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Topological order offers possibilities for processing quantum information that can be immune to imper-
fections. However, the question of its stability out of equilibrium is relevant for experiments, where
coupling to an environment is unavoidable. In this work, we demonstrate the robustness of certain aspects
of Z2 × Z2 symmetry-protected topological (SPT) order against a wide class of dissipation channels in
the Lindblad and quantum trajectory formalisms of an open quantum system. This is illustrated using the
one-dimensional ZXZ cluster Hamiltonian along with Pauli-string jump operators. We show that certain
choices of dissipation retaining strong symmetries support a steady-state manifold consisting of two nonlo-
cal logical qubits and for Hamiltonian perturbations preserving the global symmetry, states in this manifold
remain metastable. In contrast, this metastability is destroyed upon breaking the above-mentioned sym-
metry. While the localized edge qubits of the cluster Hamiltonian are not conserved by the Lindbladian
evolution, they do correspond to weak symmetries and thus retain a memory of their initial state at all
times in the quantum trajectories. We utilize this feature to construct protocols to retrieve the quantum
information either by monitoring jumps or error mitigation. Our work thus proposes a novel framework to
study the dynamics of dissipative SPT phases and opens up the possibility of engineering entangled states
relevant to quantum information processing.
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I. INTRODUCTION

Dissipation can disrupt entanglement in many-body
quantum systems and destroy the physical manifestations
of entangled states [1–3]. Understanding how to reduce the
sensitivity of entangled states to noise is a central chal-
lenge for building the next generation of quantum sensors
and quantum computers. A unique avenue for protecting
entanglement is many-body topological states, encoding
the information in nonlocal motifs of the state and pro-
viding robustness to local perturbations [4–9]. However,
the extraordinary properties of such topological materials
must survive in imperfect conditions, in the presence of
disorder [10–12] and dissipative coupling to an environ-
ment [13–17], to be useful in realizing a reliable quantum
computer. Indeed, progress toward fault-tolerant computa-
tion could potentially be accelerated by the discovery of
topologically protected qubits in more realistic systems.
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The persistence of topological order—such as edge
modes that act as qubits [18,19]—has been observed to be
stable and, in fact, may be strengthened in the presence
of disorder in prototypical topological many-body systems
such as the Kitaev-Majorana spin-1/2 and Haldane spin-
1 chains [20]. In such isolated systems, the entanglement
structure of the bulk degrees of freedom provides a fab-
ric that mediates the stability of the edge qubits [21,22]. In
contrast, the presence of a dissipative environment disrupts
the entanglement that supports the edge modes, leading to
the loss of coherence. Dissipation appears to pose severe
issues for the physical realization of topological order,
which requires a significant level of isolation, giving rise
to experimental challenges [23–27].

This conflict with dissipation has spurred recent interest
in defining indicators of topological order in mixed states
that are driven out of equilibrium [28–32] and attempts
have been made to classify symmetry-protected topolog-
ical (SPT) phases [33–38]. Moreover, engineered forms
of dissipation [13–15,39,40] or measurements [41–43]
have been proposed as a tool to prepare desired topo-
logical steady states. The detection and behavior of SPT
phases in the dynamics of open system may provide novel
mechanisms for preparing and preserving entangled states,
necessary for quantum information processing.
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Symmetries play an important role in the protection of
topological order in isolated systems, providing a route
to classifying states of matter in and out of equilibrium
[12,44–49]. In open quantum systems modeled by the
Lindblad master equations [50,51], symmetries can be
either weak or strong, depending on the interplay between
the coherent Hamiltonian terms and the dissipative jump
operators, leading to rich behavior [52]. Here, we will
analyze how signatures of topological order can persist
through these distinct types of symmetries.

For concreteness, we study the Haldane phase of the
cluster model, a well-studied example of an SPT phase,
which involves a one-dimensional spin-1/2 chain coupled
by three-body interactions [53–55]. This model is rele-
vant to condensed-matter systems in magnetism and topo-
logical superconductivity and also closely connected to
measurement-based quantum computation (MBQC) [56–
59]. We characterize the topology of states using a range
of diagnostics including the string order parameter, edge
modes, and the entanglement spectrum.

Our findings can be summarized as follows. First, we
focus on the effects of strong symmetries at the master-
equation level. We illustrate the formation of a nontrivial
degenerate steady-state subspace using dissipators that
preserve a strong Z2 × Z2 symmetry. The stationary-state
manifold is shown to possess nontrivial string order, along
with entanglement-spectrum degeneracy typical of topo-
logical states. Further, we show it can act as a quantum
memory by encoding a pair of qubits in a nonlocal man-
ner, which remain despite the presence of dissipation. We
then demonstrate that these qubits remain long lived in the
thermodynamic limit even when affected by perturbations,
provided that they respect the Z2 × Z2 symmetry: we refer
to this as symmetry-protected metastability.

Second, we consider the effects of weak symme-
tries through the quantum trajectories formalism [60,61],
revealing a richer class of topological dynamics invisi-
ble to the trajectory-averaged Lindbladian dynamics. We
prove that not only strong symmetries but also weak
symmetries have a striking impact on the stability of topo-
logical order. We demonstrate that the SPT-ordered cluster
states, when subjected to such weakly symmetric dissipa-
tors, preserve their topological character along trajectory
dynamics. Significantly, we show that the quantum infor-
mation contained in edge-mode qubits is preserved within
individual trajectories. Moreover, we show that this infor-
mation can be recovered by utilizing the weak-symmetry
properties; e.g., by monitoring quantum jumps happening
in only a very small part of the system.

In contrast to previous work that has characterized
markers of topological order in open systems [28–32], we
have gone beyond the mixed-state description by investi-
gating the quantum trajectories of pure states. Moreover,
while Ref. [32] shows that strong symmetries allow string
order to survive for a finite time in mixed states—as

opposed to decaying after a single discrete time step for
dissipation characterized by weak symmetries—we pro-
vide a class of models where the string order parameter
is a conserved quantity. We proceed to study the resulting
nontrivial steady state, in particular exploring its potential
application as a quantum memory. Building on this, we
find analogous phenomena in quantum trajectories under
the weaker requirement that the dissipation satisfies weak
symmetries. Our results provide a physical mechanism for
hosting stationary qubits, even in the presence of dissipa-
tion, as a consequence of weak or strong symmetries.

II. FRAMEWORK

Prior work has focused on preparing—either by engi-
neered dissipation [13–15,39,40] or measurements [41,
42]—topologically ordered steady states, or characterizing
this order in mixed steady states [36,38]. In contrast, here
we will also focus on demonstrating the dynamical behav-
ior of SPT phases under dissipation with various types of
symmetry and their robustness to dissipative dynamics.

To this end, we consider two related frameworks: the
Gorini-Kossakowski-Sudarshan-Lindblad master equation
[50,51] (referred to as the Lindbladian in the follow-
ing), the spectral properties of which will be used to
describe stationary mixed states and long-time dynam-
ics; and quantum trajectories [60,62–65], which provide
access to dynamical statistical behavior invisible in the
Lindbladian. These complementary pictures will provide
two lenses through which to highlight the various ways
in which quantum information behaves in the models
considered.

The Lindblad master equation for the evolution of the
density matrix representing the state of the open quantum
system is (with � set to 1 throughout)

dρ
dt

= L(ρ) = U(ρ)+ D(ρ) (1)

and consists of a unitary part governed by a Hamiltonian
H : U(ρ) = −i [H , ρ] as well as a dissipative part model-
ing the coupling to an environment through a set of jump
operators Fl: D(ρ) = κ

∑
l

(
2FlρF†

l − {F†
l Fl, ρ}

)
.

Identical dynamics can be recovered by averaging
over a set of stochastic quantum trajectories. The pro-
cedure to generate an individual trajectory consists of
(a) evolving an initial pure state |ψ0〉 according to the
Schrödinger equation with the non-Hermitian effective
Hamiltonian Heff = H − iκ

∑
l F†

l Fl, (b) performing ran-
domly chosen quantum jumps at random times |ψt〉 −→
Fl |ψt〉 /||Fl |ψt〉 ||, and (c) repeating these two steps in an
alternating manner. The advantages of this approach are
that the state remains pure along a single trajectory and,
additionally, that it gives an intuitive physical interpre-
tation about the effect of the environment on the actual
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dynamics of the state [60]. If the environment were mon-
itored such that we could recognize jumps (being thus
somehow observable in the environment) occurring in the
system, we could assign to it a pure state at all times of the
evolution. If not, it is a mixed state (i.e., a stochastic aver-
age over trajectories) that describes our knowledge of the
system.

These two perspectives have nontrivial properties in the
presence of symmetries and, contrary to closed systems,
the definition of symmetry is not straightforward and is
not identically related to conserved quantities [52]. The
strongest condition is that an operator J commutes with
both H and Fl: [H , J ] = 0, [Fl, J ] = 0 ∀l. This is called a
strong symmetry. It implies two things. First, the operator
J is a conserved quantity, J̇ = L†(J ) = 0, where L† deter-
mines the evolution of the operator in the Heisenberg pic-
ture. The reason is that J commutes with everything in L†.
Second, J also generates a symmetry U = eiφJ that com-
mutes with the evolution generated by L: eLt(U†ρU) =
U†eLt(ρ)U. The inverse of these implications is, however,
not true. A conserved quantity is not necessarily a strong
symmetry. Nor is a symmetry that globally commutes with
the Lindbladian, as this does not imply it should commute
with all of its terms separately. Such a symmetry U is called
weak. An example of weak symmetries is given by oper-
ators U satisfying [H , U] = 0 and UFlU† = eiφlFl, for any
phases φl. There is also no generic relationship between a
weak symmetry and a conserved quantity.

The practical consequences for Lindblad dynamics are
as follows. First, since conserved quantities do not decay
along the evolution, they must give rise to a degener-
ate steady-state subspace. Second, weak symmetries block
diagonalize L but these blocks do not necessarily contain
a stationary eigenmode. Weak symmetries have additional
consequences on trajectories in that they commute with
Heff, so there exist quantities that are conserved between
quantum jumps but may be changed when a jump occurs.

