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The Schmidt decomposition is the go-to tool for measuring bipartite entanglement of pure quantum
states. Similarly, it is possible to study the entangling features of a quantum operation using its operator-
Schmidt or tensor-product decomposition. While quantum technological implementations of the former
are thoroughly studied, entangling properties on the operator level are harder to extract in the quantum
computational framework because of the exponential nature of sample complexity. Here, we present an
algorithm for unbalanced partitions into a small subsystem and a large one (the environment) to compute
the tensor-product decomposition of a unitary the effect of which on the small subsystem is captured in
classical memory, while the effect on the environment is accessible as a quantum resource. This quan-
tum algorithm may be used to make predictions about operator nonlocality and effective open quantum
dynamics on a subsystem, as well as for finding low-rank approximations and low-depth compilations of
quantum circuit unitaries. We demonstrate the method and its applications on a time-evolution unitary of
an isotropic Heisenberg model in two dimensions.
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I. INTRODUCTION

Entanglement is a defining feature of quantum theory
[1]. The powerful capability of sharing information in a
superposition of coupled states within a composite sys-
tem still fascinates and puzzles physicists even 100 years
after the advent of quantum physics. Entanglement is used
as a fundamental resource for quantum computing and
has launched an entirely new paradigm for information
processing [2].

For a fixed Hilbert-space partition, H ∼= HA ⊗ HB,
the Schmidt decomposition of a pure state, |ψ〉, into ten-
sor products, |ψ〉 =∑r

k=1 σk|ak〉 ⊗ |bk〉, reveals features
about the shared entanglement between the two subsys-
tems, HA and HB. A disentangled state, or tensor-product
state, will consist of a single nonzero term, while an entan-
gled state will have a Schmidt rank r > 1. Analogously, we
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can define the tensor-product decomposition (TPD) [3] or
operator-Schmidt decomposition [4] of a unitary operator,
U, via

U =
R∑

k=1

sk Ak ⊗ Bk. (1)

Here, Ak ∈ L (HA), Bk ∈ L (HB) are linear operators act-
ing on the subsystems HA/B and the rank, R, is the minimal
number of nonzero terms in the TPD. Without loss of
generality, we can impose the Ak and Bk to be orthog-
onal with respect to the Hilbert-Schmidt inner product
and normalized to ‖Ak‖2 = dA := dim(HA) and ‖Bk‖2 =
dB := dim(HB) using the 2-norm ‖·‖. Note that Ak and Bk
are not unitary, in general. Furthermore, the sk are non-
negative real numbers that are constrained to sum up to
one, by unitarity of U, i.e.,

∑R
k s2

k = 1 (for details, see
Appendix A).

As a theoretical tool, TPD has previously been used
to classify the nonlocal and entangling content of uni-
taries [5–7] and also for analysis of the time evolution
of quantum many-body systems [8] and quantification of
quantum chaos [9,10]. Recently, TPD has been used
to construct entanglement witnesses [11]. While these
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advances motivate a systematic method to obtain the TPD
of a quantum operator, current approaches are limited to
classical resources.

Van Loan and Pitsianis [3,12] have developed a clas-
sical algorithm to find the TPD of an operator T, not
necessarily unitary, using the singular-value decomposi-
tion of a reordered version of T. In quantum information
processing, the operator of interest will typically require
classical memory that grows exponentially in the num-
ber of qubits, making such classical methods inaccessi-
ble. While the measurement of Schmidt decompositions
on quantum states has already been thoroughly studied
[13–15], works on the operator level remain limited to
specific problems that can be treated analytically [5,7,16].

Here, we bring the tensor-product decomposition into a
quantum algorithmic framework. In particular, we present
a hybrid quantum-classical algorithm that performs the
quantum tensor-product decomposition (QTPD) described
in Eq. (1) for a unitary matrix U with a known quan-
tum circuit representation. If we assume an asymmetric
split for which dA � dB, QTPD provides the operators Ak
in classical memory, whereas the Bk are accessed as a
quantum resource distilled out of U. The complete
algorithm is visualized in Fig. 1.

We discuss a number of immediate applications and
new directions for future research that are enabled with
QTPD. Alongside low-rank approximations, QTPD pro-
vides a tool for studying entanglement, with application
to entanglement witnesses and measures of entanglement
generation [6,11], classically assisted simulation of (open)
quantum dynamics [17–19], and low-depth compilation
techniques [20]. The fact that the Ak are stored classi-
cally goes hand in hand with the philosophy of hybrid
quantum computing, which is to use quantum resources
as little as possible but in the most crucial step. We note,
however, that QTPD collects all necessary data from the
quantum computer at the start of the algorithm and does
not require a hybrid quantum-classical optimization loop
[21]. We demonstrate QTPD and its applications on the
time-evolution operator of an isotropic Heisenberg model.

II. QUANTUM TENSOR-PRODUCT
DECOMPOSITION

We introduce QTPD in two steps. First, a matrix rep-
resentation of the action on HA is captured via tomog-
raphy and, second, we discuss a distillation technique

FIG. 1. A summary of quantum tensor-product decomposition (QTPD). Given a unitary operation U as a quantum resource, it is
decomposed into the form of Eq. (1) in two steps. First, the Choi state of U is prepared and tomography is performed on the subsystem
HA. The classical snapshot ρT of the state ρ of subsystem HA is then classically diagonalized to obtain the tensors Ak and the Schmidt
values sk [cf. Eq. (3)]. With this classical information, the nonlocality measure SA(U) introduced in Eq. (17) can be calculated. The
action of U on the environment via Bk is consequently obtained by a measurement of the observable Pk from Eq. (4) on the subsystem
HA. The green boxes denote fully classical steps and the blue boxes denote steps where a quantum computer is used.
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to subsequently capture the action on HB as a quan-
tum channel. We finally compare the required resources
for QTPD against its classical competitor, discuss possi-
ble adaptations for the near term, and comment on error
propagation.

A. The algorithm

We start with a unitary operator U that is accessible as
a quantum resource (i.e., it is accessible as an oracle or its
circuit representation is known). Our aim is to get a clas-
sical snapshot of the reduced action of U on HA, which is
implicit in the operators Ak in Eq. (1). Consider the action
of U on the two generalized Bell states

|�+
A/B〉 = 1√

dA/B

dA/B∑

i=1

|i〉|i〉, (2)

which are states on two copies of the subsystems HA
and HB, respectively (cf. the first circuit in Fig. 1).
After tracing out HB from U

(|�+
A 〉 ⊗ |�+

B 〉), we are
left with the mixed state of the vectorizations vec(Ak) =
(1/

√
dA)
∑dA

i |i〉Ak|i〉, i.e.,

ρA(U) = 1
dA

R∑

k

s2
k vec(Ak)vec(Ak)

†, (3)

which can be derived using the orthonormality of the Ak
and Bk (see Appendix B 1). Unvectorizing the vec(Ak) is
exponentially hard, in general [22]. Since dA is assumed to
be much smaller than dB, a tomography of the state ρA(U)
can be taken and stored as a classical snapshot. Diagonal-
izing ρA(U) finally yields the eigenvectors vec(Ak) with
corresponding eigenvalues s2

k . Note that this is mathemati-
cally equivalent to finding one half (on HA) of the Schmidt
decomposition of the Choi state of U.

The above algorithm not only yields information about
sk and Ak but we can also find Bk as a quantum resource.
Once the Ak are found, one can distill out the individual Bk.
That is, given a state |ψ〉, one can prepare Bk|ψ〉. This is
done via a partial measurement of the projector

Pk = Ak|�+
A 〉〈�+

A |A†
k (4)

on the state U
(|�+

A 〉 ⊗ |ψ〉) (cf. the second circuit in
Fig. 1 and see Appendix B 2 for a derivation). The pro-
jectors, Pk, are orthogonal, i.e., PkPl = δklPk, which is a
direct consequence of the orthonormality of the Ak. As
a result, they can be simultaneously measured, such that
every shot of the distillation circuit (cf. Fig. 1) yields the
normalized output state Bk|ψ〉/‖Bk|ψ〉‖ with probability
pk = s2

k ‖Bk|ψ〉‖2. Note that
∑R

k=1 pk = 1 from unitarity of
U (for details, see Appendix B 2).

If one is interested in the action of a specific Bk only,
the distillation process involves postselection on the out-
come of the partial measurement. This comes with a sam-
ple overhead of O (1/pk) = O

(
1/s2

k ‖Bk|ψ〉‖2), which is
never a serious issue. The overhead becomes large when
either ‖Bk|ψ〉‖ or sk become small. In the first case, the
output state is close to the zero vector and in the second
case, the sampled tensor component is a small contribution
in a low-rank approximation of U.

QTPD can be used to determine such approximations to
U of a specified rank. A set of operators {Ck} and {Dk},
such that the 2-norm

∥∥∥∥∥U −
r∑

k

tkCk ⊗ Dk

∥∥∥∥∥ (5)

is minimal, is called a rank-r approximation. We have
introduced the positive real-valued scalars tk following the
same convention as in the tensor-product decomposition
of U. The special case r = 1 from Eq. (5) corresponds
to the well-known nearest Kronecker problem [3,12]. The
solution to minimize Eq. (5) is the sum of product opera-
tors,

∑r
k skAk ⊗ Bk, that correspond to the largest eigen-

values {s2
k}r

k=1 of ρA(U) [cf. Eq. (3); for a proof, see
Appendix C 1].

As the sk and the Ak are classically stored but the Bk
are not, we cannot classically store a low-rank approxima-
tion. A low-rank approximation can be used to suppress the
sample complexity of QTPD whenever the sample bud-
get is limited. This allows us to resolve just the singular
values, sk, that are sufficiently large and still provide a
good approximation of U. In particular, if ε is the toler-
able error of resolving the largest eigenvalues of ρA(U),
then the sample complexity scales as O

(
R(d2

A/ε
2)
)

[23].
Hence, we achieve an ε-close approximation to ρA(U)
in the operator norm by dropping every s2

k < ε. A low-
rank approximation, in which the Bk are accessible on a
quantum computer, as described above, can be seen as an
application of QTPD. It differs from the applications that
are discussed in Sec. III, as it is always applied along with
tomography.

B. Resources for QTPD

QTPD has the obvious advantage over classical meth-
ods that the unitary U can be loaded as a quantum circuit.
Since the Bell-pair creation can be executed in depth 2, the
depth of QTPD is primarily given by the depth of the cir-
cuit U. The run time of QTPD is hence dominated by the
sample complexity of the tomography, which in this case is
Õ
(
R(d2

A/ε
2)
)

[23]. In memory, QTPD comes with a linear
overhead of n ancilla qubits and requires classical memory
to store O

(
Rd2

A

)
complex numbers in the worst case.

The B-distillation step is similar in depth and admits
a smaller sample complexity O

(
s−2

k0

)
, where sk0 is the
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smallest coefficient to be resolved. It also only needs nA
ancilla qubits and no additional classical memory.

A classical method to find the TPD of U goes back to van
Loan and Pitsianis [3], who have shown that the operator
R(U) ∈ Mat(d2

A × d2
B,C) with permuted elements, such

that

R(U) =
∑

k

skvec(Ak)vec(Bk)
†, (6)

encodes the tensor factors in its singular-value decompo-
sition. The tensor factors Ak and Bk can be derived as
the unvectorized left and right eigenvectors of R(U) and
the sk are its singular values. If we neglect the run time
for reshaping U into R(U), the bottleneck of the van
Loan and Pitsianis algorithm comes from the numerical
solution for the singular-value decomposition, which is
O
(
d2

Bd2
AR
)

[24,25]. The factor R can be further weakened
by randomization techniques [25].

