is nontrivial since a series of
interspersed unitary and nonunitary operators acts on |ψA〉.
A more useful form arises upon reorganizing the expres-
sion such that unitary factors act to the left of manifestly
Hermitian, nonunitary factors. We will not attempt a com-
pletely general rewriting of this type, but rather examine
the situation where m is weakly misaligned but close to n⊥.
In this limit one can write, after dropping an unimportant
overall phase,

Ud̃(m× n⊥) ≈ e
i
2
∑

j Ôj (m×n⊥)e
(m·n)

2
∑

j dj Ôj (n⊥). (70)

Using this approximation and allowing Bob to undo an
overall unitary operator, we obtain the final (unnormalized)
teleported state

|ψ tele
ã 〉 = e−

α
2 Hã(n)+ α2

∑
j ε−,j Ôj (n⊥)e

1
2
∑

j ε+,j Ôj (n⊥) |ψA〉 ,
(71)

where ε±,j = (bj ± aj )(m · n) are small factors originating
from the new source of imperfection that we have allowed.

Let us now specialize to the case |ψA〉 = |ψc〉 so that
|ψ tele

ã 〉 forms an imperfectly teleported Ising critical wave
function. Section V showed that, for our previously stud-
ied protocol, orienting n in the (x, y) plane optimized
resilience to errors in the sense that imperfections were
generically marginal (for the highest probability out-
comes) or irrelevant (for typical outcomes). Equation (71)
reveals that misaligning m away from n⊥—which impor-
tantly would orient along ẑ for such n’s—supplements
the nonunitary operator with a Z component that com-
prises a relevant imperfection. The heart of the issue
is that misalignment of m with this otherwise optimal
choice of n causes the entangling unitary to violate
T × Z2 symmetry (contrary to the case where the uni-
tary only involves Z operators). This symmetry reduction
trickles down to the final teleported state via generation
of a σ perturbation to the defect-line action that is no
longer symmetry-forbidden. Zooming out, we anticipate
that the effects of a still broader class of possible protocol
imperfections can be analogously classified on symmetry
grounds.

VII. AVERAGE TELEPORTED MIXED-STATE

The results of Sec. V quantify the character of an imper-
fectly teleported quantum critical state following a single
protocol implementation. In particular, we saw that the role
of imperfections depends on the quantization axis n used
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for initialization and measurement, as well as Alice’s par-
ticular measurement outcome. Suppose now that Alice and
Bob repeat an (identically) imperfect teleportation proto-
col many times, and that after each iteration, Bob measures
observables with respect to the final teleported state |ψ tele

ã 〉
in Eq. (19). Upon averaging over Alice’s measurement
outcomes ã, are the nontrivial effects that we captured for
a single implementation still observable? Or do imperfec-
tions average out, allowing Bob to sample Alice’s pris-
tine quantum critical state even if each implementation is
flawed?

To address these questions, we examine the mixed-state
density matrix

ρ tele =
∑

ã

pã |ψ tele
ã 〉 〈ψ tele

ã | (72)

describing an ensemble of imperfectly teleported states,
where again pã is the probability of Alice obtaining out-
come ã. Using Eq. (18) and inserting resolutions of the
identity allows us to write

ρ tele =
∑

ã,ã′

⎧
⎨

⎩
∏

j

[sin(2u)]
1−aj a′j

2

⎫
⎬

⎭ 〈ψc|ã′, n〉〈ã, n|ψc〉

× |ã, n〉 〈ã′, n| . (73)

[Equation (73) actually holds for an arbitrary initial state
|ψA〉 for Alice upon simply replacing ψc → ψA in the cor-
responding bra and ket.] In the perfect-protocol limit with
u = π/4, the factor in braces becomes unity, and hence
the density matrix reduces to the pure-state form ρ tele =
|ψc〉 〈ψc|. Here any correlations and entanglement probed
by Bob exactly mirror the properties in Alice’s original
state.

Away from this limit ρ tele describes a mixed state, and
the extent to which Bob’s correlations match those in
Alice’s original critical state depends on the operators
under consideration. Defining a string of Bob’s Pauli oper-
ators ÔK(d) =

∏|K|
a=1 Ôja(d) acting along quantization axis

d, we, in particular, find

Tr[ρ teleÔK(n)] = 〈ψc| ÔK(n) |ψc〉 ,
Tr[ρ teleÔK(n⊥)] = [sin(2u)]|K| 〈ψc| ÔK(n⊥) |ψc〉 ,
Tr[ρ teleÔK(n× n⊥)]= [sin(2u)]|K| 〈ψc| ÔK(n×n⊥) |ψc〉 .

(74)

The first line indicates that Bob exactly recovers critical
correlations of operators oriented along n for any choice
of u. At u = π/4 this result is clear since the teleportation
is perfect in every iteration as already highlighted above.

For the opposite extreme, at u = 0—where Alice and Bob
altogether fail to entangle—the same conclusion persists
for the following reason: upon receiving Alice’s measure-
ment outcome, the unitary that Bob implements simply
converts his initial product state into Alice’s postmeasure-
ment product state, i.e., he probes correlations in the wave
function |ψ tele〉 = |ã, n〉. In effect, Alice has simply farmed
out the measurement of correlations in her state to Bob,
and hence averaging over outcomes reproduces her criti-
cal correlations as captured by the first line of Eq. (74).
The bottom two lines indicate that Bob also recovers
critical correlations of Alice’s state for Pauli operators ori-
ented orthogonal to n, but with a suppressed amplitude
that eventually vanishes as u decreases from π/4 towards
zero.

Consequently, averaging over sequential imperfect tele-
portation runs indeed allows Bob to measure Alice’s
pristine universal power-law exponents—even for n = ẑ
protocols where imperfection constitutes a relevant per-
turbation with both uniform and typical measurement
outcomes. This conclusion relates deeply to the “postselec-
tion problem” commonly plaguing measurement-induced
phenomena that manifest only when following specific
measurement outcomes whose probability decays expo-
nentially with system size. From the quantum teleportation
perspective, however, the preceding results comprise a fea-
ture rather than a bug in that averaging over sequential
imperfectly teleported states suppresses errors in correla-
tions that appear in any particular implementation.

In this context, the Rényi entropies we discussed earlier
cannot discern between classical and quantum correla-
tions, and hence are not adequate measures of mixed-state
entanglement. Instead we consider the entanglement neg-
ativity—which does provide a good metric [78,79]. We
refer the interested reader to Appendix J for more details
about the behavior of entanglement negativity for the
mixed-state density matrix ρ tele. The main lesson we learn
is that long-range entanglement encoded in the negativ-
ity in the pure-state u = π/4 limit persists with marginal
or irrelevant imperfections but is spoiled by relevant
imperfections—which is natural given that, in the latter
case, individual protocol runs yield area-law entanglement
with both uniform and typical measurement outcomes.
Thus entanglement in the mixed state is less resilient to
imperfections compared to correlations. These results are
compatible with those in Ref. [32] regarding the effect
of local quantum channels on quantum critical states.
Indeed, by analyzing a proxy for the entanglement nega-
tivity, the authors find that when their channel corresponds
to a relevant perturbation, the negativity obeys an area
law.

It is instructive to consider an alternative averag-
ing scheme wherein Bob does not implement the final
outcome-dependent unitary in each protocol iteration, and
instead directly probes the state |ψã〉 given in Eq. (15). In
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this scenario the relevant mixed-state density matrix reads

ρ =
∑

ã

pã |ψã〉 〈ψã| , (75)

which is simply the average of Bob’s penultimate wave
function. For an arbitrary observable Ô of Bob’s qubits,
we have Tr[Ôρ] = 〈b̃, n| 〈ψc|U†ÔU |ψc〉 |b̃, n〉, where U is
the entangling gate employed in the protocol [Eq. (13)].
That is, this alternative averaging scheme returns the
expectation value of observables evaluated in Alice and
Bob’s entangled state before she measures her qubits. The
analogue of Eq. (74) accordingly becomes

Tr[ρÔK(n)] = [cos(2u)]|K|
|K|∏

a=1

bja ,

Tr[ρÔK(n⊥)] = 〈b̃, n| ÔK(n⊥) |b̃, n〉 = 0,

Tr[ρÔK(n× n⊥)]= [sin(2u)]|K|
|K|∏

a=1

bja 〈ψc| ÔK(n⊥) |ψc〉.

(76)

At u = π/4, only the bottom correlation returns a nonzero
result, which we can understand as follows. In any given
perfect-protocol implementation, Bob’s state |ψã〉 corre-
sponds to the pristine quantum critical wave function
|ψc〉 modified by an outcome-dependent unitary. For the
case of 〈ψã| ÔK(n× n⊥) |ψã〉 correlations, the outcome-
dependent unitary factors rotate ÔK(n× n⊥) in a manner
that depends on the bits b̃ for Bob’s initialization but not
on Alice’s outcome ã. Hence averaging over measure-
ment outcomes for such correlators does not “scramble”
the signal obtained from individual protocol implementa-
tions. In contrast, for 〈ψã| ÔK(n) |ψã〉 or 〈ψã| ÔK(n⊥) |ψã〉
correlators, the rotation depends on ã, and averaging over
outcomes therefore returns zero. The amplitude for the
third correlation in Eq. (76) becomes suppressed for an
imperfect protocol, while the first correlation actually gets
revived (but in a way that reveals no information about
Alice’s critical correlations). Indeed in the trivial u = 0
protocol limit the upper line simply reveals a nonzero
expectation value from Bob’s initial product state.