III. MODEL

The system that we employ to illustrate these general
principles and their effect on SPT phases is the cluster
model: a one-dimensional spin-1/2 chain of length N with
open boundary conditions. In the following, we denote
Pauli matrices on site l of the chain as σ x

l = Xl and like-
wise for Yl and Zl. The unitary evolution is governed by
the cluster Hamiltonian H0 and a perturbation term Hxx,
H = H0 + Hxx:

H0 = J
N−1∑

l=2

Kl, Hxx = Vxx

N−1∑

l=1

XlXl+1, (2)

with Kl = Zl−1XlZl+1—the cluster operators. The model
H0 is invariant under spin-flip symmetries on odd and even

sites, denoted Go/e, that generate a global Z2 × Z2 sym-
metry, which leads to the existence of trivial and nontrivial
SPT phases [11,12,49,66]. Since all terms in H0 commute
with each other, it is frustration free and readily solvable,
as shown in Appendix B.

In the following, we consider the impact of symme-
tries defining SPT phases becoming strong, weak, or
neither when the system interacts with an external envi-
ronment. For this purpose, we choose various types of
jump operators Fi to model differing system-bath inter-
actions. The most general jumps can be written as a
sum of Pauli strings. For example, we may consider
the lowering operator along the x basis, Fl = S−

xl = (Zl +
iYl)/2, which preserves the G = Z2 × Z2 symmetry as a
weak one but destroys the edge-mode and the bulk-ZXZ
symmetries.

Remarkably, we observe that the large class of mod-
els with jump operators that are each an individual Pauli
string preserve all of the relevant symmetries of the model
at least weakly. For example, the system with Fl = Yl has
all of them as weak symmetries. Furthermore, it is also
possible to promote some of them to strong symmetries.
Notably, in the case of Fl = Zl−1Zl+1(l = 2, 3, . . . , N − 1)
jump operators, the spin-flip symmetries Go and Ge, and
the edge-mode components Z1 and ZN are strong symme-
tries. This is illustrated in Fig. 1(a). We develop a detailed
understanding of the time scales for the persistence of
the local and global symmetries under the open-system
dynamics.

A. Topological signatures in the closed system

For later comparison to understand the effect of weak-
ening or destroying these symmetries through bath inter-
actions, we now summarize some of the topological prop-
erties that they induce in the closed model. With open
boundary conditions, the model has a ground state with a
symmetric bulk, while the action of the symmetry on the
edges is said to fractionalize. In the nontrivial SPT phase,
it gives rise to spin-1/2 degrees of freedom localized on
the edges of the chain and independent of the dynamics.
For H0, on the left boundary we have �x

L = X1Z2,�y
L =

Y1Z2,�z
L = Z1 and similarly on the right end. In this case,

these are actually symmetries of the model (also called
strong zero modes), so they exist not only in the ground
state subspace but across the whole spectrum.

When spin-flip-symmetry-preserving perturbations such
as Hxx are added, up to a critical strength, edge modes are
guaranteed to exist in the ground state and their mutual
anticommutation is protected (since the SPT phase is char-
acterized by a discrete value, it cannot change smoothly).
However, their explicit form changes, developing an expo-
nential tail away from the edge. Beyond the critical value,
the discrete invariant characterizing the projective rep-
resentations of the Z2 × Z2 changes abruptly, the phase
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(a) (b) (c) (d)

FIG. 1. (a) An illustration of the model with three types of interactions: red triangles, three-spin cluster-ZXZ interactions; gray
lines, two-spin XX perturbation; blue wavy arrows, an example of the coupling of this system to an environment that acts as ZIZ,
i.e., jointly on two neighboring spins on the odd or even sublattice. The odd and even sublattices are, respectively, the lower and
upper legs of this ladderlike structure. (b)–(d) The autocorrelation of observables of interest versus time: �x,z

L , components of the
left edge mode of the cluster model; Zbulk, the spin polarization of some site in the bulk; S∗, the string order parameter defined in
the text. (b) For a symmetry-breaking dissipation—Fl = Yl, Vxx = 0. (c),(d) With the symmetry-preserving dissipation studied in this
paper—Fl = Zl−1Zl+1: (c) Vxx = 0; (d) Vxx = 0.1J . For all plots, N = 8 and κ = 2.5J , starting from an initial cluster state. In (b) and
(c), the curve corresponding to �z

L is hidden below the curves of Zbulk and S∗, respectively.

becomes topologically trivial, and the edge modes are
lost [67].

The possibility that these modes can exist, and hence the
nontrivial SPT phase, can be detected by degeneracies in
the entanglement spectrum [22,68], which are fourfold in
the cluster model. The entanglement spectrum is the spec-
trum of the reduced density matrix of the state, obtained
by partially tracing out a subregion of the spin chain. Intu-
itively, cutting the system in two pieces and discarding
one half in order to compute their entanglement introduces
ambiguity in the state due to the cutting of the global
Go/e symmetries, creating a degenerate mixture of possible
states on the remaining half of the system (for details, see
Appendix C). Later, this feature will provide a key probe
of SPT order along quantum trajectories.

Different SPT phases can be distinguished by string
order parameters that measure a global order [69]. For
a symmetry acting on local sites with ui, such that U =∏

i ui, and edge operators OL/R, a general string order
parameter is defined as

S(U, OL, OR) = lim
k→∞

〈

OL
1

k−1∏

i=2

uiOR
k

〉

. (3)

There exist selection rules following which suitable
choices of OL/R allow us to distinguish the different topo-
logical phases [69]. Here, we will observe that one exam-
ple of such an operator exists in the stationary state of the
studied system with a certain choice of jump operators.

IV. STRONG SYMMETRIES IN THE MASTER
EQUATION

We now focus on the effects of strong symmetries that
remain in the presence of environmental interactions, first

demonstrating that for certain dissipators, a steady-state
manifold containing logical qubits may survive. To under-
stand the resilience of these qubits to perturbation in the
thermodynamic limit, we will study the time it takes to
relax to this steady-state manifold in the unperturbed sys-
tem, finding that it remains finite at all system sizes. Thus,
for a sufficiently small perturbation, the steady-state mani-
fold will remain long lived and maintain coherence (i.e.,
it becomes a metastable manifold), rather than becom-
ing mixed with other degrees of freedom. Further, while
most perturbations would need to weaken with system size
to maintain metastability, we will see that perturbations
preserving the Z2 × Z2 symmetry create a system-size-
independent metastable time scale, thus preserving long-
lived qubits in the thermodynamic limit even at nonzero
strength.

A. Steady-state manifold

As discussed earlier, the most immediate consequence
of strong symmetries is the presence of conserved quanti-
ties and thus a degenerate steady-state manifold. We begin
by describing the structure of this manifold and the topo-
logical features that survive in the unperturbed system L0
(i.e., L with V = 0), focusing primarily on Fl = Zl−1Zl+1
jump operators. In this case, the dissipation is strongly
symmetric with respect to the Z2 × Z2 spin flips. Fur-
ther, the edge-mode operators �z

L/R are also preserved as
a strong symmetry. In contrast, the x and y components
of the edge modes are only weak symmetries and are
therefore not guaranteed to affect the stationary state.

In order to quantify how the information from the ini-
tial state survives along the time evolution, we employ the
autocorrelation of measurement outcomes of an observ-
able O, as visible in the averaged Lindbladian dynamics. In
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general terms, it is the sum over all possible measurement
outcomes—νi at initial time and νj after time t—weighted
by the probabilities that these outcomes will occur given
an initial state |ψ0〉 and some temporal dynamics:

A(t) =
∑

i,j

νiνj P(i|ψ0)P(j |t, i,ψ0). (4)

A detailed derivation is presented in Appendix A.
As expected from the remaining strong symmetries with

Fl = Zl−1Zl+1 jumps, in Fig. 1(c) we show that the edge
operator �z

L and the string order S∗ ≡ S(GoGe, Y, Y) are
conserved by the dynamics, while another component of
the edge mode, �x

L, and some Z in the bulk, decay. In con-
trast, as shown in Fig. 1(b), Fl = Yl jumps make all these
quantities decay rapidly and none of them is preserved in
the steady state.

In total, there are 16 conserved quantities with Fl =
Zl−1Zl+1 jumps, generated by the odd and even spin-flip
parities and by the left and right z components of the edge
modes. Remarkably, we note that the corresponding 16-
dimensional steady-state subspace forms two Pauli groups,
which means that it can be used to encode quantum infor-
mation. The logical qubits are delocalized over odd or
even sites of the lattice. In analogy to the edge modes of
the closed system, we label them as odd and even logical
qubits, as shown in Table I.

Therefore, despite the fact that the edge modes of the
closed system dissipate and cannot serve as quantum mem-
ory in trajectory-averaged behavior, Fl = Zl−1Zl+1 jump
operators preserve strong symmetries that allow us to
identify two distinct qubits that form a decoherence-free
subsystem [70,71]. All other degrees of freedom decohere
to the fully mixed state, so the steady state can be rewritten
as

ρss = 1
4

⎛

⎝1 +
∑

i,j

dij �
i
o ⊗�j

e

⎞

⎠⊗ 1

2N−2 , (5)

where the coefficients dij determine the joint state of the
two qubits, encoding all surviving initial-state information.
The corresponding change of basis between the physical

TABLE I. The operators that constitute the logical qubits
located on odd and even sites of the lattice.

Odd sites Even sites

1 1

Go Ge
Z1Go GeZN

Z1 ZN

� �

	�o 	�e

and logical qubits is detailed in Appendix D and indi-
cates the physical implementation of logical single- and
two-qubit gates.

We note that here S(GoGe, Y, Y) is conserved. Such
string-order parameters can act as topological markers
in mixed states and they imply computational power for
MBQC [72]. In the context of MBQC, the string correla-
tor measures the localizable entanglement, i.e., the hidden
correlations needed for a state to serve as a computational
resource [59]. It has been proven that string order survives
at finite times [32] when dissipators leave the symmetry
protecting the topological phase as a strong symmetry. The
conservation of S(GoGe, Y, Y) here implies that it is also
possible for some to survive in the infinite-time limit.

In addition, the steady-state manifold can contain cer-
tain mixtures of cluster states. Although the entanglement
spectrum is in general not a good witness of quantum
entanglement for mixed states, it can detect SPT order
in cluster states, which have a fourfold-degenerate spec-
trum. As we show in Appendix C, mixtures of cluster
states also possess a fourfold degeneracy as a direct con-
sequence of the fourfold degeneracies of individual cluster
states. Later, we will show that this fourfold degeneracy is
also maintained along the trajectory dynamics of individ-
ual pure states, when starting from a cluster state, due to
the presence of weak symmetries.

