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The quantum Zeno effect asserts that quantum measurements inhibit simultaneous unitary dynamics
when the “collapse” events are sufficiently strong and frequent. This applies in the limit of strong contin-
uous measurement or dissipation. It is possible to implement a dissipative control that is known as “Zeno
dragging” by dynamically varying the monitored observable, and hence also the eigenstates, which are
attractors under Zeno dynamics. This is similar to adiabatic processes, in that the Zeno-dragging fidelity
is highest when the rate of eigenstate change is slow compared to the measurement rate. We demonstrate
here two theoretical methods for using such dynamics to achieve control of quantum systems. The first,
which we shall refer to as “shortcut to Zeno,” is analogous to the shortcuts to adiabaticity (counterdia-
batic driving) that are frequently used to accelerate unitary adiabatic evolution. In the second approach,
we apply the Chantasri-Dressel-Jordan stochastic action [PRA 88, 042110 (2013)], and demonstrate that
the extremal-probability readout paths derived from this are well suited to setting up a Pontryagin-style
optimization of the Zeno-dragging schedule. A fundamental contribution of the latter approach is to show
that an action suitable for measurement-driven control optimization can be derived quite generally from
statistical arguments. Implementing these methods on the Zeno dragging of a qubit, we find that both
approaches yield the same solution, namely, that the optimal control is a unitary that matches the motion
of the Zeno-monitored eigenstate. We then show that such a solution can be more robust than a unitary-
only operation and we comment on solvable generalizations of our qubit example embedded in larger
systems. These methods open up new pathways toward systematically developing dynamic control of
Zeno subspaces to realize dissipatively stabilized quantum operations.
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I. INTRODUCTION

Throughout the development of quantum computing to
date, the measurement and control of quantum systems
have been recognized as fundamental primitives under-
lying any possibility of realizing quantum information
processing. In this work, we draw on recent advances in
the understanding of the interplay between measurement
and unitary dynamics exemplified by the quantum Zeno
effect to propose new approaches to measurement-based
optimal quantum control.

A large portion of the quantum control literature has
focused on the design of unitary controls in both open and
closed quantum systems. Optimal control theory has been
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applied in many quantum contexts, usually (although not
exclusively) emphasizing the design of unitary operations
or pulse shapes to realize optimal quantum dynamics. For
example, direct implementation of Pontryagin’s principle
has found widespread use [1–6], as have related numer-
ical algorithms detailed in, e.g., Refs. [7–10] and refer-
ences therein. A complementary quantum control strategy
that has gained widespread traction is adiabatic control,
whereby slowly changing the Hamiltonian of the quantum
system, a closed system will follow a changing eigen-
state with high fidelity. Such an evolution Ĥ(t) can be
accelerated via counterdiabatic driving (or shortcuts to adi-
abaticity [11,12]), where Ĥ(t) is driven on a fast time
scale and an additional control Hamiltonian is introduced
to suppress the diabatic transitions away from the desired
subspace that may occur from varying Ĥ(t) too rapidly.

A different subset of the control literature has empha-
sized measurement- and/or dissipation-based quantum
control. For example, methods of direct measurement-
based feedback have been developed [13–15] and applied
to numerous settings [16–24], including state stabilization
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[25–34]. Advances in measurement-based feedback neces-
sarily draw on the substantial progress made in realizing
continuous monitoring of quantum systems over the past
few decades, both in the theoretical domain [35–39] and in
experiments [39–44]. Another more recent measurement-
based approach has made use of the well-known quantum
Zeno effect [45] for control applications. The Zeno effect
is well understood in the context of generalized measure-
ments [46–50], and control via the Zeno effect may be
broadly understood as a form of dissipation engineering
[51]. Changing a measurement observable in time while
continuously monitoring the outcomes has been shown
to be a viable method for control [52] that shares some
important features with adiabatic evolution [53–56]. Fur-
thermore, one can also use the Zeno effect to stabilize
a subspace in a larger quantum system so as to imple-
ment useful quantum operations [47,57–59]. Experimen-
tally accessible examples of this strategy are increasingly
being investigated today [60–70]. Other related strategies
for measurement-based control have also been considered
[71–79].

In this paper, we develop a theoretical approach to
quantum control that builds on the above literature, while
combining and unifying select tools in a new way. Our
focus will be on “Zeno dragging” in the spirit of the 2018
experiment by Hacohen-Gourgy et al. [52]. Specifically,
we focus on situations in which a continuously monitored
(or dissipated) observable is slowly changed, in a manner
that induces the quantum system to follow a measurement
eigenstate along a desired trajectory with high probability.
This Zeno-dragging process may equivalently be described
as a quasiadiabatic change in the Liouvillian L that is
engineered to bind the quantum state to an element of the
kernel of L throughout the evolution with high probability
[54,55]. Our specific contributions here are (i) an exten-
sion of counterdiabatic driving to the conditional diffusive
evolution of quantum trajectories, (ii) an extension of the
optimal-control protocol by Kokaew et al. [80] to incoher-
ent (dissipative) control knobs, and (iii) the development
of a class of simple examples of Zeno dragging in which
the counterdiabatic driving solution and optimal-control
solution are equivalent.

We develop these ideas here with the following exposi-
tion. After a brief review of some necessary results from
the theory of continuous quantum measurement in Sec. II,
we then present our two distinct methodologies for quan-
tum control by optimal Zeno dragging in Secs. III and IV.
In Sec. III, we first develop the “shortcut to Zeno dragging”
(STZ) approach. This is formally similar to the now well-
known shortcuts to adiabaticity (STA) [11]. Just as STA
seeks to find a control unitary that suppresses diabatic tran-
sitions due to a rapidly changing base Hamiltonian, here
we adapt the same machinery to the conditional quantum
evolution under continuous monitoring and derive instead
the STZ control unitary that suppresses failure of the

Zeno pinning under finite-strength continuous measure-
ment of a time-dependent observable. In Sec. IV, we then
develop an alternative approach that uses the stochastic
action functional of Chantasri [81] (CDJ) for Pontryagin-
style optimization of the schedule on which a measurement
observable is changed, drawing on the same framework as
has recently been applied to unitary controls by Kokaew
et al. [80]. We refer to this as the “CDJ-Pontryagin (CDJ-
P)” approach. In Sec. V, we then apply both the STZ and
CDJ-P methods to a simple example of Zeno dragging a
qubit, an illustrative example for which the two methods
give equivalent solutions. In Sec. VI, we elaborate on our
single-qubit example, defining a similarly solvable class
of larger problems, including a two-qubit example. We
conclude in Sec. VII with a discussion and prognosis for
applications and further work.

II. DIFFUSIVE QUANTUM TRAJECTORIES

Here, we remind the reader of some equations relevant
to the conditional quantum dynamics accessed via contin-
uous monitoring of a quantum system and introduce some
notation that will be used throughout the next sections.
For further reading about quantum trajectories at a general
or introductory level, we recommend consulting the texts
in Refs. [36–39] or the pedagogical or review articles in
Refs. [82–90].

Consider a set of Kraus [91] operators {M̂s,�} that
describe the indirect monitoring of a quantum system via
an auxiliary optical degree of freedom, over a short time
step �t. A common example in experiments is a qubit
monitored via an optical mode [92]. Our Kraus operator
set will depend on two output channels, the signal channel
(s) and loss channel (�), where we suppose that after inter-
acting with the system of interest, our auxiliary or pointer
degree of freedom has a probability η of going to our detec-
tor and becoming signal, and a probability 1 − η of instead
being lost in transit [93]. Together, detection of these chan-
nels should form a complete set of measurement outcomes,
in the sense that the Kraus operators should form elements
of a positive operator-valued measure (POVM)

∑

s,�

M̂†
s,�M̂s,� = 1̂. (1)

The Kraus operators may then be used to describe the
partially conditioned dynamics

ρ(t +�t) =
∑

� M̂s,�(r, ζ )ρ(t)M̂†
s,�(r, ζ )

∑
� tr
(
M̂s,�(r, ζ )ρ(t)M̂†

s,�(r, ζ )
) . (2)

Here, r represents a continuous-valued measurement
record or outcome obtained from detection of the signal
channel s, while the sum over � denotes an average over
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all lost information. In the event of perfectly efficient mea-
surements (η = 1), the loss channel is never needed and the
state update above then describes a process in which pure
states remain pure. On the other hand, state mixing will
generically occur if η < 1, due to averaging over losses.

A time-continuous form of Eq. (2) may be derived by,
e.g., performing the trace over the loss channel in the Fock
basis, such that to O(�t), only the terms

M̂s,0 ≈ N e−r2�t/4
{

1̂ + Ẑ�t + O(�t2)
}

(3a)

with Ẑ = √
ηrL̂ − 1

2

(
L̂†L̂ + ηL̂2

)
, (3b)

M̂s,1 ≈ N e−r2�t/4
{√

1 − η
√
�tL̂ + O(�t

3
2 )
}

, (3c)

survive (for more rigorous justification, see, e.g., Refs. [36,
82,90,94] and further comments below). Such an expan-
sion then results in the continuous-time dynamics

ρ̇ = F(ρ, r, ζ )

= Ẑ(r, ζ )ρ + ρẐ†(r, ζ )+ (1 − η)L̂(ζ )ρL̂†(ζ )

− ρ tr
(
Ẑ(r, ζ )ρ + ρẐ†(r, ζ )+ (1 − η)L̂(ζ )ρL̂†(ζ )

)
.

(4)

In the following, the dependence of L̂, L̂†, and related
operators on the control parameter ζ will not be explic-
itly shown until it is required again in Sec. IV. We have set
� = 1 here and throughout this paper.

We shall associate the readout r in the signal port with
the outcome of a homodyne measurement (quadrature-
basis outcome) of the auxiliary optics in the time step of
interest [92,93] and we have chosen units such that the
readout may be expressed in the time-continuum limit as

r�t ≈ √
η tr
(

L̂ρ + ρL̂†
)
�t +�W = √

ηS�t +�W,

(5)

where S is the ideal expected signal, which is equal to

S = tr
(

L̂ρ + ρL̂†
)

=
〈
L̂ + L̂†

〉
, (6)

and �W is the mean-zero Gaussian-distributed intrin-
sic measurement uncertainty or “noise” that has variance
�t [36–38]. The device readout r�t is thus a Gaussian
stochastic variable of mean

√
ηS and variance�t−1, which

is a sum of signal and noise, where the effect of inef-
ficient (lossy) measurement is seen to be attenuation of
the ideal average signal S relative to the measurement
noise �W. Concrete examples have been developed using
a similar style and conventions in, e.g., Refs. [87,89,95].
The “ostensible” probability distribution N e−r2�t/4 [36]

may be eliminated from the dynamics in Eq. (2) or
Eq. (4) because it appears in every term. We note that the
definition of Ẑ in terms of L̂ used above is consistent with
the Stratonovich [96] stochastic master equation (SME;
see, e.g., Ref. [97]). Similar expansions suited to Itô cal-
culus can also be found in the literature [27,90,94,98,99].

We now highlight two features that will be used in the
subsequent analysis. The first is that we will emphasize
the monitoring of a Hermitian observable (L̂ = L̂†) and the
second is that any analysis we perform using conditional
quantum dynamics will rely on pure-state trajectories cor-
responding to the case of perfect measurement efficiency
(η = 1) [100]. For L̂ = L̂†, the time-continuous conditional
dynamics read

ρ̇ = (1 − η)L̂ρL̂ + √
ηr
(
L̂ρ + ρL̂

)
− η + 1

2

(
L̂2ρ + ρL̂2

)

− 2ρ
√
ηr tr

(
ρL̂
)

+ 2ηρ tr
(

L̂ρL̂
)

(7a)

and with our further assumption that η = 1, this reduces to

ρ̇ = r
(

L̂ρ + ρL̂
)

− L̂2ρ − ρL̂2 − 2ρ
(

r
〈
L̂
〉
−
〈
L̂2
〉)

.

(7b)

Substitution of Eq. (5) into Eq. (7a) or Eq. (7b) will result
in Stratonovich equations of motion, rather than Itô equa-
tions, due to our use of regular calculus and in accordance
with the Wong-Zakai theorem [101–103]. We also point
out that substituting η = 0 instead of η = 1 into Eq. (7a)
just reduces the dynamics to the usual Lindblad master
equation (LME), i.e., to

ρ̇ = L̂ρL̂† − 1
2

L̂†L̂ρ − 1
2
ρL̂†L̂. (7c)

This corresponds to the evolution averaged over many
measurement realizations or, equivalently, to dissipation
without detection and will be useful later for characteriz-
ing the average fidelity of our control processes. Note that
unitary evolution i[ρ, Ĥ ] may generically be added to any
of Eq. (7).