This, together with the required classical memory to
store the d2 complex elements of U, makes the classi-
cal algorithm uncompetitive for large dimensions d. To be
precise, QTPD achieves a superpolynomial speed-up of a
factor Õ

(
d2

Bε
2
)

and memory savings by a factor of d2
B/R,

both of which grow exponentially in system size. If U is
given as a sparse matrix, Krylov-subspace methods can be
employed, which lower the required memory but not the
run time [25].

C. Circumvention of doubling the system size

Next to the inevitable scaling in subspace dimension
[22], the greatest challenge within QTPD in the near term
will be to keep the entangled Bell pairs coherent until
measurement. Further, small quantum processors with fast
readout and long coherence times are most efficient when
memory requirements are traded off against run time.

To this end, the effect of the Bell pairs |�+
A/B〉 is reduced

to an average over a basis of HA and HB, respectively.
In every run, a random initial state drawn from a basis of
choice (e.g., the computational basis) is fixed. The output
state for a fixed basis state |jA〉 of HA and |jB〉 of HB is

∑

k

skAk|jA〉 ⊗ Bk|jB〉. (7)

Averaging over the basis in HB accounts for an effective
partial trace, using

E|b〉[〈b|BkBl|b〉] = 1
dB

dB∑

j =1

〈j |BkB†
l |j 〉

= 1
dB

Tr(BkB†
l ) = δkl, (8)

where the expectation value is taken over the discrete set
of basis states in HB. After tracing out HB, we are thus

left with

∑

k

s2
kAk|jA〉〈jA|A†

k . (9)

If we keep the input-output relation within HA, the vector-
ization of the Ak can be reconstructed using tomography
and summing over all basis states in HA:

dA∑

j =1

|j 〉Ak|j 〉 =
√

dAvec(Ak). (10)

Recall the definition of the normalized vectorization above
Eq. (3). As a result, the same state as in Eq. (3), coming
from the parallelized version using the Choi state, can be
reconstructed in classical postprocessing. As opposed to
the Choi-state-based version, however, the run time of this
sequential version of QTPD is increased by the repeated
tomography for a fixed basis state |j 〉 ∈ HA, yielding an
overhead factor of dA in run time. Convergence to the mean
value from averaging over HB, on the other hand, does not
introduce an additional sample overhead, as it is equivalent
to tracing out HB as part of the Choi-state-based approach.

D. Error analysis

In general, the error from shot noise in tomography
will be operator valued and can be viewed as the dif-
ference between the correct state, ρA(U), and the classi-
cal snapshot, ρA(U)(T), i.e., ε(T) = ρA(U)− ρA(U)(T). The
shot-noise error, ε(T), propagates through QTPD and thus
introduces errors to the sk, Ak, and Bk. We discuss the
technical details in Appendix D 1 and briefly present the
results here. In order to understand how errors propagate,
we consider the errors of the eigenvalues and eigenvectors
of ρA(U)(T) separately:

ρA(U) = ρA(U)(T) + ε(T)

= (V − ε(V))(D − ε(D))(V − ε(V))†+ε(T). (11)

Our aim is to express the errors of sk and Ak via ε =
max

(∥∥ε(D)
∥∥ ,
∥∥ε(V)

∥∥). To this end, we define the error mea-

sures ε(S)k = s2
k − s(T)k

2
and ε

(A)
k = Ak − A(T)k . With these

measures, we can trivially relate

∥∥ε(D)
∥∥ = ∥∥D − D(T)

∥∥ =
√∑

k

(
ε
(S)
k

)2
≤ dAε

(S), (12)

where the factor dA can be removed by appropriate normal-
ization of the 2-norm in order to represent an average-case
error. Less trivially, but after a straightforward calculation
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(see Appendix D 1), we can also relate

∥∥∥ε(A)k

∥∥∥ =
∥∥∥Ak − A(T)k

∥∥∥ =
√

−2
∣∣∣〈A(T)k |ε(A)k 〉

∣∣∣, (13)

and with this finally

∥∥ε(V)
∥∥ = ∥∥V − V(T)

∥∥ =
√√√√−2

∑

k,l

∣∣∣∣∣
〈A(T)k |ε(A)l 〉

dA

∣∣∣∣∣. (14)

We can show that
∥∥ε(T)

∥∥ ≤ 3ε, which completes the prop-
agation from tomography error to the tensor factors Ak.
Applying the faulty A(T)k for distillation of the effective
action B(T)k as a quantum resource imposes further error
propagation on the projector Pk, defined in Eq. (4). Tak-
ing into account appropriate (faulty) normalization factors,
we can also bound the error of B(T)k in the following way:

∥∥∥
(

Bk − B(T)k

)
|ψ〉
∥∥∥ ≤

(
1 + 1√

2

)
1√
dA

∥∥∥ε(A)k

∥∥∥+ O(ε2).

(15)

Altogether, we show that the error contributions in sk, Ak,
and Bk are linear in the 2-norm

∥∥ε(T)
∥∥.

III. APPLICATIONS

The quantum tensor-product decomposition allows us
to find and store the tensor components Ak in classical
resources and Bk in a quantum resource. With this, we can
solve a number of tasks of interest.

A. Nonlocality

One application of QTPD lies in measuring the nonlo-
cality of the action of U, also called operator entanglement
entropy [8–10], which further bounds how much entan-
glement U generates. The vectorization of U allows for
a mapping of operators to quantum states. On this space,
we can employ entanglement entropy measures that are
defined for states. Consider the vectorized operator

vec(U) =
R∑

k

sk vec(Ak)⊗ vec(Bk). (16)

If we trace out the B subsystem, we obtain exactly the
mixed state of Eq. (3). The von Neumann entanglement
entropy of this state reads

SA(U) = −
R∑

k

s2
k log s2

k (17)

and is a measure of the nonlocality of the action of U. The
nonlocality SA(U), sometimes referred to as the Schmidt

strength [7,16], can be determined classically after a suc-
cessful QTPD and admits a linear contribution from the
tomography error to leading order (cf. Appendix D 3).

Note that although the nonlocality of product operations
vanishes, SA(A ⊗ B) = 0, Eq. (17) alone is not a good mea-
sure of entanglement generation. For instance, the SWAP
gate, which maps product states to product states, reaches
the maximal value for Eq. (17). To measure entanglement
generation, one considers the entangling power of a cir-
cuit [6,26,27]. Several measures for entangling power have
been proposed, two of which we discuss in Appendix E.

B. Mereology

If U is generated by a physical Hamiltonian, one might
be interested in searching for a bipartite factorization
(sometimes referred to as the tensor-product structure) of
the global Hilbert space such that the two subsystems
are decoupled, i.e., U = UA ⊗ UB. Concretely, consider a
Hamiltonian describing two interacting subsystems, H =∑

i H A
i ⊗ H B

i , where H A
i and H B

i are operators acting on
states describing subsystems A and B in a Hilbert space
factorized as H = HA ⊗ HB. Since this factorization is
essentially a particular choice of a global basis, it can be
related to another one by a unitary [28], HA ⊗ HB

V−→
HA′ ⊗ HB′ , where V is a (nonlocal) unitary and states in
A′ and B′ describe physically different subsystems than A
and B. In particular, it may be possible to find a factor-
ization of H such that the Hamiltonian is decoupled, i.e.,
VHV† = HA′ + HB′ .

Some have used this approach, with the goal of minimiz-
ing the interaction Hamiltonian between two subsystems,
to understand the emergence of classicality [29]. Practi-
cally, this approach appears in cases in which taking a
certain transformation can lead to analytically tractable
forms of the Hamiltonian, e.g., in the case of the Jordan-
Wigner transformation that transforms certain interacting
qubit Hamiltonians to a set of free fermionic operators.
While QTPD does not itself find the optimal basis V that
will lead to approximately decoupled dynamics, it can
be used to evaluate the cost function as part of another
algorithm (such as the one proposed in Ref. [30]). Two
candidates to minimize are

∑R
k=2 sk or 1 − s2

1, where the
sk are the singular values in the tensor-product decompo-
sition of the time propagator U = Ve−iHtV† =∑R

k skAk ⊗
Bk. The existence of such a decoherence-free split
[31–33] is tightly connected to the spectral properties of
U (see Appendix F 1 for an example and Appendix F 2 for
a necessary and sufficient condition).

C. Fast quantum transform and classical simulability

A mereology algorithm can be further utilized to find an
efficient compilation of a target unitary U. If there exists
a basis in which U decouples, U = V†(UA ⊗ UB)V can be
implemented with a single layer after rotating into the basis
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V. A divide-and-conquer approach successively reduces
the action of U into a tensor product of M local gates, i.e.,
VUV† = UA(1) ⊗ UA(2) ⊗ · · · ⊗ UA(M ) . Such a fast quantum
transform requires a rotation into the basis V, which is
entangling, in general.

More generally, for an arbitrary U, the closest fast quan-
tum transform can be found via iterative QTPD, which
can be performed efficiently if there is a single dominant
coefficient s1···1 in the multipartite factorization

U =
R1,...,RM∑

j1,...,jM

sj1···jM A(1)j1 ⊗ · · · ⊗ A(M )
jM . (18)

We have used the letter A for all operators to emphasize
that the local dimensions are small enough to be classically
simulated.

We can use the nearest unitary representations Um of
the tensor factors A(m)1 of the rank-1 approximation of U
to construct a fast quantum transform approximation to U.
We show that the error is O(

√
1 − s1···1). For this, we sepa-

rate the error of the fast quantum transform into two terms,
one representing the error from truncating all terms from U
except s1···1 and the other capturing the error by nearest uni-
tary approximation (1/

√
2dA(m) )

∥∥∥A(m)1 − Um

∥∥∥ = ε(m) > 0.
Writing 1 − s1···1 = εs > 0, we obtain

1√
2d

‖U − U1 ⊗ · · · ⊗ UM‖ ≤ √
εs

+
√√√√1

2
ε2

s +
M∑

m=1

(
ε(m)
)2 (19)

(for details, see Appendix C 2).
If there is not only one but a polynomial number of

dominant coefficients, a better approximation to the action
of U can be achieved through a rank-r approximation. In
this case, the probability of sampling from the dominant
Bk is suppressed by a polynomial factor. The simulation
of a fast quantum transform, UA(1) ⊗ UA(2) ⊗ · · · ⊗ UA(M ) ,
is not only classically efficient but it is also made up
of low-entangling transformations. Instead of achieving a
close unitary approximation, the goal here is to bound the
bond dimensions necessary for a faithful tensor-network
representation.

Since the nonlocality measure SA(U) bounds the entan-
glement generation, it can be used as a witness to scan
for clusterings of the Hilbert space with low entanglement
between the clusters. If a cluster HA(1) , on which the action
of U is low entangling, is found, the entanglement gener-
ation between a second cluster HA(2) and its environment
HA(3) ⊗ · · ·HA(M ) will be bounded (cf. Fig. 2) as well. If
the nonlocality of the full unitary U is bounded, it can thus
be written as a matrix-product operator [34], of which the

(a)

A B

dA dB

dA dB

D

(b)

A(2)A(1) A(M)

d
A

(2)
1

d
A

(1)
1

d
A

(M)
1

d
A

(2)
1

d
A

(1)
1

d
A

(M)
1

D2D1 DM−1...

FIG. 2. Low-entanglement clustering for a matrix-product-
state representation. (a) Upon division into subsystems A and
B, a matrix-product operator representing U requires a certain
bond dimension D ≤ d2

A, which is upper bounded by the lower
dimension d2

A ≤ d2
B and dependent on the entanglement between

A and B. (b) The multipartite decomposition of U into A(m)jm
allows for estimating the necessary bond dimensions Dm, which
can be deduced by a low-rank approximation of the multipartite
decomposition [cf. Eq. (18)].

fast quantum transform is an extremal case. This allows for
an efficient classical representation of the output of U, e.g.,
via matrix-product states [35] or projected entangled-pair
states [36].