B. Dissipative gap

While the presence of stationary qubits is a desir-
able quality, for practical purposes this would ideally be
resilient to perturbations. Further, it is necessary to under-
stand the system size and parameter dependence of this
resilience in order to tune the system for maximum per-
formance. To this end, we will begin by studying the low-
lying spectral properties of the Lindbladian L0, describing
long-time dynamics just prior to the steady state. The spec-
tral properties of Lindbladian superoperators have been
investigated using techniques such as integrability [73–
77] and random matrix theory [78–81]—in the following,
we will take an approach similar to the former. We will
consider the influence of perturbations on the steady-state
manifold, relative to the time scales of the unperturbed
system, to understand the impact of dissipation on the
coherence time of these qubits.

To study the low-lying spectrum, we first note the pres-
ence of low-dimensional subspaces under the repeated
action of the Lindbladian, i.e., Krylov subspaces, the
smallest of which enable a closed-form solution of a small
number of eigenvalues. These smallest spaces originate
from dynamically local operators, i.e., those locally dif-
fering from the steady-state manifold, such as a stationary
operator multiplied by a small number of Pauli operators.
Earlier works have shown that local operators may lead
to the long-time-scale dynamics in Lindbladian evolution
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FIG. 2. A sketch of the low-lying spectrum of the model with
ZIZ jump operators. Without the perturbation Hxx, the spectrum
is highly degenerate; in particular, the steady state has multiplic-
ity 16. The next levels are separated by the dissipative gap 	.
With the perturbation on, some degeneracies are lifted and the
steady state spreads by δ, thus acquiring a finite lifetime, except
for four states remaining at 0.

[82,83], suggesting that these spaces may correspond to
the low-lying spectrum in our case. In the following, we
will identify which of these smallest spaces are minimally
influenced by the dissipative jump operators that deter-
mine relaxation. We argue that this minimal dissipation,
combined with their locality, suggests that these spaces
determine the longest time scales in the system and thus
contain the dissipative gap, which we verify numerically
up to N = 16.

In more detail, recall that the unperturbed Hamiltonian
H0 is defined as a sum of mutually commuting local oper-
ators Kl = Zl−1XlZl+1; likewise, the dissipation consists
of mutually commuting local operators Fl = Zl−1Zl+1. We
may thus consider the root state to be a Pauli string that
either

(a) does not undergo unitary evolution (i.e., commutes
with H0) but experiences nonzero dissipation due to
a set of m jump operators, or

(b) is annihilated by the action of all jump operators
except for n “active” sites where the state anticom-
mutes with the associated Kl terms from H0

with m = n = 0 corresponding to the identity steady state
and small m or n corresponding to operators that we refer to
as dynamically local. All the operators in category (a) are
eigenstates of L0 with eigenvalues −4mκ , since D(O) ∝
O for any Pauli string O due to Fl themselves being Pauli
strings. However, an operator O in category (b) is not an
eigenstate itself but is coupled by the unitary dynamics to
2n − 1 other operators. The latter possess the same anti-
commutation properties with the Kl operators as the initial
operator O but they are no longer zero under action by
the jump operators. Increasing n leads to bigger invari-
ant subspaces containing operators affected by more jump

operators. We thus focus on low-n cases, i.e., those origi-
nating from dynamically local operators, which we expect
to produce subspaces with the weakest coupling to the
environment and thus the slowest dynamics.

We will now describe the cases of n = 1 and n = 2
anticommuting sites in detail, finding the lowest nonzero
eigenvalue contained in these subspaces across the param-
eter space. Then, in the absence of a complete mathe-
matical proof, we have verified that this eigenvalue and
accompanying heuristic reasoning matches precisely with
the exact numerical solution of the dissipative gap for sys-
tem sizes up to N = 16, suggesting that it is valid in the
thermodynamic limit (see Appendix E).

1. One active site

In scenario (b) with n = 1, we start with a Pauli string
A such that D(A) = 0 but also such that [Kl, A] = 0 for
all l except at some site p , which we call an active site,
where the Pauli string anticommutes with the local cluster
operator, KpA = −AKp . This implies that effectively only
a single term of the unitary evolution contributes to the
master equation, so that

L0(A) = U0(A) = −2iJKpA ≡ 2JB. (6)

In that way, we have defined state B ≡ −iKpA, in which
site p has been excited by the action of Kp . As it has the
same commutation relationship with Kl operators as A, the
action of L0 on B, due to the unitary part on site p , yields

U0(B) = −2iJKpB = −2JK2
p A = −2JA, (7)

because K2
p = 1. On the other hand, the jumps Fp±1 have

a dissipating effect on B, as they do not commute with the
Kp present in the definition of B. The dissipator thus yields

D(B) = −4ακB, (8)

where: α = 1 if the active site p resides next to one of the
boundaries (p = 2 or N − 1), where only one of the jump
operators can dissipate it; and α = 2 if the active site is fur-
ther into the bulk (p = 3, 4, . . . , N − 2), where two jump
operators can dissipate it. This is illustrated in Fig. 3.

We have in this manner shown that {A, B} is a subspace
that is invariant under the action of L0 = U0 + D. Its lower
eigenvalue as a function of κ/J is

λ1(α) = −2ακ + 2
√
α2κ2 − J 2. (9)

For κ/J < 1/
√

3, the α = 1 case is closest to the steady
state and, beyond this point, there is a level crossing with
the state corresponding to the α = 2 case. We remark
that these kinds of invariant subspaces have an excep-
tional point (EP) at κ/J = 1 for α = 1 or κ/J = 0.5
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(a) (b)

FIG. 3. An excited active site (in red) affected by a differ-
ent number of ZIZ jump operators depending on its position:
(a) excited on boundary; (b) excited in bulk. The relevant dis-
sipators are shown in dark blue and the irrelevant ones in light
blue.

for α = 2, at which both eigenvalues and eigenvectors
coalesce with one another. These exceptional degenera-
cies are intensely studied—in the context of Lindblad
and non-Hermitian physics with parity-time symmetry
breaking—for their mathematical properties and practical
physical consequences [84–87].

The lowest-lying eigenstates corresponding to these
levels are expressed as

Wp(α) =
[

1 + i
λ1(α)

2J
Kp

]

A. (10)

This is a superposition of two operators from the invari-
ant subspace but since all of them can be expressed in
terms of a single root state A and the cluster operators Kl,
it takes a remarkably simple form. Concrete examples are
as follows:

α = 1 : A = Z2 or A = ZN−1,

α = 2 : A = Zi, i = 3, . . . , N − 2.
(11)

In these cases, it is immediately clear that the correspond-
ing anticommuting Kp is located at the site p where the
single Z is located. In one strong-symmetry sector, there
would be two such local operators near the boundaries and
N − 4 in the bulk. Note that the operators described here
are not physical density matrices by themselves but that a
density matrix can contain such dissipating components.
They are a useful way of organizing the eigenmodes of the
Lindbladian and interpreting the relaxation dynamics.

2. Two active sites

Continuing in this vein but starting from a nondissipated
Pauli string A that now anticommutes with the cluster oper-
ators Kl at two different sites p and q [corresponding to
category (b) with n = 2], we show that such operators can
also give rise to excitations that determine the dissipative
gap in some κ/J regimes, becoming longer lived than the
n = 1 case.

(a) (b)

FIG. 4. Excited active sites (in red) affected by a different num-
ber of ZIZ jump operators depending on their position in the
chain and with respect to each other: (a) minimally dissipated;
(b) other configuration. Relevant dissipators are shown in dark
blue and irrelevant ones in light blue. Case (a) illustrates that
if next-to-nearest neighbors are both excited (i.e., state D =
−Kp KqA with p = q ± 2), the dissipator acting on both of them
is neutralized.

A similar reasoning leads to building a four-dimensional
invariant subspace {A, B, C, D} given by

B ≡ −iKpA,

C ≡ −iKqA,

D ≡ −KpKqA.

(12)

Now, the action of the dissipator depends on the positions
of the active sites p and q relative to both the boundaries
and also to each other, and whether these sites are excited,
i.e., whether the operator contains the corresponding factor
of Kp and/or Kq.

By inspecting all possibilities for active sites p and q,
the closest states to the steady state are those for which
the active sites p and q are next-to-nearest neighbors, with
one located next to one of the boundaries. These condi-
tions minimize the effect of dissipation for two reasons.
First, the active site next to the boundary can only trigger
the influence of at most one jump operator, as in the single-
excited-site case illustrated in Fig. 3(a), due to the lack of
jump operators centered on the boundary sites. Second,
when the excited active sites are next-to-nearest neigh-
bors, p = q ± 2, the corresponding operator D = −KpKqA
is not influenced by the jump F(p+q)/2, further reducing
the effect of the bath, as shown in Fig. 4(a). In contrast,
changing the distance between the active sites allows this
operator to be affected by additional dissipative channels,
as exemplified in Fig. 4(b).

This kind of operator exists only for N ≥ 6 because of
the spacing needed for these excitations and each strong-
symmetry sector contains only two such operators, one at
each of the boundaries: p = 2, q = 4 or p = N − 3, q =
N − 1. Concretely, they are generated from, e.g., A = Z2Z4
or ZN−3ZN−1.

The eigenstates are, similar to Eq. (10), of the form

Wp ,q = [1 + uKp + vKq + wKpKq
]

A, (13)
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(a)

(b) perturbation
perturbation

FIG. 5. (a) The dependence on κ/J of the dissipative gap, in
absolute value, of the unperturbed model L0. The gap has been
verified numerically for system sizes from N = 6 up to N = 16
and this exact functional form is conjectured to hold for any N .
(b) The dependence on κ/J of the displacement δ of the steady-
state spectrum, to second order of PT, as a consequence of the
Hxx and the symmetry-breaking Hy perturbations. In the units,
V is Vxx or Vy correspondingly.

with coefficients u, v, and w depending on κ and J , as
detailed in Appendix E. The lowest-lying eigenvalue is, in
this case,

λ2 = −4κ + 2
√

2
√√

J 4 − J 2κ2 + κ4 − J 2 + κ2. (14)

Interestingly, contrary to the singly dissipated states for Eq.
(9), the doubly dissipated case corresponding to Eq. (14)
do not possess any EPs. It seems that EPs are avoided due
to the interplay between the active sites, which is absent
when the active sites are further apart—e.g., on the two
boundaries—and do not see each other via a dissipator, in
which case EPs do exist.

