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We introduce a general statistical learning theory for processes that take as input a classical random
variable and output a quantum state. Our setting is motivated by the practical situation in which one desires
to learn a quantum process governed by classical parameters that are out of one’s control. This framework
is applicable, for example, to the study of astronomical phenomena, disordered systems and biological
processes not controlled by the observer. We provide an algorithm for learning with high probability in
this setting with a finite amount of samples, even if the concept class is infinite. To do this, we review and
adapt existing algorithms for shadow tomography and hypothesis selection, and combine their guarantees
with the uniform convergence on the data of the loss functions of interest. As a byproduct, we obtain
sufficient conditions for performing shadow tomography of classical-quantum states with a number of
copies, which depends on the dimension of the quantum register, but not on the dimension of the classical
one. We give concrete examples of processes that can be learned in this manner, based on quantum circuits
or physically motivated classes, such as systems governed by Hamiltonians with random perturbations or
data-dependent phase shifts.
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I. INTRODUCTION

The goal of science is to gain a better understanding of
nature. Because “nature isn’t classical, dammit” [1], the
tools of quantum information processing have been central
to this pursuit. Insights transposed from statistical learning
theory to the quantum domain have established rigorous
guarantees for learners that predict properties of quantum
states [2–6], classify phases of matter [5], learn quantum
channels [7], or approximate models of physical dynamics
[8].

A feature shared by many of these works is that they
require the quantum learner to have precise control of
the unknown object—for instance, the ability to request
multiple identical copies of the unknown state or run the
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unknown process on a string of well-chosen inputs. That is,
the unknown process is treated as a black box, to be applied
on inputs specially designed by the learner. However, this
assumption is not always satisfied in practice. A scientist
can typically observe but not fully control an unknown
process of interest—think of an astronomer analyzing sig-
nals generated by rare celestial events, a biologist probing
molecular mechanics induced by biochemical signals in a
noisy environment, or a physicist characterizing systems
obeying Hamiltonians subject to random perturbations. In
this work, we show that quantum processes can be learned
even without the strong assumption of input control.

That is (see Fig. 1), the learner receives as examples the
input-output pairs

(x1, ρ(x1)), . . . (xn, ρ(xn)), (1)

where xi are classical inputs and the ρ(xi) are the quantum
states output by the unknown process with these inputs.
Here the lack of input control is reflected in the fact that the
xi are not chosen by the learner but are samples from some
distribution D. Practically, the imperfect control could
consist in the impossibility of choosing the input to a pro-
cess or the inevitability of the input fluctuating throughout
the various applications of the process. For instance, in
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FIG. 1. Schematic depiction of the experimental setting for
which we provide theoretical learning guarantees. A size-n train-
ing set comprising couples of a classical label x and a correspond-
ing quantum state ρ(x) is produced by sampling from random
sources parametrized by x1, x2, . . . , xn. The learner tries to find
a theoretical explanation to the observed classical-quantum data
using a hypothesis class of operator-valued functions h(x), pos-
sibly of infinite cardinality. We present quantum algorithms that
are able to identify a near-optimal hypothesis hoptimal and obtain
sample complexity guarantees in terms of covering numbers of
the hypothesis class.

optical imaging of celestial, atmospheric, planetary, or bio-
logical events, ρ(x) could describe the quantum state of
an optical signal emitted or backscattered by an unknown
object, while x is a set of environmental parameters influ-
encing the state of the signal, e.g., temperature, optical
depth, distance.

We model the situations described above as follows:
the learner has access to a source that outputs classical-
quantum states

∑

x∈X
D(x)|x〉〈x| ⊗ ρ(x),

where ρ : X → S and x
D← X , (2)

with S being the set of states of some Hilbert space
H and ρ the unknown process. At each data collec-
tion, the input will be a product state (|x1〉〈x1| ⊗ ρ(x1))⊗
· · · ⊗ (|xn〉〈xn| ⊗ ρ(xn)). This generalizes the setting of
Refs. [7,9] on probably approximately correctly (PAC)-
learning quantum channels.

Our goal is to learn a possible classical-quantum source
from which the data are sampled, and we construct algo-
rithms to do so that have bounded sample complexity. A
key object in the analysis is a certain distinguishability
measure of the class of candidate classical-quantum pro-
cesses, which we identify, that can be bounded even if this
class is infinite. As an application, we also improve the

shadow tomography procedure of Ref. [3] for an unknown
classical-quantum state: a naive application of shadow
tomography would not be guaranteed to work if the clas-
sical register is infinite dimensional, while we show that
only the dimension of the quantum register matters.

Our theory also goes beyond previous works to encom-
pass the agnostic case: the case when the unknown process
is not included in the hypothesis set C. Note that the agnos-
tic case was mentioned by Ref. [7], who provided a lower
bound on the sample complexity, and tackled in a spe-
cific case by Ref. [9]. This is as opposed to the realizable
case, where the unknown process is guaranteed to be from
the set. This is in keeping with the setting of learning
nature: agnostic learning models the situation when we
learn a natural process using as hypotheses only the lim-
ited models that are within the reach of our theoretical
understanding.

Our work overcomes a key technical hurdle not tackled
by previous approaches: without input control, our learner
cannot obtain identical copies of the process sampled at
well-chosen points {xi}. This assumption is crucial in, for
instance, Refs. [8] and [10]. Instead, for every sampled xi,
she gets only a single copy of ρ(xi), which in general dif-
fers from the other copies ρ(xj ), j �= i. Nevertheless, we
design a measurement strategy that learns even without
the luxury of identical copies. Ref. [7] hinted that a VC-
dimension-like quantity for this setting might be impos-
sible to define. Here instead we establish a fundamental
prerequisite for the definition of a statistically meaning-
ful dimension (analogous to the fundamental theorem for
uniform convergence of Ref. [11]), providing sufficient
conditions for learning concept classes of infinite cardi-
nality with finite data: we introduce learning algorithms
that succeed with high probability if a suitable covering
number of the quantum concept class C grows sufficiently
slowly with the sample size.

Our theory of learnability extends beyond the usual
setting of learning quantum processes given by quantum
circuits. In fact, our learning model also encompasses the
following scenarios:

(a) We want to study how a small quantum system
behaves in a variable environment. In this case, the
classical random variable is a measurement of the
status of the environment, for example, a measure of
classical fields. The copy of the quantum state is a
copy of the state of the system corresponding to the
measured state of the environment. One can imagine
applying this scenario to molecules or nanostruc-
tures. Notice that the border between environment
and object is arbitrary, therefore in the classical ran-
dom variable one could include the outcomes of
some predetermined measurement on the object of
interest. With the same idea in mind, the quantum
state could be also not the original state of the
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system but some postprocessing of it, for example,
via a quantum sensor.

(b) We want to do imaging of a system, that is to asso-
ciate to each point of the system a quantum state
or channel. When the detector clicks, we receive as
experimental data a pair comprising the position and
the quantum state corresponding to that position. If
our experimental setup uses spontaneous or stimu-
lated emission, such that in a specific time interval
we cannot guarantee that we can obtain an obser-
vation at a specific position, our model correctly
represents the fact that we receive data from random
positions and we cannot afford to receive multi-
ple copies of the state corresponding to an arbitrary
position.

(c) We are studying a class of stars with a combina-
tion of classical and quantum sensors: for example,
we get classical electromagnetic signals from a star,
and a quantum sensor collects information about
gravitational waves. We would like to study correla-
tions between the electromagnetic and gravitational
waves, but since these events are rare and unique we
cannot repeat them at will.

Some toy models for concept classes inspired by these sce-
narios are discussed as applications. In these cases, we can
find bounds on the covering number, from which sample
complexity bounds can be obtained.

A. Setting: learning quantum processes with random
classical input

We now go into more detail about our learning setting,
which is a natural quantum generalization of supervised
learning and builds on that of Ref. [7]. Suppose there is an
unknown function ρ : X → S to be learned, X possibly of
infinite cardinality, and a distribution D : X → [0, 1]. In
fact, we will focus on processes ρ that map from a classical
domain X to a quantum set S ⊆ L(H), where L(H) is the
set of linear operators on a finite-dimensional Hilbert space
H. When we want to keep track of the dimension d of a
Hilbert space, we use the notation H(d). Furthermore, we
will always be interested in the case where the unknown
process ρ outputs a quantum state, that is, all operators in
S are positive semidefinite and have unit trace.

The learner receives as input samples the pairs
(xi, ρ(xi))

n
i=1, where xi

D← X . Furthermore, the learner has
a set of hypotheses, C = {h : X → L(H)}, and would like
to use the smallest possible number n of samples to choose
a candidate h from the class that accounts well for the
observations. The accuracy of the learner’s output h rel-
ative to the true function ρ will be measured by the true
risk Rρ : C → R, defined via a loss function L : L(H)×

L(H)→ R:

Rρ(h) := Ex∼D [L(ρ(x), h(x))] (True risk). (3)

Therefore, it is in the learner’s interest to minimize the true
risk, although she can only do so approximately, as detailed
in the next section.

In what is known as the realizable setting of learning
(studied by Ref. [7]), there is a promise that the unknown
function comes from C. We present results for this set-
ting too, but go one step further. In learning nature, our
scientific models are but approximate descriptions that
correspond more closely to reality at some scales than
others. Thus, we primarily treat the agnostic (or unreal-
izable) setting, in which no hypothesis in C is guaranteed
to correspond exactly to the unknown function.

We will focus on concept classes C that output two types
of quantum objects:

(a) (Case 1) Quantum states: C consists of hypotheses
h(x) = σh(x), which are state-valued functions. The
true function ρ(x) is also a state-valued function,
and we use trace distance Ls(σh, ρ) = dtr(σh, ρ), a
natural notion of distance between quantum states,
as the loss function.

(b) (Case 2) Quantum events or projectors: C
consists of hypotheses h(x) = �h(x) which are
projector-valued functions. Again, the true function
ρ(x) is a state-valued function and we will use as
loss function the probability of not accepting the
projector, i.e., Lp(�h, ρ) := 1− Tr[ρ�h].

We note that in case 2 we can switch out the projectors for
general positive-operator valued measurement (POVM)
elements, by a standard dilation argument with which we
can represent them as projectors on a larger space. How-
ever, the dilation is not unique and what we will say in
the following will depend on the dilation. Therefore, for
simplicity, we will always speak only about projectors.

A quick note on the motivation for defining projector-
valued concept classes. In the classical case, when the label
y is not a deterministic function of x, one speaks of learn-
ing probabilistic concepts [12]. In Ref. [12] two possible
approaches are considered. The first is to learn a determin-
istic concept, which maximizes the probability of correct
prediction, the second is to learn the conditional proba-
bility distributions p(y|x) on average. Learning projector-
valued classes is a generalization of the first approach,
and learning state-valued classes is a generalization of the
second approach.

Moreover, estimating Lp(�h, ρ) for every h ∈ C (as we
do later) encompasses shadow tomography [2,3], a task
where one is given a fixed state and a list of observables
and has to output the expectation values of all observables
in the list. Shadow tomography corresponds to the case
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where ρ(x) and �h(x) are constant as functions of x. Most
importantly, our algorithm for this risk estimation problem
on projector-valued functions is a key part of our strategy
to attack case 1.

B. Results

In this section, we state our main results, based on the
algorithms summarized in Fig. 2 and obtained in Secs. III,
IV, V. Recall that the goal is to learn an unknown func-
tion ρ and the output of our learning algorithm will be
some hypothesis h ∈ C. While ρ is not required to be in
C, our algorithms will always output some h ∈ C close to
achieving the minimum empirical risk, i.e., the average

loss computed on the examples (xi, ρ(xi))
n
i=1:

R̂ρ(h) := 1
n

n∑

i=1

L(ρ(xi), h(xi)) (Empirical risk). (4)

That is to say, we use minimizing the empirical risk as a
proxy for minimizing the true risk. This principle, known
as empirical risk minimization (ERM), originated in classi-
cal statistical learning theory [11]; the contribution of this
paper is to adapt it to learning quantum-valued classes.
In this paper, we distinguish between two types of tasks:
the term empirical risk minimization refers to the task of
outputting a single hypothesis from C that approximately

Input:

• hypothesis class C = {h(x)}h;

• loss function L;

• samples (xi, ρ(xi))n
i=1 for unknown ρ, a state-

valued function.

Goal: Empirical risk minimization,
i.e., for parameters η, ε > 0, output h∗ ∈ C such that

R(h∗) ≤ η min
h∈C

R̂ρ(h) + ε.

Hypotheses are h(x) = σh(x),
state-valued functions.
Loss function: Ls(σh, ρ) := dtr(σh, ρ).

Hypotheses are h(x) = Πh(x),
projector-valued functions.
Loss function: Lp(Πh, ρ) := 1 − Tr[ρΠh].

Case 1 (States) Case 2 (Events)

Generalized Threshold Search:
Input: ⊗n

i=1ρi; a collection of pairs
({Π(c)

i }i∈[n], θc), c = 1, ..., m;
Output: c s.t.
1
n

∑n
i=1 Tr[ρiΠ

(c)
i ] ≥ θc, if it exits

Optimize thresholds via
binary search in [0, 1].

+

Quantum empirical risk estimation:
Input:

⊗n
i=1 ρi; m lists of projectors

{Π(c)
1 , ..., Π(c)

n }c=1,...,m, so that
μc = 1

n

∑n
i=1 Tr[ρiΠ

(c)
i ]. We will ultimately

plug in projector-valued functions derived
from state-valued functions, see the
definition of Aij below.
Output: μ̂c estimate of μc, ∀i ∈ [m]

Hypothesis selection:
Input: μ̂ij estimates of the risk; descrip-
tions of the projector-valued functions
Aij(s) := (σi(s) − σj(s))+. (Note:
dtr(σi, σj) = Tr(σiAij) − Tr(σjAij).)
Output: i∗ s.t. minimizes
maxi<j | 1

n

∑n
s=1 Tr[σi∗(s)Aij(s)] − μ̂ij |.

+

FIG. 2. Summary of quantum empirical risk minimization algorithms.
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minimizes the risk. Along the way, we will also develop
an algorithm for empirical risk estimation (ERE), a term
that refers to estimating the risk for every hypothesis in C.

As formulated by Ref. [11], the success of ERM depends
on a property of a concept class known as uniform conver-
gence [13,14] of the empirical risks, which is controlled by
a certain measure of the effective size of the concept class
we define: the γ1,q covering number (see general treatments
of covering numbers, e.g., Refs. [13,15]).

Definition 1 (Covering number). Let G ⊆ L(H)X be a
class of functions mapping to linear operators, and let ε ∈
(0, 1]. The covering number of G is

γ1,q(n, ε,G) := max
{
Nin
(
ε,G, || · ||1,q,�x

) |�x ∈ X n} , (5)

where for a pseudometric d, Nin(ε,G, d) is the small-
est cardinality of any internal ε-cover of G according to
the pseudometric d. Here we have chosen as pseudomet-
ric the ‖·‖1,q,�x seminorm, which depends on the observed
examples �x as

‖g1 − g2‖1,q,�x := 1
|�x|

|�x|∑

i=1

||g1(xi)− g2(xi)||q, (6)

where ||A||q is a Schatten norm (see definitions in
Sec. II D) and |�x| is the length of �x, i.e., the sample size.

Intuitively, γ1,q describes the maximum number of
hypotheses that can be pairwise distinguished on a dataset
of size n with resolution ε, given information from the clas-
sical register only; in fact, the distinguishability between
two hypotheses is measured by the average over classi-
cal outcomes of the appropriate distinguishability metric
(operator norm for projectors and trace norm for states) for
the corresponding values of the hypotheses.

Since the rate of convergence of the empirical risk to
the true risk is controlled by the covering number γ1,q
[11,13,15], it is possible to minimize the risk by optimiz-
ing over an ε-net of the concept class, which is finite-
dimensional, rather than the class itself, which in general
is infinite-dimensional. This is the basis of our technique.
While the ERM principle is well established classically,
the nontrivial part in the quantum case is to minimize
the empirical risk R̂ρ(h) based on the string of samples
(xi, ρ(xi))

n
i=1. The main difficulties in this respect are the

lack of identical copies of the input states and the fact
that the observables associated to naive estimators of the
empirical risks do not commute.

We now present our results establishing a quantum vari-
ant of ERM, for both types of concept classes considered.

1. Quantum empirical risk minimization and estimation

Let us first discuss projector-valued concept classes.
Here, the naive strategy of measuring each ρxi with �h(xi)

for all h to estimate the empirical loss does not immedi-
ately work, since the projectors do not necessarily com-
mute for different hypotheses. Nevertheless, we construct
algorithms for both ERE and ERM on projector-valued
concept classes, establishing the following theorems.

Theorem 1 (Quantum empirical risk minimization for
projector-valued functions). Given access to a product
state

� = ρ1 ⊗ · · · ⊗ ρn (7)

and a collection of lists of projectors {�(c)
1 , . . . ,�(c)

n }c=1,...,m,
with

μc = 1
n

n∑

i=1

Tr[ρi�
(c)
i ], (8)

there is an algorithm which outputs c∗ and μ̂c∗ such that

Pr(|μ̂c∗ −max
c∈[m]

μc| ≥ ε ∪ |μ̂c∗ − μc∗ | ≥ ε) ≤ δ (9)

if n is large enough. In fact we can take

n = Õ

(
log 1

δ
max(log m

δ
, log2(em))

ε2

)
. (10)

Here, the notation Õ hides logarithmic dependence on
log m, log δ, and ε. Note that the minimization in the cap-
tion of Theorem 1 refers to the minimization of the loss
function, which is 1− μc, whereas the theorem statement
is about maximizing μc, which is equivalent.

Theorem 2 (Quantum empirical risk estimation for pro-
jector-valued functions). Given access to a product state

� = ρ1 ⊗ · · · ⊗ ρn (11)

and a collection of lists of projectors {�(c)
1 , . . . ,�(c)

n }c=1,...,m,
with

μc = 1
n

n∑

i=1

Tr[ρi�
(c)
i ], (12)

there is an algorithm, which outputs estimates μ̂c, c ∈ [m]
such that

Pr(∃c ∈ [m] : |μ̂c − μc| ≥ ε) ≤ δ (13)

if n is large enough. In fact we can take

n = Õ

(
log d log 1

δ
max(log m

δ
, log2(em))

ε5

)
. (14)
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Here, the notation Õ hides logarithmic dependence on
log m, log δ, log d, and ε. Note that estimation, in compar-
ison with minimization, shows a worse dependence on ε
and an explicit dependence on d. However, it represents a
key subroutine to realize the ERM algorithm in the case
of state-valued concept classes, which is the subject of the
next theorem.

Recall that, in this case, the loss function is different
from the projector-valued case: it is the trace distance,
rather than the overlap. This prevents us from immediately
applying the techniques used for projector-valued classes,
which only work to estimate expectation values.

Nevertheless, using a trick from quantum hypothesis
selection [4], we can reduce the task of risk minimization
for state-valued concept classes to estimating expecta-
tion values of Helstrom projectors constructed from the
state-valued class. The result is the following theorem.

Theorem 3 (Quantum empirical risk minimization for
state-valued functions). Let C = {σi : [n]→ L(H(d))}mi=1
be a class of state-valued functions and

� = ρ1 ⊗ · · · ⊗ ρn. (15)

There exists an algorithm, which given � outputs i∗ such
that

1
n

n∑

s=1

dtr(σi∗(s), ρs) ≤ 3η + 4ε, (16)

where

η := min
i∈[m]

1
n

n∑

s=1

dtr(σi(s), ρs), (17)

with probability of error less than δ if n is large enough. In
fact we can take

n = Õ

(
log d log 1

δ
max(log m

δ
, log2(em))

ε5

)
. (18)

Here, the notation Õ hides logarithmic dependence on
log m, log δ, log d, and ε.

2. Learning via empirical risk minimization

Combining the theorems just stated and uniform conver-
gence guarantees from statistical learning theory, we show
the following sufficient conditions for learning.

Theorem 4 (Learning quantum processes via ERM).
Suppose the concept class C consists of classical-quantum
processes mapping to projectors or states and let ε > 0 be
the accuracy parameter. Furthermore, let S = (xi, ρ(xi))

n
i=1

be the training set, with xi
D←− X and ρ(·) an unknown

classical-quantum channel.
Then, the appropriate ERM algorithm of Theorems

1, 3, run on an ε-net of the concept class C (accord-
ing to the appropriate pseudometric determined by
x1, . . . , xn), provide an agnostic learning algorithm A :
X n × L(H(d))⊗n → C. This algorithm outputs an hypoth-
esis A(S) satisfying, for some fixed η, ξ ≥ 1, and n large
enough,

Pr
S

[Rρ(A(S))− η inf
h∈C

Rρ(h) < ξε] > 1− δ, (19)

if

lim
n→∞

log2 γ1,q(n, ε, C)
n

= 0, ∀ε > 0. (20)

In particular, this applies to risks defined via the loss
functions Lp (in this case η = 1, q = ∞) and Ls (in this
case η = 3, q = 1) for projector-valued and state-valued
concept classes C, respectively.

We remark that Theorem 4 applies even to agnos-
tic learners, going beyond Ref. [7], which considered
only the realizable setting. In fact our methods also
imply that we can learn with an infinite concept class
if limn→∞ log2(γ1,q(n, 0, C))/n = 0 [while in Ref. [7]
show a sample complexity O(poly(log |C|))]. Moreover, in
Appendix C we analyze the algorithm of Ref. [7] for learn-
ing pure states using a statistical learning theory approach,
to show that limn→∞ log(γ1,1(n, 0, C))/n = 0 suffices also
with that algorithm.

As a consequence of proving Theorem 4 for the case
when the concept class consists of projectors, we are also
able to speed up shadow tomography of classical-quantum
states, vis-a-vis Ref. [3]:

Theorem 5 (Shadow tomography of classical-quantum
states). Suppose the concept class C consists of quantum
processes mapping to projectors, ε > 0 is the accuracy
parameter, and the learner is given the same input as in
the previous theorem. Suppose also that

lim
n→∞

log2 γ1,∞(n, ε, C)
n

= 0, ∀ε > 0. (21)

Then, the estimation algorithm of Theorem 2 run on an
ε-net of the concept class C (according to the appropriate
pseudometric determined by x1, . . . , xn), provide an agnos-
tic learning algorithm A : X n × L(H(d))⊗n → [0, 1]|C|,
which output estimates of risksμ(h) for all concepts h ∈ C,
such that for some fixed ξ ≥ 0,

Pr
S

[∀h ∈ C, |μ(h)− Rρ(h)| < ξε] > 1− δ, (22)

for n large enough.

