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We consider the Z2 toric code, surface code, and Floquet code defined on a nonorientable surface, which
can be considered as families of codes extending Shor’s nine-qubit code. We investigate the fault-tolerant
logical gates of the Z2 toric code in this setup, which corresponds to e ↔ m exchanging symmetry of the
underlying Z2 gauge theory. We find that nonorientable geometry provides a new way for the emergent
symmetry to act on the code space, and discover the new realization of the fault-tolerant Hadamard gate
of the two-dimensional surface code with a single cross cap connecting the vertices nonlocally along a
slit, dubbed a nonorientable surface code. This Hadamard gate can be realized by a constant-depth local
unitary circuit modulo nonlocality caused by a cross cap. Via folding, the nonorientable surface code
can be turned into a bilayer local quantum code, where the folded cross cap is equivalent to a bilayer
twist terminated on a gapped boundary and the logical Hadamard only contains local gates with intralayer
couplings when being away from the cross cap, as opposed to the interlayer couplings on each site needed
in the case of the folded surface code. We further obtain the complete logical Clifford gate set for a stack of
nonorientable surface codes and similarly for codes defined on Klein-bottle geometries. We then construct
the honeycomb Floquet code in the presence of a single cross cap, and find that the period of the sequential
Pauli measurements acts as a HZ logical gate on the single logical qubit, where the cross cap enriches the
dynamics compared with the orientable case. We find that the dynamics of the honeycomb Floquet code is
precisely described by a condensation operator of the Z2 gauge theory, and illustrate the exotic dynamics
of our code in terms of a condensation operator supported at a nonorientable surface.
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I. INTRODUCTION

Quantum error-correcting codes stand as a cornerstone
of fault-tolerant quantum computation. In the last few
decades, there has been active effort to find new error-
correcting codes and associated logical gates, due to their
importance from both theoretical and practical perspec-
tives. In many cases, a quantum error-correcting code
realizes a topologically ordered state at its code space,
where the robust nature of topological order against local
perturbations makes it possible to achieve fault tolerance
[1,2]. One of the most familiar examples is the Z2 toric
code that realizes the Z2 gauge theory at its ground-state
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subspace, and many well-known codes such as Shor’s
nine-qubit code, the Steane code, and the Reed-Muller
code are regarded as storing the topologically ordered
states supported on a nontrivial spatial manifold at their
code spaces [3,4].

The topologically ordered states can generally be real-
ized in two distinct ways; one approach is the traditional
“passive” way, which prepares the state as a ground state
of a specific many-body Hamiltonian. The other is the
“active” way that prepares and maintains a state by sequen-
tially measuring local operators, instead of considering
a fixed Hamiltonian. The widely studied codes in this
category are the stabilizers codes, where commuting sta-
bilizers can be simultaneously measured in each round. As
another remarkable example, Hastings and Haah recently
discovered a protocol to realize the topologically ordered
state by a periodic sequence of noncommuting two-qubit
Pauli measurements, dubbed a honeycomb Floquet code
[5]. Here, the code implements an instantaneous stabilizer
group with the sequence of measurements, which stabi-
lizes a topologically ordered state equivalent to the Z2 toric
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code. Interestingly, a period of the measurement schedule
on the honeycomb Floquet code induces an emergent Z2
symmetry for the e ↔ m exchange of anyons in the Z2
toric code, which leads to a nontrivial logical gate acting
on the code space. The study of Floquet code and their
new variants is under active development in recent years,
including the Floquet code with boundaries [6], with dead
qubits [7], with insertion of defects [8], automorphism
codes [9,10], CSS version [11], and generalization to three
space dimensions [12].

For the purpose of fault-tolerant quantum computa-
tion, one needs to implement fault-tolerant logical gates,
which are automorphisms U acting on the code spaces
C, i.e., U : C → C. A very important class of such log-
ical gates correspond to transversal gates, which can
be expressed as a product of unitary

⊗
j Uj , or more

generally constant-depth (geometrically) local circuits
[13,14]. While transversal gates do not propagate pre-
existing errors within each code block, constant-depth
local circuits have very limited error propagation con-
strained by a constant-size light cone [14]. In the context of
topological codes, such transversal gates or constant-depth
logical circuits U correspond to the emergent global sym-
metries of the underlying topological order or topological
quantum field theory (TQFT) [15–23], or sometimes also
referred to as topological or anyon symmetries in the case
of (2+1)D topological order [24]. In general, the unitary
U is called an emergent symmetry when it keeps the low-
energy Hilbert space of a system invariant. In this specific
case of topological codes, the emergent symmetry U keeps
the ground-state subspace C of the corresponding topolog-
ical order (equivalent to the code space) invariant. More
specifically, transversal gates correspond to onsite symme-
tries of the underlying topological order [15], while general
constant-depth circuits may not correspond to onsite sym-
metries. We also note that in general U does not have
to keep the underlying system Hamiltonian H invariant
(i.e., UHU† = H ), which is only required in the case when
U is also an exact microscopic symmetry. While many
existing transversal logical gates are equivalent to exact
onsite microscopic symmetries, there can be a much larger
variety of logical gates only corresponding to emergent
symmetries, which are not necessarily transversal but can
be realized by more general constant-depth local circuits
in the stabilizer codes or sequence of measurements in the
Floquet codes as will be demonstrated explicitly in this
paper.

Another related class of logical gates are the so-called
fold-transversal gates, which were first introduced in the
context of identifying a triangular color code with a folded
surface code [25,26] and then generalized to generic topo-
logical codes including non-Abelian topological codes
[15] (also related to modular transformations) as well as
to quantum low-density parity-check (LDPC) codes [27].
One can view such fold-transversal gates as transversal

gates on a folded code, which contains interlayer gates
applied transversally on the folded geometry. One can also
understand the fold-transversal gate from the perspective
of emergent symmetries: the folding turns geometrically
nonlocal reflection symmetry in the underlying topological
order into local onsite symmetry in a bilayer topological
order with the folded edge corresponding to a particu-
lar gapped boundary, as pointed out in Ref. [15]. In the
case of surface code, the logical Hadamard gate can be
implemented via a fold-transversal gate with the combina-
tion of transversal Hadamard and pairwise SWAPs between
reflection-symmetric points with respect to the diagonal
folding axis, which is turned into pairwise interlayer SWAPs
in the folded surface code. Similarly, the logical phase (S)
gate can also be implemented via the fold-transversal gate,
and together with the transversal logical CNOT gate and
the logical Hadamard gate form a complete logical Clifford
gate set.

Nevertheless, since the fold-transversal gate is, strictly
speaking, a constant-depth circuit but not a constant-depth
local circuit in the unfolded geometry due to the long-
range gates coupling reflection-symmetric points, the error
propagation is hence not subjected to a constant-size light
cone. There is hence an obvious disadvantage for the fold-
transversal gate: the coupling between a pair of qubits
acted by the long-range gates will lead to long-range cor-
related noise, which may potentially lead to an absence
of the fault-tolerant threshold, which has been addressed
in Ref. [28,29]. However, it remains an open question
whether it is possible to obtain the same type of logical
Clifford gates on a Z2 toric code without introducing a
significant reduction of the effective code distance.

In this paper, we unlock a new realization of fault-
tolerant logical gates on the topological stabilizer and
Floquet codes by putting a code on a nonorientable sur-
face. It turns out that the nonorientable geometry allows us
to enrich the way that the emergent global symmetry of the
topological order acts on the Hilbert space, which naturally
leads to the intriguing class of logical gates.

The study of quantum codes and topologically ordered
states on nonorientable geometry has a rather long history.
Indeed, the well-known Shor’s nine-qubit code [30] can be
thought of as the Z2 toric code defined on the real projec-
tive plane RP

2 equipped with a specific triangulation. The
Z2 toric code and the double semion model on RP

2 are
studied in Ref. [3,31], respectively. The cross-cap geome-
try introduced to make up a nonorientable surface can be
thought of inserting a defect of the spatial reflection sym-
metry; from field theoretical perspective, the response of
reflection or time-reversal symmetry on topological phases
was extensively researched by studying the nonorientable
spacetime manifold in e.g., Ref. [32–36].

Our main contribution is the discovery of new fault-
tolerant logical gates of the error-correcting codes enabled
by employing nonorientable geometry, for both topological
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stabilizer and Floquet code. As we will describe below, it
in particular allows us to implement the fault-tolerant logi-
cal Hadamard gate and also the whole logical Clifford gate
set on the Z2 toric code without the introduction of long-
range correlated noise, as well as find enriched dynamics
of the Floquet code driven by the measurement schedule
carried out on the nonorientable surface. The constant-
depth logical gate considered in this paper is particularly
relevant in a three-dimensional (3D) pancake architec-
ture [37] consisting of a stack of two-dimensional (2D)
topological codes where the transversal or constant-depth
logical gates can be applied in a single shot on each indi-
vidual code block or between the neighboring code blocks.
These single-shot logical gates are especially important
when including an additional 3D toric or color codes to
implement non-Clifford CCZ or T gates and then code
switch to 2D topological codes to implement the whole
Clifford logical gate set [38–40].

A. Summary of results

Here we provide a brief summary of our main results.
After reviewing the implementation of the logical gate in
a standard surface code in Sec. II, we start with construct-
ing the Z2 toric code on a 2D torus with a single cross cap
in Sec. III, which we call a nonorientable toric code. The
cross cap is introduced in the geometry by considering a
thin slit in the torus, and then connecting the vertices at
the antipodal points along the slit by edges, which makes
the resulting geometry nonorientable. A notable property
of this setup is that cross-cap geometry can store a single
logical qubit; the e, m string operators with support at the
homologically equivalent loop passing through the cross
cap have the nontrivial commutation relation, and give a
pair of the logical Pauli operators {Z, X } acting a single
logical qubit. Thanks to the fact that the logical Pauli oper-
ators Z, X are supported at the homologically same loop,
one can find a realization of the logical Hadamard gate H :
Z ↔ X by a constant-depth local circuit, generating the
e ↔ m exchanging symmetry in the presence of a single
cross cap. In Sec. III B, we explicitly construct this fault-
tolerant Hadamard gate of the nonorientable toric code
using a local constant-depth circuit, which causes the sta-
bilizers to flow to the nearby location. Note that this local
constant-depth circuit corresponds to an emergent symme-
try only preserving the code space, rather than an exact
microscopic symmetry preserving the parent Hamiltonian
as in the case of the folded surface code.

When folding the system along the reflection line cutting
through the cross cap, one can realize the cross-cap geom-
etry by (geometrically) local stabilizers and hence obtain
a (geometrically) local quantum code [41]. In particular,
the folded cross cap is composed of stabilizers with local
interlayer couplings, which is topologically equivalent
to a bilayer twist corresponding to layer-exchanging Z2

symmetry (also called genon) [42] terminated at a gapped
boundary equivalent to the fold. The logical Hadamard
gate is still a constant-depth local circuit in this folded
code. One can also further move the bilayer twist away
from the gapped boundary corresponding to the fold,
which results in a Klein-bottle geometry while the logi-
cal Hadamard gate can still be implemented via the same
constant-depth local circuit if treating the additional logical
qubit as an ancilla to be traced out.

Armed with the realization of the logical Hadamard
gate, in Sec. III D we provide the realization of the logical
Clifford gate set for a stack of nonorientable surface codes,
which are surface codes with a single cross cap. In partic-
ular, one can then realize the logical phase (S) gate with a
fold-transversal gate similar to the case of the folded sur-
face code, and the standard transversal logical CNOT gates
between two copies of nonorientable surface codes, which
are equivalent to CSS codes.

