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Adiabatic time evolution of quantum systems is a widely used tool with applications ranging from
state preparation through simplifications of computations and topological transformations to optimization
and quantum computing. Adiabatic time evolution generally works well for gapped ground states, but
not for thermal states in the middle of the spectrum that lack a protecting energy gap. Here we show
that quantum many-body scars—a particular type of highly excited states—are suitable for adiabatic time
evolution despite the absence of a protecting energy gap. Considering two rather different models, namely
a one-dimensional model constructed from tensor networks and a two-dimensional fractional quantum
Hall model with anyons, we find that the quantum scars perform similarly to gapped ground states with
respect to adiabatic dynamics when the required final adiabatic fidelity is around 0.99. The maximum
speed at which the scar state of the one-dimensional model can be adiabatically transformed decreases as
a power law with system size, as opposed to exponentially for both generic thermal and disorder-driven
localized states. At constant and very low ramp speed, we find that the deviation of the fidelity from unity
scales linearly with ramp speed for scar states, but quadratically for gapped ground states. The gapped
ground states hence perform better when the required adiabatic fidelities are very high, such as 0.9999
and above. We identify two mechanisms for leakage out of the scar state and use them to explain our
results. While manipulating a single, isolated ground state is common in quantum applications, adiabatic
evolution of scar states provides the flexibility to manipulate an entire tower of ground-state-like states
simultaneously in a single system.
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I. INTRODUCTION

According to the adiabatic theorem [1–3], a quantum
system that is initially prepared in an eigenstate of the
Hamiltonian stays in that eigenstate if the parameters of the
Hamiltonian are varied sufficiently slowly. This theorem
has a profound place in physics because of its numerous
applications, and its significance can hardly be overempha-
sized. From a theoretical perspective, it tremendously sim-
plifies computations for slowly varying systems. Instead
of solving a dynamical problem in a huge Hilbert space, it
suffices to keep track of a single eigenstate of the Hamil-
tonian. Experimentally, the adiabatic theorem provides a
key for preparing ground states [4]. Instead of cooling the
system, which is often challenging, one can initialize the
system in a simple ground state of a simple Hamiltonian
and from there adiabatically prepare the desired ground
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state by slowly varying the parameters of the model. Com-
putationally, the adiabatic theorem provides the basis for
both adiabatic quantum computing [5,6] and solving chal-
lenging optimization problems through quantum annealing
[7]. Yet another application is to reap the advantages of
topological systems, where topological invariants emerge
from cyclic adiabatic processes [8].

From a practical point of view, it is important that
sufficiently slowly is not too slowly, as both speed and
maintaining quantum coherence are important for most
applications. Several studies have been carried out to quan-
tify how slow processes need to be to achieve adiabaticity
(see, e.g., Refs. [9–19]). The resulting measures depend
on the energy gap to states adjacent in energy and also
on matrix elements of the time derivative of the Hamil-
tonian, the so-called generalized force operator. Adiabatic
time evolution generally works well for ground states of
gapped Hamiltonians, as the gap ensures that one can move
relatively fast. For typical thermal states in the middle of a
spectrum, however, there are many states nearby in energy,
and adiabaticity is very hard to achieve even for quite small
systems.

Thermodynamics is a highly successful theory, and
in a quantum context thermodynamics is understood
through the eigenstate thermalization hypothesis [20,21].
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We therefore generally expect that highly excited states
of generic quantum systems are thermal, i.e., follow the
eigenstate thermalization hypothesis. Nevertheless, it has
turned out that highly excited states can be nonthermal.
Here, we are particularly interested in quantum many-body
scars [22–32]. A quantum many-body scar is a nonther-
mal, highly excited state with low entanglement entropy
that is embedded in a thermal spectrum of a strongly cor-
related quantum many-body system. If one has a tower
of quantum scars separated equidistantly in energy, they
can give rise to revivals that provide a way to directly
observe the nonthermal behavior and also have potential
applications in quantum sensing and metrology [33,34].
Quantum many-body scars have been observed in experi-
ments with Rydberg atoms in optical tweezers [23–25] and
on superconducting processors [35].

Ground states are special in many ways. They can be
prepared by cooling [36,37], they typically have low entan-
glement entropy [38,39], they can be manipulated adiabat-
ically in gapped systems, and they are often the target for
applications involving quantum effects. Quantum many-
body scars have obvious similarities to ground states, as
they are nonthermal and have low entanglement entropy.
This poses the intriguing question to what extent quan-
tum many-body scars can be utilized for the same purposes
as quantum many-body ground states. Here, we answer a
crucial element of that question by showing that one can
achieve adiabatic time evolution of quantum scar states on
reasonable timescales that grow only as a power law with
system size.

Intuitively, one may expect that adiabatic time evolu-
tion is not possible for quantum scar states. They sit in
the middle of a thermal spectrum with a large number of
other states nearby in energy. It is important to note, how-
ever, that the nearby states have rather different properties
compared to the scar states. In particular, they have much
higher entanglement entropy. For local Hamiltonians, it
seems difficult to dynamically generate a large amount of
entanglement. Such an “entropy gap” (instead of an energy
gap) may reduce the amount of transfer to these states. As
there is a large number of such states, however, it is not
clear how well adiabatic time evolution will work for scar
states.

The main result of this paper is to show through numeri-
cal investigations of two rather different models that adi-
abatic time evolution works about equally well for scar
states and ground states, unless extremely high adiabatic
fidelities are required. We identify two mechanisms for
leakage out of the scar state. One mechanism is leakage to
thermal states that cross the scar state, and for this type of
leakage the deviation of the fidelity from unity increases
linearly with the ramp speed for small ramp speeds. The
other mechanism is leakage to states of a similar nature
at a different energy, and this type of leakage is similar to
the leakage that happens when the initial state is a gapped

ground state. Both mechanisms are, however, inefficient,
either because of the different nature of the states involved
or because of the energy difference. As a result, the ramp
speed at which an adiabatic fidelity of 0.99 is achieved in
the considered examples is about the same when the ini-
tial state is a scar state or the ground state. For one of the
models, we study several different system sizes, and we
find that the fastest speed at which the parameters in the
Hamiltonian can change while still remaining close to adi-
abatic shows a slow power-law decrease with system size
when the initial state is a scar or ground state. This is to
be contrasted with exponential decrease for thermal states.
We also discuss the effect of perturbations for this model.
We identify a family of perturbations for which the scar
state remains an exact eigenstate, and for this family the
physics is robust, even for strong perturbations. For other
types of perturbations, we find that the physics is unaltered
if the perturbations are weak enough that the scar state of
the perturbed model has a high fidelity with the exact scar
state of the unperturbed model.

In the following, we first consider a quantum scar model
constructed from a matrix product state (MPS) [40]. The
model depends on a parameter that can be varied while
maintaining the scar properties of the model. This allows
us to study the time evolution, when varying the parameter
slowly in time. We also investigate a scar model that has
a Laughlin state with two Abelian anyons as its scar state.
In this case, the positions of the anyons provide suitable
parameters to vary. Similar conclusions are obtained for
both models.

Our results suggest that one can, indeed, manipulate
quantum many-body scars in the same ways as one can
manipulate quantum ground states. This opens up inter-
esting possibilities, as one can, in this way, have a whole
tower of highly excited states that are like ground states.
Instead of manipulating only a single state, one can hence
manipulate several states in parallel and also allow for
transitions between different scar states.

II. SCAR MODEL FROM MATRIX PRODUCT
STATES

To investigate adiabatic dynamics of scar states, the
model must fulfil certain requirements. First, the Hamilto-
nian should depend on a parameter s that can be varied in
time. Second, the model should be a quantum scar model
for all the considered values of s. This means in partic-
ular that there should be at least one highly excited state
with low entanglement embedded in an otherwise thermal
spectrum. Third, the scar state should change as a func-
tion of s as the system will otherwise trivially stay in the
scar state when s is varied. Fourth, it is preferable if a sim-
ple change of the Hamiltonian moves the scar state from
a highly excited state to the ground state. The latter is not
necessary, but convenient for a more direct comparison of

020365-2



ADIABATIC TIME EVOLUTION OF HIGHLY EXCITED STATES PRX QUANTUM 5, 020365 (2024)

the dynamics when the initial state is a scar state or the
ground state.

Frustration-free systems provide an interesting starting
point for obtaining such models. In particular, consider a
Hamiltonian H(s) = ∑

i cihi(s), where ci are real numbers
and hi(s) are Hermitian and positive semidefinite opera-
tors that all annihilate a particular quantum state |�0(s)〉,
i.e., hi(s)|�0(s)〉 = 0 for all i. If we choose ci = +1 for
all i, |�0(s)〉 is a ground state of the model, because it has
energy zero, which is the lowest possible energy. If, how-
ever, we choose some of the ci to be negative numbers, H
is no longer positive semidefinite, and there will generally
be both positive and negative energies in the spectrum. As
|�0(s)〉 still has zero energy, it will now be in the middle of
the spectrum. One then needs to check numerically, if the
rest of the spectrum is thermal, and whether |�0(s)〉 has
low entanglement entropy compared to the thermal states.

In this section, we utilize the framework of MPS scars,
proposed by Moudgalya et al. [41], to obtain such models
and analyze their properties. This construction has several
advantages. First, the construction leads to a Hamiltonian
with only local terms. Second, the scar states have low
entanglement entropy by construction. Third, it is easy to
insert a parameter s that both maintains the scar model and
changes the wave functions of the scar states. Fourth, it is
possible to construct models with a tower of scar states.
Fifth, as the scar states are represented by MPSs, they can
be prepared efficiently with quantum circuits [42,43]. In
the following, we consider a model with one scar state, as
this is already sufficient to capture the physics of adiabatic
dynamics of scar states. The generalization to a tower of
scar states will be discussed in Sec. IV.

A. Model

The MPS framework for constructing scar models with
a single scar state works quite generally, as long as we
start from an MPS with a sufficiently low bond dimension.
Here, we choose the MPS to be a particular deformation of
the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [44–46],
as this model can be modified to host a tower of scar states
(see Sec. IV). Consider a one-dimensional chain consist-
ing of N spin-1 particles. The local Hilbert space on site j
is spanned by the three vectors |mj 〉, where mj ∈ {+, 0, −}
labels the z component of the j th spin-1. We define the
MPS

|�0(s)〉 = μN

∑

m1,...,mN

Tr
[
Am1

1 (s) · · · AmN
N (s)

] |m1, . . .mN 〉,

(1)

where μN is a normalization constant and the 2 × 2 matri-
ces

A±
j (s) = ±

(
1 − s

2

)√
2
3
σ±, (2)

A0
j (s) = −

(
1 + s

2

) 1√
3
σ z (3)

are expressed in terms of the Pauli matrices

σ+ =
(

0 1
0 0

)

, σ− =
(

0 0
1 0

)

, σ z =
(

1 0
0 −1

)

.

(4)

The real, free parameter s has an implicit time dependence
s ≡ s(t), and below we study the dynamics when s varies
from 0 to 1. When s = 0, the state in Eq. (1) reduces to
the AKLT state. The AKLT state is the ground state of
the AKLT chain, which is a prototype of frustration-free
systems. Deforming away from the AKLT point can sub-
stantially modify |�0(s)〉, while keeping its low-entangled
nature intact.

Using matrix product state methods [47–49] as in
Ref. [41], we derive a set of local operators hi(s), i ∈
{1, 2, . . . , N }, that annihilate the MPS,

hi(s)|�0(s)〉 = 0, ∀i. (5)

The operator hi(s) acts on the spins at sites i and i + 1,
where site N + 1 is identified with site 1. They take the
form

hi(s) = J0|K0(s)〉〈K0(s)| +
∑

m=±1,±2

Jm|J2,m〉〈J2,m|, (6)

where |J2,m〉 denote the total angular momentum eigen-
states of two coupled spin-1’s with total spin S = 2 and
total magnetization m ∈ {0, ±1, ±2}, i.e.,

|J2,±2〉 = | ± ±〉, |J2,±1〉 = 1√
2
(| ± 0〉 + |0 ±〉) . (7)

The only s-dependent contribution comes from

|K0(s)〉 =
√
λs(| + −〉 + | − +〉)+

√
1 − 2λs|00〉, (8)

where

λs = (s + 2)4

4 (s − 2)4 + 2 (s + 2)4
. (9)

Note that the hi(s) annihilate the MPS in Eq. (1) for general
choices of the five parameters {Jm}. We shall here take
{Jm} to be real to ensure that hi(s) is Hermitian.

If we choose the parameters {Jm} to be non-negative,
real numbers, the state |�0(s)〉 is a ground state of the
frustration-free Hamiltonian

H+(s) =
∑

i

hi(s), Jm = J +
m ≥ 0, (10)

independent of the choice of s ∈ [0, 1]. In the computations
below, for which we use H+(s), we avoid simply putting
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all {Jm} equal to +1 as this leads to an SU(2) symmetry at
s = 0. Instead, we choose each Jm to be a random number
in the interval [0, 1], namely,

J +
−2 = 0.97545513805816,

J +
−1 = 0.84883205409987,

J +
0 = 0.40823209824201,

J +
+1 = 0.32544692707096,

J +
+2 = 0.55079799361114.