Comparing Eqs. (74) and (76), we see that averaging
observables measured after each full teleportation pro-
tocol run captures Alice’s critical correlations far more
completely compared to the scenario where Bob skips
applying the final outcome-dependent unitary. One can
view the former averaging scheme as amending the lat-
ter with a decoding protocol very similar to that studied
recently in Ref. [52] (related frameworks are also com-
mon in adaptive circuits; see, e.g., Refs. [15,46,80,81]).
Interestingly, in the present context such decoding algo-
rithms are automatically incorporated into the quantum
teleportation protocols.

VIII. CONCLUSIONS AND OUTLOOK

Quantum teleportation refers to a protocol that trans-
mits an arbitrary, and in-principle unknown, quantum state
from Alice to Bob over potentially long distances, enabled
by entanglement, measurements, and classical communi-
cation. When the entangling and measurement stages are
accomplished perfectly, Bob recovers Alice’s precise orig-
inal state up to a unitary transformation that he can decode
(i.e., eliminate) upon receiving classical information cor-
responding to her measurement outcome. In retrospect,
it is remarkable that combining entangling unitaries and
projective measurements acting on just a subsystem does
not yield a general transformation containing both uni-
tary and nonunitary operators acting on Alice’s original
state. Quantum teleportation utilizes a set of fine-tuned
operations that renders both the nonunitary and unitary
(once the classical channel has been exploited) pieces triv-
ial. From this perspective, it becomes natural that when
these operations are subject to imperfections, Bob gener-
ically receives a nonunitarily corrupted cousin of Alice’s
original state—as we showed explicitly in many instances
throughout this paper.

Understanding how general many-body wave functions
behave under imperfect teleportation protocols defines a
very broad and rich problem. Relative to the single-qubit
case, many-body states exhibit vastly more structure char-
acterized, e.g., by local observables, multi-body correla-
tions, entanglement, symmetry quantum numbers, topo-
logical properties, etc. Our study establishes two broadly
applicable principles in this realm: First, imperfect tele-
portation deeply relates to the survival of correlations
and entanglement in many-body states subjected to weak
measurements. This link identifies a potential quantum net-
working application (see below) for the growing body of
literature on the latter topic. And second, fidelity defined
by the overlap between Alice’s original wave function and
the state Bob receives after decoding, while a natural met-
ric for the single-qubit case, need not provide a useful
measure for many-body wave functions.

The second point warrants elaboration. Fidelity based
on wave-function overlap blurs the distinction between
unitary and nonunitary errors, which can be understood
as a consequence of an Anderson orthogonality catas-
trophe: Consider a many-body wave function |ψ〉, and
apply to each qubit j an on-site linear transformation
Mj (ε) that reduces to the identity as ε → 0. Then the
overlap |〈ψ |∏j Mj (ε)|ψ〉| is expected to decay exponen-
tially as the number of qubits L increases for any small
but finite ε—regardless of whether Mj (ε) is unitary or
nonunitary. Alternatively, one could consider the “local
fidelity”, defined as the Lth root of the global fidelity;
this quantity, however, still does not cleanly distinguish
between unitary and nonunitary errors that can yield dras-
tically different consequences on many-body states. It is
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crucial to instead focus on physically meaningful diagnos-
tics of imperfectly teleported many-body wave functions
that emphasize salient universal features over fine details.
Ultimately, Bob may be content receiving an imperfectly
teleported wave function that overlaps negligibly with
Alice’s original state, provided that his state belongs to
the same phase of matter, exhibits the same symmetries,
displays the same universal correlations and entanglement
characteristics, and so on. This perspective becomes par-
ticularly essential in a scenario where Alice has limited
information about her original wave function; for instance,
she may know only that it is the ground state of some local
Hamiltonian whose parameters are uncertain yet realizes
a known phase or critical point. The performance of dif-
ferent teleportation protocols could be naturally assessed
by exploring how universal features of the most sensitive
regions in the phase diagram respond to imperfections.

With this last message in mind, rather than analyzing
the detailed character of arbitrary many-body wave func-
tions under imperfect teleportation, we specialized to Ising
quantum critical states as an illuminating test case. Here
universal power-law correlations and long-range entan-
glement encoded in Alice’s original state provide well-
motivated quantities for benchmarking the character of
an imperfectly teleported wave function received by Bob.
Moreover, as shown in a collection of recent works [21,25–
27,31], quantum critical points are expected to sensitively
respond to even weak imperfections by virtue of their
gaplessness. The dichotomy between unitary and nonuni-
tary errors becomes especially sharp here: on-site unitary
errors preserve both power-law exponents and long-range
entanglement, albeit with locally scrambled manifesta-
tions. Nonunitary contributions, on the other hand, can
qualitatively modify both properties in ways that we eluci-
dated in detail for protocols employing different measure-
ment bases and in different measurement outcome sectors.
Specifically, we classified protocol imperfections as rele-
vant, marginal, disguised marginal, or irrelevant depending
on their impact on universal correlations and entangle-
ment—though in all of these cases the wave-function
overlap fidelity decreases exponentially with system size.
In a nutshell, fidelity does not distinguish between cor-
ruption of short- versus long-distance physics arising from
local errors.

En route to establishing these results, we nontrivially
extended the theory of measurement-altered criticality by,
e.g., relating measurement effects to modifications of full
counting statistics; uncovering the phenomenon of dis-
guised marginal perturbations generated under renormal-
ization by naively irrelevant measurement-induced terms;
adding a new perspective on decoding protocols put for-
ward in Ref. [52], which quantum teleportation protocols
automatically incorporate; and deriving parent Hamilto-
nians for nonunitarily corrupted states. The last item
allowed us to make contact with the physics of long-range

interacting chains—whose ground states resemble weakly
measured and imperfectly teleported critical wave func-
tions—as well as with non-Hermitian systems that even
at criticality can display area-law entanglement and an
emerging finite correlation length [65]. We hope that many
of these tools can be directly exported to understand mea-
surement effects on other systems such as those realizing
strongly interacting CFTs and deconfined critical points.

We close with some questions related to future direc-
tions. Are there practical applications of teleporting partic-
ular many-body wave functions, e.g., Ising critical states?
As one possibility, quantum critical wave functions, by
virtue of their long-range entanglement, are nontrivial to
prepare on quantum hardware. If Alice owns a special-
purpose device that allows her to efficiently accomplish
the task, she may (for a fee) quantum teleport critical wave
functions to remote interested parties over quantum net-
works. To this end, it would be highly desirable to adopt
a protocol that optimizes against imperfections following
insights from this work. Among the infinite variety of
possible many-body wave functions, which other classes
are particularly interesting to examine through the lens
of imperfect teleportation [82]? Is it possible to teleport
only a subset of qubits from a many-body wave func-
tion while still allowing the receiver to back out universal
features of the complete state? Finally, can one devise
near-term experiments for testing the resilience of various
many-body teleportation protocols against errors?
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APPENDIX A: DERIVATION OF IMPERFECTLY
TELEPORTED MANY-BODY STATE

In this Appendix we derive the form of the imper-
fectly teleported wave function received by Bob, prior to
application of the final outcome-dependent unitary. We

030307-25



SALA, MURCIANO, LIU, and ALICEA PRX QUANTUM 5, 030307 (2024)

will consider the generalized protocol from Sec. A, recov-
ering the main result of Sec. III as a limiting case. For
clarity, let us recall the general setup. Alice and Bob pre-
pare the initial wave function |ψ〉A |ψ〉B, where |ψ〉B =
|b̃, n〉 is a product state along the common quantization axis
n. In most of the text we considered Alice’s wave function
is given by the critical state |ψc〉 although this is not neces-
sary. Then, they couple their degrees of freedom via the on-
site unitary U =∏j Uj with Uj = exp(iuÔA

j (m)Ô
B
j (m))

with m a unit vector. Finally, Alice measures her qubits
along n obtaining the outcome ã = {aj } with probability
pã. All together, a generic setup is parametrized by the
tuple {ã, b̃, n; m}. Similar computations as those leading to
Eq. (15) in the main text, allow us to write

|ψã〉 = 1√
pã

N∑

Nf =0

∑

i1<i2<···<iN

iNf cosN−Nf (u) sinNf (u)

×
Nf∏

j=1

ÔB
ij (m) |b̃, n〉 〈ã, n|

Nf∏

j=1

ÔA
ij (m) |ψc〉 . (A1)

Next, we explicitly include the flipping Pauli operators
ÔA

j (n
⊥), ÔB

j (n
⊥) mapping aj →−aj , bj →−bj , respec-

tively, by writing

ÔD
j (m) = ÔD

j (m)Ô
D
j (n
⊥)2

= (m · n⊥+im× n⊥·σ )
︸ ︷︷ ︸

≡UD
j (m×n⊥)