The probability density to obtain the measurement out-
come r in a given time step is governed by

℘(r|ρ) = tr
(
M̂s,0ρ(t)M̂†

s,0 + M̂s,1ρ(t)M̂†
s,1

)

≈ N tr
(
ρ +�t Ĝ + O(�t2)

)
, (8a)

for Ĝ = Ẑρ + ρẐ† + (1 − η)L̂ρL̂† − 1
2

r2ρ. (8b)
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Expansion of the log-probability density to O(�t) gives

log℘(r|ρ) = logN + G�t + O(�t2)

with G = tr (G ) = −1
2
(
r − √

ηS
)2 − g

(8c)

and g(ρ, L̂(ζ )) ≡ 2η
(〈

L̂2
〉
−
〈
L̂
〉2)

= η

2
var(S) for L̂ = L̂†. (8d)

This defines a function G that contains all of the features of
the unnormalized probability density relevant to the time-
continuum limit. Recall that for L̂ = L̂†, the ideal expected
signal S in Eq. (5) is S = 2 〈L〉, so that the first term in
G summarizes the basic statistics expected of r mentioned
above, namely, that the readout is a Gaussian stochastic
variable of mean

√
ηS and variance �t−1. The remaining

term g is r independent: for L̂ = L̂†, it takes the form given
in Eq. (8d), where var(S) denotes the variance in the sig-
nal [104], and we have highlighted the dependence of L̂
on ζ . The instantaneous measurement statistics G remain
unchanged in the event that unitary evolution is present
alongside the measurement dynamics; unitary evolution
will add a term i[ρ, Ĥ ]�t inside the trace on the right-hand
side of Eq. (8a), which then immediately cancels out of the
trace.

The function g(ρ, L̂) has elsewhere been interpreted as
providing a measure of the rate of information acquisition
due to continuously monitoring L̂ or as a naturally aris-
ing measure of distance from the eigenstates of L̂, which
vanishes at the Zeno points, i.e., at the eigenstates of L̂
[96,105–107]. In the current context, it is important to
appreciate that this distance measure g(ρ, L̂) is now implic-
itly dependent on the control parameter ζ .

This summarizes the main aspects of continuous quan-
tum monitoring that we will need going forward in this
work. We now turn our attention to quantum control based
on the Zeno dragging demonstrated in Ref. [52]. Such a
process goes as follows. The system is first initialized in
an eigenstate of L̂ at the initial time. Incoherent control is
then realized by varying the system measurement operator
L̂(t) as time evolves. If this is changed slowly compared to
the accompanying dissipation rate ||L̂(t)||2, then the system
state will be “Zeno dragged” with high probability along
the trajectory imposed on the measurement eigenstate.
This may be regarded as a special case of the adiabatic
Liouvillian evolution described in Ref. [55]. The dynamics
summarized in Eq. (7) may be used to model both individ-
ual realizations and ensemble averages of such a process.
The ideally realized Zeno-dragging process would begin
at the pure eigenstate of L̂(0) and then maintain purity
throughout its evolution to terminate at the eigenstate of
L̂(T) as t passes from 0 → T, not only in its individual real-
izations but also on average (in the Lindbladian dynamics).

Such an ideal process, that maintains perfect purity in the
Lindblad dynamics by exactly following an instantaneous
eigenstate of L̂(t) at all times, necessarily corresponds to
the control becoming deterministic.

III. SHORTCUT TO ZENO DRAGGING

The first of the two methods that we develop to con-
trol such Zeno dragging is a “shortcut to Zeno” (STZ).
This is directly analogous to the counterdiabatic driving,
often referred to as a shortcut to adiabaticity, that has
been extensively used in adiabatic dynamics of closed
quantum systems [11,12]. Such methods have recently
been considered in the context of Lindbladian evolution
of open quantum systems [108–113]. Here, we show that
such approaches may be further extended to control of the
conditional evolution describing diffusive monitoring of a
Hermitian observable.

Let us add a control Hamiltonian ĤSTZ to our ideal
dynamics Eq. (7b), such that

ρ̇ = i[ρ, ĤSTZ] +
(

rL̂ − L̂2
)
ρ + ρ

(
rL̂ − L̂2

)

+ 2ρ
(

tr
(
ρL̂2
)

− r tr
(
ρL̂
))

= i[ρ, ĤSTZ] + Ẑρ + ρẐ − 2ρ tr
(
ρẐ
)

(9)

for Ẑ = rL̂ − L̂2, where ĤSTZ, Ẑ, and L̂ are all assumed to
be Hermitian. Our aim now is to find the ĤSTZ that min-
imizes the probability of escape from the rotating Zeno
pinning implemented by the measurement operator Ẑ(t) in
Eq. (3), which depends on a parameter ζ that has contin-
uous and time-differentiable temporal dependence (i.e., ζ
is not stochastic). To this end, we implement a change of
frame on these dynamics, namely, � ≡ Q̂†ρQ̂, where the
unitary transformation Q̂ will be chosen so as to diagonal-
ize Ẑ (i.e., we define Q̂ such that D̂Z = Q̂†ẐQ̂, where D̂Z

is the diagonal matrix containing the real eigenvalues of
Ẑ). Transforming Eq. (9), we find that in this new frame,
which we shall refer to as the “Zeno frame,” the dynamics
become

�̇ = �
{

Q̂†Q̇ + iQ̂†ĤSTZQ̂ + D̂Z

}

+
{

Q̇†Q̂ − iQ̂†ĤSTZQ̂ + D̂Z

}
� − 2� tr

(
D̂Z�

)
.

(10)

Now if the dynamics of �̇ in the Zeno frame are completely
diagonal, then we have suppressed transitions out of the
Zeno subspace (or target eigenstate) that we are interested
in staying in. We then may think of this Zeno frame as
directly analogous to an adiabatic frame. The condition of
interest for successful Zeno dragging is therefore that we
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choose the control Hamiltonian ĤSTZ such that

Q̇†Q̂ − iQ̂†ĤSTZQ̂ + D̂Z = λ̂, (11)

where λ̂ can be any diagonal matrix.
Note that Ẑ in Eq. (9) is quadratic in L̂ because of

our choice of a Hermitian observable. (We note here that
while we are working with a Stratonovich-like SME, this
would still be true if we did a corresponding derivation
compatible with the Itô SME.) It follows that the unitary
frame-change operator Q̂ diagonalizing L̂ also diagonal-
izes Ẑ, i.e., for D̂L = Q̂†L̂Q̂, we necessarily have D̂Z =
rD̂L − D̂2

L, which is also diagonal. This makes finding
Q̂ significantly easier in practice. Importantly, since the
measurement observable L̂ does not itself depend on the
measurement outcome r, we can then also see that for
measurement of a single Hermitian observable, neither the
frame change Q̂ nor the STZ control Hamiltonian ĤSTZ will
depend on the readout r. Thus, for a single Zeno-dragging
channel, we necessarily have an open-loop control rather
than a closed-loop feedback control.

With this in mind, we solve Eq. (11) to find

ĤSTZ = iQ̂
(
λ̂− rD̂L + D̂2

L

)
Q̂† − iQ̂Q̇†

= iQ̂λ̂Q̂† − irL̂ + iL̂2 − iQ̂Q̇†. (12)

Parametrizing the unitary Q̂ = e−iĥ(t) with some Hermitian
ĥ(t) = ĥ†(t) for all time yields Q̇† = iḣeiĥ, and Q̂Q̇† = iḣ.
The terms −irL̂ + iL̂2 in Eq. (12) are anti-Hermitian and
are therefore unphysical for our present purposes. How-
ever, since λ̂ is a completely arbitrary diagonal matrix,

we may simply choose λ̂ = D̂Z to cancel these unwanted
terms, to arrive at the explicit solution

ĤSTZ = −iQ̂Q̇† = ḣ. (13)

In short, then, we may implement a STZ that supports a
dissipative dragging operation by implementing a coun-
terdiabatic unitary control that matches the rate at which
we rotate our measurement eigenstates. This will be made
clearer through examples in Secs. V and VI. Additional
technical details are given in the appendices.

IV. CDJ-PONTRYAGIN OPTIMAL ZENO
DRAGGING

We now reconsider the above Zeno-dragging prob-
lem in an alternative framework. Here, we will optimize
the CDJ [81,114] stochastic action, deriving controls for
the measurement dynamics that are conditioned on the
extremal-probability measurement records in a manner
similar to that recently proposed by Kokaew et al. [80]
for unitary control of open quantum system dynamics. One
may regard this section as an application of their method
to Zeno dragging.

A. Review of the CDJ stochastic path integral

We first briefly summarize the main ideas needed to
construct the CDJ [81] stochastic action. We begin with
a Chapman-Kolmogorov equation that expresses the joint
probability density to obtain a sequence of continuous-
valued measurement outcomes together with the corre-
sponding conditional state dynamics:

℘({ρ}, {r}) =
N−1∏

k=0

℘(ρk+1|ρk, rk)℘ (rk|ρk) =
N−1∏

k=0

δ

⎛

⎝ρk+1 −
∑

� M̂s,�ρkM̂†
s,�

∑
� tr
(
M̂s,�ρkM̂†

s,�

)

⎞

⎠ tr

(
∑

�

M̂s,�ρkM̂†
s,�

)

≈
N−1∏

k=0

δ (ρk+1 − ρk −�tF(ρk, rk, ζk))Nk exp [G(ρk, rk, ζk)�t] . (14)

Using the notation of Eqs. (2)–(4) and using k to index
the time step, we then have a deterministic state update
conditioned on the stochastic readout given in Eq. (5),
which has the statistics described by Eq. (8). We have
used Eqs. (4) and (8) in moving from the second to the
last line in Eq. (14), where the last line gives an approx-
imation to O(�t). Boundary terms may be added to the
above expression as needed [81,114], including, e.g., the
typical constraint to an initial state ρi as per δ(ρi − ρ0) or

an exact postselection to ρf as per δ(ρf − ρN ) [115]. Any
unitary evolution i[ρ, Ĥ ] will appear in F [from Eq. (4) or
Eq. (7b)] but not in G [from Eq. (8)].

It will be convenient to express the d × d density matrix
ρ in terms of at most d2 − 1 real coordinates q. We
write the equation of motion in the q coordinates as
q̇ = F(q, r, ζ ) = tr (ρ̇σ ), where σ is the vector of gen-
eralized Gell-Mann matrices defining the q coordinate
system [116]. Taking the continuous-time limit and using
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the Fourier definition of the δ functions (which introduces the costate variables �, conjugate to q), one arrives at the
stochastic path integral [81,114]

℘({ρ}, {r}) �−→
lim

dt→0
N→∞

℘(q(t), r(t)) =
∫

D[�]e− ∫ dt(�·q̇−�·F−G) =
∫

D[�]e−S (15a)

for S =
∫ T

0
dt {� · q̇ − H} & H = � · F(q, r, ζ )+ G(q, r, ζ ). (15b)

For a single measurement, the CDJ stochastic action S is
characterized by the stochastic Hamiltonian

H(q, �, r, ζ ) = � · F(q, r, ζ )− 1
2
[
r − √

ηS(q, ζ )
]2

− g(q, ζ ), (16)

using the definition of G from Eq. (8).
The action that we have derived above represents the

trajectory probability density for the conditional quan-
tum dynamics. As such, extremization of the action
leads to extremal-probability paths (trajectories following
the extremal-probability measurement record) [81,117].
Specifically, we may use δS = 0 to obtain the following
equations of motion for these optimal-readout paths:

q̇ = ∂H
∂�

, �̇ = −∂H
∂q

,
∂H
∂r

= 0. (17)

By then solving ∂rH = 0 for an optimal value of the
readout r�(q, �, ζ ), we essentially find the extremal-
probability measurement record (subject to boundary con-
ditions). The quantum trajectories conditioned on r� are
generated by H�(q, �, ζ ) = H(q, �, ζ , r�(q, �, ζ )), using
Hamilton’s equations.

Extensive work has been done to investigate the
dynamics of the optimal readout trajectories [81,106,114,
117–121]. Since the integrand in the stochastic path inte-
gral is Gaussian in r [recall the form of Eq. (8)], one may
analytically marginalize r out of the stochastic path inte-
gral by integration; this turns out to leave exactly the same
Hamiltonian H� as that obtained from the above readout
optimization [81,105,106,114]. If we write the correspond-
ing Stratonovich equation of motion for the conditional
dynamics Eq. (4) or Eq. (7) as

q̇ = F(q, r, ζ )

= A(q, ζ )+ b(q, ζ )(dW/dt)

= A(q, ζ )+ b(q, ζ )(r − √
ηS(q, ζ )), (18)

where A is the Stratonovich drift vector (which includes
any contribution from a unitary drive Ĥ ) and b is the

diffusion tensor, then the r-optimized CDJ stochastic
Hamiltonian reads

H� = � · F [q, r�(q, �), ζ ] − g(q, ζ ) (19a)

= 1
2
�
 · B(q, ζ ) · � + �
 · A(q, ζ )− g(q, ζ ),

(19b)

where B denotes bb
 [105,106]. This form is quite general
and holds for arbitrary measurement efficiency η > 0, as
well as in the event that there are multiple channels that are
monitored simultaneously. In the latter case, b is a tensor
rather than simply a column vector.

More recently, joint optimization over the readout r and
unitary control parameters � has been performed to find
optimal-control solutions ��(t) based on the optimal read-
outs [80]. That work by Kokaew et al. has demonstrated
the utility of the CDJ stochastic path integral, and its
r-optimal paths in particular, for finding optimal-control
solutions. Below, we will employ the same conceptual
framework but apply it now to the optimal control of Zeno
dragging. We shall show that the CDJ stochastic action is
exceptionally well suited to deriving optimal Zeno-based
controls.