020367-6



QUANTUM LEARNING WITHOUT INPUT CONTROL PRX QUANTUM 5, 020367 (2024)

In words, we can not only find the minimum possible
risk in the concept class, but also simultaneously estimate
risks for all concepts. In fact, when C is finite, algorithm A
performs shadow tomography of classical-quantum states
with a copy complexity of Õ(poly(log |C|, log d, 1/ε)),
where d is the dimension of the quantum register only.
By contrast, a naive application of shadow tomography
[3] has a copy complexity scaling as the dimension of the
full space, which may be infinite if |X | = ∞. Remark:
we mention that the algorithm of the aforementioned
theorems performs ERM correctly with high probability
on any possible data sequence, and not just on a sub-
set of sequences which occur with high probability. If
one is willing to accept that sometimes ERM can fail
with non-negligible probability, learning becomes pos-
sible when limn→∞(log γ1,∞(n, ε, C))/n = 0, rather than
limn→∞(log2 γ1,∞(n, ε, C))/n = 0. We argue for this in
Appendix D, by presenting a modification of the algo-
rithms that perform ERM correctly only on a certain ε-net
on a subset of the data, with high probability. We illustrate
this fact only for risk minimization for a projector-valued
class, but the same can be shown also for risk estimation
for a projector-valued class, and for risk minimization for
a state-valued class.

3. Examples of learnable classes

In Sec. VI, we evince the applicability of our results by
giving examples of quantum processes covered by our the-
orems, for which we compute explicit upper bounds on the
covering number γ1,q in terms of the dimensionality of the
quantum systems and the fat-shattering dimension of an
appropriate concept class F . In all of the below examples,
let F be a class of real-valued functions g(x). We build
our concept classes using finite-dimensional circuits and
matrix functions that depend on the data via real functions
g(x) coming from concept classes F . In fact, for the func-
tion classes with explicit data dependence that we consider,
the covering number can slowly grow to infinity, but our
theorems show they are still learnable.

(1) Quantum circuits in a particular architecture,
possibly data dependent. Concept classes consisting of
m-qubit quantum circuits chosen from a set Sm acting
on arbitrary input states or projectors. That is, Cm =
{cU(x) := Uρ(x)U†}U∈Sm where ρ(x) is a process that pre-
pares the input state to the circuit, or Cm = {cU(x) :=
U�(x)U†}U∈Sm , where �(x) is a projector. We give
explicit upper bounds on the covering number for Sm being

(a) the class of one-dimensional local quantum circuits
on m qubits of depth � [16], constructed by applying � 2-
qubit nearest-neighbor gates on any pair of neighboring
qubits,

(b) brickwork quantum circuits,
(c) the set of all unitaries,

(d) data-dependent circuits with any of the previ-
ous architectures, but modified by inserting in specific
places in the sequence a number �′ of gates of the form
eiHj gj ′ (x), j ′ = 1, . . . , �′, Hj ′ fixed.

(2) Gibbs states and low-energy projectors of a per-
turbed Hamiltonian. Concept classes given by a set of
Gibbs states obtained by perturbing a Hamiltonian with
a field-dependent term, but the specific dependence on
the field is not known, namely H0 + g(x)V. Similarly,
concept class of projectors on low-energy eigenspace of
H0 + g(x)V.

(3) Phase shifts with position-dependent depth. Con-
sider a spatially local channel that acts as a power of
an unknown unitary channel at position x, according to
some classical variable g(x) at that position (for example, a
thickness), which we probe with some position-dependent
state ρ(x). We can model this class as a state-valued [or
projector-valued, when ρ(x) are pure] function class: C =
{f |f (x) = Ug(x)ρ(x)(U†)

g(x) g ∈ G, U = eiH ∈ U(d)}.

C. Related work

There is a vast literature on how to learn quantum states
and their properties. The exponential cost of full-state
tomography motivated to consider the problem of “pretty-
good tomography” [2], in which the goal of the learner is
relaxed: she is content with obtaining a predictor function
for properties of the state instead of a full description of
it. A similar task, consisting of estimating expectation val-
ues of a fixed list of observables, is known by the name
shadow tomography [3,4,17]. Even though we aim to learn
processes and not quantum states, we have leveraged the
tools developed in the shadow tomography literature for
our work.

In this work, we delve into the considerably less studied
realm of learning quantum processes that have a classical
input variable and a quantum output. As mentioned, this
model is motivated by the observation that many processes
in nature leave a classical imprint of the conditions under
which they occur, which the learner can detect with exper-
imental equipment, but not observe. Our goal is to build a
statistical learning theory for learning quantum processes
that takes into account the unique structure of quantum
measurements.

Several previous works have investigated similar direc-
tions. Ref. [7] first introduced the notion of probably
approximately correct (PAC)-learning of quantum chan-
nels, which captures our notion of lack of input con-
trol—but solved the problem exclusively in the realizable
setting. Their algorithms however have sample complex-
ity scaling polynomially in log(|C|), and thus cannot be
applied when the concept class C is infinite. Our paper
encompasses their setting (and improves their result for
pure states) and solves the agnostic setting of channel
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learning. We also define an extensive measure of the con-
cept class—the covering number—which controls learn-
ability and can be finite even when C is infinite. The
work [9] addresses this aspect for the case of binary
functions with quantum output (which are two states cor-
responding to 0 and 1, respectively), finding that Helstrom
measurements are enough to get an upper bound on the
sample complexity depending on the VC dimension of the
associated classical function class.

Ref. [8] also considers agnostic learning for polynomial-
time quantum processes. However, the paper models each
process as an experiment over which the experimenter has
full control. Accordingly, the learner runs the process on
identical copies of the input in order to implement the
hypothesis selection procedure (Sec. F.3.b). On the other
hand, we are interested in the setting where the experi-
menter must contend with nonidentical copies of the input.
Additionally, while the model in Ref. [8] applies to chan-
nels with bounded input and output dimensions, where one
can always find an ε-net directly for the concept class (by
its compactness), in our case instead we are interested in
learning correlations between a classical and a quantum
random variable, with the classical variable living possi-
bly in an unbounded space. In this case, one cannot always
define a finite ε-net on the sources, but we show that learn-
ing can be still guaranteed in terms of ε-nets of the datasets
formed by pairs of classical and quantum variables.

Ref. [18] also works in a PAC setting for learning
quantum channels acting on classical inputs drawn from
a distribution, but their notion of learning is to find a
good predictor function (mapping to real values) for the
expected value of a fixed set of observables on the out-
put of an unknown quantum process. The focus of their
work is whether quantum machine-learning algorithms can
have a large advantage over classical machine learning
for various notions of prediction error. By contrast, our
notion of learning is different and is not about predicting
observables accurately. Furthermore, our work provides
constructive quantum algorithms that achieve the sample
complexity bounds we mention, while no such algorithms
are presented in this other work.

Ref. [19] also considered the problem of learn-
ing classical-quantum processes, providing generalization
bounds in terms of entropic quantities. However, their set-
ting is closer to a discrimination problem: the task is to
find, among a set of possible projectors, one that best
approximates joint distributions of classical data x and a
set of labels c, when measured on quantum states ρ(x)
representing embedding of x. Our setting is different, as
their projectors do not depend on the specific value of x;
moreover, their bounds on the generalization error depend
on the source and not on the concept class, capturing a
different aspect.

Other relevant works on learning quantum processes
are Ref. [20], which deals with estimating local properties

of the output of an unknown circuit, with guarantees on
the average error for certain distribution of input states,
Ref. [21], which shows how to efficiently learn the matrix
elements of a channel in the Pauli basis, as a generalization
of shadow tomography, and Refs. [22–24], which study
how to estimate and test properties of an unknown channel
with or without quantum memory.

Finally, the possibility of having generalization bounds
for various loss functions evaluated on quantum circuits,
using Rademacher complexities and covering numbers,
has been considered extensively, especially with quantum
machine learning applications in mind [25–32]. Relations
between different combinatorial dimensions that cater to
different modes of learning quantum states have also been
explored in Ref. [33]. Our bounds on the covering numbers
of processes described by quantum circuits are technically
analogous to these existent results, which are devised for a
different scenario with full control over the inputs. Indeed,
such generalization bounds are valid if the sample com-
plexity is defined as the number of unique data-point pairs
(xi, ρ(xi)) seen by the learner, without restrictions on the
number of times the pair (xi, ρ(xi)) can be actually pro-
duced (assuming that one is able to minimize the average
of the loss function in some efficient way for every finite
dataset). This analysis is not generically applicable in our
case, since we do not have full control of the source and
a good model for explaining the sample data cannot be in
general inferred from finite samples. Obviously, since the
covering numbers we consider are not constructed directly
from the loss function but are dependent on the input
data, they are generally worse in performance than those
obtained for the cases with controlled input.

D. Learning algorithms: technical overview

In this section we explain the ideas behind our algo-
rithms and their proofs (see also Fig. 2).

1. Threshold search for general product states (summary
of Sec. III)

The key technical tool we establish is a generalization
of the Threshold Search algorithm in Ref. [4], which takes
as input many identical copies of a state σ , a collection of
pairs consisting of a projector and a threshold (�(c), θc),
c = 1, . . . , m and reports if there is one projector whose
average exceeds the threshold.

In our generalization, the algorithm takes as input only
a single state �—a product (of possibly nonidentical)
states, � = ⊗n

i=1ρi—and a collection of pairs, each com-
prising a list of projectors and a threshold ({�(c)

i }i∈[n], θc);
as output, the algorithm reports if there is one projector
list whose average on the sample exceeds the threshold:
1/n

∑n
i=1 Tr[ρi�

(c)
i ] ≥ θc − ε. Lemma 1 gives the detailed

formulation of this result. In the following we outline its
main technical steps. For each list of projectors {�(c)

i }j∈[n],
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one can construct the collective projectors that accept at
least k times, denoted as {E(c)k }nk=0,

E(c)k :=
∑

�v∈{0,1}n:||�v||1=k

n⊗

i=1

(�
(c)
i + vi(1− 2�(c)

i )). (23)

When the projective measurement {E(c)k }k is executed on �,
the random variable associated to the outcome k, denoted
as T(c), is a sum of Bernoulli variables, T(c) =∑n

i=1 T(c)i ,
where T(c)i ∼ (Tr[ρi�

(c)
i ], 1− Tr[ρi�

(c)
i ]). Via standard

Chernoff bound arguments, to distinguish between

(a) 1/n
∑n

i=1 Tr[ρi�
(c)
i ] ≥ θc and

(b) 1/n
∑n

i=1 Tr[ρi�
(c)
i ] ≤ θc − ε

for a given c, it is sufficient to measure the binary event∑
t>n(θc−ε/3) E(c)t , obtaining the correct answer with high

probability with n = O
(
1/ε2

)
. However, after one of these

measurements is applied � can change significantly, so
that the method of checking each threshold by measuring
the threshold’s accompanying projective measurement will
not work naively. Therefore, we construct a more clever
measurement that is “gentler”: each threshold is associ-
ated with one such measurement. One performs the list
of measurements sequentially on the same state and the
measurement disturbs the state in a controlled way when
it rejects. We now explain how such measurements are
constructed in more detail.

From the projectors {E(c)k }k, one can construct the events
Bc:

Bc :=
n∑

t=1

Pr(X+ t > θn)E(c)t , (24)

where X is an exponential random variable, pλ(X = x) :=
λe−λx, for some 0 < λ < 1. When Bc is measured on �, the
probability of accepting is Pr(X+ T(c) > θn). The expo-
nential random variable has the role of smoothing the event
Bc, so that the probability of accepting is still exponentially
suppressed in n when 1/n

∑n
i=1 Tr[ρi�

(c)
i ] ≥ θc − ε, but at

the same time, when Bc rejects, the state � does not change
a lot. More explicitly, we can show in Theorem 9 that for
λ = 1/D

√
n and some constants D > 0:

Tr[�Bc] ≤ e
(
−
√

n
D

(
θ− 1

n
∑n

i=1 Tr[ρi�
(c)
i ]
))
+e/(2D2), (25)

and, if Tr[�Bc] < 1/4, with

�|√1−Bc :=
√

1−Bc�
√

1−Bc
Tr[�(1−Bc)]

being the postmeasurement state conditioned on rejecting
Bc, for some constant C > 0:

dtr
(
�, �|√1−Bc

) ≤ CTr[�Bc]. (26)

Note that the last equation is a consequence of the gentle
measurement lemma for the fidelity (e.g., Proposition 2.2
in Ref. [4]), together with a bound on the χ2 divergence of
the distributions of X+ T(c) and X+ T(c) conditioned on
X+ T(c) ≤ θn.

Based on the previous definitions, the algorithm
(Algorithm 1) for threshold search consists in measuring
the events Bc, c = 1, . . . , m in sequence until a first accep-
tance c∗ occurs. Then c∗ is declared as the index of the
list of projectors with expectation value above threshold.
Lemma 1 shows that n = O(log2(em)/ε2) is a sufficient
condition for Algorithm 1 to succeed with probability
larger than 0.03. The proof is based on a quantum union
bound for sequential measurement proved in Ref. [4].

In fact, our contribution is to note that the proofs of
Ref. [4] can be adapted to the case of nonidentical states
and projectors, using the fact that the concentration prop-
erties of the Poisson binomial distribution are sufficient to
reproduce the same argument of Ref. [4] with some appro-
priate adjustments. We do not make additional comments
here on the proof, and we redirect to Ref. [4] for additional
explanations on the idea behind the algorithm and remarks
on its connections with adaptive data analysis.

2. Quantum empirical risk minimization (summary of
Sec. IV)

Projector-valued concept classes (Theorem 1 and
Theorem 2)—The main idea that lets us perform ERM for
projector-valued functions is to observe that, in this case,
the empirical risk is the average of expectation values of
a list of projectors. Hence, we can directly apply the tech-
niques of Sec. I D 1 to check if empirical risks are above
or below a threshold. Furthermore, for our purposes, it is
sufficient to consider concept classes of finite cardinality.
Thus, in the following we assume that our concept class
can be described as m lists of projectors {�(c)

i }i∈[n], c ∈ [m].
Our Algorithm 2 for ERM works as follows.

(I) Sampling-without-replacement step: given an input
� = ⊗n

i=1ρi a sufficiently large number of random
batches �s = ⊗l

k=1ρs,k of size l, obtained by sam-
pling without replacement from the list i = 1, . . . , n.
In the same way, one selects corresponding lists of
projectors {�(c)

s,k }k∈[l] from the initial list {�(c)
j }j∈[n],

for all c.
Via an argument based on concentration inequalities
for sampling without replacement, we show that this
procedure has the effect that the empirical risk on
each batch �s, i.e., 1/l

∑l
j=1 Tr[ρs,j�

(c)
s,j ], is ε-close

to that on the full training set �. The precise relation
between the batch size l, the number of batches, the
batch-risk approximation error ε, and the probability
of error of this procedure is given in Lemma 3.
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(II) Binary search for optimal threshold: the empirical
risks take values in [0, 1], therefore we start with
a candidate minimum empirical risk 0.5, and use
Algorithm 1 on the first batch to check if there is
a candidate below this threshold. If we find one,
we guess a new minimum empirical risk at 0.25,
otherwise we guess 0.75 (these are approximate
values, see the technical treatment for the details).
We iterate this procedure via binary search, using a
new batch for each new threshold, and selecting the
upper or lower halves of the candidate interval, until
we get to approximate the value of the empirical risk
with precision ε: we will terminate with a number of
step O(log(1/ε)).

Since Algorithm 2 is guaranteed to work only with a con-
stant probability, we may need to repeat it a certain number
of times to ensure we are able to get a candidate below
threshold with high probability, if there is one. Moreover,
we also need to check that the candidate risk is indeed
below threshold, which is done by a further measurement
of the corresponding empirical average.

Crucially, since in all of these steps we cannot reuse
batches �s, the empirical risks must be close between
different batches, which is guaranteed by the sampling-
without-replacement step. By a union bound on the prob-
ability of the several types of error, we can obtain our
guarantee for ERM, Theorem 1.

A similar approach can be used to obtain Theorem
2, viewing ERE as a generalization of shadow tomogra-
phy. Shadow tomography [3] consists of the following
task: given n copies of an unknown quantum state σ ,
and a list of projectors �1, . . . �m, output approximations
of Tr(ρ�c) ∀c ∈ [m]. The Threshold Search algorithm of
Ref. [4] was indeed used to obtain the state-of-the-art
sample complexity for shadow tomography.

The idea is to keep a list of candidate intervals for the
true values of Tr[σ�c] for each c, and use their extremes
as thresholds in the Threshold Search algorithm, to be run
with projectors �1, . . . �m as well as 1−�1, . . . 1−�m.
If one of the true values of Tr[σ�c] is far from the candi-
date values, one such c∗ with this property will be found
after a certain number of attempts, with high probability.
If this happens, the list of candidates for the true expecta-
tion values is updated. Given a specific way to compute the
candidate intervals, the process is guaranteed to terminate
with intervals of size O(ε), containing the true values, after
Õ(log d/ε3) rounds [3].

Our Algorithm 3 generalizes the IID case with two main
modifications, as follows.

(I) Looking for bad estimates in the general product
states case: with our generalization of Threshold
Search for general product states and our sampling-
without-replacement step, we can follow the same

scheme for ERE: given a list of candidate values
for 1/n

∑n
i=1 Tr[ρi�

(c)
i ], search for c∗ such that the

true value of 1/n
∑n

i=1 Tr[ρi�
(c)
i ] is ε-far from the

candidate.
(II) Update rule for the general product states’ case: we

generalize Aaronson’s update procedure. We stress
that in both Aaronson’s and our generalization this
step can be carried out by a classical computer, even
if the computation involves quantum states.

In the original work, the estimates μt,c for the projector
�c at update step t are obtained starting from q copies
of a maximally mixed state, that is from the state ρ∗0 :=
(1/d)⊗q. At each step, the estimates μt,c are the expecta-
tion of the empirical average of �c on ρ∗t , which is also
the predicted fraction of acceptances when�c is measured
on each subsystem Hi in the tensor product

⊗q
i=1 Hi. If at

step t = 1, . . . , T some c∗ is detected as associated to a pre-
diction smaller (larger) than the true value, ρ∗t is obtained
postselecting ρ∗t−1 on the event for which measuring �c
on each subsystem accepts a fraction of times slightly
larger (smaller) than what previously predicted. Clearly,
this makes the estimates progressively more accurate.

For the general product states case, the main change is
that we start from the following classical-quantum state at
step t = 0:

ρ∗0 :=
(

1
n

n∑

i=1

|i〉〈i| ⊗ 1
d

)⊗q

, (27)

where |i〉〈i| are orthonormal projectors of an auxiliary
system. At each step ρ∗t is used as a guess for the classical-
quantum state

σ =
(

1
n

n∑

i=1

|i〉〈i| ⊗ ρi

)⊗q

, (28)

in the following sense. Note that the quantities 1− R�s(c)
can be expressed as expectation values of projectors

�(c) :=
n∑

i=1

|i〉〈i| ⊗�(c)
i (29)

on σ , 1− R�s(c) = Tr[�(c)σ ]. The empirical average
of �(c) on H⊗q is �(c) := 1/q(�(c) ⊗ 1⊗ · · · ⊗ 1+
1⊗�(c) ⊗ · · · ⊗ 1+ 1⊗ 1⊗ · · · ⊗�(c)). It follows that
Tr[�(c)σ ] = Tr[�(c)σ⊗q]. ρ∗t is a guess for σ⊗q in the
sense that, at each step t, the estimates of the risks are
μc,t = Tr[�(c)ρ∗t ]. The algorithm now runs exactly as
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Aaronson’s. The key point to conclude is that

ρ∗0 = ρ⊗q
0 =

1
dq σ

⊗q +
(

1− 1
dq

)
ω, (30)

for some positive semidefinite and trace-1 ω. Therefore,
with probability at least 1/dq, ρ∗0 behaves as σ q, which
would accept all the postselection updates with high prob-
ability. On the other hand, if some estimate is incorrect at
time t, one can show that ρ∗t should reject with high proba-
bility. These two facts give rise to contradiction unless the
number of necessary rounds is Õ(log d/ε3).

The proof of Theorem 2 is then obtained through a union
bound over all possible sources of errors of Algorithm 3.
We also note that, for projector-valued functions, the esti-
mation of the empirical risks is similar to the diverse-state
setting for shadow tomography considered in Ref. [17],
where the state is a general product state but the projectors
do not change with the subsystems.

State-valued concept classes (Theorem 3)—Here the
loss function used is different from the projector-valued
case: it is trace distance, and not overlap. This prevents us
from immediately recycling the technique used previously,
which works only to estimate expectation values.

Also in this case, it will suffice for the moment to
consider finite cardinality classes, described by lists of
states {σc(s)}s∈[n], c ∈ [m]. Equivalently, we can encode
this information into a collection of classical-quantum
states σc = 1/n

∑n
k=1 |s〉〈s| ⊗ σc(s), while the information

about the input � = ⊗n
s=1ρ(s) is encoded in the classical-

quantum state σ = 1/n
∑n

k=1 |s〉〈s| ⊗ ρ(s). Then, the
empirical risk for � and the hypothesis σc(s) is simply
dtr(σ , σc).

The key idea is again inspired by Ref. [4], which used it
for a task named quantum hypothesis selection. They used
the following observations:

(a) The trace distance between pairs of states σi, σj
can be written as the difference of two expecta-
tion values via Helstrom’s theorem. Indeed, defining
Aij (s) := (σi − σj

)
+, where (·)+ is the projector on

the positive part of the argument, we have that

dtr(σi, σj ) = Tr(σiAij )− Tr(σj Aij ). (31)

(b) If a state ρ is close to σk, so are the expectation val-
ues. A good guess for ρ is then the state σk∗ such
that

k∗ = argmin
k∈[m]

max
i<j
|Tr[ρAij ]− Tr[σkAij ]|. (32)

Indeed, suppose that i∗ is such the true minimizer of
dtr(σi∗ , ρ) ≤ η. Then we have that

max
i<j
|Tr[ρAij ]− Tr[σk∗Aij ]| (33)

≤ max
i<j
|Tr[ρAij ]− Tr[σi∗Aij ]| ≤ η (34)

and via triangle inequalities

dtr(σk∗ , ρ) ≤ dtr(σk∗ , σi∗)+ dtr(σi∗ , ρ) (35)

= |Tr(σk∗Ak∗i∗)− Tr(σi∗Ak∗i∗)| + η (36)

≤ |Tr(σk∗Ak∗i∗)− Tr(ρAk∗i∗)|
+ |Tr(ρAk∗i∗ − Tr(σi∗Ak∗i∗)| + η ≤ 3η. (37)

(c) Finally, if Tr[ρAij ] are known only with precision ε,
the above procedure is robust, and allows k∗ to be
found such that dtr(ρ, σk∗) ≤ 3η + 2ε from approx-
imate estimation of the expectation values of the
Helstrom projectors.

Our crucial observation is that for the classical-
quantum states σc, the Helstrom projectors are Aij :=∑

s∈[n] |x〉〈x| ⊗ Aij (s), with Aij (s) := (σi(s)− σj (s)
)
+. In

turn, their expectation values can be estimated via our
ERE algorithm for the lists of projectors {Aij (s)}s∈[n], i < j ,
given � as input. This reduces our procedure for learn-
ing with state-valued functions to a postprocessing of
Algorithm 3 for ERE for projector-valued functions and
proves Theorem 3.