In Sec. III E, we also construct a translational-symmetric
realization of the Z2 toric code on a Klein bottle, where the
logical Hadamard gate can be realized by the combination
of transversal Hadamard and a single lattice translation of
the code. The lattice translation can also be implemented
by a constant-depth local circuit, mediated by additional
auxiliary physical qubits introduced to realize the lattice
translation by a shallow sequence of local SWAP operators.
Such a constant-depth local circuit turns out to implement
the exact microscopic symmetry of the parent Hamilto-
nian, in contrast to the emergent symmetry in the case
of the nonorientable surface code. Nevertheless, since the
cross cap in this code does not have a thin-slit geome-
try, there is no way to fold the code on a Klein bottle
into a local quantum code, which reflects the flexibility of
emergent symmetries compared to the exact microscopic
symmetries.

Compared with the logical Hadamard gate in the case
of the single-layer surface code, which needs O(d2) long-
range connections, the nonorientable surface code needs
only O(d) static long-range connections to engineer the
cross cap. For the folded geometries, the logical Hadamard
in the folded surface code needs interlayer SWAP while
only intralayer coupling is needed in the folded nonori-
entable surface code when being away from the cross cap.
Since long-range or interlayer couplers and gates typically
have lower fidelity than short-range intralayer couplers and
gates in most experimental platforms, it is expected that
the logical gate in the nonorientable surface codes will
have higher fidelity. As opposed to the logical Hadamard
(H ) and phase (S) gate on the surface code implemented
via the fold-transversal gates, the error propagation caused
by the logical Hadamard gate in the nonorientable surface
code does not suffer from long-range correlated noise due
to its local constant-depth nature, as shown in Sec. III F.
In addition, for large connected errors, the constant-depth
circuit gate propagate only errors by O(1) distance near
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the boundary of the error cluster, in contrast to a factor of
2 increase of error support in the case of fold-transversal
gates. On the other hand, the logical phase (S) gate in the
nonorientable surface code is still implemented via a fold-
transversal gate, which suffers from the same problem of
error propagation and long-range correlated noise as in the
case of the folded surface code. Nevertheless, one can use
the lower-fidelity logical S gate to prepare a logical Y state
in an ancilla logical qubit and use higher-fidelity logical
H and CNOT to implement a logical S gate on the target
logical qubit. One can then use several rounds of state dis-
tillation protocols to gradually increase the fidelity of the
logical Y state and the logical S gate.

In Sec. IV, we construct the honeycomb Floquet code
on a 2D torus with a single cross cap, where we can per-
form the sequence of two-qubit Pauli measurement in the
presence of a single cross cap. The cross cap again stores
a single logical qubit protected by the instantaneous stabi-
lizer group. One can see that a period of the measurements
acts by the HZ logical gate on the single logical qubit
for the cross cap, realizing the e ↔ m exchanging sym-
metry. Interestingly, the presence of the cross cap enriches
the dynamics of the honeycomb Floquet code; one period
of the measurement schedule HZ for the e ↔ m exchange
generates the Z4 group, while it generates the Z2 symmetry
in the orientable case.

The above properties of the honeycomb Floquet code
with a cross cap can be derived by expressing one period
of the measurement schedule by a “condensation opera-
tor” for the fermionic particle ψ as described in Sec. IV D;
namely, one can express the action of one period of mea-
surements by the sum of the string operators for the ψ
particle over all possible configurations of closed loops.
As described in Ref. [43], this sum over the ψ closed
loops generates the emergent symmetry exchanging the
anyons e ↔ m in the Z2 gauge theory. The expression of

the dynamics in the honeycomb Floquet code in terms of
the condensation operator gives an additional insight for
deriving its action on the code space, and useful for under-
standing the case of the nonorientable surface, including
the enlarged period of dynamics from Z2 to Z4.

We conclude this paper by discussions of the possible
generalizations in Sec. V, including the expectation about
the fault-tolerant logical T gate on the (4+1)D Z2 toric
code with an emergent fermionic particle. In Appendix B,
we also describe the realization of the logical Hadamard
gate on Klein bottle by Pauli measurements, on the Wen
plaquette-translation code recently proposed in Ref. [44].

II. OVERVIEW: LOGICAL GATE OF Z2 TORIC
CODE

In this section, we briefly review known results about the
logical gate of the (2+1)D Z2 toric code, and also describe
several simplest realizations of the (2+1)D Z2 toric code
on a nonorientable manifold to illustrate the essential idea
of this paper.

A. Review: surface code and its logical Hadamard gate

First, let us recall the implementation of the logical
Hadamard gate on the well-known surface code; the Z2
toric code on a planar surface with e-condensed and
m-condensed boundaries. Figure 1(a) shows a surface code
with four-body bulk X stabilizers (Z stabilizers) on the ver-
tices (plaquettes) and three-body boundary X stabilizers
(Z stabilizers). The m-condensed boundary (e-condensed
boundary), composed of boundary X stabilizers, con-
denses the m particles (e particles), which hence allows
logical X (Z) operator, i.e., a string of Pauli X (Z), to
terminate on the boundary.

The logical Hadamard gate of the surface code is
associated with the exact microscopic symmetry of the

(a) (b) (c)

FIG. 1. Logical Hadamard gate of the surface code. (a) The boundary condition of the surface code is realized by the e condensed on
the vertical boundary and m condensed on the horizontal boundary. (b) By applying the transversal Hadamard gate, the bulk stabilizers
are switched, and the labels for the boundary condition is switched e ↔ m as well. (c) By further applying the SWAP gate for each pair
of qubits related by the reflection along the diagonal line, one can bring the code back to the original surface code.
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code, which also corresponds to a fold-transversal gate
[15,25–27].

To describe this Z2 symmetry of the surface code,
we first consider applying a transversal Hadamard oper-
ation

⊗
j Hj on all the qubits, as illustrated in Fig. 1(b).

Due to the transformation Hj : Xj ↔ Zj , all the X - and
Z-stabilizer operators switch, as illustrated via the
exchange of vertices and plaquettes. This transversal
Hadamard gate obviously does not respect the symmetry
of the surface code, since it exchanges X (vertex) and Z
(plaquette) stabilizers as well as the boundary conditions
(e condensed ↔ m condensed) as illustrated in Figs. 1(a)
and 1(b), which hence maps the original code space C to a
different code space C ′. One can obtain the exact symmetry
transformation within the original code space C by further
applying a reflection R about the diagonal axis follow-
ing the transversal Hadamard. This spatial reflection can
be implemented by pairwise SWAPs between all reflection-
symmetric qubits denoted by SWAP(j ↔ R × j ), as illus-
trated in Fig. 1(c). Note that the reflection exchanges the
vertices and plaquettes of the lattice. The combined trans-
formation implements the logical Hadamard gate H since
it acts on the logical Pauli operators as X ↔ Z, while map-
ping the code space C back to itself. It is also called a
fold-transversal gate [15,25–27]. At the level of effective
Z2 gauge theory, this symmetry is understood as the com-
bination of the e ↔ m exchanging symmetry together with
the spatial reflection symmetry, i.e.,

H = RUem ≡ SWAP
(
j ↔ R(j )

)⊗

j

Hj . (1)

Since this combined transformation RUem preserves the
parent Hamiltonian of the surface code, it is an exact global
symmetry.

To ease the practical implementation, one can also turn
this spatial symmetry into an onsite symmetry by folding
the surface code along the diagonal axis [26], as illustrated
in Fig. 1(c). The same logical Hadamard gate now cor-
responds to the transversal Hadamard combined with the
layer swap:

H =
⊗

j

(H (1)
j H (2)

j SWAP
(1↔2)
j ). (2)

B. Z2 toric code on a nonorientable surface: simple
examples

One of the main purposes of this paper is to achieve the
fault-tolerant logical gates of the Z2 toric code on a nonori-
entable manifold. Before moving to the explicit construc-
tion of the logical gates, let us illustrate such nonorientable
codes in simplest setups. In Fig. 2, we present several pos-
sible realizations of nonorientable geometry in the Z2 toric
code. Below let us explain each of them in order.

First, we consider in Fig. 2(a) a square-patch toric code
with inverted periodic boundary condition corresponding
to RP

2, which is a lattice realization of the geometry
shown in Fig. 3(a). The circles on the vertices represent
qubits. The top and bottom circles with the same label
(1,2,3) are identified and hence represent the same qubit.
Similarly, the qubits on the left and right with the same
label (I, II, III) are also identified. The white and black pla-
quettes represent four-body X stabilizers SX

p = ⊗
v⊂∂p Xv

and Z stabilizers SZ
p ′ = ⊗

v⊂∂p Zv, respectively. Here, p
and p ′ label the white and black plaquettes, respectively.

Second, we implement in Fig. 2(b) a surface with a cross
cap in the center, which is a microscopic realization of
the geometry in Fig. 3(b). In particular, the cross cap is
implemented by connecting vertices related by a reflection
symmetry on a thin slit. This gives rise to geometrically

(a) (b) (c)

FIG. 2. Possible realizations of the Z2 toric code on a nonorientable surface. (a) The boundary condition of the surface code on
a square is implemented so that the vertices at the antipodal points on the boundary are identified. This realizes the cross cap at the
boundary, and gives a topoloogy equivalent to a real projective plane RP

2. (b) Another way to implement a cross cap is to insert a
slit in the bulk of the Z2 toric code (which looks like a 1 × l rectangle with l the length of the slit), and connect the pair of vertices at
the antipodal points along the slit by an edge, i.e., connect the vertices labeled by the same number. (c) The Shor’s nine-qubit code is
known to be regarded as a Z2 toric code on RP

2. The figure shows the graph on which the Z2 toric code is constructed, where the X
and Z stabilizers of the Z2 toric code together define a code identical to Shor’s nine-digit code.
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(a) (b)

FIG. 3. Schematic figure for the action of the logical Hadamard gate on the Pauli logical gates of the nonorientable toric code. (a)
RP

2 is represented by a square whose boundary condition identifies the antipodal points on the boundary. On RP
2, the logical Z, X

gate of Z2 toric code is both supported at the single noncontractible loop. The logical Hadamard gate exchanges these two logical
gates. (b) This figure describes essentially the same setup as (a), but RP

2 is represented by a sphere with a single cross cap.

nonlocal stabilizers as illustrated in Fig. 2(b), the major-
ity of which are four-body stabilizers occupying a pair of
neighboring vertices and their inverted counterparts with
respect to the central point. There is a single eight-body
nonlocal Z stabilizers located on the two ends of the slit.

Finally, we recall in Fig. 2(c) that the well-known Shor’s
nine-digit code also belongs to the family of the Z2 toric
code on a nonorientable surface RP

2 [3]; Fig. 2(c) shows
a specific cellulation of RP

2 that contains nine edges and
three vertices. We put a qubit on each edge, so the Z2 toric
code is formed by nine physical qubits. There are three
SX stabilizers defined on each vertex, SX

v = ⊗
v⊂∂e Xe only

two of which are independent, and six SZ stabilizers SX
p =

⊗
e⊂∂p Xe involving two edges among the three connect-

ing a fixed pair of vertices. The above set of eight SX , SZ

stabilizers precisely realizes the original Shor’s nine-digit
code.

C. Logical gate and emergent symmetry

In general, a logical gate of the topological code is
understood as an emergent symmetry of the system, as a
unitary leaving the low-energy Hilbert space invariant. In
particular, when the emergent symmetry is generated by
a local constant-depth unitary circuit, the corresponding
logical gate achieves fault tolerance since it spreads the
error only locally. See Refs. [15–23] for detailed discus-
sions about the connection between invertible symmetry
of topological codes and fault-tolerant logical gates.

1. Hadamard gate of Z2 toric code as an emergent
symmetry

Let us discuss the potential fault-tolerant logical gate of
the family of the Z2 toric code on a nonorientable surface,
based on the emergent symmetry of the effective Z2 gauge
theory. For simplicity, we mainly focus on the real projec-
tive plane RP

2, which is regarded as a sphere with a single
cross cap. The code space C of the Z2 toric code on RP

2 is

given by

C = C
|H1(RP

2,Z2)| = C
2, (3)

where H1(RP
2, Z2) = Z2 represents the first Z2 homol-

ogy group. The fact that the code space is two-dimensional
(encoding one logical qubit) corresponds to the fact that
there is only a single nontrivial homology class [γ1] ∈
H1(RP

2, Z2) on the real projective plane. In contrast to the
surface code or the toric code on an orientable surface, the
logical Z and X string operators are supported on the same
fundamental cycle γ1.