Fast quantum transforms have conceptual similarities
to entanglement forging [37], which is used to simulate
a larger system by simulating the subsystems separately
on a smaller quantum chip, if there are only few connect-
ing gates in the compilation of U. As opposed to QTPD,
these methods are typically concerned with symmetric
splittings and aim for a reduction of quantum resources in
the simulation of U instead of finding classically simulable
subsystems.

D. Open quantum dynamics

QTPD is applicable to studying entangling dynamics or
the decoherence of subsystem A into subsystem B. If we
start with a product state |ψA〉 ⊗ |ψB〉, the evolved state
within subsystem A will be mixed. The effective open
quantum dynamics can be written in the form

σA = TrB
(
U|ψA〉 ⊗ |ψB〉〈ψA| ⊗ 〈ψB|U†)

=
R∑

k,l

λklAk|ψA〉〈ψA|A†
l , (20)

where λkl = sksl〈ψB|B†
l Bk|ψB〉. While the operators Ak

and the state |ψA〉 can be stored on a classical machine,
the λkl are not a priori accessible. Instead, the over-
laps 〈ψB|B†

l Bk|ψB〉 have to be determined using modified
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Hadamard tests or SWAP tests [4,38] with different outputs
of the Bk distillation via projective measurement of Eq. (4).

Once the λkl and Ak are stored classically, it is possible to
simulate the open dynamics via Eq. (20) for any initial state
|ψA〉. Equation (20) can be transformed into its Kraus rep-
resentation, e.g., by diagonalizing the Choi matrix. In this
manner, QTPD can be used as a quantum enhanced classi-
cal simulation algorithm [21] for open-system simulation.
That is, quantum hardware is crucial to obtaining the Ak but
then Eq. (20) acts as a classical surrogate to simulate the
dynamics of any initial state and observable. Note the par-
allels with process learning [39,40], which aims to learn a
quantum channel from measurements of local observables
using classical resources, such as neural networks.

The error in predicting observables on σA can be
bounded by the trace norm to the faulty prediction σ (T)A
from tomography, which scales linearly with the tomog-
raphy error

∥∥ε(T)
∥∥ as we show in Appendix D 3. A

naive quantum simulation with fixed initial state and fixed
observable suffers from shot noise that has the same scaling
in samples as ε(T).

IV. NUMERICAL EXPERIMENT

We demonstrate QTPD on a Hamiltonian-simulation
problem for the isotropic Heisenberg model. To this end,
we numerically solve the tensor decomposition by exact
diagonalization of the unitary time evolution generated by
the Hamiltonian

H = −J
∑

〈i,j 〉

(
XiXj + YiYj + ZiZj

)
, (21)

with the Pauli matrices {X , Y, Z} and the sum over nearest
neighbors denoted by 〈i, j 〉. We discuss one system of toy
size, the dynamics of which we can analytically solve, and
a separate system on a two-dimensional (2D) grid that is
small enough to be checked by exact diagonalization.

Let us consider a model of two qubits first. We show
in Appendix H that the time-evolution operator generated
by the Heisenberg Hamiltonian incorporates an oscilla-
tion between the identity and the SWAP operator for certain
times. In between those times, entanglement is alternately
generated and reduced. It is thus natural to view each qubit
as a subsystem and study the open dynamics on one of
the two qubits. Larger systems can be split in two and the
swapping of excitations from HA to HB and vice versa can
be studied, as well.

When more than two qubits are exchanging excitations,
the overall dynamics are an ensemble of interfering oscil-
lations, which depend on the initial state and the geometry
of the interaction graph. To study both the distribution of
excitations and the entanglement between the split into
subsystems HA and HB, we stroboscopically measure the
total magnetization M (σA(t)) of subsystem HA, as well as

the von Neumann entanglement entropy of the output state
S(σA(t)),

MA(σA(t)) = Tr

⎛

⎝
∑

i∈IA

ZiσA(t)

⎞

⎠ (22)

S(σA(t)) = − Tr (σA(t) log σA(t)) , (23)

where IA denotes the index set for qubits in subsystem
HA. For the sake of a clear comparison, we normalize all
observables to take values between 0 and 1. This means
that we divide the state entanglement entropies by log(d)
and the operator nonlocalities by log(d2), where d is the
dimension of the Hilbert space. The magnetization is trans-
formed into an occupation number MA → 1

2 − (MA/2nA),
where nA denotes the number of qubits in subsystem HA.

In Fig. 3(a), we show the results for the two-qubit
system. The nonlocality reaches its maximal value twice
during the time interval t ∈ [0, (π/J )], at which point the
time-evolution operator oscillates between the SWAP and
the identity operator. In between, U generates entangle-
ment on the trial state, which is shown in green. We use
QTPD to classically simulate the open quantum dynam-
ics following Eq. (20). Starting with the initial state |1〉 ⊗
|0〉, we simulate the time evolution of the density matrix
describing qubit 1 and measure the magnetization MA and
the entanglement entropy S from Eqs. (22) and (23). The
excitation transfer between the two qubits is reflected in
the oscillation of the magnetization between the extremal
values 0 and 1. At these points, the entanglement entropy
reaches zero, indicating an oscillatory SWAP between |10〉
and |01〉. The data from QTPD are in exact agreement with
the analytical expressions derived in Appendix H.

On a 3 × 2 qubit grid on which excitations can swap
between neighboring qubits, the overall dynamics are more
complicated. While the nonlocality of the time-evolution
operator quickly rises close to the maximum value, it
no longer returns to zero within the time interval t ∈
[0, (4π/J )]. The trial initial state, |110000〉, that is evolved
in time, does not return to a product state in the considered
time interval, which shows that part of the nonzero nonlo-
cality is in fact entanglement generated by U. We discuss
two measures of entangling power (see Appendix E) on
the example of the Heisenberg model in Appendix H, in
order to specify the relation between nonlocality and the
entangling properties of U.

V. CONCLUSIONS

In typical problems of quantum information process-
ing, we are given a quantum circuit unitary U as a
quantum resource. A quantum tensor-product decompo-
sition enables the separation of a small subsystem HA
from its environment and captures the effective action
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(a)

(b)

FIG. 3. The open quantum dynamics for the isotropic Heisen-
berg model. We study a subsystem of (a) one of two neighboring
qubits and (b) two qubits of a two-dimensional (2D) grid of 3 × 2
qubits. The blue points show the nonlocality measure SA(U) for
the respective time-evolution operator, while yellow and green
contain the total magnetization MA(σA) and the entanglement
entropy S(σA) of the time-evolved state. The initial state of the
total system reads |1〉 ⊗ |0〉 in (a) and |11〉 ⊗ |0000〉 in (b). In
(a), the solid curves represent analytical predictions derived in
Appendix H.

of U on HA. This allows one to classically predict the
entanglement features of U and postprocess mereology
and short-depth-compilation algorithms. Furthermore, it
enables the study of open quantum dynamics interpret-
ing the two subsystems, HA and HB, as system and
environment, respectively. A generalization to decom-
pose arbitrary tensors does not seem straightforward (see
Appendix G). Using block-encoding techniques, QTPD
could be applied to arbitrary tensors. A hurdle that arises in
that case is to tame the sample complexity when sampling
from the ancillary qubits needed for the block encod-
ing of matrix-product operators [41]. We remain curious
about extending QTPD to include quantum states (possibly
via block encoding), where the sum of the QTPD coeffi-
cients,

∑
k sk, may be used as a criterion to detect bipartite

entanglement (see “realignment criterion” in, e.g., Refs.
[1,42,43]) or verify matrix-product-operator structures of
density operators [44].

QTPD paves the way for entanglement investigations
at the operator level. A natural next step is to com-
bine QTPD with an iterative search for quasiclassicality
emerging in quantum systems. The nonlocality that upper
bounds the entangling power can be used as a cost func-
tion to minimize the growth of entanglement with the

environment. Also, in reverse, QTPD can be used to verify
decoherence-free structures [31].

Depending on the available resources in memory and
connectivity, either the preparation of Bell pairs in depth
2 or the sequential approach can be used in a near-term
application including QTPD. For medium-term quantum
computing, a doubling in qubit number is within the scal-
ing plans of modern quantum computing architectures,
which typically strive for exponential growth. We can thus
foresee an application in the near future that, e.g., uti-
lizes 120 qubits (or 60 qubits in sequence) to solve the
open dynamics of a (15 + 45)-qubit system, a simulation
problem that is no longer accessible with classical meth-
ods. One such application is the integration of QTPD into
dynamical mean-field methods, e.g., for the simulation
of impurity models. We leave these directions for future
research.

Alternative process-learning methods [39,40,45] make
use of quantum machine-learning-assisted postprocessing.
While a comparison of the efficiency is not immediate,
QTPD provides a stable solution using tomography instead
of quantum optimization.

Similar to process-learning approaches, QTPD can be
generalized to capture the action of an arbitrary quan-
tum channel E using its Choi state. Quantum circuits on
near-term hardware will inevitably suffer from noise and
therefore a QTPD on a noisy circuit is a natural next step.
If the hardware allows for the intended simulation of a
specified quantum channel E , QTPD along with its appli-
cations can be straightforwardly generalized, substituting
the unitary U by E .
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APPENDIX A: AMBIGUITIES IN THE TENSOR
DECOMPOSITION

The tensor-product decomposition is nonunique. Every
tensor-product basis representation of operators in HA/B
gives a decomposition of the form of Eq. (1), not neces-
sarily, but potentially, with minimal rank, Rmin. Using the
Gram-Schmidt theorem, we can assume the basis {Ak ⊗
Bk}k that appears in Eq. (1) to be orthogonal with respect
to the Hilbert-Schmidt inner product, i.e.,

〈Ak ⊗ Bk|Al ⊗ Bl〉 = 〈Ak|Al〉〈Bk|Bl〉
!= δkl ‖Ak‖2 ‖Bk‖2 . (A1)

Note that this ensures orthogonality of some of the Ak
or Bk but not all. Let us assume for now that 〈Bk|Bl〉 =
δkl ‖Bk‖2, so that Eq. (A1) is satisfied. A second symme-
try is scale invariance, Ak ⊗ Bk = (λAk)⊗ ((1/λ)Bk), for
λ ∈ C. With this, we can, e.g., fix the norms of the Bk to be
equal to the dimension of HB, i.e., ‖Bk‖2 = dB. Moreover,
we can rotate the Ak and simultaneously counter-rotate the
Bk with a linear superoperator L : span{Ak} → span{Ak}
that maps L(Ak) =∑j LjkAj . L can also be interpreted
as a superoperator on span{Bk} with the analogue action
L(Bk) =∑j LjkBj . If we assume L to be unitary, i.e.,∑

k LikL∗
jk =∑k LkiL∗

kj = δij , we can straightforwardly see
that

U =
∑

k

Ak ⊗ Bk =
∑

k

L†(L(Ak))⊗ Bk

=
∑

i,j ,k

L∗
jiLjkAi ⊗ Bk

=:
∑

j

Ãj ⊗ B̃j (A2)

is also a tensor decomposition. We have defined Ãj :=∑
i L∗

jiAi and B̃j :=∑i LjiBi. Whenever the boundary of
the sum is omitted, we understand the sum to go through
k ∈ {1, . . . , R}. Unitarity of L implies that the orthogonal-
ity of the Bk remains. Further, one can choose L such
that the Ak are also orthogonal. To see this, define the
linear operator Okl = 〈Ak|Al〉 and the transformed version
Õkl = 〈Ãk|Ãl〉. Inserting the definition of Ãk, we obtain

Õkl =
∑

i,j

LkiL∗
lj Oij = (LOL†)kl. (A3)

Since O is Hermitian, we can choose L† to consist of the
eigenvectors of O , such that with this choice

Õkl = 〈Ãk|Ãl〉 = δkl ‖Ak‖2 . (A4)

With slight abuse of notation, we omit the tilde in the fol-
lowing and store the information about the norms ‖Ak‖
separately in scalars sk = (‖Ak‖/dA), which normalizes the
Ak accordingly. Finally, we can also choose the sk to be
non-negative real numbers, as any complex phase can be
absorbed into the Bk, e.g.,

skeiφk Ak ⊗ Bk = skAk ⊗ (eiφk Bk). (A5)

This transformation does not alter the norms and orthog-
onality of the Bk. We have now chosen a specific ten-
sor decomposition U =∑k skAk ⊗ Bk, for which we can
assume the following without loss of generality:

(1) The operators Ak and Bk are orthogonal with respect
to the Hilbert-Schmidt inner product.