3. Statistical learning for classical-quantum processes
(summary of Sec. V)

Building on the ERM algorithms just reviewed, we are
able to give sufficient conditions for the minimization of
the true risk in both cases of projector- and state-valued
functions. The algorithm works as follows.

(a) From the knowledge of the classical variables
xi for all i, we can construct an ε-net of the
function class using the appropriate pseudomet-
ric: for two projector-valued functions �(c)(x)
and �(c′)(x), their pseudodistance on the data
is 1/n

∑n
i=1 ||�(c)(xi)−�(c′)(xi)||, while for two

state-valued functions σc(x) and σc′(x), their pseu-
dodistance on the data is 1/n

∑n
i=1 dtr(σc(xi), σc′(xi)).

The cardinality of the ε-net will be bounded by the
γ1,∞ covering number in the case of projectors and
by the γ1,1 covering number in the case of states (see
Definition 1).

(b) We then run ERM on � = ⊗n
i=1ρ(xi) using as the

concept class the ε-net found at the previous step.

Let us observe that our ERM algorithms are guaranteed to
work if the covering numbers γ1,q grow slowly with n, as
they take the place of m in Theorems 1, 2, and 3. On the
other hand, via classical statistical learning theory, uniform
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convergence of the estimated empirical risk to the true risk
is controlled by the covering numbers of the loss function,
which depend on the unknown states ρ(x).

Nevertheless, we are able to show that these covering
numbers can be bounded by γ1,q, which does not depend on
ρ(x) and is in principle computable by the learner. There-
fore, we get a sufficient condition, independent of the data,
for learning in terms of the growth of γ1,q with n, prov-
ing Theorem 4. Similarly, Theorem 5 can be obtained by
running the ERE algorithm of Theorem 2 and checking
that uniform convergence is also satisfied when γ1,∞ grows
slowly with n.

E. Outlook

Our goal is to learn nature. In the past few years, quan-
tum information processing tools have been fundamental
to building a theory of learning states produced by quan-
tum circuits. However, the circuit picture may not be
the most natural one to describe all quantum mechani-
cal processes. Our work represents a first incursion into
the territory of developing a statistical learning theory for
physical processes beyond quantum circuits. Our inten-
tion is to build a general theory of what we can learn
via quantum processing, going beyond the terra firma of
quantum circuits and what they can model, reaching char-
acterization protocols in quantum mechanics that may be
best expressed outside the circuit model, for instance,
metrology, sensing, calibration, and verification, and even-
tually building a unified foundation for designing physical
experiments.

II. PRELIMINARIES

A. Notation

We will consider random variables X valued in the
set X , denoting as D(x) = Prx∼D(X = x) the probability
that the random variable takes value x ∈ X ; accordingly,
Prx∼D(E) is the probability of an event E ⊆ X . We will
denote the set {1, . . . , n} as [n]. We denote the n-fold carte-
sian product of X as X n, elements in it as vectors �x ∈ X n,
and we use the notation |�x| := n to refer to the length of
the vector. Dn denotes the probability distribution of �x. We
denote a Hilbert space of dimension d by H(d). We further
denote by L(H(d)) the set of linear operators on H(d), and
by D(H(d)) ⊆ L(H(d)) the set of density matrices, that is,
the subset of L(H(d)), which is positive semidefinite and
has unit trace. These matrices describe quantum states. For
brevity, the Hilbert space of n qubits is denoted Hn.

An arbitrary valid quantum operation on quantum states
can be expressed as a quantum channel �, i.e., a com-
pletely positive trace-preserving map, and we denote the
output of a channel applied to ρ as �[ρ]. A special case of
quantum channels are unitary channels, defined from a uni-
tary matrix U (meaning UU† = U†U = 1). An application

of a unitary U to the state ρ results in the quantum state
UρU†. Any quantum channel in finite dimension can be
expressed in Kraus representation as �[ρ] =∑m

i=1 KiρK†
i

for a suitable finite set of operators {Ki}.
In order to extract classical information out of a quan-

tum state, one can perform a POVM, which is specified by
a set of m positive semidefinite matrices {E1, . . . , Em} satis-
fying

∑
i Ei = 1. A measurement on a state ρ using such a

POVM returns a classical outcome i ∈ [m] with probability
Tr[Eiρ]. For any operator 0 ≤ E ≤ 1, we can define a two-
outcome POVM {E, 1− E}, which we say that implements
the measurement of the event E, and the probability asso-
ciated to E is denoted as in the classical case as Pr(E) =
Eρ[E]. We will similarly use the notation Eρ[A] := Tr[ρA]
to express expectation values of operators A. We will
denote the standard deviation of a classical random vari-
able T as stddev[T] :=

√
E[(T− E[T])2], where the expec-

tation value is with respect to the probability distribution
of T.

We will focus on classical-quantum states, i.e., states
that can be written as ρ =∑x∈X D(x)|x〉〈x| ⊗ ρ(x), where
ρ(x) are states of H(d) and D is a probability distri-
bution on X , {|x〉}x∈X are an orthonormal basis of a
Hilbert space that we denote HX . Note that for any
operator A ∈ L(HX ⊗H(d)) and a classical-quantum state
ρ ∈ D(HX ⊗H(d)), Eρ[A] =∑x∈X D(x)Tr[A(x)ρ(x)] =∑

x∈X D(x)Eρ(x)[A(x)], where A(x) := 〈x|A|x〉 ∈ L(H(d)).
For a set of n operators on a Hilbert space H, A =
{A1, . . . , An}, we denote as A the operator on H⊗n

defined as A := A1 ⊗ 1⊗ · · · ⊗ 1+ 1⊗ A2 ⊗ · · · ⊗ 1+
1⊗ 1⊗ · · · ⊗ An.

1. Distances between probability distributions, quantum
states, and quantum channels

We consider the following distances, defined for prob-
ability distributions on discrete supports. Let P, Q be two
probability measures on the same support X .

(a) Total variation distance:

TV(P, Q) := sup
A⊆X
|P(A)− Q(A)|

= 1
2

∑

x∈X
|P(x)− Q(x)|. (38)

(b) Chi-squared distance:

dχ2(P, Q) :=
∑

x∈X
Q(x)

(
1− P(x)

Q(x)

)2

. (39)

(c) Bhattacharya Coefficient:

BC(P, Q) :=
∑

x∈X

√
P(x)Q(x). (40)
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We will also need notions of continuity for matrices. First
of all, we introduce some matrix norms. Let M ∈ C

d×d,
then:

(a) The trace norm of M is

‖M‖1 := Tr
[√

M †M
]
=

rank(M )∑

i=1

σi(M ), (41)

where σi(M ) are the singular values of M .
(b) For p ∈ [1,∞), the Schatten p-norm of M is

‖M‖p := [Tr(
√

M †M
p
)]

1
p , (42)

and ||M ||∞ = limp→∞ ||M ||p .
(c) The spectral norm is the maximum singular value

of M :

‖M‖ := max
i∈[rank(M )]

σi(M ), (43)

which coincides with ||M ||∞.This is also the opera-
tor norm induced by the 2-norm for vectors:

‖M‖ = max
‖x‖2=1,x∈Cn

‖Mx‖2. (44)

We will also use the following fact:

Fact 1. For any two vectors u, v ∈ C
n (not necessarily

normalized),

‖uv†‖1 = ‖u‖2‖v‖2, (45)

which can be verified by applying definitions.

We will need, in particular, some measures of distance
between quantum states and channels, defined as follows.
For ρ, σ two quantum states in D(H(d)):

(a) Trace distance:

dtr(ρ, σ) := 1
2
‖ρ− σ‖1= 1

2
Tr
[√
(ρ− σ)†(ρ− σ)

]
.

(46)

Note that in analogy to Eq.(38), this is half of the
trace norm of the difference between ρ and σ .

(b) Fidelity:

F(ρ, σ) := ‖√ρ√σ‖1 = Tr
[√√

ρσ
√
ρ

]
. (47)

(c) Bures distance:

dBures(ρ, σ)2 := 2(1− F(ρ, σ)). (48)

B. Sequential measurements

The algorithms we will develop make extensive use of
sequential measurements, which require us to specify what
is the state of the quantum system conditioned on the out-
come of a measurement. We stick to the usual convention,
which states that if the outcome of a POVM {Ei}ri=1 is i, the
state after the measurement is ρ|√Ei := √Eiρ

√
Ei/Tr[Eiρ].

The following facts will be useful [34].

(a) [4,35] Let P be the probability distribution on [r]
determined by the measurement M = {�1, . . . ,�r}
on ρ, and let Q instead be the distribution deter-
mined by M on ρ|√A, where A =∑r

i=1 ai�i for
some ai > 0. Then

F(ρ, ρ|√A) =
Eρ[
√

A]√
Eρ[A]

= BC(P, Q). (49)

(b) [36,37] For each i = 1, . . . , m, let �(i)
0 be pro-

jectors and �
(i)
1 = 1−�(i)

0 . The probability p of
getting always outcome 1 for sequential measure-
ments {{�(1)

0 ,�(1)
1 }, . . . , {�(m)

0 ,�(m)
1 }} on the state ρ

satisfies

p = Eρ

[
(�

(1)
1 · · ·�(m)

1 )(�
(1)
1 · · ·�(m)

1 )†
]

≥ 1− 2

√√√√
m∑

i=1

Eρ[�(i)
0 ]. (50)

(c) Lemma 2.5 in Ref. [4]: Let E1, . . . , Em be events and
consider a sequence of two-outcome POVMs imple-
menting them, on the state ρ, so that the state post-
selected on the events occurring is ρ|

√
Ei−1···

√
E1
=√

Ei−1···
√

E1ρ
√

E1···
√

Ei−1

Tr[
√

Ei−1···
√

E1ρ
√

E1···
√

Ei−1]
Let q1 = Eρ[E1] and qi =

Eρ|√Ei−1···
√

E1
[Ei], for i > 1, while pi = Eρ[Ei] >

0 for all i ∈ [m]. We have that denoting p[k] =∏
i∈[k] pi, q[k] =

∏
i∈[k] qi,

|p[m] − q[m]| ≤ 2×
m−1∑

i=1

p[i]dtr(ρ|√Ei , ρ). (51)

(d) Lemma 2.6 in Ref. [4]: with the same notation as
the previous point, let p0 = 1, ρ0 = ρ, and ρi =
ρi−1|√Ei for all i ∈ [m].
For all t ∈ [m], let st denote the probability of
observing outcomes E1, . . . , Et−1, I − Et. It holds
that

1 ≤ √qmF(ρ, ρm)+
m∑

i=1

√
si
√

1− pi. (52)
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Moreover, given a subset B ∈ [m] such that 1−
pi ≤ (η/m)2 for any i ∈ B, it follows that (see proof
of Lemma 4.2 in Ref. [4]):

1−√qmF(ρ, ρm)− η ≤
√ ∑

i∈[m]/B
si

√ ∑

i∈[m]/B
(1− pi).

(53)

(e) Fix any POVM {E1, . . . , En}, a classical random
variable X with values in R, and θ ∈ R. Further-
more, consider the classical random variable T,
defined on a fixed quantum state ρ, which has the
distribution Pr(T = t) = Eρ[Et].
The quantum event

B =
n∑

t=1

Pr(X+ t > θ)Et (54)

is such that when measured on a state ρ, it
is accepted with probability Eρ[B] = Tr[ρB] =
Pr(X+ T > θ). Furthermore, by Eq. (49), B has the
property that

F(ρ, ρ|√1−B) = BC(T, (T|T+ X ≤ θ)). (55)

C. Naive expectation estimation

A fundamental result on the concentration of sums of
random variables is the following multiplicative Chernoff
bound, with X1 . . .Xn independent random variables and
0 ≤ ε ≤ 1:

Pr

(
n∑

i=1

Xi ≥ (1+ ε)
n∑

i=1

E[Xi]

)
≤ e−ε

2∑n
i=1 E[Xi]/3 (56)

Pr

(
n∑

i=1

Xi ≤ (1− ε)
n∑

i=1

E[Xi]

)
≤ e−ε

2∑n
i=1 E[Xi]/2.

(57)

A consequence of this bound is the following proposition,
related to what has been called naive expectation estima-
tion by Ref. [4], but with IID observables. We retain the
name:

Proposition 1 (Naive expectation estimation). The ran-
dom variable X obtained by measuring the observ-
able � := �1 ⊗ 1⊗ · · · ⊗ 1+ 1⊗�2 · · · ⊗ 1+ 1⊗ · · ·
⊗ 1⊗�n on � = ρ1 ⊗ · · · ⊗ ρn satisfies, for ε < 1,

Pr
�

[|X− E�[�]| ≥ nε] ≤ 2e−nε2/3. (58)

Note that E�[�] =∑n
s=1 Eρs[�s] := n(1− R(h)). This

implies that, for given θ and ε, and n ≥ 27
ε2 log 2

δ
this

measurement allows us to distinguish the two cases

(a) |R(h)− θ | ≤ ε,
(b) |R(h)− θ | ≥ 2ε,

with probability at least 1− δ.

D. Growth functions and covering numbers:
measuring the effective size of a concept class

In classical statistical learning theory, conditions that
guarantee the success of ERM to learn an unknown func-
tion in the concept class C are given in terms of effective
measures of the size of C. We will be interested in two such
measures, the growth function and the covering number.

For a finite sequence x1, . . . , xn and a set of functions
C = {fα : X → Y}, we can identify a set of equivalence
classes given by grouping together the functions that give
the same outcomes on the inputs x1 · · · , xn. Naturally, if Y
is finite, the cardinality of this set is finite. However, even
if Y is infinite, C could still be such that there are only
finitely many equivalence classes. Indeed, for a fixed func-
tion class, the maximum number of equivalence classes
induced by a sample of length n is called the growth func-
tion G(n). A formal definition of the growth function is as
follows [13,14]:

Definition 2 (Growth function). Let C ⊆ YX be a class
of functions with target space Y . For every subset � ⊆ X
define the restriction of C to � as

C |�:= {f ∈ Y� | ∃F ∈ C ∀x ∈ � : f (x) = F(x)}. (59)

The growth function G assigned to C is then defined for all
n ∈ N as

G(n) := max
�⊆X :|�|≤n

|C|� | .

By a slight abuse of notation, we will also write C|�x for
a concept class restricted to a domain given by the set of
values appearing in �x. We will also want to define ε-nets
over classes of functions and will be interested in their size.

Definition 3 (Covering number Nin). For a set M and a
pseudometric [38] d : M×M→ [0, c], let (M, d) be a
pseudometric space, let the sets A, B ⊆M and fix ε > 0.

The set A ⊆ B is an internal ε-net of B if ∀b ∈ B, ∃a ∈
A : d(a, b) ≤ ε.

The ε-covering number of B, denoted by

Nin(ε, B, d), (60)

is the smallest cardinality of any internal ε-net of B.

The first pseudometric that will be of interest to us is the
one built on the ‖·‖p ,�x seminorm.
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Definition 4 (‖·‖p ,�x seminorms). For any set X , �x ∈
X n and any function class G ⊆ [0, c]X define the ‖·‖p ,�x
seminorm on the linear span of G for p ∈ [1,∞) as

‖g‖p ,�x :=
(

1
n

n∑

i=1

|g(xi)|p
)1/p

, (61)

and note that ‖g‖∞,�x := maxi∈[n] |g (xi)|. The correspond-
ing pseudometric is then given by d : (g1, g2) �→ ‖g1 −
g2‖p ,�x.

Definition 5 (Loss-function covering numbers). Let G ⊆
[0, c]X be a class of real-valued functions. For positive
integer p , the pth loss function covering number is

�p(n, ε,G) := max
{
Nin
(
ε,G, || · ||p ,�x

) |�x ∈ X n} . (62)

We make three remarks:

(1) For a finite target space Y = 1, 2, . . . |Y |, and for
any �x ∈ X n, observe that ||g − f ||∞,�x < ε < 1 iff
g|�x = f |�x. This follows from the definition of spec-
tral norm. Thus

Nin
(
ε,F , || · ||∞,�x

) = |F |�x| (63)

and hence

�∞(n, ε,F) = G(n). (64)

(2) The name of the above covering number comes
from the fact that we will often be interested in
choosing G to be the induced loss function class,
defined below:

Definition 6 (Induced loss function class). For any
function class F ⊆ YX and loss function L : Y ×
Y → [0, c] define

GF ,L := {g : X × Y → [0, c]

| ∃h ∈ F : g(x, y) = L(y, h(x))}. (65)

On a related note, observe that, when the loss
function is L(y, x) = |x − y|, for any h1, h2 ∈ F ,
their pseudodistance ‖h1 − h2‖1,�x upper bounds the
difference between their empirical risks, R̂(h1)−
R̂(h2). This fact will be crucial in the next few
paragraphs.

We will also need to define covering numbers for classes
mapping to operators instead of real intervals (in the fol-
lowing, H denotes some fixed Hilbert space). For this case
we will use a different seminorm, defined for operator-
valued functions:

Definition 7 (‖·‖p ,q,�x seminorms). For any set X , �x ∈
X n and any function class C ⊆ {h : X → M }, where M ⊆
L(H), we define the ‖·‖p ,q,�x seminorm on the linear span
of C for p ∈ [1,∞), q ∈ [1,∞) as

‖g‖p ,q,�x :=
(

1
n

n∑

i=1

||g(xi)||pq
)1/p

, (66)

where ‖·‖q is a Schatten q norm, and note that ‖g‖∞,q,�x :=
maxi∈[n] ||g(xi)||q. The corresponding pseudometric is then
given by d : (g1, g2) �→ ‖g1 − g2‖p ,q,�x.

Accordingly, we will define the following covering
number:

Definition 8 (Operator-class covering numbers). Let
C ⊆ L(H)X be a class of operator-valued functions. For
positive integers p , q, the (p , q)th operator-class covering
number is

γp ,q(n, ε, C) := max
{
Nin
(
ε, C, || · ||p ,q,�x

) |�x ∈ X n} . (67)

For the concept classes of interest C : C ⊆ {h : X →
M } where M ⊆ L(H), we elect to use the following nat-
ural operator-class covering numbers, which we can also
relate to the corresponding loss-function covering num-
bers:

(1) (Case 1: Quantum states) In the case of M
being quantum states, we can take p = 1, q = 1.
The pseudodistance between two concepts becomes
twice the average trace distance between the states,
||g1 − g2||1,1,�x =

∑n
i=1 1/n||g1(xi)− g2(xi)||1. Note

that the empirical risk (defined via Ls) evaluated on
the input source and the concepts g1 and g2 satisfies

|R̂s(g1)− R̂s(g2)|

= 1
n

∣∣∣∣∣

n∑

i=1

Ls(ρ(xi), g1(xi))−
n∑

i=1

Ls(ρ(xi), g2(xi))

∣∣∣∣∣
(68)

= 1
2n

∣∣∣∣∣

n∑

i=1

(‖g1(xi)− ρ(xi)‖1 − ‖g2(xi)− ρ(xi)‖1)

∣∣∣∣∣
(69)

≤ 1
2
||g1 − g2||1,1,�x, (70)

where the inequality follows from the triangle
inequality. This means that if Nin(C, ε, || · ||1,1,�x) is
an ε-net for C, then one can construct an ε-net
for GC,Ls , simply by associating every point c ∈
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Nin(C, ε, || · ||p ,q,�x) with a point gc = Ls ◦ c, which is
in GC,Ls . This implies in turn that

�1(n, ε,GC,Ls) ≤ γ1,1(n, 2ε, C) ≤ γ1,1(n, ε, C).
(71)

(2) (Case 2: Projectors) In the case of M being projec-
tors, we can take p = 1, q = ∞. The pseudodistance
between two concepts becomes the average oper-
ator norm distance between the projectors, ||g1 −
g2||1,∞,�x =

∑n
i=1 1/n||g1(xi)− g2(xi)||∞. Note that

the empirical risk (defined via Lp ) evaluated on the
input source and the concepts g1 and g2 satisfies

|R̂p(g1)− R̂p(g2)| (72)

=
∣∣∣∣∣

n∑

i=1

1
n

Lp(ρ(x), g1(x))−
n∑

i=1

1
n

Lp(ρ(x), g2(x))

∣∣∣∣∣
(73)

≤ ||g1 − g2||1,∞,�x. (74)

Similarly to the above, we can conclude that

�1(n, ε,GC,Lp ) ≤ γ1,∞(n, ε, C). (75)

Note that both properties above are a generalization of the
decreasing property of covering numbers for real-valued
function classes under composition with Lipschitz func-
tions [13]. We need operator-class covering numbers since
we can construct ε-nets with respect to the || · ||p ,q,�x semi-
norm, but not with respect to the loss function directly,
since the value of the loss cannot be obtained immediately
from the data.

E. Statistical learning theorems

The principle of empirical risk minimization dictates
that, once a loss function L with values in the interval [0, c]
has been fixed, in order to find a function in the concept
class that minimizes the true risk relative to the unknown
concept f ,

R(h) := Ex∼D [L(f (x), h(x))] (True risk), (76)

it suffices with high probability to find one that minimizes
the empirical risk over the given sample:

R̂(h) := 1
n

n∑

i=1

L(f (xi), h(xi)) (Empirical risk). (77)

In the classical case, the utility of this principle comes
from the fact that the true risk cannot be estimated directly
from the sample, but the empirical risk can. Crucially, the

quality of the approximation and the rate of the above-
mentioned convergence depend on the concept class under
study.

In particular, discrete-output concept classes are very
well-understood. In this special case, the rate of conver-
gence of the empirical risk to the true risk is quantified
by growth functions. Namely, a well-known fact (see, for
instance, Refs. [11,13,14]) states that given a sample S =
(xi, f (xi))

n
i=1, with probability at least (1− δ) with respect

to repeated sampling of training data of size n we have

∀h ∈ F : |R(h)− R̂(h)| ≤ c

√
8 ln

(
G(2n) 4

δ

)

n
. (78)

However, in our setting, we would like to be able to charac-
terize channels that map to a continuous set of states. Since
the restrictions of such concept classes to a finite sample
are potentially infinite, the above statement is not useful.
Nevertheless, a crucial observation is that, even for infinite
concept classes F , we can obtain a PAC bound for learn-
ing F via the covering number of a class G related to F . G
is induced by composing the chosen loss function with the
functions in F , as earlier stated in Definition 6.

The learning theorem is then as follows:

Theorem 6 (PAC bound via uniform covering numbers
(reported as in Ref. [14], also equivalent to Theorem 17.1
in Ref. [13]). For any concept class F and loss function L
with values in [0, c], define GF ,L as in Definition 6. For any
ε > 0 and any probability measure D on X × Y it holds

Pr
S∼Dn

[∃h ∈ F : |R(h)− R̂(h)| ≥ ε] (79)

≤ 4�1(2n, ε/8,GF ,L)e
− nε2

32c2 , (80)

where S = ((xi, yi))
n
i=1 is the training sample and

(xi, yi) ∼ D.

That is to say, the empirical risk R̂ converges to the true
risk R depending on the speed of growth of �1.