3. Summary and numerical verification

For small values of κ/J , below κ/J = √
3/8 ≈ 0.612,

it turns out the two-active-site eigenvalue λ2 of Eq. (14)
is lower than the single-active-site eigenvalue λ1(α) of
Eq. (9), as shown in Fig. 5(a). Since λ1(1) is only lower
than λ1(2) for κ/J < 1/

√
3, it does not correspond to

the lowest eigenvalue for any parameters. Our reason-
ing thus postulates that the dissipative gap is given by
	 = min(| Re{λ1(2)}|, | Re{λ2}|). It has a cusp due to lev-
els crossing at κ/J = √

3/8. A similar form of gap has
been observed in Ref. [88].

That the dissipative gap corresponds to 	 is verified by
exact numerical solutions up to N = 16 in Appendix E. We
have verified numerically that the two types of eigenstates
studied above are sufficient to correctly capture the spectral
gap. In fact, exact numerical diagonalization for N up to

16, which is also shown in Fig. 5(a), is in perfect agreement
with the analytical prediction. Moreover, the reasoning that
we have outlined above is independent of the system size
N (for N ≥ 6) as it relies on local excitations, which the
numerical observations in Appendix E also suggest. In this
way, the steady-state subspace is shown to be separated
from the rest of the spectrum by a dissipative gap that
persists in the thermodynamic limit.

C. Resilience to perturbations

We now turn to the question of stability to perturbation
of the decoherence-free subsystem. We are interested in
quantifying the newly acquired lifetime of the degenerate
steady-state subspace, given by δ depicted in Fig. 2. Under
the conditions that this time scale remains long relative
to the dissipative gap 	 of the unperturbed system, the
steady-state manifold will become a metastable manifold
and coherence will still be preserved up to long times.

Metastability is known to occur generically when break-
ing strong symmetries with a sufficiently weak perturba-
tion [89–91]. However, the size of a perturbative param-
eter that qualifies as weak depends both on the original
dissipative gap and the system-size dependence of the per-
turbation. If the perturbative gap becomes comparable to
the dissipative gap, the dynamics will entangle the qubit
degrees of freedom with the remainder of the system,
destroying the preservation of information on short time
scales.

We first consider the case of a perturbation that pre-
serves the global Z2 × Z2 symmetry; e.g., the Hxx defined
in Eq. (2). As such, the symmetry operators Go/e are still
conserved; in contrast, Z1 and ZN are not conserved, since
they no longer commute with the Hamiltonian. However,
as seen in Fig. 1(d), they decay with a longer time scale
than other degrees of freedom for small values of the
perturbing field.

We investigate the lifetime of the broken symmetries
using second-order degenerate perturbation theory (PT) for
open quantum systems. The Lindbladian superoperator can
now be written as

L = L0 + V , with V = −i [Hxx, · ] . (15)

After splitting the system into slow and fast subspaces
P and Q—the former containing the steady-state space
of L0 and the latter all the rest—PT up to second order
yields [92]

Leff
1 = PVP, (16)

Leff
2 = −PVQL−1

0 QVP, (17)

where P and Q are projectors onto the slow and fast spaces
and L−1

0 ≡ (QL0Q)−1.
The first order vanishes because the perturbation does

not affect the steady-state space directly. At second order,
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steady states are coupled to either one or two subspaces of
Q that are connected by the action of L0. We note that the
perturbation does not connect any stationary states to the
same subspaces and, as such, does not mix steady states
among themselves: hence Leff

2 is diagonal. Further, we note
that this diagonal is real, as it can be shown that when
considering a Hermitian basis (in this case, the steady-
state manifold) and a Hamiltonian perturbation, Leff

2 must
be real.

The subspaces to which the perturbation connects each
stationary state happen to be small, a property originat-
ing in an algebraic structure present in the model, to
be elaborated upon in future work. For example, �z

o =
Z1 from the (−, +) sector is coupled only with the
following four-dimensional connected subspace of Q:
{Y1X2, X1Z3, Y1Y2X3Z4, X1Z2Y3Z4}. This structure enables
exact solutions, demonstrated in Appendix F for Leff

2,Z1
,

the diagonal element of Leff
2 corresponding to steady

state Z1.
The elements of all 16 basis elements of the steady-state

subspace turn out to be closely related. To see this, we
may separate them into four sectors of the Go/e symme-
tries, labeled by (±, ±). The (+, +) sector is unaffected
by the perturbation, because they are eigenmatrices of the
remaining strong symmetries. Within either the (+, −) or
(−, +) sectors, the diagonal entries of Leff

2 are the same
since the associated steady states are related by a mul-
tiple of the Go/e symmetry operator. Further, the entries
for the (+, −) and (−, +) sectors are also the same as
each other due to reflection symmetry. Meanwhile, entries
are twice as large for the (−, −) sector: the perturbation
couples these to exactly twice as many subspaces of L0,
which are related by reflection symmetry and thus induce
the same contribution to the diagonal entry. The (−, −)
sector thus determines the maximal spread δ = max(diag(−Leff

2

)
).

The κ/J dependence of δ is shown in Fig. 5(b). Its
inverse provides the time scale of the decay acquired
due to the perturbation. We extract the expected life-
time of, e.g., �z

L = Z1 at κ/J = 2.5 and find it to be
t∗ = 1/|Leff

2 | ≈ 5.149(Vxx/J )−2J −1. This agrees perfectly
with the exact dynamics of Fig. 1(d), which display
a lifetime of 514.2J −1 for Vxx = 0.1J , suggesting that
second-order perturbation theory is sufficient to capture
the correct dynamics even for a relatively large perturbing
field.

Importantly, we note that when the Hamiltonian pertur-
bation preserves the Z2 × Z2 symmetry, δ is independent
of the system size N in this case. This is due to such a per-
turbation connecting each steady state to a nonextensive
number of subspaces, each of which has dimensions that
do not scale with system size. Since the dissipative gap of
L0 also appears to be independent of system size, we see
that it is possible for a finite (i.e., nonzero) perturbation

to retain a metastable manifold in the thermodynamic
limit. As such, in the presence of a symmetry-preserving
perturbation, the system possesses a symmetry-protected
metastable manifold consisting of the logical qubits: while
these decohere in the infinite-time limit, they remain coher-
ent across large time scales.

In contrast, a perturbation that breaks the spin-flip Z2 ×
Z2 symmetry will affect the bulk X strings of the steady-
state components. This will cause a spread δ that scales
extensively with system size, since such steady states will
be coupled to extensively many subspaces of L0. For
example, consider perturbing the Hamiltonian with

Hy = Vy

N∑

l=1

Yl. (18)

The exact expression for δ as a function of N is given in
Appendix F and is shown in Fig. 5(b) for N = 8, 16, and
24. We observe that the highest rate at which a steady state
decays predicted by second-order PT now increases lin-
early with system size. Thus in the thermodynamic limit,
the model with Hy shows nonperturbative behavior that
cannot be captured by PT: however, the behavior of PT
at finite sizes suggests that the logical qubits will interact
increasingly with other degrees of freedom as the sys-
tem size grows for any finite (i.e., nonzero) perturbation,
causing them to lose coherence.

D. Summary of strongly symmetric qubits

To conclude this section, our analysis has shown that
the cluster model with the ZIZ dissipators displays a
stationary-state manifold with a range of interesting fea-
tures. In particular, this includes the presence of two
nonlocal logical qubits, separated from other degrees of
freedom by a finite gap in the thermodynamic limit. We
have then observed that with global symmetry-preserving
perturbations, these stationary features can remain long
lived compared to the rest of the system, residing in
a symmetry-protected metastable manifold. In contrast,
symmetry-breaking perturbations likely cause increasingly
rapid decoherence as the system size grows. An important
part of the perturbation-theory analysis is played by the
structure in the spectrum, which will be the subject of a
future publication.

V. WEAK SYMMETRIES IN TRAJECTORIES

Strong symmetries have significant effects on the steady-
state manifold of Lindbladian dynamics. Weak symme-
tries, on the other hand, do not but they do have nontrivial
consequences for quantum trajectories. In general, there
exists a particular representation of jump operators under
which all weak-symmetry operators commute with H0 and
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gain a phase under commutation with the jumps [61].
With Pauli jump operators Fl, our model is naturally in
this representation: all symmetry operators U of the clus-
ter model H0 remain at least weak symmetries and as
Pauli strings they thus satisfy UFlU† = ±Fl. We now
explore the impact that these properties have on trajectory
dynamics within the model.

A. Weakly conserved observables

The most immediate consequences of weak symme-
tries comes from their commutation with F†

l Fl for all
l and therefore with Heff: weak-symmetry operators are
thus conserved quantities between the quantum jumps. We
demonstrate this using three types of jump operators:

(a) Fl = Zl−1Zl+1 for l = 2, . . . , N − 2: as discussed
earlier, this leaves the Go/e spin-flip symmetries and
edge operators Z1 and ZN as strong symmetries but
makes the remaining symmetries—X1Z2, ZN−1XN
and Kl = Zl−1XlZl+1 for l = 2, . . . , N − 2—weak
symmetries.

(b) Fl = Yl for l = 1, . . . , N : this makes all symmetries
of H0 weak.

(c) Fl = S−
xl for l = 1, . . . , N : a non-Pauli-string jump

operator, this breaks all symmetries aside from Go/e,
which are left weak.

In Figs. 6(a)–6(c), we compare the behavior of one tra-
jectory with the different jumps—the figures show the
dynamics of the expectation value of three observables:
two components of the left edge mode, �x

L = X1Z2 and
�z

L = Z1, and a Z operator in the bulk. In Fig. 1(c), it
is indicated that, on average, Fl = Zl−1Zl+1 causes �x

L to
decay, while in Fig. 1(b) it is shown that Fl = Yl causes
both �x

L and �Z
L to decay. However, looking at individual

realizations of the time evolution with the same jumps in
Figs. 6(b) and 6(c), we observe that memory of the initial
state is not entirely lost, as expected from weak symme-
tries. Instead, jumps cause components of the edge mode to
be reflected stochastically but they are conserved between
these jumps and only attain a small subset of values. In
contrast, the dynamics induced by S−

xl destroy any informa-
tion in the initial state even within individual trajectories,
as shown in Fig. 6(a).

