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High-Fidelity Spin Qubit Shuttling via Large Spin-Orbit Interactions
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Shuttling spins with high fidelity is a key requirement to scale up semiconducting quantum comput-
ers, enabling qubit entanglement over large distances and favoring the integration of control electronics
on-chip. To decouple the spin from the unavoidable charge noise, state-of-the-art spin shuttlers try to
minimize the inhomogeneity of the Zeeman field. However, this decoupling is challenging in otherwise
promising quantum computing platforms such as hole spin qubits in silicon and germanium, character-
ized by a large spin-orbit interaction and an electrically tunable qubit frequency. In this work, we show
that, surprisingly, the large inhomogeneity of the Zeeman field stabilizes the coherence of a moving spin
state, thus also enabling high-fidelity shuttling in these systems. We relate this enhancement in fidelity
to the deterministic dynamics of the spin that filters out the dominant low-frequency contributions of the
charge noise. By simulating several different scenarios and noise sources, we show that this is a robust
phenomenon generally occurring at large field inhomogeneity. By appropriately adjusting the motion of
the quantum dot, we also design realistic protocols enabling faster and more coherent spin shuttling. Our
findings are generally applicable to a wide range of setups and could pave the way toward large-scale
quantum processors.

DOI: 10.1103/PRXQuantum.5.020353

I. INTRODUCTION

Spin qubits confined in silicon and germanium quan-
tum dots are front-runners in the race toward large-scale
quantum computers [1–15]. Their demonstrated compati-
bility with industry-level CMOS processing [15–18] and
their high-temperature operations [18–22] make these sys-
tems ideal for scalability and cointegration with control
electronics [23–28]. The small footprint of spin qubits,
typically a few tens of nanometers, however, imposes
demanding technological constraints for the classical hard-
ware and requires dense multilayered architectures that add
significant extra complexity to the process [29–32].

These constraints are significantly relaxed by introduc-
ing quantum links coupling distant spins that are placed
micrometers apart [23]. This long-range connectivity can
be achieved in various ways, including, for example, vir-
tual couplings enabled by photons in superconducting
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cavities [33–49], Luttinger liquids [50–55], floating gates
[56,57], and magnetic systems [58–63]. Correlated dis-
sipative coupling emerging by appropriately engineering
the spin coupling to a bosonic bath has also been pro-
posed as a viable route to entangle distant qubits [64,65].
All these possibilities, however, require external compo-
nents that are not straightforward to integrate into the
conventional CMOS processes, therefore hindering the
competitive advantage of spin qubits.

On the other hand, shuttling spins across the chip pro-
vides a viable and CMOS compatible way to link qubits
in a sparse array [66–73]. The fidelity of this opera-
tion is determined by the noise that the spin experiences
during shuttling and, in current devices, this noise is pre-
dominantly related to random fluctuations of the electro-
static environment. Because spin-orbit interactions (SOIs)
directly couple the spin degree of freedom to these charge
fluctuations, current experiments try to minimize the SOI
to maximize the shuttling fidelity. This approach is chal-
lenging in hole-based spin qubits, whose predominant
feature is their large SOIs [74–87]. The tunability of their
SOIs enables sweet spots [88–95] where the SOI can be
turned off; however, for shuttling operations, this optimiza-
tion requires a demanding fine-tuning of the electrostatic
potential over wide areas.

In this work, we show that, surprisingly, large SOIs
and inhomogeneity of the Zeeman field can substantially
enhance the shuttling fidelity. This improvement depends
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on the coherent dynamics imprinted by the SOI on the
spin state. The spin moving in a large SOI field rotates
quickly in a deterministic and controllable way and this
motion provides an intrinsic dynamical decoupling, fil-
tering out the dominant, low-frequency contribution of
the noise, thus boosting shuttling fidelity. A similar SOI-
induced decoupling appears in microwave-driven qubits
[15,86] and is a continuous version of the typical instan-
taneously pulsed dynamical decoupling [96]. The high
spin shuttling fidelities reached in our shuttling scheme
are qualitatively independent of the type and spatial dis-
tribution of the noise sources, and can also be reached by
moving spin in an inhomogeneous Zeeman field produced,
for example, by varying g tensors [97,98] or micromagnets
[1,67,99], opening up to effective SOI-driven improve-
ments of the shuttling fidelity in electron spin qubits in
silicon and germanium. Expanding on these ideas, we pro-
pose optimized protocols to leverage the SOI to further
dynamically decouple the moving spin from the environ-
ment, rendering the shuttling faster and at the same time
more coherent, and paving the way towards high-fidelity
shuttling of hole spin qubits for the large-scale quantum
processors.

This manuscript is organized as follows. In Sec. II, we
introduce our general model describing spins shuttling in
inhomogeneous SOI and Zeeman fields. Our theory cap-
tures the spin dynamics in a wide variety of setups, includ-
ing the silicon and germanium spin qubits in fin field-effect
transistors and heterostructures sketched in Fig. 1. In Sec.
III, we specialize our discussion on inhomogeneous Zee-
man fields only. This simple case provides a valuable
intuitive understanding of the coherent and incoherent time
evolution of the spin, and of the effect of different sources
of noise. We expand the discussion in Sec. IV, by includ-
ing an inhomogeneous SOI field, nicely describing realistic
hole-based silicon and germanium devices. We show that
a large effective SOI is beneficial to reduce the effect of
noise during shuttling and, as proposed in Sec. V, it can
be further leveraged in alternative shuttling schemes that
dynamically decouple the spin from low-frequency noise.
These protocols enable a faster motion of the spins and
substantially boost the shuttling coherence of a wide range
of materials and systems presenting large inhomogeneities
of Zeeman fields.

II. THEORETICAL MODEL

In this work, we analyze spin qubits confined in mov-
ing quantum dots, as sketched in Fig. 1. The dynamic
of the spin along the direction of motion (z direction)
is well approximated by the effective one-dimensional
Hamiltonian

H1D = p2

2m
+ mω2

o

2
[z − z̄(t)]2 − {v(z), p} · σσσ + �ω̃ωωB(z) · σσσ

2
.

(1)

(a) (b)

FIG. 1. Sketch of our moving spin qubits. A particle confined
in a quantum dot centered at the time-dependent position z̄(t) is
shuttled along the z direction in a planar germanium heterostruc-
ture (a) or in a silicon fin field-effect transistor (b). During the
motion, the spin of the particle (red arrows) precesses because
of an inhomogeneous Zeeman field ωωωB(z) (green arrows), which
can be caused by a space-dependent g tensor and magnetic field
(a) or by a large spin-orbit interaction (SOI) with direction ns (b).
The fast SOI-induced dynamics of the spin filters out dangerous
low-frequency noise and substantially boosts the fidelity of the
spin shuttling.

This Hamiltonian describes a quantum dot with harmonic
frequency ωo and width l = √

�/mωo, whose center of
mass z̄(t) is shifted time dependently. This moving electric
potential is experimentally implemented in conveyer-mode
shuttling architectures [71–73]. In this work, we restrict
ourselves to this type of shuttling; however, we expect
that our results can also be generalized to bucket-brigade
shuttling [66–70,100]. While Eq. (1) can capture the spin
dynamics only of bucket-brigade experiments with large
tunneling between quantum dots, we envision that the
large inhomogeneity of Zeeman fields between dots can
be leveraged to filter out low-frequency noise in general
setups. During its motion, the spin experiences inhomoge-
neous spin-orbit and Zeeman fields, described by the vec-
tors of spin-orbit velocities v(z) and Larmor frequencies
ω̃ωωB(z), respectively. We anticipate that the local Zeeman
field of the nanostructure ω̃ωωB(z) differs from the local qubit
splitting ωωωB(z) by a correction arising from the confine-
ment in the z direction [78,81–83]; see Eq. (2) below. Here,
m is the effective mass along z, p = −i�∂z is the momen-
tum operator in the direction of motion, σσσ = (σ1, σ2, σ3)

is the vector of Pauli matrices, and {a, b} = (ab + ba)/2
is the normalized anticommutator that guarantees the Her-
miticity of H1D.

Equation (1) generally captures the response of a wide
variety of different setups, including those in Fig. 1. In
particular, in this work, we focus primarily on hole spin
qubit architectures, where the effective parameters orig-
inate from the mixture of heavy and light holes in the
valence band caused by kinetic energy and strain and
described by the Luttinger-Kohn and Bir-Pikus Hamil-
tonian. In one-dimensional hole channels in silicon and
germanium, the SOI velocity v(z) is large, yielding exper-
imentally measured SOI lengths λs = �/m|v| of tens of
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nanometers, comparable with the quantum dot width l
[15,18,76–79]. In planar hole nanostructures, the SOI is
generally smaller, although it can be enhanced by device
engineering [81–85,101–104]. However, in these systems,
the effective Zeeman field ω̃ωω

h
B(z) = μBĝ(z)B/� is also

largely inhomogeneous because of the space-dependent
and electrically tunable g tensor ĝ(z), which also rotates
the energetically preferred quantization axes at different
locations when the externally applied magnetic field B is
homogeneous [9,10,70,95,97,98]. We stress that our model
also directly describes electron spin qubits moving in an
inhomogeneous magnetic field provided, for example, by
micromagnets [1–5]. In this case, similarly to planar hole
heterostructures, the SOI v(z) is small, and the leading
contribution to the spin dynamics is the inhomogeneous
Zeeman field ω̃ωωe

B(z) = μBgB(z)/�.
Throughout this work, we restrict ourselves to adia-

batically moving quantum dots, and consider shuttling
velocities that are slow compared to the orbital energy gap.
The small corrections to our model arising from nonadi-
abaticity in the orbital degrees of freedom and an exact
solution of a simple case where this condition is lifted
are discussed in detail in Appendix A. We note that, for
holes, this condition is �∂tz̄/l � �ωo ∼ 1 meV, while for
electrons, in silicon and germanium this condition is more
stringent and we require �∂tz̄/l to be much smaller than the
valley splitting. Large valley splittings commonly appear
in silicon MOS and in strained heterostructures, reaching
gaps of about 0.5 meV [105] and about 0.2 meV [106],
respectively. In these systems, valley splitting is estimated
to become relevant at fast shuttling velocities � 10 m/s
[73].

