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Quantum signal processing (QSP) and quantum singular value transformation (QSVT) currently stand
as the most efficient techniques for implementing functions of block-encoded matrices, a central task that
lies at the heart of most prominent quantum algorithms. However, current QSP approaches face several
challenges, such as the restrictions imposed on the family of achievable polynomials and the difficulty of
calculating the required phase angles for specific transformations. In this paper, we present a generalized
quantum signal processing (GQSP) approach, employing general SU(2) rotations as our signal-processing
operators, rather than relying solely on rotations in a single basis. Our approach lifts all practical restric-
tions on the family of achievable transformations, with the sole remaining condition being that |P| ≤ 1,
a restriction necessary due to the unitary nature of quantum computation. Furthermore, GQSP provides a
straightforward recursive formula for determining the rotation angles needed to construct the polynomials
in cases where P and Q are known. In cases where only P is known, we provide an efficient optimiza-
tion algorithm capable of identifying in under a minute of GPU time, a corresponding Q for polynomials
of degree on the order of 107. We further illustrate GQSP simplifies QSP-based strategies for Hamil-
tonian simulation, offer an optimal solution to the ε-approximate fractional query problem that requires
O ((1/δ)+ log(1/ε)) queries to perform where O(1/δ) is a proved lower bound, and introduces novel
approaches for implementing bosonic operators. Moreover, we propose a novel framework for the imple-
mentation of normal matrices, demonstrating its applicability through synthesis of diagonal matrices, as
well as the development of a new algorithm for convolution through synthesis of circulant matrices using
only O(d log N + log2 N ) 1 and 2-qubit gates for a filter of lengths d.
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I. INTRODUCTION

In recent years, significant advancements in quantum
algorithm theory have revealed a powerful, overarching
insight: the majority of prominent quantum algorithms,
such as Hamiltonian simulation [1–4], quantum search
[5–7], factoring [8], and quantum walks [7,9], can be fun-
damentally reduced to the central task of implementing a
matrix function of a Hamiltonian, f (H), this was shown in
Refs. [10,11]. Over the years, numerous techniques have
been developed for constructing such functions, including
phase-estimation methods such as the HHL algorithm [12],
linear combination of unitaries (LCU) [4], and quantum
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signal processing (QSP) [2,13–17]. Among these, QSP
stands out as the most versatile approach to date, capable
of approximating a wide range of matrix functions through
eigenvalue or singular value transformations of H , while
requiring a minimal number of ancilla qubits. The basic
idea of QSP is to build a polynomial approximation of the
desired function by assuming oracular access to a unitary
U, which encodes H . QSP has been demonstrated to yield
asymptotically optimal Hamiltonian simulation algorithms
[2]. QSP’s applicability was then further extended to the
case of nonsquare matrices by the QSVT technique [11].
Together, QSP and QSVT have provided an abstract for-
malism that facilitates the efficient implementation of a
wide range of linear algebraic operations and transforma-
tions, creating a new language with greater expressivity for
the construction of quantum algorithms.

Despite its success, QSP still suffers from a number of
severe limitations. Most notable of them being the restric-
tions it places on the family of polynomials that can be
built using it. For instance, in order to build an arbitrary
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polynomial using the original QSP one has to split the
polynomial into four parts by first breaking the polynomial
into its real and imaginary parts, and then further breaking
down each of those into their respective even and odd com-
ponents. One would then combine all parts together using
linear combination of unitaries (LCU) [4], and furthermore
perform a variant of amplitude amplification [18] on the
resulting circuit. This requires that we triple the number
of operations needed to perform Hamiltonian simulation
relative to what we would need if we could implement
Hamiltonian dynamics directly. Lastly, while the original
QSP guarantees the existence of a set of parameters leading
to polynomials satisfying the specified restrictions, find-
ing those parameters has proved to be a complicated (if
computationally efficient) task [14,19]. In this paper, we
present an algorithm, which we term generalized quantum
signal processing (GQSP), that overcomes all the above
limitations leading to a more general framework for the
central task of implementing functions of Hamiltonians.

Our GQSP algorithm provides us with the ability to
build polynomials of unitary matrices using a single ancilla
qubit with the only restriction being that its norm is
not greater than 1 on the complex unit circle as demon-
strated in Corollary 5. Since GQSP does not restrict us
to a fixed parity for the polynomial, it gives us the abil-
ity to approximate functions of a Hamiltonian H without
the need for LCU that appears in some applications of
QSP [11]. Furthermore, in Sec. IV we demonstrate that
computing the rotation angles required to build a given
polynomial is much more efficient and conceptually sim-
pler within this framework. This extends the scope of QSP
along two different axes. We then utilize this technique in
Sec. V to develop a conceptually simplified formulation
of qubitization-based Hamiltonian simulation, and give a
provably optimal algorithm for the fractional query prob-
lem as special cases of what we call phase functions. In
Sec. VI we introduce a powerful idea that extends the con-
cept of Fourier decomposition to normal matrices using
polynomials of a special unitary matrix. More precisely,
we will demonstrate that any normal matrix can be written

as a polynomial of the root of unity unitary in its eigen-
basis. We then explore the utility of this idea by giving a
general framework for synthesizing diagonal and convo-
lution matrices. But first, we give a review of the original
quantum signal-processing algorithm in Sec. II, which sets
the stage for our method introduced in Sec. III.

II. REVIEW OF QUANTUM SIGNAL
PROCESSING

The quantum signal-processing algorithm constructs a
function of H by interleaving applications of a signal
operator with signal-processing operators (Fig. 1). The sig-
nal operator encodes H using controlled applications of
U = eiH, where an ancillary qubit acts as the control. The
signal-processing operations, on the other hand, consist of
single-qubit operations performed on the ancillary qubit.
There are two conventions that are commonly used for the
formulation of quantum signal processing. One where the
signal operator is expressed in the σx basis and the signal
processing is done in the σz basis, and another where the
signal operator is expressed in the σz basis and the signal
processing is done in the σx basis. The signal operator in
the σz basis is defined as

Aσz :=
[

eiH 0
0 e−iH

]
. (1)

We can express the signal operator in the σx basis by
applying a Hadamard gate to both sides of the ancilla qubit:

Aσx :=
[

cos(H) i sin(H)
i sin(H) cos(H)

]
. (2)

This shows that, at a high level, both of these formalisms
are conceptually identical although there are distinctions
between the forms of the polynomials that can be con-
structed in both bases. The results of QSP are often stated
in the Aσx formalism as follows.

Theorem 1 (Quantum signal processing in σx basis). ∀d ∈ N and �φ ∈ Rd+1:

[
P(cos(H)) −Q(cos(H))† sin(H)

Q(cos(H)) sin(H) P(cos(H))†
]

=
(

d∏
j =1

Rz(φj )Aσx

)
Rz(φ0)

⇐⇒

(1) P, Q ∈ C[x] such that deg(P) ≤ d and deg(Q) ≤ d − 1.
(2) Parity(P) = d mod 2 and parity(Q) = (d − 1) mod 2.
(3) ∀x ∈ [−1, 1], |P(x)|2 + (1 − x2)|Q(x)|2 = 1.
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Rx(φ0) • · · · Rx(φd−1) • Rx(φd)

U U†
· · ·

U U†...
...

...
...

· · ·

FIG. 1. Quantum circuit for the original QSP approach where the angles φ are chosen to enact a polynomial transformation of U.

In practice, one often only cares about building a par-
ticular polynomial P, so the question becomes, for what
Ps does a Q exist such that they satisfy the conditions
of Theorem 1? It turns out the restrictions above can be
quite limiting. For example, the third condition requires
|P(±1)| = 1. This limitation can be overcome by apply-
ing Hadamards on the ancilla before and after the QSP
sequence, effectively converting into the Aσz formalism. In
this case, it can be shown that we can implement any real
polynomial with parity d mod 2 such that deg(P) ≤ d, and
the following.

Theorem 2 (Quantum signal processing in σz basis).
For a polynomial P, if

(1) P ∈ R[x] such that deg(P) ≤ d.
(2) Parity(P) = d mod 2.
(3) ∀x ∈ R, |P(eix)|2 ≤ 1.