We make this choice only once and keep it throughout.
H+(s) constructed in this way remains invariant under
translation by one lattice spacing, spatial reflection I ,
and the U(1) symmetry corresponding to the conserva-
tion of the total magnetization Sz

tot = ∑
i Sz

i , where Sz
i is

the z component of the spin-1 on site i. The embedded
MPS, Eq. (1), lies in the symmetry sector of Sz

tot = 0,
zero quasimomentum k = 0, and even I , labeled by the
set (Sz

tot, k,I) = (0, 0, +1). We hence restrict all numeri-
cal computations below to that symmetry sector. We find
numerically that the ground state is nondegenerate for all s
within the considered range.

We shall also consider the Hamiltonian

H−(s) =
∑

i

hi(s), Jm = J −
m ≡ (−1)m, (11)

for which we choose Jm = (−1)m. Note that H−(s) is
not positive semidefinite, and the MPS, Eq. (1), is now a
scar state rather than the ground state. With this choice of

parameters, H−(s) possesses an additional spin-inversion
symmetry Z within the Sz

tot = 0 and k = 0 sector. The
embedded scar state |�0(s)〉 lies in the (Sz

tot, k,I ,Z) =
(0, 0, +1, +1) symmetry sector, and we hence restrict our
analysis to that symmetry sector throughout.

We find numerically that the scar state is nondegen-
erate except for accidental degeneracies with a thermal
state at specific values of s as seen in the enlarged panel
of Fig. 1(a). Since the scar state is an exact eigenstate
at zero energy for all s, it cannot hybridize with other
states with similar energies. As a result, the other states can
cross the scar state in the spectrum as a function of s, and
this produces the accidental degeneracies. Note also that
this means that the number of states in the spectrum with
energy less than the scar state is generally not preserved
when s varies.

Let us finally introduce some notation that we will use in
the following. In addition to the state |�0(s)〉, the Hamil-
tonian H±(s) has D± − 1 other eigenstates |�±

n (s)〉 with
energies E±

n (s)within the relevant symmetry sector that are
obtained by solving the stationary Schrödinger equation

H±(s)|�±
n (s)〉 = E±

n (s)|�±
n (s)〉. (12)

Here, D± is the dimension of the Hilbert space describing
the relevant symmetry sector, and n ∈ {1, 2, . . . ,D± − 1}
labels the states in order of increasing energy.

B. Scarring properties of H−(s)

Before investigating the dynamics, we show numeri-
cally that H−(s) is a scar model for the considered param-
eters. We do this by evaluating the entanglement entropy
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FIG. 1. Scarring properties of the MPS Hamiltonian H−(s). (a) Half-chain entanglement entropy of the eigenstates of H−(s) within
the symmetry sector (Sz

tot, k,I ,Z) = (0, 0, +1, +1) for N = 12 sites and periodic boundary conditions. The scar state produces the
dark line at zero energy, while the other states in the middle of the spectrum are seen to have entropies close to the Page value
indicating thermal behavior. The enlarged panel shows several crossings between thermal states and the scar state. (b) The average of
the level-spacing ratio rave within the symmetry sector (Sz

tot, k,I ,Z) = (0, 0, +1, +1) is seen to approach the GOE value for increasing
system size for the entire range of s. The inset shows the level-spacing statistics for s = 1/2 and N = 14. (c) The scar state changes as a
function of s, and we here quantify this change by plotting the instantaneous fidelity in Eq. (16). The data collapse for different system
sizes N = 10, 100, 200, . . . , 1000 in the inset shows that ln[C(s)] ≈ −0.28 · N δs2 with δ ∼ 1, as expected for finitely correlated MPSs.
The results in (a) and (b) have been computed using exact diagonalization, and the results in (c) have been computed by utilizing the
MPS structure of the state |�0(s)〉.
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and the average level spacing ratio. We also quantify the
change of the scar state as a function of the parameter s.

1. Entanglement entropy

We first evaluate the half-chain von Neumann entangle-
ment entropy, which is defined as

SA(s) = −TrA {u(s) ln[u(s)]} , (13)

where
u(s) = TrĀ(|�−

n (s)〉〈�−
n (s)|)

is the reduced density matrix of subsystem A consisting
of N/2 contiguous sites and Ā is the complement of A.
In Fig. 1(a), we plot the half-chain entanglement entropy
for a chain of length N = 12 within the symmetry sec-
tor containing the scar state |�0(s)〉. The scar state is
seen as a dark line at zero energy due to its low entan-
glement entropy. The other states in the middle of the
spectrum are seen to have entanglement entropies close
to the Page value SPage = (N/2) ln(3)− 1

2 [50], in agree-
ment with the predictions of the eigenstate thermalization
hypothesis [51]. The result hence indicates that the states
in the middle of the spectrum are thermal, except for the
scar state.

2. Level-spacing statistics

To further confirm that the spectrum of H−(s) is thermal
for the considered values of s, we also examine the level-
spacing ratio, defined by

rn = min(δn, δn+1)

max(δn, δn+1)
, (14)

where δn = Ẽ−
n+1 − Ẽ−

n is the energy difference between
two adjacent energy levels in the spectrum within the con-
sidered symmetry sector. We put a tilde on the energies
here, because for this computation we label all D− states
from 1 to D− in order of increasing energy, including
also the scar state. For ergodic systems with time-reversal
symmetry, the distribution of rn is generally expected to
obey the Gaussian orthogonal ensemble (GOE) with the
mean value rGOE ≈ 0.536 [52,53]. In contrast, in an inte-
grable or many-body localized system, the levels do not
repel each other, leading to Poisson (POI) statistics with
rPOI ≈ 0.386. Figure 1(b) presents the instantaneous level-
spacing ratio averaged over all energy differences within
the considered symmetry sector,

rave = 1
D− − 1

D−−1∑

n=1

rn. (15)

It is seen that rave approaches the GOE value with increas-
ing system size for the entire range of s, and the inset of

Fig. 1(b) shows that the corresponding level-spacing dis-
tribution also fits the GOE statistics well. This indicates
that the spectrum is thermal.

3. Change of the scar state with s

To quantify the change in the structure of the embed-
ded scar state as a function of s, we plot the instantaneous
fidelity

C(s) = |〈�0(0)|�0(s)〉|2 (16)

in Fig. 1(c). It is seen that C(s) is a monotonically decreas-
ing function of s and decays exponentially fast with system
size. Moreover, data for different system sizes collapse
onto a single curve (see the inset), showing the asymp-
totic form − ln[C(s)] ≈ CN s2 at large N with the exponent
CN ≈ 0.28 × N 0.99. This implies that the global structure
of the scar state is substantially modified by a weak defor-
mation, i.e., adiabatically connected scar states are nearly
orthogonal in the limit of large N , despite the change in s
being small.

This is a manifestation of the so-called orthogonal-
ity catastrophe [54]; a genuine many-body phenomenon
by which infinitesimal local perturbations evolve the sys-
tem to an orthogonal state in the thermodynamic limit.
While the extended states of a metallic system exhibit
power-law orthogonality catastrophe with the catastrophe
exponent CN ∼ ln(N ) [54], finitely correlated states sub-
ject to local, homogeneous transformations in systems with
spatial dimension D are expected to show an exponential
orthogonality catastrophe with CN ∼ N , in agreement with
the above estimate for the MPS |�0(s)〉. A similar expo-
nential (but statistical) orthogonality catastrophe has been
observed in Anderson localized or many-body localized
eigenstates, which are subjected to strictly local, single-site
driving [55,56].

C. Adiabatic time evolution

As already mentioned in Sec. II A, one can see the
parameter s ≡ s(t) as an adiabatically modulated (ramp)
parameter through which a nondegenerate scar state can be
modified. This feature makes the MPS embedded Hamil-
tonian, Eq. (11), a suitable playground to explore adiabatic
response of quantum many-body scars. We are interested
in whether a system initially prepared in an exact scar
state can adiabatically follow the ramp and remain in its
instantaneous eigenstate, or the lack of a protecting gap for
highly excited states will lead to “quantum leakage” [57]
to the thermal subspace and hence loss of adiabaticity.

To address this question, we initially prepare the sys-
tem in the scar eigenstate of H−(0), i.e., the AKLT state
|�0(0)〉, and then evolve the system from time zero to time
T with the Hamiltonian H−[s(t)], where s(t) specifies the
ramp function. We here consider a linear ramp with ramp
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FIG. 2. Adiabatic fidelity. (a) Adiabatic fidelity as a function
of ramp speed for ground-state and scar-state dynamics (see the
list in Sec. II C). The vertical dashed lines indicate the adia-
batic velocity v0.99, which we define to be the ramp speed at
which the adiabatic fidelity drops below 0.99. It is remarkable,
and one of the key results of this paper, that the adiabatic veloc-
ity for the scar state is about the same as that for the ground
state, despite the fact that the scar state is a highly excited state
with several thermal states nearby in energy. (b) The logarith-
mic fidelity, − log10(F), shows the deviation of F from unity
more clearly in the high-fidelity region. For both ground-state
and scar-state dynamics, the logarithmic fidelity is seen to follow
a power-law scaling ∝ vα for small enough ramp speeds. The
logarithmic fidelity for the ground-state dynamics scales as v2 for
ramp speeds v � v0.99. In contrast, the logarithmic fidelity for the
scar-state dynamics scales linearly in v for a much broader range
of ramp speeds. The dotted lines denote a vα fit to the results
obtained for N = 20. The inset indicates the persistence of these
scalings for different system sizes.

speed v, i.e.,

s = s(t) = vt, v = 1
T

, t ∈ [0, T]. (17)

According to the time-dependent Schrödinger equation,
the evolved state |ψ(t)〉 at time t can be expressed in terms
of the unitary time-evolution operator,

|ψ(t)〉 = T exp
{

−i
∫ t

0
H−[s(t′)] dt′

}

|�0(0)〉, (18)

where T denotes time ordering. For an ideal adiabatic
evolution, the time-evolved state |ψ(T)〉 coincides with
the instantaneous exact scar state at the end of the ramp
|�0[s(T)]〉 = |�0(1)〉 given by the MPS in Eq. (1). We
hence introduce the adiabatic fidelity

F = |〈�0[s(T)]|ψ(T)〉|2 (19)

to quantify how close the time-evolved state is to the ideal
adiabatic result. The fidelity is unity in the ideal case, and
deviations from unity quantify the amount of leakage to
other states.

We note that the initial state |�0(0)〉 considered above
can also be recast as the exact ground state of the Hamil-
tonian H+(0). This enables us to directly compare the
dynamics obtained by starting from the scar state |�0(0)〉
and evolving with H−[s(t)] to the dynamics obtained
by starting from the ground state |�0(0)〉 and evolving
with H+[s(t)]. This can be achieved by replacing H−(s)
with H+(s) in Eq. (18) and computing F with respect to
|�0[s(T)]〉, which is now the instantaneous ground state
at the end of the ramp. We can of course also choose the
initial state |ψ(0)〉 to be a thermal state and time evolve
with H−[s(t)] in order to compare the performance of scar
states and thermal states with respect to adiabatic time evo-
lution. Altogether, we hence investigate and compare three
different cases:

(1) Ground-state dynamics. The initial state is
|�0(0)〉, i.e., the ground state of H+(0), and the sys-
tem is time evolved with H+[s(t)]. Plotted data are
shown in blue and/or labeled “GS.”

(2) Scar-state dynamics. The initial state is |�0(0)〉,
i.e., the scar state of H−(0), and the system is time
evolved with H−[s(t)]. Plotted data are shown in red
and/or labeled “Scar.”

(3) Thermal-state dynamics. The initial state is the
eigenstate of H−(0) that is closest in energy to
the scar state, and the system is time evolved with
H−[s(t)]. Plotted data are shown in green and/or
labeled “Thermal.”

We numerically compute the time-evolved state by using
time integration based on the Chebyshev expansion tech-
nique [58,59]. We consider evolution times up to T = 105

and system sizes up to N = 20 with Hilbert-space dimen-
sion of order D± ∼ 107 within the relevant symmetry
sector.

1. Adiabatic fidelity

The adiabatic fidelity for the ground-state and scar-state
dynamics is shown as a function of the ramp speed and for
different system sizes in Fig. 2(a). Let us first discuss the
plot for the ground-state dynamics. It is seen that the adi-
abatic fidelity decreases monotonically with ramp speed.
As the ground state of H+(s) is isolated from the first
excited state by an energy gap, we expect the adiabatic
fidelity to be close to unity for low enough ramp speeds
due to the adiabatic theorem, and this is indeed the case.
For larger ramp speeds, the adiabatic fidelity is lower due
to a larger amount of leakage to other states. As a quan-
titative measure for how fast the evolution can be done
while still remaining close to adiabaticity, we define the
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FIG. 3. Scaling of adiabatic velocity with system size. The
adiabatic velocities v0.99 for the ground-state and the scar-state
dynamics extracted from the data in Fig. 2 display power-law
decay v0.99 ≈ e−3.5 N−0.86 with system size. This is in contrast
to thermal-state dynamics, for which the adiabatic velocity is
expected to decay exponentially with system size [see Eq. (39)].
The symbols labeled GS Approx show the adiabatic velocities
obtained from adiabatic perturbation theory by putting F = 0.99
in Eqs. (27) and (28).

adiabatic velocity v0.99 to be the ramp speed at which the
fidelity drops below 0.99. The adiabatic velocity, which is
also marked in the figure, is seen to decrease slowly with
increasing system size. From Fig. 3 we extract the behavior
v0.99 ≈ e−3.5 N−0.86 on a log-log scale. It is important that
the adiabatic velocity decreases as a power law rather than
exponentially with system size, as this means that much
larger systems can be manipulated adiabatically on reason-
able timescales. In Sec. II E below, we find v1/e ∼ N−0.5,
where v1/e is defined as the ramp speed at which the fidelity
drops below e−1 and e is the base of the natural logarithm.