We emphasize that because �ωo � �|ωωωB(z)| ∼ 0.01
meV, in our adiabatically moving quantum dots, the
dynamics of spin does not need to be adiabatic with respect
to the Zeeman field and we anticipate that resonance pro-
cesses with ∂tz̄/l ∼ |ωωωB(z)| can further enhance the fidelity
of spin shuttling; see Sec. V below.

Finally, in this work we restrict ourselves to setups
where the inhomogeneity of the Zeeman field is deter-
ministic and can be designed by either engineering the
gate layout and electrostatic potentials in hole nanostruc-
tures [6,15,70,107], or by nanomagnets [99] in electronic
systems. We foresee however that alternative protocols
and possible improvement to shuttling fidelity could also
be achieved for random Zeeman field inhomogeneities,
in analogy to randomized dynamical decoupling schemes
[108–110].

III. INHOMOGENEOUS ZEEMAN FIELD

A. Deterministic spin dynamics

We first focus on a spin moving in an inhomogeneous
Zeeman field and neglect for the moment the effect of the
SOI, i.e., vvv = 0 in Hamiltonian H1D of Eq. (1). This simple

case captures the response of planar hole nanostructures
and of electron spins moving in micromagnetic fields and
shows how the spin dynamics during shuttling can filter
out the relevant low-frequency noise sources.

Assuming that the confinement potential is strong com-
pared to the local Zeeman field and restricting for now
to shuttling processes that are adiabatic compared to both
orbital and spin dynamics, i.e., ωo � |ωωωB(z)| � ∂tz̄/l, we
find by conventional time-dependent perturbation theory
that the spin degree of freedom evolves according to the
inhomogeneous Zeeman Hamiltonian

HZ = �

2
ωωωB[z̄(t)] · σσσ (2)

with

ωωωB[z̄] =
∫

dz|ψ(z − z̄)|2ω̃ωωB(z);

see Appendix A for more details. The Zeeman energy of
the quantum dotωωωB contains quantitative corrections com-
ing from the inhomogeneity of the field averaged over the
charge density |ψ(z − z̄)|2 ≈ e−(z−z̄)2/l2/l

√
π of the parti-

cle. The adiabatic condition on the spin degrees of freedom
constrains the shuttling velocity to be ∂tz̄ � min |ωωωB|l.
In current experiments, |ωωωB|/2π ∼ 1–10 GHz and l ∼
10–100 nm, therefore constraining the shuttling velocities
to � 10 m/s. We stress that these velocities are achiev-
able with current hardware [71]. We relax this adiabatic
condition in Sec. V below.

The time evolution of the spin generated by HZ is well
approximated by the adiabatic time-evolution operator

UZ(t) ≈ e−iθB[z̄(t)]nB[z̄(t)]·σσσ/2e−i	B(t)σ3/2. (3)

The first transformation e−iθBnB·σσσ/2 locally diagonalizes
HZ at position z̄. The local angle θB[z̄] and unit vec-
tor nB[z̄] are found by explicitly solving the equation
ωωωB/|ωωωB| = R̂B(θB)n3 for each value of z̄. Here, n3 =
(0, 0, 1) and R̂B(θB) is an anticlockwise rotation matrix
around axis nB of angle θB; see Appendix B for more
details and a general solution for vector nB and angle θB.
We conventionally choose the local angle θB to satisfy
θB[z̄ = 0] = 0 and UZ(t = 0) = 1. Because of the adi-
abatic condition, we discard the negligible contribution
to the Hamiltonian −i�eiθBnB·σσσ/2∂te−iθBnB·σσσ/2 ∝ ∂tz̄/l �
min |ωωωB| generated by the time dependence of θB and
nB. Then the time evolution in this slowly locally rotated
frame reduces to the spin-dependent phase accumulation
given by the second exponential: e−i	B(t)σ3/2 with 	B(t) =∫ t

0 |ωωωB[z̄(τ )]|dτ . Nonadiabatic corrections compared to the
Zeeman field arising from the discarded term −i�U†

Z∂tUZ
can prove beneficial for shuttling and are reintroduced and
leveraged in Sec. V below.

Finally, we emphasize that nonadiabaticity compared
to the orbital degree of freedom causes the additional
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term �∂tz̄∂z̄ωωωB · σσσ/2ωo in HZ in Eq. (2); see Appendix A.
For a largely inhomogeneous Zeeman field, we can esti-
mate ∂z̄ωωωB ∼ ωωωB/l; thus, the additional corrections are
suppressed by the small factor ∂tz̄/ωol � ∂tz̄/min |ωωωB|
l � 1.

B. Shuttling fidelity in a noisy environment

The unitary operator UZ(t) in Eq. (3) describes the
coherent deterministic time evolution of the spin. Because
UZ can be characterized in experiments and can be com-
pensated for or engineered to implement single-qubit
gates, it does not influence the overall shuttling fidelity.
However, during shuttling the spin also experiences ran-
dom fluctuations in the environment that result in a loss of
its coherence. At small shuttling velocities, the dominant
contribution in a conveyer-mode shuttling process is esti-
mated to be the variation of spin splitting caused by charge
noise [73]. To describe this effect, we consider the noise
Hamiltonian [88–90,96,111,112]

HN = h(t) · σσσ
2

, (4)

where a stochastic, time-dependent vector h(t) couples to
the spin. Physically, this vector originates from long-range
fluctuations of the gate electric field (global noise sources)
or from short-range atomistic defects (local noise sources)
coupling to the spin by the effective SOI or hyperfine inter-
actions. This Hamiltonian can also describe the effect of
small random variations of the trajectory of the shuttled
spin in the inhomogeneous field. A detailed comparison
between local and global noise sources is delayed to Sec.
III C. We anticipate that, while the microscopic origin of
the noise quantitatively influences the shuttling fidelity, the
coherent spin dynamics reduce the effect of the noise inde-
pendently of the source, and for this reason, we focus first
on the simpler case of global noise sources. The deriva-
tions for general cases are provided in Appendix C. We
remark that in our model, we do not consider small possi-
ble modulations of noise sources by the potential applied
to shuttle the quantum dot.

In the interaction picture, HN is dressed by the time
evolution of the spin as

H I
N = U†

ZHN UZ = 1
2 h(t) · R̂Z(t)σσσ , (5a)

R̂Z(t) = R̂B(t)[θB(t)]R̂3[	B(t)]. (5b)

Here, R̂Z is the combined rotation matrix generated by
the adiabatic time-evolution operator UZ in Eq. (3) and
the notation R̂B(t)[θB(t)] emphasizes that R̂B depends on
time via its time-dependent rotation axis nB(t) and angle
θB(t); R̂3 is the rotation matrix about the local Zeeman

axis; see Appendix B for the explicit form. We note that
in general the neglected nonadiabatic corrections ∝ ∂tz̄/l
only weakly renormalize the direction and angle of matrix
R̂Z ; resonant cases where these corrections become non-
negligible are discussed in detail in Sec. V below. When
noise is small, HN generates the time-evolution operator
UN ≈ e−iφφφN (t)·σσσ/2, with the vector of random phases

φφφN (t) = 1
�

∫ t

0
dτh(τ )R̂Z(τ ). (6)

To quantify the error caused by the stochastic phase accu-
mulation during shuttling, we introduce the fidelity of a
single shuttling event

F = 1
2 |Tr(U†

idUre)| = 1
2 |Tr(e−iφφφN ·σσσ/2)| (7)

that measures the distance between the ideal (coherent) and
real (noisy) operations Uid = UZ and Ure = UZUN , respec-
tively. The average shuttling fidelity F̄ is obtained by
averaging F over the probability distribution of φφφN .
Assuming a Gaussian-distributed noise [88,89,96,111,
112], we obtain

F̄ =
∫ ∞

−∞
dφφφN

e−φφφN ·�̂−1φφφN /2
√

8π3det(�)
cos

(√
φφφN · φφφN

2

)
, (8)

where we have introduced the covariance matrix

�̂ = 1
2π�2

∫ ∞

−∞
dωS(ω)F̂(ω, t) (9)

with determinant det(�); S(ω) = ∫
dteiωt〈h(t)h(0)〉 is the

power spectral function of the noise, which, for simplic-
ity, we have assumed to be isotropic and uncorrelated in
space and spin directions, i.e., 〈hi(t)hj (0)〉 = δij 〈h(t)h(0)〉.
The generalization of Eq. (9) for noise sources that couple
to the moving spin anisotropically [89,111,112] is straight-
forward and is provided in Appendix C. The matrix of filter
functions [96]

F̂(ω, t) =
∫ t

0
dτ

∫ t

0
dτ ′e−iω(τ−τ ′)R̂T

Z(τ )R̂Z(τ
′) (10)

depends on fast rotations around the local spin quantization
axis [R3(	B)], which account for the phase accumulated
because of the Zeeman energy |ωωωB|/2π ∼ 10 GHz, and on
slower rotations of about 10–100 MHz of the spin quanti-
zation axis [RB(θB)] caused by the motion of the spin in an
inhomogeneous Zeeman field.