Then ∃ �φ ∈ Rd+1 such that,

[
P(eiH) −Q(eiH)†

Q(eiH) P(eiH)†

]
=
⎛
⎝ d∏

j =1

Rx(φj )Aσz

⎞
⎠Rx(φ0).

The above formalism indeed mitigates some previously
discussed limitations. However, the requirement that the
polynomial P must be real and possess definite parity
necessitates the combination of four separate instances of
QSP using linear combination of unitaries (LCU) to con-
struct an arbitrary complex polynomial with indefinite par-
ity. In the following section, we address these constraints
with a novel approach. We propose a more generalized
formulation of quantum signal processing by allowing our
signal processing operators to be arbitrary SU(2) rotations,

effectively lifting the “realness” condition on the polyno-
mials. Furthermore, we eliminate the parity restriction by
simplifying our signal operator. Combined together, our
reformulation successfully eliminates all practical restric-
tions on P, which we will elaborate on and demonstrate in
the next section.

III. GENERALIZED QUANTUM SIGNAL
PROCESSING

Our generalized quantum signal processing approach
seeks to remove the limitations inherent in traditional QSP,
thereby providing a more powerful mechanism for con-
structing functions of Hamiltonians. Our approach gener-
alizes QSP by using SU(2) rotations rather than X rotations
on the control ancilla similar to Ref. [20,21]; however, our
approach eschews the need to use U† and avoids the use of
Laurent polynomials in the analysis. Specifically, we use
the convention that the signal operator is a 0-controlled
application of U = eiH:

A =
[

U 0
0 I

]
. (3)

Next, instead of performing rotations in a single basis,
we allow for signal-processing operations to be arbitrary
SU(2) rotations of the ancillary qubit:

R(θ ,φ, λ) =
[

ei(λ+φ) cos(θ) eiφ sin(θ)
eiλ sin(θ) − cos(θ)

]
⊗ I. (4)

Then by interleaving the above two operations as demon-
strated in Fig. 2, we can block-encode polynomial trans-
formations of the unitary matrix U without further
assumptions. Note that below we have no assumptions
made on the parity of the polynomial transformations

R(θ0,φ0,λ ) R(θ1,φ1, 0) ··· dR(θd−1,φ −1, 0) R(θd,φd, 0)

U U

···
U...

···

FIG. 2. Quantum circuit for GQSP wherein the angles θ and φ are chosen to enact a polynomial transformation of U. Here R(θ ,φ, λ)
is a general single qubit rotation as specified in Eq. (4).

020368-3



DANIAL MOTLAGH and NATHAN WIEBE PRX QUANTUM 5, 020368 (2024)

unlike those made by Theorem 1. Lastly, notice that we
only need to specify a single λ since we can absorb the
other instances into the instance of φ before them.

Theorem 3 (Generalized quantum signal processing).
∀d ∈ N, ∃�θ , �φ ∈ Rd+1, λ ∈ R such that,

[
P(U) .
Q(U) .

]
=
(

d∏
j =1

R(θj ,φj , 0)A

)
R(θ0,φ0, λ)

⇐⇒

(1) P, Q ∈ C[x] and deg(P), deg(Q) ≤ d.
(2) ∀x ∈ R, |P(eix)|2 + |Q(eix)|2 = 1.

Proof. Both directions are proven by induction on d.
To show the forward direction, we need to show induc-
tively that for all {θj } and {φj } and d both of the claimed
restrictions are met. The base case of d = 0 is trivial since

R(θ0,φ0, λ) =
[

ei(λ+φ) cos(θ)I eiφ sin(θ)I
eiλ sin(θ)I − cos(θ)I

]
. (5)

Next let d ∈ N>0 and assume the induction hypothesis
holds for d − 1 producing P̂(U) and Q̂(U). Then,

[
P(U) .
Q(U) .

]
=
[

eiφ cos(θ)U eiφ sin(θ)I
sin(θ)U − cos(θ)I

] [
P̂(U) .
Q̂(U) .

]
.

(6)

Thus,

P(U) = eiφ(cos(θ)UP̂(U)+ sin(θ)Q̂(U)), (7)

Q(U) = sin(θ)UP̂(U)− cos(θ)Q̂(U). (8)

Since P̂ and Q̂ have degree ≤ d − 1, then P and Q must
have degree ≤ d. Furthermore, given the fact that all
operations are unitary, property (2) trivially holds. This
completes the proof for the forward direction.

The proof for the reverse direction involves showing by
induction that any pair of polynomials satisfying the condi-
tions of Theorem 3 can be constructed through an appropri-
ate choice of rotation angles for the single-qubit unitaries
in Fig. 2. The base case of d = 0 is again trivial since P and
Q would both be constants whose norm squared adds to 1.
Any such pair can be written as P = ei(λ+φ) cos(θ), Q =
eiφ sin(θ) and implemented by R(θ0,φ0, λ). Next let d ∈
N>0, assume P and Q satisfy conditions (1) and (2) from
Theorem 3, and the induction hypothesis holds for d − 1.
Specifically, we assume from our induction hypothesis
that for any P̂ and Q̂ of degree at most d − 1 satisfy-
ing |P̂(eix)|2 + |Q̂(eix)|2 = 1, there exists �θ , �φ ∈ Rd, λ ∈ R

such that

[
P̂(U) .
Q̂(U) .

]
=
⎛
⎝d−1∏

j =1

R(θj ,φj , 0)A

⎞
⎠R(θ0,φ0, λ). (9)

Thus, it suffices to find θd and φd such that P̂ and Q̂ are of
degree at most d − 1 satisfying |P̂(eix)|2 + |Q̂(eix)|2 = 1,
where P̂ and Q̂ are given by

[
P̂(U) .
Q̂(U) .

]
= A†R(θd,φd, 0)†

[
P(U) .
Q(U) .

]
. (10)

Then,

P̂(U) = e−iφd cos(θd)U†P(U)+ sin(θd)U†Q(U), (11)

Q̂(U) = e−iφd sin(θd)P(U)− cos(θd)Q(U). (12)

First notice that regardless of our choice of θd and φd, we
have

‖P̂(eix)‖2+‖Q̂(eix)‖2 = P̂(eix)P̂∗(eix)+ Q̂(eix)Q̂∗(eix)

= (cos2(θd)+ sin2(θd))‖P(eix)‖2

+ (cos2(θd)+ sin2(θd))‖Q(eix)‖2

= ‖P(eix)‖2+‖Q(eix)‖2 = 1. (13)

Hence, the norm condition is again satisfied trivially by the
unitary nature of our operations. Thus, it remains to show
P̂ and Q̂ are of degree at most d − 1.

Let ai and bi be the coefficients of the i-degree
term in P and Q, respectively. By our assumption, we
have that the target polynomials P and Q satisfy the
norm condition ‖P(eix)‖2 + ‖Q(eix)‖2 = P(eix)P∗(eix)+
Q(eix)Q∗(eix) = 1:

(
d∑

n=0

aneinx

)(
d∑

n=0

a∗
ne−inx

)

+
(

d∑
n=0

bneinx

)(
d∑

n=0

b∗
ne−inx

)
= 1. (14)

Next, we need to argue about the structure of the coeffi-
cients in this expansion. To begin we note that the inner
product between the two parts from P satisfies

(
d∑

n=0

aneinx

)(
d∑

m=0

a∗
me−imx

)

= ‖�a‖2 +
∑

n

∑
m �=n

ana∗
mei(n−m)x. (15)
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Repeating the same expansion for the b coefficients leads
to

1 = ‖�a‖2 + ‖�b‖2 +
∑

n

∑
m �=n

ana∗
mei(n−m)x + bnb∗

mei(n−m)x.