B. Entanglement-spectrum degeneracy

In addition to weak edge symmetries, the Fl = Yl and
Fl = Zl−1Zl+1 jump operators leave all the interior Kl =
Zl−1XlZl+1 as weak symmetries. States that are simulta-
neous eigenstates of all these operators, along with being
eigenstates of either {Go, Ge} or {�x

L,�x
R}, are called clus-

ter states. Due to the weak-symmetry properties, the action
of any Pauli-string jump operator on a cluster state thus
remains a cluster state, albeit potentially a different one due

(a) (b) (c)

(d) (e) (f)

FIG. 6. (a)–(c) The evolution of the observables of interest
along a single quantum trajectory for different jump operators,
without perturbation (Vxx = 0). The initial state is a cluster state
in the ground state of H0, with the left edge mode having equal
expectation of all three components and the right one along the
+z direction. (d)–(f) The entanglement spectrum of one trajec-
tory at a few instants of the dynamics, with perturbation (Vxx =
0.1J ): the μα are the Schmidt coefficients of the state. (a),(d)
Fl = S−

xl ; (b),(e) Fl = Yl; (c),(f) Fl = Zl−1Zl+1. The parameters
are N = 10 and κ = 2.5J . The initial state is the cluster state
in the ground state of H0, in the (+, +) sector of the Z2 × Z2
symmetry.

to a sign change of the eigenvalues of the state under some
symmetry operators. Both choices of using {Go, Ge} and
{�x

L,�x
R} are detailed in Appendix B.

A key signature of SPT order in these states is degener-
acy of the entanglement spectrum: this is fourfold degen-
erate for {Go, Ge} and twofold degenerate for {�x

L,�x
R}

(for details, see Appendix C). Since an initial cluster
state remains a cluster state along a quantum trajectory
in this model, the entanglement spectrum keeps its origi-
nal fourfold degeneracy along the trajectory in the case of
Pauli-string jumps, while it does not otherwise.

When we reintroduce the Hxx Hamiltonian perturbation,
in Figs. 6(e) and 6(f) we can show that the degeneracy of
the entanglement spectrum is also lifted for the Pauli-string
jumps, although it is shown in Fig. 6(d) that it remains
much longer lived compared to trajectories with non-Pauli
S−

xl jumps. We note that these properties also induce similar
degeneracy properties in the mixed-state evolution due to
the Lindblad equation: a mixture of cluster states possesses
the same degeneracy properties as the individual cluster
states (for details, see Appendix C) and since the Lindblad
evolution describes the average of trajectory evolutions, an
initial mixture of cluster states remains a mixture of cluster
states at all times.
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(a) (b)

FIG. 7. The extent of the four biggest Schmidt values of the
state in a trajectory, D = (logμ1 − logμ4)/(logμ4 − logμ5),
characterizing the fourfold degeneracy of the spectrum, nor-
malized by the gap to the next levels, averaged over trajectory
realizations with randomly chosen initial cluster states. (a) For
three different jump operators, at N = 8, κ = 2.5J , and Vxx =
0.1J . (b) The dependence on the system size for Fl = Zl−1Zl+1
and κ = 2.5J and Vxx = 0.1J . The inset shows the evolution of
the gap (logμ4 − logμ5) for different system sizes.

To quantify the evolution of degeneracy in the entangle-
ment spectrum, we define

D = logμ1 − logμ4

logμ4 − logμ5
, (19)

where the μα are the Schmidt coefficients of the state,
ordered from largest to smallest. It measures the ratio
between the extent of the first four levels of the spec-
trum and the gap separating them from the fifth one. In
Fig. 7(a), we display this quantity averaged over trajec-
tory realizations, which demonstrates the prolonged life of
the degeneracy in the case of Pauli-string jumps. Remark-
ably, this lifetime increases with the system size, as shown
in Fig. 7(b). The inset therein shows the evolution of the
gap, logμ4 − logμ5, for the three system sizes. This gap
protects the degeneracy of the dominant Schmidt coef-
ficients and hence the topological character of the state.
For a chain of six spins, it roughly follows a power-law
decay of approximately t−0.2, which also holds for eight
and ten spins, but the behavior goes through a change at
t ≈ 100J −1, which is when D starts to plateau.

VI. WEAKLY SYMMETRIC QUBITS

We now focus specifically on the edge qubit operators,
e.g., for the left edge �x

L = X1Z2, �z
L = Z1, and the cor-

responding �y
L = Y1Z2. As discussed previously, these are

weak symmetries, the expectations of which are conserved
between jumps and change by at most a sign under the
action of a Pauli-string jump operator. Noting that the state
of the edge qubit is uniquely defined by these expectations,

(a) (b)

FIG. 8. A schematic Bloch sphere of the weak qubit during
a quantum trajectory evolution. (a) Perturbation off: without
perturbation, it alternately occupies four states, as there is no
evolution between jumps, and the latter can only produce π rota-
tions about the Bloch-sphere axes. The restoration procedure is
exact—it consists in monitoring the number of flips that appear
in each direction and applying a restoring flip at measurement
time. (b) Perturbation on: perturbation makes it slowly deviate
from those four states, hence losing in fidelity until reaching and
oscillating around the origin. Restoration can still undo the effect
of jumps to some extent, such that the weak qubit is made long
lived. The parameters for the illustration are as follows: N = 8,
κ = 0.1J , Vxx = 0.1J , and trajectory shown up to t = 316J −1.

a vector [〈X1Z2〉0, 〈Y1Z2〉0, 〈Z1〉0] on the Bloch sphere, with
Fl = Yl jump operators we find

with all other jump operators leaving the left edge qubit
unchanged.

Each Pauli jump therefore acts as a π rotation about the
x, y, or z axis in the Bloch sphere, as illustrated in Fig. 8(a).
If it commutes with component x but anticommutes with z,
it flips the state onto

∣
∣ψx

0

〉
—and if the inverse is true, onto∣

∣ψ z
0

〉
. If it anticommutes with both x and z components, the

state becomes
∣
∣ψ

y
0

〉
.

This introduces a dichotomy between two types of
qubits: those residing in the steady state due to strong sym-
metries of the Lindblad master equation, which we call
strong qubits; and those supported by the weak symme-
tries, lost in the Lindbladian dynamics but visible in indi-
vidual quantum trajectories, which we call weak qubits.
We note in particular that the weak-qubit operators are
local and thus may be easier to manipulate than the global
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strong-qubit operators considered earlier. For this to be
useful, however, we need to demonstrate how to recover
the initial states of the weak qubits.

A. Recovering quantum information from weakly
symmetric qubits

It is possible to use the weak-symmetry properties to
return the weakly symmetric qubit to its original state. One
approach is to count the occurrences of jumps that affect
the weakly symmetric qubits, e.g., the number of occur-
rences of Y1 and Y2 for the left qubit with Y jumps. The
initial information can then be retrieved by applying an
appropriate operation at the end of the trajectory: flipping
the spin back from

∣
∣ψ

x,y,z
0

〉
to |ψ0〉 if needed. We note that

this operation can be any operator performing the required
rotation of π around the x, y, or z axes on the weak qubits.
Notably, it can be local even if the jump operators or the
weak qubit itself is delocalized over many sites.

A second approach is more closely related to stan-
dard error-correction techniques, with the weak-symmetry
operators Kl viewed as stabilizers [93]. As noted above,
provided that a state is an eigenstate of these operators at
the start, Pauli-string jump operators will leave the state
as a potentially distinct eigenstate. If there is a one-to-one
correspondence between the effect of jumps on the weakly
symmetric qubits and the effect of jumps on the eigen-
values of the Kl operators, then measurements of these
operators can uniquely determine what error has occurred
on the weakly symmetric qubits and thus informs us about
the correction that needs to be applied.

The applicability of the error-correction-based approach
thus depends on the noise channels considered, since each
distinct combination of jumps must be distinguishable
through measurements of the Kl-stabilizer operators. In
practice, the experimental feasibility of measuring these
stabilizers or, alternatively, observing which jumps occur,
would be a key factor in choosing which protocol to imple-
ment. However, we note that observing jumps would work
for any set of noise channels and is more clearly resistant to
Hamiltonian perturbation. We thus focus on this protocol
in Sec. VI B.

B. Resilience to perturbation

In the presence of the Hxx Hamiltonian perturbation
(V = 0.1J ), the edge qubits evolve between jumps, due
to the breakage of weak symmetries, as illustrated in Fig.
8(b). This causes the state to progressively drift away from
the initial state on a time scale dictated by the perturbation
strength, eventually reaching the maximally mixed state
due to entanglement with bulk degrees of freedom. Before
this relaxation, the trajectory stays in the vicinity of |ψ0〉
and

∣
∣ψ

x,y,z
0

〉
, since the Y1 and Y2 jumps still act as rotations.

By applying the error-mitigation protocol, the effects of the
jumps can be mitigated on average, hence enhancing the

lifetime of the qubit, where the lifetime is dictated by the
perturbation and not the dissipation.

We quantify the memory of the encoded qubit in terms
of fidelity, measured by the distance between mixed states
ρ and σ as [94]

F(ρ, σ) =
(

Tr
{√√

ρσ
√
ρ

})2

. (20)

This is presented for states belonging to one and two weak
edge qubits in Figs. 9(a) and 9(b); for comparison, the
fidelity of the steady-state strong qubits, discussed in Sec.
IV, is displayed in Figs. 9(c) and 9(d). The initial state
is the ground state of H0 with the left edge mode 	�L in
a configuration with all three components having equal
expectation values, and the right one, 	�R, pointing in the
+z direction.