As noted above, for the loss functions we consider the
covering number �1(n, ε,GF ,L) can be bounded by the cor-
responding operator-class covering number γ1,q(n, ε, C),
which effectively controls our learning algorithms.

III. THRESHOLD SEARCH FOR NONIDENTICAL
STATES

Recall the discussion in the introduction about the diffi-
culties encountered in naively generalizing the strategy of
classical ERM to our quantum setting: they stem from not
having an arbitrary number of identical copies of a quan-
tum state ρ(xi) and from not being able to naively estimate
all the empirical risks at the same time. In this section,
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we nevertheless introduce a tool for performing our “quan-
tum” version of ERM: an adaptation of quantum threshold
search [3,4]. The gist of the algorithm is to use identical
copies of some state of interest ρ, to pick an (observ-
able, threshold) pair from amongst a set of such pairs, with
the property that the observable exceeds the threshold on
ρ—or, reports that no such pair is available. We define it
more formally:

Problem 1 (Quantum threshold search [3,4]). Given as
input

(a) Parameters ε, δ > 0
(b) Access to identical copies of a state ρ ∈ D(H(d))

(c) A collection of known projectors {�c}mc=1 where
�c ∈ L(H(d)).

(d) A collection of known thresholds {θc}mc=1 where θc ∈
[0, 1].

Output either

(a) Tr[ρ�c] > θc − ε for some particular c,
(b) Tr[ρ�c] ≤ θc for all c,

with probability of a correct statement at least 1− δ.

This section is devoted to presenting an algorithm for
threshold search that relaxes the need for access to identi-
cal copies of ρ, solving the same task on general product
states. Intuitively, this is necessary for our setting because
the learner, lacking control over the input to the process,
receives as examples the sequence (xi, ρ(xi))

n
i=1 where

ρ(xi) are not identical to each other. Thus, in contrast to
the measurement in Ref. [4], which works on ρ⊗n, our key
tool will be a measurement on the product state ρ(x1)⊗
. . .⊗ ρ(xn). The measurement reports if a threshold has
been exceeded. We will eventually use this measurement to
perform ERM for our setting. We define the properties of
this measurement in Lemma 1. Our general proof strategy
follows closely that of Ref. [4], adapting when needed.

Lemma 1 (Quantum threshold search on nonidentical
states). Given as input

(a) Parameter 1 > ε > 0.
(b) Access to a single product state � := ρ1 ⊗ . . .⊗

ρn ∈ (D(H(d)))⊗n, which is a product of generally
nonidentical qudit states.

(c) A collection of lists of known projectors

{�(c)
1 , . . . ,�(c)

n }mc=1, (81)

where each �(c)
i ∈ L(H(d)).

(d) A collection of known thresholds {θc}mc=1 where θc ∈
[0, 1].

If the projectors and thresholds obey the promise that

1
n

n∑

i=1

Tr[�(c)
i ρi] > θc (82)

for at least one i, there is an algorithm such that

(a) At each step c = 1, . . . , m it performs a two-
outcome measurement {Bc, 1− Bc} based on the
projectors {�(c)

1 , . . . ,�(c)
n }.

(b) If the measurement accepts Bc, then the algorithm
halts and outputs c, otherwise it passes to c+ 1.

This algorithm is such that if

(log m+ C2)
2 < C1nε2 (83)

for appropriate constants C1, C2 > 0, it outputs c such that

1
n

n∑

i=1

Tr[�(c)
i ρi] ≥ θc − ε (84)

with probability at least 0.03.

In order to get this improvement, we need to generalize
the measurement constructed in Ref. [4], which in a certain
sense is gentler than the projectors, which can check if the
expectation is above or below threshold from Proposition
1. Roughly speaking, gentle means that the state does not
change much after the measurement, with high probability.
Implementations of product measurements that are gentle
on product states had already been obtained in Ref. [3], and
then reconsidered by Ref. [4] with a simpler analysis on
identical states, which gave an improvement in the sample
complexity of shadow tomography [4]. In these implemen-
tations, a parameter λ can be increased in order to obtain a
gentler version of a projective measurement, sacrificing the
amount of information that the measurement can reveal.
We go one step further and generalize the stronger state-
ments of Ref. [4] so that they apply to our setting, which
involves products of nonidentical states.

To do this we need to study the behavior, under perturba-
tion, of a random variable which is the sum of nonidentical
Bernoulli random variables:

T =
n∑

i=1

Ti where Ti ∼ (pi, 1− pi). (85)

The distribution of T is also known as the Poisson binomial
distribution and we denote this as T ∼ PB(p1, . . . pn).

We also need to consider exponential random variables
X, which have a density pλ(x) := λe−λx, for some λ > 0,
and satisfy E[X] = 1/λ.
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We first present an entirely classical theorem. This
theorem says that a measurement that checks for the event
that T+ X exceeds a certain threshold is gentle when it
rejects, in the sense that it only gently perturbs the dis-
tribution of T. This is a generalization of Theorem 1.2 of
Ref. [4], which shows that adding exponential noise to a
binomial random variable allows for gentle measurements.

Theorem 7 (Gentle classical measurement on Poisson
binomial distribution). Let T ∼ PB(p1, . . . , pn), and write
qi = 1− pi. Assume that X is an independent exponen-
tial random variable with mean 1/λ at least stddev[T] =√∑n

i=1 piqi (and also at least 1). Let B be the event that
T+ X > θn, and assume that Pr[B] < 1/4. Then

dχ2((T | B), T) ≤ C
(

Pr[B] · stddev[T]
E[X]

)2

,

for a sufficiently large constant C > 0.

Proof. See Appendix A. The proof of Theorem 7
requires modification of some key details of the original
proof. The main observation is that the crucial properties
of the binomial distribution used in the proof, i.e., the form
of the generating function and the probability of exceed-
ing the expectation, also hold, with some caveats, for the
Poisson binomial distribution. �

Now let us turn to the quantum problem. The reason
we must consider Poisson binomial random variables is
that they describe the probability distribution of outcomes
when measuring a sum of (possibly nonidentical) local
projectors on a product quantum state. The link to the
learning setting is that the local projectors are exactly the
ones in the set {�(c)

1 , . . . ,�(c)
n }, which describe the cth

hypothesis under consideration, in a way we will make
formal in the next section.

In the agnostic learning setting, the learner receives the
string of classical-quantum examples (x1, ρ(x1))⊗ . . .⊗
(xn, ρ(xn)). The quantum part of these examples are n non-
identical quantum states. We assume there is at least one
hypothesis whose empirical risk on the examples goes
below some threshold; this is captured by the promise
in Lemma 1, that there is at least one set of projectors
{�(c)

1 , . . . ,�(c)
n } such that

1
n

n∑

i=1

Tr[�(c)
i ρi] > θc. (86)

In order to perform ERM, therefore, it suffices to find some
c satisfying such a guarantee. The next theorem (Theorem
8) shows that the learner can perform a gentle quantum
measurement, in the sense we next define, on the product
state, in order to find such c with high probability. This is

also the measurement referred to in Lemma 1. It is sequen-
tial and adaptive, where the learner is presented with a
projectors-threshold pair ({�(c)

1 , . . . ,�(c)
n }, θc) at each step,

and responds by making an appropriate measurement on
her state (which is reused for multiple measurements)
depending on past measurement outcomes. The cth mea-
surement depends on the presented projectors-threshold
pair and the outcomes of the first c− 1 measurements.

Theorem 8 should be viewed as a quantum counter-
part to the classical Theorem 7, as it introduces the gentle
quantum measurement that is at the core of our learning
algorithm. Here we show that to every list of projectors
{�1, . . . ,�n}, one can associate a gentle quantum observ-
able B that, similarly, only perturbs a quantum state by a
small amount, if a measurement of B rejects. In Theorem
7, the gentleness was in the sense that dχ2((T|B), T) was
bounded by Pr(B)2. In the quantum Theorem 8, the gen-
tleness is in the sense that the fidelity between the pre-
and post-rejecting-measurement quantum state is exactly
BC((T|B), T): this is analogous to Lemma 3.4 of Ref. [4].
The two classical distance measures on probability dis-
tributions that we have mentioned are related via the
inequality

1− BC(P, Q) ≤ dχ2(P, Q) (87)

for probability distributions P, Q.

Theorem 8 (Gentle quantum measurements on non-
identical product states). Fix 0 ≤ θ ≤ 1. Let X be any
classical random variable taking values in [0,∞). For any
list of projectors {�1, . . . ,�n}, �i ∈ L(H(d)), there exists
a quantum event B ∈ L((H(d))⊗n)) such that when B is
measured against a product state �, i.e.,

� := ρ1 ⊗ . . .⊗ ρn, (88)

we have

E�[B] = Pr(T+ X > θn), (89)

where T ∼ PB(p1, . . . , pn) and pi = Eρi[�i]. Furthermore,

F(�, �|√1−B) = BC((T|T+ X ≤ θn), T). (90)

Proof. Observe that we may write the distribution of T
explicitly as

Pr[T = t] =
∑

�v∈{0,1}n:||�v||1=t

n∏

i=1

pvi
i (1− pi)

(1−vi). (91)

Then consider the projectors {Ek}nk=0,

Ek :=
∑

�v∈{0,1}n:||�v||1=k

⊗n
i=1(�i + vi(1− 2�i)). (92)
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It is easy to see that the event B

B :=
n∑

t=1

Pr(X+ t > θn)Et (93)

fulfills Eq. (89). The “furthermore” part of the statement of
the lemma follows immediately from Eq. (55). �

Theorem 8 applies to X being any classical random vari-
able. Now we specialize to X being an exponential random
variable. This specification allows us to obtain a bound
on the Bures distance between the state before and after
the rejecting measurement, together with a bound on the
probability of B. For the latter, at variance with Ref. [4],
we employ here a second-order Lagrange remainder that
allows us to bypass the reduction to a fixed threshold, thus
simplifying the overall proof procedure.

Theorem 9 (Gentle quantum measurements on noniden-
tical product states via exponential noise). Let � := ρ1 ⊗
. . .⊗ ρn ∈ L((H(d))⊗n) and consider a list of projectors
{�1, . . . ,�n}, �i ∈ L(H(d)). Let 1 > λ > 0, and let θ ∈
[0, 1] be an arbitrary threshold. Let T ∼ PB(p1, . . . , pn)

where pi = Tr[ρi�i], and let the exponential random vari-
able X be as in Theorem 7.

Then there exists a quantum event B ∈ (Cd×d
)⊗n such

that

E�[B] = Pr(T+ X > θn), (94)

and

dBures
(
�, �|√1−B

)
� E�[B] · stddev[T]

E[X]
. (95)

Moreover,

E�[B] ≤ exp

(
−nλ

(
θ − 1

n

n∑

i=0

pi−e
λ

2

))
. (96)

Proof. Equation (95) is an easy consequence of Theo-
rems 7, 8 and Eq. (87).

Moreover, Eq. (96) follows from

E�[B] := Pr[T+ X > θn] (97)

=
n∑

t=0

Pr(T = t)Pr(X > θn− t) (98)

≤ E[exp(−λ(θn− T))] (99)

= exp(−λθn)E[exp(λT)] (100)

= exp(−λθn)
n∏

i=0

(1− pi + pieλ) (101)

≤ exp(−λθn)

(
1
n

n∑

i=0

(1+ pi(eλ − 1))

)n

(102)

≤ exp(−λθn)

(
1+ λ

n

n∑

i=0

pi + eλ2/2

)n

(103)

≤ exp(−λθn) exp

(
λ

n∑

i=0

pi + enλ2/2

)
(104)

= exp

(
−nλ

(
θ − 1

n

n∑

i=0

pi − eλ/2

))
(105)

as desired. In the first inequality, we used that Pr[X > t] ≤
exp(−λt); in the fourth equality we used the MGF of a
Poisson binomial random variable; in the second inequality
we used the AM-GM inequality; in the third inequality we
used that, from the second-order Lagrange remainder:

eλ = 1+ λ+ λ2 et∗

2
≤ 1+ λ+ eλ2/2,

with t∗ ∈ [0, λ]. Finally, in the fourth inequality, we used
that 1+ x ≤ ex for x ∈ R. �

With these ingredients, we can prove Lemma 1. The
algorithm that solves quantum threshold search is as
follows:

ALGORITHM 1. Quantum threshold search on nonidentical
states (ThresholdSearch)

Parameters: ε, δ, D > 0.
Promise: Of the pairs {(Π(c)

1 , . . . , Π(c)
n , θc)}m

c=1, there is
some c ∈ [m] such that

1
n

n∑
i=1

Tr[Π(c)
i ρi] > θc (106)

Initialize: �(0) ← ρ1 ⊗ . . . ⊗ ρn.

1: for c = 1, . . . , m do
2: Upon being presented with the pair

({Π(c)
1 , . . . , Π(c)

n }, θc) , (107)

measure the two-outcome POVM {Bc, Bc := 1 −
Bc}, constructed as in Theorem 8 with threshold θc−
ε and with 1/λ = D

√
n, on �(c−1).

3: If the measurement accepts, output c and break.
If the measurement rejects, let �(c) denote the post-
measurement quantum state.

4: end for
5: If none of the measurements were accepted,

output “pass on all”.
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In Lemma 1, we claimed that Algorithm 1 is such that
if

(log m+ C2)
2 < C1nε2, (108)

for an appropriate constants C1 and C2, (and when ε < 1),
with probability at least 0.03, the algorithm halts and out-
puts a projector exceeding the threshold, i.e., it halts on i
such that

1
n

n∑

i=1

Tr[�(c)
i ρi] ≥ θc − ε. (109)

We now prove this. We will adopt the following notation,
which mirrors the notation in Ref. [4]. For c = 1, . . . , m,
let

(1) T(c) =∑n
i=1 T(c)i , with T(c)i ∼ (Eρi[�

(c)
i ], 1−

Eρi[�
(c)
i ]) Bernoulli variables,

implying T(c) ∼ PB(Eρ1 [�(c)
1 ], . . . , Eρn[�(c)

n ]).
(2) pc = E�[Bc];
(3) �(0) = ρ1 ⊗ . . .⊗ ρn and �(c) be the quantum state

after the cth measurement, conditioned on the event
Bj occurring for all 1 ≤ j ≤ c;

(4) rc = E�(c−1)[Bc] be the probability that the event Bi

occurs assuming all the events Bj with 1 ≤ j ≤ c−
1 occurred;

(5) qc = r1 · · · rc be the probability that all of the events
Bj with 1 ≤ j ≤ c occur;

(6) sc = qc−1 · E�c−1 [Bc] be the probability of observing
outcomes B̄1 · · · B̄c−1Bc.

As in Ref. [4], our proof works by bounding the probabili-
ties of two bad events. We now state what these events are
and give an intuition for why their probabilities should be
bounded, before we formalize the intuition.

(1) The algorithm outputs a false negative: it passes on
all projector-threshold pairs, even though there was
one that fulfilled the promise.

(2) The algorithm outputs a false positive: it outputs c
that actually does not fulfil the promise, i.e.,

1
n

n∑

i=1

Tr[�(c)
i ρi] ≤ θc − ε. (110)

Intuition for why these two probabilities are bounded:
Suppose hypothetically that the algorithm had the lux-
ury to measure the given projector on R fresh copies of
ρ1 ⊗ . . .⊗ ρn each time. Then the promise of Lemma 1,
and Chernoff’s bound, ensure that with R = O(1/ε2)-many
copies, one could identify some projector fulfilling (109)
with high probability, so that neither false negative nor
false positive would come to pass.

However, in Algorithm 1, we do not use R fresh copies
on each of the m iterations of the For loop; instead, we
make successive measurements on a single copy. Then the
damage lemma [Eq. (51)], together with the properties of
the specially constructed Bc in Theorem 8, ensures that the
usage of a “damaged” copy does not affect the probability
of acceptance on a new measurement too much, relative to
using R fresh copies. The caveat is that “low damage” is
only guaranteed if all of the previous measurements have
rejected; care must then be taken to account for this.

Proof of Lemma 1. Controlling the false negative
probability—the promise of Lemma 1 is that there is some
c ∈ [m] such that

1
n

n∑

i=1

Tr[�(c)
i ρi] > θc. (111)

For this particular c, let us bound the probability of accep-
tance of the corresponding measurement Bc (which we
previously denoted pc).

To do so, let us recall that Theorem 9 guarantees that
the Bc’s are constructed in such a way that their mea-
surement outcome statistics follow from that of a classical
Poisson binomial random variable, T(c) :=∑n

i=1 T(c)i . This
is a sum of independent and not identically distributed
binary random variables. Their concentration is captured
by the multiplicative Chernoff bound in Eqs. (56) and (57).
Applying this to the sum T(c) :=∑n

i=1 T(c)i , which has
expectation E[T(c)] = npc :=∑n

i=1 Tr[ρi�
(c)
i ], we have,

by the promise, θc ≤ pc and for any non-negative random
variable X:

pi := E�[Bc] = Pr(T(c) + X > (θc − ε)n) (112)

≥ Pr(T(c) > (θc − ε)n) ≥ Pr(T(c) > (pc − ε)n) (113)

≥ 1− e−nε2/(2pi) ≥ 1− e−1/4 (114)

for n = �(1/ε2), where the second equality on the first
line is by Eq. (94), and the first inequality on the third line
follows from Eq. (57).

Since we have now established that there is some i such
that 1− pi ≤ e−1/4, so there must also be some minimum
t ∈ [m] such that (1− p1) · · · (1− pt) ≤ e−1/4. If t = 1,
then r1 = 1− p1 ≤ e−1/4 ≤ 4/5, that is p1 ≥ 1/5.

Otherwise, t > 1. Since t is minimal, (1− p1) · · · (1−
pt−1) > e−1/4. Taking logs on both sides, this implies that∑t−1

c=1 pc ≤ − log
∏t−1

c=1(1− pc) ≤ 1/4 [where we have
used the inequality x < − log(1− x)]. If t > 1, by
Eq. (51), Theorem 7 and the fact that dtr(ρ, σ) ≤
dBures(ρ, σ) [by the standard Fuchs-Van de Graaf
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inequality [35]], we have

|(1− p1) · · · (1− pt)− qt| (115)

≤ 2
t−1∑

c=1

dtr(�|√1−Bc , �) (116)

� 2
t−1∑

c=1

E�[Bc] · stddev[T(c)]
E[X]

≤
(

t−1∑

c=1

pc

)
·
√

n
E[X]

≤ 1
4
·
√

n
E[X]

, (117)

and also

|(1− p1) · · · (1− pt−1)− qt−1| � 1
4
×
√

n
E[X]

. (118)

Recall that X is an exponential random variable with
E[X] = D

√
n, meaning that choosing D large enough we

have qt ≤ 4/5 and qt−1 ≥ 3/4. The former means that the
algorithm will output some c ≤ t with probability larger
than 1/5.

Controlling the false positive probability—now we
restrict our attention to the first t projectors presented to
the algorithm, since we have established in the previous
section that the algorithm terminates with more than some
constant probability after at most t iterations of the For
loop. We now need to show that the algorithm, with suf-
ficiently high probability, does not output a c with μc =
1/n

∑n
i=1 Tr[�(c)

i ρi] ≤ θc − ε. Let us denote the set of
such c as B (for Bad):

B =
{

c ≤ t
∣∣∣∣μc ≤ θc − ε

}
.

By Eq. (96) in Theorem 9, whenever μc ≤ θc − ε (i.e., for
all c ∈ B), we have that

pc ≤ exp (−nλ (θc − μc − eλ/2))

≤ exp
(−D−1√nε + eD−2/2

)
, (119)

where we used that E[X] = 1/λ = D
√

n for some
D > 0. Therefore pc ≤ (η/m)2 < 1/5 if (2 log(m/η)+
eD−2/2)2 ≤ D−1nε2, and η ≤ 0.01.

The argument is now identical to Ref. [4], proof of
Lemma 4.2. There, using Eq. (53), F(�, �t) < 1, and∑

c∈[t]/B pc < 1/4, qt < 4/5, one obtains

1
2

√ ∑

c∈[t]/B
sc ≥ 0.99−

√
4/5 (120)

→
∑

c∈[t]/B
sc ≥ 4 · (0.99−

√
4/5)2 ≥ 0.03. (121)

Since
∑

c∈[t]/B sc is the probability that the algorithm
returns an index c ∈ [t] with μc ≥ θc − ε, it follows that
the algorithm is correct with probability at least 0.03. �

IV. QUANTUM EMPIRICAL RISK
MINIMIZATION

In this section we present our main algorithm to per-
form ERM for both projector- and state-valued classes of
quantum processes.

A. Empirical risk minimization for projector-valued
functions

We first show how to estimate the empirical risk of
a fixed number of projector-valued functions on a given
product state. The main theorem we prove is the following.

Theorem 10 (Quantum empirical risk minimiza-
tion—Theorem 1, refined). Given access to a product state

� = ρ1 ⊗ · · · ⊗ ρn (122)

and a collection of lists of projectors {�(c)
1 , . . . ,�(c)

n }c=1,...,m,
with

μc = 1
n

n∑

i=1

Tr[ρi�
(c)
i ], (123)

(i.e., μc is 1− R�(c), where the second term is the empiri-
cal risk of concept c on the entire product state) there is an
algorithm which outputs c∗ together with an estimate μ̂c∗
of μc∗ such that

Pr(|μ̂c∗ −max
c∈[m]

μc| ≥ ε ∪ |μ̂c∗ − μc∗ | ≥ ε) ≤ δ, (124)

if n is large enough. In fact we can take

n = 1
ε2 log

1
δ

log2 1
ε

× O
(

max
(

log
(

m
δ

log
1
δ

log2 1
ε

)
, (log m+ C1)

2
))

(125)

for some C1 > 0.

Let us now convey the intuition behind the claimed
algorithm (which is Algorithm 2). Observe that the task
of finding the concept that attains the maximum over-
lap, maxc∈[m] μc, can be accomplished by binary search
over the interval [0, 1]—namely, we search for the largest
threshold such that there is at least one risk above it, out of
the m possible ones. The remainder of this section gives the
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details of how to do so. The key idea is to divide the given
product state � into blocks of l = n/2Tk states, that is

� = �1 ⊗ �2 · · · ⊗ �2Tk where �s = ρs,1 ⊗ · · · ⊗ ρs,l,
(126)

and take the block size l large enough so that the average
risk on each block concentrates towards μc for each c. This
gives us sufficient confidence to apply our Algorithm 1
(ThresholdSearch) on each block to check if there exists
some concept that exceeds the current candidate thresh-
old. Depending on the results of this check, we adjust the
candidate threshold accordingly. The guarantees of this
Algorithm (Algorithm 2) are given in Lemma 2. Subse-
quently, in Lemma 3, we derive the block size l we need to
ensure the desired concentration.