In realistic semiconducting devices, the spectral func-
tion S(ω) is strongly peaked at low frequencies and has
a 1/ω tail at large frequencies [18,113,114]. Because the
transversal elements of F̂ contain rapidly oscillating terms
determined by 	B, they are peaked at large frequencies in
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the gigahertz range, where the noise has less weight. For
this reason, the dominant contribution to the fidelity arises
from the longitudinal element of the covariance matrix
�̂33, which is peaked at low frequencies, and is determined
by the element F̂33 ≡ F ,

F(ω, t) =
∫ t

0
dτ

∫ t

0
dτ ′e−iω(τ−τ ′) ωωωB[z̄(τ )]

|ωωωB[z̄(τ )]| · ωωωB[z̄(τ ′)]
|ωωωB[z̄(τ ′)]| ,

(11)

of the matrix of filter functions F̂ [115]. In this case, the
average shuttling fidelity becomes

F̄ = e−�̂33/8. (12)

We note that the corrections coming from the fast-rotating
transversal terms causing spin relaxation lead to a power-
law decay, with slower time constants, instead of the faster
exponential decay included here [86,89,111,112].

Equations (11) and (12) highlight the fundamental
role that the inhomogeneity of the Zeeman field has in
determining the average shuttling fidelity F̄ . In particu-
lar, the inhomogeneous tilt of the spin quantization axis
encoded in the product ωωωB[z̄(τ )] ·ωωωB[z̄(τ ′)] can substan-
tially impact the filter function. We discuss this phe-
nomenon in the next section by analyzing a few key
examples. A comparison between the filter functions and
average shuttling fidelities obtained for different cases is
shown in Fig. 2.

C. Suppressing noise by shuttling

1. Spin rotation in homogeneous Zeeman fields

We consider first the simplest case where during shut-
tling the spin moves in a homogeneous Zeeman field, i.e.,
ω̃ωωB(z) = ωωωB(z) = ωBn3. This case is the aim of most cur-
rent experimental settings in silicon [73], but we show
that it does not always correspond to the highest shuttling
fidelity, especially in material such as germanium, where
the inhomogeneities of the Zeeman field are intrinsically
large [70].

If the Zeeman field does not depend on space, the unitary
time-evolution operator of the spin given in Eq. (3) reduces
to the simple phase accumulation UZ = e−iωBtσ3/2, which
rotates the spin around the fixed axis n3. Moreover, the
productωωωB[z̄(τ )] ·ωωωB[z̄(τ ′)] = 1 and the longitudinal filter
function F in Eq. (11) simplifies to

F(ω, t) = 4 sin2(ωt/2)
ω2 ≡ FFID(ω, t), (13)

which corresponds to the filter function of a free-induction
decay (FID) experiment [96].

We remark that FFID is peaked at zero frequency ω = 0,
where it grows as FFID(ω = 0, t) = t2; see the black line in

(a) (b)

FIG. 2. Enhancing the shuttling fidelity by an inhomogeneous
Zeeman field. We consider here global noise sources and the
Zeeman field in Eq. (17). (a) Filter functions. With a black and
red curve, we show the filter functions of a shuttling experi-
ment in a homogeneous and an inhomogeneous Zeeman field
rotating with period λ = l/2 [see Eq. (17)], respectively. The
solid lines show the exact filter functions given in Eqs. (13) and
(D1a), while the dashed lines show the approximated result in
Eq. (19). For reference, we show with a blue line a typical spec-
tral function of the noise S(ω) ∝ |ω|−1. We consider ω in units
of ωl = v̄/l and we used t = 10/ωl. (b) Shuttling fidelity. Com-
parison of the infidelity 1 − F̄ in a doubly logarithmic plot. The
time is measured in units of the dephasing time Tϕ . A finite λ
improves the shuttling fidelity for global noise sources, as one
can observe by comparing the black (λ → ∞) and red (λ = l/2)
curves. Solid lines show the exact results in Eqs. (15) and (D1b)
and dashed lines show the limiting cases in Eq. (20). We consider
a noise with η = 0.01 and ωλ = v̄/λ = 50/Tϕ , corresponding to
ωλ/2π ≈ 8 MHz for typical values Tϕ ≈ 1 µ s.

Fig. 2(a). For this reason, the shuttling fidelity F̄ , related to
the longitudinal component �̂33 of the covariance matrix
by Eq. (12), is determined by low-frequency noise that
dominates the integral in Eq. (9).

To explicitly compare different scenarios, we use here
the typical spectral function measured in experiments [18,
113]

S(ω) = 2π�2

T2−η
1

|ω|1−η , (14)

where η ∈ (0, 1] and we have introduced the time scale
T > 0 that characterizes the amplitude of the noise fluc-
tuations in different experiments. While S(ω) in Eq. (14)
describes charge noise, we stress that our results are gen-
eral and applicable to all types of low-frequency noise,
notably including the hyperfine noise caused by spinful
nuclear defects. In particular, combining Eqs. (9), (12), and
(13), we find that, for the FID, the average shuttling fidelity
is

F̄FID = e−(t/T)2−η cos(πη/2)�(η−2)/2 ≈ e−t2/T2
ϕ ,

Tϕ = 2T
√
η,

(15)

where �(x) is the gamma function. The approximation
reports the purely pink noise case, with η → 0+, such
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that the noise spectrum is S(ω) ∝ 1/|ω|; see the blue line
in Fig. 2(a). Importantly, we stress that the dephasing
time Tϕ ∝ √

η vanishes for purely 1/|ω| noise because
of the characteristic nonintegrable divergence at zero fre-
quency. We point out that an alternative way to regular-
ize this infrared divergence requires a cut-off frequency
ωir, that could be physically related to the running time
of the experiment and introduces the typical logarithmic
correction Tϕ ∝ √

1/ log(ωirt) → 0 as ωir → 0+ [116].
The average shuttling infidelity 1 − F̄ for FID is shown

with a black line in Fig. 2(b), and it will serve as a refer-
ence to compare different cases. For typical experimental
values of Tϕ ∼ 1 µs [6,18,90,113] and shuttling velocities
of about 1 m/s, we obtain a loss of coherence of the spin
within a distance z̄ ∼ 1 µm. Finally, we remark here that,
as long as the motion of the spin remains adiabatic com-
pared to orbital and Zeeman fields, the shuttling fidelity of
FID is independent of the velocity of the quantum dot. This
is not generally valid in the presence of inhomogeneity of
the Zeeman field, as we discuss next.

2. Spin precession in inhomogeneous Zeeman fields

In striking contrast to the FID case, if the Zeeman
field is inhomogeneous, the time dependence of the prod-
uct ωωωB[z̄(τ )] ·ωωωB[z̄(τ ′)] in Eq. (11) shifts the weight of
the longitudinal filter function F to frequencies of tens
of megahertz, thus significantly improving the average
shuttling fidelity.

To illustrate this effect, we first consider a simple sce-
nario where the moving spin precesses in the inhomoge-
neous Zeeman field

ω̃ωω
P
B(z)
ω̃B

= cos
(

2z
λ

)
n3 + sin

(
2z
λ

)
n2 = R̂1

(
2z
λ

)
n3 (16)

that fully rotates around a fixed axis. Matrix R̂1 is reported
in Appendix B and describes a rotation around n1 =
(1, 0, 0) with period πλ.

While being an ideal field, we emphasize that ωωωP
B nicely

describes a wide variety of devices. For example, in elec-
tronic systems ωωωP

B matches the stray magnetic field pro-
duced by modular nanomagnets spaced by a distance πλ
[99]. In this case, we note that a small homogeneous mag-
netic field is required to polarize the magnets, but this
field could be switched off after the initial polarization.
Moreover, in planar hole nanostructures, ω̃ωωP

B reasonably
approximates the strain and electric-field-induced tilting of
the g tensor [84,85] caused by the periodic arrangement
of gates required for a conveyer-mode shuttling architec-
ture. For example, in neighboring quantum dots defined
in planar germanium heterostructures, g tensors tilting by
more than 40% [70], and even g factors with opposite
signs [107], have been recorded, suggesting that fully rotat-
ing fields as ω̃ωωP

B could be engineered in these systems.

A detailed discussion of the effects of residual homoge-
neous Zeeman fields is delayed to Sec. III C 3 below. We
also emphasize that, while we focus on fully rotating Zee-
man fields in this section, our protocol to improve shuttling
fidelity can be adapted to weakly inhomogeneous fields, as
discussed in detail in Sec.V B below. We anticipate that the
field ω̃ωωP

B matches the effective Zeeman field produced by a
finite SOI, as typical in hole nanowires and fin field-effect
transistors, as we show in Sec. IV below. We also remark
that in this section we consider noise that is not modulated
by the inhomogeneity of the Zeeman field; because such
modulated noise naturally emerges when including an SOI,
we postpone the discussion to Sec. IV.

The Zeeman energy of the moving quantum dot appear-
ing in HZ in Eq. (2) is

ωωωP
B(z̄) = ωBR̂1

(
2z̄
λ

)
n3 with ωB = e−l2/λ2

ω̃B, (17)

and is related to the local Zeeman energy ω̃ωωP
B(z) in H1D

in Eq. (1) by the well-known Gaussian renormalization
factor e−l2/λ2

, which accounts for the effects of strong
confinement and large inhomogeneity in the z direction
[78,81–83].

In this case, the time-evolution operator in Eq. (3) and
the kernel of the longitudinal filter function F in Eq. (11)
respectively reduce to

UP
Z(t) = e−iz̄(t)σ1/λe−iωBtσ3/2,

ωωωB[z̄(τ )]
|ωωωB[z̄(τ )]| · ωωωB[z̄(τ ′)]

|ωωωB[z̄(τ ′)]| = cos
[

2
z̄(τ )− z̄(τ ′)

λ

]
.

(18)

In contrast to FID, in an inhomogeneous Zeeman field the
quantum dot motion plays a critical role because the ener-
getically favored spin quantization axis varies at different
positions and times. This results in spin precession during
shuttling.

Considering a constant shuttling velocity z̄(t) = v̄t, the
integral in Eq. (11) defining F can be evaluated exactly,
and the complete solution is provided in Appendix D; see
Eq. (D1b). We find that an accurate approximation for the
exact result is provided by the simple equation

FP(ω, t) ≈ t2

2

[
fL

(
ω − 2ωλ

2/t

)
+ fL

(
ω + 2ωλ

2/t

)]
, (19)

where fL(x) = (1 + x2)−1 is a Lorentzian function normal-
ized as fL(0) = 1. We introduce here the relevant frequency
shift ωλ = v̄/λ, quantifying the rate of change in the spin
quantization axis; in a similar way, we also define the
frequency ωl = v̄/l.