Turning to the plot of adiabatic fidelity for the scar-state
dynamics, we observe that the behavior is similar to that
for the ground-state dynamics, and the adiabatic velocity
is almost the same. This is remarkable, as the scar state is
surrounded by a large number of thermal states with simi-
lar energies in the spectrum. Nevertheless, leakage to these
states is very limited. We will discuss the leakage further in
Secs. II C 2 and II D 3 below. It is also remarkable that the
scaling of the adiabatic velocity with system size is about
the same for the scar-state dynamics as for the ground-state
dynamics, as seen in Fig. 3.

To further investigate the deviation of F from unity in
the high-fidelity region, we plot the logarithmic fidelity,
− log10(F), in Fig. 2(b). For ramp speeds that are compa-
rable to v0.99 or less, the logarithmic fidelity for the ground-
state dynamics is seen to scale quadratically with ramp
speed, as expected for gapped systems [60]. For the scar
state, the scaling is instead linear and applies for a broader
range of ramp speeds. Such deviations from quadratic
scaling are typically observed in low-dimensional gapless
systems [60,61] or in dynamics passing through quantum
critical points [62–64], where there is a crossover energy

scale separating low-energy excitations with fast (dia-
batic) response and high-energy states having adiabatic
response. The difference in scaling of the logarithmic
fidelity with ramp speed for the ground- and scar-state
dynamics means that, if one considers sufficiently low
ramp speeds, higher fidelities are obtained for the ground-
state dynamics than for the scar-state dynamics with the
same ramp speed. For instance, at v ≈ 10−5 and N = 20,
the error is − log10(F) ≈ 10−6 for the ground state, but
− log10(F) ≈ 10−4 for the scar state. This is relevant if
very high fidelities are needed, but not for fidelities around
0.99 as discussed above.

2. Leakage to other states

So far we have only quantified the total amount of leak-
age, and we now investigate how the leakage is distributed
over the instantaneous eigenstates at the end of the ramp,
t = T. This is shown in Fig. 4, where

ρnn(t) = |〈�±
n [s(t)]|ψ(t)〉|2 (20)

are the diagonal elements of the time-evolved density
matrix written in the instantaneous energy basis. The
observed behaviors are quite different for the ground-state,
scar-state, and thermal-state dynamics. For the ground-
state dynamics, the leakage is seen to happen mainly to
one low-lying excited state for small ramp speeds. For the
scar-state dynamics, it is mainly the states that are slightly
below the scar state in energy that carry population at the
end of the ramp for small ramp speeds. For thermal-state
dynamics, there is a large amount of spreading even for
quite small ramp speeds.

To understand how the population ends up where it
does, we plot the evolution of the population ρnn(t) as a
function of the parameter s(t) for the scar-state dynam-
ics at fixed ramp speed v = 10−3 and N = 14 in Fig. 5.
This figure indicates that leakage from the scar state to
thermal states mainly happens, when the thermal states
cross the scar state in the spectrum. Since the thermal
states move down in energy as s increases [see enlarged
panel of Fig. 1(a)], the leaked population is mainly present
in the states below zero energy at the end of the ramp
[Fig. 4(b)]. We also observe in the dynamics that popu-
lation can transfer between thermal states, when they are
close in energy.

We finally consider the diagonal (or participation)
entropy [65],

Sdiag = −
∑

n

ρnn(T) ln[ρnn(T)], (21)

as a measure for to what extent the population is spread
over the energy eigenstates at the end of the ramp. If the
time evolution is perfectly adiabatic, the system remains
in a single instantaneous energy eigenstate and Sdiag = 0.
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FIG. 4. Leakage to other states. Population of the energy eigenstates at the end of the ramp for ground-state, scar-state, and thermal-
state dynamics (see the list in Sec. II C) and N = 14, obtained by exact diagonalization. The ground state and the scar state are seen as
a dark line at zero energy in (a) and (b), respectively, because most of the population is in this state. For the thermal-state dynamics, in
contrast, a large number of states are populated even at low ramp speeds.

At the other extreme, if the population spreads equally
over all the D± energy eigenstates in the considered sec-
tor, the diagonal entropy takes the maximum value Smax

diag =
ln(D±). Figure 6 presents the diagonal entropy as a func-
tion of the ramp speed v for N = 14. For the ground-
state dynamics, Sdiag(T) displays a v2 scaling for small
ramp speeds, while for the scar-state dynamics, Sdiag(T)
grows linearly with ramp speed in a broader region, upon
approaching Smax

diag. The thermal-state dynamics, on the
other hand, is far from adiabatic, and |ψ(T)〉 spreads sub-
stantially over the eigenstates of the final Hamiltonian
even for quite low ramp speeds. The figure highlights the
remarkable differences between scar states and thermal
states with respect to adiabatic time evolution.

D. Physical interpretation

In the previous section, we have observed different
dynamical behaviors, depending on whether the initial
state is the ground state, the scar state, or a thermal state.
In this section, we explain the physics behind these dif-
ferences and in particular show why it is much easier to
manipulate scar states adiabatically than thermal states. We
start with a brief summary of standard adiabatic perturba-
tion theory and then discuss each of the three cases in turn
in this context.

1. Brief summary of adiabatic perturbation theory

Adiabatic perturbation theory [60] provides us with an
approximate expression for the time evolved state |ψ(t)〉,
which applies when the dynamics stays close to adiabatic-
ity, i.e., when the adiabatic fidelity remains close to unity.
The steps of the derivation are as follows (see Ref. [60] for
further details).

The time-evolved state (18) is written in the instanta-
neous eigenbasis,

|ψ(t)〉 =
D±−1∑

m=0

cm[s(t)]e−i
∫ t

0 E±
m [s(t′)]dt′ |�±

m[s(t)]〉. (22)

This expression is inserted into the time-dependent
Schrödinger equation

i|ψ̇(t)〉 = H±[s(t)]|ψ(t)〉, (23)

where the dot means derivative with respect to time. After
multiplying from the left by 〈�±

n [s(t)]| and rewriting, one
obtains

ċn[s(t)] = −
D±−1∑

m=0

cm[s(t)]〈�±
n [s(t)]|�̇±

m[s(t)]〉

× ei
∫ t

0{E±
n [s(t′)]−E±

m [s(t′)]}dt′ . (24)

Inserting the adiabatic approximation cm[s(t)] ≈ δm0 on the
right-hand side of the equation and integrating both sides
with respect to time leads to

cn(s) ≈ −
∫ s

0
〈�±

n (s
′)|∂s′ |�0(s′)〉

× ei
∫ s′

0 ṡ−1[E±
n (s′′)−E0(s′′)]ds′′ds′, n 
= 0. (25)

For the linear ramp considered here, ṡ = v = 1/T.
From this, it becomes clear that there are two main quan-

tities determining the leakage to state n, namely the matrix
element of the adiabatic gauge potential [66]

A±
n0(s) = i〈�±

n (s)|∂s|�0(s)〉, (26)

and the instantaneous energy difference E±
n (s)− E0(s)

divided by the ramp speed v. If the ratio between the
energy gap and the ramp speed is large, the phase factor
oscillates rapidly, which suppresses leakage. This is the
source of the commonly quoted rule of thumb that one
should move slowly compared to the energy gap to obtain
adiabatic evolution. Another way to suppress leakage is
by ensuring that the matrix element of the adiabatic gauge
potential is low.
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FIG. 5. Leakage dynamics. (a) The population in each of the
eigenstates as a function of the energy of the eigenstate and the
ramp parameter s(t) for N = 14 spins and ramp speed v = 10−3.
Leakage is seen to primarily happen when the thermal states
cross the scar state, and the leaked population is then transported
to lower energies because the energy of the thermal states in the
middle of the spectrum decreases with s as seen in Fig. 1(a). This
explains why the population is mainly in states with energies
below zero at the end of the ramp in Fig. 4(b). (b) Popula-
tion in state number 4180 as a function of the parameter s.
The dotted line, labeled sn, marks the point, where the state
crosses the scar state. The population is seen to increase in a
region around sn. There are also several fluctuations, which are
due to exchange of population with other thermal states. The
dashed horizontal line is the estimate for the final population
in Eq. (34).

2. Ground state

We now apply these general considerations to our sys-
tem. We start by considering time evolution with H+(s)
starting from the ground state |�0(0)〉. We observe numer-
ically that the ground state and the first excited state of
H+(s) are separated by a gap for the whole range of s.
For small enough ramp speed, the phase factor in Eq. (25)
hence oscillates fast for all n. In this case, one can use
methods for integrals of fast oscillating functions to obtain
[60]

|cn[s(T)]|2 ≈ v2 |A+
n0(0)|2

|E+
n (0)− E0(0)|2

+ v2 |A+
n0(1)|2

|E+
n (1)− E0(1)|2

,

(27)
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FIG. 6. Scaled diagonal entropy. Scaled diagonal entropy
obtained from exact diagonalization for ground-state, scar-state,
and thermal-state dynamics (see the list in Sec. II C) and sys-
tem size N = 14. When the system starts in the thermal state,
the scaled diagonal entropy is close to unity. This means that
the population is spread over a large part of the spectrum at the
end of the ramp. The scaled diagonal entropy is much lower for
both the ground-state and scar-state dynamics at low ramp speeds
because the system remains mainly in a single energy eigenstate.
The vertical, dashed lines show v0.99 determined from the dynam-
ics, and the dotted lines are quadratic and linear fits, respectively,
showing the scaling with v.

where a fast oscillating term has been averaged out. Putting
this into the definition

F = 1 −
∑

n( 
=0)

|cn[s(T)]|2 (28)

for the fidelity and observing that

− log10(F) ≈
∑

n( 
=0)

|cn[s(T)]|2 (29)

when the fidelity is close to unity, we arrive at the well-
known result that − log10(F) scales with v2 for gapped
systems undergoing adiabatic time evolution with a linear
ramp [60]. This is consistent with the numerical results in
Fig. 2(b).

We can also combine Eq. (27) with Eq. (28) and solve
for v to obtain an approximation for the adiabatic velocity
v0.99. The results, which are shown in Fig. 3, fit quite well
with the adiabatic velocity obtained from dynamics. For
N = 16, e.g., we find v0.99 ≈ 2.56 × 10−3 from Eq. (27)
and v0.99 ≈ 2.68 × 10−3 from the dynamics. For N ≤ 14,
we use full exact diagonalization to obtain the results
from Eq. (27). For N = 16, the Hilbert-space dimension
D+ = 163181 is too large for full diagonalization, and we
instead use the Lanczos algorithm to find the 2000 lowest
eigenstates of H+(s).
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3. Scar state

We next consider time evolution with H−(s) starting
from the scar state |�0(0)〉. For this system, we cannot pro-
ceed in the same way as for the ground state, since for some
values of s, the scar state has the same energy as one of the
thermal states, and hence the exponential in Eq. (25) is not
necessarily oscillating fast for all n. We can hence not use
Eq. (27), but need to go back to Eq. (25). This also tells
us that a different mechanism is responsible for the ability
to do adiabatic time evolution with the scar state, and we
identify this mechanism in this section.

We first take a closer look at A−
n0(s). For each value of

s, we are free to choose the global phase of |�−
n (s)〉, and

it is hence possible to ensure that A−
n0(s) is purely imagi-

nary for all s. It is therefore sufficient to consider |A−
n0(s)|.

Equation (25) only applies if cn(s) remains low for all
n 
= 0. As a consistency check, we therefore first show that
|A−

n0(s)| is finite for all s despite the crossings between the
scar state and thermal states seen in Fig. 1(a). If |A−

n0(s)|
diverges for some n and s, the fidelity susceptibility [67,68]

χ0(s) =
∑

n( 
=0)

|A−
n0(s)|2 =

∑

n( 
= 0)

|〈�−
n (s)|∂s|�0(s)〉|2

= 〈�0(s)|∂2
s |�0(s)〉 − 〈�0(s)|∂s|�0(s)〉2 (30)

will also diverge, and it is hence sufficient to show that
the latter does not diverge. The fidelity susceptibility mea-
sures the response of |�−

n (s)〉 to the variations of H−(s)
and is a practical tool in the study of quantum chaos
[69,70] and the stability of exact quantum many-body scars
of the PXP model against static perturbations [71]. The
absence of divergences in the fidelity susceptibility is seen
in Fig. 7. Note also that due to the rewriting in Eq. (30),
the fidelity susceptibility is determined from the scar state
alone. This means that the fidelity susceptibility is the same
for the ground state and the scar state. Figure 7 also shows
that χ0(s) scales as N γs with system size, where γs is an
s-dependent nonuniversal exponent, which varies between
0.7 and 1.0 for the considered model. Such power-law scal-
ing of the fidelity susceptibility is characteristic of either
(interacting) integrable or noninteracting (single-particle)
models [69,70], which is now manifested in the scar state
of a chaotic many-body Hamiltonian.