Lemma 2 (Quantum empirical risk minimization given
large product states). Given access to 2Tk blocks of states
as in Eq. (126) and a collection of lists of projectors
{�(c)

s,j }c=1,...,m,s=1,...,2Tk,j=1,...,l, suppose that the following
conditions hold:

(1) For appropriate constants C1, C2 > 0

(log m+ C2)
2 < C1lε2. (127)

(2) At the same time

l >
log(Tk/δ)

ε2 , (128)

for large enough T = O(log 1
ε
) and k = O

(
log 1

δ

log 1
ε

)
.

(3) The numbers 0 ≤ μc ≤ 1 are approximations of the
expected value of {�(c)

s,j }s,j with respect to the blocks
of states for all c ∈ [m], i.e., they satisfy
∣∣∣∣∣∣
1
l

l∑

j=1

Eρs,j [�(c)
s,j ]− μc

∣∣∣∣∣∣
≤ ε/4, ∀ c ∈ [m], s ∈ [2Tk].

(129)

Then there is an algorithm that outputs c∗ and μ̂c∗ such that

Pr(|μ̂c∗ −max
c∈[m]

μc| ≥ 6ε ∪ |μ̂c∗ − μc∗ | ≥ 6ε) ≤ δ. (130)

Here we note that “given large product states” in the title
of the lemma refers to the requirement that the n = 2Tkl is
large enough to guarantee that Eq. (127) holds.

Proof. We use Algorithm 2, and the following nota-
tion:

(a) h(c)s = {�(c)
s,1 , . . . ,�(c)

s,n},

(b) h(c)s = �(c)
s,1 ⊗ 1⊗ · · · ⊗ 1+ 1 ⊗ �(c)

s,2 ⊗ · · · ⊗ 1+
1⊗ 1⊗ · · · ⊗�(c)

s,n ,
(c) R�s(c) = 1− 1

nE�s[hc,s],
(d) Xc,s is the random variable obtained by measuring

hc,s on �s.

Algorithm in words: Algorithm 2 runs binary search to
find an interval containing maxc μc, starting with the candi-
date interval [0, 1], determining whether the desired value
lies in the upper or lower half, and then updating the can-
didate interval to the relevant half and recursing. To deter-
mine in which half of the candidate interval the desired
value lies, the algorithm uses up two blocks of samples,
�2s−1 and �2s: on the first block, we run ThresholdSearch,
which also outputs a concept that exceeds the current can-
didate value θc. On the second block, we run a check, that
confirms that this concept indeed exceeds the threshold

ALGORITHM 2. Learning projector-valued functions

Input: 2Tk product states {�s}s=1,...2Tk and 2Tkm

sets of projectors {{h
(c)
s }c=1,...,m}s=1,...,2Tk, with

h
(c)
s = {Π(c)

s,1, ..., Π
(c)
s,n}.

Parameters: ε, δ, k > 0.
Initialize: θ = 1/2, low = 0, high = 1, failures =
0, s = 0.

1: while high − low ≥ 6ε do
2: if failures < k then
3: s+ = 1
4: Threshold search: Apply ThresholdSearch

(Algorithm 1) on the set of projectors-threshold pairs
{(h(c)

2s , θ−ε)}m
c=1 with the parameter ε/4, to the prod-

uct state �2s−1.
5: if Threshold search doesn’t output a con-

cept then:
6: failures+ = 1
7: else Threshold search outputs concept c

8: Check: measure h
(c)
2s on �2s and check if

Xc,2s ≥ n(θ − 7/4ε).
9: if Check outputs ‘yes’ then:

10: low ← θ − 2ε, high ← high, θ ←
1
2 (high + low) 
 Update interval to upper half

11: failures ← 0.
12: else Check outputs ‘no’ and
13: failures+ = 1
14: end if
15: end if
16: else there have been k consecutive failures, so
17: low ← low, high ← θ, θ ← 1

2 (high + low) 

Update interval to lower half

18: failures ← 0
19: end if
20: end while
21: Output θ and the last selected concept, if there is

one, otherwise pick it randomly.

020367-22



QUANTUM LEARNING WITHOUT INPUT CONTROL PRX QUANTUM 5, 020367 (2024)

θc (as ThresholdSearch only succeeds with probability
0.03). We declare a failure if by the end of this process,
we have not received a “yes” from both algorithms; after
k consecutive failures, we conclude that there was actu-
ally no concept exceeding the candidate threshold, and
move on by decreasing the candidate threshold (line 17).
Conversely, if at any point we receive a “yes” from both
algorithms, we conclude that the candidate threshold was
too low and increase it (line 10).

Error analysis: Let us now analyze the error in this
algorithm. The algorithm will err if either line 17 or line 10
updates the candidate threshold wrongly. We are interested
in the probability of either of these two events happening
for a fixed candidate threshold; by a union bound, we will
then multiply this probability by the number of candidate
thresholds that are examined, which is O(log(1/ε))—as
the interval does not get updated once it becomes smaller
than 6ε, and every update approximately halves the size of
the interval (see lines 10 and 17).

We thus define the following four error probabilities and
their associated events:

(a) pFPTS: ThresholdSearch outputs a false positive,
i.e., it outputs that there is a concept above threshold
when there is none.

(b) pFNTS: ThresholdSearch outputs a false negative,
i.e., it outputs “no concept above threshold” when,
in fact, there was one.

(c) pFPC: Check outputs a false positive, i.e., Xc,2s ≥
l(θ − 7/4ε) when in fact μc < θ − 2ε.

(d) pFNC: Check outputs a false negative, i.e., Xc,2s <

l(θ − 7/4ε) when in fact μc ≥ θ .

Note that, by Lemma 1, it holds pFNTS < 0.97, whereas
pFNC and pFPC can be made exponentially small in the
block size l by the multiplicative Chernoff bound (Propo-
sition 1).

If line 10 updates wrongly, it can only be because
ThresholdSearch outputs a concept even though there is
no concept that exceeds the threshold and Check outputs
‘yes’ on that wrong concept. The probability of this hap-
pening for a given interval is at most k pFPTS pFPC, as there
are k rounds where this could potentially happen and any
such event triggers an update of the interval.

If line 17 updates wrongly, there must have been k
consecutive failures when there actually was a concept
above threshold. Each such failure is caused by one of the
following events:

(a) Threshold search executes correctly at some point
but Check falsely outputs no. The probability
that this happens in k rounds is at most pFNC.
To see this, call τi the event that the first false
negative check occurs at time i. {τi} are mutu-
ally exclusive events, and Pr(τi) ≤ (pFNTS)

i−1(1−

pFNTS)pFNC. The probability that there is a false
negative at some time i is

∑k
i=1 Pr(τi) ≤ pFNC.

(b) Threshold search wrongly outputs that no concept
was above threshold (probability pFNTS) for k con-
secutive times. The probability of these events is
bounded by 0.97k, as explained above.

Summing over the T rounds, the probability of error is then
upper bounded as

perr ≤ T(0.97k + kpFPC(l)+ pFNC(l)). (131)

With the choices made for the parameters of the algorithm,
we obtain the guarantee given in the lemma statement. �

Next, we control the probability that the (possibly non-
identical) product states give an accurate approximation
to the expectation values of the projectors associated with
the possible concepts, i.e., the probability that Eq. (129)
is satisfied. The main technical ingredient is the following
lemma, which shows, essentially, that Höffding’s inequal-
ity is effective even for proving the concentration of the
empirical mean of samples without replacement from a
finite population.

Lemma 3. Let Y = {1, . . . , n}, n ≥ 3Kl, and let the K
sets of indices {{Xlk+i}li=1}K−1

k=0 be random samples drawn
without replacement from Y . Furthermore, consider m
different finite populations of n numbers {{xc,j }nj=1}mc=1,
with 0 ≤ xc,j ≤ 1. From each population {xc,j }nj=1 obtain
K subsets of size l, as {{xc,Xlk+j }lj=1}K−1

k=0 . Then it holds

Pr

⎛
⎝ max

c=1,...,m
k=0,...,K−1

∣∣∣
1
l

l∑

j=1

xc,Xlk+j − μc

∣∣∣ ≥ ε
⎞
⎠ (132)

≤ 2Kme−2lε2/4, (133)

where μc = 1/n
∑n

j=1 xc,j .

The proof is given in the Appendix B (see the equiv-
alent Theorem 19). With these two lemmas in hand, we
are now able to prove that Algorithm 2 works for find-
ing the empirical risk minimizer amongst projector-valued
functions.

Proof of Theorem 10. Let n ≥ 6Tkl be the number of
observations of the output of the unknown process (where
we remind readers that each observation corresponds to a
quantum state). That is, we set K = 2Tk in Lemma 3. Sam-
pling without replacement 2Tk lists of length l from [n], let
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the sth list define the product state

�s = ρs,1 ⊗ · · · ⊗ ρs,l, s = 1, . . . , 2Tk (134)

and for each concept c ∈ [m], the set of projectors

{�(c)
s,1 , . . . �(c)

s,l }, s = 1, . . . , 2Tk. (135)

Now by identifying xc,j = Tr[�(c)
j ρj ] in Lemma 3, we

obtain the desired concentration
∣∣∣∣∣∣
1
l

l∑

j=1

Eρs,j [�(c)
s,j ]− μc

∣∣∣∣∣∣
≤ ε/4, ∀ c ∈ [m], s ∈ [2Tk],

(136)

with probability p (1)err ≤ 4Tkme−2lε2/64,
If Eq. (136) is true, then condition Eq. (129) is satisfied

and we can apply Algorithm 2 to obtain a good estimate
with probability of error p (2)err ≤ T(0.97k + (k + 1)e−lε2/72).

We can make p (1)err + p (2)err ≤ δ with the choice of T, k
as in Lemma 2 and l = O(max(log(Tkm/δ)/ε2), (log m+
C2)

2/ε2)). �

B. Empirical risk estimation for projector-valued
functions

In this section we will show that if the size of a prod-
uct state is sufficiently large with respect to the logarithm
of the local dimension, we cannot only identify the con-
cept yielding the highest minimum risk and estimate that
risk, but in fact estimate the risks of all of the concepts at
the same time. The key idea is built on the philosophy of
shadow tomography: we find a function that predicts the
expectation values

μc = 1
n

n∑

i=1

Tr[ρi�
(c)
i ], (137)

where c runs over the possible different concepts, given
access to the product state

� = ρ1 ⊗ · · · ⊗ ρn. (138)

In the case of lists of identical projectors (�(c)
i indepen-

dent of i), the task went under the name of diverse-state
setting for shadow tomography in Ref. [17], where it was
noted that the algorithm proposed there also works in this
setting. Here we show that the improvements given by
Ref. [4] carry through in this setting with the appropri-
ate generalizations. We also make explicit an appropriate
modification of the procedure of Ref. [3] to update the state
guess, where a reference quantum state (possibly stored on
a classical computer as a matrix) is used to compute the

expectation values of the projectors, and updated to agree
with the data from the experiment. Here we start with m
lists of projectors

hc = {�(c)
1 , . . . ,�(c)

n }, c ∈ [m] (139)

and an unknown product state

� = ρ1 ⊗ · · · ⊗ ρn. (140)

As in the previous section we use the notation

(a) hc,s = {�(c)
s,1 , . . . ,�(c)

s,l }, hc,s = �(c)
s,1 ⊗ 1⊗ · · · ⊗ 1

+ 1⊗�(c)
s,2 ⊗ · · · ⊗ 1+ 1⊗ 1⊗ · · · ⊗�(c)

s,l

(b) 1− R�s(c) = 1
l E�s[hc,s]

(c) Xhc,s is the random variable obtained by measuring
hc,s on �s.

Note that the quantities 1− R�(c) can be also expressed as
expectation values of projectors

�(c) :=
n∑

i=1

|i〉〈i| ⊗�(c)
i (141)

on the classical-quantum state

σ = 1
n

n∑

i=1

|i〉〈i| ⊗ ρi. (142)

The algorithm works by keeping track of a classical esti-
mate of σ that is updated sequentially. The estimate is
initialized at time t = 0 as

ρ∗0 :=
(

1
n

n∑

i=1

|i〉〈i| ⊗ 1
d

)⊗q

, (143)

and at each time t, ρt is obtained by picking one system
of the q at random and computing the marginal of ρ∗t in
that system. The form of the state to update is the main
difference between what we propose and the strategy in
Ref. [3]. We give the proof in its entirety for convenience.

At each time step t, the algorithm is also provided with
some c ∈ [m] for which the current best estimate ρt makes
poor predictions relative to σ , that is,

μc,t = Eρt[�
(c)] = Tr[ρt

∑

i

|i〉〈i| ⊗�(c)
i ] (144)

is ε-far from

μc = Eσ [�(c)] =
∑

i

1
n

Tr[�(c)
i ρi]. (145)

(Later, in Lemma 5, we will explain how to find such a c.)
The updating procedure then makes use of �(c) to update
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ρ∗t to ρ∗t+1. In doing so we can guarantee that at most a cer-
tain number T of updates will be required, in the following
sense:

Lemma 4 (Update). There exists a sequential proce-
dure to update a classical estimate for some unknown
quantum state σ , that initializes the estimate at time t = 0
as ρ∗0 given in Eq. (143), and at time t, takes as input the
current estimate ρ∗t and some c ∈ C such that either

(1) μc − Eρt[�
(c)] ≥ ε, or

(2) μc − Eρt[�
(c)] ≤ −ε,

and outputs an updated estimate, ρ∗t+1, such that after

T = O
(

log d
ε3

(
log log d + log

1
ε

))

updates, the estimate ρT fulfils

|μc − EρT [�(c)]| ≤ ε, ∀c ∈ [m]. (146)

Proof. First of all, we construct the following projectors

�(c)(l) =
∑

�v∈{0,1}q:||�v||1=l

n⊗

i=1

(�(c) + vi(1− 2�(c))). (147)

In other words, �(c)(l) is the sum of all events that accept
the projector �(c) at exactly l points in [q] and reject �(c)

at the remaining q− l points in [q]. Finally, we define

�(c),−(r) =
∑

l≤r

�(c)(l), (148)

�(c),+(r) =
∑

l≥r

�(c)(l). (149)

In words, �(c),+(r) is the sum of all events that reject �(c)

in at least r points in [q] and reject �(c) in all remain-
ing points in [q]; �(c),−(r) is the sum of all events that
reject �(c) in at most r points in [q] and accept �(c) at
all remaining points in [q]. We now describe the update
procedure. In case 1, we update ρ∗t to ρ∗t+1 by postselect-
ing on the event F+t (c) = �(c),+((μ̂c,t + ε/2)q). In case
2, we then update ρt to ρt+1 postselecting on the event
F−t (c) = �(c),−((μ̂c,t − ε/2)q). Define Ft as the appropri-
ate accepting event at time t, i.e., Ft := F+t in case 1 and
Ft := F−t in case 2.

We will now upper bound the probability that the first t
postselection steps all succeed, following an argument of
Ref. [3]. This is

pt = Tr[F0ρ
∗
0 ] . . .Tr[Ft−1ρ

∗
t−1], (150)

and we will be able to upper bound it by pt ≤ (1− ε)�(t).
Indeed, we can show this by considering the random

variable

X = number of acceptances resulting from measuring
{
�(c), 1−�(c)

}
on ρ∗t . (151)

Applying Markov’s inequality, we can then see that,
by writing�(c) := �(c) ⊗ 1⊗ · · · ⊗ 1+ 1⊗�(c) ⊗ · · · ⊗
1+ 1⊗ 1⊗ · · · ⊗�(c)),

E[X] = Tr[ρ∗t �(c)] = qEρt[�
(c)], (152)

and, in case 1,

Pr[X ≥ (μ̂c,t + ε/2)q] = Tr[F+t (c)ρ
∗
t ] (153)

≤ μ̂c,tq
(μ̂c,t + ε/2)q ≤ 1−�(ε) (154)

while an analogous calculation yields that in case 2,

Tr[F−t (c)ρ
∗
t ] ≤ 1−�(ε). (155)

This implies pt ≤ (1− ε)�(t).
Now, we lower bound pt. Hypothetically, suppose

that at time t we were to apply the measurement Ft
(which depends on which case we are in) to σ⊗q =(∑n

i=1 1/n|i〉〈i| ⊗ ρi
)⊗q. By the promise that we are

either in case 1 or 2, and by Chernoff’s bound, at
each step the measurements reject with probability 1−
Tr[Ftσ

⊗q] ≤ e−�(qε
2). Applying the measurements in

sequence, Ft . . .F0 also always accepts with high prob-
ability by the quantum union bound (e.g., Ref. [37]). In
particular, the probability of accepting on every step, until
step t, is

qt ≥ 1− O
(√

te−�(qε
2)
)

. (156)

But then, for every ρi, i ∈ [n], it is possible to write 1/d =
1/(d)ρi + (1− 1/d) ωi for some state ωi. Then, recalling
that ρ∗0 = (

∑n
i=1 1/n|i〉〈i| ⊗ 1/d)⊗q

ρ∗0 = ρ⊗q
0 =

1
dq σ

⊗q +
(

1− 1
dq

)
ω, (157)

for some positive semidefinite and trace-1 ω.
This decomposition (specifically the fact that ω is PSD)

elucidates the following lower bound:

pt = Tr[ρ∗0 F0] . . .Tr[ρ∗t−1Ft−1] (158)

≥ 1
dq

(
1− O

(√
te−�(qε

2)
))

. (159)

By taking q = C/ε2 (log log d + log(1/ε)) we have pt ≥
1/dq

(
1−√tε2/log d

)
.
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Putting this together with the upper bound pt ≤ (1−
ε)�(t), we need T = O

(
log d/ε3 (log log d + log(1/ε))

)
,

where T is the number of updates after which we can
estimate all the expectation values at the desired preci-
sion. �

To obtain c satisfying the promise of Lemma 4, we can
use the following lemma, which is a simpler variant of
Lemma 2.

Lemma 5. Given access to 2k product states

�s = ρs,1 ⊗ · · · ⊗ ρs,l, s = 1, . . . , 2k, (160)

and a collection of lists of projectors
{�(c)

s,j }c=1,...,m,s=1,...,2k,j=1,...,l and numbers 0 ≤ μc ≤ 1, c ∈
[m] such that
∣∣∣∣∣∣
1
n

n∑

j=1

Eρs,j [�(c)
s,j ]− μc

∣∣∣∣∣∣
≤ ε/4, ∀ c ∈ [m], s ∈ [2k],

(161)

and numbers {λc}c=1,...,m. Then if we are guaranteed that

(log m+ C2)
2 < C1lε2, (162)

for appropriate constants C1, C2, and at the same time

l >
log(k/δ)
ε2 , (163)

for a large enough k = O(log 1
δ

log 1
ε
), there is an algorithm

that, with probability larger than δ, if there exists some

c such that |μc − λc| ≥ 2ε, either the algorithm declares
failure or it outputs a c∗ such that |μc∗ − λc∗ | ≥ ε/2.

Proof. Use ThresholdSearch (Lemma 1) on the states
�s, s odd with

(a) the list of projectors {�(c)
s,1 ,�(c)

s,2 , . . . ,�(c)
s,l } and

threshold λc + 7/4ε,
(b) together with the list of projectors {1−�(c)

s,1 , 1−
�
(c)
s,2 , . . . , 1−�(c)

s,l } and threshold 1− λc − 7/4ε,

c ∈ [m], and precision parameter ε/4. For each odd s, if c
is output from the search, we measure

�
(c)
s+1,1 ⊗ 1⊗ · · · ⊗ 1+ 1⊗�(c)

s+1,2 ⊗ · · · ⊗ 1

+ 1⊗ 1⊗ · · · ⊗�(c)
s+1,l (164)

on �s+1, with a resulting random variable Xc,s+1.
If |(Xc,s+1)/l− λc| > ε, we declare the check passed and

output c. If all the checks are not passed, we declare failure.
The analysis is as follows: If there exists c such

that |μc − λc| ≥ 2ε, then by Eq. (127) we have
|1/l∑l

j=1 Eρs,j [�(c)
s,j ]− λc| > 7/4ε, therefore either 1/

l
∑l

j=1 Eρs,j [�(c)
s,j ] ≥ λc + 7/4ε, or 1/l

∑l
j=1 Eρs,j [1−

�
(c)
s,j ] ≤ 1− λc − 7/4ε. Since the promise of Threshold

Search is fulfilled either for {�(c)
s,j }j∈[l] or {1−�(c)

s,j }j∈[l],
each time ThresholdSearch is performed, with proba-
bility larger than 0.03 it outputs a concept c such that
|1/l∑l

j=1 Eρs,j [�(c)
s,j ]− λc| > 6/4ε. In this case, by Cher-

noff bound, Eq. (58) we have

Pr(|Xc,s+1 − lλc| ≤ lε) = Pr(|Xc,s+1 −
l∑

j=1

Eρs,j [�(c)
s,j ]+

l∑

j=1

Eρs,j [�(c)
s,j ]− lλc| ≤ lε)

≤ Pr

⎛
⎝
∣∣∣|Xc,s+1 −

l∑

j=1

Eρs,j [�(c)
s,j ]| − |

l∑

j=1

Eρs,j [�(c)
s,j ]− lλc|

∣∣∣ ≤ lε

⎞
⎠ ≤ Pr(|Xc,s+1 −

l∑

j=1

Eρs,j [�(c)
s,j ]| ≥ lε/2) ≤ 2e−l ε

2
6 .

(165)

On the other hand, if a concept is selected with |μc − λc| ≤ ε/2, we have

Pr(|Xc,s+1 − lλc| ≥ lε) = Pr(|Xc,s+1 −
l∑

j=1

Eρs,j [�(c)
s,j ]+

l∑

j=1

Eρs,j [�(c)
s,j ]− lλc| ≥ lε)

≤ Pr(|Xc,s+1 −
l∑

j=1

Eρs,j [�(c)
s,j ]| + |

l∑

j=1

Eρs,j [�(c)
s,j ]− lλc| ≥ lε) ≤ Pr(|Xc,s+1 −

l∑

j=1

Eρs,j [�(c)
s,j ]|) ≥ lε/2) ≤ 2e−l ε

2
6 .

(166)
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ALGORITHM 3. Empirical risk estimation

Input: Product states

�s = ρs,1 ⊗ ... ⊗ ρs,2lk, s ∈ [T ] , (167)

Parameters: T, q.

1: Initialize on a classical computer, the classical esti-
mate

ρ∗
0 :=

(
n∑

s=1

|s〉〈s| ⊗ 1
d

)⊗q

. (168)

2: for t = 1, . . . , T do
3: c ← ThresholdSearch on the state �s with pro-

jectors and parameters as described in the proof of
Lemma 5. If ThresholdSearch declares failure then
Break.

4: ρ∗
t+1 ← Update(ρ∗

t , c).
5: end for
6: Output estimates μc,T = EρT [Π(c)], ∀c ∈ C.

By an argument identical to the analysis of the error prob-
ability in Lemma 2, the probability of error is bounded as

perr ≤ 0.97k + 2(k + 1)e−l ε
2
6 , and the choice of k and l in

the lemma statement makes it less than δ. �

Thus, our algorithm for ERE simply starts from an
estimate dependent on the empirical distribution of mea-
surement outcomes of the classical register, and then inter-
leaves the ThresholdSearch and Update subroutines to
progressively update this estimate. This is summed up in
the following algorithm:

We can now prove the following.