At the level of the effective Z2 gauge theory, the e ↔ m
exchanging symmetry of the Z2 gauge theory is iden-
tified as the logical Hadamard gate; the logical gate X
corresponds to the line operator for the m particle on
the noncontractible cycle, and transformed by the e ↔ m
exchanging symmetry to Z for the e particle supported on
the same cycle, which has the same action as the logi-
cal Hadamard gate (see Fig. 3). Hence, one can expect
that the logical Hadamard gate on RP

2 can be achieved
solely by the local constant-depth unitary circuit generat-
ing the e ↔ m exchanging symmetry. Indeed, in Sec. III
we will explicitly construct the Hadamard gate via local
constant-depth circuit on the specific stabilizer code on a
nonorientable surface.

Note that the realization of the logical Hadamard gate by
a local constant-depth circuit is achievable on the Z2 toric
code only if we put the system on a nonorientable surface;
otherwise one cannot find the logical X and Z operators
supported on the same fundamental cycle, so they cannot
be transformed into each other by the local constant-depth
operations. Indeed, as we have seen previously, the surface
code also requires the nonlocal spatial reflection symmetry
to obtain the logical Hadamard gate, and we need to fold
the geometry to make the operation local.

020360-6



CROSS-CAP DEFECTS AND FAULT-TOLERANT. . . PRX QUANTUM 5, 020360 (2024)

FIG. 4. Codimension-1 defect of the emergent symmetry is
obtained by applying the symmetry on the restricted region R in
the 2D space. The logical gate is understood as sweeping a defect
over the whole space.

2. Logical gates implemented by sweeping invertible
defects

Before closing this section, let us briefly recall the
relationship between the logical gates and the invertible
defects of the stabilizer code, following [17]. For simplic-
ity, we restrict ourselves to the case of a codimension-1
defect of the (2+1)D stabilizer code, which corresponds to
0-form emergent symmetry acting on the whole 2d space.

As we mentioned earlier, a fault-tolerant logical gate of
the stabilizer code is understood as an emergent symmetry
of the parent Hamiltonian generated by a local constant-
depth unitary circuit. For a given fault-tolerant logical gate,
one can construct a defect of the emergent symmetry by
acting the symmetry generator on a restricted region R in
the 2d space; it amounts to modifying the Hamiltonian at
the boundary of the region ∂R, which is understood as an
insertion of a codimension-1 symmetry defect D at ∂R. By
choosing the region R to be a thin slab, one can create a pair
of defects D,D which can be annihilated by fusing them
together (see Fig. 4). In this sense, the defect is said to be
invertible. Conversely, the logical gate can be understood
by “sweeping” the invertible defect D over the whole 2d
space by expanding the region R where the circuit for the
emergent symmetry is applied.

D. The pancake architecture: a 3D architecture with a
stack of 2D codes

Since this paper focuses on fault-tolerant logical gates
with constant-depth local circuits or transversal-like gates,
we consider a particular experimental architecture where
such logical gates become relevant. This is the so-called
“pancake” architecture of fault-tolerant quantum com-
putation [37], where one stacks 2D code blocks into

a 3D architecture. We note a multilayer architecture is
achievable for the superconducting qubit platform [45].
In this architecture, transversal logical gates or constant-
depth local circuits can be applied to these codes to per-
form fault-tolerant quantum computation. In particular, for
any pair of identical CSS codes, it is well known that
the transversal CNOT gate between the two code blocks
gives rise to a logical CNOT gate. This allows transver-
sal logical CNOT between neighboring code blocks in the
pancake architecture. One good candidate code for this
architecture is the 2D color code, since one can apply
all logical Clifford gates transversally on 2D triangular
color codes [37,46]. Since a 2D triangular color code
is equivalent to a folded surface code [25,26], one can
alternatively stack folded surface codes into a pancake
architecture [47], which has a larger error threshold due
to the smaller stabilizer weight compared to the color
code.

Due to the Eastin-Knill no-go theorem [13], one needs
additional operation besides transversal gates to make the
computation universal. One can either use magic state dis-
tillation protocol [48] or modify the pancake architecture
with an additional 3D color code which can be used to
perform non-Clifford gate followed by coding switch to
a 2D color code [38]. In fact, reference [40] has done a
systematic comparison of these two approaches, and find
the later one performs better when the physical error rate
is low enough while the first one is better in the higher
error rate regime. We note that in a usual 2D surface code
architecture, the logical Clifford gates can be implemented
via lattice surgery protocols which needs O(d) time over-
head to ensure fault tolerance [49]. On the other hand,
the single-shot transversal logical Clifford gate in the 3D
pancake architecture has time overhead only O(1), there-
fore has advantage over the 2D architecture even when
choosing the magic-state distillation approach to achieve
universality. Besides achieving universality, the 3D pan-
cake architecture is also useful to demonstrate a fault-
tolerant version of quantum advantage of constant depth
circuit [47].

In this paper, we mainly focus on improving the single-
shot logical Clifford gates in the context of a stack of
surface codes forming a 3D pancake architecture. It can
be potentially applied to the scenario where one performs
all logical Clifford gates in 2D surface code and then
code switch to a a 3D toric code or color code to per-
form a logical non-Clifford CCZ or T gates in [38,39].
Alternatively, the non-Clifford gates can also be done
with magic-state distillation, which requires single-shot
logical Clifford gates as elementary building blocks. In
addition, the techniques developed in this work can also
be potentially modified to improve the fold-transversal
gates in quantum LDPC codes. Relevant hardware
architecture can be a multilayer superconducting qubit
architecture.
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III. CONSTRUCTION OF NONORIENTABLE
TORIC CODE AND ITS LOGICAL GATES

Here we explicitly describe the realization of the logical
Hadamard gate for a single qubit by a local constant-depth
circuit, in the microscopic model of the Z2 toric code on a
nonorientable surface. As outlined in the previous section,
this is performed by implementing e ↔ m symmetry of the
Z2 toric code in the presence of a single cross cap.

A. Warm up: e ↔ m exchange of Z2 toric code by
constant-depth circuit

Before we explicitly describe the Hadamard gate on
a nonorientable geometry, we illustrate the realization of
e ↔ m exchanging symmetry of the Z2 toric code on an
orientable surface in terms of a local constant-depth circuit,
following Ref. [22]. We consider a square-patch toric code
with the plaquette stabilizers SX and SZ , see Fig. 5(a). The
logical gate is expressed by a sequence of three unitaries
as U = UBUGUR, where the definition of each unitary is
given in Figs. 5(a) and 5(b). While one can also realize the
e ↔ m symmetry by a single lattice translation of the toric
code associated with the transversal Hadamard gate, note
that this unitary U does not induce lattice translation. This
unitary U rather induces the local permutation of the two
stabilizers SX and SZ within a pair of neighboring plaque-
ttes, see Fig. 5(c). This internal nature of the unitary U is
desirable for finding e ↔ m exchanging gate in the pres-
ence of a single cross cap, since one cannot define a lattice
translation symmetry compatible with a single cross cap.

B. Nonorientable toric code and its Hadamard gate

Now we describe a specific realization Z2 toric code
in the presence of a single cross cap, on which we will
construct the logical Hadamard gate.

We define a code on a 2D torus with a single cross cap.
Due to a technical reason, we consider a realization of a
cross cap as described in Fig. 6(a), which is different from
simplest realizations shown in Fig. 2. We label the vertices
at the cross cap by numbers 0 ≤ j ≤ 2m, and j represents
the antipodal vertex of j . Figure 6(a) depicts the case where
m = 3.

Let us define the stabilizer group. For the square plaque-
ttes not on the cross-cap region, we have the stabilizer of
the Z2 toric code as usual, i.e., SX and SZ . To describe
the stabilizers at the cross cap, we define the operators
Oj ,j +1, Oj ,j +1 with 0 ≤ j ≤ 2m − 1, which are described
in Fig. 7(a) for the case of m = 3. We then define the
stabilizers as

Sj ,j +1 = Oj ,j +1Oj ,j +1, (4)

i.e., we combine the operators O’s located at the antipo-
dal points of the cross cap. We also define an additional
two stabilizers located at the end of the cross cap, SL and
SR, described in Fig. 7(b). This completes the whole set of
generators of our stabilizer group. For simplicity, this code
will be called the “nonorientable toric code” in this paper.

The code distance d is given by the length of the shortest
path going through the cross cap exactly once, so has the
order d = �(m) [50].

The local constant-depth circuit U = UBUGUR can
again be defined for the nonorientable toric code as well,
as shown in Fig. 6(b). Note that the definition of UG has an
additional unitary at the cross cap represented as a green
dot in Fig. 6 that acts as exp(−(iπ/4)Y) on a single qubit
at the green vertex.

Let us check that the unitary U works as the logical gate.
For the square plaquettes away from the cross cap, it acts

(a)

(c)

(b) FIG. 5. e ↔ m exchanging
symmetry of the Z2 toric code
by a unitary U = UBUGUR.
(a) We assign the red, green,
and blue coloring on the edges
of the square lattice. (b) Each
unitary UR, UG, UB is defined
as the product of local unitaries
supported on the edges with the
corresponding color. (c) The
unitary U acts on the stabilizers
SX , SZ by permuting them on the
pair of neighboring plaquettes.

020360-8



CROSS-CAP DEFECTS AND FAULT-TOLERANT. . . PRX QUANTUM 5, 020360 (2024)

(a) (b)

FIG. 6. The cross cap introduced in the Z2 toric code and the e ↔ m exchange of the code. (a) We connect the vertices j , j by an
edge, which makes up a square lattice with a cross cap. (b) The definition of the unitary U = UBUGUR in the case with a cross cap. Note
that the definition of UG has an additional unitary at the cross cap compared with the oriented case, where it acts by exp(−(iπ/4)Y) on
a single qubit represented by a green dot.

as the permutation of the plaquette stabilizers SZ ↔ SX

according to Fig. 5(c).
For the operators on the cross cap, one can check that

Oj ,j +1, Oj ,j +1 for 1 ≤ j ≤ 2m − 1 get “translated” along
the cross cap, as shown in Fig. 7. This implies

Sj −1,j → Sj ,j +1 for 1 ≤ j ≤ 2m − 1. (5)

Also, the unitary U acts on the stabilizers near the end of
the cross cap as

SL → SR, SR → S0,1SR, S2m−1,2m → SLSR. (6)

One can then see that the whole stabilizer group is pre-
served by the action of U, hence a logical gate. Note that

since U does not commute with the Hamiltonian near the
cross cap but preserves the code space, U now generates an
emergent symmetry of the nonorientable toric code, while
it was exact in the absence of a cross cap. By studying the
action of U on the X , Z string operators passing through
the cross cap once, one can explicitly check that U induces
the action on the logical Pauli operators implemented by
a cross cap as X → Z, Z → −X . This action corresponds
to the logical gate exp(−(iπ/4)Y) = HZ, so it realizes the
Hadamard gate H up to the logical Pauli Z operator.