The growth of cn(s) is determined by both |A−
n0(s)| and

E−
n (s)− E0(s), and the growth is fastest when |A−

n0(s)| is
large and |E−

n (s)− E0(s)| is small. We hence plot the for-
mer as a function of the latter in Fig. 8. We also show
results for the ground-state and thermal-state dynamics for
comparison. The figure is for s = 0, but qualitatively sim-
ilar results are obtained for other values of s. The plots
are enlarged around the interesting region, as |A±

n0(s)|
generally drops exponentially fast with increasing energy
difference |E±

n (s)− E0(s)|. The figure provides the key
for understanding the differences in dynamics. The ground
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FIG. 7. Smoothness of the fidelity susceptibility. The scaled
fidelity susceptibility of the state |�0(s)〉, embedded either as the
ground state of H+(s) or the scar state of H−(s), varies smoothly
with s and exhibits a power-law growth ∝ N γs with system size
similar to that of integrable systems. Note that the results shown
in this figure are the same for the ground state and the scar state,
as χ0(s) is determined from |�0(s)〉 alone according to Eq. (30).
The inset displays the nonuniversal exponent γs for which the
fidelity susceptibilities for different system sizes collapse onto a
single curve.

state is suitable for adiabatic time evolution, because there
is a gap between the ground state and the first excited state.
For the scar state, there is no such gap. Instead, adiabatic
time evolution is possible because |A−

n0(s)| is small for
all n. This is the mathematical version of the statement
that the nature of the scar state is so different from that
of the thermal states that it is difficult to transition between
the two. Finally, the thermal state is unsuitable for adia-
batic dynamics, because |A−

nth(s)| has a high peak at zero
energy difference whose magnitude grows exponentially
with system size, as given by Eq. (38).

As |A−
n0(s)| does not have large variations in the region

where |E−
n (s)− E0(s)| is small, we expect the transition

rate to be primarily determined by how fast the expo-
nential in Eq. (25) oscillates. This means that transitions
are expected to happen primarily for E−

n (s)− E0(s) ≈ 0.
Looking at Fig. 1(a), we observe that the thermal states
in the spectrum tend to cross the scar state in downward
direction as s increases. As they cross the scar state, they
gain a little population, and they then continue downwards
in energy [see Fig. 5(a)]. We hence expect that at the end
of the ramp, it is primarily states just below the scar state
that are populated, and this is indeed observed in Fig. 4(b)
for low v.

Combining this qualitative description with Eq. (25)
enables us to obtain an approximation for the final pop-
ulation in the n th eigenstate for small v. Let sn be the
value of s for which the n th eigenstate crosses the scar
state, i.e., E−

n (sn) = E0(sn) = 0. We reduce the limits of
the integral over s′ in Eq. (25) to go from sn − δ to sn + δ

for some small δ, as we assume that the contributions to
|cn[s(T)]| outside this region are negligible because the
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FIG. 8. Matrix elements of the adiabatic gauge potential. This
plot, and corresponding plots for other values of s that look simi-
lar, provide the information needed to estimate the leakage from
Eq. (25). We observe that the ground state is well suited for adia-
batic dynamics because only a few states that are separated from
the ground state by an energy gap have a non-negligible value
of |A+

n0(s)|. The scar state is well suited for adiabatic dynamics
despite the absence of a protecting energy gap because |A−

n0(s)|
is generally low. The thermal state is unsuitable for adiabatic
dynamics because |A−

nth(s)| has a large peak at zero energy dif-
ference. We here use th to label the thermal state. The vertical
dashed line marks the point of zero energy difference, and the
color indicates the density of data points, with red being high
density and blue being low density.

energy difference between the thermal state and the scar
state is too large. We then Taylor expand

A−
n0(s) ≈ A−

n0(sn)+ dA−
n0(s)
ds

∣
∣
∣
∣
s=sn

(s − sn),

E−
n (s)− E0(s) ≈ αn(s − sn), αn ≡ dE−

n (s)
ds

∣
∣
∣
∣
s=sn

,

(31)

to first order for s ∈ [sn − δ, sn + δ]. Further observing that

e
i
v

∫ s′
0 [E−

n (s′′)−E0(s′′)]ds′′

≈ e
i
v

∫ sn−δ
0 [E−

n (s′′)−E0(s′′)]ds′′+ iαn
v

∫ s′
sn−δ(s′′−sn)ds′′

= eiφe
iαn
2v (s

′−sn)2 , (32)

where eiφ is a phase factor that does not depend on s′,
reduces Eq. (25) to

|cn[s(T)]| ≈
∣
∣
∣
∣

∫ sn+δ

sn−δ
A−

n0(s
′)e

iαn
2v (s

′−sn)2ds′
∣
∣
∣
∣

≈ |A−
n0(sn)|

∣
∣
∣
∣

∫ sn+δ

sn−δ
e

iαn
2v (s

′−sn)2ds′
∣
∣
∣
∣

=
√

2v
|αn| |A

−
n0(sn)|

∣
∣
∣
∣
∣

∫ δ
√

αn
2v

−δ
√

αn
2v

eis̃2
ds̃

∣
∣
∣
∣
∣
. (33)

When v is small compared to δ2αn/2, we can approximate
the limits with minus and plus infinity and evaluate the
integral using the Fresnel integrals [72]. This leads to

|cn[s(T)]|2 ≈ 2π |A−
n0(sn)|2

|αn| v. (34)

This explains the linear scaling of the logarithmic fidelity
with v for small ramp speeds observed in Fig. 2(b). The
above arguments apply under quite mild assumptions, sug-
gesting that the linear scaling is universal and independent
of the ramp protocol for sufficiently small v. If a ther-
mal state crosses the scar state several times, the different
contributions to cn will have phase factors that depend on
v, but the norm of each contribution to cn will again be
proportional to

√
v.

We compare Eq. (34) to numerical data for fixed v =
10−3, N = 14, and state number n = 4180 as a typical
example of a thermal state crossing the scar state (at least)
once during the evolution. The prediction provides the
right order of magnitude for the population in the con-
sidered state, but the dynamics show several fluctuations
that are not captured by the approximation. The numerics
suggests that the fluctuations happen because of transfer
of population between thermal states of similar energies.
Such transfer does not change the total amount of leakage
out of the scar state, and we hence expect that Eq. (34)
applies in an average sense.

4. Thermal state

The energy levels of thermal states tend to repel one
another, which leads to Gaussian statistics rather than Pois-
son statistics of the energy spacings. The level repulsion
also prevents levels from crossing each other as s is var-
ied. This means that Eq. (27) should also apply for thermal
states for low enough v, with the ground state replaced
by the thermal state, but since the energy difference to
the neighboring states is much smaller for the thermal
state than for the ground state, v should be much smaller.
Very small v is, however, difficult to handle numerically,
because it means time evolution for very long times.
Here, we therefore look for scaling behaviors of the adi-
abatic velocity rather than obtaining it from numerical
simulations.

We first determine the scaling behavior of the relevant
matrix elements of the adiabatic gauge potential. Consid-
ering two instantaneous eigenstates |�−

m(s)〉 and |�−
n (s)〉

with different energies, E−
m (s) 
= E−

n (s), one can derive the
Feynman-Hellmann equation

〈�−
m(s)|∂s|�−

n (s)〉 = 〈�−
m(s)|∂sH−(s)|�−

n (s)〉
E−

n (s)− E−
m (s)

(35)

020365-11



YARLOO, ZHANG, and NIELSEN PRX QUANTUM 5, 020365 (2024)

from the chain rule and the observations

∂s[〈�−
m(s)|H−(s)|�−

n (s)〉] = 0, m 
= n, (36)

∂s[〈�−
m(s)|�−

n (s)〉] = 0, m 
= n, (37)

which apply because the eigenstates of the Hamiltonian at
a given instant are orthogonal. Here, |E−

m (s)− E−
n (s)| is the

energy difference between the two considered states, while
|〈�−

m(s)|∂sH−(s)|�−
n (s)〉| is a measure for how strongly

the system reacts to perturbations. The latter can be seen
by writing H−(s + ds) ≈ H−(s)+ ∂sH−(s)ds and noting
that 〈�−

m(s)|H−(s)|�−
n (s)〉 = 0.

For a generic thermal state satisfying the eigenstate ther-
malization hypothesis, the off-diagonal matrix elements of
local operators, such as ∂sH−(s), scale as D−1/2

− for eigen-
states at similar energies. The typical separation between
adjacent energy levels in a thermal spectrum of a local
Hamiltonian scales as ∼ √

N/D− [51]. Dropping factors
that are only a power of N , this simple argument implies

|A−
mn(s)| = |〈�−

m(s)|∂s|�−
n (s)〉| ∼ D1/2

− ∼ eN ln(3)/2 (38)

if |�−
m(s)〉 and |�−

n (s)〉 are thermal states with similar ener-
gies. In other words, the peak in the panel for thermal-state
dynamics in Fig. 8 diverges exponentially with system
size.

We obtain an expression for the adiabatic velocity v0.99
by combining Eqs. (27) with the ground state replaced by
the thermal state and Eq. (28) with F = 0.99. For ramp
speeds that are small enough to ensure adiabatic time
evolution even for thermal states, population is only trans-
ferred to a small number of states. We therefore approxi-
mate the sum in Eq. (28) by only the largest term. After
dropping factors that are only a power of N , this leads to
the scaling

v0.99 ∼ |E−
m (s)− E−

n (s)|
|A−

mn(s)|
∼ D−3/2

− ∼ e−3N ln(3)/2. (39)

The most important conclusion from this is that the adia-
batic velocity decreases exponentially with system size for
thermal states, which means that thermal states of many-
body systems are in practice not suitable for adiabatic
dynamics.

E. Comparison to the quantum speed limit

We now turn our attention to the quantum speed limit,
which is a bound on the maximum speed at which a system
can evolve from an initial state to an orthogonal state. The
condition establishes a connection between the timescale
for breakdown of adiabaticity in a many-body system and

the intrinsic orthogonality catastrophe through the energy-
time uncertainty relation. The necessary condition [18]
reads

v � v
QSL
1/e ≡ δE±

0

2CN
, (40)

where CN is the catastrophe exponent introduced in Sec.
II B 3, and

δE±
0 =

√
〈ψ0|(V±)2|ψ0〉 − 〈ψ0|V±|ψ0〉2 (41)

is the initial quantum uncertainty of the generalized force
operator at the beginning of the ramp, V± ≡ ∂sH±(s)|s=0.
This criterion does not rely on a gap condition and is valid
for a wide class of time-dependent, many-body Hamiltoni-
ans provided

δE±
0

CN
→ 0 for N → ∞ (42)

holds and the adiabatic fidelity, Eq. (19), monotonically
decreases with time [18]. The condition (40) uses a refer-
ence fidelity of e−1, and the resulting upper bound for the
adiabatic velocity vQSL

1/e should hence be compared to v1/e
obtained from the dynamics.

Now consider the evolution starting from the AKLT
state |ψ0〉 ≡ |�0(0)〉 embedded as the ground state or
scar state of H±(0). As V± is a sum of N local terms,
one can write (δE±

0 )
2 as a sum of N 2 terms. Since the

translationally invariant MPS |�0(0)〉 does not have long-
range connected correlations, however, only of order N
of these terms are nonzero. Furthermore, only the part
of the Hamiltonian that is proportional to J ±

0 contributes
to V±. Putting these observations together, we conclude
that the quantum uncertainty has the asymptotic scaling
δE±

0 ∼ J ±
0

√
N for large N . Recalling that the catastrophe

exponent scales as CN ∼ N [see Fig. 1(c)], we conclude
that the criterion in Eq. (42) is met for both the ground-
and scar-state dynamics. Hence, according to the neces-
sary condition in Eq. (40), the bound on the ramp speed
scales as vQSL

1/e ∼ J ±
0 N−1/2. The above arguments do not

depend on the details of the model, and we hence expect
the power-law scaling with system size to apply for a wide
class of time-dependent scarring Hamiltonians.

The scalings are numerically confirmed for the MPS
model in Fig. 9 by utilizing the MPS form of the state
|�0(s)〉 for large system sizes (up to N = 103). As shown
by a log-log plot in Fig. 9(a), the adiabatic velocity v1/e is
upper bounded by vQSL

1/e for both ground-state and scar-state
dynamics and displays the same N−1/2 power-law scaling
as vQSL

1/e , for numerically accessible system sizes. Besides,
v1/e is seen to be slightly larger for the scar-state dynam-
ics than for the ground-state dynamics. This difference can
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FIG. 9. Scaling of adiabatic velocity with system size. (a)
Comparison between the adiabatic velocity v1/e obtained from
the ground-state and scar-state dynamics (circles), where v1/e is
the ramp speed at which the adiabatic fidelity, Eq. (19), drops
below e−1, and the upper bound vQSL

1/e in Eq. (40) (squares) pre-
dicted by the quantum speed limit (labeled as QSL). All four
curves scale as N−0.50 with system size. (b) δE±

0 scales as N 0.50

for both the ground state and the scar state. (c) The catastrophe
exponent CN scales approximately as N .

be traced back to the choice of the parameters Jm in the
Hamiltonian. The important one is J0, as J0 is the coeffi-
cient multiplying the terms in the Hamiltonian that depend
on s. Specifically, for N = 20, we find

v+
1/e

v−
1/e

≈ 0.395 ≈ J +
0

J −
0

≈ 0.408, (43)

where we use a subscript ± to explicitly distinguish
between the ground- and scar-state dynamics. We also
have vQSL,+

1/e /v
QSL,−
1/e = J +

0 /J −
0 , because ∂sH+(s)/J +

0 =
∂sH−(s)/J −

0 .
We also note that the power-law scaling of the adia-

batic velocity with system size observed in the scar states
differs from the case of nonthermal, disorder-driven, local-
ized states (either Anderson localized or many-body local-
ized systems) for which the adiabatic velocity decreases
exponentially with system size [55,73].