(2) The Ak and Bk are normalized, such that ‖Ak‖2 = dA
and ‖Bk‖2 = dB.

(3) The sk are non-negative real numbers.

By unitarity of U, the sk are further constrained to sum up
to one, i.e.,

∑
k s2

k = 1.

APPENDIX B: TWO-STEP QUANTUM
TENSOR-PRODUCT DECOMPOSITION

In the following, we provide technical details for the
proposed algorithm. QTPD involves two steps. First, the
operators Ak acting on the smaller subsystem are obtained
classically together with the coefficients sk via diagonal-
ization of a tomographic snapshot of a Choi state. In the
second step, this information is used to construct a pro-
jective measurement that allows the distillation of Bk out
of U.

1. Classical snapshot state

The first step of QTPD involves a tomography of the
density matrix ρA(U) of the Choi state of U reduced to
subsystem A, which we calculate in the following. First,
we define the full Choi state:

|�(U)〉 := (I ⊗ U ⊗ I)|�+
A 〉|�+

B 〉 =
R∑

k

dA/B∑

iA,iB,

sk|iA〉

⊗ Ak|iA〉 ⊗ |iB〉 ⊗ Bk|iB〉. (B1)

After tracing out HB, we obtain
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U

|Φ+
A〉

|Φ+
B〉

ρA(U) ρA(U) = TrB (|Φ(U)〉〈Φ(U)|)

=
1

dAdB

R∑

k,l

dA/B∑

iA,iB ,jA,jB

sksl Tr (|iB〉〈jB |) Tr
(
Bk|iB〉〈jB |B†

l

)
|iA〉〈jA| ⊗ Ak|iA〉〈jA|A†

l

(B2)

Executing the trace and using the orthonormality of the Bk yields

ρA(U) = 1
dAdB

R∑

k,l

dA/B∑

iA,iB,jA,jB

sksl δiBjB 〈jB|B†
l Bk|iB〉 |iA〉〈jA| ⊗ Ak|iA〉〈jA|A†

l

= 1
dAdB

R∑

k,l

dA∑

iA,jA

sksl〈Bl|Bk〉|iA〉〈jA| ⊗ Ak|iA〉〈jA|A†
l

= 1
dA

R∑

k

s2
k

dA∑

iA,jA

|iA〉〈jA| ⊗ Ak|iA〉〈jA|A†
k . (B3)

Finally, we identify vec(Ak) = (1/
√

dA)
∑dA

i |i〉 ⊗ Ak|i〉, which yields the result. Since the Hilbert-Schmidt product and
the Euclidean inner product of vectorized operators are the same, we can read off the eigenvectors and eigenvalues of
ρA(U):

ρA(U) · vec(Am) = 1
dA

∑

k

s2
kvec(Ak)〈Ak|Am〉 = s2

m

dA
vec(Am). (B4)

2. B distillation

To distill the action of U on the larger subsystem HB, we need to measure the projector Pk = Ak|�+
A 〉〈�+

A |A†
k on HA.

The projective property of the Pk follows directly from P†
k = Pk and P2

k = Pk. The output state of the distillation circuit
can be straightforwardly derived in graphical notation:

U

|Φ+
A〉

|ψ〉 Bk|ψ〉
‖Bk|ψ〉‖

Pk 1
dA

R∑

k

sk

Ak

Bk

A†
m

|ψ〉
= smBm|ψ〉,

(B5)

where we have used the orthonormality of the Ak. The factor sm arises as we are not dealing with a unital channel.
Measuring Pm involves postselection on one of the generalized Bell states |�+

A 〉. We can also use an algebraic formula to
prove the above statement. The partial measurement of the A subsystem yields the (unnormalized) state

PmU|�+
A 〉|ψ〉 =

R∑

k

skAm|�+
A 〉〈�+

A |A†
mAk|�+

A 〉Bk|ψ〉 =
R∑

k

skAm|�+
A 〉 〈Am|Ak〉

dA
Bk|ψ〉

= smAm|�+
A 〉Bm|ψ〉, (B6)

where we have used ‖Ak‖2 = dA. We arrive at the same result as in Eq. (B5) modulo tracing out HA. In practice, we
want to construct a single measurement that outputs the states of Eq. (B6) for all m ∈ {1, . . . , R}. This measurement can
be described by the quantum channel E [ρ] =∑R

m PmρPm + QρQ, where Q = 1 −∑m Pm is necessary to make E trace
preserving; however, the action of Q on the input state of Eq. (B5), ρ = U

(|�+
A 〉〈�+

A | ⊗ |ψ〉〈ψ |)U†, vanishes. The output
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state is thus the following mixed state:

E [ρ] =
∑

m

s2
m

(
Am|�+

A 〉〈�+
A |A†

m

)⊗ (Bm|ψ〉〈ψ |B†
m

) TrA(.)−−−→
∑

m

s2
mBm|ψ〉〈ψ |B†

m, (B7)

describing a statistical mixture of the states of Eq. (B6) with probabilities pk = Tr
(
PkU(|�+

A 〉〈�+
A | ⊗ |ψ〉〈ψ |)U†Pk

) =
s2

k ‖Bk|ψ〉‖2. Note that from unitarity of U, we have
∥∥U(|�+

A 〉 ⊗ |ψ〉)∥∥2 = ∥∥|�+
A 〉 ⊗ |ψ〉∥∥2 = 1 and therefore

1 = ∥∥U(|�+
A 〉 ⊗ |ψ〉)∥∥2 =

R∑

k,l=1

sksl
1
dA

〈Ak|Al〉〈ψ |B†
kBl|ψ〉 =

R∑

k=1

s2
k ‖Bk|ψ〉‖2 =

R∑

k=1

pk. (B8)

APPENDIX C: OPERATOR APPROXIMATIONS USING THE SINGULAR-VALUE DECOMPOSITION

To show that a collection of the Ak and Bk also yield an optimal low-rank approximation, we need to show that they
form a global minimum of Eq. (5). The approximation of U by a rank-k tensor decomposition is equivalent to finding a
rank-k approximation of R(U) from the van Loan and Pitsianis algorithm, i.e.,

∥∥∥∥∥R(U)−
r∑

k

tkvec(Ck)vec(Dk)
†

∥∥∥∥∥ . (C1)

We will show that tk = sk, Ck = Ak, and Dk = Bk ∀ k minimizes Eq. (C1). This statement has been proven in Ref. [46]
using a distance induced by the spectral norm ‖·‖∞. The generalization to the Frobenius distance is well known but proofs
are often omitted in the literature. We present one here.

1. Optimal low-rank approximation

Proposition 1. Let T ∈ L (H ) with a singular-value decomposition T =∑R
i=1 σiuiv

†
i . Let Tr be the truncation of T to

its r largest singular values, i.e., Tr =∑r
i=1 σiuiv

†
i . Then,

min
rank(S)=r

‖T − S‖ = ‖T − Tr‖ =
√√√√

R∑

j =r+1

σ 2
j . (C2)

Proof. The second equality follows directly from the definition of the Frobenius norm. To show the first equality,
consider an arbitrary rank-r operator, S, and calculate the Frobenius distance

‖T − S‖2 =
d∑

i=1

σi(T − S)2 ≥
d−r∑

i=1

σi(T − S)2, (C3)

where we have denoted the ith singular value of matrix A by σi(A) and dropped the r smallest singular values to estimate
a lower bound. Let Tr+i−2 be the rank-(r + i − 2) approximation as defined above. We have

σr+i(T) = σ1(T − Tr+i−1) ≤ σ1(T − (T − S)i−1 − Sr). (C4)

Here, we have denoted the rank-k approximation of T by Tk. The inequality follows from the fact that the rank of (T −
S)i−1 + Sr is smaller or equal to the rank of Tr+i−1. Next, consider the inequality

σ1(A + B) ≤ σ1(A)+ σ1(B), (C5)

which is a direct consequence of the triangular inequality of the spectral norm. With this, we have

σ1(T − (T − S)i−1 − Sr) ≤ σ1(T − S − (T − S)i−1)+ σ1(S − Sr)

= σi(T − S)+ σr+1(S). (C6)
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Since S is rank r, we know that σr+1(S) = 0 and we are left with the overall inequality

σr+i(T) ≤ σi(T − S). (C7)

Returning to Eq. (C3), we can estimate

‖T − S‖2 ≥
d−r∑

i=1

σr+i(T)2 =
R∑

i=r+1

σi(T)2. (C8)

Taking the square root of both sides shows the statement. �

2. Nearest unitary approximation

In the extreme case in which U is close to a rank-1 operator, i.e., s1 ≈ 1 and sk ≈ 0 for k �= 1, we expect the dominant
product operator A1 ⊗ B1 to be close to a unitary. This means that A1 and B1 have to be close to unitaries UA and UB,
individually. In the following, we find the closest unitaries UA, UB to A1 and B1. This is a well-known problem that is
solved by setting all singular values to 1. The following proposition holds for arbitrary unitary-equivalent norms [47]. For
pedagogical reasons, let us review the proof for the 2-norm.

Proposition 2. Let T ∈ L (H ), with a singular-value decomposition T = U�V†. Then,

min
W†W=1

‖T − W‖ = ∥∥T − UV†
∥∥ . (C9)

Proof. From unitary invariance of the 2-norm, we can reformulate the minimization problem as follows:

min
W†W=1

∥∥U�V†−W
∥∥ = min

W†W=1

∥∥� − U†WV
∥∥ = min

W†W=1

‖� − W‖ , (C10)

where we have redefined the unitary W in the last step using the closedness of the unitary group. The 2-norm can be
calculated explicitly as

‖� − W‖2 = Tr(�2)+ Tr(W†W)− 2 Re [Tr(�W)]

= d +
d∑

k

(
σ 2

k − 2σk Re [Wkk]
)

, (C11)

where we have denoted the singular values by �kl = σkδkl. From unitarity of W, we know that Re [Wkk] ≤ 1 and thus

‖� − W‖2 ≥ d +
d∑

k

σ 2
k − 2σk =

d∑

k

(σk − 1)2 = ‖� − 1‖2 ∀ W. (C12)

Therefore, the closest unitary to T is UV†. �

The nearest unitary approximation can be used to find a fast quantum transform UA(1) ⊗ UA(2) ⊗ · · · ⊗ UA(M ) that
approximates the action of U. For a fast quantum transform, we need to iterate the unitary approximation for M tensor-
product factors. Doing so, we introduce two types of errors, one by a rank-1 approximation (cf. Proposition 1) and one by
the nearest unitary approximation of the dominant components A1 (cf. Proposition 2).