(16)

We then note that the x-dependent sum must generically
be zero because of the fact that the exponentials form an
orthogonal function basis as seen by the Fourier transform
as noted by the fact that

1
2π

∫ ∞

−∞
ei(p−q)xdx = δ(p − q), (17)

where δ is the Dirac-δ function. Thus because the functions
form an orthogonal function space that does not contain the
constant function, we cannot form the constant function
out of a linear combination of nonconstant exponentials,
and the only way that we can satisfy Eq. (16) for all real-
valued x is if

d∑
n=0

(‖an‖2 + ‖bn‖2) = 1 (18)

and

∀i ∈ Z, i �= 0,
∑

n

ana∗
n−i = −

∑
n

bnb∗
n−i. (19)

Let s, s′ ≥ 0 be the smallest degrees present in P
and Q, respectively, then notice that Eq. (19) implies
deg(P)− s = deg(Q)− s′ since otherwise setting i =
max(deg(P)− s, deg(Q)− s′) would result in one side of
Eq. (19) being 0 and the other being a nonzero value. It
is easy to see when deg(P) > deg(Q) or deg(P) < deg(Q)
setting θd equal to 0 or π/2, respectively, will result in the
desired P̂ and Q̂. Therefore, without loss of generality, we
assume deg(P) = deg(Q) = d, which also implies s = s′.
Hence using Eq. (19) we get

ada∗
s = −bdb∗

s . (20)

Next, we choose θd = tan−1(|bd|/|ad|) and φd =
Arg(ad/bd). Then by Eq. (20)

eiφd
cos(θd)

sin(θd)
= ad

bd
= −b∗

s

a∗
s

. (21)

Then it is easy to see after substituting our choices of θd
and φd into Eqs. (11) and (12) the s-degree terms of P and
Q in P̂ cancel (no negative degree terms are introduced)
and d-degree terms of P and Q in Q̂ also cancel. Thus,
deg(P̂) = deg(Q̂) = d − 1 as desired. �

Theorem 3 specifies the necessary and sufficient condi-
tions for constructible pairs of polynomials P and Q using
our method. However, in practice, one often only cares
about building a particular polynomial P, so the question
becomes “For what Ps does a Q exist such that they satisfy
the conditions of Theorem 3?”

In the following theorem we show that, as long as |P|2 ≤
1 on the complex unit circle, there exists such a Q.

Theorem 4. ∀P ∈ C[x], we have

∀x ∈ R, |P(eix)|2 ≤ 1
⇐⇒

∃Q ∈ C[x] with deg(Q) = deg(P) such that

∀x ∈ R, |P(eix)|2 + |Q(eix)|2 = 1.

Before proving Theorem 4, notice that this leads to the
following corollary, which states that we can build any
arbitrary (appropriately scaled) polynomial P of U using
our technique.

Corollary 5. ∀P ∈ C[x], with deg(P) = d if

∀x ∈ R, |P(eix)|2 ≤ 1.

Then ∃�θ , �φ ∈ Rd+1, ∃λ ∈ R such that

[
P(U) .

. .

]
=
⎛
⎝ d∏

j =1

R(θj ,φj , 0)A

⎞
⎠R(θ0,φ0, λ).

Corollary 5 is one of the most significant results in this
paper, as it clearly establishes the superior expressivity
of our method over traditional QSP when contrasted with
Theorem 2.

Proof of Theorem 4. =⇒: Let P ∈ C[x] with |P|2 ≤ 1
on T, and define

T(θ) = |P(eiθ )|2. (22)

Then T is a non-negative trigonometric polynomial with
terms from −deg(P) to deg(P) that satisfies T ≤ 1. Define
H = 1 − T as another non-negative trigonometric polyno-
mial of degree deg(P). It remains to show there exists Q a
polynomial of degree deg(P) such that H(θ) = |Q(eiθ )|2.
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Let d = deg(P), then we can rewrite H as

H(θ) = e−idθR(eiθ ). (23)

For some polynomial R of degree 2d. Since H = H ∗, we
have for all |z| = 1:

z2dR∗(z) = z2dR∗
(

1
z∗

)
= R(z). (24)

Using the identity theorem for analytic functions,
this equality must hold for all z ∈ C − {0}, mak-
ing R a self-inversive polynomial. Therefore, roots
of R are either on the unit circle, or grouped in
pairs (wi, (1/w∗

i )) for |wi| > 1. Notice (eiθ − wi)(eiθ −
(1/w∗

i )) = −(eiθ /w∗
i )‖eiθ − wi‖2, so by grouping the roots

(wi, (1/w∗
i )) together, we get

R(eiθ ) = c(−1)meimθ
m∏

k=1

1
w∗

k

m∏
k=1

‖eiθ − wk‖2

×
2d−2m∏

k=1

(eiθ − eiθk ). (25)

Here m is the number of such pairs. We can then write

H(θ) = e−idθR(eiθ ) = |G(eiθ )|2Ĥ(θ), (26)

where G is a polynomial of degree m and Ĥ is a non-
negative trigonometric polynomial with roots only on the
unit circle, that maps the unit circle into [0, ∞). Just like
H , we can rewrite Ĥ as

Ĥ(θ) = ei(d−m)θ R̂(eiθ ). (27)

For some polynomial R̂ of degree 2d − 2m. Extending Ĥ
to an analytic function on a small annulus including the
unit circle, we can use the local form of the analytic func-
tion near the zeros. This implies a curve passing through
a zero of R̂ is sent either to a curve through 0, or a line
segment ending at 0 around a small neighborhood of the
zero depending on the parity of the zero. However, since
Ĥ has all roots on the unit circle, then the unit circle itself
passes through all zeros and is mapped into [0, ∞), which
implies all zeros have even multiplicity. Hence, we can
rewrite R̂ = Ĝ2 for some polynomial Ĝ of degree d − m.
Then on the complex unit circle, we have

Ĥ(θ) = |Ĥ(θ)| = |ei(d−m)R̂(eiθ )| = |Ĝ(eiθ )|2. (28)

Thus,

H(θ) = |G(eiθ )|2 · |Ĝ(eiθ )|2 = |(GĜ)(eiθ )|2. (29)

Then letting Q = GĜ we have

H(θ) = |Q(eiθ )|2 =⇒ |P(eiθ )|2 + |Q(eiθ )|2 = 1 (30)

and deg(Q) = deg(G)+ deg(Ĝ) = m + d − m = deg(P),
which proves the forward direction of the proof. The other
direction is trivial since |Q(eiθ )|2 ≥ 0. �

So far we have only discussed the construction of poly-
nomials of positive degree, however, the framework pre-
sented here can also be used to implement polynomials
with any ratio of positive and negative degrees by making
use of a secondary signal operator, which we will define as

A
′ = (|0〉〈0| ⊗ I)+ (|1〉〈1| ⊗ U†) =

[
I 0
0 U†

]
. (31)

Particularly, if the set of rotation angles �θ , �φ, and
λ lead to the polynomials P(x) =∑d

n=0 an einx and
Q(x) =∑d

n=0 bn einx, using our original signal operator A,
then we can construct polynomials P

′
(x) = e−ikxP(x) =∑d−k

n=−k an+k einx and Q
′
(x) = e−ikxQ(x) =∑d−k

n=−k bn+k einx

for k ≤ d, using the same set of rotation angles by replac-
ing any k instances of A with the complementary signal
operator A

′
.

Theorem 6 (Polynomials with negative powers).
∀d, k ∈ N, ∀�θ , �φ ∈ Rd+1, λ ∈ R and k ≤ d we have

[
P

′
(U) .

Q
′
(U) .

]
=
⎡
⎣ k∏

j =1

R(θd−k+j ,φd−k+j , 0)A
′

⎤
⎦

×
⎡
⎣d−k∏

j =1

R(θj ,φj , 0)A

⎤
⎦R(θ0,φ0, λ).

If and only if

[
P(U) .
Q(U) .

]
=
⎡
⎣ d∏

j =1

R(θj ,φj , 0)A

⎤
⎦R(θ0,φ0, λ). (32)

For P
′
(eix) = e−ikxP(eix) and Q

′
(eix) = e−ikxQ(eix)

Proof of Theorem 6. First notice

A
′ = (I ⊗ U†)A. (33)
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Hence we have

[
P

′
(U) .