B. General Zeno-dragging optimization:
CDJ-Pontryagin approach

We consider the following Zeno-dragging scenario.
Suppose that we have a single measurement characterized
by L̂(ζ ) = L̂†(ζ ), where the control function ζ(t) specifies
a fixed (open-loop) schedule over which L̂ is varied, i.e.,
ζ specifies how the measurement eigenspace that is used
for the Zeno dragging is varied in time. ζ(t) is assumed
continuous and time differentiable. A unitary drive Ĥ can
optionally be included in the dynamics. For the purposes of
CDJ-P optimization, we may apply the general form of the
readout-optimized CDJ Hamiltonian given in Eq. (19) to
the Zeno-dragging scenario. This Hamiltonian is already in
a form suitable for Pontryagin optimization, since we have
Lagrange multipliers � that constrain us to dynamics F �

(here, the conditional dynamics following the extremal-
probability readout r�), with the remaining term g(q, ζ )
acting essentially as a cost function for the optimization.
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It turns out that g(q, ζ ) = 1
2 var(S) in Eq. (8d) is an

ideal cost function for Zeno-dragging optimization, for the
following reasons: first, it is non-negative everywhere by
virtue of being a variance; and, second, it only has roots
at the eigenstates of L̂(ζ ), i.e., at the Zeno points. There-
fore, optimization with g(q, ζ ) as a cost function implies
that we search for the function ζ �(t) that minimizes g over
the entire evolution. Now minimizing g means keeping
the system as close as possible to a measurement eigen-
state throughout the evolution, which is exactly what is
accomplished by successful Zeno dragging.

Implementing the Pontryagin optimization δS = 0 with
ζ as the control to be optimized then leads to

q̇ = ∂H�

∂�
, �̇ = −∂H

�

∂q
,

∂H�

∂ζ
= 0, (20a)

∂ζg = �
 · (∂ζF �) = 1
2
�
 · (∂ζB

) · � + �
 · (∂ζA
)

,

(20b)

where the second line is the optimality condition that ζ �

must satisfy at all times, given by the Pontryagin maxi-
mum principle ∂ζH� = 0. One may think of Eq. (20) as an
application of Pontryagin’s principle, where the measure-
ment schedule ζ(t) is the control function to be optimized,
and the action

S� =
∫ T

0
dt
{

q̇ · � − 1
2
�
B� − �
A + g

}
(21a)

=
∫ T

0
dt
{

1
2
(q̇ − A)
B−1(q̇ − A)+ g

}
(21b)

has been constructed from the CDJ stochastic path inte-
gral with dynamics constrained to its r-optimal paths. (In
particular, one may apply

∫ D[r] to Eq. (15) to obtain the
first line, and then additionally perform the

∫ D[�] inte-
gration to obtain the Lagrangian form in the second line
[105,107].) Both are straightforward Gaussian integrations
when the path integral is written in discrete time.

We make a brief digression here to remark on the con-
trast between the STZ approach of Sec. III and the CDJ-P
approach of Sec. IV B. First, note that of these two, only
the CDJ-P method explicitly seeks optimal control; coun-
terdiabatic controls do not generally come with any kind
of cost function or optimality guarantees attached. Second,
these two methods approach the Zeno-dragging protocol
from complementary viewpoints. In deriving the STZ, we
first provide a measurement and then search for a unitary
control satisfying some specific properties (namely, sup-
pression of diabatic transitions in the Zeno frame). In the
CDJ-P approach, we first specify any unitary that may be
part of the system dynamics and then perform an opti-
mization of the measurement axis within the context of
those dynamics. These qualitative differences suggest that

quite different solutions might be found when using the two
approaches. However, in Sec. V, we shall show that for
at least one example, the two approaches yield equivalent
solutions, and further connections between the methods
will be elucidated in Sec. VI.

Finally, we highlight what we have done in this section.
Equations (14)–(20) show that a cost function to optimize
measurement-driven quantum control can be derived from
the measurement statistics. Thus, in deriving the CDJ-P
optimal controls via δS = 0, one is also optimizing the
likelihood that the controlled evolution occurs.

V. EXAMPLE: ZENO DRAGGING A QUBIT

To demonstrate the methods presented above, we will
now consider the example of Zeno dragging a single qubit,
similar to what has been experimentally demonstrated by
Hacohen-Gourgy et al. [52]. For continuity with the pre-
sentation of the previous sections, in Sec. V A we first
continue our CDJ-P analysis in the context of this exam-
ple and then, in Sec. V B, we demonstrate the application
of our STZ method in the same context. In Sec. V C, we
consider the special case of Zeno dragging without uni-
tary assistance. The average fidelity and other indicators
of the performance of the optimal protocol derived in the
preceding sections are detailed in Sec. V D. We revisit
our example in the Zeno frame in Sec. V E, which yields
some additional insights about the optimal schedule and
then prepares us for a discussion of the robustness of STZ
against controller errors, which appears in Sec. V F.

A. CDJ-P Zeno dragging for a qubit

Let us suppose that we can monitor any qubit observable
in the x-z Bloch plane. The Kraus operator

M̂r(ζ ) =
(
�t
2π

) 1
4

exp
[
−��t − r2�t

4

]

×
{

cosh [ϒ] 1̂+ sinh [ϒ]
(
σ̂z cos ζ + σ̂x sin ζ

)}
,

(22)

for ϒ = r�t
√
�, is appropriate for this [121]. The

measurement strength is given by the characteris-
tic collapse time τ or, alternatively, as the corre-
sponding rate � = 1/4τ . The Kraus operator given in
Eq. (22) may be expanded following the methods of
Sec. II, leading to the equivalent Lindblad operator L̂ =√
�
(
σ̂x sin ζ + σ̂z cos ζ

)
(for a more general recipe for

constructing L̂ in similar settings, see Sec. VI A).
The time-continuous conditional dynamics based on this

single-qubit Kraus operator (with η = 1 and y = 0) and
in the presence of a unitary drive Ĥ = 1

2�σ̂y may be

020366-7



LEWALLE, ZHANG, and WHALEY PRX QUANTUM 5, 020366 (2024)

expressed as

F =
(

ẋ
ż

)
=
(

z�− 2r
√
�[(x2 − 1) sin ζ + xz cos ζ ]

−x�− 2r
√
�[(z2 − 1) cos ζ + xz sin ζ ]

)
.

(23a)

The readout statistics may be characterized by

G = −1
2
(r − S)2 − g, (23b)

with S = 2
√
� (x sin ζ + z cos ζ ) , (23c)

and g = 2�
{
1 − (x sin ζ + z cos ζ )2

}
. (23d)

Based on these expressions, we can immediately construct
the CDJ stochastic Hamiltonian H in Cartesian Bloch
coordinates q = (x, z)
 as

Hζ = �xFx +�zFz + G. (24)

Recall from the preceding section that g(q) will play the
role of a cost function in our optimization procedure. In
Fig. 1, we show a visual representation of the specific g(q)
in Eq. (23d), which underlies the calculations described
below.

Two further manipulations are helpful as we move
toward an analytical solution to this problem:

(1) We convert Hζ to polar coordinates in the x-z Bloch
plane. This can be accomplished via a canonical
transformation [6,87]:

x → R sin θ , (25a)

z → R cos θ , (25b)

�x → �R sin θ +�θ cos θ/R, (25c)

�z → �R cos θ −�θ sin θ/R. (25d)

(2) We observe that Ṙ = 0 for R = 1, i.e., pure states
remain pure since our dynamics are conditioned on
complete measurement information (η = 1). We can
consequently set R = 1, which also decouples �R
from the dynamics.

By implementing this transformation, we will rewrite
our Hamiltonian, originally in terms of two canonically
conjugate coordinate-costate pairs, q = (x, z) and � =
(�x,�z), in terms of a single pair q → θ and � → �θ .

Implementing this coordinate change, eliminating the
radial coordinate, and optimizing or marginalizing away
the readout r (recall the process leading from Eq. (16) to

Eq. (19)), transforms the CDJ stochastic Hamiltonian to

H�
ζ = 2�(�2

θ−1) sin2(ζ−θ)+�θ [2� sin(2ζ−2θ)+�] .
(26)

In the notation of Eqs. (19) and (20), here we
have g(θ , ζ ) = 2� sin2(ζ − θ) = 1

2 B(θ , ζ ) and A = 2�
sin(2ζ − 2θ)+�, where A and B = b2 are all scalar
functions instead of vectors or tensors, because we have
reduced the problem to a single coordinate and a single
noise source. The fact that the cost function g(θ , ζ ) and
the diffusion coefficient b(θ , ζ ) vanish at the Zeno points
θ̄0 = ζ and θ̄π = ζ + π is central to the functioning of the
Zeno-dragging control that we analyze here. We denote θ̄0
as the target eigenstate, while escape to the “wrong” θ̄π
eigenstate implies failure of the control. These two options
are the only roots (minima) of g(θ , ζ ) in this one-qubit
scenario and are the instantaneous attractors of the con-
ditional dynamics (for an illustration, see Fig. 1). Note
that because Eq. (26) is a function of ζ − θ only, we have
∂ζH�

ζ = −∂θH�
ζ . By Eq. (20), we may then immediately

understand that when we solve the optimization condi-
tion ∂ζH�

ζ = 0, we must also subsequently have �θ as a
conserved quantity in the optimal dynamics.

Let us now explicitly solve for the optimal measurement-
axis control ζ � via ∂ζH�

ζ = 0. This reveals that

ζ � = θ + 1
2

arctan
(

2�θ

1 −�2
θ

)
= θ + arctan(�θ), (27)

where the first and second forms of ζ � are equivalent up to
piecewise additions of integer multiples of π/2. Substitu-
tion of this solution into the stochastic Hamiltonian gives
us the generator of the optimized dynamics as

Hr�
ζ � = 2��2

θ +�θ�. (28)

Since Eq. (28) is independent of θ , we may immediately
understand that�θ is conserved in the optimized dynamics
(as expected), with state dynamics that are linear in time. In
particular, applying ∂�θHr�

ζ � |��θ = θ̇ � = 4���
θ +� [recall

Eq. (20)], with ��
θ a constant of motion due to ∂θHr�

ζ � = 0,
leads to

θ(t) = θi + (�+ 4���
θ)t = θi + (θf − θi)

t
T

. (29a)

This implicitly includes the optimal costate

��
θ = θf − θi

4�T
− �

4�
, (29b)

which maps the boundary-value problem in the state θi and
θf to an initial-value problem in the costate�θ . Collecting
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(a) (b)g (Γ)

FIG. 1. (a) Density plots of g(q) in the x-z Bloch plane for two different values of ζ , in our single-qubit example. The color denotes
g in units of �. Recall that the function g [Eqs. (8d) in general and Eq. (23d) in the current example] plays the role of a cost function for
our CDJ-P Zeno-dragging optimization. (b) A qualitative illustration of how diffusion of the conditional state in different measurement
realizations leads on average to loss of purity: the purple curve represents the probability density of pure states after some diabatic
Zeno dragging (the distance inside the Bloch sphere represents a higher probability density at some particular time T; this has been
obtained as a solution to the Fokker-Planck equation [122]). The green point represents the corresponding Lindblad estimate at this
time, which is the average of pure states weighted by the purple conditional distribution. Loss of purity occurs when the distribution
is no longer well localized, i.e., when the conditional dynamics have been allowed to diffuse more widely. A perfect control scheme,
either using STZ or in the adiabatic limit, prevents any diffusion and follows the root of g(q) exactly for all time, and thereby both
retains purity, even on average, and becomes deterministic evolution. We also observe in (b) that the peak of the distribution ℘(θT) lags
behind the diabatically moving measurement axis. Optimal controls will explicitly compensate for this kind of “offset” (see Eq. (27)
or Eq. (35)). The tail of the distribution ℘(θT) extending to θ̄π illustrates how “escape” errors can occur: trajectories left behind by
diabatic motion of the measurement axis can have overlap with unwanted eigenstates and may then eventually “collapse” towards such
unwanted states instead of the intended one.

these expressions into Eq. (27), we then have the schedule

ζ � = θi + (θf − θi)
t
T

+ arctan
(
θf − θi

4�T
− �

4�

)
. (30)

We now remark that global optima of the action S are
given either by H = 0 or the path with �θ = 0 at the final
time [119,123–125]. Setting Eq. (28) to zero is equivalent
to setting ��

θ = 0, such that here these two optimal con-
ditions coincide. Solving Eq. (29b) = 0 in the presence of
a finite unitary drive � �= 0 (see Sec. V C for the optimal
solution in the absence of a unitary drive, i.e., � = 0) then
gives us

�� = θf − θi

T
= θ̇ � = ζ̇ �. (31)

This optimal schedule solution illustrates two useful
results: (i) the optimal schedule for the single-qubit mea-
surement axis ζ �(t) in this simplest example of Zeno drag-
ging is linear in time (in the angular θ coordinates within
the x-z plane); and (ii) the best solution for Zeno dragging
assisted by a unitary drive has the unitary matched exactly
with the linear schedule of the measurement, � = ζ̇ �.