Proposition 3. Let U =∑R1,...,RM
j1,...,jM sj1···jM A(1)j1 ⊗ · · · ⊗ A(M )

jM be the multipartite tensor-product decomposition of a unitary

U, with normalized
∥∥∥A(m)jm

∥∥∥ = √dA(m) ∀ m ∈ {1, . . . , M }. Further, let Um = VmW†
m be the nearest unitary approximation of

A(m)1 = Vm�mW†
m (cf. Proposition 2) and (1/

√
2dA(m) )

∥∥∥A(m)1 − Um

∥∥∥ = ε(m) > 0, as well as 1 − s1···1 = εs > 0. Then,

1√
2d

‖U − U1 ⊗ · · · ⊗ UM ‖ ≤ √
εs +

√√√√1
2
ε2

s +
M∑

m=1

(
ε(m)
)2. (C13)
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Proof. We begin with splitting the error using the triangular inequality:

‖U − U1 ⊗ · · · ⊗ UM‖ ≤
∥∥∥s1···1A(1)1 ⊗ · · · ⊗ A(M )

1 − U1 ⊗ · · · ⊗ UM

∥∥∥+
∥∥∥∥∥∥

R1,...,RM∑

j1,...,jM �=(1,...,1)

sj1···jM A(1)j1 ⊗ · · · ⊗ A(M )
jM

∥∥∥∥∥∥
. (C14)

Let us consider the two terms separately. First, observe that, by construction,

〈A(m)1 |Um〉HS = Tr
(

A(m)†1 Um

)
= Tr

(
Wm�W†

m

) = Tr (�) =
dA1∑

k

σk ∀ m ∈ {1, . . . , M }, (C15)

which is real, i.e., 〈A(m)1 |Um〉HS = 〈Um|A(m)1 〉HS. Using this, we can relate the Hilbert-Schmidt product above to the 2-norm
error ‖P − Q‖2 = ‖P‖2 + ‖Q‖2 − 2 Re (〈P|Q〉HS) for any two operators P, Q. With this, we have

1
2d

∥∥∥s1···1A(1)1 ⊗ · · · ⊗ A(M )

1 − U1 ⊗ · · · ⊗ UM

∥∥∥
2

= 1
2

(
1 + s2

1···1 − 2
s1···1

d

∏

m

〈A(m)1 |Um〉HS

)

= 1 + s2
1···1

2
− s1···1

M∏

m

(
1 − 1

2dA(m)

∥∥∥A(m)1 − Um

∥∥∥
2
)

. (C16)

The function
∏

m(1 − xm) is convex in the domain xm ∈ [0, 1] ∀ m, so we can estimate
∏

m(1 − xm) ≥ 1 −∑m xm and
arrive at

1
2d

∥∥∥s1···1A(1)1 ⊗ · · · ⊗ A(M )

1 − U1 ⊗ · · · ⊗ UM

∥∥∥
2

≤ 1
2
(1 − s1···1)2 +

M∑

m

1
2dA(m)

∥∥∥A(m)1 − Um

∥∥∥
2

≤ 1
2
ε2

s +
M∑

m

(
ε(m)
)2

, (C17)

where we have used 1 − s1···1 = εs. For the second term of Eq. (C14), we use 1 − s2
1···1 = 2εs − ε2

s ≤ 2εs, which also
follows from convexity. Using the orthogonality of the A(m)jm for fixed m, the second term reads

1
2d

∥∥∥∥∥∥

R1,...,RM∑

j1,...,jM �=(1,...,1)

sj1···jM A(1)j1 ⊗ · · · ⊗ A(M )
jM

∥∥∥∥∥∥

2

= 1
2

R1,...,RM∑

j1,...,jM �=(1,...,1)

s2
j1···jM = 1 − s2

1···1
2

≤ εs, (C18)

where the second equality makes use of the normalization of the sk and the last inequality is convexity again. This
concludes the proof. �

APPENDIX D: ERROR PROPAGATION FOR QTPD

In this appendix, we follow the error coming from tomography throughout QTPD and its applications and herewith
give faithful bounds on the error of predictions given a fixed sample budget for tomography.

1. Error on tomography and distillation

The Ak and sk are captured from the density matrix ρA(U) [cf. Equation (3)] via diagonalization,

ρA(U) =
∑

k

s2
k vec(Ak)vec(Ak)

†=VDV†, (D1)

finding the eigenbasis Vij = vec(Aj )i and the eigenvalues Dij = s2
j δij . From the orthogonality and completeness of the

Ak, we can show that V is unitary, i.e., (V†V)ij = (1/dA)〈Ai|Aj 〉 = δij . To get a classical snapshot of Eq. (D1), a tomog-
raphy is necessary. State tomography suffers from an error that scales inversely with the number NS of samples used,
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∥∥ε(T)
∥∥ = O

(√
d2

A/NS

)
[4,23]. Subsequent refinements require only a sample number of O

(
rank(ρ)(d2

A/ε
2)
)

[48]—or

O
(
d2

A/ε
2
)
, allowing for a small failure probability [49]. A recent improvement has found that it is necessary to use at least


(
rank(ρ)d2

A/ε
)

measurements and it has also been conjectured to be sufficient [50].
Throughout this paper, we consider the 2-norm ‖·‖, which gives an average-case error if divided by the square root of

the Hilbert-space dimension. The following discussion can be done straightforwardly for the operator norm, which gives
a measure of the worst-case error instead, if dimension factors are correctly accounted for. The difference operator ε(T)

between the true reduced density matrix ρA(U) and the output of the tomography,

ρA(U)(T) =
∑

k

s(T)2k vec(A(T)k )vec(A(T)k )†=V(T)D(T)V(T)†, (D2)

can then be decomposed into deviation of eigenvalues ε(D) and drift of eigenstates ε(V) in the following way:

ρA(U) = ρA(U)(T) + ε(T) = V(T)D(T)V(T)† + ε(T) = (V − ε(V))(D − ε(D))(V − ε(V))†+ε(T). (D3)

Solving for ε(T) gives us a relation between those errors. For the sake of a simple presentation, we will estimate the
different errors by their maximum ε = max

(∥∥ε(D)
∥∥ ,
∥∥ε(V)

∥∥). Then,

ε(T) = ε(V)DV†+VDε(V)† + Vε(D)V†+O(ε2),
∥∥ε(T)

∥∥ = ∥∥ε(V)DV†+VDε(V)† + Vε(D)V†
∥∥+ O(ε2) ≤ ∥∥ε(V)D∥∥+ ∥∥VDε(V)†V

∥∥+ ∥∥Vε(D)
∥∥+ O(ε2) ≤ 3ε + O(ε2).

(D4)

In the second-to-last step, we have used the triangle inequality and in the last step, we have used unitary invariance of the
2-norm, as well as submultiplicativity of the 2-norm and ‖D‖ = 1. At the end of the day, we are interested in the Schmidt
values, sk, and the operators Ak and their predictions, s(T)k and A(T)k , from ρA(U)(T). Define

ε
(S)
k = s2

k − s(T)k
2
, ε

(A)
k = Ak − A(T)k , (D5)

where the ε(S)k are scalars and the ε(A)k are operators. The index k runs through {1, . . . , R(T)} with the tomographic estimate
R(T) of the rank R. In the most naive scenario, R(T) will be close or equal to its maximum d2

A, as every error ε(S)k �= 0.
Typically, one needs to define a threshold (dependent on NS) below which the s(T)k are considered zero. We can further
relate eigenvalue deviation to the error of the s(T)k ,

∥∥ε(D)
∥∥ = ∥∥D − D(T)

∥∥ =
√∑

k

(
ε
(S)
k

)2
≤ dAε

(S), (D6)

where we have defined ε(S) = maxk

(
ε
(S)
k

)
. Similarly, we can relate the eigenstate drift error to the error of the A(T)k . Per

construction, the A(T)k are normalized to dA and orthogonal to each other but admit drift angles that are linear in the opera-
tors ε(A)k ; to be precise, 〈A(T)k |Al〉 = δkldA + 〈A(T)k |ε(A)l 〉. We collect those drift angles in the matrix ε(A)jk := (〈A(T)j |ε(A)k 〉/dA).
In general, all entries of ε(A) can be nonzero and of the same order of magnitude:

∥∥∥ε(A)k

∥∥∥ =
∥∥∥Ak − A(T)k

∥∥∥ =
√

2dA

√

1 − 1
dA

Re
[
〈A(T)k |Ak〉

]
=
√

−2dA Re
[
ε
(A)
kk

]
, (D7)

∥∥ε(V)
∥∥ = ∥∥V − V(T)

∥∥ =
√

2dA

√√√√1 − 1
d3

A

∑

k,l

Re
[
〈A(T)k |Al〉

]
=
√

−2
∑

k,l

Re
[
ε
(A)
kl

]
. (D8)

Note that the factor dA makes up for the scaling of the 2-norm in Hilbert-space dimension, while the drift-angle matrix
ε
(A)
jk does not. The fact that the errors

∥∥∥ε(A)k

∥∥∥ and
∥∥∥ε(V)k

∥∥∥ involve the real part Re is due to the sensitivity of the norm-

induced distance measure to global phases. Since a global phase difference, e.g., D → eiϕD, does not change the outcomes,
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we might exchange −Re
[
ε
(A)
kl

]
by
∣∣∣ε(A)kl

∣∣∣, which takes the minimum over φ, without loss of generality. The faulty A(T)k

are further used to filter out the action of the Bk. Instead of measuring the projector Pk from Eq. (4), we have to use
P(T)k = A(T)k |�+

A 〉〈�+
A |A(T)†k and obtain the measurement output

P(T)k U|�+
A 〉|ψ〉 =

R∑

l

sl
〈A(T)k |Al〉

dA
A(T)k |�+

A 〉 ⊗ Bl|ψ〉 =
R∑

l

(
δkl + 〈A(T)k |ε(A)l 〉

dA

)
slA

(T)
k |�+

A 〉 ⊗ Bl|ψ〉

= skA(T)k |�+
A 〉 ⊗ Bk|ψ〉 +

R∑

l

ε
(A)
kl slA

(T)
k |�+

A 〉 ⊗ Bl|ψ〉. (D9)

In order to normalize this state, we have to multiply it by

N (ε(A)) := 1
sk

√
dA

⎛

⎝
∑

l,m

λlm

(
δkl + sl

sk
ε
(A)
kl

)(
δkm + sm

sk
ε
(A)∗
km

)⎞

⎠
− 1

2

= 1
sk

√
dA

(
1√
λkk

− 1√
λkk

∑

l

sl

sk
Re
(
λlk

λkk
ε
(A)
kl

))
+ O

(
ε2) , (D10)

where we have used the coefficients λkl = sksl〈ψ |B†
l Bk|ψ〉 from Eq. (20). The difference between the normalized state

vectors then reads

(
N (ε(A))P(T)k − N (0)Pk

)
(1A ⊗ U)(|�+

A 〉 ⊗ |ψ〉)

= −ε
(A)
k |�+

A 〉√
dA

⊗ Bk|ψ〉√
λkk

+ A(T)k |�+
A 〉√

dA
⊗
∑

l

√
λll

λkk

(
ε
(A)
kl

sl

sk

Bl|ψ〉√
λll

− Re
(
ε
(A)
kl

sl

sk

λkl√
λkkλll

)
Bk|ψ〉√
λkk

)
+ O(ε2). (D11)

To obtain an error measure for the output state of Eq. (B5), we calculate the distance between the normalized states:

∥∥∥
(

N (ε(A))P(T)k − N (0)Pk

)
(1A ⊗ U)(|�+

A 〉 ⊗ |ψ〉)
∥∥∥

≤

∥∥∥ε(A)k

∥∥∥
√

dA
+
∥∥∥∥∥
∑

l

√
λll

λkk

(
ε
(A)
kl

sl

sk

Bl|ψ〉√
λll

− Re
(
ε
(A)
kl

sl

sk

λkl√
λkkλll

)
Bk|ψ〉√
λkk

)∥∥∥∥∥+ O(ε2). (D12)