Theorem 11 (Quantum empirical risk estimation for
projector-valued functions (Theorem 2, refined)). Given
access to a product state

� = ρ1 ⊗ · · · ⊗ ρn (169)

and a collection of lists of projectors {�(c)
1 , . . . ,�(c)

n }c=1,...,m,
with

μc = 1
n

n∑

i=1

Tr[ρi�
(c)
i ], (170)

there is an algorithm which outputs estimates μ̂c such that

Pr(|μ̂c − μc| ≥ 2ε) ≤ δ ∀c ∈ [m] (171)

if n is large enough; in fact we can take n = Tk
ε2 ×

O(max(log(Tkm/δ), (log m+ C1)
2)), with T = O

(
log d
ε3

(
log log d + log 1

ε

) )
and k = O(log(T/δ)).

Proof. The algorithm for ERE runs as follows. Prepare
the classical guess ρ∗0 as in Lemma 4. Divide the product
states into T batches of 2k product states. For t = 1, . . . , T,
run the algorithm of Lemma 5 on the corresponding batch.
If a concept c is selected, use it as an update for the
algorithm in Lemma 4 and continue to the next t, other-
wise terminate and update the collection of μc as obtained
from ρ∗t .

By Lemma 3, if n ≥ 6Tkl we can obtain 2Tk samples
without replacement of length l from [n]. By identifying
xc,i = Tr[�(c)

i ρi], we get 2Tk product states

�s = ρs,1 ⊗ · · · ⊗ ρs,l, s = 1, . . . , 2Tk, (172)

and a collection of lists of projectors
{�(c)

s,j }c=1,...,m,s=1,...,2Tk,j=1,...,l such that

∣∣∣∣∣∣
1
l

l∑

j=1

Eρs,j [�(c)
s,j ]− μc

∣∣∣∣∣∣
≤ ε/4, ∀ c ∈ [m], s ∈ [2Tk].

(173)

with probability p (1)err ≤ 2Tkme−2lε2/64.
If Eq. (173) is true, then condition Eq. (161) is satis-

fied and we can apply the algorithm of Lemma 5 to obtain,
if maxc |μ̂c − μc| ≥ 2ε an estimate μ̂c, |μ̂c − μc| ≥ ε/2
with probability of error p (2)err ≤ (0.97k + 2(k + 1)e−lε2/6).
Otherwise, if maxc |μ̂c − μc| ≤ 2ε and we do not get
any |μ̂c − μc| ≥ ε/2 we are satisfied. Anyway, after T =
O
(
log d/ε3 (log log d + log(1/ε))

)
updates we also have

|μ̂c − μc| ≤ ε/2 by Lemma 4. The probability of error is
then less than Tp (2)err .

We can make p (1)err + Tp (2)err ≤ δ with T and k as in the
theorem statement and

l = O(max(log(Tkm/δ)/ε2), (log m+ C2)
2/ε2))

and thus n as stated. �

C. Empirical risk minimization for state-valued
functions

A key subroutine we will need to introduce is based
on hypothesis selection, which is a way of choosing a
classical or quantum probability distribution that best fits
some observed data. We will use a generalized version of
the algorithm of Ref. [4] for hypothesis selection (which
applied to IID states) to find the empirical risk mini-
mizer, with the loss given by the trace distance, in a set
of candidate state-valued processes.

Theorem 12 (Quantum empirical risk minimization for
state-valued functions (Theorem 3, refined)). Let C = {σi :
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[n]→ D(H(d))}mi=1 be a class of state-valued functions and

� = ρ1 ⊗ · · · ⊗ ρn. (174)

There exists an algorithm, which given � outputs i such
that

1
n

n∑

s=1

dtr(σi(s), ρs) ≤ 3η + 4ε, (175)

where

η := min
i∈[m]

1
n

n∑

s=1

dtr(σi(s), ρs), (176)

with probability of error less than δ if n is large enough,
i.e., we can take in fact

n = Tk
ε2 × O(max(log(Tkm/δ), (log m+ C1)

2)),

with T = O
(
log d/ε3

(
log log d + log 1

ε

))
and k =

O(log(T/δ)).

Proof. Let us define the following classical-quantum
states for k = 1, . . . , m:

σk := 1
n

n∑

s=1

|s〉〈s| ⊗ σk(s), (177)

and

ρ := 1
n

n∑

s=1

|s〉〈s| ⊗ ρs, (178)

Then η = mini dtr(σi, ρ) and the algorithm has to output a
hypothesis k such that dtr(σk, ρ) ≤ 3η + ε.

The algorithm works as follows: for each s, k and i < j
define the Helstrom projectors

Aij (s) := (σi(s)− σj (s)
)
+ , (179)

where (·)+ is the projector on the positive part of the argu-
ment, and their block sum Aij :=∑s∈[n] |s〉〈s| ⊗ Aij (s). By
construction, these projectors satisfy

dtr(σi, σj ) = Tr(σiAij )− Tr(σj Aij ). (180)

The algorithm then uses Algorithm 2 on � to perform
ERE of the projector-valued functions {Aij (s) : i < j },

outputting estimates μij such that, with probability at least
δ, it holds

∣∣∣∣∣
1
n

n∑

s=1

Tr[ρsAij (s)]− μij

∣∣∣∣∣ ≤ 2ε. (181)

We also denote

νkij := 1
n

n∑

s=1

Tr[σk(s)Aij (s)]. (182)

Finally, the algorithm employs a classical subroutine to
minimize the quantity

�k := max
i<j
|νkij − μij |, (183)

finding k∗ := argmink�k. We can show that this is a
good enough candidate, i.e., dtr(σk∗ , ρ) is sufficiently
small. Indeed, if we define the optimal hypothesis attain-
ing Eq. (176) as i∗ := argminidtr(σi, ρ), by the triangle
inequality it holds

dtr(σk∗ , ρ) ≤ dtr(σk∗ , σi∗)+ dtr(σi∗ , ρ) (184)

= |Tr(σk∗Ak∗i∗)− Tr(σi∗Ak∗i∗)| + η (185)

≤ |Tr(σk∗Ak∗i∗)− μk∗i∗ |
+ |μk∗i∗ − Tr(σi∗Ak∗i∗)| + η. (186)

The first term in Eq. (186) can be bounded in the following
way:

|Tr(σk∗Ak∗i∗)− μk∗i∗ | = |νk∗k∗i∗ − μk∗i∗ | = �k∗ (187)

≤ �i∗ = max
i<j

∣∣Tr(σi∗Aij )− μij
∣∣ (188)

≤ max
i<j

∣∣Tr(σi∗Aij )− Tr(ρAij )
∣∣

+max
i<j

∣∣Tr(ρAij )− μij
∣∣ (189)

≤ η + 2ε. (190)

Note that the last two inequalities above are implied by
Eq. (181) and therefore the overall result holds with prob-
ability at least 1− δ. Proceeding similarly for the second
term in Eq. (186) we obtain

|Tr(σi∗Ak∗i∗)− μk∗i∗ | ≤ η + 2ε (191)

as well.
Therefore, by taking ε′ = ε/3 we can conclude that

dtr(σk∗ , ρ) ≤ 3η + 4ε with probability at least 1− δ. �
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V. STATISTICAL LEARNING FOR
CLASSICAL-QUANTUM PROCESSES

The previous section presented theorems for ERM on
finite concept classes. In this section we extend our tools
to learning even infinite concept classes. The main result
of this section is a statistical learning theorem (Theorem
4) for classical-quantum processes, which gives conditions
on their learnability in terms of the covering number of
the concept class C from which they are drawn. Our proof
is constructive and provides an explicit algorithm to learn
the given concept class. Note however that the algorithm
relies on constructing empirical covering nets, which can
be demanding; hence we expect that faster algorithms can
be found to improve the performance. We also remark
that the following results are a consequence of the guaran-
tees on our ERM algorithms for both projector-valued and
state-valued concept classes, proved in Sec. IV, together
with standard classical statistical learning theory guaran-
tees on uniform convergence of the empirical risks in terms
of the growth functions �1 (see Secs. II D and II E). It is
important to note that our sufficient condition for learnabil-
ity is instead expressed in terms of the growth functions
γ1,q ≥ �1, which are sufficient to guarantee both ERM and
uniform convergence.

In Sec. V A we formulate a lemma that identifies, even
for continuous-valued concept classes, a finite cardinality
concept class on which we apply the algorithm of the pre-
vious section. In Sec. V B, we prove our main Theorem
4 for concept classes that map to projector-valued func-
tions. Through shadow tomography, this can be extended
to estimating all the empirical risks, and we do this in
Sec. V C. In Sec. V D, we prove Theorem 4 for concept
classes that map to state-valued functions. In Appendix C
we also show that the algorithm of Ref. [7] to learn concept
classes that output pure states, in the realizable case, works
also when the growth function is slowly growing.

A. Uniform convergence

In the rest of this section we will perform ERE and/or
ERM with respect to an ε-net of the concept class,
which depends on the classical data. The following lemma
ensures that ERE and ERM also gives a good solution for
the estimation and minimization of the true risks.

Lemma 6. Given l0 copies of

ρ =
∑

x∈X
D(x)|x〉〈x| ⊗ ρ(x),

by looking at the classical register, we can find a finite sub-
set Cε of the concept class C with loss function (Ls or Lp )
such that for every c ∈ C, there is a (known) c∗(c) ∈ Cε

such that

|R(c)− R(c∗(c))| ≤ ε, (192)

with cardinality at most γ1,q(l0, ε/2, C), and at the same
time

∀c ∈ C : |R(c)− R̂(c)| < ε/4 (193)

with probability of error

perr ≤ 4γ1,q(2l0, ε/64, C)e− l0ε
2

512 . (194)

Proof. This is a simple consequence of Theorem 6. In
fact, given a sample S consisting of l0 samples of the ran-
dom variable x ∈ X associated to the classical register, we
have that

Pr
S∼Dl0

[∃c ∈ C : |R(c)− R̂(c)| ≥ ε/4] (195)

≤ 4γ1,q(2l0, ε/64, C)e− l0ε
2

512 . (196)

By taking an ε/2-net Cε/2(�x) according to the appropriate
loss function L on the data �x, we have that for every c ∈ C
there is c∗(c) ∈ Cε/2(�x) such that, via Eqs. (68), (72)

|R̂(c)− R̂(c∗(c))| ≤ ε/2. (197)

If both conditions are satisfied, we have

|R(c)− R(c∗(c))| ≤ |R(c)− R̂(c)|
+ |R(c∗(c))− R̂(c∗(c))| + |R̂(c)− R̂(c∗(c))| (198)

≤ |R(c)− R̂(c)| + |R(c∗)− R̂(c∗)| + ε/2 (199)

≤ sup
c∈C

2|R(c)− R̂(c)| + ε/2 (200)

≤ ε. (201)

The bound on the cardinality comes from the definition of
γ1,q. �

Via this lemma, whenever we want to solve the risk esti-
mation for a classical quantum source, we can use part of
the classical data to extract a good ε-net on the space of
true risks (meaning exactly that for every concept c there
is a known concept c∗c with true risk ε-close), and use the
quantum data to obtain the best hypothesis on this finite
cardinality concept class, using the algorithms shown in
the previous sections. Remark: As the cardinality of the ε-
net on the data can increase with the size of the sample, one
could also construct the ε-net only on a part of the classi-
cal data, such that uniform convergence is ensured at the
desired level. If limn→∞ log γ1,q(2n, ε/64, C)/n = 0, there
will be a finite l0 such that perr ≤ δ. The cardinality of the
ε-net will be then γ1,q(l0, ε/2, C). This observation is used
in Appendix D.
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B. Learnability of quantum processes that map to
projectors (Proof of Theorem 4 for loss function Lp )

We now present one of our main technical results about
learning unknown quantum processes without input con-
trol. This was Theorem 4, which we reproduce below for
convenience:

Theorem 13 ((Theorem 4, repeated) Learning quantum
processes via ERM). Suppose the concept class C con-
sists of classical-quantum processes mapping to projectors
or states and let ε > 0 be the accuracy parameter. Fur-
thermore, let S = (xi, ρ(xi))

n
i=1 be the training set, with

xi
D←− X and ρ(·) an unknown classical-quantum channel.

Then, the appropriate ERM algorithm of Theorems
1, 3, run on an ε-net of the concept class C (accord-
ing to the appropriate pseudometric determined by
x1, . . . , xn), provide an agnostic learning algorithm A :
X n × L(H(d))⊗n → C. This algorithm outputs a hypoth-
esis A(S) satisfying, for some fixed η, ξ ≥ 1, and n large
enough,

Pr
S

[Rρ(A(S))− η inf
h∈C

Rρ(h) < ξε] > 1− δ, (202)

if

lim
n→∞

log2 γ1,q(n, ε, C)
n

= 0, ∀ε > 0. (203)

In particular, this applies to risks defined via the loss
functions Lp (in this case η = 1, q = ∞) and Ls (in this
case η = 3, q = 1) for projector-valued and state-valued
concept classes C, respectively.

We prove this theorem in two parts. In this section,
we prove that Eq. (203) gives a sufficient condition for
learning concept classes of projector-valued functions (i.e.,
using loss function Lp ). In Sec. V D, we will prove that the
same condition suffices for learning a concept class whose
functions map to mixed states (i.e., using loss function Ls).
Note that, in the case where the functions in the concept
class map to pure states, this latter subcase would follow
almost immediately from the former.

We will actually prove a more refined, quantitative
statement:

Theorem 14 (Learning projector-valued functions via
ERM). Suppose the concept class C consists of quan-
tum processes mapping to projectors and let ε > 0 be the
accuracy parameter, and suppose that

lim
n→∞

log2 γ1,∞(n, ε, C)
n

= 0, ∀ε > 0. (204)

Given as input a training set S = (xi, ρ(xi))
n
i=1 with xi

D←−
X and ρ(·) an unknown classical-quantum channel, there

is an agnostic learning algorithm A : X n × L(H(d))⊗n →
[0, 1]C (i.e., the algorithm of Theorem 10 using an ε-net of
C as concept class), such that it outputs c∗ together with an
estimate μ̂c∗ of R̂ρ(h) and

Pr
S

[|μ̂c∗ − inf
c∈C

Rρ(c)| ≥ 7ε ∪ |μ̂c∗ − R̂ρ(c)| ≥ 6ε] =: perr.

(205)

With n = 6Tkl, for large enough T = O(log 1
ε
), k =

O(log(1/δ log(1/ε))), there exist constants C1, C2, C3 such
that, as long as l satisfies

(log γ1,∞(6Tkl, ε/2, C)+ C2)
2 ≤ C1lε2/9, (206)

we have

perr ≤ δ

2
+ C3Tkγ1,∞(6Tkl, ε/2, C)e− lε2

72

+ 4 log γ1,∞(12Tkl, ε/64, C)e− 6Tklε2
512 . (207)

Once this is established, Part 1 of Theorem 4 follows by
redefining ε and taking l large enough.

We emphasize that this ThresholdSearch subroutine
differs from the original ones [3,4] because it does not
require identical copies of the state to output a concept
above threshold. Exploiting this algorithm and the con-
vergence of the empirical risk to the true risk as stated in
Theorem 6, we can finally prove Theorem 4 for the case of
projectors.

Proof. We remind readers that the empirical risk for
projector-valued functions can be written as

R̂ρ(c) = 1
n

n∑

i=1

(1− Tr[ρ(xi)�
(c)(xi)]). (208)

The algorithm looks at the classical register �x and obtains
an ε-net of the empirical risk C|�x, which is also a 2ε-net
on the true risks, with probability of error bounded as in
Lemma 6

perr, unif(6Tkl) ≤ 4γ1(12Tkl, ε/64, C)e− 6Tklε2
512 . (209)

Then it runs the algorithm of Theorem 10 on the
product state obtained from the full dataset �x, with
the concepts in C|�x. In this way we obtain c∗ such
that |μ̂c∗ −maxc∈C|�x0

R̂(c)| ≤ 6ε and μ̂c∗ − R̂(c∗) ≤ 6ε,

implying R̂(c∗) < maxc∈C|�x0
R̂(c)+ 6ε with probability
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bounded as in the proof of Theorem 10

perr,ERM ≤ T(0.97k + (k + 1)e−lε2/72)+ 2Tkme−2lε2/64.
(210)

If this is true we have that, for the selected concept c∗

R(c∗) ≤ R̂(c∗)+ ε/4 (211)

≤ inf
c∈C|�x

R̂(c)+ 6ε + ε/4 (212)

≤ inf
c∈C

R̂(c)+ 6ε + 3ε/4 (ε/2 net)

≤ inf
c∈C

R(c)+ 7ε. (213)

The probability of error is then upper bounded as

perr,unif + perr,ERM. (214)

With the choices made for the parameters, we obtain the
thesis. �

C. Shadow tomography for classical-quantum states

We can also estimate the empirical risks of all the con-
cepts in a class, a task that is strictly related to shadow
tomography. By uniform convergence, these will be close
to the true risks. In fact, we can show an improved
algorithm for shadow tomography of classical-quantum
states. Using this algorithm, we cannot only find the
minimum empirical risk in the concept class, but also
simultaneously estimate empirical risk for all concepts.

Theorem 15 ((Theorem 5, refined) Improved shadow
tomography of classical-quantum states). Consider a
collection of projector-valued functions C = {fc : x→
�(c)(x)} with domain X and image in the projectors of a
Hilbert space of dimension d. Given access to n copies of a
classical-quantum state ρ =∑x∈X D(x)|x〉〈x| ⊗ ρ(x), the
algorithm of Theorem 2 used with an ε-net of C outputs
values {μc}c∈C such that, except with probability δ, for all
fc ∈ C it holds

∣∣∣∣∣
∑

x

D(x)Tr[ρ(x)�(c)(x)]− μc

∣∣∣∣∣ ≤ 3ε (215)

if either one of these conditions holds:

(a) C is finite. Then the minimal number of copies
satisfies n = Õ( log2 m log d log(1/δ)

ε5 ).
(b) C is infinite but it holds

lim
n→∞

log2 γ1,∞(n, ε, C)
n

= 0, ∀ε > 0 (216)

and the number of copies is large enough.
In particular, with n = 6Tk, for large enough T =

O
(
log d/ε3 (log log d + log(1/ε))

)
and k = O(log(T/δ)),

there exist constants C1, C2, C3 such that, as long as l
satisfies

(log γ1,∞(6Tkl, ε/2, C)+ C2)
2 ≤ C1lε2/9, (217)

have that the probability of error is bounded as

perr ≤ δ

2
+ C3Tkγ1,∞(6Tkl, ε/2, C)e− lε2

32

+ 4 log γ1,∞(12Tkl, ε/64, C)e− 6Tklε2
512 . (218)

Proof. The only difference with Theorem 20 is to
replace the ERE subroutine with the shadow tomography
subroutine to estimate the empirical risks. The probability
of error of the ERE, perr,ERE, becomes bounded as in the
proof of Theorem 2, with m = γ1,∞(6Tkl, ε/2, C):

perr,ERE≤T((0.97)k + 2(k+ 1)e−lε2/6)+ 2Tkγ1,∞(6Tkl,
ε/2, C)e−2lε2/64.

On the other hand, the probability of error of the uniform
convergence is the same as in the previous theorem. By
summing the two probabilities of error we get the bound
in the thesis. Notice that with Theorem 2 we get estimates
of the empirical risks at precision 2ε. By Theorem 6 this
translates into a precision 3ε on the full class. �

D. Learnability of quantum processes that map to
states (Theorem 4 with loss function Ls)

In this section, we will prove that quantum processes
that output states are also efficiently learnable (having
shown the analogous statement for processes that output
projectors in Sec. V B). This also constitutes the second
half of the statement of Theorem 4. In this setting the
empirical risk takes the form

R̂ρ(h) = 1
n

n∑

i=1

dtr(σh(xi), ρ(xi)). (219)

We can now prove Theorem 4 for state-valued functions,
with loss function Ls. In fact, we prove a refined statement:

Theorem 16 (Refinement of Theorem 4 for state-val-
ued functions). Suppose the concept class C consists of
quantum processes mapping to states and let ε > 0 be the
accuracy parameter. Suppose that

lim
n→∞

log2 γ1,1(n, ε, C)
n

= 0, ∀ε > 0. (220)

Given as input a training set S = (xi, ρ(xi))
n
i=1 with xi

D←−
X and an unknown ρ(x), there is a learning algorithm
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A : X n × L(H(d))⊗n → C obtained from the algorithm of
Theorem 12 applied to an ε-net of C (according to the
appropriate pesudometric defined by x1, . . . , xn), such that

Pr
S

[Rρ(A(S))− 3 inf
c∈C

Rρ(c) < 6ε] =: 1− perr, (221)

and setting n = 6Tkl, for large enough T = O
(
log d/ε3

(log log d + log(1/ε))), k = O(log(T/δ)), there exist C1,
C2, C3, C4 > 0 constants such that as long as

(log γ1,1(6Tkl, ε/2, C)+ C2)
2 ≤ C1lε2, (222)

we have

perr ≤ δ

2
+ C3γ1,1(12Tkl, ε/16, C)e−6Tklε2/128

+ C4Tk(γ1,1(6Tkl, ε/2, C))2e−
lε2
32 . (223)

Proof of Theorem 16. The proof is a straightforward
generalization of the proof of Theorem 12 using the
algorithm of Theorem 15. In this case, C is possibly of
infinite cardinality. The algorithm works as follows. Fol-
lowing the notation of Theorem 15, first we measure the
classical register of the copies of ρ, obtaining a vector
�x and an ε-net C�x , with cardinality less than the cover-
ing number γ1,1(6Tkl, ε/2, C). By Theorem 6, this ε/2-net
gives an ε-net for the true risks, with probability of error
bounded as

perr,unif ≤ 4γ1,1(12Tkl, ε/16, C)e−6Tklε2/128. (224)

Therefore, we have that if we can find c∗ such that R̂(c∗) ≤
3 infc∈C�x R̂(c)+ 4ε, then

R(c∗) ≤ R̂(c)+ ε/4 (225)

≤ 3 inf
c∈C�x

R̂(c)+ 4ε + ε/4 (226)

≤ 3 inf
c∈C

R̂(c)+ 4ε + 7ε/4 (ε/2 net)

≤ 3 inf
c∈C

R(c)+ 6ε. (227)

Therefore, we also have that R(c∗) ≤ 3 infc∈C R(h)+ 6ε
with high probability. We can then apply Theorem 12 to
the quantum data with the concept class C�x. The probabil-
ity of error of the algorithm of Theorem 12 is in fact the
probability of error of the ERE algorithm for the projector-
valued concept class constructed from C�x as in Theorem
12, therefore, we have again

perr,ERM ≤ T((0.97)k + 2(k + 1)e−lε2/6)

+ 2Tkγ 2
1,1(6Tkl, ε/2, C)e−2lε2/64. (228)

Putting all together we obtain the full error bound. �

VI. CLASSES WITH BOUNDED COVERING
NUMBERS

In this section we present some models of physically
motivated concept classes for which upper bounds on their
covering numbers can be found. We find these bounds on
covering numbers using continuity and bounds on cover-
ing numbers of real functions and matrices. This opens
up the question of whether it is possible to define a com-
binatorial dimension (such as the VC dimension or the
fat-shattering dimension) corresponding to the covering
numbers we introduced.