B. STZ dragging for a qubit

Here, we compare the CDJ-P optimal solution for drive-
assisted Zeno dragging with that obtained from the STZ

method that we derived in Sec. III. Application of the STZ
process to the single-qubit example requires diagonaliza-
tion of Ẑ, which is accomplished by the time-dependent
Zeno-frame transformation

Q̂ =

⎛

⎜⎜⎝
cos
(
ζ(t)

2

)
− sin

(
ζ(t)

2

)

sin
(
ζ(t)

2

)
cos
(
ζ(t)

2

)

⎞

⎟⎟⎠ , (32a)

to yield

D̂Z = Q̂†ẐQ̂ =
(−� + √

�r 0
0 −� − √

�r

)
. (32b)

Having determined the Zeno-frame transformation Q̂, it is
then straightforward to apply Eqs. (11) and (13) to find

Q̇†Q̂ + D̂Z − iQ̂†ĤSTZQ̂

= 1
2

(−2(� − √
�r) ζ̇ −�

�− ζ̇ −2(� + √
�r)

)
. (33)

This suggests that ĤSTZ = 1
2�σ̂y , with the choice

ζ̇ = �, (34)

will diagonalize the dynamics in the Zeno frame. The
condition Eq. (34) is furthermore identical to the optimal
schedule solution from the CDJ-P approach in Eq. (31).
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We have thereby confirmed that our STZ and CDJ-P
optimal solutions for the time dependence of the measure-
ment axis, that Eqs. (34) and (31) are identical, and that
both of these rates are equal to the magnitude of the unitary
drive. Both of these control approaches have been analyt-
ically tractable for this simple example. We remark that
the STZ approach has perhaps been simpler to implement
(and should be expected to scale to larger problems more
easily) but that when tractable, the CDJ-P approach has
the considerable benefit of explicitly providing optimal-
ity guarantees with the schedule ζ �(t), rather than merely
giving the condition that the driving frequency � should
match the rate of change of the measurement-axis rota-
tion (or vice versa). A third way of deriving this solution is
presented in Appendix B.

C. Optimal Zeno dragging without unitary assistance

For comparison, we briefly analyze here how the CDJ-
P optimal solution changes when the unitary drive � =
0, i.e., we look at optimal Zeno dragging alone without
the possibility of any unitary assistance or a “shortcut” to
staying in the Zeno subspace.

In the special case � = 0, Eq. (27) remains correct, i.e.,

∂ζH�
ζ = 0 → ζ � = θ + arctan�θ , (35)

with the remaining equations from Eq. (26) through
Eq. (29a) also remaining correct upon setting � = 0.
Specifically, Eq. (28) becomes Hr�

ζ � = 2��2
θ , such that

� = 0 may be implemented directly into Eq. (29) to obtain
θ(t) = θi + 4���

θ t with ��
θ = (θf − θi)/(4�T). Thus, in

the absence of any unitary shortcut or control, the best
measurement schedule that one can implement for finite-
time Zeno dragging is

ζ �(t) = θi + (θf − θi)
t
T

+ arctan
θf − θi

4�T
, (36)

which is a special case of Eq. (30). Interestingly, this
implies that one should not set the measurement axis
exactly on the expected instantaneous state but that one
should rather set it ahead of that expected Bloch angle
θ by the factor arctan��

θ . This forward lead in the Zeno
dragging gets larger when attempting to do the process
quickly (�T ∼ 1) but shrinks in the adiabatic limit �T 
1, where the Zeno-dragging process performs well with-
out any unitary assistance. We note that in the experiment
most closely related to our present formulation of the prob-
lem, it is clear that the main cluster of conditional states
lags behind the measurement axis by a small amount [52];
our optimal-control solution here explicitly compensates
for this effect [see Fig. 1(b)]. Related “offset” phenomena
have been observed in other optimal-control settings that
aim to accelerate an adiabatic process [126,127].

Since the Hamiltonian generator of the optimal dynam-
ics reduces to Hr�

ζ � = H�
ζ (ζ = ζ �) = 2��2

θ for � = 0, the
globally optimal solution (corresponding equivalently to
Hr�
ζ � = 0 or ��

θ(T) = 0, as above), is then given by ��
θ =

(θf − θi)/(4�T) = 0. This shows that optimal Zeno drag-
ging with measurement alone is obtained only in the limit
�T → ∞ that minimizes ��

θ , i.e., by rotating ζ as slowly
as possible from θi to θf . This makes physical sense: our
solution in Eq. (36) encourages us to work in the adiabatic
limit for Zeno dragging, while our equivalent solutions
in Eqs. (31) and (34) point us toward the possibility of
a faster operation via cooperative unitary and dissipative
evolution.

D. Evaluating the performance of our single-qubit
optimal solutions

A successful Zeno-dragging process will result in high-
purity quantum trajectories that closely follow a mea-
surement eigenstate throughout the time evolution of the
system. The LME given in Eq. (7c) describes the average
evolution over an ensemble of quantum trajectories (recall
also that this emerges from Eq. (7a) in the special case in
which the measurement outcomes are not collected, i.e.,
for zero measurement efficiency, η = 0). As such, we may
use the LME to characterize the average effectiveness of
our various Zeno-dragging solutions; both the purity of
the LME solutions and their fidelity to the desired evolu-
tion quantify the degree to which a Zeno-dragging process
(characterized by a choice of ζ(t) and �) will be effective
on average.

It is generically possible to solve the Lindblad equation
quasianalytically via diagonalization of the Liouvillian if
none of the unitary drives or dissipators are time depen-
dent [128] (for details pertinent to our present example, see
Appendix A). We further show there that when the sched-
ule on which the dissipator in Eq. (7c) varies is linear in
time [i.e., ḣ is a constant, as is the case for our optimal
schedule Eq. (30)], then the time dependence of the dissi-
pator is eliminated by transforming to the Zeno frame, so
that the diagonalization approach may be applied in that
frame. We may then use such a solution to compute the
average fidelity of a Zeno-dragging operation. In partic-
ular, if |ψf 〉 is the target final state and ρ(T) is the final
average state at the end of a Zeno-dragging operation, then
the general mixed-state fidelity [129]

F = tr
(√√|ψf 〉〈ψf |ρ(T)√|ψf 〉〈ψf |

)2

(37a)

may be used. For a qubit restricted to the x-z Bloch plane,
as in the above example, this reduces to

F = 1
2
(
1 + x(T) sin θf + z(T) cos θf

)
, (37b)
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(a)

(b)

FIG. 2. The average fidelity, F [see Eq. (37)], for the Zeno-dragging protocol that performs a bit-flip |g〉 → |e〉 using the CDJ-P
optimal schedule given in Eq. (30), with boundary conditions θf = 0 and θi = π . Both panels show the Rabi rate � of the unitary
drive (in units of the measurement strength �) on the vertical axis and the total dragging time T (in units �−1) on the horizontal
axis. The globally optimal CDJ-P–STZ solution given in Eq. (31) is marked with a dotted black line in both panels. (a) The contour
plot for a relatively short range of dragging times T and a large range of rotation rates �. The magenta lines denote the crossover
point �2 = (�− ζ̇ )2 between oscillatory Lindblad solutions (�2 < (�− ζ̇ )2) and decaying solutions (�2 > (�− ζ̇ )2). Our protocol
is intended for the regime of decaying solutions, i.e., where the Zeno effect stabilizes our target trajectory. The globally optimal CDJ-
P–STZ solution (dotted black line) sits at the center of this damped regime. The low-purity oscillations of the oscillatory Lindblad
regime are clearly visible outside the magenta curves. (b) The density plot illustrating the same dynamics, with an extended horizontal
axis that goes deeper into the adiabatic regime, where Zeno dragging works increasingly well without unitary assistance. A red-
hued color bar is employed for the oscillatory regime and a green-hued color bar for the damped regime. The STZ solution (dotted
black line) clearly converges toward the unitary drive amplitude � → 0 in the long-time limit, corresponding to the adiabatic limit at
which perfect Zeno-dragging fidelity can be achieved deterministically without unitary assistance. Both panels have been obtained by
numerical evaluation of the quasianalytical solutions for the averaged dynamics presented in Appendix A.

where θf is the target angle and x(T) and z(T) are the
Bloch-coordinate representation of the solution to the
Lindblad dynamics. This fidelity can be evaluated using
the solutions from Appendix A and is plotted in Fig. 2 for
a Zeno-dragging operation that performs a bit-flip |g〉 →
|e〉 using the optimal schedule given in Eq. (30). Two
important and expected features appear in Fig. 2. First, we
confirm that the solution given in Eq. (31) is globally opti-
mal, allowing a perfect average fidelity to be achieved for
all values of dragging time T. Second, we see how this

solution converges toward the unassisted Zeno dragging
of Sec. V C for long dragging times.

Figure 3 now shows the dynamics for Zeno dragging
of a qubit from the +x eigenstate to the +z eigenstate
over a finite time interval T. Specifically, here we show
the average state evolution for CDJ-P optimal Zeno drag-
ging that is designed to generate the target dynamics
θ(t) = (π/2T)(T − t). We compare different measurement
strengths, as well as solutions with and without the unitary
STZ. We see once again that working in the adiabatic
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(a)

(b)

FIG. 3. The Lindblad dynamics for a Zeno-dragging process on a single qubit that pulls the initial x = +1 eigenstate at t = 0 to the
z = +1 eigenstate at t = T are evaluated using the optimal linear schedule ζ � [see Eq. (30)] and plotted as (a) paths in the x-z Bloch
plane and (b) as the time-dependent z(t). The dashed lines show the solutions with� = 0, i.e., Zeno dragging alone, with no corrective
unitary control. The solid lines [(b) only] show the CDJ-P optimal solutions with the STZ drive � = ζ̇ added to the scheme, revealing
effectively perfect solutions from the optimal condition matching the rate of change of the measurement axis and the unitary drive,
provided that the measurement-axis rotation ζ(t) and unitary� are both implemented perfectly. Comparing the STZ and measurement-
only traces, we see how the matched measurement and unitary overcome the adiabatic-like time-scale issue inherent in Zeno dragging
alone, allowing us to now reproduce the good Zeno-dragging dynamics, i.e., those normally accessible only for �T  1, at arbitrarily
faster time scales.

regime �T  1 can generate a high dragging fidelity even
for � = 0, i.e., for Zeno dragging without supporting uni-
tary controls, while for smaller values of �T, the quality
of the Zeno-dragging control degrades. Here, the solutions
are increasingly impure, as diabatic effects become more
important at smaller T and/or smaller � values, but the tar-
get dynamics are nevertheless still recovered when the STZ
protocol is implemented. All of these features are expected,
given the adiabatic dynamics and that our STZ is designed

to accelerate those dynamics in a similar manner to the
shortcuts to adiabaticity of the more standard all-unitary
dynamical situation [11].

Figure 4 shows some representative individual trajec-
tories together with the ensemble average. It is evident
that these plots are consistent with the above conclusions.
We additionally note that the main cluster of trajecto-
ries follows the intended dynamics more closely than
does the average dynamics. This is because the average

(a)

t (arb. units) t (arb. units) t (arb. units)

(b) (c)

z

FIG. 4. Individual stochastic quantum trajectories for Zeno dragging a single qubit from 1√
2
|e〉 + 1√

2
|g〉 to |e〉, using the precomputed

linear in θ schedule [see Eq. (36)]. These are computed with a fixed dragging time T (arbitrary units) but with differing measurement
strengths �. Specifically, we use the values (a) �T = 2, (b) �T = 20, and (c) �T = 200. The average of an ensemble of 5000 trajecto-
ries is shown in dashed black, together with a dozen individual trajectories within that ensemble (various colors). The distance of each
trajectory from zf = 1 at the final time T is a good indicator of the overall error. As expected, the protocol is more robust for large
values of �T. Interestingly, we also note that for individually weak measurements (we use �t = 0.001[T] throughout), fluctuations at
shorter times are often corrected by subsequent measurements.
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dynamics include large fluctuations involving escape of
the system to the “wrong” measurement eigenstate. As
noted in Kokaew et al. [80], part of the motivation for
using the CDJ r-optimal paths to derive optimal controls
instead of the LME solutions is precisely this clustering
behavior in the conditional dynamics. Furthermore, it is
apparent from Fig. 4 that in the limit of weak continuous
measurements (individual detector integration intervals
�t � �−1), many trajectories that go off course at short
times actually correct themselves at longer times. This is
because measurement fluctuations away from the target
eigenspace are small enough to not constitute a complete
“collapse” to the “wrong” eigenstate, so that subsequent
weak measurements may still correct those fluctuations
with high probability.

E. Insights from the Zeno frame

Let us briefly reconsider this simple qubit problem in
the Zeno frame defined in the course of deriving our STZ
results. To put Eq. (26) in the Zeno frame, we may simply
define a new coordinate ϑ = θ − ζ and write

H�
ζ = 2�(�2

ϑ − 1) sin2(ϑ)+�ϑ

⎡

⎢⎣�− ζ̇︸ ︷︷ ︸
�eff

−2� sin(2ϑ)

⎤

⎥⎦ ,

(38)

where the diabatic frame rotation term now appears as
an effective unitary rotation. This transformation has been
simple due to the previous observation that Eq. (26) is
already a function of ζ − θ only. When ζ̇ is constant (i.e.,
for a linear schedule), H�

ζ Eq. (38) is time independent
in this frame; thus we have a frame that rotates with the
optimal schedule and so the optimally controlled dynamics
must follow lines of constant “stochastic energy” E = H�

ζ .
We may now derive the optimal “offset” in the schedule
solely by examining the fixed points in this Zeno frame
[130]. The fixed points ϑ̄ and �̄ϑ satisfy

ϑ̇ = ∂H�
ζ

∂�ϑ

= 0 and �̇ϑ = −∂H
�
ζ

∂ϑ
= 0, (39a)

which may be solved to obtain

�̄ϑ = ζ̇ −�

4�
and ϑ̄ = − arctan(�̄ϑ). (39b)

Substitution of these fixed-point expressions into ζ = θ −
ϑ then recovers Eqs. (29) and (30), i.e., the fixed points
allow us to quickly derive the “offset” by which the mea-
surement axis is ahead of the current state for finite drag-
ging times (because the whole idea of Zeno dragging is
to remain stationary in the Zeno frame). The Hamiltonian
phase portraits [123,125] of Eq. (38) appear in Fig. 5 to
illustrate the idea.