Note that since we are considering a 2D torus with a
cross cap, there are two logical qubits stored by cycles
of the torus, apart from a single logical qubit stored by a
cross cap. The logical gates of the nonorientable toric code
presented in this paper always act on the code space by the

(a)

(b)

FIG. 7. The stabilizers near the cross cap. (a) The stabilizer Sj ,j +1 for 0 ≤ j ≤ 2m − 1 is defined as Sj ,j +1 = Oj ,j +1Oj ,j +1. The
arrows in the figure mean that the unitary U transforms Oj −1,j → Oj ,j +1, Oj −1,j → Oj ,j +1 for 1 ≤ j ≤ 2m − 1. (b) The additional two
stabilizers SL, SR at the end of the cross cap, both of which act on five qubits.
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form of Utorus ⊗ Ucc, where Utorus, Ucc act within the code
space for the torus and the cross cap, respectively. There-
fore, one can simply regard the two logical qubits for the
torus as an ancilla, and identify the unitary U as the HZ
gate by simply focusing on the single logical qubit while
discarding the state for the torus.

Also, note that the nonorientable toric code is equiva-
lent to a CSS code by the local unitary exp((iπ/4)Z0) exp
(−(iπ/4)X2m) support at two vertices 0, 2m, which can
properly transform the Pauli-Y operators appearing in the
stabilizers S0,1, S2m−1,2m, SL, SR into X or Z. As we will see
in the later subsection, this CSS property enables us to
construct complete Clifford gate set for the copies of the
codes.

C. Realizing a local nonorientable toric code on a
bilayer system via folding

1. Folding the nonorientable toric code and
layer-exchanging defect

The nonorientable toric code can only be implemented
on a 2D torus with long-range connectivity since the sta-
bilizer across the cross cap involves qubits separated by
large spatial distance, as can be seen in Figs. 2 and 6. For
practical implementation of the code, one should consider
turning it into a local quantum code, i.e., a code defined
on a lattice with geometric locality [41]. When the code
is located on a square with open boundary and a cross cap

(see Fig. 8(a) for a location of the cross cap), the solution is
to fold the code along the vertical line cutting the cross cap
to make the cross-cap geometry local and glue the open
boundaries together. This makes it into a bilayer system
with geometric locality, which is topologically equivalent
to an RP

2 manifold, i.e., a sphere with a cross cap. In order
to achieve local connectivity after folding, the cross cap
needs to have a slitlike geometry as in Fig. 2 and Fig. 6.
Folding the cross cap into a layered system with locality is
illustrated in Figs. 8(a) and 8(b).

In the folded code, we get a new type of geomet-
rically local-symmetry defect, i.e., the folded cross cap
(denoted by c) terminated on the fold (green-dashed lines),
as illustrated in Fig. 8(b). One can actually consider this
folded cross cap as a defect of the layer-exchanging Z2
symmetry ρS12 (also called genon) [42]. This defect is ter-
minated at the gapped boundary corresponding to the fold
which condenses anyon pairs e(1)e(2) or m(1)m(2) of the
bilayer Z2 toric code [as illustrated in Fig. 8(b)]. Note
that the original long-range coupling in the cross cap indi-
cated by black lines in Fig. 8(a) is now turned into local
interlayer coupling in the bilayer twist indicated by pink
dashed lines in Fig. 8(b). The bilayer twist defect corre-
sponds to the following automorphism for anyons going
across it:

ρS12 : e(1) ↔ e(2); m(1) ↔ m(2). (7)

fold(a) (c)(b)(b)

fo
ldglue

(c)

fold & glue

bilayer twist

gapped boundary

deform

FIG. 8. (a) The nonorientable toric code is folded into a bilayer geometry along the axis cutting through the cross cap. (b) The
long-range coupling of the cross cap is turned into local interlayer coupling in the folded nonorientable toric code as shown in the
upper panel, which is equivalent to a bilayer twist (genon) terminated on the fold. The other three edges on both layers are also glued
together to form a sphere with a cross cap, i.e., the RP

2 geometry. All edges on the folded nonorientable toric code, including the fold
and the glued edges correspond to the gapped boundary of the type (e(1)e(2), m(1)m(2)). (c) One can deform the folded setup by moving
the bilayer twist away from from the fold, which leads to a Klein-bottle geometry storing two logical qubits, where the corresponding
logical operators are shown explicitly.
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2. Moving the layer-exchanging defect away from the
fold

While the layer-exchanging defect is terminated at the
gapped boundary in our folded code, one can think of
moving the bilayer twist defects away from the gapped
boundary corresponding to the fold, as shown in Fig. 8(c).
The layer-exchanging defect then plays a role of a worm-
hole connecting the layers associated with the orientation
reversal. The topology of the system is now turned into
a sphere with two cross caps instead of a single cross cap,
so the layer-exchanging defect can store two logical qubits.
In this double cross-cap geometry, the logical operators X 1
and Z1 associated with the first qubit remains the same as
those in the nonorientable toric code. Meanwhile, the log-
ical operators X 2 and Z2 associated with the second qubit
go through the branch cut of the bilayer twist and terminate
at the (e(1)e(2), m(1)m(2)) gapped boundary along the fold,
as illustrated in Fig. 8(c). If we apply the same emergent
symmetry operator U to this double cross-cap setup as in
the case of a single cross cap, we can get the correspond-
ing logical gate as U = H 1Z1 ⊗ H 2Z2 on the logical qubits
relevant to the layer-exchange defect.

If we want to realize a logical Hadamard gate on the sin-
gle logical qubit in this setup, we can choose the encoding
as |ψ〉1 ⊗ |0〉2, where we have set the second logical qubit
as an ancilla in the logical 0 state. Then when we trace out
the second logical qubit, the symmetry operator U acts as
HZ only on the single logical qubit.

3. Nonorientable surface code and its folding

Though we originally defined the nonorientable toric
code on a torus with a single cross cap, we can also define
the code with an open boundary with a cross cap, i.e., a
disk with a cross cap with a choice of gapped boundary
condition. We call the code with this setup as a “nonori-
entable surface code.” This will ease the implementation
of the logical Hadamard gate on the folded geometry,
since the glued edges shown in Fig. 8 cannot stay invari-
ant when applying the stabilizer-pumping circuit and the
solution is to simply replace them with open boundaries.
One potential choice of the gapped boundary of the folded
nonorientable surface code with the boundary is to con-
dense (e(1)e(2), m(1)m(2)) on the boundary of the folded disk
[see Fig. 8(b)]. As shown in the lower panel of Fig. 8(b),
the combination of the bilayer twist defects and a single
type of gapped boundary (e(1)e(2), m(1)m(2)) on the edge of
a folded disk encodes a single logical qubit. By unfold-
ing the picture, this choice of the gapped boundary would
make up the geometry of the RP

2 manifold, which is a
sphere with a single cross cap. However, we note that it
is not straightforward to implement this gapped bound-
ary (e(1)e(2), m(1)m(2)) on our nonorientable surface code
in a way compatible with the action of the logical gates,

and such gluing leads to additional resource cost in the
hardware implementation.

In order to simplify the setup, we instead consider
choosing the other specific gapped boundary of the disk,
e.g., the e-condensed boundary, which condense the e
anyons. The corresponding unfolded code is illustrated in
the left side of Fig. 9 where the entire boundary is chosen
to be the e boundary and a cross cap is at the center. After
applying the emergent symmetry U, the entire boundary
is switched to the m-condensed boundary, as shown in the
right side of Fig. 9. Folding the nonorientable surface code
with the e-condensed boundary is described in Fig. 10(b),
which ends up with (e(1), e(2))-condensed boundary of the
bilayer Z2 toric code. After applying the emergent sym-
metry operator U, this (e(1), e(2))-condensed boundary is
switched to (m(1), m(2))-condensed boundary.

While the boundary stabilizers shown in Fig. 9 is not
a CSS code due to the presence of Pauli Y, one can
bring it into a CSS code by applying exp((iπ/4)Z) or
exp(−(iπ/4)X ) on boundary vertices where the Pauli Y
appears. After transforming it into a CSS code, one can
obtain the logical CNOT gate acting on copies of these
codes as shown in later discussions.

4. Logical Hadamard gate in the presence of gapped
boundary: formulating the nonorientable surface code

as a subsystem code

Let us consider the realization of the logical Hadamard
gate of the nonorientable surface code in the presence of
the gapped boundary. The issue here is that the symmetry
U switches the boundary type between e-condensed and
m-condensed one, and hence does not define an automor-
phism of the original code.

Meanwhile, one can regard U as an automorphism of the
code by reformulating the nonorientable surface code as a
subsystem code. To do this, let us express the stabilizer
group of the nonorientable surface code with e-condensed
boundary as Se = Sbulk × Se

bdry, where the stabilizers are
separated into bulk and boundary stabilizers. Similarly, the
stabilizer group of the nonorientable surface code with the
m-condensed boundary is expressed as Sm = Sbulk × Sm

bdry.
U acts by an automorphism of the bulk stabilizer group
Sbulk, while acting on the boundary stabilizer group as an
isomorphism between Se

bdry and Sm
bdry.

Then, we construct a subsystem code by first setting the
stabilizer group as Sbulk. In the subsystem code, some of
the logical qubits in the stabilizer code Sbulk does not store
logical information, and regarded as “gauge” qubits that
correspond to redundancy in encoding the quantum infor-
mation. This gauge degree of freedom is specified by a
gauge group G, which is some subgroup of the normal-
izer N (Sbulk) of the stabilizer group Sbulk. In our case,
we choose the gauge group to be G = (Se

bdry × Sm
bdry)/S̃ ,

where S̃ is a subgroup of Sbulk that acts within the Hilbert
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e-condensed boundary m-condensed boundary

FIG. 9. The gapped boundary conditions of the Z2 toric code and the action of the unitary U = UBUGUR on the boundary condition.
First, one can see that there are white plaquettes (white triangle or square) near the boundary; the stabilizers on these white plaquettes
are invariant under the action of U. They are not regarded as the boundary stabilizers condensing the anyons, but rather as a part
of bulk stabilizers of the Z2 toric code. Then, the left figure represents the e-condensed boundary condition, where the boundary
stabilizer condensing e is represented by the operators encircled. By the action of U, each boundary stabilizer flows clockwise to the
boundary stabilizers in the right figure, up to multiplication by a stabilizer on a white plaquette. So, U acts by a logical operation,
which transforms the left stabilizer group to the right one. The right figure represents the m-condensed boundary.

space of boundary physical qubits. Concretely, S̃ is gen-
erated by a pair of stabilizers given by the product of all
Z (respectively, X ) stabilizers of Sbulk. The logical group
of the subsystem code is then given by N (Sbulk)/G. This
subsystem code stores a single logical qubit, whose logi-
cal Pauli operator is obtained by the e, m string operator
passing through the cross cap.

One can then see that U gives an automorphism of
the subsystem code, since both Sbulk and G are invariant
under the action of U. This establishes the construction of
the logical Hadamard gate in the subsystem code with a
boundary.

In the above formalism in terms of the subsystem code,
the choice of e- or m-condensed boundary condition for the
nonorientable surface code corresponds to a different way
of “gauge fixing” in the subsystem code, i.e., fixing the
states of the gauge qubits. Practically, one needs a specific
gauge fixing of the code by choosing one gapped boundary

condition. After applying the operator U on the code with
the gauge fixing at the e-condensed boundary, U changes
the way of gauge fixing to the m-condensed boundary. We
then additionally need to perform O(d) rounds of stabilizer
measurements at the boundary to get back to the original
gauge fixing.

D. Generating the logical Clifford gate set on
nonorientable toric code or surface code

In addition to the logical Hadamard gate constructed
above, one can obtain the full Clifford gate set on the
copies of the nonorientable toric code or the subsystem
code on a nonorientable open surface. All the Clifford gates
are generated by a local constant-depth unitary circuit on
the folded code [see Fig. 10(b) for the folded code with
e-condensed boundary]. Below, we describe the realiza-
tion of each generator of the Clifford group. The logical

(a) (b) (c) (d)

FIG. 10. (a) The nonorientable surface code with e-condensed external boundary. (b)–(d) The folded nonorientable surface code
with e-condensed external boundaries on both layers, while the fold corresponds to the (e(1)e(2), m(1)m(2)) boundary.
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TABLE I. Summary of emergent symmetries, their corresponding defects, and other properties in the folded or unfolded
nonorientable code.