In Fig. 2(a), we show a comparison between the exact
(solid lines) and approximate (dashed lines) solutions.
Importantly, FP comprised two functions peaked at finite
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frequencies ±2ωλ and with broadening 1/t becoming
narrower at large times. By considering state-of-the-art
experiments, we assume an adiabatic shuttling velocity
v̄ = 1 m/s, commonly achieved in conveyer-mode shut-
tling experiments [71], and a gate pitch of πλ = 50 nm,
typical in germanium [6,70] and consistent with recent
experiments with nanomagnets [99]. For these realistic
parameters, we find that ωλ/2π = 10 MHz, which sub-
stantially shifts the relevant components of noise toward
megahertz frequencies, where the noise has lower weight
(blue line). This shift is equivalent to an intrinsic dynami-
cal decoupling of the largest low-frequency noise.

Considering pink noise with the spectral function S(ω)
in Eq. (14), and using Eqs. (9), (12), and (19), we can
estimate the shuttling fidelity. The complete equation is
provided in Eq. (D1a) in Appendix D and is shown with a
solid red line in Fig. 2(b). For pure 1/|ω| noise (η → 0+),
this function can be approximated by

F̄P ≈

⎧
⎪⎨

⎪⎩

e−t2/T2
ϕ , t � 1/ωλ,

e−ω2
λT2
ϕ , 1/ωλ � t � TP = 8ωλT2/π ,

e−t/TP , t � TP,

(20)

and nicely matches the limiting behavior of F̄P; see the
dashed lines in Fig. 2(b). Here, Tϕ is the FID dephasing
time given in Eq. (15). At small values of ωλt, corre-
sponding to a few spin rotations during shuttling, F̄P ≈
F̄FID. However, if the spin experiences many rotations dur-
ing shuttling and ωλTϕ � 1, the fidelity first saturates to
a finite value following the interpolation function F̄P ≈
e−t2fL(ωλt)/T2

ϕ , and then decays exponentially with a longer
time constant TP that is independent of the small diverging
cutoff η → 0+.

Considering the realistic value ωλ/2π ≈ 10 MHz esti-
mated for state-of-the-art experiments and Tϕ = 1 µs,
typical for current spin qubits [6,90], we find a significant
improvement in the shuttling fidelity by the inhomoge-
neous magnetic field compared to the FID, as shown in
Fig. 2(b), with infidelities that remain below 10−3 for
a much wider range of shuttling times. Because of the
intrinsic dynamical decoupling of low-frequency noise, the
inhomogeneous Zeeman field boosts the possible shuttling
times to times a few orders of magnitude larger than the
dephasing time Tϕ , corresponding to a coherent shuttling
over distances larger than 100 µm.

We also note that while we assumed for simplicity a
constant absolute value of the Zeeman frequency ωB [see
Eq. (17)], because the term dominating the fidelity is inde-
pendent of ωB, our results also remain approximately valid
when ωB has a spatial dependence, e.g., an additional
oscillatory component with period πλ, provided that the
minimal Zeeman frequency ωmin

B remains large compared
to ωλ. More details on the effects of inhomogeneous ωB(z̄)
are provided in Sec. V below.

3. Spin nutation in inhomogeneous Zeeman fields

We now show that the enhancement of fidelity by
an inhomogeneous Zeeman field occurs in more general
cases. In particular, here we study the nutating dynamics
of a moving spin in the Zeeman field

ωωωN
B (z̄) = ωBR̂N

(
2z̄
λ

)
n3 (21)

that rotates around an inhomogeneous vector. Matrix R̂N
describes a general rotation around the oscillating unit
vector

nN(z) = n1√
1 + A2

+ A[cos(2z̄/λN )n3 − sin(2z̄/λN )n2]√
1 + A2

.

(22)

We refer to this process as a nutation out of phase because
the rotation of nN is out of phase compared to the pre-
cessing Zeeman field; see Eq. (16). The amplitude of the
nutation is characterized by the dimensionless constant A
and by its period λN , which does not need to match the
period λ of the precession. We also only consider the cases
where ωλ ∼ ωN � ωB, with ωN = v̄/λN .

Using Eq. (B3) in Appendix B, we can easily evaluate
ωωωN

B (z̄). The components of the out-of-phase nutating Zee-
man field are shown with solid lines in Fig. 3(a). Compared
to the rotating Zeeman field ωωωP

B in Eq. (17), ωωωN
B includes

an additional component oscillating in the x direction (red
line). This oscillating term produces on average the finite
homogeneous Zeeman field −ωBA/(1 + A2), and thus ωωωN

B
nicely describes the effects of residual homogeneous fields
in realistic experiments. These fields can occur because of
nonzero polarizing magnetic field for electronic systems
with nanomagnets [99] or nonfully precessing g tensors
in hole nanostructures [70]. Here, we restrict ourselves to
the case A � 1 and we show that in this case the shuttling
fidelity is still strongly enhanced; however, we anticipate
that similarly high fidelities can also be engineered by
increasing v̄ when the residual homogeneous field is large,
as we discuss in detail in Sec. V below.

The spin dynamics in this case is well approximated by
the time-evolution operator

UN
Z (t) = e−iz̄(t)nN [2z̄(t)/λN ]·σσσ/λe−iωBtσ3/2, (23)

describing a spin nutation. The longitudinal filter function
F in Eq. (11) can be evaluated numerically. In the limit of
small A, we find that FN = FP − δFN, with

δFN ≈ A2t2

4

[
2fL

(
ω − 2ωλ

2/t

)
− fL

(
ω − 2ωN

2/t

)

− fL

(
ω − 2ωλ + 2ωN

2/t

)]
+ (ω → −ω). (24)
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(a) (b)

FIG. 3. Nutating Zeeman field. (a) Spatial dependence of the
inhomogeneous field. We show with red, blue, and black the
three components of the field ωωωN

B . Solid (dashed) lines repre-
sent the out-of-phase (in-phase) nutation given by Eqs. (21) and
(22) [Eqs. (21) and (26)]. The only component that is signifi-
cantly modified in the two cases is the Zeeman field in the x
direction (red). Here we use A = 0.05 and λN = λ. (b) Correc-
tion to the longitudinal filter function δF caused by out-of-phase
nutation. Red (blue) lines show the resonant (off-resonant) case
with λ = λN = l/2 (λ = 4λN = l/2). Solid lines show the exact
solution for δFN, while the dashed lines show the approximation
in Eq. (24). Here we use t = 10/ωl. In the double logarithmic
plot in the inset, we show with a red solid line the infidelity
of shuttling in an out-of-phase resonant nutating Zeeman field;
see Eq. (25). The black and dashed orange lines show for refer-
ence the infidelity for a FID and a precessing field; see Fig. 2(b).
The dotted orange line represents the contribution of the addi-
tional dephasing time TN

ϕ . Here, A = 0.05, λ = λN = l/2, and
ωλ = 50/Tϕ .

Here, the notation ω → −ω indicates that in the brack-
ets there are three additional Lorentzian peaks obtained
from those reported by inverting the frequency, and we
neglected corrections O(A4) and combing from oscilla-
tions at higher frequencies.

The corrections δFN to the precessing filter function
FP coming from out-of-phase nutation are shown with
red and blue lines in Fig. 3(b) for different values of
λ/λN . We observe good agreement between the approxi-
mated equation (24) (dashed lines) and the exact solution
(solid lines). Importantly, nutation introduces sideband
peaks at frequencies ω = ±2ωN and ω = ±2(ωλ − ωN )

with amplitude ∝ A2. When the period of nutation λN is
much shorter than the period of precession λ, and λN �
λ/2, these sideband peaks sample noise at high frequency,
yielding negligible corrections to FP (blue lines). In con-
trast, when λN � λ/2, the sideband peaks of δFN occur at
low frequencies. This effect results in a resonant condition
at λN = λ, where the side peaks merge into the Lorentzian
peak A2t2fL(ωt/2) sampling the noise at ω = 0 (red lines).

In this resonant scenario, and for the 1/|ω| noise given
in Eq. (14), the average shuttling fidelity acquires a signif-
icant correction and becomes

FN ≈ FPe−t2/T2
N with TN = Tϕ/A. (25)

This fidelity is shown in the inset of Fig. 3(b). Compared
to the dephasing time Tϕ in Eq. (15), the time constant of
the Gaussian decay is enhanced by the small amplitude of
the nutation A. This decay time dominates the fidelity in
the long time asymptotic.

The dependence of TN on A can be understood in general
by considering that at λ = λN the out-of-phase nutating
Zeeman field in Eq. (21) contains on average the homo-
geneous component −An1/(1 + A2) ≈ −A2n1 along the
main precession axis. This residual homogeneous field
causes a constant dephasing during shuttling with time
constant Tϕ(1 + A2)/A = TN + O(A2). This interpretation
clearly shows that, when the spin degree of freedom
is moved adiabatically compared to the Zeeman energy,
the maximal enhancement of coherence occurs for effec-
tive inhomogeneous Zeeman fields that fully rotate during
shuttling.

We emphasize that the worst-case scenario presented
here, where λ = λN , also requires the nutation in Eq. (21)
to be out of phase. When the nutation is in phase and is
generated, for example, by the vector

nN(z) = n1√
1 + A2

+ A[cos(2z̄/λN )n3 + sin(2z̄/λN )n2]√
1 + A2

,

(26)

there is on average no homogeneous Zeeman field along
the main precession axis [see the dashed lines in Fig. 3(a)],
and thus TN → ∞.