ÔD
j (n
⊥) (A2)

with D = A, B. Notice that UD
j (m× n⊥) = exp(iθÔj (m×

n⊥/||m× n⊥||)) with cos(θ) = m · n⊥, sin(θ) = ||m×
n⊥||. We also need to relate the product wave functions
|b̃, n〉 , |ã, n〉 by applying a unitary that connects the string
of numbers ã and b̃. This is achieved via

|b̃, n〉 =
⎛

⎝
∏

j :aj 
=bj

ÔB
j (n
⊥)

⎞

⎠

︸ ︷︷ ︸
≡UB

b̃←ã

|ã, n〉 = UB
b̃←ã
|ã, n〉 , (A3)

where we notice that this untary satisfies (UB
b̃←ã

)2 = 1.
Bringing all together and up to an overall factor we find

|ψã〉 = 1√
N

N∑

Nf =0

∑

i1<···<iN

iNf tanNf (u)

×
Nf∏

j=1

UB
ij (m× n⊥)UB

b̃←ã

×
⎛

⎝
Nf∏

j=1

ÔB
ij (n
⊥) |ã, n〉 〈ã, n|

Nf∏

j=1

ÔA
ij (n
⊥)

⎞

⎠

×
Nf∏

j=1

UA
ij (−m× n⊥) |ψc〉 , (A4)

where we have used that [ÔB
ij (n
⊥), UB

b̃←ã
] = 0. To move

further we recall that Alice’s and Bob’s Hilbert spaces are
isomorphic and as such, we can evaluate

〈ã, n|
Nf∏

j=1

ÔA
ij (n
⊥)UA

ij (−m× n⊥) |ψc〉

= 〈ã, n|
Nf∏

j=1

ÔB
ij (n
⊥)UB

ij (−m× n⊥) |ψc〉 (A5)

on Bob’s degrees of freedom. Finally, when summing over
all possible values of Nf for any set of locations i1 < i2 <
. . . iN , the state |a′, n〉 ≡∏Nf

j=1 ÔB
ij (n
⊥) |ã, n〉 ∈ HB runs

over all possible product states in the local n basis. This
allows us to express the Bob’s wave function as

|ψã〉 = 1√
N
∑

a′
(i tan(u))Nf (a′,b̃)

×
∏

j :a′j 
=b̃j

UB
j (m× n⊥)UB

b̃←ã
|a′, n〉 〈a′, n|

×
∏

j :a′j 
=ãj

UB
j (−m× n⊥) |ψc〉 , (A6)

where the sum is over binary chains a′ = {±1} of size
N , and Nf (a′, b̃) =∑N

j=1
1
2 (1− a′j b̃j ) counts the number

of entrees where a′j 
= ãj for a reference string ã. This
expression can be recast as

|ψã〉 = 1√
N

ei π4 Hb̃(n)e−
α
2 Hb̃(n)

× Ub̃(m× n⊥)Ub̃←ãU
†
ã (m× n⊥) |ψc〉 , (A7)

where the transformation Ub̃(m× n⊥),Uã(m× n⊥) are
defined via

Ub̃(m× n⊥) =
N∏

j=1

[
UB

j (m× n⊥)
1
2
(1− b̃j ÔB

j (n))

+ 1
1
2
(1+ b̃j ÔB

j (n))
]

, (A8)
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Uã(m× n⊥) =
N∏

j=1

[
UB

j (m× n⊥)
1
2
(1− ãj ÔB

j (n))

+ 1
1
2
(1+ ãj ÔB

j (n))
]

, (A9)

while Hb̃(n) = −
∑

j b̃j ÔB
j (n) as defined in the main text.

Finally, we can combine Ub̃(m× n⊥) and U†
ã (m× n⊥)

using thatUb̃(m× n⊥)Ub̃←ãU
†
ã (m× n⊥) = Ub̃←ãU

†
ã (m×

n⊥)U†
ã (m× n⊥), leading to the expression

|ψã〉 = 1√
N

Ub̃←ãei π4 Hã(n)e−
α
2 Hã(n)

(
U†

ã (m× n⊥)
)2
|ψc〉 .
(A10)

If we restrict to the case m = n⊥, then U†
ã (m× n⊥) simply

reduces to the identity and we recover Eq. (15) in the main
text.

APPENDIX B: PROBABILITY DISTRIBUTION OF
THE LONGITUDINAL FIELD

The goal of this Appendix is to analyze the probabil-
ity distribution of the longitudinal field MZ =

∑
j Zj in

the ground state of the critical Ising model, P(f , L). This
amounts to compute the probability density for finding
Alice’s initial state in a given magnetization sector in the Z
basis in a system of size L. Taking advantage of the results
found in Ref. [59], we can introduce the scaling variable
r = m/s, where s2 = 〈(M+Z )2〉 is the variance of the order
parameter M+Z , and using f = m/L+ 1/2 = sr/L+ 1/2,
we are able to compute the asymptotic expression for the
universal scaling function F(r) = sP(sr/L+ 1/2, L). We
remark that, in order to have an analytic prediction forF(r)
which captures the main features of the probability dis-
tribution, we use the asymptotic result for the generating
function of the moments of the distribution, and therefore
our result is not very accurate for r close to 0. In particular,
we found that

F(r) =

⎧
⎪⎨

⎪⎩

1.05e0.05r6−0.07r8

|r|15/16 , |r| ≥ 1.44,

e−0.29r6+0.11r4+1.48r2−2.07 otherwise.
(B1)

In order to benchmark out this prediction, we have tested it
by exact diagonalization of the lattice Hamiltonian Eq. (28)
for system sizes L = 18, 24, 32 in Fig. 11. As we expected,
we observe that the agreement is not perfect close to r = 0,
but F(r) correctly captures the shape of the numerical data,
which is enough for our purposes.

We numerically checked that s = 1/2 L7/8 and, from
the expression of F(r), we can compute P(f , L) =
(1/N )F(2(f − 1/2)L1/8), where N is fixed such that

FIG. 11. Universal scaling function F(r). The solid line in
Eq. (B1), while the symbols are the numerical data obtained
using exact diagonalization for a system size L = 18, 24, 32.

the probability distribution is correctly normalized. Once
we have the result for P(f , L), we can compute
Pmodified(α, f , L) = (e−2αfL/N ′)P(f , L) and also study its
behavior as a function of α and L. We observe that, for
α = 0, P(f , L) shows a double-peak structure (see Fig. 11).
As we slightly increase α, the right peak is suppressed,
while the left peak drastically moves to the left until it falls
outside the region |r| ≤ 1.44. In particular, in the large L
limit, the saddle-point analysis reveals that we have a sin-
gle saddle point at f ∗ = 1/2− κ ′α1/5L1/20, which we can
observe only until the condition |r| ≤ 1.44 is satisfied, i.e.,
for small values of α, L (see the left panel of Fig. 12 for
L = 30, 60). Here κ ′ is only a numerical prefactor. If we
focus on the behavior of the tail of the distribution, i.e.,
r < −1.44, we can observe a peak for f ∗ = 1/2− κ ′′α
(when f satisfies the condition r < −1.44), where κ ′′ is a
constant, which is pushed towards f = 0 as we increase α,
while its position does not change by varying L. This can
be clearly observed in the middle panel of Fig. 12. In order
to have a complete analysis of the behavior for f close
to 0, we need to know the analytic behavior of F(r) for
any real value of r, which is not accessible from Ref. [59].
However, with the data at our disposal, we can already
capture the main qualitative features of the distribution
Pmodified(α, f , L), checking how the effect of a relevant per-
turbation can drastically spoil the double-peak structure,
shifting the weight of the distribution towards f ∗ = 0.

APPENDIX C: TWO-POINT CORRELATORS
ALONG THE BOUNDARY

The goal of this Appendix is to derive the results in
Eq. (44) through a field theoretical approach. We can per-
form a spacetime rotation such that Eq. (41) describes a
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FIG. 12. Pmodified(α, f , L) as a function of the intensive magnetization sector f for different α and L. The left panel shows how, for
small α and L (30,60) the left peak moves towards left and the double-peak structure is suppressed. As L increases (L = 1000), as well
as α (middle panel), the peak we observe is due to the tail of the probability distribution P(f , L). Indeed, for α = 0.2, its position is not
shifted. As we increase α (right panel) Pmodified(α, f , L) becomes peaked around f = 0, even though the exact details of the probability
distribution require a more accurate analytical prediction in Eq. (B1).

different one-dimensional critical Ising spin chain every-
where in space except at a defect located in the middle
point of the chain. Being the defect line relevant, we can
think of it as a fixed boundary condition. In order to fix
the ideas, we can focus on a system with spatial coordi-
nate x ∈ [−L/2, L/2] and we aim to study the behavior of
the correlation functions of the critical Ising chain along
the boundary denoted by (x = 0, τ), where τ is the imag-
inary time. We can take advantage of the results found in
Refs. [84,85] to write down the magnetization profile with
fixed boundary conditions [e.g., spin up (+)] at x = 0 and
at x = L/2, which reads

〈σ(x)〉+ = 21/8
(

L
2π

sin
2πx

L

)−1/8

. (C1)

Notice that here x denotes the distance from the boundary,
while what we are really interested in are the correlation
functions along the boundary. In the limit x→ ε (it plays
the role of an ultraviolet cutoff), it turns out that, along
the boundary the expectation value of the magnetic field is

just a constant. Similarly, we can exploit the known results
for the two-point correlation functions on the half-plane,
which read [84]

〈σ(1)σ (2)〉+ = (4y1y2)
−1/8(u+ u−1)1/2, (C2)

with u= (1+ 4y1y2/r2
)1/4, r=

√
(v1− v2)2+ (y1− y2)2.