If we assume, for the sake of simplicity, that the matrix of drift angles is diagonal, i.e., ε(A)jk = ε
(A)
kk δjk, then the error bound

reads

∥∥∥
(

N (ε(A))P(T)k − N (0)Pk

)
(1A ⊗ U)(|�+

A 〉 ⊗ |ψ〉)
∥∥∥ ≤

∥∥∥ε(A)k

∥∥∥
√

dA
+
∥∥∥∥Im

(
ε
(A)
kk

) Bk|ψ〉√
λkk

∥∥∥∥+ O(ε2)

≤

∥∥∥ε(A)k

∥∥∥
√

dA
+
∣∣∣ε(A)kk

∣∣∣+ O(ε2) =
(

1 + 1√
2

)
1√
dA

∥∥∥ε(A)k

∥∥∥+ O(ε2), (D13)

where we have used Eq. (D7). The same result can be achieved by neglecting the terms sl/sk for l �= k, which is valid as
long as sk is a dominant singular value. In summary, the error ε(T) from tomography propagates linearly (in leading order)
through the digonalization into sk and Ak, as well as through the distillation of the Bk, and can be suppressed with raising
the number of shots NS.
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2. Worst-case error

The 2-norm is a natural choice to measure distances on the space of vectorized operators, as it is induced from the
Hilbert-Schmidt inner product. As we have normalized the 2-norm before by a factor of dimension, it represents typical
errors. In the following, we leave a short note on the worst-case error, which is measured by the operator norm instead. In
analogy to Eq. (D4), we can relate the operator-norm error of the tomography to eigenvalue and drift errors,

∥∥ε(T)
∥∥

∞ ≤ 3ε∞ + O(ε2), (D14)

where ε∞ = max
{∥∥ε(V)

∥∥
∞ ,
∥∥ε(D)

∥∥
∞
}
, since the operator norm is also unitary invariant and ‖D‖∞ ≤ 1. We can further

relate

∥∥ε(D)
∥∥

∞ = max
k

∣∣∣ε(S)k

∣∣∣ , (D15)

∥∥ε(V)
∥∥

∞ = ∥∥ε(A)∥∥∞ , (D16)

where we have defined the matrix ε(A) with elements ε(A)jk . The second identity follows from unitary invariance. Using the
calculation from Eq. (D12), we can straightforwardly bound the error on the distillation of the Bk via

∥∥∥
(

N (ε(A))P(T)k − N (0)Pk

)
U|�+

A 〉|ψ〉
∥∥∥ ≤

∥∥∥ε(A)k

∥∥∥
√

dA
+ R max

l

(√
λll

λkk

sl

sk

)∥∥∥ε(A)kl

∥∥∥
∞

+ O(ε2), (D17)

which is loose by a factor of R ≤ d2
A, in general, but is reduced in cases in which the drift is approximately diagonal or

only few sk are dominant. Also here, the tomography error propagates linearly through the errors for sk, Ak, and Bk and
can be suppressed with the number of shots NS.

3. Error on applications

As for the applications of QTPD, how the error propagates depends on the objective of interest. Let us start with the
nonlocality SA(U) = −∑k s2

k log s2
k , which only depends on the Schmidt values, sk, and thus the error depends only on

ε(S) = (
∥∥ε(D)

∥∥/dA):

∣∣∣S(T)A (U)− SA(U)
∣∣∣ =

∣∣∣∣∣
∑

k

(
2
(

s(T)k

)2
log s(T)k − 2s2

k log sk

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∑

k

log
s

2s2
k

k

(
s(T)k

)2
(

s(T)k

)2

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

∑

k

log

((
s(T)k

)2
+ ε

(S)
k

)(s(T)k

)2+ε(S)k

(
s(T)k

)2
(

s(T)k

)2

∣∣∣∣∣∣∣∣∣∣∣

=
∑

k

sgn(ε(S)k )

(
1 +

(
s(T)k

)2
log
(

s(T)k

)2
)
ε(S) + O

((
ε(S)
)2)

. (D18)

In the last step, we have linearized the logarithm in ε(S)k . Since the entangling power from Eq. (E2) is just a sum of
nonlocality measures, the error propagates similarly. If we use QTPD for open quantum dynamics, the tomography error
also propagates into expectation values of mixed states, σA. For errors of expectation values, it is sufficient to consider
the trace distance of the reduced density matrices T

(
σA, σ (T)A

)
, since it upper bounds errors in expectation values of

observables [51].
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Lemma 4. Let ρ and σ be density matrices. The difference between the expectation values of an observable O can be
bounded in the following way:

|Tr(Oρ)− Tr(Oσ)| ≤ ‖O‖∞ ‖ρ − σ‖1 . (D19)

We are thus left with the 1-norm-induced distance of the reduced density matrix σ (T)A =∑k,l λklA
(T)
k |ψA〉〈ψA|A(T)†l from

σA [cf. Eq. (20)]. The difference operator reads

σA − σ
(T)
A =

∑

k,l

λkl

[(
A(T)k + ε

(A)
k

)
|ψA〉〈ψA|

(
A(T)†l + ε

(T)†
l

)
− A(T)k |ψA〉〈ψA|A(T)†l

]

=
∑

k,l

λkl

[
ε
(A)
k |ψA〉〈ψA|A(T)†l + A(T)k |ψA〉〈ψA|ε(A)†l

]
+ O

((
ε(A)
)2)

. (D20)

We have ignored possible errors in the determination of the coefficients λkl. Finally, we can estimate an upper bound for
the 1-norm error in the following way:

∥∥∥σA − σ
(T)
A

∥∥∥
1

≤
∑

k,l

∣∣λk,l
∣∣
∥∥∥ε(A)k |ψA〉〈ψA|A(T)†l + A(T)k |ψA〉〈ψA|ε(A)†l

∥∥∥
1
+ O

((
ε(A)
)2)

≤ 2
∑

k,l

∣∣λk,l
∣∣
∥∥∥ε(A)k |ψA〉〈ψA|A(T)†l

∥∥∥
1
+ O

((
ε(A)
)2)

≤ 2
∑

k,l

∣∣λk,l
∣∣
∣∣∣〈ψA|A(T)l A(T)†l |ψA〉

∣∣∣
∥∥∥ε(A)k

∥∥∥
2
+ O

((
ε(A)
)2)

≤
⎛

⎝2
∑

k,l

∣∣λk,l
∣∣
∣∣∣〈ψA|A(T)l A(T)†l |ψA〉

∣∣∣

⎞

⎠max
k
ε
(A)
k + O

((
ε(A)
)2)

, (D21)

where we have used the triangle inequality in the first and second steps together with ‖A‖1 = ∥∥A†
∥∥

1. In the third step, the
Hölder inequality, ‖AB‖1 ≤ ‖A‖2 ‖B‖2, has been used.

APPENDIX E: ENTANGLEMENT GENERATION FROM QTPD

One measure that singles out the nonlocal but also nonentangling action of the SWAP operator has been introduced in
Ref. [6] for the case of equally large subsystems, i.e., dA = dB:

eA(U) = 1
log(d2

A)

(
SA(U)+ (SA(UPAB)− log

(
d2

A

)))
, (E1)

where PAB swaps the two subsystems, i.e., PAB|ψ〉A|ψ〉B = |ψ〉B|ψ〉A. Since we are considering the asymmetrical case
dA ≤ dB, let us define a straightforward generalization in which we sum over all different contributions from permutations
between A and subsystems of dimension dA in B,

eA(U) = 1
log(d2

A)

⎛

⎜⎜⎝SA(U)+
∑

C⊂B
dim(C)=dA

(
SA(UPAC)− log

(
d2

A

))

⎞

⎟⎟⎠ , (E2)

where the sum over subsystems C only ranges over qubit configurations and is therefore finite. An alternative measure for
the entangling power is the mean entanglement that is generated by the action of U on product states

em(U) = E|ψA〉,|ψB〉 [E(TrB (U|ψA〉 ⊗ |ψB〉))] , (E3)

where E is an (a priori unspecified) measure of entanglement and E denotes the Haar measure over the subsystems
HA and HB. For the linearized entanglement entropy E(ρ) = 1 − Tr(ρ2), the entangling power from Eq. (E3) has been
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discussed by Zanardi et al. [26]. The mean linear entanglement entropy growth from the action of a unitary U reads [cf.
Eq. (5) of [26]]

em(U) = 1 − 1
dA(dA + 1)

1
dB(dB + 1)

(
d2

AdB + dAd2
B + Tr

(
(U ⊗ U)PA(U†⊗U†)PA

)+ Tr
(
(U ⊗ U)PB(U†⊗U†)PA

))
,

(E4)

using two copies of the full system HA ⊗ HB ⊗ HA ⊗ HB, where PA|ψA〉 ⊗ |ψB〉 ⊗ |φA〉 ⊗ |φB〉 = |φA〉 ⊗ |ψB〉 ⊗
|ψA〉 ⊗ |φB〉 swaps the states in the two copies of HA and analogously so does PB on HB. Note the difference compared to
the SWAP operators PAC that have been used previously. We can simplify the trace terms by inserting U =∑k skAk ⊗ Bk.
For the first term, we obtain, in tensor-network notation,

U

U

U†

U†
=

∑

k,l,m,n

skslsmsn

Ak

Am

A†
l

A†
n

×
Bk

Bm

B†
n

B†
l

=
∑

k,l,m,n

skslsmsnδmnδklδknδmld
2
Ad2

B =
∑

k

s4
kd2

Ad2
B ,

(E5)

where the second step makes use of the orthonormality of the Ak and Bk. The second trace can be calculated analogously:

U

U

U†

U†
=

∑

k,l,m,n

skslsmsn

Ak

Am

A†
l

A†
n

×
Bk

Bm

B†
l

B†
n

=
∑

k,l,m,n

skslsmsn Tr
(
AkA†

l AmA†
n

)
Tr

(
BkB†

nBmB†
l

)
.

(E6)

In summary, the mean entanglement generation reads

em(U) = 1 − dA + dB

(dA + 1)(dB + 1)
− dAdB

∑
k s4

k

(dA + 1)(dB + 1)

− 1
dA(dA + 1)

1
dB(dB + 1)

∑

k,l,m,n

skslsmsn Tr
(

AkA†
l AmA†

n

)
Tr
(

BkB†
nBmB†

l

)
. (E7)

The last term cannot be calculated without tomographic knowledge of the Bk and is hence out of reach for near-term
quantum computing. It could be solved by a fault-tolerant device. We leave this for future work.

APPENDIX F: DECOHERENCE-FREE STRUCTURES

To support the discussion on using QTPD for mereology, we give an example for a product operator transformed into
an entangled basis and, furthermore, give a characterization of unitaries that admit such a basis in which the action is
nonentangling.

1. Example for growth of operator entanglement

Consider a two-qubit Hilbert space H ∼= HA ⊗ HB with a nonentangling T-gate U = 1 ⊗ T, T = [ 1 0
0 ei(π/4)

]
. Further

consider the unitarily equivalent gate VUV† that is related to U by a controlled-NOT (CNOT) rotation, V = |0〉〈0| ⊗ 1 +
|1〉〈1| ⊗ X = V†. One can derive
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VUV†=|0〉〈0| ⊗ T + ei π4 |1〉〈1| ⊗ T†. (F1)

To show that this is an entangling gate, we can calculate
the overlaps with Pauli operators in subsystem HA:

Tr(VUV†) = T + ei π4 T†=(1 + ei π4 )1, (F2)

Tr(ZAVUV†) = T − ei π4 T†=(1 − ei π4 )Z, (F3)

Tr(XAVUV†) = 0, (F4)

Tr(YAVUV†) = 0. (F5)

Altogether, we deduce VUV† = (1 + ei(π/4))1 + (1 −
ei(π/4))Z ⊗ Z.