D. Local noise sources

The noise model introduced in Eq. (4) assumes that
during the shuttling the spin experiences a random time-
dependent Zeeman field h(t) that is homogeneous in space.
This model describes global noise sources originating, for
example, from the fluctuation of the externally applied
magnetic field or long-range electric fields. Here, we ana-
lyze the effect of an inhomogeneous noise distribution
during shuttling. We focus, in particular, on an ensem-
ble of short-range impurities at fixed positions z = zk that
couple to the spin via local interactions hk(t). This model
describes well nuclear spins and local dynamical charge
traps electrostatically coupled to the dot.

In this case, the local noise Hamiltonian is

HN = 1
2n0

∑

k

δ(z − zk)hk(t) · σσσ , (27)

where n0 is the atomic density and δ(z) is the delta func-
tion. The spin confined in the moving quantum dot has
a charge density |ψ[z − z̄(t)]|2 ≈ e−[z−z̄(t)]2/l2/l

√
π and
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experiences the time-dependent noise

H L
N = 1

2n0

∑

k

|ψ[zk − z̄(t)]|2hk(t) · σσσ . (28)

Proceeding as in Sec. III B, assuming an isotropic
and spatially uncorrelated noise with 〈hn

k(t)h
m
k′(0)〉 =

δkk′δnm
∫

dωe−iωtS(ω)/2π , and using the envelope func-
tion approximation

∑
k → νn0

∫
dz, where ν is the aver-

age percentage of defects, we find that, for local noise
sources, the longitudinal component of the filter function
modifies as

FL(ω, t) = ν

N

∫ t

0
dτ

∫ t

0
dτ ′e−iω(τ−τ ′)e−[z̄(τ )−z̄(τ ′)]2/2l2

× ωωωB[z̄(τ )]
|ωωωB[z̄(τ )]| · ωωωB[z̄(τ ′)]

|ωωωB[z̄(τ ′)]| , (29)

where N = √
2π ln0 is the number of atoms in the dot.

More detailed derivations of FL, also including more gen-
eral noise sources, are provided in Appendix C. Impor-
tantly, for local noise sources, the kernel of the filter
function includes the additional weight e−[z̄(τ )−z̄(τ ′)]2/2l2

that accounts for the locality of the noise and the spatial
distribution of the spin. This term describes the motional
narrowing of inhomogeneous noise during shuttling [73].

To illustrate its effect explicitly, here we consider the
precessing Zeeman field ωωωP

B given in Eq. (17). The coher-
ent dynamics of the spin is not altered and the spin
precesses according to the time-evolution operator UP

Z in
Eq. (18). However, the longitudinal filter function FL

P is
significantly modified. By combing Eqs. (17) and (29),
we derive an exact solution, reported in Eq. (D1b) in
Appendix D. In analogy to the global noise solution FP
in Eq. (19), we find that FL

P can be approximated by

FL
P ≈ ν

N
t

2ωl

[
fG

(
ω − 2ωλ
ωl

)
+ fG

(
ω + 2ωλ
ωl

)]
(30)

with fG(x) = e−x2/2 a Gaussian normalized to fG(0) = 1.
As shown in Fig. 4(a), we observe a good match between
the exact and approximated solutions (solid and dashed
lines, respectively).

While qualitatively FL
P and FP show similar behavior

with the peaks of the filter function being shifted by the
finite λ to the higher frequencies ±2ωλ, with ωλ = v̄/λ,
we emphasize that there are a number of key differences
between the two cases; see Eqs. (19) and (30). First, for
local noise, the peaks of FL

P have a Gaussian lineshape
that originates from the approximated charge density of the
quantum dot |ψ(z)|2 in contrast to the Lorentzian peaks of
FP. Moreover, the broadening of the Gaussian peaks of FL

P
is time independent and it is determined by the characteris-
tic frequency ωl = v̄/l. Finally, we observe that FL

P ∝ t/ωl,

(a) (b)

FIG. 4. Local noise sources. (a) Filter function and average
shuttling fidelity for spin precessing in an inhomogeneous Zee-
man field. Red and black curves represent the filter functions
FL

P obtained at l/λ = 0 and l/λ = 2, respectively. Solid (dashed)
lines show the exact (approximate) solution in Eq. (D1b)
[Eq. (30)]. Here we used t = 20/ωl. In the inset, we show with
a double logarithmic plot their corresponding average shuttling
infidelity as a function of time; see Eq. (31). (b) Dependence of
the shuttling infidelity and of the Zeeman energy on the inho-
mogeneity of the Zeeman field. In this double logarithmic plot,
the blue curve represents the average shuttling as a function of
l/λ at the fixed time t = T0 obtained by combining Eqs. (31)
and (34). With gray lines, we show the corresponding Zeeman
energy ωP

B. The solid line represents the Zeeman energy ωωωP
B in

Eq. (17), which is renormalized by e−l2/λ2
and obtained for a dot

moving adiabatically compared to the Zeeman field, while the
dashed line represents the Zeeman energy ωωωD

B in Eq. (63) when
this adiabaticity condition is lifted.

while for global noise, FP ∝ t2, thus strongly impacting the
average shuttling fidelity F̄ .

By considering the charge noise spectrum S(ω) in
Eq. (14), we find that, for local noise sources,

F̄L
P = exp

{
− 2(η−6)/2 νt

NT
�

(
η

2

)
(ωlT)η−1

× 1F1

(
1 − η

2
;

1
2

;
−2l2

λ2

)}
≈ e−t/TL

ϕ ,

TL
ϕ = ωl

(√
N
ν

Tϕ

)2

e2l2/λ2
,

(31)

where 1F1(a; b; c) is the hypergeometric function. We note
that, when the quantum dot is static, the FID dephas-
ing times due to global and local noise are Tϕ = 2T

√
η

[see Eq. (15)] and
√

N/νTϕ , respectively, where the factor√
N/ν accounts for the average percentage of local defects

in the quantum dot [89,111,112].
In the inset of Fig. 4(a), we show the average shuttling

infidelity for local noise sources, comparing the homoge-
neous λ → ∞ (black curve) and precessing λ = l/2 (red
curve) Zeeman field cases. In contrast to F̄P in Eq. (20),
the shuttling fidelity F̄L

P follows an exponential decay with
the time constant TL

ϕ being significantly larger than for
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the global noise case because of the motional narrowing
of local fluctuators. This effect can be clearly observed
by considering homogeneous Zeeman fields, and observ-
ing that, for typical values of ωl ∼ 10–100 MHz and√

N/νTϕ ∼ 0.1–10 µs, TL
ϕ � 10

√
N/νTϕ also at λ → ∞.

The additional spin dynamics in the inhomogeneous
field produces an additional beneficial effect that is
encoded in the Gaussian correction e2l2/λ2

in Eq. (31). As
a consequence, low-frequency local noise is substantially
filtered out by the inhomogeneous field in long quantum
dots with l � λ; see Fig. 4(a). However, we note that
in long quantum dots the effective Zeeman energy ωB is
also reduced by a weaker Gaussian correction e−l2/λ2

[see
Eq. (17)], thus limiting the maximal values of the useful
l/λ ratio. This trade-off is highlighted in Fig. 4(b) by com-
paring solid blue and gray lines that represent TL

ϕ and ωB,
respectively. Considering, for example, a typical gate pitch
of πλ ≈ 50 nm and realistic values of the quantum dot
length, l ≈ 20 nm, we observe a significant reduction of
the noise with TL

ϕ ≈ 20TL
ϕ(l/λ = 0), still preserving a large

Zeeman gap ωB ≈ 0.2ω̃B at realistic values of the magnetic
field of about 1 T. We anticipate that this trade-off between
fidelity and Zeeman energy can be lifted by higher shut-
tling velocities that are not adiabatic with respect to the
Zeeman energy [see the dashed gray curve], as we discuss
in Sec. V below.

For completeness, here we explicitly show that the
enhancement of the shuttling fidelity also appears when
one considers the hyperfine noise caused by an ensem-
ble of spinful nuclear defects. In the experimentally rel-
evant case, where nuclear spins are sparse and have a
slow dynamics, their noise spectral function is peaked
at low frequency and is well approximated by SHF(ω) =
2π�2δ(ω)/T2, with a characteristic time T dependent
on several microscopic details of the system [89,111].
In agreement with Eq. (31), by combining Eqs. (9),
(12), and (30) with spectral function SHF(ω), we find an
exponential decay of the fidelity with timescale THF =
ωl(THF

ϕ )
2e2l2/λ2

and a hyperfine-noise-induced FID time
THF
ϕ = 2

√
2N/νT ∼ 1 µs in natural silicon and germanium

[89,117].

E. Charge noise in inhomogeneous Zeeman fields

We showed that an inhomogeneous Zeeman field
dynamically decouples the moving spin from the dominant
low-frequency noise, and thus provides an effective way to
filter out the noise caused, for example, by hyperfine inter-
actions with nuclear spins. However, more care is required
to analyze its effect on charge noise, because Zeeman field
inhomogeneities characterized by the ratio l/λ also render
the spin susceptible to the fluctuations of the electro-
static environment, thus directly coupling the spin to these
charge noise sources. For this reason, current shuttling
experiments minimize the inhomogeneity of the field and

operate at l/λ � 1. We show here that while this approach
indeed provides a coherent shuttling, the inhomogeneity-
induced intrinsic dynamical decoupling also enables large
shuttling fidelities at l/λ � 1. In particular, the time scale T
characterizing the noise spectral function S(ω) in Eq. (14)
also depends on l/λ, thus further influencing the time Tϕ .