Q
′
(U) .

]
=
⎡
⎣ k∏

j =1

R(θd−k+j ,φd−k+j , 0)A
′

⎤
⎦

×
⎡
⎣d−k∏

j =1

R(θj ,φj , 0)A

⎤
⎦R(θ0,φ0, λ)

=
⎡
⎣ k∏

j =1

R(θd−k+j ,φd−k+j , 0)
(
I ⊗ U†)A

⎤
⎦

×
⎡
⎣d−k∏

j =1

R(θj ,φj , 0)A

⎤
⎦R(θ0,φ0, λ). (34)

Since
(
I ⊗ U†

)
commutes with both A and R(θ ,φ, λ) we

then have

[
P

′
(U) .

Q
′
(U) .

]
= (I ⊗ U−k)

⎡
⎣ d∏

j =1

R(θj ,φj , 0)A

⎤
⎦R(θ0,φ0, λ)

= (I ⊗ U−k) [P(U) .
Q(U) .

]
. (35)

�

In this section, we gave a detailed description of our
generalized QSP technique and proved its first advantage
over traditional QSP. Namely, we showed that our method
overcomes the restrictions placed on the family of poly-
nomials that can be built using QSP, which eliminates
the need for LCU and oblivious amplitude amplification
(OAA). In the next section, we will demonstrate the second
advantage of our formalism over traditional QSP, which is,
the computation of the rotation angles required to build a
given polynomial is much more efficient and conceptually
simpler within our framework.

IV. CALCULATING ROTATION ANGLES

In this section, we first provide a simple method to
calculate the parameters of our algorithm given desired
polynomials P and Q. This is a significant advance because
existing approaches for computing the rotation angles in
QSP are quite involved. This approach, on the other hand,
is elementary and as a result, allows the approach in this
paper to be more easily understood by students and more
easily deployed in practice. We then provide an extremely
efficient optimization algorithm for finding a correspond-
ing Q given a desired P since in practice one is often only
interested in implementing a particular polynomial P. We
also provide astonishing numerical results that showcase
the efficiency of our optimization method. Notably, we are

able to find Q for randomly chosen polynomials P of up
to 224 ∼ 16.8 million degrees in less than 40 s on an A100
GPU. This is a remarkable advancement given that previ-
ous methods have only been able to find rotation angles for
polynomials of up approximately 104 degrees [14].

Suppose P and Q are given to us as a 2 × d matrix
S where the first row contains the coefficients of P and
the second row contains coefficients of Q. Now we will
use the induction step in the proof of Theorem 3 to
formulate a simple recursive algorithm by setting θd =
tan−1(|bd|/|ad|) and φd = Arg(ad/bd), calculating P̂ and
Q̂, and calling the function recursively. Calculating P̂
and Q̂ in this matrix representation corresponds to mul-
tiplying S by R(θd,φd, 0), and shifting the top row of
the matrix, which would correspond to multiplying by
A† in our original formulation. The pseudocode for this
algorithm is shown in Algorithm 1. As we can see, this
algorithm is very simple and easy to understand, however,
the algorithm assumes P and Q satisfy the requirements of
Theorem 3, which is not a trivial task.

In Theorem 4 we showed that as long as ∀t ∈
R, |P(eit)|2 ≤ 1, there exists a Q such that together with P
they satisfy the conditions of Theorem 3. One way to find
such a Q is through root finding by following the idea laid
out in the proof of Theorem 4. However, root finding algo-
rithms can be computationally expensive for polynomials
of large degree, so here we lay out a simple and cheap opti-
mization method for finding Q. Let P(eit) =∑d

n=0 aneint,
and Q(eit) =∑d

n=0 bneint. In other words, P and Q are the
discrete-time Fourier transformations of the coefficients
{an}n and {bn}n. To be more rigorous P and Q are the
Fourier transforms of impulse trains:

P(eit) = F
{ ∞∑

n=−∞
an · δ

(
t − n

2π

)}
, (36)

ALGORITHM 1. Pseudocode for the computation of the phase
factors in GQSP.

ad, bd = S[0][d], S[1][d]
θd = tan−1 |bd|

|ad|

φd = Arg ad
bd

if d = 0 then
λ = Arg(bd)
return (θ0, φ0, λ)

end if

S = R(θd, φd, 0)† · S

Ŝ = [S[0][1 : d], S[1][0 : d − 1]]
θd−1, φd−1, λ = ComputeParameters(Ŝ, d − 1)

return (θd−1, θd), (φd−1, φd), λ
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Q(eit) = F
{ ∞∑

n=−∞
bn · δ

(
t − n

2π

)}
. (37)

Here an = bn = 0 for n > d or n < 0. The conditions of
Theorem 3 also require

1 = P(eit)P∗(eit)+ Q(eit)Q∗(eit). (38)

Then taking the inverse Fourier transform of both sides of
the above equation, and applying the convolution theorem
we get

δ =
( ∞∑

n=−∞
an · δ

(
t − n

2π

))
	

( ∞∑
n=−∞

a∗
n · δ

(
t + n

2π

))
,

+
( ∞∑

n=−∞
bn · δ

(
t − n

2π

))
	

( ∞∑
n=−∞

b∗
n · δ

(
t + n

2π

))
,

(39)

where δ is the unit impulse, and 	 is the convolution oper-
ator. The above implies that if we are given P and Q as
arrays of coefficients the following must hold:

[a0 · · · ad] 	 [a∗
d · · · a∗

0] + [b0 · · · bd] 	 [b∗
d · · · b∗

0]

= [0 · · · 0, 1, 0 · · · 0]. (40)

Here [0 · · · 0, 1, 0 · · · 0] is an array of length 2d + 1 with
1 at the center and d zeros on each side. Hence by
letting �a = [a0, a1, . . . , ad], �b = [b0, b1, . . . , bd], and �δ =
[0 · · · 0, 1, 0 · · · 0] we have

�a 	 reverse(�a)∗ + �b 	 reverse(�b)∗ = �δ. (41)

Here reverse(·) refers to the reversal of an array wherein
the last element is first and vice versa. Therefore, we can
set up our optimization problem as

argmin�b‖�a 	 reverse(�a)∗ + �b 	 reverse(�b)∗ − �δ‖2. (42)

The above objective function can be evaluated in time
O(d log d) using FFT-based convolution algorithms. This
almost linear runtime of the objective function makes the
optimization extremely efficient, as demonstrated in Fig. 3.
Notably, it lets us find the coefficients of Q for random
polynomials of up to degree 224 ∼ 1.68 × 107 in less than
40 s on an A100 GPU. This is a significant improve-
ment over the degree 10 000 polynomials that can be
achieved using existing QSP approaches via the state-of-
the-art techniques of Ref. [14]. For completeness, we have
provided our code (our code for finding the complemen-
tary polynomial Q is available at Ref. [22]) for the above
optimization algorithm used to generate Fig. 3.

FIG. 3. Computational time required to complete the optimiza-
tion as a function of the degree of the polynomial on CPU vs
GPU. We can see that even on a CPU, we have an almost linear
scaling of computational resources due to the O(n log n) scaling
of FFT-based convolution. Furthermore, the plot showcases the
superior scalability of GPUs for the optimization problem.

V. PHASE FUNCTIONS:

A major application of quantum signal processing
involves constructing phase functions of input unitaries.
Specifically, these approaches give a way to implement a
transformation of an input phase via

U = eiH =⇒ eif (H). (43)

This sort of transformation is the root of the exponential
improvements in accuracy found for the quantum linear
system algorithm and also is the central idea behind fixed-
point amplitude amplification as well as recent QSP-based
approaches to error mitigation. The following theorem
will provide us with the building blocks to achieve such
transformations in the phase.

This idea is widely used within simulation and other
areas [2,5,11]; however our approach provides a substan-
tial simplification in cases where the Fourier series used
(equivalently a Laurent polynomial in the phase [10]) is of
mixed parity. We provide a host of examples of this rea-
soning below and show how our generalization of phase
estimation can be used to simplify the solution to the
following problems.