2. A necessary and sufficient condition for the
existence of decoherence-free subsystems

Proposition 5. Let U ∈ L (H ) be a unitary with eigen-
states |θi〉, i.e., U|θi〉 = eiθi |θi〉. Further, let H ∼= HA ⊗
HB with dim(HA) =: dA < dB := dim(HB) define a split
indexed by i = (μ, m),μ ∈ {1, . . . , dA}, m ∈ {1, . . . , dB}
and i ∈ {1, . . . , dAdB}. Then,

∃ ordering θi = θμm = φμ + ψm for some φμ,ψm ∈ [0, 2π)

⇐⇒
∃V unitary, such that VUV† = A ⊗ B with A, B unitary.

(F6)

Proof. The backward direction “⇐” becomes trivial as
soon as we write down U in diagonal form. Let T denote
the eigenbasis of U, i.e.,

U = T†DUT = T†

⎡

⎢⎣
eiθ1

. . .
eiθd

⎤

⎥⎦T = V†(A ⊗ B)V

⇐⇒ A ⊗ B = VT†DUTV†. (F7)

Thus, U and A ⊗ B share the same eigenvalues. If we
denote the eigenvectors of A by |φμ〉 and of B by
|ψm〉, we obtain (A ⊗ B)|φμ〉 ⊗ |ψm〉 = ei(φμ+ψm)|φμ〉 ⊗
|ψm〉 and thus θμm = φμ + ψm.

For the forward direction “⇒,” consider again the eigen-
basis V of U. As we know that the eigenvalues are related
by θi = φμ + ψm, we can put V into an order such that
DU = DA ⊗ DB decouples with

DA =

⎡

⎢⎣
eiφ1

. . .
eiφdA

⎤

⎥⎦ and

DB =

⎡

⎢⎣
eiψ1

. . .
eiψdB

⎤

⎥⎦ . (F8)

We conclude with U = V†(DA ⊗ DB)V. �

APPENDIX G: GENERALIZATION TO
ARBITRARY OPERATORS

One might be interested in a tensor decomposition of a
nonunitary operator T ∈ L (HA ⊗ HB), e.g., a Hermitian
operator. QTPD can be generalized to general nonuni-
tary operators by utilizing the concept of block encodings
[52]. If U is an (α, a, ε) block encoding of T, we can use
the same circuits as in Eqs. (B2) and (B5) together with
postselection on |0 · · · 0〉 on the ancillary system, i.e.,

(G1)

The generalization to nonunitary operators T comes at a
price of raising the sample complexity in the two circuits
of Eq. (G1). In particular, the sample number will be mul-
tiplied by a factor exponential in the number of ancilla
qubits 2a. This puts a restriction onto the tensors T that
can be analyzed this way. While there are typically upper
bounds for a polynomial in the qubit number n [52], one
would need a block encoding with a = O(1) in order to
keep the sample complexity below full tomography.

APPENDIX H: ANALYTICAL DISCUSSION OF
THE HEISENBERG MODEL ON TWO QUBITS

Consider the Hamiltonian of the Heisenberg model for
two qubits and the time-evolution operator U that we
consider as a black-box unitary for tensor decomposition:

H = − (Jx X1X2 + Jy Y1Y2 + Jz Z1Z2
)

and

U := e−itH = eiJxtX1X2eiJy tY1Y2eiJztZ1Z2 . (H1)

In the following, we perform all calculations with dis-
tinct interaction strengths Jx, Jy and Jz and view the
isotropic case as an example in which Jx = Jy = Jz =: J .
The time-evolution operator U decays into local exponen-
tials, because—on two qubits—all terms in the Hamilto-
nian commute. With the identity for Pauli exponentials
eiJxtX1X2 = cos(Jxt)1 + i sin(Jxt)X1X2 (and similar for the
other two Pauli strings), we can directly calculate the
tensor decomposition of U:

U = (cx1 + isxX1X2)
(
cy1 + isyY1Y2

)
(cz1 + iszZ1Z2)

= (cxcycz + isxsysz
)
1 + (isxcycz + cxsysz

)
X1X2

+ (isycxcz + cysxsz
)

Y1Y2 + (iszcycx + czsysx
)

Z1Z2

=: g01 + gxX1X2 + gyY1Y2 + gzZ1Z2. (H2)
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We have introduced the shorthand notation ci := cos(Jit) and si = sin(Jit) ∀ i ∈ {x, y, z} and omitted the time depen-
dence in the following for the sake of clarity. We also allow ourselves some flexibility in pushing complex phases between
sk and Bk, which is technically against our convention introduced in Appendix A, assuming the sk to be real. With Eq. (H2),
we can read off the Schmidt coefficients gi and deduce that U has maximal Schmidt rank 4 except for when one of the
terms vanishes. In the isotropic case, this happens for t = (π/2J ). If we require Jz = 0 and fix Jx = Jy = J , we recover
the SWAP gate S at t = (π/4J ), i.e.,

S = ei π4 (X1X2+Y1Y2) = 1
2
(1 + X1X2 + Y1Y2 + Z1Z2) . (H3)

Hence, we obtain the tensor decomposition of the SWAP gate for free from Eq. (H2). We can use this to write down the
entangling power of U on qubit 1:

e1(U) = 1
log(4)

(S1(U)+ S1(US))− 1, (H4)

S1(U) = −
∑

k

|gk|2 log |gk|2 , (H5)

S1(US) = −1
4

∣∣g0 + gx + gy + gz
∣∣2 log

∣∣g0 + gx + gy + gz
∣∣2

4
− 1

4

∣∣g0 + gx − gy − gz
∣∣2 log

∣∣g0 + gx − gy − gz
∣∣2

4

− 1
4

∣∣g0 − gx + gy − gz
∣∣2 log

∣∣g0 − gx + gy − gz
∣∣2

4
− 1

4

∣∣g0 − gx − gy + gz
∣∣2 log

∣∣g0 − gx − gy + gz
∣∣2

4
. (H6)

One can see directly that for U = S, the entangling power vanishes while the nonlocality measure S1(U) is maximal. In
order to obtain a large entangling power, both S1(U) and S1(US) have to be large. The mean entanglement generation,
which is derived in Appendix E, behaves similarly in the two-qubit case. The last term in Eq. (E7) is the only nontrivial
term to evaluate. The only nonvanishing trace terms yield

∑

k,l,m,n

gkg∗
l gmg∗

n Tr
(

AkA†
l AmA†

n

)
Tr
(

BkB†
nBmB†

l

)
= d2

∑

k

|gk|4 + d2
∑

k �=l

(
2 |gk|2 |gl|2 + g2

k g2∗
l

)

+ d2
∑

σ∈S4

gσ(0)g∗
σ(x)gσ(y)g

∗
σ(z), (H7)

with d = 2. The three terms arise from different combinations of inserting the Pauli operators Ak, Bk ∈ {1, X , Y, Z}. Since
Pauli operators are traceless, the products AkA†

l AmA†
n have to result in 1, such that the trace yields a factor of dimension d.

The first term comes from traces of the form Tr(A4
k)

2 and the second from Tr(A2
kA2

l )
2, as well as Tr(AkAlAkAl)

2 with k �= l
and adequate combinatorial coefficients. Finally, the third term represents traces in which all operators are different, i.e.,
Tr(AkAlAmAn)Tr(AkAnAmAl) = − Tr(AkAlAmAn)

2 with (k, l, m, n) = (σ (0), σ(x), σ(y), σ(z)), σ ∈ S4.
Now, let us fix the initial state to be |10〉. The effective open time evolution of the first qubit under the Hamiltonian

H [Eq. (H1)] can be expressed as a quantum channel Et that evolves a density matrix describing the quantum state of
qubit 1:

Et(|1〉〈1|) = ρ1(t) = (|g0|2 + |gz|2 − g0g∗
z − gzg∗

0)|1〉〈1| + (|gx|2 + ∣∣gy
∣∣2 + gxg∗

y + gyg∗
x )|0〉〈0|

= |g0 − gz|2 |1〉〈1| + ∣∣gx + gy
∣∣2 |0〉〈0|

= cos2((Jx + Jy)t)|1〉〈1| + sin2((Jx + Jy)t)|0〉〈0|. (H8)

We can read off the Schmidt values of this state |λ0|2 = sin2((Jx + Jy)t) and |λ1|2 = cos2((Jx + Jy)t). In order to learn the
properties of the output state, we measure the magnetization 〈Z〉ρ1(t) and the entanglement entropy S(ρ1(t)) of the time-
evolved state in the numerical experiment. In the two-qubit case, we can write down the two observables as functions of
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(a) (b)

FIG. 4. The open quantum dynamics for the isotropic Heisenberg model of (a) a subsystem of one of two neighboring qubits and
(b) two qubits of a 2D grid of 3 × 2 qubits. The upper panel shows the nonlocality measure SA(U) and the entangling-power measures
eA(U) and em(U) (see Appendix E) for the respective time-evolution operator, while the lower panel contains the total magnetization
MA(σA) and the entanglement entropy S(σA) of the time-evolved state. The initial state of the total system reads |1〉 ⊗ |0〉 in (a) and
|11〉 ⊗ |0000〉 in (b). In (a), the solid curves represent analytical predictions derived in Eqs. (H4)–(H10).

time:

〈Z〉ρ1(t) = sin2((Jx + Jy)t)− cos2((Jx + Jy)t), (H9)

S(ρ1(t)) = sin2((Jx + Jy)t) log
(
sin2((Jx + Jy)t)

)+ cos2((Jx + Jy)t) log
(
cos2((Jx + Jy)t)

)
. (H10)

The above example starts with a product state |10〉 and does not show any quantum coherence after time evolution. If
we start with a product state |1+〉, which lies skew in two spin-symmetry sectors, some of the coherence on qubit 2 gets
swapped to qubit 1:

Et(|1〉〈1|) = ρ1(t) = (|g0|2 + |gz|2)|1〉〈1| + (|gx|2 + ∣∣gy
∣∣2)|0〉〈0| +

(
gzg∗

y − g0g∗
x

)
|1〉〈0| + (gyg∗

z − gxg∗
0

) |0〉〈1|,
(H11)

as opposed to Eq. (H8). In Fig. 4, we repeat the numerical experiment shown in the main text but also include the
entangling-power measures eA(U) and em(U), introduced in Appendix E. We compare the numerical results with the
above analytical derivation and find an exact match. As we have already discussed parts of Fig. 4 in the main text, here
we focus on features of the entangling powers.

In the two-qubit case [cf. Fig. 4(a)], the nonlocality undergoes four oscillation periods, representing the oscillation of
U between the identity and the SWAP operator on two qubits. In accordance with this, the entangling powers both show
an oscillation and vanish at the extreme points of the nonlocality function SA(U). As they reach zero when U equals the
SWAP operator, while the nonlocality stays maximal, they thus both undergo twice as many oscillations.

On a 3 × 2 qubit grid [cf. Fig. 4(b)], the entangling-power measures no longer follow defined oscillations but start off at
zero, quickly rise, and then stay at a nonzero value for most of the time. eA(U), since it singles out SWAP operations, does
become close to zero for certain simulation times. However, the trial state shows nonzero entanglement entropy at those
times. As a consequence, eA(U) does not seem to be a good measure of the entangling power when the dimensions dA
and dB of subsystems HA and HB no longer match. The mean entanglement generation em(U), on the other hand, is not
in disagreement with this. Similar to the nonlocality, it rises quickly but stays around approximately 65% of its maximal
value, admitting dips at the same points as the nonlocality SA(U), thus allowing for nonzero entanglement throughout the
time interval considered.
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shminarayan, Entanglement measures of bipartite quantum
gates and their thermalization under arbitrary interaction
strength, Phys. Rev. Res. 2, 043126 (2020).

[7] S. Balakrishnan and R. Sankaranarayanan, Operator-
Schmidt decomposition and the geometrical edges of two-
qubit gates, Quantum Inf. Process. 10, 449 (2011).