Whenever needed in the following, we employ a real-
valued function class F , and we assume that for this
function class we have a bound on the covering number
in terms of some combinatorial dimension, for example,
the fat-shattering dimension (see Ref. [13] for definitions
and proofs of these bounds). It holds that, for a class
of functions F : R→ [0, B] with fat-shattering dimension
D = fatF (ε/4), the covering number is bounded as

�p(n, ε,F) < 2
(

4nB2

ε2

)D log2(4eBn/(Dε))

. (229)

Furthermore, we can have finite covering numbers for sets
of k × k matrices, seen as functions with trivial input to
C

k ×C
k. These techniques were used for the purpose of

studying generalization bounds in Ref. [31], and uniform
convergence for learning quantum channels on multiqubit
systems of finite size, in the controlled input setting, in
Ref. [8]. The following lemma is crucial.

Lemma 7 (Size of an ε net over unitary and bounded
hermitian matrices).

Nin (ε, BR(x), || · ||) ≤
(

1+ 2R
ε

)K

≤
(

3R
ε

)K

, (230)

where BR(x) is a norm ball of radius R ≥ ε about some
point x ∈ R

K . We can use this to calculate the size of ε-
nets over matrices with respect to the operator norm, by
using the fact that for a set of unitaries SU in dimension
k, SU ⊂ B1(0) with K = (2k)2, and for a set of hermi-
tian matrices SH in dimension k with norm bounded by b,
which we denote by M(k)

b , M(k)
b ⊂ Bb(0) with K = k2.

|Nin (ε, SU, ‖·‖) | ≤ |Nin (ε/2, B1(0), ‖·‖) |

≤
(

6
ε

)4k2

, (231)

|Nin

(
ε,M(k)

b , ‖·‖
)
| ≤ |Nin (ε/2, Bb(0), ‖·‖) |

≤
(

6b
ε

)k2

. (232)
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The bound on the covering number of the Euclidean
ball is given in Ref. [15], and the argument generalizes to
any norm in a finite-dimensional space. The first inequali-
ties are a consequence of triangular inequality. For specific
matrix classes one can have improved bounds.

In the following, we first exhibit concept classes based
on circuits, which are valuable since they are associated
to quantum states and measurement that can actually be
produced efficiently on a quantum computer: not only the
data that we receive could be states of this form, but also
the resulting output hypothesis would be efficiently pro-
duced for any future need. In a further subsection we
also present concept classes that are more motivated by
physical scenarios, ideally exhibiting toy models for the
setting described in the introduction, inspired by sensing
and hamiltonian learning.

A. Quantum circuits

We consider concept classes based on circuits. By
choosing circuits that do not depend on the data, we will
first give several examples of concept classes with cover-
ing numbers that are not just slowly growing, but in fact
bounded by a quantity independent of n, the length of
the sample. Then, including a finite number of gates that
depend on the data through real functions with finite fat-
shattering dimension, we will obtain concept classes that
are slowly growing with n.

1. Quantum circuits that give rise to state-valued
functions

First, we will look at an example of a concept class that
maps to quantum states. We remind readers that this corre-
sponds to choosing as the loss function the trace distance
Ls. Consider the concept class Cm ⊆ {c : X → L(Hm)}
consisting of m-qubit quantum circuits acting on arbitrary
input states. That is,

Cm = {cU(x) := Uρ(x)U†}U∈Sm , (233)

where ρ : X → D(Hm) is a fixed process preparing a
mixed state that depends on a classical random variable
X , and U is an arbitrary m-qubit unitary chosen from a
set Sm. For instance, we could be interested in studying
processes corresponding to quantum circuits given by a
particular architecture (specified by Sm) acting on pure
computational-basis states. This class is obtained in our
formalism by setting X = {0, 1}m and noting that the pro-
cess that prepares the pure computational basis state |x〉〈x|
corresponds to ρ(x) = |x〉〈x|. Specific relevant examples
of Sm will be discussed later.

Then an upper bound on γ1,1(n, ε, Cm) is given by the
size of an ε/8-net over the m-qubit unitaries in Sm, where
the distance metric is taken to be the spectral norm ‖·‖ [see
Eq. (44)].

In the following, we remind readers that n is the num-
ber of data points observed, while m is a parameter of the
concept class—the number of qubits in the circuits in the
concept class.

Proposition 2. γ1,1(n, ε, Cm) ≤ |Nin(ε, Sm, ‖·‖)|
Proof. To see this, observe that for an arbitrary state ρ

and unitaries U, V

1
2
‖UρU† − VρV†‖1 ≤ ‖U− V‖. (234)

Indeed, with the spectral decomposition ρ =∑i pi|ψi〉
〈ψi|, we have

1
2
‖UρU† − VρV†‖1

= 1
4
‖(U+ V)ρ(U† − V†)+ (U− V)ρ(U† + V†)‖1

(235)

≤ 1
4

∑

i

pi
(‖(U+ V)|ψi〉〈ψi|(U† − V†)‖1

+ ‖(U− V)|ψi〉〈ψi|(U† + V†)‖1
)

(236)

= 1
4

∑

i

pi (‖(U+ V)|ψi〉‖2‖(U− V)|ψi〉‖2

+ ‖(U− V)|ψi〉‖2‖(U+ V)|ψi〉‖2) (237)

≤ 1
2

max
|ψi〉
‖(U+ V)|ψi〉‖2 max

|ψj 〉
‖(U− V)|ψj 〉‖2 (238)

≤ 1
2
‖U+ V‖‖U− V‖ (239)

≤ ‖U− V‖, (240)

where in the third line we have used Fact 1.
Therefore, for any two functions cU, cV ∈ Cm, we have

that

1
n

n∑

i=1

1
2

∥∥∥∥cU(xi)− cV(xi)

∥∥∥∥
1

(241)

= 1
n

n∑

i=1

1
2

∥∥∥∥Uρ(xi)U† − Vρ(xi)V†
∥∥∥∥

1
(242)

≤ ‖U− V‖, (243)

where the second inequality is inequality (240).
Now consider the set C(ε)m ⊆ Cm induced by the ε-net of

Sm (denoted as S(ε)m ), and

C(ε)m := {cV : cV(�x) = Vρ(xi)V†}
V∈S(ε)m

. (244)

Equation (243) implies that, if for all U ∈ Sm, ∃V ∈ S(ε)m
such that ‖U− V‖ < ε, then for all cU ∈ Cm, ∃cV ∈ C(ε)m
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such that ‖cU − cV‖1,�x < ε. This is a sufficient condition
for C(ε)m to be an ε-net of Cm. �

Proposition 2 makes an important reduction: to upper
bound γ1,1(n, ε, Cm), where Cm is a concept class induced
by a set of m-qubit quantum circuits Sm, it suffices to upper
bound the size of an ε-net in the spectral norm over the set
Sm.

We now compute this covering number for circuit
classes Sm corresponding to particular architectures of
relevance.

(a) Consider the class of one-dimensional local random
quantum circuits on m qubits of depth �, which was
defined by Brandao, Harrow, and Horodecki [16] as
applying a Haar-random two-qubit nearest-neighbor
gate on a uniformly random pair of neighboring
qubits at each time step t = 1, . . . �. (Note that the
distribution from which the circuits are drawn is
actually immaterial to us; the concept class merely
consists of the support of that distribution.) We
shall call this class LQC(m, �), and we will call the
induced loss function class GLQC(m,�).

Corollary 1 (Bound on covering net size for 1D random
local quantum circuits).

Nin(ε, LQC(m, �), ‖·‖) ≤
[

m×
(

6�
ε

)32
]�

, (245)

and hence by Proposition 2,

�1(n, ε,GLQC(m,�)) ≤ γ1,1(n, ε, CLQC(m,�))

≤
[

m×
(

6�
ε

)32
]�

. (246)

Proof. The argument follows along the lines of that
made in [8,31], and so we only sketch it briefly. Let Nε̃

be an ε̃ = ε/�-net over a single two-qubit unitary. Let us
now consider the net

Ñε =
{

U1,p(1)U2,p(2) . . .Ud,p(�)

∣∣∣Ui ∈ Nε̃ , p(i) ∈ [�]
}

,

(247)

where Ui,p(i) denotes the unitary Ui acting on qubits
p(i), p(i)+ 1. As a special case of Lemma 7, an ε-net
over the set of two-qubit unitaries [a set that lies within
B‖1

(C2)⊗2‖(0), a set of matrices with 4× 4× 2 parameters],

has size (6/ε)32. Combining this with the fact that there are
m− 1 choices of qubit pairs on which the unitary can act,

Ñε has size
[
(6/ε̃)32 · (m− 1)

]�
. An arbitrary circuit in

LQC(m, �) has the form

V = V1, . . .V�, (248)

where each Vi is a two-qubit nearest-neighbor gate. We
now show that Ñε is an ε-net over the set LQC(m, �). For
Vi acting on qubits p(i), p(i)+ 1, there exists some Ui ∈
Nε̃ such that ‖Ui − Vi‖ < ε̃, and we can enforce that it acts
on qubits p(i), p(i)+ 1. This means that U1 . . .U� ∈ Ñε ,
and moreover

‖V1 . . .V� − U1 . . .U�‖
≤ ‖V1 . . .V�−1V� − V1 . . .V�−1U�‖
+ ‖V1 . . .V�−1U� − U1 . . .U�−1U�‖ (249)

≤ ‖V� − U�‖ + ‖V1 . . .V�−1 − U1 . . .U�−1‖ (250)

≤ ε/�+ ‖V1 . . .V�−1 − U1 . . .U�−1‖ (251)

≤ ε, (252)

where the first inequality is the triangle inequality, the sec-
ond inequality follows from unitary invariance of the spec-
tral norm, the third inequality follows from the assumption
that Nε̃ is an ε/�-net and the last inequality follows from
repeating the above three steps on the remaining term in
Eq. (251). �

(a) Exactly analogously, we could also consider the
set Sb(m, �) of all “brickwork” local quantum cir-
cuits, where every pair of neighboring qubits has a
nearest-neighbor two-qubit gate acting on them at
every time step. We then obtain

�1(n, ε,GSb(m,�)) ≤ γ1,1(n, ε, CSb(m,�)) ≤
(

6m�
ε

)32m�

.

(253)

(b) Alternatively, we could consider choosing our uni-
taries from the set of all possible unitaries on m
qubits. Let us call this set Sm. Immediately from
Lemma 7 we have

γ1,1(n, ε, CSm) ≤
(

6
ε

)22m+2

. (254)

Observe that in all of these cases, the covering number
bound (which determines learnability of the corresponding
class) is independent of the number of sampled points, n.

2. Quantum circuits that give rise to projector-valued
functions

In the previous subsection, we computed the covering
number of state-valued concept classes. In this subsec-
tion, we will give an example of a concept class consisting
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of projector-valued functions, and compute its covering
number.

Side note: An immediate example of a projector-valued
concept class is, in fact, the state-valued concept classes
obtained by circuits applied to computational basis states,
as a special case of the settings considered in the last sub-
section. This is because the concepts output pure states
which are rank-1 density matrices, i.e., rank-1 projectors.
Even for higher ranks, the calculation of the covering num-
ber for this concept class proceeds similarly. Some slight
tweaks are needed to account for the use of a different
loss function (namely Lp ) and notion of distance between
concepts (namely the spectral norm instead of the trace
norm).

We present a class of projector-valued concepts that
have an explicit x dependence but each of them is based on
a single circuit. We fix a projector-valued function �(x)
and we define C� ⊆ {c : X → L(Hm)}, where Sm is a set
of circuits:

C� = {�U := U�(x)U†}U∈Sm . (255)

To calculate the covering numbers, it suffices to find the
size of an ε/8-net over the isometries Sm = {Vh}h accord-
ing to the diamond distance. To see that this suffices, we
will need two standard consequences of the definition of
operator norms, as follows:

Proposition 3. For any �1 and �2 which are projectors
onto L(Hm),

max
ρ∈D(Hm)

|Tr[ρ(�1 −�2)]| = ‖�1 −�2‖. (256)

Proof. �1 −�2 is Hermitian, hence it is diagonaliz-
able and it has real eigenvalues, so ‖�1 −�2‖ equals the
largest absolute values among those of the eigenvalues
of �1 −�2, say |λ|, with corresponding eigenvector |λ〉.
Then, ‖�1 −�2‖ = |Tr[|λ〉〈λ|(�1 −�2)]|. Conversely,
by the duality between trace norm and operator norm,
maxρ∈D(Hm) |Tr[ρ(�1 −�2)]| ≤ ‖�1 −�2‖. �

Proposition 4. For any two unitaries U, V : L(Hm)→
L(Hm),

||UXU† − VXV†|| (257)

≤ ||UX (U† − V†)|| + ||(U− V)XV†)|| (258)

≤ 2||X ||||U− V||. (259)

Let us fix any internal ε-net S(ε)m of cardinality
Nin(ε, Sm, ‖·‖) over the set of unitaries Sm. We can then

prove that the set induced by S(ε)m

C(ε)� :=
{
�V : X n → L(

n⊗

i=1

Hm),

�V(�x) = V�(x)V†
}

V∈S(ε)m
(260)

lifts to a 2ε-net over C�, as follows: we will show that for
any �V ∈ C�, we can find �U ∈ C(ε)� at most distance 2ε
away. Let V ∈ Sm be the unitary associated with�V. Then,
choose U to be the nearest point in S(ε)m to V. Then we claim
that �U suffices to be such a point:

1
n

n∑

i=1

||�V(xi)−�U(xi)||

≤ 1
n

n∑

i=1

2||�(xi)|| · ||V− U|| ≤ 2ε (261)

where the second to last inequality follows from Proposi-
tion 4 and the last one from the definition of ε-net.

Finally, exactly analogously to Proposition 2 and Propo-
sition 1, we obtain from Eq. (261):

Proposition 5 (Bounding �1 and γ1,∞ for projector-val-
ued function classes). For the class of projector-valued
functions C�

γ1,∞(n, ε, C�) ≤ Nin(ε/2, S, ‖·‖). (262)

B. Data-dependent circuits

The previous subsections have studied concept classes
based on circuits that are independent of the data. As a
result, the upper bounds on the covering numbers do not
depend on the size of the dataset. Without deep changes in
the structure of the proofs of the bounds, we can also treat
cases where this dependence is in fact explicit. Such data-
dependent circuits are considered in variational quantum
machine learning models with data reuploading (see, e.g.,
Ref. [39]). Consider circuits described by a circuit model
S of k two-qubit-gates, as in the previous sections, and
modify it by inserting in specific places in the sequence
a number k′ of gates of the form eiHj ′gj ′ (x), j ′ = 1, . . . , k′,
||Hi|| ≤ b, Hj ′ fixed and gj ′(x) belonging to a concept class
F with fat-shattering dimension D, where the functions
in the class map to [0, B] as explained in the beginning
of this section. Each circuit in the concept class will be
made of a sequence of k data-independent qubit gates and
k′ data-dependent gates, in specified positions. Since for
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any unitarily invariant matrix norm we have [40]

||eX − eY|| ≤ ||X − Y||e||X−Y||e||X ||, (263)

we have that, choosing B = 1/b, whenever |gi(x)−
g′i(x)| ≤ ε/(4bet), ε < 1

||eiHigi(x) − eiHig′i(x)||
≤ ||Higi(x)− Hig′i(x)||e||Higi(x)−Hig′i(x)||e||Higi(x)||

≤ b||gi(x)− g′i(x)||eb||gi(x)−g′i(x)||e1

≤ b
ε

4bet
eb ε

4bet e1 ≤ ε

2t
. (264)

Now, take two circuits U and V such that the non-data-
dependent parts are such that

∑k
j=1 ||Uj − Vj || ≤ ε/2, and

also ||gj ′(x)− g′j ′(x)||1,�x ≤ ε/(4bek′), for every j , j ′. By
triangular inequalities, for two-state valued concepts cU, cV
associated to circuits U, V, repeating the reasoning behind
Eq. (249) and following equations, we get

1
n

n∑

i=1

1
2

∥∥∥∥cU(xi)− cV(xi)

∥∥∥∥
1
≤ 1

2n

n∑

i=1

||U(xi)− V(xi)||

≤
k∑

j=1

||Uj − Vj ||

+ 1
n

n∑

i=1

k′∑

j ′=1

||eigj ′ (xi)Hj ′ − e
ig′

j ′ (xi)Hj ′ ||

≤ ε/2+ 1
n

n∑

i=1

k′∑

j ′=1

ε

2k′

≤ ε/2+ ε/2 = ε. (265)

The same inequality holds if we take projector-valued
classes based on the circuits. This means that the cov-
ering number for a data-dependent class of circuits C ′
constructed from a qubit model S is bounded as

γ1,∞(n, ε, C ′) ≤ Nin(ε/2, S, || · ||S)

× 2k′
(

64ne2(k′)2

ε2

)k′D log2(16e2k′n/(Dε))
. (266)

where ||U− V||S :=∑k
i=1 ||Ui − Vi|| with {Ui} and {Vi}

being the gates of U and V, respectively, and Nin(ε/2, S, || ·
||S) can be bounded as in the previous section.

C. Learning physical processes

We now present some concept classes inspired by phys-
ical scenarios. We will always assume that the quantum
register has dimension d.

We use facts about matrix continuity to obtain a
bound on the covering number for our state-valued and
projector-valued concept classes. In particular, we need the
following.

(a) For any unitarily invariant matrix norm we have
[40]

||eX − eY|| ≤ ||X − Y||e||X−Y||e||X ||. (267)

(b) [Lemma 16 in Ref. [41]]. For any Hermitian matri-
ces H , H ′,

|| e−H

Tr[e−H ]
− e−H ′

Tr[e−H ′]
||1 ≤ 2(e||H−H ′|| − 1).

(268)

(c) Weyl’s perturbation theorem [42]. Let A and
B be Hermitian matrices with ordered eigenval-
ues, respectively, λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) and
λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B). Then

max
i=1,...,n

|λi(A)− λi(B)| ≤ ||A− B||. (269)

(d) Given two projectors E, F , ||E − F|| = ||E⊥F||
([42], Exercise VII.1.11).

(e) ([42], Theorem VII.3.2). Let A and B be Hermi-
tian operators, and let S1, S2 any two intervals such
that their distance supx∈S1,y∈S2

|x − y| = δ > 0. Let
E be the projector on eigenspaces of A with eigen-
values contained in S1, and F be the projector on
eigenspaces of B with eigenvalues contained in S2.
Then, for any unitarily invariant norm ||| · |||,

|||EF|| ≤ π

2δ
|||A− B|||. (270)

(f) (Corollary of previous points) Given two Hermitian
matrices A and B such that ||A− B|| ≤ ε and such
that A does not have eigenvalues in the interval (θ −
2ε, θ + 2ε), [and thus B does not have eigenvalues
in the interval (θ − ε, θ + ε) by Weyl perturbation’s
theorem] and E, F the projectors on the eigenspaces
associated to the eigenvalues less than θ − ε satisfy

||E − F|| ≤ π

4ε
||A− B||. (271)

This follows from the previous point since E coin-
cides with the projector on the eigenspaces of A
with eigenvalues contained in (−∞, θ − ε] and F⊥
coincides with the projector on the eigenspaces of
B with eigenvalues contained in [θ + ε,+∞), and
the two sets (−∞, θ − ε] and [θ + ε,+∞) have
distance 2ε.
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We are now equipped to prove the following propositions.
Let F be a function class with fat-shattering dimension
D, containing functions g ∈ F such that |g(x)| ≤ B. We
remind that M(d)

b indicates Hermitian matrices of operator
norm bounded by b.

Proposition 6 (Gibbs states of a perturbed Hamilto-
nian). Consider a concept class given by a set of Gibbs
states obtained by perturbing a Hamiltonian with a field-
dependent term, but the specific dependence on the field is
not known, namely

C = {f |f (x) = e−H0−g(x)V

Tr[e−H0−g(x)V]
, g ∈ F , V ∈M(d)

b }.
(272)

Its covering number is bounded as

γ1,1(n, 2eε(B+b)ε(b+ B), C)

≤ 2
(

4nB2

ε2

)D log2(4eBn/(Dε))

×
(

6b
ε

)d2

. (273)

Proof. Let Fε be an ε-net of F and M(d)
b,ε an ε-net

of M(d)
b . Then, for every g ∈ F there is g ∈ Fε such

that ||g − g′||1,�x ≤ ε and for every V ∈M(d)
b there is

V′ ∈M(d)
b,ε such that ||V− V′|| ≤ ε. Let us consider the

corresponding functions f (x) = e−H0−g(x)V

Tr[e−H0−g(x)V]
∈ C, f ′(x) =

e−H0−g′(x)V′

Tr[e−H0−g′(x)V′ ]
∈ C. Then, using Eq. (268) we obtain

|| e−H0−g(x)V

Tr[e−H0−g(x)V]
− e−H0−g′(x)V′

Tr[e−H0−g′(x)V′]
||1

≤ 2(e||g(x)V−g′(x)V′|| − 1)

≤ 2(e(||V(g(x)−g′(x))||+||(V−V′)g′(x))|| − 1)

≤ 2eε(B+b)(||V(g(x)− g′(x))|| + ||(V− V′)g′(x))||).
(274)

Therefore,

||f − f ′||1,1,�x ≤ 2eε(B+b)ε(b+ B), (275)

which implies that Cε = {f |f (x) = e−H0−g(x)V

Tr[e−H0−g(x)V]
, g ∈

Fε , V ∈M(d)
b,ε}, is a 2eε(B+b)ε(b+ B)-net for C. �

Proposition 7 (Phase shifts with position-dependent
depth). Consider a spatially local channel that acts as
a power of an unknown unitary channel at position x
according to some classical variable at position x (for
example, a thickness), measured as g(x), which we probe

with some position-dependent state ρ(x), possibly entan-
gled with a different reference system for each x. We can
model this class as either a state-valued class, but also as a
projector-valued function class if the states ρ(x) are pure:

C = {f |f (x) = Ug(x)ρ(x)(U†)
g(x)

g ∈ F , (276)

U = eiH ∈ U(d), H ∈M(d)
b }. (277)

The covering number of this class is bounded as

γ1,1(n, 2eε(B+b)+Bbε(b+ B), C) (278)

≤ 2
(

4nB2

ε2

)D log2(4eBn/(Dε))

×
(

6b
ε

)d2

, (279)

and the same bound holds for γ1,∞(n, 2eε(B+b)+Bbε(b+
B), C) when ρ(x) are pure.