A. Application to simulation

The first and most obvious application of our framework
is Hamiltonian simulation with the same query complex-
ity as that of qubitization [3]. As a first step, we need to
note that the function that we wish to implement is the
exponential of a cosine. The complexity of this is given
below

Theorem 7. Given a unitary matrix U = eiH , we can
implement an ε approximation of eit sin H and eit cos H for
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t ∈ R using O(t + log((1/ε))/ log log(1/ε)) controlled-U
and 2-qubit operations while using a single ancillary qubit.

Proof. This can be easily implemented through the use
of the Jacobi-Anger expansions:

eit cos θ =
∞∑

n=−∞
inJn(t)einθ , (44)

eit sin θ =
∞∑

n=−∞
Jn(t)einθ , (45)

where Jn(x) is the nth Bessel function of the first kind.
The coefficients of the infinite sum are known to decrease
exponentially fast, specifically

Jn(t) ∈ 

(( t

2

)n
n!

)
⊆ O

( ( et
2

)n
nn+1/2

)
⊆ O

((
et
2n

)n)
.

(46)

Thus for any fixed t ≥ 0 we can choose n′ ≥ t in which
case the function is exponentially decreasing for all n ≥ n′.
Then given that we choose n′ to lead to exponential decay
we can find for any ε > 0 that there exists n′ ∈ O(t +
log(1/ε)/ log log(1/ε)) such that for all n ≥ n′ Jn(t) ≤ ε.
Allowing us to build eit sin H and eit cos H with accuracy ε
with a polynomial of only O(t + log(1/ε)/ log log(1/ε))
degree. �

Corollary 8. Let H =∑j αj Uj be a Hermitian matrix
where αj ≥ 0 and Uj ∈ U(2n). Further, let PREPARE :
|0〉 �→∑

j
√
αj |j 〉/α and SELECT|j 〉|ψ〉 = |j 〉Uj |ψ〉 be

unitary matrices in U(2m) and U(2n+m) and finally let
W=−(1 − 2PREPARE|0〉〈0|PREPARE†)SELECT. Under
these assumptions we can, for any t > 0 and ε > 0, con-
struct a unitary matrix V ∈ U(2n+m+1) that block encodes
e−iHt within error ε using O(αt + log(1/ε)/ log log(1/ε))
applications of W.

Proof. Existing work [2,11] has shown that for each
eigenvector |λj 〉 of H such that H |λj 〉 = λj |λj 〉 there
exists two eigenvectors of W that can be conveniently
expressed within the span of PREPARE|0〉|λj 〉 and
WPREPARE|0〉|λj 〉 such that we define the orthogonal
component to PREPARE|0〉|λj 〉 to be |φj 〉 and also define
the action of W restricted to this two-dimensional subspace
is Wλj (taking the former vector to correspond to |0〉 and
the latter to |1〉)

Wλj =

⎡
⎢⎣

λj

α

√
1 − λ2

j /α
2

−
√

1 − λ2
j /α

2 λj

α

⎤
⎥⎦ . (47)

Next note that for this unitary we have that the eigenval-
ues of this operation are e±i arccos(λj /α) and let us denote the

eigenvectors of this to be |φ±
j 〉. Then setting A = |0〉〈0| ⊗

W + |1〉〈1| ⊗ I⊗n we can apply Corollary 5 to perform for
any degree d polynomial P such that max ‖P(U)‖ ≤ 1

Wλj �→
[

P(Wλj ) ·
· ·

]
. (48)

In our case we wish to choose P(U) = e−iαtH . We can then
use the result of Theorem 7 to find an expansion within
error ε using O(αt + log(1/ε)/ log log(1/ε)) queries to
the oracle W. We can then see that by making this trans-
formation we can map

Wλj �→
[

e−iαt cos(arccos(λj /α)) 0
0 e−iαt cos(− arccos(λj /α))

]

=
[

e−iλj t 0
0 e−iλj t

]
:= Fλj . (49)

Now let us consider the input vector PREPARE|0〉|λj 〉 =
a|φ+

j 〉 + b|φ−
j 〉. Then we have that the transformed block

encoding obeys

(〈0| ⊗ I)Fλj (PREPARE|0〉|λj 〉)
= ae−iλj t|φ+

j 〉 + be−iλj t|φ−
j 〉

= e−iλj tPREPARE|0〉|λj 〉, (50)

which is logically equivalent under local isometries to the
evolution of the system. As this operation works for any
two-dimensional matrix Wλj it is straightforward to note
that the same procedure must also work by linearity on⊕

j Wλj as well. Specifically, let F = ⊕j Fλj be the oper-
ation that we get when applying the above transformation
to the entire Hilbert space of H and the ancillary qubit. Let
|ψ〉 =∑j aj |λj 〉 then

F PREPARE|0〉|ψ〉 =
∑

j

Fλj PREPARE|0〉|λj 〉

= PREPARE|0〉e−iHt|ψ〉. (51)

In order to estimate the cost of this procedure, let us
consider the number of queries made to PREPARE and
SELECT. An invocation of the W requires three queries.
From Theorem 7 we can perform the singular value trans-
formation with a number of applications of W that is in
O(αt + log(1/ε)/ log log(1/ε)). The claimed result then
follows by multiplication of this cost by the O(1) cost of
implementing W. �

Next we use the fact that this polynomial can be con-
structed using Theorem 6 we see that a degree O(log(1/ε))
polynomial can be implemented using O(log(1/ε)) con-
trolled unitary operations and as for our circuits there are
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O(1) two-qubit gate applied per controlled unitary and
thus the result holds. The above algorithm is known to be
optimal as improvements upon this scaling would lead to
an algorithm that could compute the parity function using
fewer than O(N ) queries to the underlying quantum bits
[1]. Importantly, however, our approach can be used to
simplify the logic of Hamiltonian simulation by removing
the need to combine polynomials of different parity.

Next, we will use eit sin H and eit cos H as our building
blocks to build other phase functions. To this aim, we
invoke one of the main technical results of Ref. [[23],
Lemma 37] about approximating smooth functions by
Fourier series.

Theorem 9. Let δ, ε ∈ (0, 1) and f : R �→ C such that
|f (x)−∑K

k=0 akxk| ≤ (ε/4) for all x ∈ [−1 + δ, 1 − δ].
Then ∃c ∈ C2M+1 such that

|f (x)−
M∑

m=−M

cme
iπm

2 x| ≤ ε (52)

for all x ∈ [−1 + δ, 1 − δ], where M = max(2�log(4‖a‖1/

ε)1/δ�, 0).

A notable property of the prior result is that the bounds
on the Fourier series do not depend on the degrees of the
polynomials terms. This can however be expected since
the terms that have large degree make negligible contribu-
tions due to the restricted domain x ∈ [−1 + δ, 1 − δ], and
therefore we can drop them without loss of accuracy. Note
that these results have been traditionally used in conjunc-
tion with LCU methods to implement arbitrary functions
of a generator [11]. However, here the main difference
between the LCU results and ours is that our approach does
not require scaling by the inverse 1-norm of the coefficients
�c or the additional polylogarithmic memory. The 1-norm
improvement of our algorithm is because LCU is a more
general algorithm that builds a linear combination of arbi-
trary unitaries and not just the powers of the same unitary,
because of this LCU puts more restrictions on the prob-
ability of success. As a straightforward example of this
approach, let us consider the case of fractional queries to a
unitary matrix.

B. Application to fractional queries

Fractional queries are a generalization of the follow-
ing problem listed by Scott Aaronson as one of “The
ten most annoying questions in quantum computing”:
given a unitary U, can we implement

√
U = ei(H/2)?