III. EFFECT OF PERTURBATIONS

As it is difficult to exactly realize a particular Hamil-
tonian in an experiment, we next investigate the effect
of perturbations on the model discussed in the previous
section. We first note that the physics observed in the pre-
vious section is generally robust for perturbations H ′ that
can be written in the form

H ′ =
∑

i

h′
i(s), h′

i(s) =
2∑

n=−2

2∑

m=−2

Pn,iHnm,iPm,i, (44)

where P0,i = |K0(s)〉〈K0(s)|, Pm,i = |J2,m〉〈J2,m| for m =
±1, ±2 [see Eqs. (7) and (8)], and the operators Hnm,i sat-
isfy Hmn,i = H †

nm,i to ensure Hermiticity. This is so, because
the scar state is an exact eigenstate of Eq. (44), and the
model hence remains a scar model as long as we do not hit
an integrable point or perturb the model so strongly that the
scar state is no longer in the middle of the spectrum. As an
example, for s = 0, this means that perturbing the model
with Hermitian operators that act only within the spin-2
subspace of two coupled, neighboring spin-1 in the chain,
will still lead to a model with similar properties.

Let us next consider a perturbation that is not of the
form given by Eq. (44). Specifically, we consider the
Hamiltonian

H±
ε (s) = H±(s)− ε

N∑

i=1

Sz
i Sz

i+1, (45)

where ε > 0 is the strength of the perturbation. We have
chosen this perturbation, because it is local and respects all
the symmetries of the model, which simplifies the numer-
ical computations. The MPS in Eq. (1) is not an exact
eigenstate of Eq. (45).

We diagonalize the Hamiltonian numerically,

H±
ε (s)|�±,ε

n (s)〉 = E±,ε
n (s)|�±,ε

n (s)〉, (46)

to obtain the instantaneous eigenstates |�±,ε
n (s)〉 and their

energies E±,ε
n (s) in the same symmetry sectors considered

for the unperturbed Hamiltonians H±(s). Here, we label
the eigenstate, which has the highest fidelity with the MPS
in Eq. (1), by n = 0. In the following, we shall refer to this
state as the perturbed scar state or the perturbed ground
state. The other eigenstates in the considered symmetry
sector are labeled by n ∈ {1, 2, . . . ,D± − 1} in order of
increasing energy.

Figure 10 shows the entropy versus energy for the
instantaneous eigenstates of H−

ε (0) for N = 12 sites. For
ε � 0.01, we observe that there is a state in the middle of
the spectrum with a low entanglement entropy, which has
a high fidelity with the MPS in Eq. (1). The model hence
remains a scar model for moderate ε, while for larger ε the
scar state disappears.

As we have seen above, the adiabatic gauge potential is
an important quantity in determining the feasibility of adi-
abatic time evolution. At the same time, it can serve as a
highly sensitive indicator to sharply detect transitions from
nonergodic to ergodic behavior at the level of individual
eigenstates [69,70]. Since we compute |�±,ε

0 (s)〉 numeri-
cally, we shall here use Eq. (35) to express the adiabatic
gauge potential. To resolve a numerical instability in the
computation of this quantity, the so-called “small denomi-
nator problem” [66], we further introduce a regularization
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FIG. 10. Scar-state model under perturbation. Half-chain von
Neumann entanglement entropy as a function of energy for
the eigenstates of the perturbed Hamiltonian H−

ε (0) [see
Eq. (45)] with N = 12 in the symmetry sector (Sz

tot, k,I ,Z) =
(0, 0, +1, +1). The states are colored according to their fideli-
ties with the unperturbed scar state at s = 0, i.e., the AKLT state
|�0(0)〉. The state with the highest fidelity, which we call the per-
turbed scar state, is marked with a cross, and the fidelity is written
next to the state. The averaged level-spacing ratio rave, which is
given in each panel, provides further evidence that the spectra are
thermal also after adding the perturbation as expected.

and write

Ã±,ε
nm (s) = 〈�±,ε

n (s)|[∂sH±
ε (s)]|�±,ε

m (s)〉
μ± + i[E±,ε

n (s)− E±,ε
m (s)]

(47)

such that

A±,ε
nm (s) = lim

μ±→0+
Ã±,ε

nm (s). (48)

In the numerical computations, following Ref. [69], we
take μ± to be of the order of

√
N times the typical spacing

between energy levels. Specifically, we put

μ± = ND−1
± . (49)

From the regularized adiabatic gauge potential, we com-
pute the regularized fidelity susceptibility

χ̃±,ε
m (s) =

∑

n( 
=m)

|Ã±,ε
nm (s)|2 (50)

and also the regularized adiabatic gauge norm,

‖Ã±
ε (s)‖2 = 1

D±

∑

n

χ̃±,ε
n (s), (51)

which is the average of the regularized fidelity susceptibil-
ity over the considered symmetry sector. When the spec-
trum is thermal as here, the regularized adiabatic gauge
norm gives a typical value for the regularized fidelity sus-
ceptibility of a thermal state. Let us also note that the
regularization is not needed for computing the fidelity sus-
ceptibility of the ground state in the ground-state model
due to the energy gap, and for this case we hence take
μ+ = 0 and write the fidelity susceptibility without the
tilde, i.e., as χ+,ε

0 .
For the unperturbed case, we found in Eq. (30) that the

fidelity susceptibility of the state in Eq. (1) is the same for
the ground-state model and the scar-state model, and Fig. 7
showed that the fidelity susceptibility scales approximately
linearly with system size N for s = 0. In contrast, for ther-
mal states, the fidelity susceptibility scales exponentially
with system size, which can be seen by noting that the main
contributions to the sum in Eq. (50) are the terms for which
the states m and n are close in energy, and for such terms
Eq. (38) apply. This gives

χ̃−,ε
m (s) ∼ eN ln(3), (52)

which is unfavorable for adiabatic dynamics. Figure 11
shows how these results are modified, when the model
is perturbed. The results for the ground-state model
are largely unchanged for small perturbations, which is
expected due to the energy gap between the ground state
and the first excited state, and the scaling of the fidelity sus-
ceptibility is still approximately linear in N for s = 0. For
the thermal state, we also continue to see an exponential
scaling in agreement with Eq. (52).

The regularized fidelity susceptibility of the perturbed
scar state in the perturbed scar model, which is shown in
Fig. 11(b), has a more complicated behavior. Based on
Fig. 10, one could expect that the regularized fidelity sus-
ceptibility of the perturbed scar state follows the behavior
of the ground-state model for small enough perturbations
and follows the behavior of a thermal state for large
enough perturbations. We hence draw a few reference lines
in the figure. The dashed line shows a fit of the form N γ

to the data for ε = 0. This line follows the corresponding
line for the ground state in Fig. 11(a), except for a small
deviation due to the regularization. The dotted line is an
exponential fit of the adiabatic gauge norm and gives the
typical behavior for a thermal state in the scar model. For
a given perturbation strength, the regularized fidelity sus-
ceptibility of the perturbed scar state displays a quite sharp
change in behavior at a system size that we shall denote
by N �. For N < N �, the regularized fidelity susceptibil-
ity follows the behavior of the ground-state model, i.e.,
χ̃

−,ε
0 ∼ N , while for N > N �, it scales exponentially with

system size, i.e., χ̃−,ε
0 ∼ eβN . For data points that are far

from the dotted line, β ≈ 2.05, so the growth with sys-
tem size is larger than for a thermal state in this region.
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FIG. 11. Scaling of the (regularized) fidelity susceptibility with system size. (a) The fidelity susceptibility of the ground state of
H+
ε (0) scales as a power law N γ with system size for both the unperturbed and perturbed cases. The different marker types correspond

to different perturbation strengths ε as listed in panel (c), and the dashed line is the fit for ε = 0. The inset in panel (a) shows that
the nonuniversal exponent γ extracted from the fits remains close to one across the considered range of ε. (b) The regularized fidelity
susceptibility for the perturbed scar state of H−

ε (0) as a function of system size N for different perturbation strengths ε. The scaling of
the regularized fidelity susceptibility with system size changes from power law to exponential at N ≈ N �, and the relation between ε
and N � is shown in the inset. The value of N � has been extracted as the point, where the power law fits (shown as a dashed line for
ε = 0) and the exponential fits (solid lines) cross. Since there are three data points for the exponential fit for ε = 0.005, and only one
or two data points for the other values of ε, we have fixed the slope of the solid lines based on the fit at ε = 0.005 and only kept the
constant term as a free parameter in the other fits. The dash-dotted lines are a guide to the eye. The open squares show the adiabatic
gauge norm at ε = 0.1, and the dotted line is an exponential fit e0.97N to these data points. (c) The regularized fidelity susceptibility
of the thermal state closest in energy to the perturbed scar state grows exponentially with system size as expected from Eq. (52). The
inset shows the coefficient β, where the green markers are for χ̃−,ε

th , while the red squares are for ‖Ã−
ε (s)‖2 ∼ eβN , and the blue circles

are for ‖Ã+
ε (s)‖2 ∼ eβN .

For most of the considered perturbation strengths, it is not
clear from the numerics what happens when the data points
approach the dotted line, as the system sizes that can be
considered are not large enough. For the largest ε consid-
ered, however, it is seen that β decreases and approaches
ln(3), such that the regularized fidelity susceptibility of
the perturbed scar state follows the dotted line for large
enough N , which means that it behaves like a thermal state.
The inset of Fig. 11(b) shows that N � scales as − ln(ε),
or alternatively that ε scales as e−1.13N� . In summary, the
conclusion from Fig. 11 is that the physics is similar to
the unperturbed case, as long as ε is small enough that
N < N �. For N = 12, e.g., significant deviations start to
happen for ε = 0.005. Referring to Fig. 10, this is also
the point, where the fidelity between the perturbed and the
unperturbed scar state starts to deviate significantly from
unity.

Finally, we also consider perturbations that do not
respect the symmetries of the scar model. Such perturba-
tions can introduce an additional leakage source for the
scar dynamics, through which thermal states that belong
to different symmetry sectors can potentially mix with the
scar state and have nonzero contribution on its fidelity sus-
ceptibility, and hence, its adiabatic dynamics. To see the
impact of such a mixing, we consider the Hamiltonians

H−
zz,ε(s) = H−(s)+

∑

j

εj Sz
j Sz

j +1 (53)

and

H−
z,ε(s) = H−(s)+

∑

j

εj Sz
j , (54)

where εj is a random variable drawn from the Gaus-
sian distribution with zero mean and standard deviation
ε. H−

zz,ε(s) is thus a disordered version of Eq. (45), and
the random magnetic field in H−

z,ε(s) breaks all symmetries
except the total magnetization. Figure 12 shows χ̃−,ε

0 as a
function of system size for the models H−

zz,ε(0) and H−
z,ε(0)

at different disorder strengths in the range 0 ≤ ε ≤ 0.01.
We have checked that over this region, the energy spec-
trum remains thermal with rave around 0.52 despite the
presence of disorder. The change from power-law scaling
to exponential scaling is visible for both models. However,
for a fixed ε, N � is smaller than observed for the clean,
symmetry-preserving perturbation, Eq. (45), in Fig. 11(b)
as expected due to the larger dimension of the relevant
sector of the Hilbert space.

IV. TOWER OF SCARS

The model we have analyzed so far has a single scar
state, and we now briefly discuss how the results gener-
alize to the case of a tower of scar states. This in turn
opens up the possibility for parallel adiabatic manipula-
tion of quantum states. Models with a tower of scar states
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FIG. 12. Regularized fidelity susceptibility for the models in
Eqs. (53) and (54). The regularized fidelity susceptibility for the
perturbed scar state of the disordered Hamiltonians (a) H−

zz,ε(0)
and (b) H−

z,ε(0) as a function of system size at different disor-
der strengths ε. The dashed lines represent power-law fits to
the unperturbed data at ε = 0. For both models, the change
from power law to exponential scaling occurs at smaller sys-
tem sizes than in Fig. 11(b). The results for ε 
= 0 and N =
6, 8, 10, 12 are averaged over 105, 104, 103, 50 disorder realiza-
tions, respectively. The error bars represent the standard error of
the mean.

can be systematically constructed using the MPS-based
approach of Ref. [41]. This is done by first forming a tower
of exact eigenstates with bounded entanglement entropy
based on the so-called MPS tangent space method [74],
and the tower is then embedded into the thermal spectrum
of a parent Hamiltonian.

Starting from an exact uniform MPS as a root state,
the tower of exact eigenstates is constructed by succes-
sive application of a quasiparticle creation operator Q†

k =∑
j eikj q̂j . The quasiparticle creation operator produces a

superposition with momentum k of perturbations generated
by the action of a local operator q̂j centered around site j .
Here, we take the exact MPS |�0(s)〉 as the root state and
consider the quasiparticle creation operator

Q†
π =

∑

j

(−1)j (S+
j )

2. (55)

This gives the tower

|��(s)〉 = μN ,�(Q†
π)
�|�0(s)〉, (56)

where � = 0, 1, . . . , N/2 and μN ,� is a normalization fac-
tor. The state |��(s)〉 describes � noninteracting quasi-
particles with momentum π on top of the exact MPS
background |�0(s)〉, parameterized by the ramp parameter
s. At s = 0, the set of {|��(0)〉} reproduces the well-
known AKLT tower of states [26], which starts from the
AKLT state |�0(0)〉 at � = 0 and ends on the (ferromag-
netic) product state | + · · · +〉 at � = N/2 when N/2 is
even (note |�N/2(s)〉 = 0 for N/2 odd). Given the fact that
the operator (Q†

π)
� has an exact matrix product operator

representation (with virtual bond dimension χQ = �+ 1
[27]), the states |��(s)〉 have the structure of a matrix
product operator acting on an MPS. They can hence be
expressed as an MPS with subvolume law entanglement
scaling SA ≤ ln(χχQ), where χ is the virtual bond dimen-
sion of the MPS and ln(χχQ) is of order ln(N ) when � is
of order N and N � 1 [27].