[8] T. Prosen and I. Pižorn, Operator space entanglement
entropy in a transverse Ising chain, Phys. Rev. A 76, 032316
(2007).

[9] T. Zhou and D. J. Luitz, Operator entanglement entropy of
the time evolution operator in chaotic systems, Phys. Rev.
B 95, 094206 (2017).

[10] B. Bertini, P. Kos, and T. Prosen, Operator entanglement
in local quantum circuits I: Chaotic dual-unitary circuits,
SciPost Phys. 8, 067 (2020).

[11] C. Zhang, S. Denker, A. Asadian, and O. Gühne, Analyzing
quantum entanglement with the Schmidt decomposition in
operator space, arXiv:2304.02447.

[12] C. F. Van Loan, The ubiquitous Kronecker product,
J. Comput. Appl. Math. 123, 85 (2000).

[13] G. Smith, J. A. Smolin, X. Yuan, Q. Zhao, D. Girolami, and
X. Ma, Quantifying coherence and entanglement via simple
measurements, arXiv:1707.09928.

[14] S. Subramanian and M.-H. Hsieh, Quantum algorithm for
estimating α-Renyi entropies of quantum states, Phys. Rev.
A 104, 022428 (2021).

[15] T. Zhang, G. Smith, J. A. Smolin, L. Liu, X.-J. Peng, Q.
Zhao, D. Girolami, X. Ma, X. Yuan, and H. Lu, Quantifica-
tion of entanglement and coherence with purity detection,
arXiv:2308.07068.

[16] J. E. Tyson, Operator-Schmidt decompositions and the
Fourier transform, with applications to the operator-
Schmidt numbers of unitaries, J. Phys. A: Math. Gen. 36,
10101 (2003).

[17] R. Mansuroglu, T. Eckstein, L. Nützel, S. A. Wilkinson,
and M. J. Hartmann, Variational Hamiltonian simulation for
translational invariant systems via classical pre-processing,
Quantum Sci. Technol. 8, 025006 (2023).

[18] R. Mansuroglu, F. Fischer, and M. J. Hartmann, Problem-
specific classical optimization of Hamiltonian simulation,
Phys. Rev. Res. 5, 043035 (2023).

[19] C. M. Keever and M. Lubasch, Classically optimized
Hamiltonian simulation, Phys. Rev. Res. 5, 023146 (2023).

[20] N. Meyer, D. Scherer, A. Plinge, C. Mutschler, and
M. Hartmann, in Proceedings of the 40th Interna-
tional Conference on Machine Learning, Proceedings
of Machine Learning Research, Vol. 202, edited by
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S.
Sabato, and J. Scarlett (PMLR, 2023), p. 24592.
https://proceedings.mlr.press/v202/meyer23a.html.

[21] M. Cerezo, M. Larocca, D. García-Martín, N. L. Diaz,
P. Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A.
Ijaz, S. Thanasilp, et al., Does provable absence of bar-
ren plateaus imply classical simulability? Or, why we need
to rethink variational quantum computing, arXiv:2312.
09121.

[22] M. Sedlák, A. Bisio, and M. Ziman, Optimal probabilistic
storage and retrieval of unitary channels, Phys. Rev. Lett.
122, 170502 (2019).

[23] J. van Apeldoorn, A. Cornelissen, A. Gilyén, and G. Nan-
nicini, in Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) (Society for
Industrial and Applied Mathematics, Florence, Italy, 2023),
p. 1265.

[24] L. N. Trefethen and D. Bau, Numerical Linear Algebra
(SIAM, Philadelphia, PA, USA, 1997), Vol. 50.

[25] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding struc-
ture with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions, SIAM Rev.
53, 217 (2011).

[26] P. Zanardi, C. Zalka, and L. Faoro, Entangling power
of quantum evolutions, Phys. Rev. A 62, 030301
(2000).

[27] J. Eisert, Entangling power and quantum circuit complex-
ity, Phys. Rev. Lett. 127, 020501 (2021).

[28] S. M. Carroll and A. Singh, Quantum mereology: Fac-
torizing Hilbert space into subsystems with quasiclassical
dynamics, Phys. Rev. A 103, 022213 (2021).

[29] M. Tegmark, Consciousness as a state of matter, Chaos
Solit. Fractals 76, 238 (2015).

[30] A. Adil, M. S. Rudolph, A. Arrasmith, Z. Holmes, A.
Albrecht, and A. Sornborger, A search for classical subsys-
tems in quantum worlds, arXiv:2403.10895.

[31] D. A. Lidar and K. B. Whaley, in Irreversible Quantum
Dynamics (Springer-Verlag, Berlin, 2003), p. 83.

[32] R. Mansuroglu and H. Sahlmann, No invariant perfect qubit
codes, J. High Energy Phys. 2023, 62 (2023).

[33] F. Bernards and O. Gühne, Multiparticle singlet states can-
not be maximally entangled for the bipartitions, J. Math.
Phys. 65, 0159105 (2024).

[34] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, Matrix
product operator representations, New J. Phys. 12, 025012
(2010).

[35] D. Pérez-García, F. Verstraete, M. M. Wolf, and J. I.
Cirac, Matrix product state representations, Quantum Inf.
Comput. 7, 401 (2007).

[36] F. Verstraete, V. Murg, and J. Cirac, Matrix product states,
projected entangled pair states, and variational renormaliza-
tion group methods for quantum spin systems, Adv. Phys.
57, 143 (2008).

[37] A. Eddins, M. Motta, T. P. Gujarati, S. Bravyi, A. Mez-
zacapo, C. Hadfield, and S. Sheldon, Doubling the size of

030306-22

https://doi.org/10.1103/revmodphys.81.865
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/physrevlett.89.057901
https://doi.org/10.1103/physrevresearch.2.043126
https://doi.org/10.1007/s11128-010-0207-9
https://doi.org/10.1103/physreva.76.032316
https://doi.org/10.1103/physrevb.95.094206
https://doi.org/10.21468/scipostphys.8.4.067
https://arxiv.org/abs/2304.02447
https://doi.org/10.1016/S0377-0427(00)00393-9
https://arxiv.org/abs/1707.09928
https://doi.org/10.1103/physreva.104.022428
https://arxiv.org/abs/2308.07068
https://doi.org/10.1088/0305-4470/36/39/309
https://doi.org/10.1088/2058-9565/acb1d0
https://doi.org/10.1103/physrevresearch.5.043035
https://doi.org/10.1103/physrevresearch.5.023146
https://proceedings.mlr.press/v202/meyer23a.html
https://arxiv.org/abs/2312.09121
https://doi.org/10.1103/physrevlett.122.170502
https://doi.org/10.1137/090771806
https://doi.org/10.1103/physreva.62.030301
https://doi.org/10.1103/physrevlett.127.020501
https://doi.org/10.1103/physreva.103.022213
https://doi.org/10.1016/j.chaos.2015.03.014
https://arxiv.org/abs/2403.10895
https://doi.org/10.1007/jhep02(2023)062
https://doi.org/10.1063/5.0159105
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.26421/QIC7.5-6-1
https://doi.org/10.1080/14789940801912366


QUANTUM TENSOR-PRODUCT DECOMPOSITION... PRX QUANTUM 5, 030306 (2024)

quantum simulators by entanglement forging, PRX Quan-
tum 3, 010309 (2022).

[38] A. Luongo, Quantum algorithms for data analysis (2023),
https://quantumalgorithms.org/chapter-intro.html#modi-
fied-hadamard-test.

[39] M. C. Caro, Learning quantum processes and Hamiltoni-
ans via the Pauli transfer matrix, ACM Trans. Quantum
Comput. 5, 1 (2024).

[40] M. C. Caro, H.-Y. Huang, N. Ezzell, J. Gibbs, A. T.
Sornborger, L. Cincio, P. J. Coles, and Z. Holmes, Out-of-
distribution generalization for learning quantum dynamics,
Nat. Commun. 14, 3751 (2023).

[41] M. Nibbi and C. B. Mendl, Block encoding of matrix
product operators, arXiv:2312.08861.

[42] K. Chen and L.-A. Wu, A matrix realignment method for
recognizing entanglement, Quantum Inf. Comput. 3 (3),
193 (2003).

[43] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep.
474, 1 (2009).

[44] J. Guth Jarkovský, A. Molnár, N. Schuch, and J. I. Cirac,
Efficient description of many-body systems with matrix
product density operators, PRX Quantum 1, 010304 (2020).

[45] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M.
Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill,

and J. R. McClean, Quantum advantage in learning from
experiments, Science 376, 1182 (2022).

[46] G. Golub and C. Van Loan, in Matrix Computations, Johns
Hopkins Studies in the Mathematical Sciences (Johns Hop-
kins University Press, Baltimore, MD, USA, 2013), p. 73,
https://books.google.de/books?id=X5YfsuCWpxMC.

[47] K. Fan and A. J. Hoffman, Some metric inequalities in
the space of matrices, Proc. Am. Math. Soc. 6, 111
(1955).

[48] J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, Sample-
optimal tomography of quantum states, IEEE Trans. Inf.
Theory 63, 5628 (2017).

[49] R. O’Donnell and J. Wright, in Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Com-
puting (Association for Computing Machinery, Cambridge,
MA, USA, 2016), p. 899.

[50] H. Yuen, An improved sample complexity lower bound
for (fidelity) quantum state tomography, Quantum 7, 890
(2023).

[51] M. M. Wilde, Quantum Information Theory (Cambridge
University Press, Cambridge, UK, 2013).

[52] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (ACM, Phoenix, AZ, USA, 2019).

030306-23

https://doi.org/10.1103/prxquantum.3.010309
https://quantumalgorithms.org/chapter-intro.html&num;modified-hadamard-test
https://doi.org/10.1145/3670418
https://doi.org/10.1038/s41467-023-39381-w
https://arxiv.org/abs/2312.08861
https://doi.org/10.26421/QIC3.3-1
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/prxquantum.1.010304
https://doi.org/10.1126/science.abn7293
https://books.google.de/books?id=X5YfsuCWpxMC
https://doi.org/10.2307/2032662
https://doi.org/10.1145/2897518.2897544
https://doi.org/10.22331/q-2023-01-03-890
https://doi.org/10.1017/CBO9781139525343

	I.. INTRODUCTION
	II.. QUANTUM TENSOR-PRODUCT DECOMPOSITION
	A.. The algorithm
	B.. Resources for QTPD
	C.. Circumvention of doubling the system size
	D.. Error analysis

	III.. APPLICATIONS
	A.. Nonlocality
	B.. Mereology
	C.. Fast quantum transform and classical simulability
	D.. Open quantum dynamics

	IV.. NUMERICAL EXPERIMENT
	V.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: AMBIGUITIES IN THE TENSOR DECOMPOSITION
	. APPENDIX B: TWO-STEP QUANTUM TENSOR-PRODUCT DECOMPOSITION
	1.. Classical snapshot state
	2.. B distillation

	. APPENDIX C: OPERATOR APPROXIMATIONS USING THE SINGULAR-VALUE DECOMPOSITION
	1.. Optimal low-rank approximation
	2.. Nearest unitary approximation

	. APPENDIX D: ERROR PROPAGATION FOR QTPD
	1.. Error on tomography and distillation
	2.. Worst-case error
	3.. Error on applications

	. APPENDIX E: ENTANGLEMENT GENERATION FROM QTPD
	. APPENDIX F: DECOHERENCE-FREE STRUCTURES
	1.. Example for growth of operator entanglement
	2.. A necessary and sufficient condition for the existence of decoherence-free subsystems

	. APPENDIX G: GENERALIZATION TO ARBITRARY OPERATORS
	. APPENDIX H: ANALYTICAL DISCUSSION OF THE HEISENBERG MODEL ON TWO QUBITS
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