[24] Or more generally Ut = eitH for t ∈ (0, 1)? Sheri-
dan et al. [25] first gave an algorithm to implement
the fractional power of a unitary matrix that runs in
O(max (1/δ, 1/ε) log(1/ε)), which was then improved
upon exponentially in terms of the error dependence by

Ref. [11] to run in O(1/δ log(1/ε)). Sheridan et al. [25]
also proved a lower bound on this problem, which shows
that the δ dependence of this algorithm is actually optimal.
While the optimal lower bound in ε is not known, here we
provide an improvement of the algorithm, which leads to
an additive logarithmic factor in 1/ε rather than a multi-
plicative logarithmic factor. Hence, our algorithm here not
only improves upon previous techniques, but it is in fact
provably optimal up to double logarithmic factors.

Theorem 10. Let U = eiH be a unitary operator, let t, ε ∈
(0, 1), and assume σmin(H) ≥ δ where σmin(H) is the min-
imum singular value of H . We can then implement an
ε approximation of Ut = eitH with O ((1/δ)+ log(1/ε))
uses of controlled-U and 2-qubit gates using O(log(1/δ))
ancilla qubits. Further, no algorithm is possible that solves
the algorithm using o(1/δ) queries.

Proof. First notice that for x ∈ [0, 2π ]:

eitx =
{

eit arccos(cos(x)), 0 ≤ x ≤ π

eit(2π−arccos(cos(x))), π < x < 2π
. (53)

We hope to use Theorem 9 to build eit arccos(y), with y =
cos(x) and make the appropriate phase shifts in the sec-
ond half of the domain to build eitx. However, notice
that y = cos(x) ∈ [−1, 1], which blows up the number of
terms in Theorem 9. So the idea here is to write a more
fine-grained piecewise representation of eitx such that y ∈
[−1/

√
2, 1/

√
2], hence getting rid of the δ dependence in

Theorem 9, so the approximation part of the algorithm
runs in O(log(1/ε)). We would still need to distinguish
the states at the branch-cut, which depends on δ, how-
ever, this is a separate part of the algorithm and that
is why we end up with a O ((1/δ)+ log(1/ε)) runtime
instead of the previous best algorithm, which achieves a
O ((1/δ) log(1/ε)). We can write this more fine-grained
piecewise representation of eitx as

eitx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eit arcsin(sin(x)), 0 ≤ x ≤ π

4

eit arccos(cos(x)),
π

4
≤ x ≤ 3π

4

eit(π−arcsin(sin(x))),
3π
4

≤ x ≤ 5π
4

eit(2π−arccos(cos(x))),
5π
4

≤ x ≤ 7π
4

eit(2π+arcsin(sin(x))),
7π
4

≤ x < 2π

. (54)

In order to implement an ε approximation of Ut = eitH ,
we first perform a δ-precise phase estimation, and use
the first three qubits storing the phase-estimation results
to figure out which 8th of the unit circle we are in, and
apply the corresponding transformation based on Eq. (54).
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Since by assumption the smallest eigenvalue of H in
terms of norm is ≥ δ, no eigenvector will be miss cate-
gorized at the branch cut. Furthermore, it does not matter
if we miss categorize the eigenvalues at the other bound-
ary points since the piecewise function in Eq. (54) is
continuous at all other boundaries, and thus applying the
neighboring piece will still result in a correct transforma-
tion. Then since a δ-precise phase estimation has query
complexity O (1/δ), it remains to perform an ε approxima-
tions of eit arcsin(sin(x)) and eit arccos(cos(x)) using O (log(1/ε))
controlled-U and 2-qubit gates.

First let us look at the Taylor series of eit arcsin(x). One
can see that the 1-norm of the coefficients of the Taylor
series of t arcsin(x) is |t| arcsin(1) = |t|(π/2). Therefore,
for t ∈ [−2/π , 2/π ] we get that the 1-norm of the Taylor
series of eit arcsin(x) is ≤ e1 = e. Also notice that ‖ sin(x)‖
and ‖ cos(x)‖ are both ≤ 1√

2
on the domains where they are

being used in Eq. (54), hence eliminating the dependence
on δ for Theorem 9. Therefore, for t ∈ [−2/π , 2/π ], we
can write

∣∣∣∣∣eit arcsin(sin(x)) −
M∑

m=−M

cme
iπm

2 sin(x)

∣∣∣∣∣ ≤ ε. (55)

For M ∈ O (log(1/ε)). Hence it suffices to ε/M approxi-
mate each term e(iπm/2) sin(x), which by Theorem 7 requires
a polynomial of degree at most O(M + log(M/ε)) ∼
O(log(1/ε)+ log(log(1/ε)/ε)) ⊆ O(log(1/ε)). Notice
that the sum of all the polynomials can be written as a
single polynomial, hence at the end we only require a
single polynomial of degree O(log(1/ε)). Furthermore,
arccos(x) = (π/2)− arcsin(x), thus building eit arccos(cos(x))

will have the same runtime as eit arcsin(sin(x)). Then since
For t ∈ [−1, 1], Ut can then be implemented by applying
Ut/2 twice, Ut = eitH can be implemented with complexity
O ((1/δ)+ log(1/ε)) for all t ∈ [−1, 1].

To show optimality, it is known from Ref. [25] that
o(1/δ) scaling is impossible for fractional queries. This
shows that the only remaining question is whether the ε
scaling is optimal. �

C. Application to square roots/bosonic simulation

Next let us consider building a series expansion for the
square root phase function of a unitary operator. Without
loss of generality, every unitary matrix can be expressed as
eiH for Hermitian H and our aim is to examine as an exam-
ple a method for constructing eit

√
H . The reasons why we

would want to do this are many, but the simplest example
involves implementing the exponential of a bosonic oper-
ator of the form ei(a†+a)t where a =∑j ≥0

√
j |j + 1〉〈j |.

Conventionally this operator is implemented using an
arithmetic circuit [26–28], which although polylogarith-
mic in depth [29], involves substantial constant factors and

requires many ancillary qubits to carry out the reversible
circuitry needed for the logic.

Theorem 11. Let U = eiH be a finite-dimensional
unitary operator, let δ, ε ∈ (0, 1), t ∈ R, and assume
σmin(H) ≥ δ where σmin(H) is the minimum singular value
of H . Then we can implement an ε approximation of eit

√
H

using O (1/δ (log(1/ε)+ |t|)) uses of controlled-U and
2-qubit gates using O(log 1/δ) ancilla qubits.

Proof. In order to build eit
√

H , we will build ei
√

2π t
√

y+1

using Theorem 9 and sub in y = (x/2π)− 1 to ensure y ∈
[−1 + O(δ), 1 − O(δ)]. Subbing this into Eq. (52) we get

|eit
√

x −
M∑

m=−M

cme
iπm

2 (
x

2π −1)| ≤ ε. (56)

This is equivalent to the following:

|eit
√

x −
M∑

m=−M

cme
ixm
4 e

−iπm
2 | ≤ ε. (57)

Absorbing the constant into the coefficient and rewriting
the sum gives us

M∑
m=−M

c′
me

ixm
4 =

3∑
j =0

e
ixj
4

M/4∑
k=−M/4

(c′
4k+j )e

ikx. (58)

The result of Corollary 8 shows that an ε/M approxima-
tion of eiHj /4 can be built using a polynomial of degree
log(M/ε) of U and an initial δ-precise phase estima-
tion. Thus, we can build the above approximation using
a polynomial of degree O(log(M/ε)+ M ) and an initial
δ-precise phase estimation. Since

M ∈ O
(

1
δ

(
log
(

1
ε

)
+ log(‖a‖1)

))
. (59)

We can implement eit
√

H using O(M ) uses of controlled-
U and 2-qubit gates and O(log 1/δ) ancilla qubits. So it
remains to show log(‖a‖1) ∈ O(|t|).

Let f (x) = eit
√

x+1 =∑∞
n=0 anxn, and g(x) = f ′(x) =

(it/2
√

x + 1)eit
√

x+1 =∑∞
n=0 bnxn. So we have that an+1 =

(bn/n + 1). Next, we will use the Hardy inequality from
Ref. [30], which states that if g(z) =∑∞

n=0 bnzn ∈ H 1,
then

∞∑
n=0

|bn|
n + 1

≤ 1
2

sup
0<r<1

∫ 2π

0
|g(reix)| dx. (60)
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So we get that

∞∑
n=0

|an| = |eit| +
∞∑

n=0

|bn|
n + 1

≤ 1 + 1
2

∫ 2π

0
|g(eix)| dx.