FIG. 5. The Hamiltonian phase portrait of Eq. (38), for � =
1 and �eff = 2. This highly diabatic case is shown to improve
visual contrast. The “energy” E = H�

ζ is conserved for constant
ζ̇ , such that the dynamical solutions follow lines of constant E .
The separatrix E = −�2/8� is shown in dark blue and the fixed
point within it, corresponding to Eq. (39b), is highlighted with a
cyan +. The offset between the origin (red +, representing the
measurement axis ζ = θ − ϑ in this frame) and the fixed point
(cyan +) gives us the optimal shift needed for a linear schedule
[cf. Eq. (30)]. Related analyses appear in, e.g., Refs. [81,87,105,
118,130].

F. Robustness of the optimal solutions

Given that our STZ solution calls for a redundant mea-
surement and unitary, one may ask: Is there any advantage
to “doubling up” on our controls in this way, as compared
to just performing a unitary by itself? We offer an analysis
in this section centered about this question, and offer some
further perspective again in Sec. VII.

Here, we address the following situation. Suppose that
we perform STZ but that both our measurement-axis con-
trol and unitary drive experience some drift or noise
that makes the operations imperfect. Suppose that � =
�0 +�ε and ζ = ζ0 + ζε for the moment, where the ε-
subscripted terms denote errors relative to the intended
STZ operations �0 = ζ̇0. We can then ask a more targeted
version of our question: For what, if any, types of errors
�ε and ζε , and measurement strength �T, do the STZ
dynamics remain more tightly clustered about the intended
evolution than the corresponding dynamics generated by
the unitary evolution alone? We here offer some numeri-
cal evidence that a suitable Zeno measurement does in fact
add robustness; the most-closely related formal work we
are aware of in the literature includes Refs. [34,78,131].

1. Impact of unitary noise on STZ

We begin by moving in the Zeno frame of our
intended operation, i.e., we take the Kraus operator given
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in Eq. (22) and implement Q̂†
0M̂r(ζ )Q̂0 = M̂r(ζ − ζ0),

for Q̂0 = e−iζ0σ̂y/2. Note that this implies that L̂(ζ ) → L̂
(ζ − ζ0) from this frame change, so that we may use
Eq. (10) to write the conditional dynamics

�̇ = i[�, Ĥ� − ḣ0] + Ẑ(ζ − ζ0)� + �Ẑ(ζ − ζ0)

− 2� tr
(
�Ẑ(ζ − ζ0)

)
, (40)

where � and Ĥ� are in the frame defined by Q̂0. We
will assume that the intended dynamics follow our STZ
protocol, such that �0 = ζ̇0. Our previous results can con-
sequently be adapted straightforwardly, where for a deter-
ministically misaligned measurement axis we have (still in
Stratonovich form)

ϑ̇ = Aϑ + bϑ
dW
dt

(41a)

for Aϑ = �ε − 2� sin(2ϑ − 2ζε) and

bϑ = 2
√
� sin(ϑ − ζε), (41b)

with � = �0 +�ε and ζ = ζ0 + ζε .
Consider first the following simple scenario: the uni-

tary drive experiences state-uniform Gaussian white noise
(independent of the fundamental measurement noise) as
per �ε = ε�dW�/dt, while ζε(t) is some deterministic
drift away from the intended measurement axis. We may
then rewrite

ϑ̇ = Aϑ |�ε=0 + bϑ
dW
dt

+ ε�
dW�

dt
, (42a)

as well as the corresponding Fokker-Planck equation (FPE,
or forward Kolmogorov equation) [122]

∂℘

∂t
= ∂

∂ϑ

{
1
2

bϑ
∂

∂ϑ
[bϑ℘] + ε2

�

2
∂℘

∂ϑ
− (Aϑ |�=0)℘

}
,

(42b)

where ℘ = ℘(ϑ , t|℘(ϑ , t = 0)). Given some initial dis-
tribution of states ℘(ϑ , t = 0), the FPE tells us how to
propagate the distribution forward in time. Note that in
the event of unitary operations only (i.e., without measure-
ment at all, � = 0), the error is analytically solvable for an
exactly prepared initial state, i.e.,

∂℘

∂t
= ε2

�

2
∂℘

∂ϑ
2 → ℘t = ℘(ϑ , t|℘0) = e

− (ϑ−ϑ0)
2

2ε2
�

t

√
2πε2

�t
(43)

for ℘0 = δ(ϑ − ϑ0).

Solutions to the FPE given in Eq. (42b) can be obtained
numerically and are shown in Fig. 6. Does perfect Zeno
dragging help to mitigate errors in the paired unitary?
Figure 6 says that the answer is both yes and no: yes, the
measurement helps to localize the state distribution about
the target state more tightly than if we performed a unitary
alone; but also no, because the measurement grows the tails
of the distribution by fueling escape toward the orthogo-
nal eigenstate. Both the positive and negative effects grow
with increased measurement strength. As expected, how-
ever, escape errors become increasingly unlikely when the
unitary error rate is smaller. In short, the addition of a
measurement is a net positive here, so long as the error

(a) (b)

(c) (d)

FIG. 6. Solutions to the FPE given in Eq. (42b), obtained
numerically (via finite-element methods). In panels (a)
and (b), diffusive unitary errors are generated as per
ε� = 0.01/

√
T, while in (c) and (d), this is reduced

to ε� = 0.001/
√

T. We choose the initial distribution
℘0 = (π/2

√
Tε�) cos2(πϑ/

√
Tε�) for numerical purposes,

which effectively assumes that the initial state is prepared
with a similar error rate as appears in our subsequent unitary
operations and is localized with certainty to a small region about
the desired initial state. The numerical solution of Eq. (43)
with this finite-width initial state is shown in dotted (a),(b) red
or (c),(d) magenta and deviates negligibly from the analytical
solution to Eq. (43) for exact initial-state preparation (solid red
or magenta lines). These reference lines without measurement
may be compared to the solutions including measurement [blue
in (a),(b); teal in (c),(d)]. FPE solutions with measurement are
shown for �T = 1, 3, 10, 30, 100 (blue or teal, with increasing
opacity denoting stronger measurement). In general, we see that
measurement tends to localize the peak of the distribution around
the desired state but also grows the tails of the distribution (by
sometimes encouraging collapse to “other” measurement
eigenstates). Recall that ϑ = 0 is the target state in the Zeno
frame, while ϑ = ±π is the opposite measurement eigenstate.
These localization and escape effects become more exaggerated
with increased measurement strength. Note that all vertical axes
are logarithmic, so that even quite rare escape events can be
discerned in these distributions.
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rate is small enough to make escape events sufficiently
rare.

2. Impact of measurement-axis noise on STZ

Let us now investigate the case in which our measure-
ment axis is also prone to stochastic errors. To what extent
are the results outlined in and around Fig. 6 modified? We
imagine that ζ = ζ0 + εζdWζ . We cannot use an FPE in the
same way as in Sec. V F, because the coefficients A and b
depend on ζ rather than ζ̇ , such that the history of the diffu-
sion is involved in setting the next step, making the process
non-Markovian. We can, however, still perform pure-state
trajectory simulations and histogram the distributions to
obtain the analogous Monte Carlo analysis.

For results from such an analysis, see Fig. 7. In broad
strokes, we draw the following conclusions from those
simulations. (i) For stochastic measurement-axis miscon-
trol at a similar scale to the unitary miscontrol, the peak
of the distribution widens to about the same width as for
the unitary errors without any measurement at all. (ii) The
measurement still encourages some escape to the “wrong”
eigenstate but for small-scale errors, these escape events
remain quite rare. Only for large measurement strength and
large miscontrol errors are these issues substantial. (iii) If

dissipation (without detection) is used for STZ, the most
basic intuition one might have about the problem appears
to be about right: dissipation will help stabilize an opera-
tion if the measurement-axis control is at least as precise
as the unitary.

3. Discussion: Monitored versus unmonitored errors

Point (iii) above suggests the ways in which a “mea-
surement” may have autonomous benefits even without
actual detection, provided that the dissipation engineer-
ing is sufficiently good to avoid creating more errors than
it suppresses. More work could be done to determine
the exact bounds or break-even points for realistic types
and scales of errors in STZ dragging operations. Some
related work about the scaling of autonomous quantum
error correction (AQEC) has already appeared in the lit-
erature [131]. This dissipation-only case is, however, the
weakest case of Zeno dragging: the full power of such an
approach becomes apparent if one actually monitors the
unitary and therefore gives oneself the ability to detect and
correct escape errors (escape away from the neighborhood
of the target eigenspace) in real time. Such a feedback
approach would effectively be an instance of continuous
quantum error correction [132–144] (CQEC instead of

(a) (c) (e)

(b) (d) (f)

FIG. 7. Histograms of the final-time states from simulations of 5000 trajectories each, including stochastic errors. A bit flip is
performed via STZ over time interval T = 1, with (a),(b) �T = 3, (c),(d) �T = 10, and (e),(f) �T = 30. The teal distributions are
for unitary error ε� > 0 but perfect measurement εζ = 0 (recall Fig. 6). The red distributions are for unitary error ε� > 0 with no
measurement performed at all. The yellow distributions are for both unitary miscontrol ε� > 0 and measurement-axis miscontrol
εζ > 0. (a),(c),(e) We use ε� = 0.001/

√
T = εζ , and observe that the red and yellow distributions more or less overlap (indicating that

the addition of a measurement prone to errors of a similar severity to the unitary has only a small effect on the distribution). (b),(d),(f)
We use εζ = 0.0003/

√
T = 0.3ε� and observe that despite the small probability of “escape” to the wrong eigenstate, the measurement

is a net positive for control if it is calibrated better than the unitary. The measurement record is not used to perform feedback in any
of the above; however, continuous monitoring does offer the possibility of continuously correcting operations, which would further
improve control by providing information about rare escape events, such that they could be corrected in real time.
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AQEC). Given that continuous measurements can be used
to diagnose coherent errors in experiments [145], we spec-
ulate that STZ with error detection could potentially also
be developed with applications to calibration tasks. This
connection between AQEC and CQEC is effectively the
same relationship that exists between dissipative Zeno sta-
bilization [27–29,47,56,57], and feedback-assisted Zeno
stabilization [25–34].

VI. BEYOND A SINGLE QUBIT

A. Setting up simple Zeno-dragging operations

We briefly describe how the formulas in Secs. II and III
may be repurposed to find a Lindblad operator L̂ to perform
a Zeno-dragging operation from |ψi〉 to |ψf 〉, where |ψi〉
and |ψf 〉 are states in an arbitrary Hilbert space.

Our first step will be to write down a Q̂ = e−iĥ, that
defines a change of basis into the Zeno frame (in which
the L̂ that we wish to find is diagonal). Consider

ĥ = iζ
2

|ψi〉〈ψf | − |ψf 〉〈ψi|√
1 − ∣∣〈ψi|ψf 〉∣∣2

, (44)

where the factor i and the sign between the two terms
in the numerator have been chosen so that Q̂ will be a
real-valued orthogonal matrix. One may generalize this
phase if a different convention better suits one’s needs. The
angle ζ swept over the full control operation is

∫
ζ̇dt =

∫
dζ = π

(
1 − ∣∣〈ψi|ψf 〉∣∣2

)
. We stress that construction of

the basis change associated with tracing a path between
boundary states above is not unique; it is meant only to
be a simple and valid formula. In writing down this par-
ticular expression, we are imposing a specific path over
which to realize |ψi〉 → |ψf 〉. Alternatively, the CDJ-P
strategy Sec. IV B, or another quantum control strategy,
might be used to optimize the path taken given a suit-
able parametrization of the abilities and constraints of a
given physical system. One could also impose a more com-
plicated continuous trajectory through Hilbert space via a
sequence of infinitesimal ĥ like the one above. The main
goal of this section, however, will be to illustrate that in the
event that we have simple dynamics like the planar rotation
given in Eq. (44), then the schedule-optimization problem
will remain relatively simple to solve, even if the dynamics
in question are embedded in a larger Hilbert space.

We now aim to turn the basis change Q̂ into a Lindblad
operator L̂(ζ ) that Zeno drags a marked state (or group of
states) through the larger Hilbert space. It is convenient to
use a D̃Z that differs from the convention of Eqs. (3) and/or
(9) only in that the “ostensible” probability is expanded
and retained in Z̃ = Ẑ − 1

4 r21̂. In the simplest case, one

may then construct a two-outcome D̃Z as per, e.g.,

D̃Z = −1
4

⎛

⎜⎜⎜⎝

(r − 2
√
�)2

(r + 2
√
�)2

(r + 2
√
�)2

. . .

⎞

⎟⎟⎟⎠.