Following the MPS construction of Ref. [41], the parent
Hamiltonian with the tower of states {|��(s)〉} is composed
of local terms with the form

h′
j (s) = ω0

2

+2∑

m=+1

|Km〉〈Km| +
0∑

m,m′=−2

Jmm′ |Km〉〈Km′ |,

(57)

where |Km( 
=0)〉 ≡ |J2,m〉 denotes the angular momentum
eigenstates defined in Eq. (7), and |K0〉 ≡ |K0(s)〉 rep-
resents the basis state given by Eq. (8), whose depen-
dence on time is through the ramp parameter s(t). Here
Jmm′ = J �

m′m ∈ C are the elements of a Hermitian coeffi-
cient matrix andω0 determines the energy spacing between
the consecutive scar states in the tower.

In the following, we will specifically consider the
Hamiltonian

H−
ST(s) =

∑

j

h′
j (s), J −

mm′ = (−1)mδm,m′ , (58)

where we set the coefficients J −
mm′ to be diagonal and site

independent, following the same reasoning that leads to
Eq. (11). The scar tower in the spectrum of the Hamil-
tonian (58) is seen in Fig. 13(a), where we plot the
entanglement entropy of the eigenstates within the sec-
tor (Sz

tot, k,I) = (0, 0, +1) at typical values of ω0 = 1,
s = 1/2, and N = 12 as well as the entanglement entropy
of the scar states. The states of the tower {|��(s)〉} are
exact eigenstates of H−

ST(s), which appear as outliers at
energies E−

� = �ω0. They belong to different symmetry
sectors (Sz

tot, eik,I) = (2�, (−1)�, (−1)�) due to the action
of the creation operator (Q†

π)
�. In Fig. 13(b), we evalu-

ate the instantaneous fidelity of the � th scar state C�(s) =
|〈��(0)|��(s)〉|2, measured with respect to the correspond-
ing state in the AKLT tower {|��(0)〉}. The result reveals
that the structure of the scar states changes continuously
as the ramp parameter s is varied. These results imply that
the considered model in Eq. (58) fulfils the essential ingre-
dients needed for investigating adiabatic dynamics of scar
states given in Sec. II.

Let us first consider the time evolution starting from one
of the scar states in the AKLT tower, i.e., |ψ0〉 ∈ {|��(0)〉}.
Owing to the block-diagonal structure of H−

ST(s), the evo-
lution of |ψ0〉 is restricted to a single symmetry sector of
the Hamiltonian. In other words, the initially prepared scar
state cannot evolve into scar or thermal states in different
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FIG. 13. Tower of scars. (a) Half-chain entanglement entropy
for the eigenstates of the Hamiltonian in Eq. (58) with N = 12,
ω0 = 1, and s = 1/2 in the sector (Sz

tot, k,I) = (0, 0, +1). The
states are colored according to the density of data points with
red (blue) being high (low) density. The corresponding mean
level spacing ratio rave follows the GOE value. The crosses
denote an equally spaced tower of exact scars, which appear at
energies E−

� = �ω0 with � = 0, 1, . . . , N/2 and symmetry sec-
tors (Sz

tot, eik,I) = (2�, (−1)�, (−1)�). (b) Instantaneous fidelity
C�(s) = |〈��(0)|��(s)〉|2 for the � th scar state as a function of
the ramp parameter s at fixed system size N = 18.

symmetry sectors. Note also that since all the scar states
belong to different symmetry sectors, we have A−

�′�(s) =
i〈��′(s)|∂s|��(s)〉 = 0 for all s and � 
= �′. The problem
hence reduces to the type of problem studied in Sec. II, and
the primary mechanism for population transfer is hence the
leakage from the initial scar state to nearby thermal states
within the same symmetry sector (followed by transition
between nearby thermal states).

When the initial state is |ψ0〉 ∈ {|��(s)〉} and the Hamil-
tonian is H−

ST(s), we find numerically in Fig. 14 that the
quantum uncertainty δE−

� given by Eq. (41) scales as
δE−

� ∼ J −
0

√
N for large N and that the catastrophe expo-

nent CN ,� extracted by fitting the instantaneous fidelity
of the first five scar states in the tower to the func-
tion − ln[C�(s)] ≈ CN ,�s2 scales as CN ,� ∼ N for large N .
These asymptotic scaling behaviors are similar to those
previously observed in Figs. 9(b) and 9(c) for the model
with a single embedded scar state and are rooted in the
locality of the Hamiltonian H−

ST(s) and the fact that all
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FIG. 14. Power-law scaling of the quantum speed limit. (a)
The system-size dependence of the quantum uncertainty of the
generalized force operator δE−

� and (b) the catastrophe exponent
CN ,� associated to the � th scar state in the tower display the same
asymptotic behaviors observed for the single embedded scar state
in Figs. 9(b) and 9(c). This signifies the validity of the condition
in Eq. (42), which in turn puts the upper bound vQSL

1/e ∼ J −
0 N−1/2

on the adiabatic velocity for the evolution starting from each
individual scar state of the AKLT tower.

the scar eigenstates {|��(s)〉} have a natural MPS repre-
sentation with finite correlation length [see the discussion
below Eq. (42)]. The scaling results signify the validity of
the condition in Eq. (42) for the evolution starting from an
individual scar state of the AKLT tower, i.e., δE−

� /CN ,� →
0 as N → ∞, irrespective of �. Consequently, the criterion
in Eq. (40) remains applicable, which in turn leads to the
power-law scaling of the adiabatic velocity with the upper
bound vQSL

1/e ∼ J −
0 N−1/2.

One can also do the adiabatic dynamics starting from an
initial state that is a superposition of the scar states in the
tower, i.e.,

|ψ0〉 =
∑

�

αN ,�|��(0)〉

for some choice of the coefficients αN ,�. Each scar state
|��(0)〉, appearing in this superposition, evolves indepen-
dently under the relevant symmetry sector of the Hamilto-
nian H−

ST[s(t)] without leaking into other scar or thermal
states of different sectors. As argued before, the dynamics
of each part remains adiabatic provided v � v

QSL
1/e . In this

vein, the evolution of |ψ0〉 splits into a set of dynamically
disconnected, adiabatic processes, each of which starts
from |��(0)〉 and in the adiabatic limit reaches |��(s(T))〉
at the end of the ramp. During this parallel adiabatic
evolution, the state of the system evolves from |ψ0〉 to

|ψT〉 =
∑

�

αN ,�e−i
∫ T

0 E−
�

dt|��[s(T)]〉

and cannot be moved out of the scarred subspace spanned
by the instantaneous tower of eigenstates, {|��(s)〉}.

A superposition of MPSs is again an MPS with a vir-
tual bond dimension that is (at most) the sum of the virtual
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bond dimensions [45], and as mentioned above, MPSs can
be generated efficiently with a quantum circuit [42,43]. A
particularly interesting superposition is the family of states
(parameterized by a static variable ξ ∈ C) given by [75],

|ψ0(ξ)〉 = eξQ†
π |�0(0)〉 =

N∏

i=1

[
1 + ξ(−1)i(S+

i )
2] |�0(0)〉,

(59)

that lies entirely within the scarred subspace of H−
ST(0).

This family has an MPS structure with χ = 4 and χ = 8
for open and periodic boundary conditions, respectively,
and thus exhibit area-law entanglement [75]. It has been
shown recently that such superpositions of scar eigenstates
can be prepared with high fidelity in quantum process-
ing units [76]. In time-independent scarring models, a
global quench from this kind of initial states gives rise to
anomalously long-lived, periodic revivals that reveal their
particular importance.

It is worth noting that a more complex situation can
arise in the presence of scar-preserving perturbations that
break the block-diagonal structure of the parent Hamil-
tonian [namely, by considering the terms |Km〉〈Km′ | with
m 
= m′ in Eq. (57)], or when all scar states in the tower
belong to the same symmetry sector. In such cases, pop-
ulation can transfer between different scar states of the
same tower, which introduces an additional timescale for
the leakage, τ��′ ∼ |A−

��′(s)|/|(�− �′)ω0|.

V. SCAR MODEL WITH FRACTIONAL
QUANTUM HALL ANYONS

Another important application of adiabatic time evolu-
tion is transformations that demonstrate topological prop-
erties of quantum states, e.g., braiding of anyons. We
therefore next construct a quantum scar model, in which
the scar state is a lattice Laughlin state with two quasiholes
and show that the quasiholes can be moved adiabatically.

A. Model

The starting point for constructing the scar model is to
define the scar state. Here, we take the scar state to be
a bosonic lattice Laughlin state at half filling with two
quasiholes. Specifically, we consider N sites at the fixed
positions zj in the complex plane, where N is even, and
N/2 − 1 hardcore bosons distributed on these sites. The
basis states in the Hilbert space are hence |n1, n2, . . . , nN 〉,
where nj ∈ {0, 1} is the number of particles on the site at
zj and

∑
j nj = N/2 − 1. The scar state also depends on

two additional coordinates, w1 and w2, that can be any-
where in the complex plane. The anyons in this state are
extended objects that form on the lattice sites that are in the
vicinity of w1 and w2. The coordinates w1 and w2 consti-
tute the parameters that we vary during the adiabatic time
evolution, i.e., w1 = w1(s) and w2 = w2(s).

The Laughlin state with anyons can be formulated in
terms of conformal blocks in rational conformal field the-
ories [77], and starting from the conformal blocks there is
a natural way to convert the Laughlin state with anyons
to a state defined on a lattice [78,79]. In short, the differ-
ence is that both the particles and the background charge
are restricted to the sites at zj rather than to a disk-shaped
region in the complex plane. This leads to the following
expression [78,79]:

|�0(s)〉 = Cs

∑

n1,...,nN

(−1)
∑N

j =1(j −1)nj δn

×
N∏

j =1

{
[zj − w1(s)][zj − w2(s)]

}nj

×
N∏

j<k

(zj − zk)
2nj nk−nj −nk |n1, . . . , nN 〉 (60)

for the Laughlin state at half filling with two quasiholes.
Here Cs is a normalization constant and

δn =
{

1, for
∑N

j =1 nj = N/2 − 1
0, otherwise

(61)

fixes the number of particles.
Having defined the scar state, the next step is to identify

operators that annihilate the scar state. Such operators have
been derived in Refs. [79,80], and they take the form

�j =
N∑

k( 
=j )

1
zj − zk

[
dk − dj (2nk − 1)

] −
2∑

l=1

1
zj − wl(s)

dj ,

�j =
N∑

k( 
=j )

1
zj − zk

dj dk,

(62)

where dj is the annihilation operator of a hardcore boson
at site j and nj = d†

j dj , i.e.,

�j |�0(s)〉 = �j |�0(s)〉 = 0, ∀j . (63)

From these operators one can construct the Hamiltonian

Hβ(s) =
N∑

j =1

�
†
j�j + β

N∑

j =1

�
†
j �j , β ∈ R. (64)

It follows from Eq. (63) that the state |�0(s)〉 is an exact
eigenstate with zero energy. We utilize the parameter β to
adjust the position of this eigenstate in the spectrum, i.e.,
how many states have lower energy than that of |�0(s)〉. If
we choose β ≥ 0, the state in Eq. (60) is the ground state
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of the model for all s, while for appropriately chosen neg-
ative β it is a scar state in the middle of the spectrum. A
similar construction was used in Ref. [81] to construct a

topological scar model, but for the case of a Laughlin state
without anyons.

Inserting Eq. (62) into Eq. (64), we obtain

Hβ(s) =
N∑

i
=j

FA
ij (s)d

†
i dj +

N∑

i
=j

FB
ij (s)ninj +

N∑

i
=j 
=k

FC
ijkd†

i dj nk +
N∑

i
=j 
=k

FD
ijkninj nk +

N∑

i=1

FE
i (s)ni (65)

after some algebra, where

FA
ij (s) = 2|cij |2 +

N∑

k( 
=i,
=j )

(
c∗

ikcij + c∗
jicjk + c∗

kickj

)
−

2∑

l=1

(
cij c̃∗

il + c∗
jic̃jl

)
, cjk ≡ 1

zj − zk
, c̃jl ≡ 1

zj − wl(s)
,

FB
ij (s) = β|cij |2 − 2

N∑

k( 
=i,
=j )

(
c∗

ij cik + c.c.
)

+ 2
2∑

l=1

(
cij c̃∗

il + c.c.
)

, FC
ijk = −2

(
c∗

ikcij + c∗
jicjk

)
+ βc∗

kickj ,

FD
ijk = 4c∗

ij cik, FE
i (s) =

N∑

j ( 
=i)

|cij |2 +
N∑

j ( 
=i),k( 
=i)

c∗
ij cik −

N∑

j ( 
=i)

2∑

l=1

(
cij c̃∗

il + c.c.
) +

2∑

l,m=1

c̃∗
ilc̃im,

(66)

and c.c. denotes the complex conjugate. It is seen that
the Hamiltonian conserves the number of particles, is
nonlocal, and includes interaction terms of up to three
particles.