Symmetry Setup Defect Locality Anyon permutation
Logical

gate

spatial reflection unfolded cross-cap and
layer-exchange
defect

nonlocal no permutation N.A.

layer exchange folded bilayer bilayer twist
(genon)

local and onsite e(1) ↔ e(2), m(1) ↔ m(2) N.A.

e-m exchange unfolded anyon permutation local constant-depth
circuit

e ↔ m HZ

transversal CZ folded bilayer anyon permutation local and onsite m(1) → m(1)e(2), m(2) → m(2)e(1) S
transversal CNOT copy of unfolded

codes
anyon permutation local and onsite e1 → e(1)e(2), m(2) → m(1)m(2) CNOT

gates and emergent symmetries of the code including all
Clifford gates, as well as their corresponding symmetry
defects (both in the static setup and those related to the
logical gates) are summarized in Table I.

1. Logical CNOT gate

After one transforms the nonorientable toric code into a
CSS code by the local unitary exp((iπ/4)Z0) exp(−(iπ/4)
X2m) at the cross cap, a transversal CNOT between two
copies of the same types of codes leads to a logical CNOT
gate:

CNOT :=
⊗

v∈vertices

CNOT1,2;v . (8)

From the the field-theoretical perspective, the logical CNOT
gate corresponds to the Z2 symmetry of the Z2 × Z2 gauge
theory that generates the outer automorphism of the gauge
group, where Z2 × Z2 represents two copies of the Z2
gauge theory. The symmetry action ρCNOT on the anyons
are given by

ρCNOT :m(1) → m(1)m(2); m(2) → m(2);

e(2) → e(2)e(1); e(1) → e(1), (9)

where m(j ) (e(j )) stands for the m (e) anyon in the j th copy.
Accordingly, the logical gate induces the following action
on the Pauli string operators:

CNOT :X
(1) → X

(1)
X
(2)

; X
(2) → X

(2)
; (10)

Z
(2) → Z

(2)
Z
(1)

; Z
(1) → Z

(1)
. (11)

The above transversal CNOT gate works as a logical gate
even in the subsystem code on the surface, after we
transform the code by local unitaries exp((iπ/4)Z) or
exp(−(iπ/4)X ) on boundary vertices to bring it into a
subsystem CSS code.

2. Logical S gate

Here, we discuss the realization of the logical S gate
acting on the code space. Recall that the S gate acts
on the logical Pauli operators as X → Y, Z → Z. This
action would correspond to the action on anyons given by
m → ψ , e → e, which cannot be implemented by the local
constant-depth circuit since it must preserve the spins of
the anyons. Below, we describe a realization of the logical
S gate on our code, which involves a nonlocal CZ gate act-
ing on the physical qubits, but becomes local after folding
the code in a certain fashion.

In order to implement the logical S gate, we again work
on the expression transformed into the CSS code by the
local unitary exp((iπ/4)Z0) exp(−(iπ/4)X2m). We notice
that the code has a reflection symmetry along the y axis.
We fold the code along the reflection line, and then apply
transversal CZ gates on the aligned qubits and S gates on
the qubits on the fold, as illustrated in Fig. 11.

FIG. 11. Logical S gate on the code with a cross cap. It consists
of the CZ gate for each pair of qubits related by the reflection
along the central line, and the S gate for each qubit on the central
line.
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FIG. 12. The transversal CZ gate of the folded system acts on
the Pauli X string operator by adding the Z string operator in the
reflected position, realizing the action of the Pauli logical gate
S : X → Y.

In the folded system, the transversal CZ gate acts on the
bulk by permuting the anyons of the layered system as

ρCZ : m(1) → m(1)e(2); m(2) → m(2)e(1), (12)

while leaving e(1), e(2) invariant. Also, the boundary of the
folded system condenses m(1)m(2) and e(1)e(2), on which
ρCZ can be regarded as acting on anyons as m → m ×
e, e → e; one can suppress the label of layers since the
anyons on the different layers are identified on the bound-
ary. Such an action is realized by the transversal S gate on
the boundary.

The logical Pauli operators are X or Z string opera-
tors passing through the cross cap exactly once. One can
see that the logical gate indeed acts on these logical Pauli
operators as

(
⊗

v∈bulk

CZv

)⎛

⎝
⊗

v∈bdry

Sv

⎞

⎠ : X → Y,

while keeping Z invariant. The action of the logical gate
on the Pauli X is schematically shown in Fig. 12.

We note that the above gate works as a logical S gate
even in the case of the subsystem code on the surface, since
the gate leaves the stabilizer and the gauge group invariant
[51].

E. Z2 toric code on a Klein bottle with rotation
symmetry and its logical gate

Here, we describe an alternative setup for the Z2 toric
code on a Klein bottle. See Fig. 13 for the illustration of
the model. This geometry is equivalent to a sphere with
two cross caps. The tessellation of the north and south
hemispheres are shown in Fig. 13(a), where the white and
black plaquettes again correspond to the X and Z stabi-
lizers SX , SZ respectively. The center of both hemispheres
contain the realization of cross caps consisting of four-
body X and Z stabilizers connecting a pair of neighboring

vertices and their inverted counterparts with respect to the
central point. The two hemispheres are glued along the
equator by identifying the vertices with the same labels,
from I to VIII. It contains two logical qubits, with one
pair of logical X and Z string operators traveling through
each cross cap. The logical Pauli operators stored by the
north (respectively, south) cross cap is denoted as {X 1, Z1}
(respectively, {X 2, Z2}).

Unlike the nonorientable toric code or surface code
discussed in the previous subsections, the current geom-
etry has the lattice rotation symmetry, which gives rise
to an alternative realization of the logical Hadamard gate
corresponding to exact microscopic symmetry. This is in
contrast to the logical Hadamard gate in the nonorientable
toric code, which is only an emergent symmetry. However,
due to the geometric constraint that the cross cap in this
case does not have a thin slit shape, there is no way to
fold the Klein bottle into a bilayer code as opposed to the
case of the nonorientable toric code or surface code. This
illustrates the fact that generic emergent symmetries are
more flexible than exact microscopic symmetries. Below,
we describe the logical gates realized in the code on a Klein
bottle.

1. Logical Hadamard gate

Since our lattice on the Klein bottle has the lattice sym-
metry that interchanges SX and SZ , the e ↔ m exchanging
symmetry can easily be implemented by the transversal
Hadamard gate associated with the spatial rotation. Con-
cretely, we firstly apply the transversal Hadamard gate⊗

v Hv , which interchanges the SX and SZ (black and white
plaquettes) as well as the X and Z logical string operators:
⊗

v

Hv : SX
p → SZ

p ; SZ
p ′ → SX

p ′ ; X 1.2 ↔ Z1,2, (13)

as illustrated in Fig. 13. Since this operator alone inter-
changes the stabilizers SX ↔ SZ and does not give a
symmetry of the model, we need an additional operator
to map the stabilizers back to original ones while induc-
ing a trivial map on the logical operators. As we can see,
the Klein-bottle geometry in Fig. 13 has an L-fold rota-
tion symmetry R2π/L, where L represents the number of
qubits on each circle. Therefore, the transversal Hadamard
gate combined with the unit lattice rotation is a symmetry
of the code space and also preserves the stabilizer group,
while interchanging the logical X and logical Z strings.
This logical gate acts on the code space by the logical
Hadamard gate on two qubits H 1 ⊗ H 2. As has been dis-
cussed in Sec. III C 2, we can set the second logical qubit as
an ancilla in the state |0〉2 and trace it out. This will lead to
the implementation of a single logical Hadamard gate H 1

The rotation symmetry R2π/L can be implemented as
the constant-depth local circuit by introducing auxiliary
physical qubits, represented by white dots in Fig. 13(b).
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(a) (b) (c)

FIG. 13. The logical Hadamard gate of the Z2 toric code on a Klein bottle. (a) The Klein bottle can be regarded as a sphere with
two cross caps, and we locate the cross caps at the north and south pole of the sphere. By applying the transversal Hadamard gate, the
code is transformed to the one with the exchanged stabilizers SX ↔ SZ . (b) We then apply the rotation symmetry R2π/L. The rotation
operator can be expressed as the constant-depth local circuit by introducing the auxiliary qubits at the white dots, and then applying the
local SWAP operators at the blue arrows firstly, and then at the green arrows. (c) After the combined transformation of the transversal
Hadamard with the rotation, one can obtain the original stabilizer model. The combined transformation realizes the logical Hadamard
gate H 1 ⊗ H 2.

The operator R2π/L can then be expressed as the product
of local SWAP operators exchanging the black and white
physical qubits as shown in Fig. 13(b). In Appendix B,
we demonstrate that the above Hadamard gate can also be
implemented by a sequence of local Pauli measurements,
reminiscent of the Floquet code.

2. Logical CNOT and S gate

Since the above code on a Klein bottle has the CSS prop-
erty, the code also admits implementation of the complete
Clifford gate set, using the same method as the case with a
single cross cap in Sec. III D.

If we prepare two copies of the code, a transversal CNOT
between two copies of the same type of codes leads to a
logical CNOT gate for each pair of qubits on a cross cap:

CNOT1 ⊗ CNOT2 :=
⊗

v∈vertices

CNOT1,2;v . (14)

In order to implement the logical S gate, we again notice
that the geometry has the reflection symmetry along the
line connecting vertex I and V in Fig. 13, and then fold-
ing the code along the reflection line. After folding the
code, applying the CZ gate in the bulk and S gate on the

boundary gives the logical S gate,

S1 ⊗ S2 =
(
⊗

v∈bulk

CZv

)⎛

⎝
⊗

v∈bdry

Sv

⎞

⎠ , (15)

which is exactly the same construction as Fig. 11.

F. Error propagation for the logical gates

Now we compare the logical gates implemented via
constant-depth circuits in the nonorientable toric code and
the Klein-bottle code with the fold-transversal gates in the
surface code discussed in Sec. II A.

We note that the logical H and S gates correspond-
ing to the fold-transversal gates in the surface code can
propagate errors by a factor of 2 in general and can also
induce long-range correlated errors. We show this generic
problem using the example of logical H as illustrated in
Fig. 14. It has been shown in Eq. (1) that the logical
Hadamard gate H = SWAP

(
j ↔ R(j )

)⊗
j Hj is composed

by transversal Hadamard gate and pairwise long-range
SWAPs with respect to the diagonal folding axis. The
transversal Hadamard gate

⊗
j Hj does not propagate any

existing physical errors on the code, i.e., for any pre-
existing error operator E, we have

⊗
j Hj : E → E′ with

supp(E′) = supp(E). On the other hand, if the pairwise
SWAP gate is itself faulty with some small error rate ε, it
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FIG. 14. Error propagation for the folded-transversal gate on the surface code.

can map the error as

SWAP
(
j ↔ R(j )

)
: E′ → E′′,

with |supp(E′′)| ≤ 2|supp(E′)|, (16)

which says that in the worst-case scenario the support size
of the pre-existing error will be increased by a factor of
2, as illustrated in Figs. 14(a) and 14(b). The errors are
also propagated by a factor of 2 in the worst-case sce-
nario for the logical-S gate in the surface code via the
fold-transversal CZ gate. In both cases, the effective fault-
tolerant code distance of the logical gate protocol can be
reduced to approximately half of the original distance, i.e.,
deff ≈ 1

2 d.
Moreover, the introduction of the geometrically non-

local coupling for the implementation of the long-range
SWAP gates leads to long-range correlated errors. Either
considered as noise present for static nonlocal couplers
or during the execution of the long-range SWAP gates,
the noise of the qubits coupled together become long-
range correlated. One can hence characterize such noise
via a noise Hamiltonian Hj ,j ′ where j and j ′ ≡ R(j ) label
the location of the two coupled qubits, which are reflec-
tion symmetric with each other. In particular, Ref. [52]
considers the situation where noise decays algebraically as

||Hj ,j ′ || < δ

|j − j ′|z , (17)

where |j − j ′| denote the distance between the two cou-
pled qubits. It was shown in Ref. [52] that there exists
only an error threshold provided that z > D, where D is
the dimension of the qubit lattice (in the surface-code case
D = 2). Namely, fault-tolerant quantum computation is
only scalable if the noise strength decays fast enough. Now
in the case of the fold-transversal gate, the noise strength
scales as ||Hj ,j ′ || ∼ δ, i.e., is independent of the distance

between the two coupled qubits. According to the study in
Ref. [52], it is likely that there may not be a fault-tolerant
error threshold for the fold-transversal gate. More detailed
numerical analysis on the decoding will be required in the
future to understand the threshold behavior.