When the error-mitigation protocol is not applied, the
fidelity decays equally rapidly for all values of the per-
turbative field strengths V, indicated by the dashed lines
in Figs. 9(a) and 9(b). In the absence of perturbation, the
protocol proposed above preserves the information indef-
initely; hence the fidelity remains 1 at all times. In the
presence of perturbation Hxx, the protocol extends the life-
time of the weak qubits as shown in Figs. 9(a) and 9(b),
becoming comparable to the lifetimes of the strong qubits
as shown in Figs. 9(c) and 9(d). All lifetimes reduce with
increasing V, as shown in Figs. 9(a)–9(d). We also note that
the above results are independent of system size or initial
state, likely due to the same algebraic properties that led
to system-size-independent time scales under perturbation
for the strong qubits.

In the ensemble of trajectories, the time scale at which
the fidelity of the error-mitigated state drops below 0.75 is
a fluctuating measure of the lifetime of the logical qubit.
The distribution of lifetimes, as shown in the histograms
of Fig. 9, is well approximated by an inverse Gaussian dis-
tribution, t0.75 ∼ IG(μ, λ). Its probability density function
(pdf) is

f (t|μ, λ) =
√

λ

2π t3
exp

[−λ(t − μ)2

2μ2t

]

, t > 0, (21)

where μ > 0 and λ > 0 are the mean and shape parameter,
respectively.

We remark that the inverse Gaussian characterizes the
first-passage-time distribution for Brownian motion with
a drift [95], which thus offers a possible explanation for
the behavior of the first passage time t0.75. The evolution
of the fidelity could therefore be imagined as resembling
a Wiener process due to the quantum dissipative jumps
and subject to drift due to the perturbation. This is, how-
ever, only an intuitive picture: a full understanding would
require considering the dynamics of the fidelity induced by
the underlying jump process of the quantum state [96] and
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taking into account the contribution of the perturbation to
the fidelity.

C. General weakly symmetric qubits

Through the above illustration, we have demonstrated
a general principle: weak symmetries in quantum trajec-
tories allow for information contained in the initial state
to be recovered, provided that environmental interactions
can be sufficiently monitored. When these weak symme-
tries form an su(2) algebra, or a product of multiple su(2)
algebras, this information consists of qubits and can thus
encode quantum information.

In the context of quantum information in open systems,
it is therefore worth exploring models beyond those host-
ing qubits in the steady state of a Lindbladian. By looking

(a) (b)

(c) (d)

1.0

1.0
0.0

0.0

FIG. 9. The evolution of the fidelity of (a) the left edge mode
and (b) the two edge qubits together, for Yl jumps at N = 8,
κ = 2.5J , and different values of the perturbation strength Vxx.
The solid lines show the fidelity when the restoring procedure is
applied, while the dotted lines show it without doing anything
and they all overlap. The inset histograms show the distribution
of times at which the fidelity for single trajectories goes below
0.75 for the first time. The data are averaged over 50 000 trajec-
tory realizations. (c),(d) The fidelity for the strong qubits, i.e.,
the ones existing in the steady state of the Lindbladian dynamics
with Zl−1Zl+1 jumps. For all curves, the initial state is a cluster
state with all three components of the left edge mode nonzero,
in the ground state of H0, although no dependence on the initial
state has been observed. Also, there is no apparent dependence
on system size.

at the weak symmetries and their implications for trajec-
tories, a broader class of models may be able to preserve
quantum information.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have uncovered a rich set of dynami-
cal phenomena associated with strong and weak discrete
symmetries in open quantum systems. We character-
ize the entanglement and topological properties of a
one-dimensional spin-1/2 chain in the presence of var-
ious forms of dissipation. The unperturbed Hamiltonian
involves the three-spin ZXZ interaction, often called the
cluster model, which has a global Z2 × Z2 symmetry. This
symmetry, being strong, results in a degenerate steady-
state manifold. While the degeneracy is lifted on perturb-
ing the Hamiltonian, the manifold can remain metastable
in the thermodynamic limit, as long as the symmetry is not
broken. Our results point toward a general mechanism for
symmetry-protected metastability, potentially enabling the
design of models with coherent behaviors that survive to
times inversely proportional to the square of the perturba-
tion strength, which can be much longer than the relaxation
time of the unperturbed dynamics.

The robust metastability in this setup originates from
the low-lying spectrum of the Lindbladian, which we have
studied using the algebraic structure of the Hamiltonian
and jump operators. Specifically, the Hamiltonian we have
considered is a sum of elements of a stabilizer group and
the jump operators commute or anticommute with these
stabilizers. This structure allows for the exact solution of
the unperturbed low-lying spectrum, while also dampen-
ing the effect of symmetry-preserving perturbations on the
spectrum. The structure is intricately connected to the sym-
metries of the model, which have further implications for
the entire spectrum and constrain the dynamics of observ-
ables. A framework for studying this class of algebraic
structures in interacting Lindbladians could shed light on
their integrable properties, a topic of considerable interest.

The stationary manifold of the Lindbladian contains
states that exhibit a fourfold-degenerate entanglement
spectrum, a signature of the entanglement and symmetry-
protected topological (SPT) order associated with closed
systems, remarkably surviving in the presence of dissipa-
tion. For dissipation acting as a Pauli string on the state,
the degeneracy of the entanglement spectrum is maintained
throughout the evolution when the system is initialized
in a cluster state. We have demonstrated that these sig-
natures originate from the effect of weak symmetries on
quantum trajectories, an unraveling of the Lindbladian
dynamics into the noisy dynamics of a pure state. We see
that the SPT order can be preserved along the individual
realizations of the trajectories, leading to the survival of
the entanglement-spectrum degeneracy. Our observations
suggest a key perspective for understanding topological
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physics in open quantum systems through the lens of
weak symmetries and trajectories. Further, while we have
focused on a particular class of jumps (Pauli strings), more
general forms of dissipation could also respect weak sym-
metries and hence lead to similarly interesting behaviors.
In the future, it would be interesting to further classify the
impact of dissipation on SPT phases using quantum trajec-
tories, as has been initiated in Ref. [97] for another class of
models.

Finally, we have shown that the symmetry-protected
metastable manifold originating from the strong symme-
tries harbours logical qubits, albeit with a nonlocality that
potentially makes them hard to manipulate. We have also
demonstrated that weak symmetries can enable local edge
qubits that retain quantum information within individual
quantum trajectories, invisible to the trajectory-averaged
Lindbladian evolution. The state of an edge qubit can be
restored through a protocol based on monitoring environ-
mental interactions of a small section of the spin chain,
enhancing the lifetime of the qubit, which we further
demonstrate is resilient to perturbation. Our results moti-
vate trajectories as a new avenue for controlling entangle-
ment in dissipative systems and stabilizing novel states in
noisy intermediate-scale quantum devices.

Realizing the fundamental properties of this family of
models could be potentially achieved in a variety of physi-
cal settings. Recent experiments have realized SPT phases
in isolated interacting models using cold atoms in an
optical lattice [23,24]. Engineered dissipation is also an
experimental tool increasingly prevalent for the prepara-
tion of desired states and the study of nonequilibrium
quantum phenomena [98]. Three-qubit unitary interac-
tions, an essential ingredient of our theory, have been
engineered recently [99,100] in quantum circuits of super-
conducting qubits that also allow for controlled dissipative
processes and measurements to achieve a desired steady
state [101–104]. Importantly, these devices can be operated
in the regime of monitored dynamics to study the statistical
properties of quantum trajectories [105–108]. Third, noisy
intermediate scale quantum (NISQ) devices can also host
cluster states, as has been demonstrated in Ref. [8]. This
could be used to probe results presented here and further
develop our understanding of topological phases in open
quantum systems.
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APPENDIX A: AUTOCORRELATION OF
MEASUREMENT OUTCOMES

The autocorrelation of measurement outcomes of an
observable O is used in the main text (see Fig. 1) to probe
survival of initial information throughout the evolution of
the open quantum system.

The observable can be decomposed as O =∑i νiPi,
with the νi values being its eigenvalues, i.e., the possi-
ble measurement outcomes, and the Pi values being the
projectors on the corresponding eigenspaces.
A(t) quantifies the correlation between the results of two

measurements, νi and νj , at an initial and final time, medi-
ated by a given temporal change in the state labeled by r,
averaged over samples:

A(t) =
∑

i,j ,r

νiνj P(i|ψ0)P(r|i, t,ψ0)P(j |t, r, i,ψ0), (A1)

where P(i|ψ0) = Tr{Pi |ψ0〉 〈ψ0|} is the probability of out-
come i happening given the initial state |ψ0〉, P(r|i, t,ψ0)

is the probability that the temporal evolution Er(t) occurs
given the initial measurement outcome i on |ψ0〉,

P(r|i, t,ψ0) = Tr{Er(t)Pi |ψ0〉 〈ψ0| PiE
†
r (t)}

Tr{Pi |ψ0〉 〈ψ0|} , (A2)

and P(j |t, r, i,ψ0) is the probability of measuring outcome
j given initial measurement i and evolution r,

P(j |t, r, i,ψ0) = Tr{Pj Er(t)Pi |ψ0〉 〈ψ0| PiE
†
r (t)}

Tr{Er(t)Pi |ψ0〉 〈ψ0| PiE
†
r (t)}

. (A3)

The sum over j can be performed to recover O and
putting all the probability definitions together leads to

A(t) =
∑

i,r

νiTr{OEr(t)Pi |ψ0〉 〈ψ0| PiE†
r (t)}. (A4)

Further, carrying out the sum over all possible trajec-
tories r, the time evolution reduces to the Lindbladian
one:

A(t) =
∑

i

νiP(i|ψ0)Tr{OeLt(ρi(0))}, (A5)

where ρi(0) is the properly normalized density matrix after
the first measurement at time 0. Finally, using the linearity
of the Lindbladian evolution, we may evolve an unphysical
matrix ρ̃(0) =∑i νiP(i|ψ0)ρi(0)

A(t) = Tr{OeLt(ρ̃(0))}. (A6)
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APPENDIX B: CLUSTER STATES

The cluster Hamiltonian H0 from Eq. (2) is frustration
free, i.e., all its terms mutually commute. As is shown here,
its eigenstates are simply built out of the ones of each of
the cluster terms. Additionally, due to the open boundary
conditions, some degrees of freedom at the edges remain
free, so that each energy level is degenerate with fourfold
multiplicity, accommodating for the four possible states of
the edges.