The state in Eq. (60) is an exact eigenstate of the Hamil-
tonian in Eq. (65) for general choices of the positions zi
of the lattice sites in the complex plane. In the following,
we shall consider a square lattice with Lx × Ly sites. We
fix w1 at the center of the lattice and move w2 along the
edges of a rectangle. The center of the rectangle coincides
with w1. For Lx even (odd) the width of the rectangle is
two (one) lattice spacings, and for Ly even (odd) the height
of the rectangle is two (one) lattice spacings. The move-
ment is parametrized by s ≡ s(t), which changes linearly
from 0 to 1 when w2 moves along the first edge, from 1
to 2 when w2 moves along the second edge, from 2 to 3
when w2 moves along the third edge, and from 3 to 4 when
w2 moves along the fourth edge. The geometry is illus-
trated for the case of a 4 × 4 lattice in Fig. 15. Note that
w1 and w2 are not that far from each other. This means that
the process does not represent a braiding of well-separated
anyons, as the anyons overlap substantially. This is, how-
ever, not of importance for our purposes, as our aim is not
to compute the result of anyon braiding, but rather to inves-
tigate how slowly one needs to move the anyons to ensure
close-to-perfect adiabaticity.

In the following, we consider two Hamiltonians on the
Lx × Ly lattice, namely

H+(s) ≡ H+5(s) (67)

with β = +5, for which the state (60) is the ground state
and

H−(s) ≡ H−5(s) (68)

with β = −5, for which Eq. (60) is a scar state in the mid-
dle of the spectrum. We first establish that H−(s) is indeed
a scar model for the considered parameters, and then study
the dynamics when w2 moves along the first edge.

1. Tower of scar states

The above model can be extended to involve a tower of
scar states. The Hamiltonian in Eq. (65) only describes the
sector with (N − 2)/2 particles. One can, however, use the
considered approach to also derive Hamiltonians for sec-
tors with (N − 2k)/2 particles and 2k quasiholes, where
k is a non-negative integer. For k ≥ 2, the coordinates w1
and w2 can be chosen to be the coordinates of two of the
quasiholes, and for k = 0 the Hamiltonian can be chosen
to be independent of w1 and w2. If we further add the term
�

∑
i ni to the Hamiltonian, the scar states with 2k and

2k + 2 quasiholes will differ in energy by�, and we hence
have a tower of equidistant scar states.

B. Scarring properties of H−(s)

1. Entanglement entropy

To compute the entanglement entropy, we divide the
system into two parts consisting of, respectively, the upper
and lower half of the lattice as illustrated in Fig. 15. We
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FIG. 15. Geometry of the system for the case of a 4 × 4 square
lattice. We fix the coordinate w1 to be at the center of the lattice,
whereas the coordinate w2 moves along the square path shown
with red, dotted lines. The latter is parametrized by s ∈ [0, 4], in
such a way that the real and imaginary parts of w2 change linearly
with s. The dashed line divides the system into two parts, A and Ā,
with respect to which the entanglement entropy is computed. For
the lattices with size 3 × 4, 5 × 4, and 3 × 6, w1 is again at the
center of the lattice, and w2 moves around a rectangle of width
one lattice spacing and height two lattice spacings and center
at w1.

perform an exact numerical diagonalization of H−(s) to
obtain the eigenstates in the sector with (N − 2)/2 par-
ticles and then compute the von Neumann entropy from
Eq. (13). Figure 16(a) shows that the scar state has a much
lower entanglement entropy than the other states with
similar energies [see also Fig. 16(c) for a more detailed
view]. The other states in the middle of the spectrum have
entanglement entropies that are close to the Page value
[N ln(2)− 1]/2 [50] as expected for thermal states.

2. Level-spacing statistics

To further confirm that the spectrum of H−(s) is ther-
mal, we plot the mean level spacing ratio, Eq. (15), as
well as the distribution of level-spacing ratios, Eq. (14),
in Fig. 16(b) for the sector with (N − 2)/2 particles. For
ergodic Hamiltonians with broken time-reversal invari-
ance, the statistics of level-spacing ratios is generally
expected to obey the Gaussian unitary ensemble (GUE)
with average rGUE ≈ 0.603. Ergodic Hamiltonians that do
not break time-reversal invariance are instead expected
to follow the Gaussian orthogonal ensemble (GOE) with
rGOE ≈ 0.536, in contrast to the Poisson distribution
with rPOI ≈ 0.386 for integrable and many-body local-
ized models [52,53]. The Hamiltonian in Eq. (65) breaks
time-reversal symmetry, and the level-spacing ratios in
Fig. 16(b) indeed follow GUE statistics for most values
of s.

Even systems with broken time-reversal symmetry can
exhibit GOE level-spacing statistics if the Hamiltonian
remains invariant under a combined symmetry consisting
of time reversal followed by a spatial unitary operation,
such as reflection or rotation. Such anomalous GOE statis-
tics was pointed out in Ref. [82] for single-particle Hamil-
tonians and has also been observed in interacting fermionic
models describing the lowest Landau level of fractional
quantum Hall systems where time-reversal symmetry is
broken by an external magnetic field [83]. When w1 and
w2 are at special positions, the model considered here has
a combined symmetry consisting of time reversal, repre-
sented by complex conjugation, followed by mirroring in
an axis going through both w1 and w2. For the path on the
4 × 4 lattice, the special positions are when w2 is at one of
the four corners or halfway between two adjacent corners.
For rectangular lattices, the special positions are only when
w2 is midway between two of the corners. These are pre-
cisely the values of s for which GOE statistics is observed
in Fig. 16(b).

3. Change of the scar state with s

Finally, Fig. 16(c) shows that the scar state changes as a
function of the parameter s. The state at s = 4 is the same
as the state at s = 0, and hence the instantaneous fidelity
at s = 4 is unity. If one takes w2 all the way around the
loop, one can end up in the desired state either because the
dynamics is adiabatic or because the dynamics is so fast
that the system does not have time to react and therefore
stays in the initial state. To eliminate the latter possibility,
we shall consider time evolution from s = 0 to s = 1 in
the following, i.e., moving along the first edge only. The
instantaneous fidelity for s = 1 is seen to be close to zero,
and the ideal final state is hence almost orthogonal to the
initial state.

C. Adiabatic time evolution

We now turn to a study of the dynamics. We shall
consider two different ramp protocols in the following,
which we refer to as linear ramp and sinusoidal ramp,
respectively. For the linear ramp, given by

s ≡ s(t) = vt, v = 1/T, t ∈ [0, T], (69)

s changes linearly in time from zero to one. For the
sinusoidal ramp, we instead take

s ≡ s(t) = sin2
(π

2
vt

)
, v = 1/T, t ∈ [0, T]. (70)

For this ramp, the time derivative of s goes to zero at the
corners of the rectangle. This eliminates abrupt changes
happening because the direction of movement changes if
w2 goes all the way around the loop. We also consider
this second type of ramp to investigate to what extent
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FIG. 16. Static properties of the scar model. (a) von Neumann entanglement entropy of the eigenstates of the scar Hamiltonian
H−(s) on a 4 × 4 lattice with region A chosen as shown in Fig. 15. The dark line at zero energy is produced by the low-entangled scar
state. The entanglement entropy of the other eigenstates near the middle of the spectrum is close to the Page value, which indicates
that they are thermal. (b) The mean level-spacing ratio rave of the eigenstates also indicates thermal behavior. Except for certain anyon
positions with enhanced symmetry, at which the result is close to rGOE ≈ 0.536, the mean level-spacing ratio shows agreement with
rGUE ≈ 0.603. The inset shows GUE level statistics for the 3 × 6 lattice for s = 2. The value for the Poisson distribution rPOI ≈ 0.386
is also shown for comparison. (c) The entanglement entropy SA[|�0(s)〉] of the scar state |�0(s)〉 as well as the instantaneous fidelity
C(s) = |〈�0(0)|�0(s)〉|2. While the instantaneous fidelity shows that the structure of the scar state changes as the second quasihole
moves around, the entanglement entropy remains low.

the choice of ramp affects the results. We again consider
ground-state, scar-state, and thermal-state dynamics as
defined in Sec. II C, and we simulate the dynamics using
the Chebyshev expansion [59].

1. Adiabatic fidelity

The adiabatic fidelity, Eq. (19), of the time-evolved state
is shown in Fig. 17. The plot to the left shows the adia-
batic fidelity, when the initial state is the ground state, and
the system is evolved with H+(s). The plot to the right
instead shows the same quantity when the initial state is
the scar state and the system is evolved with H−(s). We
observe that the adiabatic fidelity in the latter case is close
to unity for ramp speeds as high as 10−1, despite the fact
that the scar state is in the middle of the spectrum and is
surrounded by thermal states having similar energies. In
fact, the two plots for F look rather similar, indicating that
the ground state and the scar state behave similarly with
respect to adiabaticity.

To get a more detailed view and to determine the scal-
ing behavior with v in the adiabatic regime, we plot
the logarithmic fidelity, −log10(F), in Fig. 17(b). For
both cases and for both of the considered ramp func-
tions, the logarithmic fidelity follows a power-law scal-
ing with v in the regime of small ramp speed. For
the ground-state dynamics, −log10(F) scales as v2 for
the linear ramp and as v4 for the sinusoidal ramp. For
the scar-state dynamics, we instead find that −log10(F)
scales as v for both of the considered ramp functions.
We will discuss this scaling further in Sec. V D. The

differences in scaling mean that the ground state performs
better than the scar state if one is interested in very high
fidelities. If one, e.g., wants 1 − F ≈ 10−10, one should
choose ground-state dynamics and optimize the ramp
function.

For both the linear ramp and the sinusoidal ramp, there
is a change in behavior of the logarithmic fidelity for the
scar-state dynamics from linear scaling in v at low ramp
speeds to a behavior almost coinciding with the ground-
state dynamics for intermediate ramp speeds. This suggests
that there are two leakage mechanisms in play: one that
only applies to the scar-state dynamics and is dominant
at low ramp speeds, and one that applies to both ground-
and scar-state dynamics and is dominant at intermediate
ramp speeds. We will identify these mechanisms in
Sec. V D below.

For the model considered here, it is not practicable to
investigate in detail how the adiabatic velocity scales with
system size. First, the complexity of quantum many-body
systems means that only small systems can be simulated
numerically. If, e.g., we want to consider quadratic lattices,
2 × 2 is too small, 4 × 4 is possible, and 6 × 6 is already
too big. Second, the Hamiltonian (65) is long range and the
value of some of the coefficients depends on the positions
of all the lattice sites. What happens deep in the interior of
the system hence continues to change as the system size
grows. We can, however, make a few observations from
the results obtained for lattices with sizes 3 × 4, 4 × 4, and
5 × 4. For the ground-state dynamics, the adiabatic veloc-
ity changes only slightly with system size for these three
lattices, and for the scar-state dynamics the change is even
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FIG. 17. Adiabatic fidelity. (a) Adiabatic fidelity, Eq. (19), as a
function of ramp speed v for ground-state and scar-state dynam-
ics (see the list in Sec. II C) and different system sizes. The
vertical dashed lines show the adiabatic velocity v0.99 defined
as the ramp speed for which the fidelity drops below 0.99. It
is remarkable that v0.99 is about the same for the scar state as
for the ground state, despite the fact that the scar state sits in
the middle of a thermal spectrum with no protecting energy gap.
(b) In the adiabatic regime, the logarithmic fidelity, − log10(F),
scales as v2 for the ground-state dynamics and v for the scar-
state dynamics. The inset shows that the logarithmic fidelity for
the sinusoidal ramp scales differently with v for the ground-state
dynamics, but not for the scar-state dynamics.

less. This suggests that adiabatic dynamics is possible even
for relatively large system sizes.

2. Leakage to other states

The amount of leakage to other states as quantified by
ρnn(T) in Eq. (20) is shown in Fig. 18 for scar-state and
thermal-state dynamics. The leakage to other states is seen
to be much smaller for the scar-state dynamics than for
the thermal-state dynamics. For the scar-state dynamics,
we observe that there is an enhanced population transfer
to states with energies around or slightly larger than the
first excited state of H+[s(T)], denoted by E+

1 [s(T)]. We
discuss this observation further in Sec. V C 3 below.

For the scar-state dynamics at low ramp speeds, the
leaked population is seen to mainly end up in instanta-
neous eigenstates with energies slightly below zero. This
can be understood from Fig. 19, which shows both how
the energies of the eigenstates change with s(t) and how
the population of the eigenstates depends on the energies
of the eigenstates and s(t). Note that the spectra at s = 0
and s = 1 are identical. It is seen that leakage from the
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FIG. 18. Leakage to other states. Population in each of the
instantaneous eigenstates at the end of the ramp as a function of
the ramp speed v and the final instantaneous energies E−

n [s(T)].
The computations are for (a) scar-state and (b) thermal-state
dynamics on the 4 × 4 lattice with the linear ramp. While the
transfer to other states is small for the scar-state dynamics at
small v, it is much larger for the thermal-state dynamics. This
shows that the scar state is suitable for adiabatic dynamics, while
the thermal states are not. The dashed green line shows the
energy of the first excited state of H+[s(T)], and the vertical
lines show the adiabatic velocities v0.99 and v1/e obtained from
the dynamics.

scar state to the thermal states happens mainly for the ther-
mal states that are close in energy to the scar state. The
population that has already leaked to the thermal states is
moved up and down in energy following the energy of the
thermal states. In addition, population can also be trans-
ferred between thermal states that are close in energy. The
leaked population ends up mainly in states that have ener-
gies slightly below zero at the end of the ramp, because
these states are the states that have crossed the scar state
during the ramp.