(61)

Notice,

1
2

∫ 2π

0
|g(eix)| dx = 1

2

∫ 2π

0

∣∣∣∣∣∣
iteit

√
eix+1

2
√

eix + 1

∣∣∣∣∣∣ dx. (62)

Since 1 + eiθ = 2 cos (θ/2) eiθ/2, then
√

1 + eiθ =√
2 cos (θ/2)eiθ/4. We have that for θ ≤ π

�
(

it

√
2 cos

(
θ

2

)
eiθ/4

)
= −t sin

(
θ

4

)√
2 cos

(
θ

2

)
(63)

and similarly for θ ≥ π

�
(

it

√
2 cos

(
θ

2

)
eiθ/4

)
= −t cos

(
θ

4

)√
−2 cos

(
θ

2

)
.

(64)

Thus,

1
2

∫ π

0
|g(eix)| dx ≤ |t|

4

∫ π

0

e
−t sin(θ/4)

√
2 cos

(
θ
2

)

√
2 cos θ2

dθ (65)

e−t sin(θ/4)
√

2 cos(θ/2) has a maximum of e
|t|
2 . Therefore,

1
2

∫ π

0
|g(eix)| dx ≤ |t|e |t|

2

4

∫ π

0

dθ√
2 cos θ2

(66)

The integral is a constant (approximately 3.7), thus,

1
2

∫ π

0
|g(eix)| dx ≤ |t|e |t|

2 . (67)

Repeating the same argument for θ ≥ π we see that

1
2

∫ 2π

π

|g(eix)| dx ≤ |t|e |t|
2 , (68)

∞∑
n=0

|an| ≤ 1 + 2|t|e |t|
2 . (69)

Then from the monotonicity of the logarithm function,

log

(∑
n

|an|
)

≤ log(1 + 2|t|e|t|/2) ∈ O(|t|). (70)

Our result then follows by combining Eqs. (70) and (59)
�

In this section, we explored applications of our gener-
alized quantum signal processing framework within the
context of phase functions to implement unitary opera-
tors. We gave a conceptually simplified formulation of
the Hamiltonian simulation algorithm within the qubitiza-
tion formalism with a factor 2 reduction in the number of
queries to the walk operator in cases where independent
queries to U and U† are needed (although in many simu-
lation examples both can be implemented using a single
query [31]). We further proposed an enhanced and prov-
ably optimal algorithm for implementing fractional queries
of unitary operators. Lastly, we gave a novel approach for
implementing square root phase functions of unitary matri-
ces with applications in the implementation of bosonic
operators. In the next section, we apply our method to
implementing nonunitary operations by extending the con-
cept of Fourier decomposition to normal matrices.

VI. NORMAL MATRIX FACTORIES

In this section, we extend the concept of Fourier decom-
position to normal matrices by utilizing polynomials of a
special unitary matrix. Leveraging this insight, we demon-
strate that any normal matrix can be written as a poly-
nomial of the root of unity unitary in its eigenbasis. This
result will then be used as a basis for synthesizing normal
matrices in various contexts. We will begin by discussing
the synthesis of diagonal matrices, demonstrating that this
can be accomplished with a relatively low number of single
and two-qubit gates. We then further apply this method to
create convolution matrices and discuss the application of
our approach to implementing convolution operators and
solving systems of equations involving convolution.

Given N ∈ N, we define ωN = ei2π/N to be a root of
unity. This mathematical construct provides a key build-
ing block in defining our main subject, the root of unity
matrix Uωλ , in relation to a given basis set. Let us consider
an orthonormal basis {|λj 〉}N−1

j =0 . With respect to this basis,
we define the root of unity matrix as

Uωλ =
N−1∑
j =0

ω
j
N |λj 〉〈λj |. (71)

Note that Uωλ is a unitary and diagonal matrix in the
basis {|λj 〉}N−1

j =0 . In an analogy with the complex exponen-
tial function eiθ , we will investigate the set of operators
{Un

ωλ
}N−1

n=0 . Our goal is to demonstrate that this set consti-
tutes a complete orthonormal operator basis for the space
of all normal operators in the basis {|λj 〉}N−1

j =0 . This fact
can easily be seen to follow from the properties of the
discrete Fourier transform, but a proof is given below for
completeness.
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Lemma 12. Given an N × N normal matrix A =∑N−1
j =0 λj |λj 〉〈λj | for λj ∈ C, A can be written as

A =
N−1∑
n=0

cnUn
ωλ

,

where cn = 〈Un
ωλ

,A〉 = (1/N )Tr(A U−n
ωλ
).

Proof. First, note that the inner product between two
powers of Uωλ satisfies the orthogonality property by the
properties of Fourier sums:

〈Un
ωλ

, Um
ω〉 =

⎛
⎝∑

j

ω
j (n−m)
N

⎞
⎠ /N = δm,n. (72)

This implies that
∑

n

cnUn
ωλ

= N−1
∑
n,j

λjω
−nj
N

∑
k

ωkn
N |λk〉〈λk|

=
∑

jk

δjkλj |λk〉〈λk| = A. (73)

Thus the powers of the matrix Uωλ form a complete oper-
ator basis for normal matrices in the {|λj 〉}N−1

j =0 basis. As
the basis set is orthonormal in this space, it, therefore, is a
complete orthonormal operator basis as claimed. �

Building upon the foundational results established in
Lemma 12, we are now equipped to introduce a framework
for synthesizing normal matrices. We first show this in the
computational basis for implementing diagonal matrices,
and then extending the result to arbitrary bases. In particu-
lar, we will demonstrate how we can utilize this framework
in the quantum Fourier basis to implement convolution
operators.

A. Synthesizing diagonal matrices

In the computational basis, the construction of the
root of unity matrix Uωλ is straightforward and can be
achieved using O(log(N )) many single-qubit gates, pro-
viding an efficient method to build the operator (Fig.
4). This method’s efficiency highlights the computational
advantages of our framework and further establishes the
value of our approach in the context of quantum informa-
tion processing. From this point forward, we will denote
Uω as shorthand for Uωλ in the computational basis. In
mathematical terms, this gives us

Uω =
N−1∑
j =0

ω
j
N |j 〉〈j |, (74)

where |j 〉 is the binary bitstring representation of integer
j . This succinct notation allows us to concisely express

Uω
... =

Phase 2π
N

Phase 2π·2
N

...

Phase 2π·2n−2

N

Phase 2π·2n−1

N

FIG. 4. Quantum circuit implementing Uω for a system of n =
log N qubits. On the left, a multiqubit gate Uω is represented.
This gate is equivalent to the application of phase gates on each
qubit, as shown on the right. The phase angle doubles with each
increase in the qubit’s index. Here, the phase gate is defined as
phase(θ) = [ 1 0

0 eiθ

]
.

the operator in terms of the computational basis states.
Lemma 12 leads to the following theorem for the synthesis
of diagonal matrices.

Theorem 13. Given an N × N diagonal matrix A =
P(Uω), where deg(P) = d, and |P|2 ≤ c on on the complex
unit circle, we can implement A/√c using O(d log N ) 1-
and 2-qubit gates.

Proof. By Lemma 12, we know that A can be written
as

A =
N−1∑
n=0

αnUn
ω. (75)

If |P|2 ≤ c, then
∣∣P/√c

∣∣2 ≤ 1. Thus, as shown by
Corollary 5, it is possible to find specific parameters �θ , �φ ∈
Rd+1 and λ ∈ R to plug into our generalized quantum
signal processing framework, such that it results in

⎡
⎣ A√

c
.

. .