Proof. Let Fε be an ε-net of F and M(d)
b,ε an ε-

net of M(d)
b . Then, for every g ∈ F there is g ∈ Fε

such that ||g − g′||1,�x ≤ ε and for every H ∈M(d)
b there

is H ′ ∈M(d)
b,ε such that ||H − H ′|| ≤ ε. Let us consider

the corresponding functions f (x) = Ug(x)ρ(x)(U†)
g(x) ∈

C, f ′(x) = U′g
′(x)
ρ(x)(U′†)

g′(x) ∈ C.
Using Eq. (267) therefore, since ||H || ≤ b and
|g(x)| ≤ B

||eiHg(x) − eiH ′g′(x)||
≤ ||Hg(x)− H ′g′(x)||e||Hg(x)−H ′g′(x)||e||Hg(x)||

≤ (||H(g(x)− g′(x))|| + ||(H − H ′)g′(x))||)e3(B+b).
(280)

Moreover, applying Eq. (234) (or Proposition 4 for the
projector-valued case) to the pseudometric for our class,
we obtain that for both q = 1,∞

||f − f ′||1,q,�x = 1
n

n∑

i=1

||eiHg(xi)ρ(xi)e−iHg(xi)

− eiH ′g′(xi)ρ(xi)e−iH ′g′(xi)||q (281)

≤ 2eε(B+b)+Bbε(b+ B), (282)

which implies that Cε = {f |f (x) = Ug(x)ρ(x)(U†)
g(x), g ∈

Fε , V ∈M(d)
b,ε}, is an 2eε(B+b)+Bbε(b+ B)-net for C. �

Proposition 8 (Projectors onto low-energy subspace of
a position-dependent Hamiltonian). Consider a class that
projects on the eigenspaces of low energy of a set of uni-
tary equivalent Hamiltonians, defining �E as the projector
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on eigenstates of H0 with energy less than E. We can model
this as

C = {f |f (x) = Ug(x)�E(U†)
g(x)

g ∈ F ,

U = eiH ∈ U(d), H ∈M(d)
b }. (283)

The covering number of this class is bounded as

γ1,∞(n, 2e3(B+b)ε(b+ B), C)

≤ 2
(

4mB2

ε2

)D log2(4eBn/(Dε))

×
(

6b
ε

)d2

. (284)

Proof. The proof is identical to the one of Proposition 7
in the projector-valued case, exchanging ρ(x) with �E(x).

�

Proposition 9 (Projectors on low-energy subspace of
perturbed Hamiltonians). Similarly, we can consider a
class that projects on the eigenspaces of low energy of
a set of perturbed Hamiltonians, defining �E as the pro-
jector on eigenstates of H0 + g(x)V with energy less than
E, where H0 does not have eigenvalues in the interval
[E − 2δ, E + 2δ], denoted PE(H0 + g(x)V).

C = {f |f (x) = �E(H0 + g(x)V), g ∈ F , V ∈M(d)
δ/B},
(285)

where we choose parameters in such a way that the pertur-
bation is small, ||g(x)V|| < δ. The covering number of this
class is bounded as

γ1,∞

(
n,
πε

4δ

(
B+ δ 1

B

)
, C
)

≤ 2
(

4mB2

ε2

)D log2(4eBn/(Dε))

×
(

6b
ε

)d2

. (286)

Proof. Let Fε be an ε-net of F and M(d)
b,ε an ε-net of

M(d)
b . Then, for every g ∈ F there is g ∈ Fε such that

||g − g′||1,�x ≤ ε and for every H ∈M(d)
b there is H ′ ∈

M(d)
b,ε such that ||H − H ′|| ≤ ε. Let us consider the corre-

sponding functions f (x) = �E(H0 + g(x)V) ∈ C, f ′(x) =
�E(H0 + g′(x)V′) ∈ C.

Using Eq. (271), we have

||�E(H0 + g(x)V)−�E(H0 + g′(x)V′)||
≤ π

4δ
||Hg(x)− H ′g′(x)||

≤ π

4δ

(
δ

B
|g(x)− g′(x)| + B||H − H ′||

)
. (287)

Therefore, we get

||f − f ′||1,∞,�x

= 1
n

n∑

i=1

||�E(H0 + g(xi)V)−�E(H0 + g′(xi)V′)||

(288)

≤ πε
4δ
(B+ δ 1

B
), (289)

which implies that Cε = {f |f (x) = �E(H0 + g(x)V), g ∈
Fε , V ∈M(d)

b,ε}, is a πε
4δ (B+ δ 1

B )-net for C. �
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APPENDIX A: PROOF OF THRESHOLD
REPORTING FOR PRODUCT STATE

Proof of Theorem 7. We will use the following facts
already listed in Ref. [4]:
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(a) For S a random variable and f : R→ R 1-
Lipschitz,

Var[f (S)] ≤ Var[S] (A1)

(Proposition 3.1 in Ref. [4]).
(b) Fix 0 ≤ p ≤ 1, q = 1− p . Then for C = (e− 1)2 ≤

3, we have

q+ pe2λ ≤ (1+ Cpqλ2)× (q+ peλ)2 ∀λ ∈ [0, 1].
(A2)

(Lemma 3.2 in Ref. [4]).
(c) Let S be a discrete random variable, and let B be an

event on the same probability space with Pr[B] <
1. For each outcome s of S, define f (s) = Pr[B |
S = s]. Then

dχ2((S | B), S) = Var[f (S)]
/

Pr[B]2. (A3)

(Proposition 3.3 in Ref. [4]).

We take X to be an exponential random variable with aver-

age E[X] = 1/λ, and we assume λ ≤ 1/
√∑n

i=1 piqi and
λ ≤ 1.

Note that

f (s) = Pr[X > θn− s] = min(1, g(s)),

g(s) = exp(−λ(θn− s)).
(A4)

Therefore, we have from Eq. (A3)

dχ2((T | B), T) = Var[f (T)]
/

Pr[B]2 ≤ 16
9

Var[f (T)],

and we need to show that

Var[f (T)] � Pr[B]2 ·
(

n∑

i=1

piqi

)
λ2.

We can use the fact that y �→ min(1, y) is 1-Lipschitz,
therefore from Eq. (A1) we have that Var[f (T)] ≤
Var[g(T)].

As in the original proof, Var[g(T)] can be computed
using the moment-generating function, this time of the
Poisson binomial distribution T, namely E[exp(tT)] =∏n

i=1(qi + piet):

E[g(T)] = E[exp(−λ(θn− T))]

= exp(−λθn)×
n∏

i=1

(qi + pieλ),

E[g(T)2] = E[exp(−2λ(θn− T))]

= exp(−2λθn)×
n∏

i=1

(qi + pie2λ).

Thus

Var[g(T)] = E[g(T)]2 ×
(

E[g(T)2]
E[g(T)]2 − 1

)

= E[g(T)]2 ×
((

n∏

i=1

qi + pie2λ

(qi + pieλ)2

)
− 1

)

≤ E[g(T)]2 ×
(

n∏

i=1

(1+ 3piqiλ
2)− 1

)

(Eq. A2)

≤ E[g(T)]2 ×
(
(1+ 3

1
n

n∑

i=1

piqiλ
2)n − 1

)

(AM-GM)

≤ 3E[g(T)]2 ×
n∑

i=1

piqiλ
2. (as λ2 ≤ 1∑n

i=1 piqi
)

Furthermore

E[g(T)] = exp(−λθn)×
n∏

i=1

(qi + pieλ)

≤ exp(−λθn)× (q+ peλ
)n , (A5)

where q := 1/n
∑n

i=1 qi and p := 1/n
∑n

i=1 pi, and we will
show

exp(−λθn)× (q+ peλ
)n ≤ D Pr[B], (A6)

for some other constant D > 0
We consider two cases: p ≥ 1/n and p < 1/n.
a. Case 1: p ≥ 1/n. In this case we use that for a bino-

mial random variable T with mean pn, we have Pr[T >
pn] ≥ 1/4 (see, e.g., Ref. [43]). Moreover, for the Pois-
son binomial distribution it holds that Pr(T > k) ≥ Pr(T >
k) if 0 ≤ k ≤ np − 1 [44,45], therefore Pr[T ≥ pn− 1] ≥
Pr[T > pn− 1] ≥ 1/4.

Now observe that (i) θ ≥ p − 1/n, since we are assum-
ing Pr[B] = Pr[T+ X > θn] < 1/4; and, (ii)

Pr[B] ≥ Pr[T ≥ pn− 1] · Pr[T+ X ≥ θn|T ≥ pn− 1]

≥ 1
4

Pr[X ≥ (θ − p)n+ 1]

≥ 1
4

exp(−λ((θ − p)n+ 1)), (A7)
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where the first inequality used independence of T and X,
the second inequality the fact that Pr[T ≥ pn− 1] ≥ 1/4
and the third inequality used (θ − p)n+ 1 ≥ 0 [by (i)].
Thus to establish our claim, it remains to show

exp(−λθn)× (q+ peλ)n � exp(−λ((θ − p)n+ 1)),

which is equivalent to

q+ peλ � exp(λp).

But this last inequality indeed holds, as for λ ≤ 1 we
have q+ peλ<q+ p(1+ 2λ) = 1+ 2pλ, and 1+ 2pλ ≤
2 exp(λp) always.

b. Case 2: p < 1/n. Here q+ peλ < 1+ 2pλ ≤ 1+
2/n, and so (q+ peλ)n � 1, which implies that Eq. (A6)
follows from Pr[B] ≥ Pr[X > θn] = exp(−λθn). �

APPENDIX B: RESULTS ON SAMPLING
WITHOUT REPLACEMENT

The following theorem due to Hoeffding holds [46] (see
also Ref. [47]).

Theorem 17. Let X = x1, . . . , xN a finite population of
points, and {X1, . . . , Xn} a random sample drawn without
replacement from X . Let

a = min
1≤i≤N

xi b = max
1≤i≤N

xi. (B1)

Then it holds

Pr

(
n∑

i=1

Xi − nμ ≥ nε

)
≤ e
− 2nε2

(b−a)2 . (B2)

where μ := 1/N
∑

i xi is the empirical mean of X .

Now we apply the above theorem to M different finite
populations of N points.

Theorem 18. Let Y = 1, . . . , N , and let indices =
{X1, . . . , Xn} a random sample drawn without replacement
from Y . Furthermore, consider M different finite popula-
tions of N numbers {Xi}Mi=1 = {{xi,j }Nj=1}Mi=1 with 0 ≤ xi,j ≤
1, for every i, j , and for each Xi, use the indices to choose
a subset of the points {xi,j }j∈indices.

Then it holds

Pr

⎛
⎝ max

i=1,...,M
|

n∑

j=1

xi,Xj − nμi| ≥ nε

⎞
⎠ ≤ 2Me−2nε2

, (B3)

where μi := 1/N
∑N

j=1 xi,j is the empirical mean of Xi.

Proof. From Theorem 17, consider the 2M finite pop-
ulations {Xi,−Xi}i=1,...,M (the negative sign is to handle
the absolute value). The indices determine the choice of
a sample without replacement from each of the above
finite populations. The proposition follows from the union
bound. �

We can thus prove the following theorem.

Theorem 19. Let Y = {1, . . . , N }, N ≥ 3Kn and let the
K sets of indices {{Xnk+i}ni=1}k=0,...,K−1 be random samples
drawn without replacement from Y . Furthermore, consider
m different finite populations of N numbers {{xi,j }Nj=1}mi=1,
with 0 ≤ xi,j ≤ 1. From each population {xi,j }Nj=1 obtain K
subsets of size n, as {xi,Xnk+1 , . . . , xi,Xnk+n}k=0,...,K−1. Then it
holds

Pr

⎛
⎝ max

i=1,...,m
k=0,...,K−1

|
n∑

j=1

xi,Xnk+j − nμi| ≥ nε

⎞
⎠ ≤ 2Kme−2nε2/4,

(B4)

where μi = 1/N
∑N

j=1 xi,j .

Proof. We compute an upper bound recursively
using

Pr

⎛
⎝ max

i=1,...,m
k=0,...,t

|
n∑

j=1

xi,Xnk+j − nμi| ≥ nε

⎞
⎠ ≤ Pr

⎛
⎝ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≥ nε

⎞
⎠

+ Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμi| ≥ nε
∣∣∣ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠ .

(B5)
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Defining μi,t such that

Nμi = (N − tn)μi,t +
t−1∑

k=0

n∑

j=1

xi,Xnk+j , (B6)

given the condition max
i=1,...,m

k=0,...,t−1

|∑n
j=1 xi,Xnk+j − nμi| ≤ nε,

we have

Nμi ≤ (N − tn)μit + tnμi + tnε (B7)

Nμi ≥ (N − tn)μit + tnμi − tnε, (B8)

and therefore, for t ≤ K − 1

μit ≥ N − tn
N − tn

μi − tn
N − tn

ε ≥ μi − K − 1
2K + 1

ε ≥ μi − ε/2

μit ≤ N − tn
N − tn

μi + tn
N − tn

ε ≤ μi + K − 1
2K + 1

ε ≤ μi + ε/2, (B9)

meaning that

|nμit − nμi| ≤ nε/2, (B10)

and

Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμi| ≥ nε| max
i=1,...,m

k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠

= Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμit + nμit − nμi| ≥ nε
∣∣∣ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠

≤ Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμit| + |nμit − nμi| ≥ nε
∣∣∣ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠

≤ Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμit| ≥ nε/2
∣∣∣ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠ . (B11)

Using Theorem 18 we have

Pr

⎛
⎝ max

i=1,..,m
|

n∑

j=1

xi,Xnt+j − nμit| ≥ nε/2
∣∣∣ max

i=1,...,m
k=0,...,t−1

|
n∑

j=1

xi,Xnk+j − nμi| ≤ nε

⎞
⎠ ≤ 2me−

2nε2
4 , (B12)

and therefore

Pr

⎛
⎝ max

i=1,...,m
k=0,...,t

|
n∑

j=1

xi,Xnk+j − nμi| ≥ nε

⎞
⎠ ≤ 2Kme−

2nε2
4 .

(B13)

�

APPENDIX C: REALIZABLE LEARNING WITH
PURE STATES

We first consider learning in the setting where there
is a guarantee that the unknown concept f : X → D(H)
comes from the concept class C. This setting was first
considered in Ref. [7]. Additionally, Ref. [7] gives two
algorithms for learning in the realizable setting, one for
pure states and one for mixed states. In this section we
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show that the pure-state algorithm can be straightforwardly
improved if one looks at growth functions.

We will use the shorthands

�(c, c′) =
∑

x

D(x)dtr(c(x), c′(x))

�̃(c, c′, �x) = 1
|�x|

|�x|∑

i=1

dtr(c(xi), c′(xi)).
(C1)

First let us make some definitions.

Definition 9 (Measurement output distribution). For
any state σ ∈ S, and for a d-outcome POVM M :=
{Mz}dz=1 where Mz ∈ C

d, define the measurement output
distribution DM,σ : [d]→ [0, 1] as the distribution over
outcomes upon measuring the state σ with M:

DM,σ (z) = Tr[σMz]. (C2)

Definition 10 (ε-far set). For any c ∈ C, define the ε-far
set: C≥ε(c) := {h ∈ C : �(h, c) ≥ ε}.

The error occurs if maximum likelihood chooses a con-
cept h, which is 2ε-far from the true one (i.e., �(h, c∗)),
which could happen for two reasons:

(1) There is a concept h such that �(h, c∗) > 2ε but
�̃(h, c∗, �x) < ε, i.e., the sampled points do not give
a good approximation of h’s distance from the true
concept, which affects the construction of a good
covering.

(2) There is a concept h such that �(h, c∗) >
2ε but maximum likelihood on samples from
D⊗

i M(i),
⊗

i c∗(xi)
outputs h, i.e., the sampled points

ALGORITHM 4. Learning channels mapping to pure states

Input: (x1, |c∗(x1)〉) , (x2, |c∗(x2)〉) , . . . , (xn, |c∗(xn)〉)

1: Restrict the concept class C into C|�x.
2: Do a random d-outcome orthonormal basis measure-

ment M(i) on each output state |c∗(xi)〉 (if neces-
sary augmenting the space with auxiliary variables)
so that the measurement on the overall state is⊗n

i=1 M(i) := {⊗n
i=1 M

(i)
zi | �z ∈ [d]n}. Let the out-

come of the measurement M(i) be zi ∈ [d].
3: Output the concept h ∈ C|�x that is most likely to

have produced the measurement outcomes recorded
in Line 2:

h = arg max
c∈C|�x

T∏
i=1

DM(i),c(xi)
(zi) (Maximum Likelihood)

(C3)

do not give a good approximation of the measure-
ment output distribution of the true concept. The
probability of this happening is smaller than

1− TV(D⊗
i M(i),

⊗
i c∗(xi)

, D⊗
i M(i),

⊗
i h(xi)

), (C4)

as proven in Ref. [7].

To bound the probability of error from the first source, we
note that for fixed h ∈ C|�x,

Pr
�x∼D

[
�̃(h, c∗, �x) < ε and �(h, c∗) ≥ 2ε

]

≤ Pr
�x∼D

[∣∣∣�̃(h, c∗, �x)−�(h, c∗)
∣∣∣ ≥ ε

]
≤ 2 exp(−2ε2n),

(C5)

where the second inequality follows from Höffding’s
inequality. Hence, with probability 1− exp(−2ε2T) over
the distribution D, the samples x1, . . . xT are such that

�(h, c∗) ≥ 2ε ⇒ �̃(h, c∗, �x) ≥ ε. (C6)

Let us now condition on this event and bound the proba-
bility of error from the second source. We use the fact [48]
that for any two d-dimensional quantum states |ψ〉, |ψ ′〉
with r := rank(|ψ〉 − |ψ ′〉) and a random orthogonal
measurement basis M , with probability 1− exp(−kd/r),
which can be assumed to be sufficiently close to 1 (by
padding auxiliary quantum registers) over the choice of the
basis,

TV(DM,|ψ〉, DM,|ψ ′〉) ≥ k√
2

dtr(|ψ〉, |ψ ′〉), (C7)

for k a universal constant. Condition on this event too.
Hence for any h ∈ C>2ε(c∗),

1
n

n∑

i=1

TV(DM ,h(xi), DM ,c∗(xi))

>
k√
2

1
n

n∑

i=1

dtr(|h(xi)〉, |c∗(xi)〉) ≥ k√
2
ε. (C8)

The first inequality follows by linearity of Eq. (C7). The
second inequality follows from the conditioning event
Eq. (C6). Finally, the probability of maximum likelihood
on samples from D⊗

i M(i),
⊗

i c∗(xi)
erroneously assigning

them to D⊗
i M(i),

⊗
i h(xi)

is at most

1− TV(D⊗
i M(i),

⊗
i c∗(xi)

, D⊗
i M(i),

⊗
i h(xi)

)

≤ 2−�(n·(
1
n
∑n

i=1 TV(DM,h(xi),DM,c∗(xi)
))2)

≤ 2−�(n·k
2ε2/2). (C9)

The first inequality follows from Lemma 6 of Ref. [7]; the
second inequality follows from Eq. (C8).
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Having accounted for both sources of error for a fixed
hypothesis h in the “bad” set C|�x ∩ C>2ε(c∗), we now take
a union bound over all bad hypotheses. Thus the total
probability of error is at most

∣∣C|�x ∩ C>2ε(c∗)
∣∣ (2−2ε2T + 2−�(T·k

2ε2/2))

≤ G(T)2−�(ε
2T). (C10)

Thus, there exists a finite number of samples that makes
the right-hand-side of Eq. (C10) smaller than δ if

lim
T→∞

1
ε2 log

(
G(T)
δ

)
/T = 0. (C11)

Note that if G(T) ≤ C for all T <∞ one recovers the
sample complexity of Ref. [7].

APPENDIX D: LEARNING VIA RESTRICTED
RESTRICTED EMPIRICAL RISK ESTIMATION

The following variant of risk minimization via ERM on
a projector-valued concept class, which is not necessarily
an ε-net on the full input data shows that risk minimiza-
tion can be done even if a less restrictive condition on
γ1,∞(n, ε, C) holds. Risk estimation for projector-valued
concept classes and risk minimization for state-valued
concept classes can also be realized with a similar modi-
fication.

Theorem 20 (Learning quantum processes via ERM,
alternative statement). Suppose the concept class C con-
sists of quantum processes mapping to projectors and let
ε > 0 be the accuracy parameter, and suppose that

lim
n→∞

log γ1,∞(n, ε, C)
n

= 0, ∀ε > 0. (D1)

Given as input a training set S = (xi, ρ(xi))
n
i=1 with xi

D←−
X and ρ(·) an unknown classical-quantum channel, there is
an agnostic learning algorithm A : X n × L(H(d))⊗n → C
such that

Pr
S

[Rρ(A(S))− inf
h∈C

Rρ(h) < 9ε] =: 1− perr. (D2)

Writing n = Tkl, for large enough T = O(log(1/ε)), k =
O(log(1/δ log(1/ε))), and m0 ≤ Tkl, such that

4γ1,q(2m0, ε/64, C)e−m0ε
2

512 ≤ δ/4, (D3)

there exist constants C1, C2, C3 such that, if l satisfies

(log γ1,∞(m0, ε/2, C)+ C2)
2 ≤ C1lε2/9, (D4)

we have

perr ≤ δ

2
+ 4γ1,∞(6Tkl, ε/2, C)e− Tklε2

32

+ C3 log
1
ε

log
(

1
δ

log
1
ε

)
γ1,∞(m0, ε/2, C)e− lε2

72 .

(D5)

Once this is established, it can be verified that perr can
be made arbitrarily small if

lim
n→∞

log γ1,∞(n, ε, C)
n

= 0, ∀ε > 0.

Proof. The algorithm takes the first m0 classical vari-
ables �x0 and obtains an ε-net on the true risks C|�x0 , with
probability of error bounded as in Lemma 6

perr, net(m0) ≤ 4γ1(2m0, ε/64, C)e−m0ε
2

512 . (D6)

Then it runs algorithm 2 on the product state obtained from
the full dataset �x, with the concepts in C|�x0 . In this way
we obtain c∗ such that R̂(c) < maxc∈C|�x0

R̂(c)+ 6ε with
probability bounded as in the proof of Theorem 10

perr,ERM ≤ T(0.97k + (k + 1)e−lε2/72)

+ 2Tkγ1(m0, ε/2, C)e−2lε2/64. (D7)

Finally, we require that uniform convergence occurs also
for the full dataset (not just the first m0 data). This happens
with probability

perr,unif = Pr
S∼Dn

[∃c ∈ C : |R(c)− R̂(c)| ≥ ε]

≤ 4γ1,∞(12Tkl, ε/8, C)e− 6Tklε2
32 . (D8)

If this is true we have that, for the selected concept c

R(c) ≤ R̂(c)+ ε (D9)

≤ sup
c∈C|�x0

R̂(c)+ 7ε (D10)

≤ sup
c∈C|�x0

R(c)+ 8ε (D11)

≤ sup
c∈C

R(c)+ 9ε. (D12)

The probability of error is then upper bounded as

perr,net + perr,ERM + perr,unif. (D13)

With the choices made for the parameters, we obtain the
thesis. �
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