Since the half-space with fixed boundary conditions
is transformed into a strip of width L/2 with bound-
ary conditions on the edges under the conformal map-
ping w = L/(2π) ln z, we find z = v + iy = e2π/L(ix+τ) =
e2πτ/L[cos(2πx/L)+ i sin(2πx/L)]. Taking into account
that under the conformal transformation z→ w, correla-
tion functions of primary operators transform according to
〈
∏

i

φ(zi, z̄i)

〉
=
∏

i

w′(zi)
�iw′(zi)

�̄i

〈
∏

i

φ(wi, w̄i)

〉
,

(C3)

in this way, we can map the result in Eq. (C4) for the half-
space into the strip geometry. It reads

〈σ(1)σ (2)〉+ =
(

L
π

)−1/4 (
sin

2πx1

L
sin

2πx2

L

)−1/8

(u+ u−1)1/2,

u = 1+ 4
e

2π
L (τ1+τ2) sin 2πx1

L sin 2πx2
L(

e
2πτ1

L sin
(

2πx1
L

)
− e

2πτ2
L sin

(
2πx2

L

))2
+
(

e
2πτ1

L cos
(

2πx1
L

)
− e

2πτ2
L cos

(
2πx2

L

))2

. (C4)

In this way, we get in the limit x1 → x2 → ε and L→∞

〈σ(1)σ (2)〉+ − 〈σ(1)〉+〈σ(2)〉+ � ε15/4

|τ1 − τ2|4 . (C5)
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Strictly speaking, the right-hand side vanishes when
ε = 0, which here plays the role of a ultra-violet cutoff. We
can repeat the same analysis for the connected two-point
correlator of the energy field ε. Its one-point correlation
function in the presence of a boundary reads

〈ε(x)〉+=
(

L
2π

sin
2πx

L

)−1

, (C6)

while the two-point correlation function on the complex
plane is

〈ε(1)ε(2)〉+ = 4
(

1
4y1y2

+ 1
r2 −

1
r2 + 4y1y2

)
,

〈ε(1)ε(2)〉+,c ≡ 〈ε(1)ε(2)〉+ − 〈ε(1)〉+〈ε(2)〉+

= 4
(

1
r2 −

1
r2 + 4y1y2

)
. (C7)

By applying the conformal transformation, we can evalu-
ate the connected correlator in the original geometry, and
in the limit x1 → x2 → ε and L→∞ we get

〈ε(1)ε(2)〉+,c � ε2

|τ1 − τ2|4 . (C8)

By doing a spacetime rotation back, both the results in
Eqs. (C5) and (C8) state that the correlation function
for the spin and energy field decay as 1/|x|4 along the
boundary, which is the content of Eq. (44).

APPENDIX D: CORRELATORS FROM THE
PERTURBATIVE APPROACH

Let us start from computing the correlator 〈XiXi′ 〉 in
Eq. (45). It can be written as

〈XiXi′ 〉c ∝ Tr[e−u2∑
j 
=k VjkXj Xk XiXi′] ∼ u2Vii′ ∼ u2

|i− i′|4 ,

(D1)

where the Tr denotes a sum over all possible spin configu-
rations. By expanding the exponential in the limit u→ 0,
the first nonvanishing contribution is

〈XiXi′ 〉c ∼ u2Vii′ ∼ u2

|i− i′|4 . (D2)

If we now consider the correlator 〈YiYi′ 〉c, we get [we
denote |Z〉 ≡ |z〉⊗L , q(j ) ≡ q]

〈YiYi′ 〉 = 〈Z| e−u2∑
j 
=k,
=i,i′ VjkXj Xk e

u2
2 Xi

∑
k 
=i VjkXk e

u2
2 Xi′

∑
k 
=i′ VjkXk e2iuqXi+2iuqXi′YiYi′ |Z〉

∝ Tr[e−u2∑
j 
=k,
=i,i′ VjkXj Xk e

u2
2 Xi

∑
k 
=i VjkXk e

u2
2 Xi′

∑
k 
=i′ VjkXk e2iuqXi+2iuqXi′XiXi′] ∼ u2Vii′ , (D3)

where we have used that Y = −iXZ. Finally, using ZiZi′ |Z〉 = |Z〉, we get

〈ZiZi′ 〉c = 〈Z| e−u2∑
j 
=k,
=i,i′ VjkXj Xk e

u2
2 Xi

∑
k 
=i VjkXk e

u2
2 Xi′

∑
k 
=i′ VjkXk e2iuqXi+2iuqXi′ZiZi′ |Z〉

∝ Tr[e−u2∑
j 
=k,
=i,i′ VjkXj Xk e

u2
2 Xi

∑
k 
=i VjkXk e

u2
2 Xi′

∑
k 
=i′ VjkXk e2iuqXi+2iuqXi′ ] ∼ u4Vii′ . (D4)

We can repeat the computations above starting from Eq. (56). The easiest correlator to compute is

〈ZiZi′ 〉 = Tr[e−u2∑
j 
=k VjkZj Zk ZiZi′] ∼ u2Vii′ ∼ u2

|i− i′| . (D5)

If we now consider the correlator 〈XiXi′ 〉c, we get (we denote again |X 〉 ≡ |x〉⊗L)

〈XiXi′ 〉c = 〈X | e−u2/2
∑

j 
=k VjkZj Zk XiXi′e−u2/2
∑

j 
=k VjkZj Zk |X 〉 . (D6)

Observing that Xj e−(u
2/2)Zj

∑
k 
=j VjkZk = e(u

2/2)Zj
∑

k 
=j VjkZk Xj , we get

〈XiXi′ 〉c = 〈X | e−u2∑
j 
=k,
=i,i′ VjkZj Zk e

u2
2 Zi

∑
k 
=i VjkZk e

u2
2 Zi′

∑
k 
=i′ VjkZk XiXi′ |X 〉

= Tr[e−u2∑
j 
=k,
=i,i′ VjkZj Zk e

u2
2 Zi

∑
k 
=i VjkZk e

u2
2 Zi′

∑
k 
=i′ VjkZk ] ∼ u4V2

ii′ , (D7)

030307-29



SALA, MURCIANO, LIU, and ALICEA PRX QUANTUM 5, 030307 (2024)

where we have used that XiXi′ |X 〉 = |X 〉. We remark
that this result not only properly captures the algebraic
behavior of 〈XiXi′ 〉c in Eq. (55), but also the amplitude,
since by using that α = − ln[tan(u)], α behaves at lead-
ing order in u as sech(2α)2 = u4. The result in Eq. (D7)
refers to the connected correlator, since the disconnected
part vanishes. Finally, in order to compute 〈YiYi′ 〉, we use
that YiYi′ |X 〉 = −ZiZi′ |X 〉 and therefore we can exploit
the result in Eq. (D5), 〈YiYi′ 〉 ∼ u2Vii′ , in agreement with
Eq. (55).

APPENDIX E: ENTANGLEMENT ENTROPY
FROM THE PERTURBATIVE APPROACH

We consider the entanglement entropy of the teleported
wave function,

|ψ〉 = exp(
α

2

∑

j

Ôj (n)) |ψA〉 (up to normalization),

(E1)

where Ô(n) is a Pauli operator along n axis and |ψA〉 is
the initial state (which in this paper is the ground state of
a critical Ising chain). In the α→∞ limit, it becomes a
product state for finite systems. However, the α <∞ case
is nontrivial and we can compute the second Rényi entropy
perturbatively.

Let us assume α > 0 and define |0〉 ≡ |b̃, n〉 to be the
product state of one-site eigenstates with Ô(n) eigenvalue
+1. We denote by |j , k, l, . . .〉 ≡ Ôj (n⊥)Ôk(n⊥)Ôl(n⊥) . . .
|0〉 the state with spin flips on the j -, k-, l-. . . -th sites. The
teleported state can be written as

|ψ〉 = exp

⎛

⎝α
2

∑

j

Ôj (n)

⎞

⎠ |ψA〉

= exp
(α

2
L
)
⎡

⎣〈0|ψA〉|0〉 + e−α
∑

j

〈j |ψA〉|j 〉

+ e−2α
∑

j<k

〈j , k|ψA〉|j , k〉 + · · ·
⎤

⎦ ,

(E2)

where L is the length of the system. In the nearly projec-
tive measurement limit (α � 1), one can neglect the terms
in the ellipsis since they are exponentially suppressed by
α. After keeping only the first three terms on the rhs and
defining

q(j , k, l . . . ) = 〈j , k, l, . . .〉ψA

〈0〉ψA
, (E3)

we simplify the above form as

|ψ〉 = |0〉 + u
∑

j

q(j ) |j 〉

+ u2
∑

j<k

q(j , k) |j , k〉 +O(u3) (up to normalization),

(E4)

where u = e−α . One can check that this gives the same
results as the correlation functions in Eqs. (55) and (44),
as we have shown in Appendix D. In the following, how-
ever, we focus on the second Rényi entropy from Eq. (E4).
Note that if we cut off higher orders and keep only the first
two terms, the approximate state can be written as,

|ψ〉approx = Heff |0〉 , Heff = 1+ u
∑

j

q(j )Ôj (n⊥)

+ u2
∑

j<k

q(j , k)Ôj (n⊥)Ôk(n⊥), (E5)

Heff can be written as a matrix product operator (MPO) [86]
with bond dimension L+ 1, Heff = W1W2 · · ·WL, where
W’s are operator-valued matrices:

Wi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 Ôi(n⊥) uq(i)Ôi(n⊥)

0 1 · · · 0 0 u2q(1, i)Ôi(n⊥)
...