The scaled diagonal entropy is shown in Fig. 20. The
main conclusion from this plot is that the population
quickly spreads over several states for the thermal-state
dynamics, while the population spreading is much smaller
for the ground-state and scar-state dynamics at low ramp
speeds. The thermal states are hence not suitable for
adiabatic dynamics.

3. Emergence of the spectral gap

In Fig. 18(a), we have seen that there is a slightly
enhanced leakage to states at certain energies starting
from E+

1 [s(T)]. We here provide an explanation for this
effect. For the case of ground-state dynamics, leakage hap-
pens primarily to low-lying excited states. This is, in part,
because the energy difference is lower for these states,
but also because the low-lying excited states have struc-
tural similarities to the ground state, which leads to larger
matrix elements of the adiabatic gauge potential. When
we convert the ground-state model into the scar model
by changing the sign of β, the state |�0(s)〉 becomes a
highly excited state. One may speculate what happens to
the low-lying excited states from the ground-state model,
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FIG. 19. Leakage dynamics. (a) The evolution of the popula-
tion in each eigenstate as a function of the eigenstate energy and
the parameter s for the scar-state dynamics on the 4 × 4 lattice
with a linear ramp with ramp speed v = 10−3. (b) The evolution
of the energy spectrum as a function of s for the 4 × 4 lattice.
The scar state is shown in red and the thermal states in green. For
the thermal states, we plot only every 30 state for clarity. Leak-
age from the scar state to thermal states happens primarily for the
thermal states that are close in energy to the scar state. During the
first about one third of the ramp, the population already leaked to
the thermal states is transported upwards in energy, because the
energies of the thermal eigenstates increase with s. During the
last about one third of the ramp, this transport is downwards. In
addition, population can transfer between thermal states when
they are close in energy.

when the sign of β is switched. To find out, we use the
kernel polynomial method [84] to compute the dynamical
spectral function

Gn(ω) =
∑

m

|〈�+
n (s)|�−

m(s)〉|2δ[ω − E−
m (s)] (71)

for the 6 × 4 lattice with Hilbert space dimension D± =
2496144. The spectral resolution of the kernel polyno-
mial method is inversely controlled by the number of
Chebyshev moments, which we set to 217 to achieve high
resolution.

The result of the computation for s = 0 as an example is
shown in Fig. 21. The ground state |�+

0 (0)〉 of course maps
perfectly to the scar state |�−

0 (0)〉 by construction, and as
a result the spectral function for n = 0 is a sharp peak at
ω = 0. The spectral function for the n th low-lying excited
state |�+

n (0)〉 is a peak centered around E+
n (0), which

means that the state |�+
n (0)〉 only has significant weight
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FIG. 20. Scaled diagonal entropy. The scaled diagonal entropy
as a function of ramp speed for the ground-state, scar-state, and
thermal-state dynamics on a 4 × 4 lattice. The vertical dashed
lines show the adiabatic velocity v0.99. The plot shows that the
time-evolved state at the end of the ramp spreads over sev-
eral energy eigenstates for the thermal-state dynamics, while
the time-evolved state at the end of the ramp is almost equal
to a single energy eigenstate for the ground-state and scar-state
dynamics at small ramp speeds.

on eigenstates of H−(0) with energies around E+
n (0). It is

also seen that the peak broadens as n increases.
The picture that emerges from this computation is the

following. Because the eigenstates |�+
n (s)〉 of H+(s) with

low n are close in energy to the state |�0(s)〉, we expect
|�+

n (s)〉 to have some similarities with |�0(s)〉. All these
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FIG. 21. Spectral gap. Dynamical spectral function, Eq. (71),
measured with respect to the ground state (GS), 1st, 2nd, 3rd,
4th, 5th, and 6th excited state as well as the 100th eigenstate of
H+(0). Each state produces one peak. The vertical, dashed lines
mark the maxima of the peaks, and the values of ω at the max-
ima are denoted ωmax

n . The inset shows that ωmax
n ≈ E+

n . In other
words, if a transfer from the scar state |�0(s)〉 to the state |�+

n (s)〉
happens in the scar model, it is seen as a leakage to a group of
states with energies around E+

n .
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states, e.g., have low entanglement entropy compared to
thermal states in the middle of the spectrum. As a result,
we expect leakage to these states to happen more easily. In
the scar model, some eigenstates of H−(s)may still couple
to the states |�+

n (s)〉 with low n because of their similar-
ity to |�0(s)〉. But now these states are superpositions of
a group of instantaneous eigenstates with energies around
E+

n (s) with low n. The result is an enhanced leakage to
groups of states with energies around E+

n (s), e.g., E+
1 , as

seen in Fig. 18(a). We note also that population transferred
from |�0(s)〉 to |�+

n (s)〉 will evolve further since leak-
age easily happens between thermal states that are nearby
in energy and since the different instantaneous eigenstates
evolve with different dynamical phases.

D. Comparison to adiabatic perturbation theory

Returning to the discussion of adiabatic perturbation
theory in Sec. II D 1, the rate of leakage to other states is
determined approximately by Eq. (25). The central quanti-
ties are the matrix element of the adiabatic gauge potential
in Eq. (26) and the energy difference. Both of these are
shown for s = 0 in Fig. 22. Qualitatively similar plots are
obtained for other values of s. These plots illustrate how
well adiabatic time evolution works for the different states
and the main reasons for the observed leakage.

The ground state is suitable for adiabatic time evolution,
because all the other states are separated from the ground
state by an energy gap. In this case, Eq. (27) applies for
the linear ramp for low enough ramp speeds, which leads
to a quadratic scaling of the logarithmic fidelity with ramp
speed.

The scar state is suitable for adiabatic time evolution
because all states that are not separated from the scar state
by a significant energy difference have low matrix ele-
ments of the adiabatic gauge potential. In this case, there
are two mechanisms for leakage. Leakage can happen to
thermal states that are close in energy to the scar state, but
have low matrix elements of the adiabatic gauge poten-
tial. This gives rise to a logarithmic fidelity that scales
linearly in v as argued in Sec. II D 3, and this mechanism
is dominant at small ramp speeds. The other mechanism
is leakage to states that are at different energies than the
scar state, but have particularly high values of the matrix
elements of the adiabatic gauge potential, typically of the
order |A−

n0| ∼ O(1). This type of leakage is similar to
the leakage from a gapped ground state, and hence scales
quadratically in ramp speed when the ramp is linear and the
ramp speed is low. As seen in Fig. 17(b), this mechanism
can be dominant at intermediate ramp speeds, or it may
not become dominant within the high-fidelity regime, as
seen for the MPS model. Whether the second mechanism
is important or not for intermediate ramp speeds depends
on the heights and locations of the peaks of the matrix ele-
ments of the adiabatic gauge potential in a given model.
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FIG. 22. Matrix elements of the adiabatic gauge potential.
This plot, and corresponding plots for other values of s that look
similar, provides the information needed to estimate the leakage
from Eq. (25). For the ground-state dynamics, leakage happens
primarily to low-lying excited states, but since these are sepa-
rated from the ground state by a gap, the leakage is low. For the
scar-state leakage is low, because it happens through two ineffi-
cient mechanisms, namely leakage to states that are close to zero
energy E0 = 0, but have quite low matrix elements of the adi-
abatic gauge potential, and leakage to states that have different
energies, but particularly high matrix elements of the adiabatic
gauge potential. For the thermal-state dynamics, the matrix ele-
ments of the adiabatic gauge potential show a large peak at zero
energy difference, and this gives rise to rapid leakage. The color
indicates the density of data points, with red being high density
and blue being low density. The vertical dashed lines mark the
points of zero energy difference.

For the model considered here, the energy at which the
peak appears (e.g., E−

n ≈ 2.97 at s = 0) is close to the gap
between the ground state and the low-lying excited state of
H+ with the largest absolute value of the adiabatic gauge
potential (e.g., E+

2 ≈ 2.82 at s = 0). This coincidence hap-
pens for all s and is consistent with the observation of the
spectral gap in Sec. V C 3. For even higher ramp speeds,
the exponential in Eq. (25) oscillates at a slower rate for
a given energy difference and leakage happens to a larger
range of energy eigenstates.

Finally, we observe that the thermal state is not suitable
for adiabatic dynamics because the matrix elements of the
adiabatic gauge potential has a large peak at zero energy
difference.

E. Comments on the quantum speed limit

For reasons discussed already in Sec. V C 1, we are not
able to judge how δE±

0 /CN scales with system size for the
model considered in this section, but if δE±

0 /CN → 0 for
N → ∞, we note that the upper bound vQSL

1/e of the adia-
batic velocity computed from Eq. (40) is the same for the
ground- and scar-state dynamics. This is so, because the
ground state of H+(s) is the same state as the scar state of
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H−(s), and because ∂sHβ(s) is independent of β, such that
∂sH+(s) = ∂sH−(s).

VI. CONCLUSION

We have shown that scar states embedded in the middle
of a thermal spectrum without a protecting energy gap are
well suited for adiabatic time evolution. The reason is that
leakage to the nearby thermal states is impeded because
of the structural differences between the scar state and the
thermal states.

By investigating two rather different scar models, one
based on an MPS construction in one dimension and the
other being a fractional quantum Hall scar model in two
dimensions, we have identified two main mechanisms that
lead to leakage out of the scar state. One is leakage to ther-
mal states that are close to the scar state in energy. This
leakage happens only slowly, because of the structural dif-
ferences between the scar state and the thermal state, which
mathematically is seen as a low value of the matrix ele-
ments of the adiabatic gauge potential between the states.
Since the scar states are exact eigenstates for all values of
the considered parameters, the thermal states can cross the
scar state in the spectrum without hybridizing. Such cross-
ings give rise to a leakage 1 − F that scales linearly with
ramp speed in the limit of small ramp speeds. The linear
scaling is practically universal and independent of ramp
protocol for small enough v as it relies on that one can
Taylor expand the matrix element of the adiabatic gauge
potential and the energy difference to first order in the
changing parameter over an interval whose width scales
as the square root of the ramp speed. Different behaviors
could be observed, if the first derivative of the energy dif-
ference is zero when a thermal state is close to the scar
state.

The other mechanism for leakage is leakage to states
that have energies different from the scar state, but matrix
elements of the adiabatic gauge potential that are particu-
larly high. Such leakage is reminiscent of the leakage out
of a gapped ground state undergoing adiabatic evolution,
and for small and constant ramp speeds, the leakage 1 − F
scales quadratically with the ramp speed. Scar models are
often produced by lifting a ground state higher up in the
spectrum, and peaks in the matrix elements of the adiabatic
gauge potential can appear as remnants in the scar model of
the low-lying excitations of the original model. How sig-
nificant this mechanism is, depends on the model and can
be judged from the highest peaks in the matrix elements
of the adiabatic gauge potential. In addition to these two
mechanisms, population that has already leaked to thermal
states can redistribute through leakage between thermal
states in the spectrum that happens relatively easily if the
thermal states are close in energy.

At very low ramp speeds, the first mechanism is domi-
nant. As a result, ground states of gapped systems perform

better than scar states in this regime, as only the second
mechanism is at play for gapped ground states. This is,
however, only relevant if one wants very high adiabatic
fidelities, such as 0.9999 for the considered models. At
intermediate ramp speeds, there may be a regime, where
the second mechanism becomes dominant, and for suffi-
ciently high ramp speeds leakage happens to a broader
range of states. In these regimes, the adiabatic fidelities
obtained for a given ramp speed are roughly the same for
the scar- and ground-state dynamics. As a result, the adi-
abatic velocity v0.99, defined as the ramp speed at which
the adiabatic fidelity drops below 0.99, is about the same
for scar states and gapped ground states in the considered
models. For the model in one dimension, we find that v0.99
scales as a power law with system size N for both the scar
state and the ground state (roughly as N−0.8). In contrast, if
the system starts in a thermal state, v0.99 drops exponen-
tially with system size, and a large leakage is observed
even for small ramp speeds. Similar behaviors are seen for
the two-dimensional model, although in that case we can-
not determine the precise scaling behaviors with system
size due to the complexity.

The identified mechanisms provide knowledge that one
can utilize to judge and improve the expected performance
of scar models with respect to adiabatic time evolution.
The first mechanism, e.g., tells us that one should avoid
that the same thermal state remains close to the scar state
during a significant fraction of the evolution, as this would
lead to a larger leakage to that state. One could also think
of engineering echoes, where leakage happening to a ther-
mal state in a first crossing is returned in a second crossing.
It would also be interesting to investigate to what extent
shortcuts to adiabaticity [85–88] can be applied for scar
states.

We also studied the effect of perturbations for the one-
dimensional model. We showed that the scar state remains
an exact eigenstate for a family of perturbations, and for
this family of perturbations the physics is robust. For per-
turbations outside this family, we found that the physics
is unaltered as long as the perturbations are small enough
that the fidelity between the perturbed scar state of the per-
turbed model and the exact scar state of the unperturbed
model remains high. This is easier to achieve for small
systems. In some scar models, the most natural perturba-
tions belong to the family of perturbations for which the
scar state remains an exact eigenstate [89], and it would
be interesting to construct suitable paths for adiabatic
dynamics in such models.

The ability to manipulate scar states adiabatically opens
up interesting possibilities. In particular, instead of hav-
ing a model with a single ground-state manifold isolated
from the rest of the spectrum, one can have models with a
tower of states that are all isolated from other states in the
spectrum, behave like ground states, and can be manip-
ulated like ground states. This, e.g., opens a door for a
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different type of parallelism in adiabatic optimization pro-
cesses as well as interference among different ground states
and revival dynamics that can be adiabatically modified.
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