Now in terms of the logical Hadamard gate on the
nonorientable toric codes, no long-range pairwise SWAP
is needed as in the case of logical Hadamard gate in
the surface code. The logical gate corresponds to a local
constant-depth circuit U, so the error propagation is con-
strained by a constant-size light cone [14]. In particu-
lar, for any pre-existing error operator E with support
R = supp(E), the error support after the action R′ =
supp(E′) = supp(UEU†) is contained within a O(1)-size
neighborhood of R. Also, to implement such constant-
depth circuit, only gates and coupling between neighboring
qubits on the lattice are needed and hence there is only
short-range correlated noise. This is in contrast to the long-
range correlated noise of the fold-transversal gate. Note
that the only long-range connection needed in the nonori-
entable toric code is the static coupling along the cross cap.
However, this is still considered to be local connectivity for
the nonorientable toric code since it just connects qubits
on the stabilizer support. Consequently, the presence of the
short-range correlated noise in the nonorientable toric code
will not affect the existence of a fault-tolerant error thresh-
old for the implementation of the logical Hadamard gate.

We then compare the advantage and disadvantage of the
logical Hadamard gate for the nonorientable toric codes
versus the usual surface code in terms of detailed hard-
ware implementation. We first consider implementation
with a single-layer (unfolded) system. In the case of the
usual surface code, one needs O(d2) long-range connec-
tion with O(d) range to implement the long-range pairwise
SWAPs and hence the logical Hadamard gate. On the other
hand, the nonorientable toric codes have logical Hadamard
gates implemented by a constant-depth local circuit, so no
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long-range connection is needed for the the logical gate
implementation. The only long-range connection needed is
static, which is needed for the engineering of the cross cap
in both cases and the number of long-range connections
is O(d). It is expected that in most experimental architec-
ture, the long-range coupling and gates have lower fidelity
than short-range ones. We can hence see the advantage of
our scheme versus the usual surface code in terms of both
the number of long-range connections [O(d) versus O(d2)]
and the absence or presence of long-range correlated noise,
which potentially preserves or kills the error threshold.

Next, we compare the advantage and disadvantage in
the folded bilayer geometry in the context of the 3D pan-
cake architecture. As has been pointed out in Sec. II A, the
long-range pairwise SWAP in the logical Hadamard gate can
be turned into geometrically local interlayer SWAPs in the
folded surface code, while this interlayer coupling required
to implement the SWAPs can also lead to long-range corre-
lated noise on the surface code and absence of threshold.
For the nonorientable toric code on the Klein bottle, we
cannot fold it into a geometrically local code due to the
shape of the cross cap, as has been pointed out in Sec. III E.
On the other hand, the nonorientable toric code with a
slitlike cross cap can be folded into a bilayer local code
such that the cross cap can be implemented by local inter-
layer connections, as pointed out in Sec. III C. The logical
Hadamard gate in this case is implemented by a constant-
depth local circuit, which does not need any interlayer
coupling when being away from the cross cap. Therefore,
the errors cannot be propagated into the other layer and
no long-range correlated noise is present. In this type of
multilayer architecture, it is expected that the intralayer
coupler and gates have higher fidelity than the interlayer
ones. Therefore, from the hardware perspective, the fold-
transversal logical Hadamard gate is expected to have
lower fidelity than the constant-depth logical Hadamard
gate in the nonorientable gate since the interlayer SWAP in
the previous case is expected to have lower fidelity. From
the more fundamental perspective, the constant-depth log-
ical Hadamard gate still has a fault-tolerant threshold due
to the absence of long-range correlated noise, in con-
trast to the likely missing threshold in the case of the
fold-transversal gate.

Now we also comment on some subtlety regarding
the error propagation in both cases. As has been dis-
cussed above, the error support is increased by a factor
of 2 in the worst-case scenario for the fold-transversal
gate, and hence leads to an effective distance reduced by
half. The situation of the constant-depth circuit for the
nonorientable toric codes is more subtle. For an error con-
figuration with only a large connected error chain, the
error support is only increased by O(1) near the bound-
ary of the connected error. Therefore, for an error pattern
consisting of a connected error chain with around approx-
imately d/2 weight, the error propagation is negligible for

FIG. 15. The logical circuit implementing a logical S gate with
an input logical state |Y〉.

the constant-depth circuit and remains correctable. On the
other hand, the error weight may increase to approximately
d for the fold-transversal gate, which now becomes uncor-
rectable. Nevertheless, for an error pattern consisting of
many sparse errors, the constant-depth circuit does not nec-
essarily have an advantage over the fold-transversal gate.
This is because each small error cluster will increase by
O(1) near its boundary, which will also lead to a constant
factor increase of the total error weight. We hence conclude
that the constant-depth circuit has advantage in terms of the
reduction of lower-fidelity long-range or interlayer cou-
pling and gates, the absence of long-range correlated noise,
and hence preservation of the fault-tolerant threshold, as
well as the significantly suppressed error propagation for
large connected error chain.

Finally, we note that, for the nonorientable toric codes,
the logical CNOT gate is strictly a transversal gate and
hence does not propagate errors. On the other hand, the
logical S gate in both cases is also a fold-transversal gate
in both the unfolded and folded geometries, which also has
long-range correlated noise. Therefore, it is expected that
the logical S gate has a lower fidelity than the logical H
and CNOT gates. In this case, we can use the less protected
logical S gate to inject a relatively more noisy |Y〉 state.
Using a logical circuit composed of a higher-fidelity logi-
cal Hadamard and logical CNOT as shown in Fig. 15, one
can implement the logical S gate on the targeted logical
qubit [53]. Now one can perform one or several rounds of
state distillation, e.g., using the Steane code. The distilla-
tion circuit also uses the logical circuit in Fig. 15 with the
input |Y〉 state from the last round of distillation (in the first
round from the more noisy logical S gate) [53]. With sev-
eral rounds of such distillation process, one can gradually
improve the fidelity of the |Y〉 state and eventually imple-
ment a high-fidelity logical S gate with the logical circuit in
Fig. 15. In this way, we can achieve a high-fidelity logical
Clifford gate set for the nonorientable toric codes. One can
further use the logical Clifford gate set to implement magic
state distillation in order to achieve universal fault-tolerant
quantum computation with the nonorientable code.

IV. LOGICAL GATE OF THE HONEYCOMB
FLOQUET CODE

So far, we studied the logical gates of the stabilizer code,
where the code space is implemented by the ground states
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of a gapped Hamiltonian. Here we consider an alternative
setup of implementing the code space by a sequence of
measurements rather than a specific Hamiltonian, known
under the name of the Floquet code [5].

Analogously to what we have done in Sec. III for
the Z2 toric code, we define a honeycomb Floquet code
on a surface with a single cross cap, and show that a
period of the sequence for measurements implements the
exp(−(iπ/4)Y) = HZ logical gate on the code space.

A. Review: honeycomb Floquet code without cross cap

Let us first review the honeycomb Floquet code on a
2D torus introduced in Ref. [5]. The model is defined on
a honeycomb lattice with single qubit on each vertex. We
take the periodic boundary condition of the honeycomb lat-
tice, and color the edges and faces as shown in Fig. 16. The
honeycomb Floquet code is defined by a sequence of mea-
surements instead of preparing a fixed Hamiltonian. We
label each round of measurement by an integer r ≥ 0, and
measure the operators called “checks” on edges in the form
of XX , YY, ZZ in the following fashion with periodicity
mod 3:

• When r = 0 mod 3, we measure the check XX on R
edges.

• When r = 1 mod 3, we measure the check YY on G
edges.

• When r = 2 mod 3, we measure the check ZZ on B
edges.

This completes the definition of the honeycomb Floquet
code. Though there is no specific Hamiltonian that protects
the code space, the sequence of measurements gives a cer-
tain stabilizer group protecting the logical qubit after each
round r, which is called an instantaneous stabilizer group
Sr labeled by the round r. Let us write the measurement
outcome of a check at the round r as vr

ij for each edge 〈ij 〉.
Then, Sr for first several rounds are described as follows.

• After the round r = 0, S0 is generated by v0
ij XiXj on

each R edge 〈ij 〉.
• After the round r = 1, S1 is generated by v1

ij YiYj on
each G edge 〈ij 〉, together with the operator wpWp
on each B plaquette p , where wp ∈ {±1} and the
operator Wp on a B plaquette p is defined as

wp =
∏

〈ij 〉⊂∂p

vr
ij , Wp =

∏

G edge⊂∂p

YiYj

∏

R edge⊂∂p

XiXj

(18)

where r = 0, 1 depending on the color of edges.
• After the round r = 2, S2 is generated by v2

ij ZiZj on
each B edge 〈ij 〉, together with the operator wpWp
on each R, B plaquette p , where wp ∈ {±1} and the

operator Wp on a R plaquette p is defined as

wp =
∏

〈ij 〉⊂∂p

vr
ij , Wp =

∏

B edge⊂∂p

ZiZj

∏

G edge⊂∂p

YiYj

(19)

where r = 1, 2 depending on the color of edges.
• After the round r = 3, S3 is generated by v3

ij XiXj on
each R edge 〈ij 〉, together with the operator wpWp
on each R, G, B plaquette p , where wp ∈ {±1} and
the operator Wp on a G plaquette p is defined as

wp =
∏

〈ij 〉⊂∂p

vr
ij , Wp =

∏

R edge⊂∂p

XiXj

∏

B edge⊂∂p

ZiZj ,

(20)

where r = 2, 3 depending on the color of edges.

After the third round of the measurement r = 3, the instan-
taneous stabilizer group contains the operators {wpWp} for
all R, G, B plaquettes. These plaquette operators commute
with any checks on edges, so they are permanent elements
of the stabilizer group Sr for any r ≥ 3. The group Sr for
r ≥ 3 is then given as follows.

• When r = 0 mod 3 and r ≥ 3, Sr is generated by
{wpWp} for all plaquettes p , together with vr

ij XiXj
on each R edge. On each G plaquette p , the mea-
surement outcomes are subject to the constraint

∏

R edge⊂∂p

vr
ij

∏

B edge⊂∂p

v
(r−1)
ij = wp . (21)

• When r = 1 mod 3 and r ≥ 3, Sr is generated by
{wpWp} for all plaquettes p , together with vr

ij YiYj
on each G edge. On each B plaquette p , the mea-
surement outcomes are subject to the constraint

∏

G edge⊂∂p

vr
ij

∏

R edge⊂∂p

v
(r−1)
ij = wp . (22)

• When r = 2 mod 3 and r ≥ 3, Sr is generated by
{wpWp} for all plaquettes p , together with vr

ij ZiZj
on each B edge. On each R plaquette p , the mea-
surement outcomes are subject to the constraint

∏

B edge⊂∂p

vr
ij

∏

G edge⊂∂p

v
(r−1)
ij = wp . (23)

For r ≥ 3, the stabilizer group Sr stores two qubits, where
the code space is regarded as the effective Z2 gauge theory
(Z2 toric code). The code space of the stabilizer group Sr
is denoted as Cr.
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B. Honeycomb Floquet code in the presence of a single
cross cap

Here we consider the honeycomb Floquet code on a
torus in the presence of a cross cap. The cross cap is imple-
mented in the hexagonal lattice as shown in Fig. 16. Note
that the cross cap is chosen so that it preserves the coloring
of hexagons and edges. The honeycomb Floquet code can
then be described in exactly the same fashion as Sec. IV A
based on the colors of the edges.