...
. . .

... 0 u2q(2, i)Ôi(n⊥)

0 0 · · · 1 0 u2q(i− 1, i)Ôi(n⊥)
0 0 · · · 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E6)

for 1 < i < L is an (i+ 1)× (i+ 2)matrix, and on the first
and last sites

W1 =
(
1, Ô1(n⊥), 1+ uq(1)Ô1(n⊥)

)
,

WL =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

uq(L)ÔL(n⊥)
u2q(1, L)ÔL(n⊥)
u2q(2, L)ÔL(n⊥)

...
u2q(L− 1, L)ÔL(n⊥)

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (E7)

Therefore, the entanglement entropy of |ψ〉approx is upper
bounded by O(ln(L)); hence the following calculation of
entanglement entropy only makes sense when u is small
enough such that S � ln(L).

For a system bipartitioned into subsystems R and R̄, the
second Rényi entanglement entropy is defined to be,

S(2)R ≡ − ln
Tr(ρ2

R)

Tr(ρR)2
, (E8)
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where ρR is the reduced density matrix for subsystem R. From now on, for simplicity we assume all q(j , k, l · · ·) are real.
One can then write down

ρR =
⎡

⎣1+ u2
∑

k∈R̄

q(k)2 + u4
∑

j<k∈R̄

q(j , k)2

⎤

⎦ |0〉 〈0| +
∑

j∈R

⎡

⎣uq(j )+ u3
∑

k∈R̄

q(k)q(j , k)

⎤

⎦ (|0〉 〈j | + |j 〉 〈0|)

+
∑

j∈R

∑

j ′∈R

⎡

⎣u2q(j )q(j ′)+ u4
∑

k∈R̄

q(j , k)q(j ′, k)

⎤

⎦ |j 〉 〈j ′| + u2
∑

j<k∈R

q(j , k)(|0〉 〈j , k| + |j , k〉 〈0|)

+ u3
∑

j ′∈R

∑

j<k∈R

q(j ′)q(j , k)
(|j ′〉 〈j , k| + |j , k〉 〈j ′|)+ u4

∑

j<k∈R

∑

j ′<k′∈R

q(j , k)q(j ′, k′) |j , k〉 〈j ′, k′| . (E9)

The second Rényi entropy takes a surprisingly simple
form,

S(2)R = 2u4
∑

j∈R

∑

k∈R̄

[q(j , k)− q(j )q(k)]2 + O(u6). (E10)

When the subsystem R consists of � consecutive sites and
ajk − aj ak ∼ |j − k|−κ decays as a power law with expo-
nent κ , one can show by replacing the summation by
integrals (i.e., going to the continuous limit),

S(2)R � 2u4
∑

1≤j≤�

∑

(�+1)≤k≤L

1
|j − k|2κ

≈ 2u4
∫ �

0
dx
∫ L

�+1
dy

1
|x − y|2κ = 2u4 Fκ(�, L),

(E11)

where we consider an open chain, R = [0, �], R̄ = [�+
1, L] and

Fκ(�, L) ≡ −1+ �2−2κ − L2−2κ + (L− �+ 1)2−2κ

2(1− 2κ)(κ − 1)
.

(E12)

For a segment in an infinite chain, one has S(2)R �
4u4∑

1≤j≤�
∑

(�+1)≤k<∞ 1/|j − k|2κ , which is the case of
Eq. (57).

We can then consider different cases:

(1) For κ > 1, the half-chain entropy max� Fκ(�, L)
= Fκ (L/2, L) = [L2−2κ − 2

(
(L/2)+ 1

2

)2−2κ + 1]/2
(2κ − 1)(κ − 1) converges to a finite value in the
thermodynamic limit. Therefore, the system satisfies
the area law.

(2) For κ = 1, we find

F1(�, L) = ∂κ [−1+ �2−2κ − L2−2κ + (L− �+ 1)2−2κ ]
∂κ [2(1− 2κ)(κ − 1)]

∣∣∣∣
κ=1
= ln(�(L− �)/L), (E13)

indicating that the entanglement entropy grows
logarithmically in the subsystem size.

(3) For 0 < κ < 1, we find Fκ(L/2, L) = {L2−2κ −
2
[
(L/2)+ 1

2

]2−2κ + 1}/2(2κ − 1)(κ − 1) ∝ L2−2κ ,
and for small �, Fκ(�, L) ≈ �2−2κ + (2− 2κ)L1−2κ

�+ · · · . Note that this approximation is only valid
when S2 � ln(L), otherwise it would be required to
scale u with system size as u � L(κ−1)/2 ln1/4(L).

When n = x̂, we have κ = 1. Using that Vjk = 1/π |j − k|,
we find that the entanglement scaling remains logarithmic
but c(2)eff for the second Rényi entropy scales as u4, which
is consistent with the derivation in Appendix G [see also
Eq. (57) for the result in the thermodynamic limit]. For

the Z measurement, κ = 4. Therefore, the teleported state
satisfies entanglement area law at large α, although con-
comitant with power-law decaying two-point correlations.
In Fig. 13, we numerically computed the entanglement
entropies in Eq. (E1) by DMRG for n = ẑ and x̂, and check
that they are close to the prediction from perturbation
theory in Eq. (E10).

APPENDIX F: MPS REPRESENTATION FOR A
RELEVANT IMPERFECTION

Given the atypical properties found in the presence of a
relevant imperfection in Sec. V A, it is interesting to ask
whether the imperfectly teleported state received by Bob
can be efficiently expressed as an MPS. An MPS with bond
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(a) (b) FIG. 13. Second Rényi entan-
glement entropy for the state in
Eq. (E1) with α = 4 and (a) n =
ẑ or (b) n = x̂. The dots refer to
the data obtained by DMRG on
a periodic chain and dashed lines
refer to the analytical prediction
by Eq. (E10).

dimension χ on a Hilbert space (Cd)⊗L takes the form

|ψχ 〉 =
d∑

s1,s2...,sL=1

tr
(

A[s1]
1 A[s2]

2 · · ·A[sL]
L

)
|s1, s2, . . . , sL〉 ,

(F1)

where {A[sj ]
j }j ,sj are χ × χ matrices. Hence, an MPS |ψχ 〉

has entanglement entropy less than lnχ for any spatial
cut. While arbitrary states can be described by an MPS
with exponentially large (in L) bond dimension, one can
only efficiently calculate expectation values of spatially
local observables when such states can be approximated
by an MPS with sufficiently small bond dimension. Hence,
whether such an approximation exists poses a very relevant
question.

For 1D systems with strictly local interactions and a
finite excitation gap, it has been rigorously proven that
correlations decay exponentially and that the entanglement
entropy satisfies an area law [87]—the latter justifying effi-
cient description of ground states for such systems using
MPSs. One then wonders to which extent relaxing strict
locality can modify these conclusions, as relevant, e.g., for
systems with van der Waals interactions or, as we have
shown here, imperfectly teleported quantum critical states.
Reference [68] proved that the (nondegenerate) ground
state |ψ〉 of generic 1D gapped systems with interactions
decaying approximately as a power law 1/|i− j |n exhibits
area-law entanglement for n > 2. Evidently the gap con-
dition imposes stronger constraints on the entanglement
structure than on the decay of correlations. This important
conclusion further implies that there exists an MPS |ψχ 〉
with bond dimension χ = exp[c ln5/2(1/δ)] and c ∼ O(1)
such that

||trX c
(|ψχ 〉 〈ψχ |

)− trX c (|ψ〉 〈ψ |) ||1 ≤ δ|X | (F2)

for an arbitrary concatenated subregion of size |X |, with
|| · ||1 the trace norm and δ the approximation error.
Applying these results to our problem, we conclude that
|ψã〉—which is the nondegenerate ground state of the
gapped Hamiltonian in Eq. (48) with approximately 1/|j −

k|4 interactions—can be efficiently approximated by an
MPS. (And since |ψã〉 is the same as Bob’s final wave
function |ψ tele

ã 〉 up to a product of local unitary operators,
the same conclusion holds for the latter.)