First, we can rewrite the problem in the basis of clusters
on each site by observing that the following operators form
spin algebras:

Z̃l = Kl = Zl−1XlZl+1,

X̃l = Zl,

Ỹl = −Zl−1YlZl+1.

(B1)

This is valid in the bulk, i.e., for l = 2, . . . , N − 1. On
the edges, they become Z̃1 = X1Z2, X̃1 = Z1, Ỹ1 = −Y1Z2,
and Z̃N = ZN−1XN , X̃N = ZN , and ỸN = −ZN−1YN . Anal-
ogously to spins, Z̃l gives the cluster eigenvalue at l, while
X̃l and Ỹl flip it up to some phase. We can easily see that
these operators respect spin commutation and anticommu-
tation relations and define a new on-site local basis for a
chain of clusters. Note that in the main text, in order to
match the notation from the literature, the edge modes are
written as Z̃1/N ≡ �x

L/R and X̃1/N ≡ �z
L/R.

This maps the model onto a new spin chain with
the Hamiltonian H0 =∑N−1

l=2 Z̃l. The two clusters at the
boundaries are strong zero modes, as they do not appear
in the Hamiltonian. Hence the eigenstates can be written
simply in terms of the eigenstates of the 2N−2 Z̃l opera-
tors in the bulk: |+〉 and |−〉, with eigenvalues +1 and
−1, respectively. Each of these will be fourfold degenerate,
as the edge clusters are free. This thus forms a complete
and orthonormal basis of the Hilbert space, labeled by the
eigenvalue on each site, which is denoted by the set {±l}.
In the original basis, these states can be obtained by apply-
ing corresponding cluster raising and lowering operators
S̃±

l = (X̃l ± iỸl)/2 on the state of all spins up |↑〉⊗N :

|{±l}〉 =
√

2N

(
N∏

l=1

S̃±l
l

)

|↑〉⊗N . (B2)

With this formulation of the problem, the action of the
jumps on the cluster basis states is readily understood. In,
e.g., this new basis, the Yl jumps act like −X̃l−1ỸlX̃l+1 in
the bulk (l = 2, . . . , N − 1) and −Ỹ1X̃2 and −X̃N−1ỸN on
the edges. Their action is then to flip the cluster eigenstates
on two or three adjacent sites. But when starting from
a cluster state, along a single trajectory the state always
remains a cluster state. In particular, only Y1 and Y2 flip

the left edge mode. The consequences of that are illus-
trated in Figs. 6(a)–6(c) and explored further in Sec. V.
This is the case for any jump operator that is a Pauli string,
as it will also be a Pauli string in the new basis, i.e., it
will preserve the cluster structure of the state. On the con-
trary, jumps that are sums of Pauli strings create generate
superposition of states. In the main text, we illustrate this
with S−

xl = (Zl + iYl)/2 and see that it indeed destroys clus-
ter states and their short-range entanglement along a single
trajectory.

Alternatively, in Figs. 6(d)–6(f), we consider states that
have fourfold-degenerate entanglement spectra. These are
cluster states as well, i.e., eigenstates of H0, but also
eigenstates of the spin-flip symmetries. They arise if, in
the preceding reasoning, we take the spin-flip symmetries
instead of the edge modes in order to construct them. The
previous basis allows us to explore different configura-
tions of the edge modes, while these states allow us to
more clearly characterize the topology through fourfold
degeneracy in the entanglement spectrum.

They can be defined as [49]

|{±l}, go, ge〉 =
√

2N

(
N−1∏

l=2

S̃±l
l

)

Pg′
o

o Pg′
e

e |↑〉⊗N , (B3)

where the P±
o/e = (1 ± Go/e)/2 are projectors onto the sec-

tors of the spin-flip symmetries with eigenvalues go/e =
±1 and g′

o/e = gN/2−1
o/e = ±1. The action of the Pauli-

string jump operators on them still also preserves the
cluster nature of the state but can also change the spin-
flip-symmetry sector. The bulk operators X̃ and Ỹ act
as previously by flipping the cluster eigenvalue but they
also flip go or ge if they act on an odd or even site.
Bulk Z̃ returns the cluster eigenvalue. The action on the
edges is more complicated. First, the X̃1/N = Z1/N com-
mute through everything in Eq. (B3) except for Go/e,
respectively, of which they change the eigenvalue. Then,
noting that X̃1Ge = (Z̃2Z̃4 · · · Z̃N−2)Z̃N , we find that

Z̃N |{±l}, go, ge〉 = (−1)pege |{±l}, −go, ge〉 , (B4)

with pe =∑N/2−1
l=1 Z̃l. Analogous reasoning holds for the

other edge.
In conclusion, that demonstrates why Pauli-string jump

operators also preserve the cluster states in this representa-
tion in terms of the Z2 × Z2 symmetry operators, as used
in Figs. 6(d)–6(f).

APPENDIX C: ENTANGLEMENT SPECTRUM OF
CLUSTER STATES AND THEIR MIXTURES

Each cluster state [either Eq. (B2) or Eq. (B3)] is an
eigenstate of a set of N commuting parity operators Ol.
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We may write their density matrix as a normalized prod-
uct of the projection operators onto the corresponding
eigenstates:

ρκ =
N∏

l=1

I + (−1)κlOl

2
, (C1)

where κ = [κi]N
i=1 with κ ∈ {0, 1} enumerate the cluster

states. Such a state is said to be stabilized by a set of N sta-
bilizers Kl, such that Kl |ψ〉 = |ψ〉 and [Kl, Kl′] = 0, where
each Kl is a Pauli string. In this case, Kκl

l = (−1)κlOl. We
may thus write

ρκ =
∏ I + Kκl

l

2
= 1

2N

∑

σN
1

∏

l

(Kκl
l )

σl , (C2)

where σl ∈ 0, 1 and the sum over σN
1 = [σi]N

i=1 runs over
all values.

The partial trace of this density matrix thus consists of
a sum over partial traces of the Pauli strings

∏
l(K

κl
l )

σl .
These traces will fall into two classes of values for each
Pauli string: they will be 0 if the string has nonidentity
support on the traced part of the system; or they will be
equal to themselves scaled by one over the Hilbert-space
dimension of the scaled space, e.g., 1/2M for tracing out
M sites. We will specifically consider a contiguous set of
M sites starting from site 1.

First, let us consider the case with stabilizers
Kκl

l = (−1)κlZl−1XlZl+1 for l = 2, . . . , N − 1, Kκ1
1 = (−1)κ1

X1Z2, and KκN
N = (−1)κN ZN−1XN , leading (up to a phase

factor) to

∏

l

(Kκl
l )

σl ∝ X σ1
1 Zσ2

1

(
N−1∏

l=2

Zσl−1
l X σl

l Zσl+1
l

)

ZσN−1
N X σN

N .

(C3)

Requiring site 1 to be the identity leads to σ1 = 0, σ2 = 0.
Requiring site l to be identity requires σl = 0 and σl−1 =
σl+1. Thus, requiring all sites l = 1, . . . , M to be identity
requires σl = 0 for l = 1, . . . , M + 1. This leaves 2N−M−1

remaining nonzero contributions to the partially traced
density matrix,

Tr1:M (ρκ) = 1
2N−M

∑

σN
M+2

N∏

l=M+2

(Kκl
l )

σl . (C4)

Next, consider the case with stabilizers Kκl
l =

(−1)κl

Zl−1XlZl+1 for l = 2, . . . , N − 1, Kκ1
1 = (−1)κ1Go, and

KκN
N = (−1)κN Ge. Using the notation σ0 = σN , we have

∏

l

(Kκl
l )

σl ∝X σ1
1 Zσ2

1 X σ2
2 Zσ3

2 X σN
2

×
(

N−2∏

l=3

Zσl−1
l X σl

l Zσl+1
l X

σl (mod 2)
L

)

× ZσN−2
N−1 X σN−1

N−1 X σ1
N−1ZσN−1

N X σN
N . (C5)

Starting again at site 1, we find that for identity, both σ1 and
σ2 must be 0. Next, for site 2, that we find σ3 and σN must
therefore also be 0. Requiring 2 < l ≤ M to be identity,
we thus find that since both σ1 and σN are 0, we must have
σl = 0 and σl−1 = σl+1. We therefore have σl = 0 for l =
1, . . . , M , in addition to σN = 0, leaving us with 2N−M−2

contributions to the partially traced density matrix, a factor
of 2 less than previously, giving

Tr1:M (ρκ) = 1
2N−M

∑

σM+2N−1

N−1∏

l=M+2

(Kκl
l )

σl . (C6)

In order to demonstrate that these partially traced density
matrices contain degenerate eigenvalues, we calculate their
square,

Tr1:M (ρκ)
2 = 1

22(N−M )

∑

σ ,σ ′

∏

l

(Kκl
l )

σl(Kκl
l )

σ ′
l . (C7)

Noting that any set of stabilizers forms an Abelian group
G, by group axioms the left action of any element of that
group forms an invertible function and is thus a one-to-
one mapping of the group. We may therefore rewrite the
square as

Tr1:M (ρκ)
2 = 1

22(N−M )

∑

σ ,σ ′

∏

l

(Kκl
l )

σ ′
l , (C8)

where we have reordered the sum after performing the
action of each (Kκl

l )
σl , and thus

Tr1:M (ρκ)
2 = |G|

22(N−M )

∑

σ

∏

l

(Kκl
l )

σl ,

= |G|
2N−M Tr1:M (ρκ) , (C9)

where |G| is the number of elements in the group, i.e., 2 to
the number of stabilizers that generate it.

Since the densities power is equal to itself up to a scaling
factor, this implies that all of its eigenvalues are identi-
cal. Further, since the trace of the density must be 1, for

030304-16



EDGE MODES AND SYMMETRY-PROTECTED... PRX QUANTUM 5, 030304 (2024)

D eigenvalues of value λ, we have Dλ = 1 and from the
purity we have

Dλ2 = |G|Dλ
2N−M , (C10)

thus λ = |G|/2N−M and D = 2N−M/|G|.
For the two cases of stabilizers discussed previously:

when the edge modes are used as stabilizers, |G| =
2N−M−1, λ = 1/2 and D = 2; and when the spin-flip sym-
metries are used, |G| = 2N−M−2, λ = 1/4 and D = 4.