(45)

This may be constructed so that outcomes centered around
r = +2

√
� herald success in following a marked state or

subpace [i.e., choose (r − 2
√
�)2 on matrix element(s) so

as to select the marked state or subspace to which one
wishes to restrict population], while outcomes centered
around r = −2

√
� herald failure of the dissipative or Zeno

confinement [i.e., assign this outcome to all state(s) besides
those marked]. With the diagonal matrix D̃Z in place, one
may then simply recover

Ẑ = Q̂D̃ZQ̂† + 1
4

r21̂ = rL̂ − L̂2 (46)

and solve for L̂. Note that the above construction of D̃Z =
diag{− 1

4 (r ∓ 2
√
�)2} implies that D̂L = diag{±√

�} and
therefore that D̂2

L = �1̂. References [60,61] offer a case
study in how an outcome structure and Zeno subspace
division such as that in Eq. (45) can be approximately engi-
neered in practice. Generalization to the case of more than
two groups of outcomes is straightforward.

B. A two-qubit example: Dissipative Bell-state
generation

We now construct an explicit example using the gen-
eral procedure outlined above. Here, we illustrate how one
might perform Zeno dragging from a separable two-qubit
state to a Bell state, once again using a linear optimal
schedule. In Sec. VI C, we will then be in a firm position to
discuss common features of our one- and two-qubit exam-
ples that define a “simple” class of analytically solvable
problems via CDJ-P.

Let us start by defining ĥ(ζ ) for initial state |gg〉 and
final state |�+〉 ∝ |ee〉 + |gg〉. Note that the boundary
states in question have 50% overlap, i.e., |〈gg|�+〉|2 = 1

2 .
This gives us

ĥ = i

2
√

2
ζ
(|�+〉〈gg| − |gg〉〈�+|)

= i
2

⎛

⎜⎝

0 0 0 ζ

0 0 0 0
0 0 0 0

−ζ 0 0 0

⎞

⎟⎠ , (47a)
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Q̂ = e−iĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
ζ

2

)
0 0 sin

(
ζ

2

)

0 1 0 0
0 0 1 0

− sin
(
ζ

2

)
0 0 cos

(
ζ

2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (47b)

We mark the bottom element of D̃Z, which initially corre-
sponds to |gg〉 at ζ = 0. Then, application of Eq. (46) leads
us to

L̂(ζ ) =

⎛

⎜⎜⎝

−√
� cos(ζ ) 0 0

√
� sin(ζ )

0 −√
� 0 0

0 0 −√
� 0√

� sin(ζ ) 0 0
√
� cos(ζ )

⎞

⎟⎟⎠ .

(48)

It is now helpful to parametrize our real and pure two-qubit
state in terms of three angles. We may use two local angles,
where θ has the same meaning as in our previous example
for one qubit, with ϑ in the analogous local Bloch angle
for the other qubit. A third nonlocal angle, χ , is used to
represent entanglement (such that concurrence C = sinχ )
[146] (for details, see Appendix C). This turns out to be
ideal for our chosen boundary conditions: we have |gg〉 ↔
{θ = π ,ϑ = π ,χ = 0} and |�+〉 ↔ {θ = π ,ϑ = π ,χ =
π/2}. Then we are able to set θ = π = ϑ and work in
the one-dimensional submanifold where only χ changes.
Under these simplifications, our conditional dynamics are
again reduced to a one-dimensional problem: the signal
and information-gain rate [see Eqs. (5) and (8d)] given by
our L̂(ζ ) are

S = 2
√
� cos(ζ − χ) and g = 2� sin2(ζ − χ), (49)

where g again takes on the role of a cost function in the
optimization [see Eq. (20)]. The conditional dynamics in
our one-dimensional submanifold are given by

χ̇ = 2r
√
� sin(ζ − χ). (50)

It should be clear at this point that our derivation has led
us to a Lindblad operator [see Eq. (48)] the parametric
dependence ζ of which effectively corresponds to a rota-
tion in the plane of the concurrence angle χ . We now
have the base ingredients from which to assemble the CDJ
stochastic Hamiltonian,

H� = 2�
(
[�χ sin(ζ − χ)+ cos(ζ − χ)]2 − 1

)

with r� = 2
√
�
(
�χ sin(ζ − χ)+ cos(ζ − χ)

)
.

(51)

As in our single-qubit example, H� depends strictly on ζ −
χ , such that the optimization in Eq. (20) will lead to the

costates �χ conjugate to χ being conserved in the optimal
dynamics. Moreover, the solution takes exactly the same
form as in the single-qubit case: we find that

χ� = χi + (χf − χi)
t
T

, (52a)

generated by

ζ � = χi + (χf − χi)
t
T

+ arctan
(
χf − χi

4�T

)
(52b)

for measurement-only dynamics. Lindbladian simulation
according to this optimal schedule (see Fig. 8) reveals the
expected behavior: the measurement-based Zeno controls
achieve asymptotically better fidelity and state purity as we
approach the adiabatic limit. STZ may again be applied via
Eq. (47a), leading to perfect finite-time evolution.

This example illustrates that for simple target evolution,
we may still obtain simple analytical solutions embedded
in larger Hilbert spaces. The proposed approach to entan-
glement generation is substantially different from other

t (T)

t (T )

FIG. 8. The fidelity to the target state, F�+ , and the purity,
P = tr

(
ρ2
)
, as functions of time, under Lindblad evolution with

Eqs. (48) and (52b). As expected, an entangled state can be
created with near-unit fidelity and purity (and therefore near-
unit probability, as well) in the limit �T  1. The time on the
horizontal axes is in units of the dragging interval T.
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schemes that use measurement or dissipation to create or
sustain coherent correlations (see e.g. [17,60,61,89,147–
150] and references therein).

C. An analytically solvable class of problems

We remark on the properties of a class of problems to
which both of our analytically tractable examples belong,
stemming from operations restricted to a planar rotation as
in Eq. (44). If the target operation can be parametrized by a
scalar ζ , and restricted to a plane as in Eq. (44), then a sin-
gle coordinate φ can be defined to parametrize the response
of the system to pure-state ζ rotations. That is, it will be
possible to reduce ρ̇ = i[ḣ, ρ] to an equation φ̇ uncoupled
from any other evolution. The same will apply to the pure-
state conditional evolution arising from L̂(ζ ) constructed
from the recipe in Sec. VI A.

Regarding the existence of the desired coordinate φ:
consider a pure state |φ0〉 under the weak measurement
(with unit efficiency) of an observable L̂ ∝ |φ1〉〈φ1|. The
postmeasurement state |φ′

0〉 is a linear combination of |φ0〉
and |φ1〉, i.e.,

|φ′
0〉 ∝ M̂ |φ0〉 ∈ RSpan{|φ0〉, |φ1〉}. (53)

The Kraus operator M̂ is given by Eq. (3a) with η = 1 and
RSpan{|φ0〉, |φ1〉} is Span{|φ0〉, |φ1〉} with real coefficients,
i.e.,

RSpan{|φ0〉, |φ1〉}

=
{
|φ〉
∣∣∣∣|φ〉 = sin(ζ )|φ0〉 + cos(ζ )|φ1〉, ζ ∈ [0, 2π)

}
.

(54)

Obviously, RSpan{|φ0〉, |φ1〉} is a plane defined by |φ0〉
and |φ1〉 and any state in it can be described by a single
parameter ζ as seen in Eq. (54).

This also holds when we are in the limit of continuous
measurement �t → 0, where the dynamics are described
by Eq. (7b) (or a stochastic Schrodinger equation) for
pure states. When a pure state |ψ(t)〉 ∈ RSpan{|φ0〉, |φ1〉}
is driven by a Hamiltonian as in Eq. (44), the state
will remain in RSpan{|φ0〉, |φ1〉}. Adding measurement, if
∀t ∈ [0, T], we have the measurement observable L̂(t) be
related to a pure state |φ(t)〉 ∈ RSpan{|φ0〉, |φ1〉} via L̂(t) ∝
|φ(t)〉〈φ(t)|, then we will again have the system state
|ψ(t)〉 ∈ RSpan{|φ0〉, |φ1〉} under this continuous measure-
ment. Therefore, when the dynamics include only the
continuous monitoring and/or the Hamiltonian dynamics
driven by ḣ, one only needs a single parameter φ to
describe the system dynamics, where the rate of unitary
motion � and measurement-axis position ζ both act solely
within RSpan{|φ0〉, |φ1〉} parametrized by φ.

When the above holds, one is then guaranteed that
the conditional evolution (with or without STZ) can be

expressed by a single coordinate as per φ̇ = Aφ(φ −
ζ )+ bφ(φ − ζ )dW(t)/dt. If this is true then, in turn, one
may immediately understand that Eq. (20) guarantees that
�̇φ = −∂ζH� = 0, such that the costate�φ conjugate to φ
will be conserved under the optimized dynamics, as in the
above examples. It should then be generically possible to
solve both for the optimal schedule ζ �(t) and the optimal
evolution φ�(t) explicitly.

D. Beyond analytical solutions: Outlook on numerical
approaches

Restricting ourselves to simple planar rotations inside a
larger Hilbert space does limit the power and applicability
of the CDJ-P method. There will be many settings in which
it will either be (i) impossible to impose such a simplifi-
cation due to experimental constraints and/or (ii) advan-
tageous to allow the optimization procedure more freedom
to choose the path between boundary states without restric-
tion. These typical cases will likely have to be approached
numerically. Fortunately, many existing numerical strate-
gies might be adapted to the CDJ-P action and thereby
be used for measurement-driven control. Those strate-
gies include, e.g., the gradient-ascent, KROTOV, or PRONTO
algorithms [2,151–153], all of which have a basis in clas-
sical control [155,156] and have been successfully adapted
to unitary quantum control [2,10,157–160]. It appears rel-
atively straightforward to adapt these algorithms to the
pure-state CDJ action associated with Eq. (16), simply
by treating r as another auxiliary set of controls. Joint
numerical optimization of {r, ζ } for cost function G [see
Eq. (8c)], under the constraint q̇ = F(q, r, ζ ), and with
some enforcement of the final boundary conditions, is a
problem compatible with the structure of existing control
algorithms. It is conceivable that the analytical r�(q, �, ζ )
solutions might be adapted into versions of these algo-
rithms specifically suited to measurement-based CDJ-P
control in future work but this does affect the way in which
costates and boundary conditions are handled.

All of those algorithms just mentioned begin with a trial
control trajectory and aim to iteratively adjust the con-
troller trajectory until it converges satisfactorily close to its
optimum. As such, a good first guess ζ �(0)(t) and r�(0)(t) is
generally beneficial, if not required. Fortunately, our sim-
ple examples above provide numerous insights that could
ostensibly be leveraged to make such first guesses in a
systematic and informed way.

VII. DISCUSSION AND OUTLOOK

In this work we have put forward two methodologies
related to Zeno dragging (measurement-driven control) of
quantum systems. First, we have shown that a “short-
cut to Zeno” (STZ) may be derived in the same spirit
as all-unitary shortcuts to adiabaticity [11]. Second, we
have demonstrated that the CDJ stochastic path integral
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[81,114] offers a pathway toward performing a Pontryagin-
style optimization of a measurement-driven controller. We
have applied both methods to the example of a single qubit
[52] and found that they generate identical optimal solu-
tions, revealing that a monitored unitary offers ideal per-
formance in which one finds unit-probability success for a
Zeno operation that provides dissipative stabilization of a
subspace. The CDJ-P action offers insight into this point:
it simultaneously represents the control cost and quantum
trajectory probability and hence the controlled behavior
converges toward occurring deterministically when the
action is minimized all the way to zero. We have further
demonstrated that redundant unitary- and measurement-
driven dynamics have some resilience against controller
errors, compared to unitary evolution alone. Finally, we
have shown how the method can be adapted to larger
systems and included an explicit two-qubit example.

A. Discussion

We may state an informal definition of Zeno dragging,
based on the situations considered in this work, as follows.
We conjecture that Zeno dragging is a viable approach
to driving a quantum system from some initial |ψi〉 to a
final |ψf 〉 if and only if there exist parameter(s) ζ control-
ling the choice of measurement such that (i) a continuous
sweep in ζ is possible and (ii) that this generates a con-
tinuous deformation of a local minimum of g(ρ, ζ ) that
traces a path from |ψi〉 to |ψf 〉. In the Zeno frame, any such
local minimum would be rendered stationary. For single-
measurement situations this condition is clearly met, since
by moving the measurement axis we necessarily control
the trajectory of a root of g(ρ, ζ ). However, we further
expect the concept of Zeno dragging as a whole to extend
in principle to more general situations that preserve the
stated condition on g(ρ, ζ ).

In Fig. 1, we present the simplest example of what
we have just described. For a single qubit, by varying
ζ , we vary a single measurement axis and thereby have
the freedom to rotate the roots of g(q) (which are the
measurement eigenstates, or Zeno points) to any pure
state in the x-z Bloch plane that we wish. In the event
that we monitor this process with perfect efficiency, we
will have a pure real-time state estimate in individual
runs of the Zeno-dragging protocol. We have used these
pure-state conditional dynamics mathematically to derive
our optimal-control scheme. However, when performed
well, Zeno dragging does not actually require monitoring
at all—just controlling the dissipation without detection
is adequate. This can be understood from the following
considerations:

(1) If we follow a measurement eigenstate perfectly as
ζ changes, then there is never actually any diffusion

away from that instantaneous eigenstate of L̂ (or,
equivalently, from the root of g).

(2) If there is no diffusion away from the eigenstate,
then the dynamics have become deterministic.