APPENDIX G: EFFECTIVE CENTRAL CHARGE
CALCULATION FOR x-BASIS MEASUREMENT

Let us consider the teleported wave function in Eq. (49).
We can study it as a quantum quench protocol in which
the system at time t = 0 is initialized in the ground state
|ψc〉 of the critical Ising chain of length L with periodic
boundary conditions and then is let evolve under the action
of the non-Hermitian effective Hamiltonian

|ψ tele
ã 〉 =

e−itH+(x) |ψc〉
||e−itH+(x) |ψc〉 || , H+(x) = i

∑

j

Xj , (G1)

with t = α/2. As already mentioned in the main text,
this time evolution can be exactly computed once the
model is mapped to free fermions (c, c†) through Jordan-
Wigner transformation, followed by Fourier transform into
momentum space. Indeed, it can be written as

H+(x) =
∑

k

[
(c†

k c−k)M
(

ck

c†
−k

)]
=
∑

k

Hk, (G2)

where the momenta are semi-integer

k = −L
2
+ 1

2
, . . . ,−1

2
,

1
2

, . . . ,
L
2
− 1

2
, (G3)

(even parity sector) and

M = 2
(

i 0
0 −i

)
. (G4)

Since the state |ψc〉 is translational invariant and with a
well-defined parity, then its dynamics can be decomposed
in
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|ψc〉 =
∏

k

|ψk(t = 0)〉 , |ψ tele
ã 〉 =

∏

k

|ψk(t = α/2)〉

|ψk(t = α/2)〉 = |ψ̃k(t = α/2)〉
|| |ψ̃k(t = α/2)〉 ||

, i
d
dt
|ψ̃k(t)〉 = Hk |ψ̃k〉

, (G5)

where the k-momentum states are expressed as |ψ̃k〉 = uk(t) |0〉 + vk(t)c
†
kc†
−k |0〉. Thus, we have to solve a differential

equation

i
d
dt

(
uk(t)
vk(t)

)
= −M

(
uk(t)
vk(t)

)
, (G6)

with given initial conditions uk(0), vk(0) fixed by |ψc〉. By solving it, we find

uk(t = α/2) = −1
2

e−α
√

2− 2| sin(πk/L)|,

vk(t = α/2) = eα
sin(2πk/L)

2
√
(1− cos(2πk/L))(1− | sin(πk/L)|) .

(G7)

Exploiting the Gaussianity of the state Eq. (G1) and employing Wick’s theorem, the correlation functions and the entan-
glement properties can be fully encoded in the two-point function of the Majorana fermions, which are given by the
operators γA,j = cj + c†

j , γB,j = i(c†
j − cj ). Then, we find

〈γA,nγA,m〉 = 〈γB,nγB,m〉 = 0,

〈γA,nγB,m〉 = 〈γB,mγA,n〉∗ = 1
L

∑

k

e2π ik/L(n−m) u
2
k − v2

k − 2iukvk

u2
k + v2

k
.

(G8)

Taking the thermodynamic limit L→∞, the above sum is transformed into an integral, and we have

V ≡
〈(
γA,n

γB,n

) (
γA,m γB,m

)〉 =
∫ π

−π

dθ
2π

eiθ(n−m)

⎛

⎜⎜⎜⎝

0
u2
θ − v2

θ − 2iuθvθ
u2
θ + v2

θ

u2
θ − v2

θ + 2iuθvθ
u2
θ + v2

θ

0

⎞

⎟⎟⎟⎠

∫ π

−π

dθ
2π

eiθ(n−m)G(θ), (G9)

where we took 2πk/L→ θ in Eq. (G7). The quantity
Tr(ρn

A) can be computed from the two-point correlation
matrix V introduced in Eq. (G9) [88]. More specifically,

Trρn
A = det

[(
I + VA

2

)n

+
(

I − VA

2

)n]
, (G10)

where VA denotes the restriction of V to the subsystem A.
If we take into account that the eigenvalues of VA lie on the
real interval [−1, 1] and we use the residue theorem, then
the previous expression can be rewritten as the contour
integral

1
1− n

ln Tr(n)A =
1

2π i
lim
ε→1+

∮

C
fn(λ/ε)

d
dλ

ln DA(λ)dλ,

(G11)

where the integration contour C encloses the interval
[−1, 1],

fn(λ) = 1
1− n

ln
[(1+ λ

2

)n

+
(

1− λ
2

)n ]
, (G12)

and Df (λ) denotes the characteristic polynomial of VA, i.e.,
Df (λ) = det(λI − VA).

Here we will focus on a single interval of � contigu-
ous sites. In this case, the restriction VA is a 2�× 2� block
Toeplitz matrix with symbol the 2× 2 matrix G(θ) of
Eq. (G9). To deduce the large � behavior of Df (λ) and,
therefore, of Trρn

A, we will apply the results on the asymp-
totic behavior of block Toeplitz determinants. In particular,
if the symbol Gλ(θ) = λI − G(θ) satisfies detGλ(θ) 
= 0
and is a piecewise continuous function in θ with jump
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discontinuities at θ = θ1, . . . , θR, then

ln Df (λ) = �

4π

∫ π

−π
ln detGλ(θ)dθ

+ ln �
4π2

R∑

r=1

Tr[lnG−λ,r(G+λ,r)
−1]2 +O(1),

(G13)

where G±λ,r are the lateral limits of Gλ(θ) in the jump
discontinuity at θ = θr,

G±λ,r= lim
θ→θ±r

Gλ(θ). (G14)

Equation (G13) is a generalization of the Fisher-Hartwig
conjecture for block Toeplitz determinants [89,90]. If the
symbol Gλ(θ) has continuous entries in θ , then there is no
logarithmic term in the asymptotic expansion of ln Df (λ),
and Eq. (G13) simplifies to

ln Df (λ) = �

4π

∫ π

−π
ln detGλ(θ)dθ +O(1). (G15)

This is the Szegő-Widom theorem [91]. Now the source of
discontinuities in the symbol Gλ(θ) is around θ = 0, with
lateral limits

G±λ,0=λI + tanh(2α)X ± sech(2α)Y, (G16)

where X and Y are the Pauli matrices. According to
Eq. (G13), this discontinuity gives rise to a logarithmic
term in ln Df (λ). If we plug Eq. (G16) into Eq. (G13), we
find that

ln Df (λ) = ln
[
λ2 − 1

]+ b0(λ) ln �+O(1), (G17)

with

b0(λ) = 2
π2

(
ln

√
λ2 − tanh2(2α)+ sech(2α)√

λ2 − 1

)2

.

(G18)

The linear term is obtained from the integral

lim
ε→1+

∮

C
fn(λ/ε)

λ

λ2 − 1
dλ, (G19)

which is zero by applying the Cauchy theorem, since
fn(±1) = 0. Therefore, we obtain the following asymptotic
behaviour for the Rényi entropies

S(n)R =
c(n)eff

6

(
n+ 1

n

)
ln �+O(1), (G20)

where the coefficient c(n)eff is given by the contour integral

c(n)eff =
6n

4π i(1+ n)
lim
ε→1+

∮

C
fn(λ/ε)

db0(λ)

dλ
dλ, (G21)

which, following similar steps as in Ref. [73], can be
reduced to the real integral in Eq. (52).

Beyond the computation of the entanglement entropy,
we are also interested in computing the spin-spin corre-
lation functions, for which we have to take into account
the nonlocal effects of the Jordan-Wigner transformation.
Using them and Wick’s theorem, we can expand the spin
expectation values in terms of two-point correlation. In
particular, for the X correlators, we find

〈X0Xj 〉 = H(0)2 − H(j )H(−j ), H(j ) = 〈γB,nγA,m〉.
(G22)

Therefore, the connected two-point function reads

〈X0Xj 〉c =
∫ π

−π

dθ
2π

eij θM(θ ,α),

M(θ ,α) =
∣∣sin

( k
2

)∣∣ (4+ 4ie2α cot
( k

2

))− 2ie2α sin(k)+ e4α(cos(k)+ 1)+ cos(k)− 3

4
∣∣sin

( k
2

)∣∣− e4α(cos(k)+ 1)+ cos(k)− 3
.

(G23)

We can solve explicitly this integral and in the limit of large distances, j , we find

〈XiXj 〉c = sech2(2α)
π2|i− j |2 . (G24)

The other two correlators involve a nonlocal string of operators and their Wick’s expansion can be expressed as the
determinant of a L× L matrix with elements given by all nontrivial contractions

〈ZlZm〉 = det |H(i− j )|j=l+1...m
i=l...m−1 , 〈YlYm〉 = det |H(i− j )|j=l...m−1

i=l+1...m . (G25)
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In order to derive the scaling behavior of these correlators, we can apply again the Fisher-Hartwig conjecture in Eq. (G13)
but now our symbol M(k,α) is not a matrix, but it is simply a function. In particular, for our purpose we want to compute
the determinant of the following matrices:

M Z
kj =

∫ π

−π

dk
2π

ei(j−k)θM(θ ,α), M Y
kj =

∫ π

−π

dθ
2π

ei(j−k)θM̃(θ ,α), k = l . . .m− 1, j = l+ 1 . . .m, (G26)

with M̃(θ ,α) =M(θ ,α)e−2iθ , such that

〈ZlZm〉 = det[M Z], 〈YlYm〉 = det[M Y], (G27)

We observe that the imaginary part of M(θ ,α) has a discontinuity for θ → 0, and

M±(α) = lim
θ→0±

M(θ ,α) = e−2α ∓ i
e−2α ± i

,

M̃+(α) = lim
θ→0+

M̃(θ ,α) = e−2α − i
e−2α + i

, M̃−(α) = lim
θ→0−

M̃(θ ,α) = e−4iπ e−2α + i
e−2α − i

,

(G28)

The nonvanishing terms in the Fisher-Hartwig conjecture are now given by

ln det[M Z] = 1
4π2

(
ln[M−M−1

+ ]
)2

ln |l− m| = 1
π2

(
ln
[

e−2α − i
e−2α + i

])2

ln |l− m|,

ln det[M Y] = 1
4π2

(
ln[M̃−M̃−1

+ ]
)2

ln |l− m| = 1
π2

(
ln
[

e−2α − i
e−2α + i

]
+ 2iπ

)2

ln |l− m|.
(G29)

We can now compare these results with the ones in
Eq. (55). By using that

(
ln
[

e−2α − i
e−2α + i

])2

= −4 arctan2(e2α),

(
ln
[

e−2α − i
e−2α + i

]
+ 2iπ

)2

= −4[arctan(e2α)− π ]2,

(G30)

and Eq. (G29), we can derive the correct power-
law behavior for the correlators 〈ZlZm〉 and 〈YlYm〉
in Eq. (55).