To quantify this effect, we focus on the precessing spins
discussed in Sec. III C 2 and we explicitly include the cou-
pling of the spin to charge noise due to the Gaussian renor-
malization of the Zeeman energy ωB = e−l2/λ2

ω̃B given in
Eq. (17). Focusing on a local noise source labeled by k,
small random variations δVk(t) of the electrostatic envi-
ronment cause fluctuations of length l and couple directly
to the Zeeman energy, resulting in the noise field [88]

hk(t) ≈ �ωωωP
B(zk)

[
∂Vω̃B

ω̃B
− 2l2

λ2

∂Vl
l

]
δVk(t). (32)

Here, we introduced the susceptibilities ∂Vl and ∂Vω̃B of
length l and of the local Zeeman field ω̃B to variations
in the environment. Moreover, we assumed that charge
defects have a local effect on the spin [see Eq. (28)]; how-
ever, we point out that a similar noise Hamiltonian can be
derived for global noise sources; corrections coming from
intermediate-range noise are discussed in Appendix C.

Now introducing the pure 1/f charge noise spec-
tral density SδV(ω) = V̄2/|ω|, such that 〈δVk(t)δVk′(0)〉 =
δkk′

∫
dωSδV(ω)/2π , we find the functional dependence of

the time scale T in Eq. (14) to be

T =
√

2π
V̄ω̃Be−l2/λ2

∣∣∣∣
∂Vω̃B

ω̃B
− 2l2

λ2

∂Vl
l

∣∣∣∣

−1

. (33)

Away from sweet spots where T → ∞ [88] and by com-
bining Eqs. (31) and (33) we find that

TL
ϕ ≈ T0

λ4

l4
e4l2/λ2

with T0 = 2πη
N
ν

ωl

ω̃2
B

l2

V̄2(∂Vl)2
.

(34)

Here we discarded the term ∝ ∂Vω̃B that is independent of
l/λ and is therefore clearly filtered out by the inhomoge-
neous field.

The functional dependence of the average shuttling
fidelity on the inhomogeneity of the Zeeman field is illus-
trated in Fig. 4(b) with a blue curve. As expected, for
small values of l/λ when the Zeeman field is rather homo-
geneous, the time constant TL

ϕ determining the shuttling
fidelity decreases as ∝ l4/λ4, resulting in an lower shut-
tling fidelity. This power law is related to the typical
scaling of the FID dephasing time Tϕ ∝ l2/λ2 ∝

√
TL
ϕ [88];

we also note that relaxation processes scale as the square of
the inhomogeneity [118]. In this regime, the noise is dom-
inated by the variations ∝ ∂Vω̃B or by nuclear spin noise
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that is independent of λ. However, if the Zeeman field
inhomogeneity is large and l/λ � 1, the induced intrin-
sic dynamical decoupling of the spin becomes effective
and rapidly increases the shuttling fidelity. This same trend
also occurs as a function of the SOI, as we show in the
following section.

IV. SPIN-ORBIT INTERACTION

The SOI causes a spin rotation depending on the veloc-
ity of the particle. This effect is captured by the term
v(z) in H1D given in Eq. (1) and is strongly enhanced in
hole nanostructures, where the SOIs are large and cause
full spin rotations in lengths of a few tens of nanome-
ters [15,18,76–78]. We show here that the SOI generally
produces an inhomogeneous fully rotating Zeeman field
matching those analyzed in Sec. III.

To highlight the role of the SOI, we rewrite Eq. (1) as

H1D = [p − mv(z) · σσσ ]2

2m
+ U(z)+ �ω̃ωωB(z) · σσσ

2
(35)

with U(z) = m[ω2
o(z − z̄)2 − |v(z)|2]/2. We remove the

SOI by the exact unitary transformation

S = P exp
(

i
m
�

∫ z

0
dsv(s) · σσσ

)
, (36)

satisfying S†[p − mv(z) · σσσ ]S = p , and where P exp is
the path-ordered exponential. Generally, S describes an
inhomogeneous spin rotation around a local axis.

To find an explicit expression for this rotation, we
restrict our analysis to the SOI of the form

v(z) = vsns + δv(z). (37)

By introducing the SOI length λs = �/mvs, we find that

S = eizns·σσσ/λseiφφφs(z)·σσσ . (38)

For sufficiently small δv(z)/vs, i.e., the individual com-
ponents of the inhomogeneous term are bounded by
m

∫ z
0 dsδvj (s)/� < π , the phasesφφφs(z) can be estimated by

a second-order Magnus expansion [119] as

φφφs(z) ≈ m
�

∫ z

0
dsδṽ(s)+ m2

�2

∫ z

0
ds

∫ s

0
ds′δṽ(s)× δṽ(s′)

(39)

with δṽ(z) = R̂s(2z/λs)δv(z); R̂s is a rotation matrix by the
fixed SOI axis ns. Here, the first integral term captures the
effect of a varying amplitude of the SOI, while the second
term captures the first correction due to a small tilting of
the vector of the SOI. We note that, for the SOI with a

constant direction v(z) = vs(z)ns, Eq. (39) is exact and the
second integral vanishes.

Projecting the transformed Hamiltonian onto the mov-
ing charge state of the quantum dot |ψ(z − z̄)|2, we find
a spin model HZ = �ωωωB[z̄(t)] · σσσ/2, analogous to Eq. (2),
with effective Zeeman field

ωωωB[z̄] =
∫

dz|ψ(z − z̄)|2R̂δ(z)[φs(z)]R̂s[2z/λs]ω̃ωωB(z),

(40)

where φφφs(z) = φs(z)δn(z); matrix R̂δ(z) describes a general
rotation around the local axis δn(z). We now examine dif-
ferent cases. To highlight the effect of the SOI, we restrict
ourselves to the analysis of a homogeneous Zeeman field,
and we consider an homogeneous Zeeman field ω̃ωωB(z) =
ω̃ωωB.

A. Spin precession in a homogeneous SOI

We first consider the homogeneous SOI

vH(z) = vsns. (41)

The effective Zeeman field then reduces to [88]

ωωωB(z) = ω̃ωω
‖
B+e−l2/λ2

s R̂s(2z/λs)ω̃ωω
⊥
B , (42)

where ω̃ωω⊥,‖
B are the components of the Zeeman field per-

pendicular and parallel to ns, respectively.
If the SOI and Zeeman vectors are aligned [ns ‖ ω̃ωωB

and ωωωB(z) = ω̃ωω
‖
B], the spin rotates around a fixed axis and

the noise filter function reduces to FFID in Eq. (13), as
discussed in Sec. III C 1. In contrast, if the SOI and Zee-
man vectors are perpendicular to each other [ns ⊥ ω̃ωωB and
ωωωB(z) = e−l2/λ2

s R̂s(2z/λs)ω̃ωω
⊥
B ], the spin precesses around

an effective Zeeman field rotating around a fixed axis in
analogy to ωωωP

B in Eq. (17); see Sec. III C 2. In this case,
the period of the rotation of the effective Zeeman field is
determined by the SOI length λs; the dynamics of the spin
is then given by the time-evolution operator UP

Z in Eq. (18).
However, because of the transformation S in Eq. (38),

the response of the system to noise differs from the one
discussed in Sec. III. In this case, there is an important
difference between global and local noise sources. For
the global noise modeled by HN in Eq. (4), the transfor-
mation S rotates the global stochastic vector h as h →
e−l2/λ2

s R̂s(2z̄/λs)h. Because this additional rotation com-
pensates for the spin dynamics, the low-frequency noise is
not filtered out and F = e−2l2/λ2

s FFID. This change results
in the rescaling of the dephasing time Tϕ → Tϕel2/λ2

s , i.e.,
the dephasing time is increased inverse proportionally to
the Zeeman energy renormalization; see Eq. (17).

In contrast, for local noise sources, H L
N in Eq. (28)

transforms as hk → R̂s(2zk/λs)hk. Because the rotations
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in this case are local, the noise response of this system is
described by the longitudinal filter function FL

P in Eq. (29),
resulting in the average shuttling fidelity F̄L

P given in
Eq. (31). We stress that state-of-the-art experiments in hole
spin qubits report λs ∼ 10–100 nm [15,18,76,78]; thus,
in analogy to the estimation in Sec. III D, we estimate
a SOI-induced enhancement of the decay time TL

ϕ of an
order of magnitude. More details on this different noise
response, including a general derivation for intermediate-
range noise, are provided in Appendix C.

B. Spin nutation in an inhomogeneous SOI

Our general theory describes small variations of the
SOI direction during shuttling. Such variations can arise in
hole nanostructures in, for example, planar germanium and
silicon fin field-effect transistors because of gate-induced
strain and electric field modulations that can impact the
amplitude and direction of the SOI field [81–85]. These
variations are captured by the additional phases φφφs in the
transformation S; see Eq. (39). To illustrate this effect, we
consider a concrete example where the SOI precesses as

vN(z) = vs

[
n1 − A sin

(
2z
λN

)
n2 + A cos

(
2z
λN

)
n3

]
.

(43)

The precession of the SOI has a largely different effect
than the precession of the inhomogeneous Zeeman field in
Eq. (22).

By using Eq. (39), we find that, when A � 1, the
inhomogeneous SOI leads to the phases

φφφs ≈ A2[sin(2kz)− 2kz]
4k2λ2

s
n1 − A sin2(kz)

kλs
n2

+ A sin(2kz)
2kλs

n3, (44)

where we define the wave vector k = 1/λs + 1/λN . This
equation remains rather accurate for large values of z �
1/kA2, as we show in Fig. 5(a) by comparing this approx-
imation to the numerical integration of the path-ordered
exponential in Eq. (36).

We focus on the homogeneous Zeeman field ω̃ωωB = ω̃Bn3
that is perpendicular to the constant component of the SOI.
For simplicity, we now restrict ourselves to the case λs =
λN ; we lift this fine-tuned condition later. From Eq. (40),
we find the effective Zeeman energy

ωωωN
B (z̄) = ωBR̂1

(
2z̄
λ

)
+ δωωωB(z̄),

δωωωB(z̄)
ωB

≈ A2z̄
2kλ2

s
[cos(2z̄/λs)n2 + sin(2z̄/λs)n3].