The only extra thing we need to care about in the pres-
ence of the cross cap is an exceptional plaquette with
length 12 at the end of a cross cap. After the round of
the measurement at r = 2, the plaquette stabilizer wpWp
for this exceptional plaquette is also introduced in the
instantaneous stabilizer group S2, which is given by

wp =
∏

〈ij 〉⊂∂p

vr
ij , Wp =

∏

B edge⊂∂p

YiYj

∏

G edge⊂∂p

XiXj ,

(24)

where p is the plaquette with length 12, and r = 1, 2
depending on the color of edges. This plaquette stabilizer
is an element of Sr for any r ≥ 2, and the measurement
outcomes for r = 2 mod 3 follows the constraint at the

(a)

(b)

FIG. 16. (a) The hexagonal lattice with the plaquettes and
edges colored by R, G, and B. The 2D space is a torus with
the periodic boundary condition along the horizontal and verti-
cal directions. When we want to introduce a cross cap to the 2D
space, we locate it along the thick black line. (b) The cross cap
connects the edges cutting it to those at the reflected position,
which makes up a nonorientable surface. Note that the action of
the cross cap preserves the coloring of plaquettes and edges, so
the coloring makes sense in the presence of the cross cap. Though
the figure represents the cross cap with length seven, one can
easily generalize the cross cap to have general odd length.

plaquette

∏

B edge⊂∂p

vr
ij

∏

G edge⊂∂p

v
(r−1)
ij = wp . (25)

C. Logical gate implemented by dynamics

Here we evaluate the logical gate implemented by the
sequence of the three steps of measurements, starting at the
r th round with r = 0 mod 3. The argument of this section
applies for the honeycomb Floquet code with or without
cross cap.

We need to fix the basis of the code space Cr and Cr+3
to talk about the logical gate acting on the code space
Cr, which will be considered later. Once the basis states
are specified, the logical gate for the sequence of three
measurements at r + 1, r + 2, r + 3 is given by the matrix
element

〈ψr+3|
r+2
r+1 |ψr〉 , (26)

with some basis state |ψr〉 ∈ Cr, |ψr+3〉 ∈ Cr+3, where

r+1,
r+2 are projectors onto the measurement outcome
given by


r+1 =
∏

〈ij 〉∈G edges

1 + v
(r+1)
ij YiYj

2
,


r+2 =
∏

〈ij 〉∈B edges

1 + v
(r+2)
ij ZiZj

2
.

(27)

By expanding the sum of the projectors, one can express
the operator 
r+2
r+1 as the sum of the operators in the
form of


r+2
r+1 = 1
22N

∑

CGB

⎛

⎝
∏

B edges∈CGB

v
(r+2)
ij ZiZj

⎞

⎠

×
⎛

⎝
∏

G edges∈CGB

v
(r+1)
ij YiYj

⎞

⎠ , (28)

where N is the number of unit cells, and CGB is set of
edges that contains only G, B edges. We sum over all pos-
sible choices of such a set CGB. For a given set CGB, it
is convenient to label each R edge e by an integer 0, 1, 2,
depending on how many vertices overlap between ∂(CGB)

and ∂e [54]. Let us denote the set of all R edges with label j
as CR,j . Then, the operator in the summand of Eq. (28) anti-
commutes with the XX check on an R edge e, if and only
if e is contained in CR,1. So, the summand has a nonzero
matrix element between Cr and Cr+3 if and only if CR,1
coincides with the set of R edges with vr

e = −v(r+3)
e . Let
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us denote this set of R edges as ĈR, then within the code
space Cr we have


r+2
r+1 = 1
22N

∑

CGB
CR,1=ĈR

⎛

⎝
∏

B edges∈CGB

v
(r+2)
ij ZiZj

⎞

⎠

×
⎛

⎝
∏

G edges∈CGB

v
(r+1)
ij YiYj

⎞

⎠

×
⎛

⎝
∏

R edges∈CR,2

vr
ij XiXj

⎞

⎠ (29)

Here, the operator is supported on the set of edges CGB +
CR,2, which constitutes an open-line operator with the end
at edges of ĈR. This is physically regarded as an operator
creating the fermionic particle at the location of ĈR. Let us
simply denote C′ = CGB + CR,2, then we get


r+2
r+1 = 1
22N

∑

C′
CR,1=ĈR

V(C′), (30)

where C′ is an open curve that satisfies the property
that CR,1 = ĈR. V(C′) is the open-line operator for the
fermionic particle

V(C′) =
⎛

⎝
∏

B edges∈C′
v
(r+2)
ij ZiZj

⎞

⎠

⎛

⎝
∏

G edges∈C′
v
(r+1)
ij YiYj

⎞

⎠

×
⎛

⎝
∏

R edges∈C′
vr

ij XiXj

⎞

⎠ . (31)

In Appendix A 1, we show that the action of V(C′) within
the code space is invariant under shifting C′ by boundary
C′ → C′ + ∂F , where F is any set of plaquettes. That is,
one can show that

〈ψr+3| V(C′ + ∂F) |ψr〉 = 〈ψr+3| V(C′) |ψr〉 , (32)

for any set of plaquettes F .
Then, let us rewrite the open curve C′ as C′ = C + C0,

where C0 is a fixed set of open curves satisfying CR,1 =
ĈR, and C is a closed loop. Then, the sum over C′ can be
rewritten as the sum over the closed loops C. Then we have

〈ψr+3|
r+2
r+1 |ψr〉

= 2|F|−1

22N

∑

[C]∈H1(�,Z2)

〈ψr+3| V(C + C0) |ψr〉 , (33)

where |F| is the number of plaquettes; |F| = N for the
torus without a cross-cap, while |F| = N − 1 with a cross-
cap. � is a 2D surface supporting a honeycomb Floquet
code, i.e., a torus with or without a cross-cap.

The sum over closed loops C is written as the sum over
homology classes [C] ∈ H1(�, Z2), since the summand
only depends on the homology class of C due to Eq. (32).
For a fixed choice of C0 given by a set of open curves, one
can always find a representative C for [C] ∈ H1(�, Z2) sat-
isfying the property V(C + C0) = V(C)V(C0) [55]. Based
on these representatives C, we have

〈ψr+3|
r+2
r+1 |ψr〉

= 2|F|−1

22N

∑

[C]∈H1(�,Z2)

〈ψr+3| V(C)V(C0) |ψr〉 . (34)

Now we can compute the action of the logical gate. Sup-
pose that the basis of Cr, Cr+3 are eigenstates of the line
operators V(C) along the noncontractible closed loop C.
For each basis state |ψr〉 of Cr, we define the basis state of
Cr+3 with the same eigenvalues as |ψr+3〉 := V(C0) |ψr〉.
Here, V(C0) |ψr〉 is a state of the code space Cr+3 because
V(C0) gives an automorphism between instantaneous sta-
bilizer groups Sr and Sr+3, i.e., V(C0)SrV(C0)

† = Sr+3.
Then, the logical gate is diagonal and given by

2|F|−1

22N

∑

[C]∈H1(�,Z2)

〈ψr+3| V(C) |ψr+3〉 . (35)

This can be computed by using the quadratic property (see
Appendix A 2 for a proof)

V(C + C′) = (−1)�int(C,C′)V(C)V(C′), (36)

where C, C′ are closed loops and �int(C, C′) is the mod 2
intersection number. When |ψr+3〉 is an eigenstate of V(C),
〈V(C)〉 := 〈ψr+3| V(C) |ψr+3〉 gives a quadratic form

〈V(C + C′)〉 = (−1)�int(C,C′)〈V(C)〉〈V(C′)〉. (37)

It is known that the following sum of this quadratic form
becomes a phase

1
√|H1(�, Z2)|

∑

[C]∈H1(�,Z2)

〈V(C)〉, (38)

which is called the Arf invariant of the quadratic form
〈V(C)〉 when � is orientable, while it is called the Arf-
Brown-Kervaire (ABK) invariant when� is nonorientable
[56]. This Arf or ABK invariant gives the diagonal matrix
element of the logical gate Eq. (35). While the Arf invari-
ant for oriented surface takes value in {±1}, the ABK
invariant for a nonorientable surface� is valued in e(2π i/8)ν
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with ν ∈ Z8. Thanks to this eighth root of unity, one can
see that the nonorientable geometry enriches the dynamics
of the honeycomb Floquet code.

Below, let us explicitly describe the logical gate imple-
mented by a period of measurements for a torus with or
without a cross cap.

• When the 2D surface � is a torus without cross cap,
one can write

〈V(Cx)〉 = sx, 〈V(Cy)〉 = sy , (39)

with Cx, Cy the noncontractible 1-cycles, and we
obtain the final expression

〈ψr+3|
r+2
r+1 |ψr〉 = 1
2N Arf, (40)

Arf = 1 + sx + sy − sxsy

2
. (41)

Here, Arf ∈ {±1} is the Arf invariant of the
quadratic form 〈ψr+3| V(C) |ψr+3〉. If we instead
work on a standard choice of basis where the
fermionic line operators V(Cx), V(Cy) of the Z2 toric
code are identified as the X 1Z2, X 2Z1 gates, the
operator Arf is given by

Arf = 1 + X 1Z2 + X 2Z1 + X 1Z1X 2Z2

2
. (42)

One can check that Arf transforms the Pauli opera-
tors as

X 1 ↔ Z2, X 2 ↔ Z1 (43)

that is, it implements the e ↔ m exchange Z2 sym-
metry of the Z2 gauge theory.

• When the 2D surface� is a torus with a single cross
cap, one can write

〈V(Cx)〉 = sx, 〈V(Cy)〉 = sy , 〈V(Cw)〉 = sw, (44)

where Cw is the 1-cycle that crosses through a
cross cap once. Note that sw = ±i, since Cw has
self-intersection and V(Cw)V(Cw) = −1. Then we
obtain the final expression

〈ψr+3|
r+2
r+1 |ψr〉 =
√

2
2N × ABK, (45)

ABK = 1 + sx + sy − sxsy

2
× 1 + sw√

2
. (46)

Here, ABK is the Arf-Brown-Kervaire invariant
of the quadratic form 〈V(C)〉, which is valued in

e(2π i/8)ν with ν ∈ Z8.If we instead work on the stan-
dard basis of Z2 toric code where the fermionic line
operators V(Cx), V(Cy) are identified as the X 1Z2,
X 2Z1 and V(Cw) is identified as X 3Z3 = −iY3, the
operator ABK is given by the matrix representation

ABK = Arf1,2 ⊗ exp
(

− iπ
4

Y3

)

, (47)

where Arf1,2 is the Arf operator in Eq. (42) for
the first two qubits implemented on a torus, and
exp

(−(iπ/4)Y3
) = H 3Z3 is a Clifford gate for a

third qubit encoded by a cross cap. This gate
generates the Z4 group up to phase, (H 3Z3)

2 =
−iY3, (−iY3)

2 = −1 [57].

D. Dynamics as a condensation operator of Z2 gauge
theory

Here we describe the dynamics of the honeycomb Flo-
quet code in terms of effective Z2 gauge theory. In the
above discussions, we have seen that a period of the
dynamics implements a logical gate given by sum over
insertions of fermionic line operators V(C) proportional to

1
√|H1(�, Z2)|

∑

[C]∈H1(�,Z2)

V(C). (48)

At the level of effective field theory, an operator sup-
ported on a surface � obtained by summing over possible
insertions of an Wilson line operator in � is called a con-
densation operator [43]. The operator in Eq. (48) gives
a lattice description for the condensation operator of a
fermion ψ supported on a 2D space �. This condensation
operator of (2+1)D Z2 gauge theory is known to gen-
erate 0-form invertible symmetry that exchanges anyons
e ↔ m [43].