APPENDIX H: EXTRACTING THE
CORRELATIONS AND EFFECTIVE CENTRAL

CHARGE FROM DMRG

In this Appendix, we provide details of DMRG simula-
tions of correlation functions and how the effective central
charges are extracted in Fig. 8(b). The critical Ising state
(used for computing correlations in Figs. 3, 6, and 7 is
obtained by infinite DMRG with bond dimension χ = 300.
In Fig. 14 we show that this bond dimension is enough

to correctly extract the expected power-law exponent for
distances up to |j | ≈ 500 sites. We also used a bond
dimension χ = 300 in Figs. 4 and 8.

The effective central charge can be obtained using finite
DMRG with different system sizes. In Fig. 8(b), we extract
ceff from

SL/2 ∼ ceff

3
ln(L), (H1)

where SL/2 is the half-chain von Neumann entangle-
ment entropy of the teleported wave function with
periodic boundary and length L. In practice, we
take L = [20, 40, 60, 80, 100, 150, 200] and fit S(L/2)
versus ln(L) for different imperfection strength α

(see Fig. 15).
For the mixed X - and Y-basis measurement in Fig. 9, we

make use of the relation between entanglement entropy and
correlation length (as induced by a finite bond dimension)
in infinite DMRG [92],

S ∼ ceff

3
ln(ξ), (H2)

where ξ is the correlation length computed from the trans-
fer matrix of the infinite MPS. Practically, for a given set
of (αx,αy) in Fig. 9, we use different bond dimensions
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(a) (b) (c)

FIG. 14. Connected XX , YY, and ZZ correlations of the pristine critical Ising chain. Data obtained using infinite DMRG with different
bond dimensions χ = 10, 20, 200, 300. The black dashed lines represent the power-law decay with theoretical exponents, i.e., −2,
−9/4, −1/4 in (a), (b), and (c), respectively.

χ ∈ [5, 100] and compute the entanglement entropy S. The
curve S(ln(ξ)) is expected to be a straight line in the large
ξ limit for critical systems. We extract the effective central
charge using 30 data points of each curve with the largest
ξ . In Fig. 16 we show S versus ln ξ for some combinations
of (αx,αy).

FIG. 15. Half-chain entanglement entropy for different system
sizes and imperfection strength. The effective central charges
extracted from the slope of the lines are shown in Fig. 8(b).

APPENDIX I: CORRELATORS OF TELEPORTED
MIXED STATE

In order to obtain the result in Eq. (74), let us start from
Ô(n) (we suppress the subscript K to enlight the notation).
Using |ã, n〉 = Ô(n) |ã, n〉, it is easy to check that

Tr(ρ teleÔ(n)) =
∑

ã,ã′

∏

j

[sin(2u)]
1−aj a′j

2 〈ψc|ã′, n〉〈ã, n|ψc〉 〈ã′, n| ÔK(n) |ã, n〉

= 〈ψc| Ô(n)
(
∑

ã

|ã, n〉 〈ã, n|
)
|ψc〉 = 〈ψc| Ô(n) |ψc〉 . (I1)

FIG. 16. S-ln(ξ) curves for different (αx,αy) in Fig. 9.
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On the other hand, if we consider Ô(n⊥), we need to take care of the fact that Ô(n⊥) acting on |ã, n〉 sends ak →−ak,
which yields

Tr(ρ teleÔK(n⊥)) =
∑

ã,ã′

∏

j

[sin(2u)]
1−aj a′j

2 〈ψc|ã′, n〉〈ã, n|ψc〉 〈ã′, n| ÔK(n⊥) |ã, n〉

=
∏

j∈K
sin(2u)

∑

ã

〈ψc| ÔK(n⊥) |ã, n〉 〈ã, n| |ψc〉 = sin(2u)K 〈ψc| ÔK(n⊥) |ψc〉 , (I2)

where we have used that 〈ã′, n| Ô(n⊥) |ã, n〉 =∏j /∈K δaj ,a′j∏
j∈K δaj ,−a′j and |−ã, n〉 = Ô(n⊥) |ã, n〉. Finally, in order

to get the result for ÔK(n× n⊥), we first notice that Ô(n×
n⊥) = iÔ(n⊥)Ô(n) and then we apply the same strategy as
in Eq. (I2).

APPENDIX J: ENTANGLEMENT NEGATIVITY OF
TELEPORTED MIXED STATE

Since ρ tele from Eq. (72) is a mixed state, the natu-
ral way to quantify its entanglement structure is using the
entanglement negativity [78,79], as we already pointed out
in Sec. VII. Through a numerical study, the goal of this
Appendix is to show how the negativity is affected by the
imperfections of our teleportation protocol. Let us recall
the definition of negativity. We consider a bi-partition of
the system into a region R and its complement R ∪ R̄,
and we then perform a partial transposition of the density
matrix ρ tele with respect to the system R, that we denote
as ρ tele,TR . This operation is defined performing a stan-
dard transposition in the Hilbert space HR associated to
the region R, i.e., exchanging the matrix elements in R,
ρ tele,TR = (TR ⊗ 1R̄)ρ

tele, leaving the rest untouched. The
presence of negative eigenvalues of ρ tele,TR is a signature
of mixed-state entanglement [78], which can be quantified

(a) (b) (c)

FIG. 17. Half-chain entanglement negativity as a function of system size for different deformations. Scaling of the half-chain entan-
glement negativity of the teleported mixed state ρ tele with system size in L ∈ [6, 14] as a function of the deformation strength α along
x [panel (a)] and z [panel (b)] axes. (c) Scaling of the effective central charge cEeff as a function of α with imperfections in the x, y, and
z quantization axes.

by the logarithmic negativity E = ln Tr||ρ tele,TR ||1, where
|| · ||1 denotes the trace norm. When α = 0, the negativity
of a single interval of size |R| = �, embedded in an infinite
system, behaves as E = c/2 ln(�/ε), where c is the central
charge of Alice’s critical state |ψc〉 [93]. For α 
= 0, we do
not have any analytical prediction about the behavior of E
and, for this reason, we focus on some specific examples.

In the following, we numerically compute the nega-
tivity of ρ tele with Alice in the critical state, initializing
Bob’s wave function on a uniform product state on either
the x̂ basis [Fig. 17(a)] or on the ẑ basis [Fig. 17(b)], as
in Secs. V B and V A, respectively. We have used exact
diagonalization (ED) for finite systems of length up to
L = 14 and computed the half-chain negativity of ρ tele. We
numerically find that E approximately obeys the scaling
form

E = cEeff

2
ln(L)+ϒ , (J1)

where ϒ is an α-dependent term. From the plots in
Figs. 17(a)–17(c), we find that for α = 0, cEeff � 0.6, while
we would expect cEeff = 1/2 [93] and this is due to the
small system sizes L we can study with ED (similarly to
Ref. [52]). As α increases, we notice that cEeff smoothly
decreases when we measure in the x̂ basis [Figs. 17(b)
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and 17(c)], in agreement with the discussion of Sec. V B
about a marginal imperfection, while it quickly drops to
0 in the ẑ basis [Fig. 17(c)], in the same spirit of a rel-
evant imperfection described in Sec. V A. This behavior
suggests that the amount of long-range entanglement of
Bob’s wave function is maximal when Alice and Bob are
maximally entangled (i.e., u = π/4), and it decreases oth-
erwise. Finally, we comment that we do not report the
plots of E as a function of ln(L) when measuring in the
ŷ basis since its behavior is not different with respect to
the one observed in Fig. 17(a), consistently with the dis-
guised marginal imperfection discussed in Sec. V C. This
is confirmed by comparing the behavior of cEeff in Fig. 17(c)
measuring in the x̂ (blue line) and ŷ basis (green line).
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j ÔB

j (n). Hence an eigenspace
labeled by eigenvalue m shares the same degeneracy.

[58] V. Eisler, Z. Rácz, and F. van Wijland, Magnetization distri-
bution in the transverse ising chain with energy flux, Phys.
Rev. E 67, 056129 (2003).

[59] A. Lamacraft and P. Fendley, Order parameter statistics
in the critical quantum ising chain, Phys. Rev. Lett. 100,
165706 (2008).

[60] The relation between P(f , L) and cm follows upon assum-
ing that m and f can be treated as continuous variables.
This assumption is expected to hold generally for suffi-
ciently large system sizes, except for deep in the tails of
the distribution near f = 0, 1, e.g., for f of order 1/L.

[61] E. Witten, Constraints on supersymmetry breaking, Nucl.
Phys. B 202, 253 (1982).