(45)

The first term in ωωωN
B is equivalent to ωωωP

B in Eq. (17) and
includes both the renormalization of the Zeeman energy

(a)

(b) (c)

FIG. 5. Inhomogeneous SOI. (a) Inhomogeneous accumulated
phases φφφs defining the transformation S in Eq. (38). We consider
here the inhomogeneous SOI vN in Eq. (43) and we show with
red, blue, and black curves the n1, n2, and n3 components of φφφs,
respectively. Solid (dashed) lines represent the exact (approxi-
mate) solution obtained by discretizing Eq. (36) [from Eq. (44)].
We use A = 0.2 and λs = λN = l. (b) Variation of the effective
Zeeman field δωωωB caused by the inhomogeneous SOI. We show
here the solution obtained by combining Eqs. (40) and (44); how-
ever, we note that the simpler approximation provided in Eq. (45)
accurately reproduces the behavior of δωωωB. The color code and
parameters used are the same as in (a). (c) Correction of the
filter function for local noise sources. We show with solid and
dashed lines the exact and approximate [Eq. (46)] solutions of
the longitudinal filter function evaluated at t = 20/ωl.

ωB = e−l2/λ2
s ω̃B and the SOI-induced rotation R̂s = R̂1.

The correction to the effective field δωωωB arising from the
precession of the SOI vector is shown in Fig. 5(b). We
note that the largest correction originates from the term
∝ z̄n1 in φφφs in Eq. (44), which increases linearly with z̄,
and produces the simple approximate expression provided
in Eq. (45).

Focusing on local noise sources, the additional local
rotation of the Zeeman field δωωωB caused by the inhomo-
geneity of the SOI modifies the longitudinal filter function
as

FL
N = FL

P + δFL
N,

δFL
N = A2νt

4ωlkλ2
s N

[
f ′
G

(
ω − 2ωλ
ωl

)
− f ′

G

(
ω + 2ωλ
ωl

)]
,

(46)

where FL
P is given in Eq. (30), the frequency shift ωλ =

v̄/λs, and have we introduced the first derivative of the
function fG as f ′

G(x) = −xe−x2/2.
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We show the variation δFL
N of the filter function caused

by the inhomogeneous SOI in Fig. 5(c). Compared to the
homogeneous SOI case, FL

N acquires only a small cor-
rection that scales with A2 and is centered at ω ± 2ωλ.
Interestingly, because of the linear increase of the Zeeman
field ∝ z̄, the Gaussian shape of the peaks is modified by a
polynomial correction. We anticipate that a similar polyno-
mial renormalization also appears when the moving spin is
resonantly driven, as we discuss in Sec. V below. We note
that the corrections caused by the SOI precession are neg-
ligible in the regime considered. In contrast to the case of
the precessing Zeeman field and global noise discussed in
Sec. III C 3, they only quantitatively renormalize the expo-
nential decay of the shuttling fidelity. In particular, the SOI
precession renormalizes the decay rate as

1
TL
ϕ

→ 1
TL
ϕ

(
1 + A2l2

kλ3
s

)
= 1

TL
ϕ

(
1 + A2l2

2λ2
s

)
, (47)

where TL
ϕ is defined in Eq. (31).

We now examine the case λs �= λN ; the inhomoge-
neous Zeeman field ωωωN

B in Eq. (45) acquires the additional
correction

Aω̃B

2kλs
[e−l2/λ2

N cos(2z̄/λN )− e−l2/λ2
s cos(2z̄/λs)]n1, (48)

which is linear in A and is aligned to the homogeneous SOI
direction. This term causes extra peaks in the longitudinal
filter function

δFL
N = A2tν

16ωlkλ2
s N

[
fG

(
ω ± 2ωN

ωl

)
− fG

(
ω ± 2ωλ
ωl

)]

(49)

with ωN = v̄/λN . These peaks are qualitatively similar
to those in FL

P given in Eq. (30), and only provide an
additional correction to the decay rate ∝ A2.

V. RESONANT DYNAMICAL DECOUPLING

The average shuttling fidelity can be further enhanced
by appropriately engineering the trajectory of the spin
while shuttled. As anticipated, by rendering the quantum
dot motion nonadiabatic with respect to the Zeeman field,
but still slow compared to the orbital splitting, the res-
onantly induced deterministic spin dynamics more effec-
tively filter out the low-frequency noise, thus resulting in
higher shuttling fidelities. In particular, we propose two
different approaches: a fast time modulation of the posi-
tion of the quantum dot, and a fast shuttling in a weakly
inhomogeneous Zeeman field. In these cases, one effec-
tively obtains a resonantly driven two-level system, result-
ing in longer decay times and improved shuttling fidelity
[18,86,120].

In this section, we restrict our analysis to shuttling
experiments where the spin moves in a precessing inho-
mogeneous Zeeman field and focus on local noise sources.
As discussed in Sec. IV, this case is equivalent to a system
with a homogeneous SOI.

A. Fast time-modulated position

1. General solution

We consider a time-modulated position of the quantum
dot

z̄(t) = v̄t + Z cos(ωdt), (50)

which is modulated with an additional signal with ampli-
tude Z and frequency ωd. We restrict to small resonant
modulation with Z � l and ωd ∼ ωB. This additional
driving term in the spin position can be experimentally
achieved by appropriately designing the ac pulses of a
conveyer-mode shuttler, and could be implemented in
electronic systems with nanomagnets and in hole nanos-
tructures.

The additional small driving term induces resonant
dynamics in the spin degrees of freedom, thus lifting the
adiabaticity condition compared to the Zeeman energy dis-
cussed in Sec. III; however, because ωB � ωo, we still
consider the motion to be adiabatic compared to the orbital
degree of freedom, such that the system is well described
by Hamiltonian HZ in Eq. (2). Because of the fast mod-
ulation, however, the adiabatic time evolution operator
UZ provided in Eq. (3) does not accurately describe the
time evolution of HZ . In this case, the dynamical term
i�U†

Z∂tUZ , neglected in the adiabatic time evolution dis-
cussed in Sec. III, becomes relevant and induces additional
resonant spin dynamics.

By applying the transformation UTM
Z = e−iθB(z̄)nB(z̄)·σσσ/2

e−iωdtσ3/2 to HZ in Eq. (2), we find the effective Hamilto-
nian

HTM = ��(z̄)
2

σ3 − �∂tz̄
2
δθθθB(z̄)R̂3(ωdt) · σσσ . (51)

For convenience, here the second transformation in UTM
Z

moves the system to a frame rotating at the frequency
of the drive ωd rather than at the Zeeman frequency as
in UZ in Eq. (3). We also introduce the detuning �(z̄) =
|ωωωB(z̄)| − ωd and the vector

δθθθB = θ ′
BnB + θB(nB · n′

B)nB + sin(θB)(nB × n′
B)× nB

+ [1 − cos(θB)](nB × n′
B), (52)

which is derived by using Eq. (B5) in Appendix B and the
equality e−X (∂teX ) = ∫ 1

0 dse−sX (∂tX )esX .
We point out that corrections to Hamiltonian HZ in

Eq. (2) caused by orbital nonadiabaticity are derived in
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Appendix A. In particular, for fast shuttling, one obtains
the additional term �∂tz̄∂z̄ωωωB · σσσ/2ωo. For largely inho-
mogeneous fields, such that ∂z̄ωωωB ∼ ωωωB/l, we find that
this term produces a small correction ∝ ∂tz̄ωB/lωo to
Eq. (51) that is reduced compared to the second term
of HTM by the small factor ωB/ωo � 1. This term can
thus be safely neglected for realistic experimental condi-
tions.

2. Resonant rotating Zeeman field

Hamiltonian (51) holds generally. However, to clearly
illustrate the effect of the small additional driving in
Eq. (50), we now focus for concreteness on the rotat-
ing Zeeman field ωωωP

B defined in Eq. (17). In this case,
Hamiltonian HTM simplifies as

HTM

�
= �

2
σ3 −

[
ωλe−iωdt − i

�

2
(1 − e−2iωdt)

]
σ+ + H.c.

≈ �

2
σ3 − �

2
σ2 (53)

with H.c. the Hermitian conjugate. Here we have defined
the Rabi frequency � = ωdZ/λ � ωd and in the second
line we have used the conventional rotating-wave approx-
imation and neglected terms rotating at the fast frequency
ωd � �,ωλ,�. We have also introduced σ± = σ1 ± iσ2.

The Rabi frequency � induces an additional rotation of
the moving spin. At resonance� = 0, the spin dynamics in
the rotating frame is captured by the unitary time evolution
U� = ei�tσ2/2, and thus in the original frame

UTM = e−iθB[z̄(t)]nB[z̄(t)]·σσσ/2e−iωdtσ3/2ei�tσ2/2eiθB(0)nB(0)·σσσ/2.
(54)

The time evolution of the spin expectation values obtained
starting from a spin state originally in ground state | ↓〉
are provided in Fig. 6(a). Even a small driving term Z � l
produces nontrivial spin dynamics, as we observe by com-
paring the solid and dashed curves, which correspond to
the cases Z = 0.01l and Z = 0, respectively. The spin
dynamics in the resonant case presents fast oscillations
with frequency ωd weighted by envelopes oscillating at the
smaller frequencies � and ωλ.

This nontrivial deterministic spin dynamics also
strongly modifies the response of the qubit to noise. First,
with a finite Rabi driving, the dominant longitudinal com-
ponent of the filter function is aligned to the n2 direction,
thus leading to

F = ν

N

∫ t

0
dτdτ ′e−[z̄(τ )−z̄(τ ′)]2/2l2eiω(τ ′−τ)[R̂T

Z(τ )R̂Z(τ
′)]22.