⎤
⎦ . (76)

Therefore, we can implement A/√c using O(d) applica-
tions of controlled Uω. And as Uω can be implemented
using O(log(N )) many single-qubit gates, it follows that
A/√c can be implemented using O(d log N ) 1- and 2-
qubit gates. �

This theorem paves the way for an ensuing corollary,
showcasing a specific application of the above to the con-
struction of Bit Functions. This procedure can be seen
as a generalization of methods developed in Ref. [32],
where only implementations of unitary bit functions are
considered.
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Corollary 14 (Bit functions). Given a function f (x) =∑d
n=0 αneix2π/N where |f |2 ≤ 1, we can implement the

N × N diagonal matrix A such that

A|x〉 = f (x)|x〉

using O(d log N ) 1- and 2-qubit gates.

Upon establishing the feasibility of synthesizing diago-
nal matrices using a Fourier decomposition into polynomi-
als of Uω, we expand our perspective beyond this initial
construct. In what follows, we show that the construc-
tion of normal matrices using our method is not confined
solely to the computational basis. Indeed, given a change
of basis matrix, the same principle can be effectively used
to synthesize matrices in any other bases.

Theorem 15. Given an N × N normal matrix A =
P(Uωλ) =∑d

n=0 αnUn
ωλ

, diagonalized by unitary matrices
Q and Q†, where implementing Q requires O(χ) 1- and 2-
qubit gates, deg(P) = d, and |P|2 ≤ c on the complex unit
circle, we can implement A/√c using O(d log N + χ) 1
and 2-qubit gates.

Proof. Utilizing Theorem 13 we first build the polyno-
mial in the computational basis:

1√
c

d∑
n=0

αnUn
ω (77)

using O(d log N ) 1- and 2-qubit gates, and then apply the
change of basis matrices to get

1√
c
Q†(

d∑
n=0

αnUn
ω)Q = 1√

c

d∑
n=0

αnQ†Un
ωQ

= 1√
c

d∑
n=0

αnUn
ωλ

= A√
c

. (78)

Then since implementing Q requires O(χ) 1- and 2-qubit
gates, our total cost will be O(d log N + χ). �

We now give an example of this in the Fourier basis (i.e.,
Q = QFT) to build convolution operators.

B. Synthesizing convolution matrices

In this subsection, we explore the synthesis of convo-
lution matrices, which play a critical role in signal pro-
cessing, image filtering, and numerous other applications.
Recent work has considered the application of linear com-
binations of unitaries to implement circulant matrices [33]

but QSP-based methods have not yet been fully explored.
Our approach to synthesizing circulant matrices is based
on GQSP and uses, in particular, the relationship between
these matrices and circular convolutions. Specifically, a
circulant matrix can be completely defined by a single vec-
tor, �c. This vector forms the first column of the matrix, and
the remaining columns are each cyclic permutations of �c,
each with an offset equal to the respective column index. A
circulant matrix is shown below:

⎡
⎢⎢⎢⎢⎢⎣

c0 cN−1 · · · c2 c1
c1 c0 cN−1 c2
... c1 c0

. . .
...

cN−2
. . . . . . cN−1

cN−1 cN−2 · · · c1 c0

⎤
⎥⎥⎥⎥⎥⎦

. (79)

For a circulant matrix C, given by the vector |c〉 =∑N−1
j =0 cj |j 〉, and another vector |ψ〉 =∑N−1

j =0 xj |j 〉, we can

perform a convolution of |ψ〉 by |c〉 simply by multiplying
|ψ〉 with the matrix C. This operation is critical for many
signal processing applications:

C|ψ〉 =
N−1∑
j =0

(ψ 	 c)j |j 〉. (80)

The resulting (ψ 	 c)j of the convolution is defined as

(ψ 	 c)j =
N−1∑
k=0

ckx[j −k mod N ]. (81)

A well-known characteristic of circulant matrices is that
they can be defined by an associated polynomial of the
cyclic permutation matrix P . This polynomial associa-
tion is particularly beneficial when constructing circuits
for quantum operations, as it allows for a straightforward
definition and synthesis of the required matrix:

C = c0I + c1P + c2P2 + · · · + cn−1Pn−1. (82)

The cyclic permutation matrix P is defined as

P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

. (83)

We can equivalently express the cyclic permutation matrix
P as

P =
N−1∑
j =0

|j + 1 mod N 〉〈j |. (84)
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The operator P is a cyclic adder which can be diagonalized
using the quantum Fourier transform (QFT):

P = QFT†UωQFT. (85)

Then by Theorem 15, we get the following lemma, which
provides bounds on the circuit size needed to construct
the circulant matrix in a 1- and 2-qubit gate library. Note
that the dependence on an error target ε is absent here
because of the assumed form of the polynomial decom-
position and also because rotation synthesis is not needed
in this (continuous) gate set.

Lemma 16. Given an N × N circulant matrix C =∑d
n=0 cnPn, we can build C (normalized) using only

O(d log N + log2 N ) 1 and 2-qubit gates.

This lemma enables us to reach a valuable conclusion:

Theorem 17. Given |ψ〉 =∑N−1
j =0 xj |j 〉 and a filter F =

{ak}d
k=−d, we can convolve ψ with F:

|ψ 	 F〉 =
N−1∑
m=0

(ψ 	 F)m|m〉,

where (ψ 	 F)m =∑d
k=−d akx[m−k mod N ], by using only

O(d log N + log2 N ) 1- and 2-qubit gates.

A powerful application of the previous result is solving
systems of equations that are expressed as discrete con-
volutions. For instance, consider a system of equations
represented as

x 	 c = b. (86)

Such equations are significant because we often have a
known filter function that is applied to an input and we
would like to have an efficient method for inverting such
a transformation to find the input that is partially obscured
by the convolution. To see how this can be attained, we can
see from the discrete convolution theorem that the origi-
nal convolutional equation can be re-expressed as a linear
system via is equivalent to

Cx = b, (87)

where C is a circulant matrix. If C is invertible, we can
then build C using Lemma 16 and invert it using the
quantum matrix inversion algorithm to solve the system
of equations. The cost of doing so within error ε is then
Õ(d2κ2 log4(N ) log(1/ε)), where κ is the condition num-
ber of the circulant matrix C using the inversion method of
Ref. [34]. Our approach allows us then to directly synthe-
size such matrices through the polynomial series definition
of circulant matrices after diagonalization through the
quantum Fourier transform.

VII. CONCLUSION

This paper introduces a substantial advancement to
quantum signal processing—the generalized quantum
signal-processing (GQSP) method. Unlike traditional QSP
frameworks, our method employs a pair of rotations
instead of solely relying on either Z or X rotations for
signal-processing operations. This strategic modification
enables us to move beyond the limitations of the original
QSP framework.

Another essential contribution of our GQSP method is
the significant simplification it offers in the computation of
phase angles compared to existing methods. In instances
where both P and Q are known, we introduce a straight-
forward recursive formula for the angles. This substantial
pedagogical improvement addresses one of the key chal-
lenges in teaching QSP methods, as the traditional tech-
niques for finding the polynomial function in QSP can be
difficult to convey. Our approach simplifies this complex
aspect of QSP, making it much more accessible. Addition-
ally, we introduced an efficient optimization algorithm for
computing phase angles when only P is known, but Q is
not. Our tests showed that our method can compute poly-
nomials of degree greater than 107 in under a minute, an
impressive computational efficiency when compared to the
104 degree polynomials that can be achieved using exist-
ing QSP approaches via the state-of-the-art techniques of
Ref. [14].

In this paper, we explored several applications of our
GQSP methodology. We presented an optimized algorithm
for quantum fractional queries, along with a simplified
technique for performing Hamiltonian simulation using
qubitization. We proposed methods for calculating phase
functions, such as the square root, and unveiled new
methodologies for synthesizing circulant matrices and per-
forming convolution operations.

As we look forward, our work reveals several poten-
tial areas for further exploration. A primary question is
how to adapt the principles of our approach to multi-
variable QSP [15]. Also, our focus on QSP suggests the
potential of applying similar concepts to quantum singu-
lar value transformation for transforming block-encoded
nonsquare matrices. In essence, this paper represents a sig-
nificant progression in the QSP and QSVT framework. The
exploration and understanding of the broad range of oppor-
tunities offered by these techniques promise to be a primary
focus of research in quantum algorithms in the years to
come.
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