Now consider a mixture of cluster density matrices,

ρ =
∑

κ

pκρκ , (C11)

for which we will study the entanglement spectrum via

Tr1:M (ρ) =
∑

κ

pκTr1:M (ρκ) . (C12)

Noting that we may perform the sum in the partially traced
cluster densities of, e.g., Eq. (C6) to return to

Tr1:M (ρκ) = 1
2N−M

∏

l

I + Kκl
l , (C13)

where the product is over the remaining stabilizers, e.g.,
l runs over M + 2, . . . , N − 1 for the case with flip sym-
metry stabilizers and M + 2, . . . , N for the case with
edge-mode stabilizers.

Further, noting that

(I + Ka
l )(I + Kb

l )/4 = δab(I + Ka)/2, (C14)

we have

Tr1:M (ρκ)Tr1:M (ρτ ) = |G|∏l δκlτl

2N−M Tr1:M (ρκ) , (C15)

implying due to hermiticity that these partial traces have
disjoint supports if their signatures are distinct on the
remaining part of the label. In other words, each has
nonzero eigenvalues with corresponding eigenvectors that
are orthogonal to all eigenvectors with nonzero eigen-
values from another with a distinct signature and thus
contribute distinct eigenvalues.

In conclusion, we see that a classical mixture of clus-
ter states such as Eq. (C11) must have an entanglement
spectrum with eigenvalues that are at least as degener-
ate as the degeneracy present in each individual cluster
state, with further potential degeneracy originating from
the probabilities in the mixture.

APPENDIX D: CHANGE OF BASIS BETWEEN
PHYSICAL AND LOGICAL QUBITS

The change of basis between the decoherence-free sub-
system (DFS) form and the physical spin chain, high-
lighted in Sec. IV, can conveniently be represented as
a circuit of controlled-X (CX) gates. We will use the
following rules to “push operators through” the CX gates:

It can be seen that a series of those gates transforms the
chain of X operators on the even or odd sites into a local
X , which is the desired �x

o/e acting on the qubit degree of
freedom.

The change of basis is thus U = UoUe, with

Uo =
N/2∏

i=1

CX1,2i−1, Ue = SWAPN ,2

N/2∏

i=1

CXN ,2i, (D1)

where CXi,j is a controlled-NOT (CNOT) – CX gate applied
to the i and j spins and identity on every other spin and
SWAPN ,2 just swaps the vector spaces such that the two log-
ical qubits are encoded on the first two vector spaces in the
tensor product of the new basis.

APPENDIX E: LOW-LYING STATES

In Sec. IV, we give the form and eigenvalues of the
“low-lying” states, those that establish the dissipative gap.

As will be elucidated in further work, the system of N
spins has a fragmented state space with fragment sizes 2n,
n ranging from 0 to N − 2 and counting the number of
sites at which the given states anticommute with the cluster
operators Kl. It can be seen readily by considering the Pauli
basis, where each state naturally generates such a fragment
when acted on withL0, as explained for n = 1 and 2 in Sec.
IV. The invariant subspaces uncovered there easily gener-
alize to any n, hence partitioning the whole operator space
into an extensive number of fragments. In Fig. 10, we show
the dissipative gap among all the fragments of a particular
dimension for N = 16. More precisely, it is the gap sep-
arating the steady state from the levels having the lowest
real part, in absolute value, and belonging to that subsec-
tor of 2n-dimensional fragments. We observe that for the
range of parameters displayed, fragments of size 2 and 4
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Size of fragments:

FIG. 10. The state space of the clean system (Vxx = 0) of size
N divides into fragments of different dimensions. We regroup
them into subsectors labeled by the size of the fragments, 2n for
n = 0 → N − 2. Here, we show the dissipative gap of each such
subsector for N = 16. The dissipative gap of the whole system is
governed by subsectors with n = 1 and 2.

are the ones setting the gap. This corresponds to the intu-
itive picture presented in the main text, according to which
the gap is determined by those states that differ the least,
by some “excitations,” from the steady states, and hence
are the least dissipated ones. Now, it can also be observed
that increasing the system size from N to N + 2 does not
modify the structure of the existing fragments but demulti-
plies them and adds bigger previously absent ones of size
2N . It follows by recursion that the dissipative gap always
originates from two- and four-dimensional fragments, so
we can be safe to limit our reasoning to them in the search
of expressions for the gap, as has been done in Sec. IV.

First, the λ1(α) level of Eq. (9) of the two-dimensional
fragments {A, B} and the corresponding eigenmodes are
straightforwardly obtained from the matrix representing
the action of L0 therein:

L(1)0 (α) =
(

0 −2J
2J −4ακ

)

. (E1)

Second, to obtain the expression for λ2, as in Eq. (14),
we explore the different possibilities for the action of L0
in a four-dimensional fragment {A, B, C, D}. We are inter-
ested in eigenvalues with the lowest possible real part (in
absolute value) and we expect them to arise from a frag-
ment subjected to the least possible amount of dissipation;
hence, a matrix with the smallest possible values on the
diagonal. There are two possibilities but the one among
them with the lowest levels in all the parameter regimes is
the following:

L(2)0 =

⎛

⎜
⎝

0 −2J −2J 0
2J −4κ 0 −2J
2J 0 −8κ −2J
0 2J 2J −4κ

⎞

⎟
⎠ . (E2)

Its lowest eigenvalue is Eq. (14) and the corresponding
eigenmode [see Eq. (13)] is of the form W = A + iuB +
ivC − wD, with

u = i
(8κ + λ2)λ2

4J (6κ + λ2)
, v = i

(4κ + λ2)λ2

4J (6κ + λ2)
, w = λ2

4κ + λ2
.

(E3)

This corresponds to “excitations” such as intuitively
described in the main text.

APPENDIX F: PERTURBATION THEORY

In Sec. F 1, we follow the details of the study of the Hxx
perturbation presented in Sec. IV. This is an example of
a perturbation introducing interactions but preserving the
Z2 × Z2 symmetry. We further contrast it to the case of a
symmetry-breaking perturbation in Sec. F 2.

1. Z2 × Z2-symmetry-preserving perturbation

In principle, the perturbation could couple some steady
states among themselves. But this will not be the case here,
which can be checked explicitly for the XlXl+1 terms of
Hxx. Also, since they preserve the spin-flip symmetries,
i.e., they commute with Go and Ge, the (+, +) sector is
not affected. It will act similarly on the (+, −) and (−, +)
sectors and twice as much on the (−, −) one, because it is
a product of the latter two. Inside each one of those there
are four states but the perturbation has the same action on
all of them. We thus choose to work on P = {Z1}, which
through V is coupled only to the following invariant sub-
space of Q: Q′ = {Y1X2, X1Z3, Y1Y2X3Z4, X1Z2Y3Z4}. We
refer to that diagonal entry of Leff

2 as Leff
2,Z1

. In this fragment,

L−1
0 =

⎛

⎜
⎝

−8κ 2J −2J 0
−2J −4κ 0 2J
2J 0 −8κ 2J
0 −2J −2J −4κ

⎞

⎟
⎠

−1

= SD−1S−1,

D = diag(λ−+, λ++, λ−−, λ+−),
(F1)

with λ±±/J = −6κ/J ± 2
√
(κ/J )2 ± 2iκ/J − 2, and

S =

⎛

⎜
⎝

a−−+ a−++ a++− a+−−
−i −i i i

ia−−+ ia−++ −ia++− −ia+−−
1 1 1 1

⎞

⎟
⎠ ,

a±±± = 1 ± iκ/J ± i
√
(κ/J )2 ± 2iκ/J − 2

= 1 + i(3 ± 1)κ/J + (i/2)λ±±/J .

(F2)
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Now, the action of the perturbation V on Q′ and P ,
projected, respectively, onto P and Q′, is

V+= (−2Vxx 0 0 0
)T , V−= (2Vxx 0 0 0

)
.

(F3)

Putting all this together and into Eq. (17), we obtain the
following final expression:

−Leff
2,Z1
/J =

[
2J

a−−+ − a−++

(
a−−+
λ−+

− a−++
λ++

)

+ 2J
a+−− − a++−

(
a+−−
λ+−

− a++−
λ−−

)]

(Vxx/J )2

= 8(κ/J )3 + 3κ/J
16(κ/J )4 + 9(κ/J )2 + 1

(Vxx/J )2 .

(F4)

This expression for Leff
2,Z1
/J , which is equal to half the

maximum spread δ/2, in units of (Vxx/J )2, is displayed in
Fig. 5(b) as a function of κ/J .

2. Z2 × Z2-symmetry-breaking perturbation

To contrast with Sec. F 1, we look at the behavior of the
model subjected to a perturbation Hy = Vy

∑N
l=1 Yl. This

breaks the symmetry. Its action on the Z1 steady state will
be similar, because it is a local state, but now, the strings
of X operators in Go, Ge, and all other components of
the steady state generated by them, will also be affected.
Also, it is expected that they will be coupled to many
more fragments of the system and therefore the stationary
subspace is expected to decay much faster than with the
symmetry-preserving perturbation.

We take, for example, the state GoGe =⊗l Xl. The per-
turbation couples its left boundary to a two-dimensional
fragment generated by Y1GoGe. The Y2 term couples it to
a four-dimensional fragment generated by Y2GoGe. The
terms on sites N and N − 1 have an identical effect by
symmetry. And in the bulk, each perturbation term acting
on sites from l = 3 to l = N − 2 couples the state to an
eight-dimensional fragment generated by YlGoGe. There
are N − 4 such bulk terms. Following a similar approach
as in Sec. F 1 and summing all the contributions, we obtain

− Leff
2 /J =

[
16κ/J

8(κ/J )2 + 1
+ 2

3κ/J

+ (N − 4)8κ/J
64(κ/J )2 + 3

1536(κ/J )4 + 152(κ/J )2 + 3

]
(
Vy/J

)2 .

(F5)

We observe that the second term diverges when κ/J →
0 and that there is now a dependence on N due to the
bulk terms. These features can be seen in Fig. 5(b) as

well. This state under the perturbation decays about one
order of magnitude more quickly than all the states under
the symmetry-preserving perturbation and that difference
increases with system size. The other steady states, except
for the identity, Z1, ZN and Z1ZN , also acquire this sort of a
lifetime dependence on N but the maximum shift, denoted
δ in Fig. 2, is given by Eq. (F5).
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