[62] E. Barouch, B. M. McCoy, and M. Dresden, Statistical
mechanics of the XY model. I, Phys. Rev. A 2, 1075
(1970).

[63] E. Barouch and B. M. McCoy, Statistical mechanics of the
xy model. II. spin-correlation functions, Phys. Rev. A 3, 786
(1971).

[64] P. Calabrese and J. Cardy, Entanglement entropy and quan-
tum field theory, J. Stat. Mech. 2004, P06002 (2004).

[65] B. Dóra, D. Sticlet, and C. P. Moca, Correlations at
PT-symmetric quantum critical point, Phys. Rev. Lett. 128,
146804 (2022).

[66] T. Koffel, M. Lewenstein, and L. Tagliacozzo, Entangle-
ment entropy for the long-range Ising chain in a transverse
field, Phys. Rev. Lett. 109, 267203 (2012).

[67] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, Long-
range Ising and Kitaev models: Phases, correlations and
edge modes, New J. Phys. 18, 015001 (2015).

[68] T. Kuwahara and K. Saito, Area law of noncritical ground
states in 1D long-range interacting systems, Nat. Commun.
11, 4478 (2020).

[69] D. Cabra and C. Naó, 2D Ising model with a defect line,
Mod. Phys. Lett. A 9, 2017 (1994).

[70] C. Naón and M. Trobo, The spin correlation function in
2D statistical mechanics models with inhomogeneous line
defects, J. Stat. Mech. 2011, P02021 (2011).

[71] V. Eisler and I. Peschel, Entanglement in fermionic chains
with interface defects, Ann. Phys. 522, 679 (2010).

030307-39

https://doi.org/10.1103/PhysRevLett.130.220404
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.107.214203
https://doi.org/10.1103/PhysRevB.109.024301
https://doi.org/10.1103/PRXQuantum.4.040332
https://doi.org/10.1103/PhysRevB.107.174203
https://doi.org/10.1103/PRXQuantum.4.030333
https://arxiv.org/abs/2112.03061
https://doi.org/10.1103/PhysRevX.14.021040
https://doi.org/10.1103/PRXQuantum.4.020339
https://arxiv.org/abs/2205.01933
https://arxiv.org/abs/2208.11699
https://doi.org/10.1103/PhysRevLett.131.200201
https://doi.org/10.1103/physrevlett.112.247202
https://doi.org/10.21468/SciPostPhys.15.3.096
https://doi.org/10.1103/PRXQuantum.4.030318
https://doi.org/10.1103/PhysRevE.67.056129
https://doi.org/10.1103/PhysRevLett.100.165706
https://doi.org/10.1016/0550-3213(82)90071-2
https://doi.org/10.1103/PhysRevA.2.1075
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1103/physrevlett.128.146804
https://doi.org/10.1103/PhysRevLett.109.267203
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1038/s41467-020-18055-x
https://doi.org/10.1142/s0217732394001969
https://doi.org/10.1088/1742-5468/2011/02/p02021
https://doi.org/10.1002/andp.201000055


SALA, MURCIANO, LIU, and ALICEA PRX QUANTUM 5, 030307 (2024)

[72] X. Turkeshi and M. Schiró, Entanglement and correlation
spreading in non-hermitian spin chains, Phys. Rev. B 107,
L020403 (2023).

[73] F. Ares, J. G. Esteve, F. Falceto, and A. R. de Queiroz,
Entanglement entropy in the long-range Kitaev chain, Phys.
Rev. A 97, 062301 (2018).

[74] M. Abramowitz and I. A. Stegun, Handbook of Mathemat-
ical Functions with Formulas, Graphs, and Mathematical
Tables (Dover, New York, 1964), 9th ed.

[75] With an odd number of sites, there are O(L) degener-
ate states corresponding to Néel states with a single local
ferromagnetic bond. We consider only even system sizes
here.

[76] O. A. Starykh and L. Balents, Ordering in spatially
anisotropic triangular antiferromagnets, Phys. Rev. Lett. 98,
077205 (2007).

[77] L. P. Kadanoff, Scaling laws for Ising models near Tc, Phys.
Phys. Fiz. 2, 263 (1966).

[78] A. Peres, Separability criterion for density matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[79] G. Vidal and R. F. Werner, Computable measure of entan-
glement, Phys. Rev. A 65, 032314 (2002).

[80] L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits
assisted by local operations and classical communication:
Transformations and phases of matter, Phys. Rev. Lett. 127,
220503 (2021).

[81] N. Tantivasadakarn, R. Verresen, and A. Vishwanath,
Shortest route to non-Abelian topological order on a quan-
tum processor, Phys. Rev. Lett. 131, 060405 (2023).

[82] F. Eckstein, B. Han, S. Trebst, and G.-Y. Zhu, Robust
teleportation of a surface code and cascade of topological
quantum phase transitions, ArXiv:2403.04767

[83] J. Hauschild and F. Pollmann, Efficient numerical sim-
ulations with tensor networks: Tensor network python
(TeNPy), Phys. Lect. Notes 5 (2018).

[84] T. W. Burkhardt and T. Xue, Conformal invariance and crit-
ical systems with mixed boundary conditions, Nucl. Phys.
B 354, 653 (1991).

[85] T. W. Burkhardt and I. Guim, Conformal theory of the
two-dimensional Ising model with homogeneous boundary
conditions and with disordred boundary fields, Phys. Rev.
B 47, 14306 (1993).

[86] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. 326, 96
(2011).

[87] M. B. Hastings, An area law for one-dimensional quantum
systems, J. Stat. Mech.: Theory Exp. 2007, P08024 (2007).

[88] I. Peschel and V. Eisler, Reduced density matrices and
entanglement entropy in free lattice models, J. Phys. A:
Math. Theor. 42, 504003 (2009).

[89] E. L. Basor, A localization theorem for Toeplitz determi-
nants, Indiana Univ. Math. J. 28, 975 (1979).

[90] E. L. Basor and K. E. Morrison, The Fisher-Hartwig con-
jecture and Toeplitz eigenvalues, Linear Algebra Appl. 202,
129 (1994).

[91] H. Widom, Asymptotic behavior of block Toeplitz matrices
and determinants, Adv. Math. (N. Y) 13, 284 (1974).

[92] F. Pollmann, S. Mukerjee, A. M. Turner, and J. E. Moore,
Theory of finite-entanglement scaling at one-dimensional
quantum critical points, Phys. Rev. Lett. 102, 255701
(2009).

[93] P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativ-
ity in extended systems: a field theoretical approach, J. Stat.
Mech. 2013, P02008 (2013).

030307-40

https://doi.org/10.1103/PhysRevB.107.L020403
https://doi.org/10.1103/PhysRevA.97.062301
https://doi.org/10.1103/PhysRevLett.98.077205
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevLett.127.220503
https://doi.org/10.1103/PhysRevLett.131.060405
https://arxiv.org/abs/2403.04767
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1016/0550-3213(91)90370-D
https://doi.org/10.1103/PhysRevB.47.14306
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1088/1742-5468/2007/08/p08024
https://doi.org/10.1088/1751-8113/42/50/504003
https://doi.org/10.1512/iumj.1979.28.28070
https://doi.org/10.1016/0024-3795(94)90187-2
https://doi.org/10.1016/0001-8708(74)90072-3
https://doi.org/10.1103/physrevlett.102.255701
https://doi.org/10.1088/1742-5468/2013/02/P02008

	I.. INTRODUCTION
	II.. PRIMER: SINGLE-QUBIT TELEPORTATION
	A.. Canonical protocol
	B.. Simplified protocol

	III.. MANY-BODY TELEPORTATION
	A.. Imperfection-induced modification of full counting statistics
	B.. Small- regime
	C.. Large- regime

	IV.. ISING QUANTUM CRITICALITY REVIEW
	V.. IMPERFECT TELEPORTATION OF ISING CRITICALITY
	A.. Relevant imperfection
	B.. Marginal imperfection
	C.. Disguised marginal imperfection
	D.. Imperfect teleportation with typical measurement outcomes

	VI.. GENERALIZED PROTOCOL
	VII.. AVERAGE TELEPORTED MIXED-STATE
	VIII.. CONCLUSIONS AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: DERIVATION OF IMPERFECTLY TELEPORTED MANY-BODY STATE
	. APPENDIX B: PROBABILITY DISTRIBUTION OF THE LONGITUDINAL FIELD
	. APPENDIX C: TWO-POINT CORRELATORS ALONG THE BOUNDARY
	. APPENDIX D: CORRELATORS FROM THE PERTURBATIVE APPROACH
	. APPENDIX E: ENTANGLEMENT ENTROPY FROM THE PERTURBATIVE APPROACH
	. APPENDIX F: MPS REPRESENTATION FOR A RELEVANT IMPERFECTION
	. APPENDIX G: EFFECTIVE CENTRAL CHARGE CALCULATION FOR x-BASIS MEASUREMENT
	. APPENDIX H: EXTRACTING THE CORRELATIONS AND EFFECTIVE CENTRAL CHARGE FROM DMRG
	. APPENDIX I: CORRELATORS OF TELEPORTED MIXED STATE
	. APPENDIX J: ENTANGLEMENT NEGATIVITY OF TELEPORTED MIXED STATE
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