(3) Equivalently to (2), the dynamics resulting from
such a deterministic process on an instantaneous
eigenstate are guaranteed to provide a pure state
on average (irrespective of the efficiency η), since
there is no purity loss without averaging over a
distribution of possible conditional states [161].

Each of these statements is effectively equivalent and can
be taken as a description of a perfect Zeno-dragging pro-
cess, as implemented either with the globally optimal
CDJ-P–STZ solution (i.e., with unitary assistance) or in
the adiabatic limit of �T → ∞ (with measurement only).
We have demonstrated this explicitly for the single-qubit
example in Fig. 2, where we see that our globally optimal
CDJ-P–STZ solution does in fact give perfect state fidelity
on average, indicating that we have realized determinis-
tic control. The fact that Zeno dragging can work well
on average, i.e., without actually monitoring the results
in individual runs, makes it a much more appealing pro-
tocol for experiments. We see that our continuous mea-
surements are effectively ensuring dissipative stabilization
of the Zeno-dragged state in the manner of autonomous
processes. From this perspective, our chosen example is
similar to autonomous-state stabilization protocols (see,
e.g., Ref. [162]), where we have now considered the opti-
mal way to dynamically vary the point that is stabilized.
We note that related analyses have also appeared in the
literature on feedback control [30,33].

The connection to autonomous processes is not an
accident but is in fact deeply embedded in the construc-
tion of our CDJ-P method. Consider that we derive the
CDJ action from statistical premises [see Eq. (14) and
Ref. [81]] such that action extremization is simultane-
ously the condition for optimized measurement-driven
controls and extremized event probability. While the CDJ
optimal paths have in the past been used extensively
to study properties of rare sequences of measurement
events, here we have a confluence of optimal control
and the most probable events. This is arguably the most
fundamental result of this paper: a good cost function
for optimal measurement-driven control is the integrated
log-probability density for sequences of readouts, such
that controller optimization and statistical optimization
are then necessarily performed together. The CDJ action
[81,114] here provides the link between the statistics
and Pontryagin principle. Thus, the possibility of real-
izing deterministic and pure-state dynamics is a rela-
tively general feature of the situation that we consider,
despite the intrinsic presence of stochasticity (or deco-
herence) in a measurement-driven (dissipation-driven)
scenario.
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B. Outlook

The STZ and CDJ-P methods present different
perspectives for further development. For the CDJ-P opti-
mization, while we have found an example with a straight-
forwardly tractable solution, we do expect the optimization
procedure to be relatively more difficult to implement in
larger systems. Furthermore, the coordinate parametriza-
tion of larger systems can become cumbersome in general
(even with a restriction to pure states). The CDJ-P analy-
sis in the single-qubit example of Sec. V has been made
significantly easier because it has been simple to intu-
itively guess a good coordinate system for the problem
a priori; while we have shown that there exist situations
in larger systems that retain this simplicity, it is unlikely
to be easy to divine similarly helpful coordinates out-
side of those situations in which simple target dynamics
can be enforced. Moreover, the imposition of simplified
dynamics substantially restricts the power of the CDJ-P
method: given more freedom, it is perfectly capable in
principle of finding the optimal path between boundary
states along with the accompanying schedule (see remarks
in Ref. [80]). We expect that for many practical applica-
tions, numerical solution of the optimality conditions will
be important, as discussed in Sec. VI D.

There are also some obvious criticisms of the STZ solu-
tion using a matched unitary. First, one may ask whether
it is worthwhile to add dissipative stabilization if we are
going to perform a unitary operation that would realize the
target evolution on its own anyway. We have argued in
Sec. V F that under simple error models, the redundancy
adds robustness to the operation, provided that the mea-
surement motion and unitary motion are both relatively
well calibrated. Further advantages are possible when the
Zeno effect is used for continuous error suppression (see
further remarks below). Second, for the simple qubit exam-
ple of Sec. V; the STZ result is obvious enough that it
can be written down intuitively, without requiring the the-
oretical formalities developed in this work. However, we
have not only shown that the STZ and CDJ-P methods
agree and reproduce an intuitive result in a simple set-
ting but we have also generalized their use well beyond
the single-qubit problem where the answer is intuitive.

There are a number of potential ways to build on the
tools we have established and connected above for more
general applications. Our STZ suggests a method for map-
ping dissipative stabilization or Zeno-dragging operations
onto adiabatic unitary evolution and vice versa; this may
prove useful in and of itself. Additional extensions are
suggested by consideration of recent results in which the
Zeno effect has been used for control. In particular, it is
possible to engineer measurements that Zeno block the
escape from a subspace without monitoring within that
subspace, i.e., one may use the Zeno effect to define an
effective decoherence-free subspace (DFS) [163] within a
larger system [47,57,58,60,61]. Such use of the Zeno effect

allows one both to stabilize that subspace dissipatively
and to alter the dynamics within the subspace in useful
ways. This suggests a natural extension of the tools that
we have developed here. For example, one may optimize
the schedule on which a DFS is dynamically varied over
the course of the evolution of a system and have a sys-
tematic way of deriving a paired unitary that improves
the probability of the Zeno blocking (DFS confinement)
succeeding. This is one possible extension of the method-
ological foundation we have presented here that could be
usefully explored in future work. We are aware of one
experimentally accessible example of a process like the
one just described, namely the dissipatively stabilized cat
qubits encoded in bosonic modes [62–66,68–70]. These
already use a time-dependent dissipation channel paired
with an optional “feed-forward” Hamiltonian to perform
some logical one- and two-qubit gates. The use of the Zeno
effect to stabilize subspaces in these systems is a key fea-
ture in suppressing qubit errors and provides an example of
a setting in which the presence of dissipation is extremely
helpful (recall the first point in the preceding paragraph).
Extension of these dissipative stabilization methods to grid
states of an oscillator has also been proposed [67,164,165];
this setting is again of contemporary experimental interest
[166,167], including within the context of error correction
[168–170]. Broadly speaking, the use of Zeno-like dis-
sipators to suppress errors is referred to as autonomous
quantum error correction [131,171–176]; the cat qubit
examples we have just mentioned are one experimentally
accessible example of this paradigm. Following this logic,
application of the ideas in the present paper to a larger
system may also have interesting points of contact with
continuous quantum error correction [132–144]. In other
words, just as insights about the stabilizing properties of
the dissipative (average) Zeno effect [57,70] can be lever-
aged to correct measurement-driven quantum operations
on average, so too should feedback be able to system-
atically improve these stabilizing properties [25–34], to
implement real-time correction of those operations. Quan-
tum measurements are invasive, and are thus never a
passive element in a monitored unitary; well-engineered
measurements for monitored operations offer the possi-
bility of using that invasiveness constructively, to realize
robustly correctable quantum control.

To summarize, in this work we have laid out some
strategies to compute the optimal time dependence for an
evolving quantum dissipator and illustrated that a “short-
cut to Zeno” allows such time-dependent dissipation to
be paired with optimally designed control unitaries to
achieve perfect-fidelity dissipatively stabilized quantum
operations. This is expected to be a relatively general fea-
ture, because the CDJ path integral shows us that the
controller cost that should be optimized is derived directly
from the probability density for the measurement readout
statistics. It is apparent from the examples cited in the
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previous paragraph that the use of dissipation engineer-
ing to protect and manipulate quantum information is a
diverse and increasingly active subfield. We expect that the
general theoretical results developed in this work will have
use well beyond the simple examples we have presented
to illustrate the optimal Zeno-dragging approach and will
find wider use supporting ongoing efforts in quantum
information science.

ACKNOWLEDGMENTS

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, National
Quantum Information Science Research Centers, Quantum
Systems Accelerator. Publication made possible in part
by support from the Berkeley Research Impact Initiative
(BRII) sponsored by the UC Berkeley Library. P.L. grate-
fully acknowledges discussions with Areeya Chantasri and
Thiparat Chotibut about their work [80], as well as with
Arianna Cylke, Andrew Jordan, Howard Wiseman, and
Areeya Chantasri about the interpretation of g(q) in con-
nection with Ref. [107]. P.L. further acknowledges con-
versations with Justin Lane and Hugo Ribeiro about STA,
which later inspired some of the results about STZ that
have been developed above. P.L. and Y.Z. have benefited
from discussions in which Torin Stetina has shared a per-
spective about the connection to adiabatic approaches to
quantum computing. P.L. and K.B.W. are grateful for dis-
cussions with Mazyar Mirrahimi, Pierre Rouchon, Alain
Sarlette, Ronan Gautier, Jérémie Guillaud, François-Marie
Le Régent, Rémi Robin, and Lev-Arcady Sellem, that
helped us to understand the connection to dissipatively
stabilized qubits encoded in bosonic modes. We further-
more thank Shay Hacohen-Gourgy, Archana Kamal, Josh
Combes, and Uwe Fischer for pointing out some relevant
references. PL is grateful to the UMass Lowell department
of Physics & Applied Physics for their hospitality during
part of this manuscript’s preparation. This document has
been written without the use of AI. Simulations and calcu-
lations have been performed with the help of PYTHON and
Mathematica.

APPENDIX A: SOLVING LINDBLAD DYNAMICS
FOR A LINEAR DRAGGING SCHEDULE

1. A Liouvillian formulation of unidimensional
Lindblad rotations

In Sec. VI A, we have described how to derive a Lind-
blad operator that uses Zeno dragging to mimic a planar
rotation [see Eq. (44)] between two boundary states. Here,
we make some extended comments about this particular
construction. Equation (45) is generically compatible with
a measurement based on Gaussian pointer states and/or

detectors (e�tD̃Z behaves like an unnormalized Kraus oper-
ator in the diagonal basis, where the normalization con-
dition in Eq. (1) could then be applied), monitoring a
Hermitian observable that leads to diffusive quantum tra-
jectories in the time-continuum limit. One common way
to realize measurements of the type of above is with
dispersive qubit-cavity coupling [40,41,44,88,95,177] and
quantum limited amplifiers that behave much like optical
homodyne or heterodyne detection. Many other physical
implementations are, however, also compatible with the
above. Generalization of D̃Z to more than two outcomes
and/or subspaces is straightforward (and is likely to arise
naturally in modeling the physics of specific measurement
devices [60,61]).

Confinement to a state or subspace should always work
well even on average (i.e., in the Lindbladian dynamics)
in the adiabatic limit of slow rotation of the measure-
ment axis. The construction of Eqs. (44) and (45) also
makes clear that if outcomes can be grouped to mark a
state or subspace, then escape can be detected and pos-
sibly corrected when true measurements are made (i.e.,
if the experimentalist has access to the readouts r with
efficiency η > 0). Works on continuous quantum error cor-
rection have considered detection and correction of errors
in closely related scenarios [139–144].

Given the autonomous nature of a near-optimal Zeno-
dragging process, we now look at the Lindblad dynamics
for the simple construction of Sec. VI A more closely.
The Lindblad dynamics given in Eq. (7c) (η = 0) may be
written | ρ̇ 〉〉 = L | ρ 〉〉 in terms of the Liouvillian superop-
erator,

L = L̂
 ⊗ L̂ − 1
2
1̂ ⊗ L̂2 − 1

2
(L̂
)2 ⊗ 1̂ (A1)

(for column-major vectorization ρ → | ρ 〉〉). The dissipa-
tive Liouvillian is itself diagonalized by the operation that
diagonalizes L̂, i.e.,

DL = (Q̂
 ⊗ Q̂†)L (Q̂∗⊗Q̂)

= D̂L ⊗ D̂L − 1
2
1̂ ⊗ D̂2

L − 1
2

D̂2
L ⊗ 1̂

= D̂L ⊗ D̂L − �1̂ ⊗ 1̂. (A2)

It follows that the Liouvillian gap [54,55] is given
by |�L | = 2� in the suggested construction given in
Eq. (45).

2. A solvable Liouvillian in the Zeno frame

We briefly describe how the idea of moving to the Zeno
frame, as in Eq. (10), can be used to obtain quasianalytical
solutions to the Lindblad master equation [see Eq. (7c)]
for a Zeno-dragging operation with a time-linear schedule.
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Recall that we have defined � = Q̂†ρQ̂ and D̂L = Q̂†L̂Q̂, with Q̂ = e−iĥ such that Q̇†Q̂ = iḣ and Q̂†Q̇ = −iḣ. Let us apply
this frame change to Eq. (7c), such that

�̇ = Q̇†ρQ̂ + Q̂†ρQ̇ + Q̂†ρ̇Q̂ (A3a)

= Q̇†Q̂� + �Q̂†Q̇ + Q̂†
{

i[ρ, Ĥ ] + L̂ρL̂† − 1
2

L̂†L̂ρ − 1
2
ρL̂†L̂

}
Q̂ (A3b)

= i[�, Q̂†Ĥ Q̂ − ḣ] + D̂L�D̂L − 1
2

D̂2
L� − 1

2
�D̂2

L, (A3c)

where we have applied L̂ = L̂† in the last line. This equation is linear in � and our frame change has eliminated time
dependence from the dissipator, shifting it to the ḣ term that modifies the Hamiltonian. In the event that the schedule is
linear in time (i.e., ḣ is time independent) and Q̂†Ĥ Q̂ does not have any time dependence remaining in this Zeno frame,
then an analytical solution in terms of the eigenvectors of the Liouvillian may be constructed in this Zeno frame. Related
comments about the Zeno frame have been made in the literature (see, e.g., Ref. [53,130]).