The group structure generated by this condensation
operator depends on whether the 2D surface � is ori-
entable or not. To see this, we note that the 2D con-
densation operator for the fermion ψ in Z2 gauge theory
corresponds to a symmetry defect obtained by gauging Z

f
2

symmetry of (1+1)D Kitaev’s Majorana chain located at a
subsystem of (2+1)D trivial atomic insulator [22]. That is,
this condensation operator is described in (2+1)D space-
time by starting with a (2+1)D trivial fermionic insulator
with Z

f
2 symmetry with a location of Kitaev chain at a

codimension-1 submanifold, and then gauging Z
f
2 symme-

try of the whole system. After gauging Z
f
2 symmetry, the

Kitaev chain is realized as a codimension-1 condensation
defect of the Z2 gauge theory.

From this perspective, one can see that the fusion rule of
the condensation operators reflects the stacking law of the
Kitaev chains, so it generates the symmetry group given by
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the classification group of the fermionic invertible phase
generated by the Kitaev chain. While the effective field the-
ory for the Kitaev chain on an oriented 2D spacetime gen-
erates the Z2 classification of (1+1)D fermionic invertible
phase [58], that located on a nonorientable surface instead
generates the Z8 classification [59,60], since it rather cor-
responds to classification of (1+1)D fermionic invertible
phase with spacetime orientation-reversing (time-reversal
or spatial reflection) symmetry. This implies that the con-
densation operator acts as a generator of Z8 group instead
of Z2 in the Hilbert space of Z2 gauge theory, when the 2D
space is nonorientable.

Let us describe the explicit action of this condensa-
tion operator on the Hilbert space of the Z2 gauge theory.
Each state of the Z2 gauge theory on a 2D space � can
be labeled by the dynamical gauge field for Z

f
2 sym-

metry, which is identified as Pin − structure η of the
surface �. The condensation operator acts on each state
by the phase exp((2π i/8)ABK(�, η)), which is the par-
tition function for the effective theory of Kitaev chain on
the Pin − surface valued in eighth root of unity [60,61].
Here, ABK(�, η) gives the Arf-Brown-Kervaire invariant
of the Pin − surface. In particular, when the surface � is
given by the real projective plane RP

2, the action on the
2D Hilbert space for Z2 gauge theory is given by the diag-
onal matrix diag(e2π i/8, e−2π i/8), which generates Z4 group
up to phase. This gives a field theoretical explanation for
why the dynamics of the honeycomb Floquet code has the
enlarged period of dynamics from Z2 to Z4 in the presence
of a cross cap.

We note that the condensation defect of the ψ fermion
in the honeycomb Floquet code was also described in
Ref. [8], which realizes the codimension-1 defect of e ↔
m exchanging symmetry inserted in the 2D space. Our
work demonstrates that the measurement period of the
honeycomb Floquet code can directly be understood as
the condensation of the fermionic particle ψ , and derives
the action of the dynamics using its expression as the
condensation operator.

V. DISCUSSIONS

In this work, we described the fault-tolerant logical
gates of the stabilizer codes and Floquet codes enabled by
putting the code on a nonorientable surface. Here let us
describe possible generalizations of the construction of the
logical gate considered in this paper.

As described in Sec. IV D, the action of the e ↔ m
exchanging symmetry on the Z2 gauge theory on the space
RP

2 can be understood via the picture of its “fermionic
dual”; when the Z2 gauge theory is regarded as a theory
obtained by gauging Z

f
2 symmetry of the trivial fermionic

invertible phase, the e ↔ m exchanging symmetry corre-
sponds to evaluating the partition function of the (1+1)D
Kitaev chain on the 2D space. Reflecting that the partition

function of the Kitaev chain becomes the eighth root of
unity on RP

2 instead of ±1, the e ↔ m exchanging sym-
metry realized by the dynamics of the honeycomb Floquet
code has an enriched action diag(e2π i/8, e−2π i/8) on the 2D
code space.

For future work, it would be very interesting to study the
logical gates of Z2 gauge theory on nonorientable geome-
try in higher dimensions. For example, (4+1)D Z2 gauge
theory with an emergent fermionic particle supported on
a 4D space RP

4 stores a single logical qubit, and has an
emergent symmetry that evaluates the partition function
of (3+1)D topological superconductor in class DIII [62]
quantized as the 16th root of unity [36,60]. This symme-
try is regarded as “pumping” a topological superconductor
through the 4D space, and acts on the code space by the
diagonal matrix diag(e2π i/16, e−2π i/16), which is the logi-
cal T gate up to phase. See also Ref. [63] for a recent
development about the logical gate obtained by pumping
a fermionic topological phase through the whole space.
It would be interesting to find a realization of this fault-
tolerant logical T gate on the (4+1)D Z2 toric code with a
fermionic particle.
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APPENDIX A: TECHNICAL DETAILS OF THE
HONEYCOMB FLOQUET CODE

In this Appendix, we give a proof of statements about
the honeycomb Floquet code used in the main text.

1. Topological invariance of 〈ψr+3| V(C) |ψr〉
Here we show that the expectation value 〈ψr+3| V(C)

|ψr〉 for r mod 3 is invariant under shifting C by a boundary
of any plaquette p , i.e.,

〈ψr+3| V(C + ∂p) |ψr〉 = 〈ψr+3| V(C) |ψr〉 (A1)

for any plaquette p . We derive this statement by cases of
the color of the plaquette p . Within the code space, the
operator V(C) can be expressed as the product of checks
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FIG. 17. The loops C, C′ intersect at the single R edge.

on G, B edges as

V(C) =
⎛

⎝
∏

B edges∈C

v
(r+2)
ij ZiZj

⎞

⎠

⎛

⎝
∏

G edges∈C

v
(r+1)
ij YiYj

⎞

⎠ .

(A2)

• When the plaquette p has color R, the operator
V(∂p) is identified as a plaquette stabilizer wpWp ,
so we have

〈ψr+3| V(C) |ψr〉 = 〈ψr+3| V(C)V(∂p) |ψr〉 . (A3)

Since the product of ZZ checks in V(∂p) com-
mutes with YY checks on any edges, we have
V(C)V(∂p) = V(C + ∂p). This shows Eq. (A1).

• When the plaquette p has color G, the plaquette
stabilizer wpWp can be expressed as

wpWp =
⎛

⎝
∏

R edge⊂∂p

v
(r+3)
ij XiXj

⎞

⎠

×
⎛

⎝
∏

B edge⊂∂p

v
(r+2)
ij ZiZj

⎞

⎠ . (A4)

Since the XX terms of wpWp are instantaneous
stabilizers at the (r + 3) th round, we have

〈ψr+3| V(C) |ψr〉 = 〈ψr+3| wpWpV(C) |ψr〉
= 〈ψr+3| V(∂p)V(C) |ψr〉
= 〈ψr+3| V(C + ∂p) |ψr〉 . (A5)

• When the plaquette p has color B, the plaquette
stabilizer wpWp can be expressed as

wpWp =
⎛

⎝
∏

G edge⊂∂p

v
(r+1)
ij YiYj

⎞

⎠

⎛

⎝
∏

R edge⊂∂p

vr
ij XiXj

⎞

⎠.

(A6)

FIG. 18. The four-step measurements to implement the logical Hadamard gate of the Z2 toric code on a Klein bottle.
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Since the XX terms of wpWp are instantaneous
stabilizers at the r th round, we have

〈ψr+3| V(C) |ψr〉 = 〈ψr+3| V(C)wpWp |ψr〉
= 〈ψr+3| V(C)V(∂p) |ψr〉
= 〈ψr+3| V(C + ∂p) |ψr〉 . (A7)

2. Quadratic property of V(C)

Here we show the quadratic property of V(C)
described as

V(C + C′) = (−1)�int(C,C′)V(C)V(C′), (A8)

where C, C′ are closed loops and �int(C, C′) is the mod 2
intersection number. This statement also holds for open
curves C, C′ as long as the ends of C, C′ are away from
the intersection between C and C′. Here, let us restrict
ourselves to closed curves for simplicity. Since one can
immediately see that V(C + C′) = ±V(C)V(C′) where ±
is an overall phase for the whole Hilbert space, it is suffi-
cient to give a proof of Eq. (A8) within the subspace where
wpWp = 1 for all plaquettes. For a closed loop C, one can

easily show that

V(C + ∂p) = V(C)wpWp for any plaquette p , (A9)

which is valid for the whole Hilbert space. This means
that V(C) supported on a closed loop C is topologically
invariant V(C + ∂p) = V(C) within the subspace where
wpWp = 1. So, due to the topological invariance of V(C),
we just have to check Eq. (A8) for a fixed configuration of
loops C, C′ near the intersection.

Let us consider the setup where C and C′ intersects
locally at a single R edge, as described in Fig. 17. Then,
reordering the terms of V(C)V(C′) into V(C + C′) near the
intersection emits a minus sign

V(C)V(C′) = (v(r+2)ZZ)B(v(r+1)YY)G(vrXX )R

× (v(r+2)ZZ)B′(v(r+1)YY)G′(vrXX )R

= (v(r+2)ZZ)B(v(r+1)YY)G(v(r+2)ZZ)B′

× (v(r+1)YY)G′

= −(v(r+2)ZZ)B(v(r+2)ZZ)B′(v(r+1)YY)G

× (v(r+1)YY)G′

= −V(C + C′), (A10)

1 2

3

41

2

3 4

FIG. 19. The instantaneous sta-
bilizers at the cross cap of the
Klein bottle. One can see that the
plaquette stabilizer of the toric
code gets translated after four
steps.

020360-24



CROSS-CAP DEFECTS AND FAULT-TOLERANT. . . PRX QUANTUM 5, 020360 (2024)

where we omit the checks supported on C, C′ irrelevant to
the commutation relation between C and C′. This implies
that the minus sign occurs at each intersection between C
and C′, which shows the quadratic property Eq. (A8).

APPENDIX B: LOGICAL HADAMARD GATE OF
Z2 TORIC CODE ON A KLEIN BOTTLE VIA

MEASUREMENTS

In this Appendix, we describe a way to implement the
logical Hadamard gate of the Z2 toric code on a Klein
bottle by a sequence of measurements. As we discussed
in Sec. III E, the Z2 toric code on a Klein bottle admits
the logical H 1 ⊗ H 2 acting on two logical qubits encoded
in two cross caps. We will see that this logical gate can
be implemented by a sequence of local measurements, by
utilizing a version of Floquet codes called “Wen plaquette-
translation code” recently defined in Ref. [44]. This code
realizes the lattice translation of Wen plaquette model by
measurements of two-qubit Pauli operators, which corre-
sponds to the e ↔ m exchanging symmetry of Z2 toric
code. We will see that the Wen plaquette-translation code
can be defined on a nonorientable surface as well, and its
dynamics realizes the logical Hadamard gate H 1 ⊗ H 2 on
the code space.

Let us consider the toric code on the Klein bottle
described in Sec. III E. We additionally introduce a single
qubit in the middle of each edge directed in the horizontal
direction, illustrated as white dots in Fig. 18.

Initially, we take the stabilizers as those of the Z2 toric
code on the black qubits and the Pauli-Z operator on each
auxiliary white qubit. We then realize the Hadamard gate
of this code by the steps of the measurements illustrated in
Fig. 18. One can see that the four steps of measurements
induces the translation of the stabilizers, as well as the log-
ical operators. For example, we show the evolution of the
instantaneous stabilizer after each step of the measurement
in Fig. 19, for the stabilizers at the cross cap. One can see
it implements e ↔ m exchange of the toric code, which is
equivalent to the action of the lattice translation associated
with the transversal Hadamard.
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