Let us apply this to compute the fidelity of the average Zeno-dragging dynamics (without STZ) under our optimal
schedule, given in Eq. (36). We now have a (non-Hermitian) Liouvillian, such that

| �̇ 〉〉 = L | � 〉〉 =
(

i
{

Q̂†Ĥ Q̂ − ḣ
}


⊗ 1̂ − i1̂ ⊗
{

Q̂†Ĥ Q̂ − ḣ
}

+ D̂L ⊗ D̂L − �1̂ ⊗ 1̂

)
| � 〉〉 (A4)

is equivalent to Eq. (A3). We may then diagonalize L via similarity transformation, i.e., DL = Q−1LQ, where Q is a
square matrix the columns of which are the right eigenvectors of L . Then, a solution to Eq. (A3) of the form

| �(t) 〉〉 = Q exp(tDL )Q−1| �(0) 〉〉 (A5)

exists so long as Q is invertible and L is time independent in the Zeno frame. [Equivalently, the above solution exists
for any choice of time-independent parameters that do not form an exceptional point (EP) of L [178].] The full solution
procedure then reads as follows:

(1) Write the initial state in the Zeno frame, i.e., ρi → �(0) = Q̂†
0ρiQ̂0.

(2) Apply Eq. (A5) to solve the dynamics in the Zeno frame.
(3) Return the solution back to the original frame �(t) → ρ(t) = Q̂t�(t)Q̂

†
t , where Q̂t = Q̂(ζ(t)).

We reiterate that the above requires (i) that ζ depend linearly on time in the sense that ḣ is a constant and (ii) that Q be
invertible for the parameters chosen.

Following the example in the main text, let us use Ĥ = 1
2�σ̂y and

ḣ = ζ̇

2
σ̂y = θf − θi

2T
σ̂y = �θ

2T
σ̂y and D̂L =

(√
� 0

0 −√
�

)
, (A6)

which is the example of Sec. V. This is consistent with the use of the optimal schedule given in Eq. (30), which aims
to Zeno drag the qubit state an angular distance �θ over the time interval T, with a measurement strength �. We have
Q̂†Ĥ Q̂ = Ĥ because [Q̂, Ĥ ] = 0 for our chosen example. In this particular case, we find

Q =

⎛

⎜⎜⎜⎜⎝

1 0 �− ζ̇ �− ζ̇

0 −1 � −
√
�2 − (�− ζ̇ )2 � +

√
�2 − (�− ζ̇ )2

0 1 � −
√
�2 − (�− ζ̇ )2 � +

√
�2 − (�− ζ̇ )2

1 0 ζ̇ −� ζ̇ −�

⎞

⎟⎟⎟⎟⎠
and (A7a)

DL =

⎛

⎜⎜⎜⎜⎝

0 0 0 0
0 −2� 0 0

0 0 −� +
√
�2 − (�− ζ̇ )2 0

0 0 0 −� −
√
�2 − (�− ζ̇ )2

⎞

⎟⎟⎟⎟⎠
. (A7b)
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We have an EP at �2 = (�− ζ̇ )2. This marks a transition from an overdamped regime in which solutions damp to the
target state via the Zeno effect (for �2 > (�− ζ̇ )2) and an underdamped regime (for �2 < (�− ζ̇ )2) in which unitary
rotations win out over the Zeno dynamics (low-purity oscillations take place). The above solution method works for all
parameter choices except �2 = (�− ζ̇ )2, i.e., at the critical damping point (or EP) marking the boundary between the
overdamped and underdamped solution regimes.

We use solutions based on this method to construct Fig. 2, illustrating the average fidelity of a Zeno-dragging operation
on a qubit. The solutions obtained from the above process with our optimal schedule are sufficiently cumbersome that we
do not reproduce them here in full (the expressions are impractical to handle without a computer-algebra system). While
the difficulty of doing even parts of this procedure analytically will quickly become prohibitive with an increase in system
size, the above analysis can be the basis for a good numerical scheme in the adiabatic regime (which necessarily includes
long evolution times), as long as L can be diagonalized numerically (for further context, see, e.g., Ref. [128]).

APPENDIX B: STZ AS AN OPTIMAL FEEDBACK PROTOCOL

Here, we revisit the example of Sec. V from a third perspective (supplementing the STZ and CDJ-P procedures
described in the main text). Specifically, here we will show that the proportional and quantum state-based (PaQS)
procedure [20,21], which is a protocol for optimal feedback control, also leads us to the STZ solution given in Eq. (34).

PaQS, like our STZ procedure, encourages us to take the measurement schedule as a given and then search for the
optimal feedback unitary Û(φ) = e−iφσ̂y , where the control parameter φ may depend on the measurement records. Here,
we know that the “control Hamiltonian” must be proportional to σ̂y , with the intuition that Û(φ) should be a real-valued
matrix. We denote the density matrix conditioned on measurement outcomes at time t by ρt and the (controlled) density
matrix after the measurement as well as the feedback unitary by ρc

t . The Itô stochastic master equation for continuous
diffusive measurement reads

dρt = L(L̂, ρt)dt + K(L̂, ρt)dW for L(L̂, ρt) = L̂ρL̂† − 1
2

L̂†L̂ρt − 1
2
ρtL̂†L̂

and K(L̂, ρt) = L̂ρt + ρtL̂† − ρt tr
(

L̂ρt + ρtL̂†
) (B1a)

in general. Note that in contrast to the main text, we have switched to the Itô formalism in this appendix and we write
the measurement noise in terms of a Wiener increment dW. For our qubit example with L̂(ζ ) = √

�
(
σ̂x sin ζ + σ̂z cos ζ

)
,

Eq. (B1) can be reduced to

ρt+dt = ρt + dρt = ρt + �
{

L̂ρtL̂ − ρt

}
dt +

√
�
{

L̂ρt + ρtL̂ − 2ρt tr
(

L̂ρt

)}
dW. (B1b)

Applying feedback, we have

ρc
t+dt = ρc

t + dρc
t = Û(φ)ρt+dtÛ†(φ). (B2)

Here, we will assume that the measurement-axis rotations are not stochastic (i.e., dζ = ζ̇dt) but assume that the feedback
could be stochastic as per Û = e−iφσ̂y with φ = αdt + βdW, where α and β are some (real) numbers specifying the
feedback strategy. Expanding to O(dt) using Itô’s lemma dW2 = dt, one finds that

Û(φ) = 1̂ − βσ̂ydW −
(

iασ̂y + 1
2
β21̂

)
dt + O(dt dW). (B3)

Using Eqs. (B1) and (B2) and expanding everything as per Itô calculus, we find that

ρc
t+dt = ρc

t +
{
K(L̂, ρc

t )+ iβ[ρc
t , σ̂y]

}
dW +

{
L(L̂, ρc

t )+ L(βσ̂y , ρc
t )+ i[ρc

t ,ασ̂y] + i
[
K(L̂, ρc

t ),βσ̂y

]}
dt

= ρc
t + Xc(ρ

c
t )dW + Yc(ρ

c
t )dt. (B4)

Continuing to follow the PaQS protocol [20,21], we formulate a cost function as an expectation value, defining F(φ) =
tr
(
ρc

t L̂(ζ )
)

= tr
(

Û(φ)ρtÛ†(φ)L̂(ζ )
)

. Then, the locally optimal feedback should satisfy
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∂F
∂φ

∣∣∣∣
t+dt

= ∂

∂φ
tr
(

L̂(ζ + dζ )Û(φ)ρt+dtÛ†(φ)
)

= tr

((
L̂(ζ )+ ζ̇

∂L̂
∂ζ

dt

)
[ρc

t+dt, iσ̂y]

)
= 0

= tr
((

L̂(ζ )+ ζ̇dt ∂ζ L̂
) [
ρc

t + Xc(ρ
c
t )dW + Yc(ρ

c
t )dt, iσ̂y

])

= tr
(

L̂(ζ )[ρc
t , iσ̂y]

)
+ tr

(
L̂(ζ )[Xc(ρ

c
t ), iσ̂y]

)
dW + tr

(
L̂(ζ )[Yc(ρ

c
t ), iσ̂y] + ζ̇ (∂ζ L̂)[ρc

t , iσ̂y]
)

dt, (B5)

where the Itô rule has been used as needed to truncate
expressions to O(dt). We may solve this equation by indi-
vidually finding the root of the three terms that are O(1),
O(dW), and O(dt). We may understand that the O(1)
term reduces to zc

t sin ζ = xc
t cos ζ , which is satisfied by the

obvious constraint that the optimally controlled dynamics
ρc

t should follow an eigenstate of L̂(ζ ), i.e.,

ρc
t = 1

2

(
1̂ ± L̂(ζ )

)
. (B6)

This could equivalently be understood as a condition
that the optimal-control problem was previously solved
at time t, while we now consider solving it for t + dt
by considering the next two terms. We substitute this
form of ρc

t as given in Eq. (B6) into Eq. (B5), in order
to find

−4β
√
� = 0 → β = 0 (B7a)

from the O(dW) term and

2
√
�(ζ̇ − 2α) = 0 → α = 1

2
ζ̇ (B7b)

from the O(dt) term. We may now recognize that the
PaQS approach [20,21], slightly modified to account for
our time-dependent observable, has reproduced the results
that we have derived as a “shortcut to Zeno” in the main
text, since α = 1

2�; hence Eq. (B7b) reproduces Eq. (34)
exactly. The condition β = 0 as given in Eq. (B7a) just
confirms that our control can be open loop, in the sense that
it remains independent of the diffusive noise in individual
measurement realizations, as discussed in Sec. III.

As a final remark, this feedback derivation has been per-
formed with a cost function F = 〈L̂〉, while in the main text
we have used g = 2〈L̂2〉 − 2〈L̂〉2. It is easy to check, how-
ever, that in this case there is in fact no difference between
the results that these give. Because our qubit example sat-
isfies L̂2 ∝ 1̂, we have g = 2

(
� − 〈L̂〉2

)
. Following the

process of Eq. (B5), it is then simple to verify that the opti-
mum of F is also the optimum of g, such that F and g
may be used interchangeably in the context of this feed-
back optimization. This property applies for any single
observable of the form L̂ ∝ 1̂ − 2�̂, where �̂2 = �̂ is a
projector.

APPENDIX C: A MINIMAL PARAMETRIZATION
OF TWO-QUBIT STATES

Note that as a matter of convention, we will notate two-
qubit state vectors in the basis

|ψ〉 =

⎛

⎜⎝

a
b
c
d

⎞

⎟⎠

|ee〉
|eg〉
|ge〉
|gg〉

, (C1)

with the usual notation for the Bell basis,

|�±〉 = 1√
2
(|ee〉 ± |gg〉) and

|�±〉 = 1√
2
(|eg〉 ± |ge〉) . (C2)

In general, we may write a two-qubit density matrix as

ρ = 1
4

⎛

⎝1̂4 +
∑

i,j

qij σ̂ij

⎞

⎠ for σ̂ij = σ̂
(A)
i ⊗ σ̂

(B)
j . (C3)

There are in general 15 real coordinates in the vector
q, corresponding to 15 generalized Gell-Mann matrices
σ̂ , that are defined for all combinates i, j = I , X , Y, Z,
excluding i = I = j , i.e., excluding 1̂2 ⊗ 1̂2 = 1̂4. This
parametrization has the property that qij = tr

(
ρσ̂ij

)
and

q̇ij = tr
(
ρ̇σ̂ij

)
, such that the dynamics can be eas-

ily expressed as a dynamical system of equations in
these q.

We can, however, greatly reduce the size of the coordi-
nate space by using some simplifying assumptions:

(1) Our initial state is pure.
(2) Our initial state has only real amplitudes and/or an

all-real density matrix ρ.
(3) η = 1 on any and all measurements (to retain purity

of the conditional dynamics).

Then, we have only real amplitudes and pure states for all
time. In this case, it is possible to express our dynamics in
terms of only three real coordinates. We reduce the pure-
state parametrization put forth by Wharton [146], which
for real amplitudes reads
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|ψ〉 =
[sin (θ/2) sin (χ/2) sin (ϑ/2)+ cos (θ/2) cos (χ/2) cos (ϑ/2)] |ee〉

+ [cos (θ/2) cos (χ/2) sin (ϑ/2)− sin (θ/2) sin (χ/2) cos (ϑ/2)] |eg〉
+ [sin (θ/2) cos (χ/2) cos (ϑ/2)− cos (θ/2) sin (χ/2) sin (ϑ/2)] |ge〉
+ [sin (θ/2) cos (χ/2) sin (ϑ/2)+ cos (θ/2) sin (χ/2) cos (ϑ/2)] |gg〉

. (C4)

In this parametrization, the concurrence [179] is given by

C = sinχ , (C5)

while θ and ϑ are an angle on the x-z–plane great circle of
the local Bloch spheres for qubits A and B, respectively
(with θ = 0 and ϑ = 0 corresponding to |eA〉 and |eB〉,
respectively).

The time evolution in the coordinates {θ ,ϑ ,χ} can fur-
thermore be obtained from the general parametrization
given in Eq. (C3), as per

θ̇ = sec(χ) [q̇YY cot(θ) tan(χ)− q̇ZI csc(θ)] , (C6a)

ϑ̇ = sec(χ) [q̇YY tan(χ) cot(ϑ)− q̇IZ csc(ϑ)] , (C6b)

χ̇ = −q̇YY secχ , (C6c)

when our assumptions about real amplitudes and pure
states hold.
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