(55)

In contrast to Eq. (11), the kernel of the integral depends
on R̂Z(t)n2 = R̂1[2z̄(t)/λ]R̂3[ωdt]n2, and oscillates at the

(a)

(b) (c)

FIG. 6. Resonant dynamical decoupling with a time-
modulated position. (a) Time evolution of the spin. We consider
an initial spin state in | ↓〉, which evolves according to the
unitary time-evolution operator UTM in Eq. (54), and we show
with red, blue, and black curves the spin expectation values
aligned in the n1, n2, and n3 directions, respectively. Solid
(dashed) lines show the case Z = 0.01l (Z = 0). We used λ = l
and ωd = 100ωl. (b) Longitudinal filter function. We show here
the longitudinal filter function. The solid line represents the
exact solution of the integral in Eq. (55), while the dashed line is
the low-frequency approximated result in Eq. (56). In the inset,
we show a logarithmic plot of the rate of decay 1/TTM

ϕ of the
average shuttling fidelity against the inhomogeneity of the field
l/λ; see Eq. (57). We use the same values as in (a), t = 20/ωl,
and η = 0.1. (c) Average shuttling infidelity. With a double
logarithmic plot we illustrate the enhanced fidelity obtained with
the resonant time modulation. Solid (dashed) lines are obtained
for large (small) inhomogeneities with λ = 5l (λ = 0.5l). Blue
and black lines show the fidelity with and without the additional
resonant modulation, respectively. The parameters used are the
same as above.

high frequency ωd = ωB. For this reason, one might expect
F to be peaked at high frequencies. This is the case for
homogeneous noise sources; however, we emphasize that
the wave-function contribution e−[z̄(τ )−z̄(τ ′)]2/2l2 also oscil-
lates at frequency ωd, because z̄(t) contains the rapidly
oscillating term ∝ Z [see Eq. (50)], and thus F also has
finite weight at low frequency, where the noise is the
largest.

The exact filter function obtained by integrating Eq. (55)
is shown in Fig. 6(b) with a solid red line. The inte-
gral can be performed analytically for small values of Z,
but the results are lengthy and we do not report them
here. However, we note that, by focusing on the dominant
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low-frequency terms, F is well approximated by

F ≈ Z2

l2
ν

N
t

8ωl

ω2

ω2
l

[
fG

(
ω − 2ωλ
ωl

)
+ fG

(
ω + 2ωλ
ωl

)]
;

(56)

see the dashed orange line in Fig. 6(b). Importantly,
because of the resonant dynamical decoupling, the low-
frequency noise is efficiently filtered out by the additional
polynomial factor ω2 in the filter function.

The polynomial factor ω2 in F yields the exponential
decay of the average shuttling fidelity

F̄TM = e−t/TTM
ϕ ,

TTM
ϕ ≈ 4l2

ηZ2 TL
ϕ

[
1 +

√
2π

l
λ

e2l2/λ2
erf

(√
2l
λ

)]−1

.
(57)

Compared to the case with Z = 0 where the time scale is
TL
ϕ in Eq. (31), TTM

ϕ is substantially enhanced by the large
factor l2/ηZ2 � 1. The dependence of the time constant
TTM
ϕ on the inhomogeneity of the field l/λ is illustrated

in the inset of Fig. 6(b). Strikingly, the decay time TTM
ϕ

is significantly larger than TL
ϕ when the Zeeman field is not

strongly inhomogeneous l/λ � 1, but it becomes smaller
at l/λ � 1.

The enhancement in the average shuttling fidelity
induced by the time modulation of the position can be
clearly observed in Fig. 6(c) by comparing the black and
blue curves. At small values of l/λ (solid lines), there is a
substantial improvement in the coherence of the shuttling
process that is due to the resonant dynamical decoupling
induced by Z. In contrast to the Z = 0 case, where l/λ � 1
is required to filter out low-frequency noise (dashed lines),
the time modulation also enables a high shuttling fidelity
in the regime where the Zeeman energy is weakly renor-
malized by the factor e−l2/λ2

.
We also note that the high-frequency components of F

in Eq. (55) produce the additional high-frequency terms

FHF ≈ ν

N
t

2ωl

[
fG

(
ω − ωB

ωl

)
+ fG

(
ω + ωB

ωl

)]
, (58)

whose functional form resembles Eq. (30), but with
shifted frequency 2ωλ → ωB. These corrections modify
the fidelity as F̄TM → F̄TMe−t/TB

ϕ , with time constant TB
ϕ =

TL
ϕe−2l2/λ2+ω2

B/ω
2
l � TTM

ϕ for small values of ωl/ωB � 1.

3. Finite detuning and phase driving

A homogeneous detuning � in HTM in Eq. (53) tilts
the Rabi rotation by an angle ϕ = arctan(�/�) around
the n1 axis and speeds up the Rabi frequency by � →

√
�2 +�2. The detuning causes incomplete Rabi oscil-

lations with probability P = �2/(�2 +�2) and the typ-
ical Rabi chevron pattern measured in Rabi experiments.
Assuming a large driving field � compared to �, the
angle ϕ ≈ �/� � 1 causes the appearance of a compet-
ing decay time for the average shuttling fidelity in Eq. (57)
that modifies as F̄TM → F̄TMe−t/T�ϕ , with

T�ϕ ≈ TL
ϕ/ϕ

2 + O(ϕ3), (59)

where the decay time TL
ϕ of adiabatic shuttling is given in

Eq. (31).
First, comparing T�ϕ to TTM

ϕ , we find that T�ϕ domi-
nates when the Zeeman field is largely inhomogeneous
l/λ � 1 and when the power spectrum S(ω) of the noise
strongly deviates from the 1/|ω| trend, i.e., at large values
of η in Eq. (14). However, even in this case, we empha-
size that sufficiently close to resonance (ϕ � 1) T�ϕ � TL

ϕ ,
thus showing that time modulation provides a substantial
advantage compared to adiabatic driving.

We also point out that an inhomogeneous detuning�(z̄),
which can originate in experiments from local modulations
of the g factor or the magnetic fields, in general only results
in an additional small correction to the fidelity in Eq. (59).
In particular, we focus here on the detuning

�[z̄(t)] = �0 +�1 cos
[

2z̄(t)
λ�

]
≈ �0 +�1 cos(2ω�t),

(60)

where we have introduced ω� = v̄/λ� and�0 = ωB − ωd,
with ωB the average Zeeman energy during shuttling.

With this inhomogeneous detuning, Hamiltonian HTM in
Eq. (53) is modified to the phase driving Hamiltonian [86]

HPD ≈ �ωB

2
σ3 + ��1

2
cos(2ω�t)σ3 − �� sin(ωdt)σ1,

(61)

where the driving field has two tones and couples to the
transversal (Rabi driving ∝ �σ1) and longitudinal (phase
driving ∝ �1σ3) spin degrees of freedom. For clarity, here
we report the Hamiltonian before performing the rotating
frame transformation e−iωdtσ3/2 of UTM

Z , i.e., without the
rotation R̂3(ωdt) in HTM; see Eq. (51).

As demonstrated in Ref. [86], in general cases only
off-resonant phase driving, with frequency ω� ∼ �, sig-
nificantly impacts the spin dynamics. For this reason, in
Eq. (60), we discarded fast rotating phase driving terms
oscillating at frequencies ωd. In contrast, Rabi driving
only impacts the spin dynamics when close to resonance
ωd ∼ ωB, and for this reason, we neglect slowly rotating
Rabi driving terms oscillating at frequencies ωl.

For small values of the modulation �1 � ω�, the effect
of phase driving is negligible and one can safely operate
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at �0 = 0, i.e., by using a microwave pulse resonant with
the average of the inhomogeneous Zeeman energy ωB. For
larger values of �1 � ω�, phase driving introduces addi-
tional interesting dynamics in the spin evolution [86]. First,
operating at a finite�0 enables additional resonant dynam-
ics of the spin at�0 = ±2mω�, with integer m, where the
Rabi frequency is rescaled by �Jm(�1/ω�). Here Jm(x) is
the m th Bessel function. This additional resonant dynam-
ics will also effectively filter out low-frequency noise.
Moreover, as discussed in Ref. [86], even for small val-
ues of�1 � ω�, by fine-tuning the Rabi frequency to� ∼
2ω�, we expect that additional resonant dynamics could
substantially enhance the filtering out of dominant noise
sources, further improving the average shuttling fidelity.

4. Precessing Zeeman field

Finally, we discuss the role of a precessing Zeeman field
when the position is time modulated. These effects can be
nicely described by our theory and in particular by HTM
in Eq. (51). By considering for concreteness the precess-
ing Zeeman fieldωωωN

B in Eq. (21) that enables spin nutation,
and using Eq. (52), we find that, for small values of A, the
driving term in HTM modifies as

δθθθB = 2
λ

[
n1 − A sin

(
4z̄
λ

)
n2 + A cos

(
4z̄
λ

)
n3

]
+O(A2),

(62)

where we only kept the terms to linear order in A, and we
restrict ourselves to the analysis of the case λ = λN .

In this case, there are two leading corrections to the
spin dynamics. In particular, we note that the last con-
tribution in the expansion gives rise to a phase driving,
see Eq. (61), with frequency 4ωλ and amplitude 2ωλA. As
argued in Sec. V A 3, for small values of A and far from
the fine-tuned resonance condition 4ωλ ∼ �, this term has
negligible effect.

Moreover, the transversal term comprises a far detuned
pulse with frequency 4ωλ that does not significantly con-
tribute to the spin dynamics and the frequency-modulated
nearly resonant term −ωdAZ sin(ωdt) sin(4ωλt). In the
rotating-wave approximation, this term yields an addi-
tional transversal Rabi driving. When off resonant and
� � 4ωλ, this term is negligible and thus we do not
explore it further in this work. Interestingly, however, we
envision that this frequency-modulated driving could pro-
vide an additional effective filtering of the noise, which
is analogous to the frequency modulation in sinusoidally
modulated, always rotating and tailored dressed qubit pro-
tocols in global fields [120–122]. An optimized pulse
shaping could also further enhance the fidelity [123–126].

B. Fast shuttling in weakly inhomogeneous fields

In Sec. III C, we showed that a fully rotating Zeeman
field enables an effective way to intrinsically dynami-
cally decouple a shuttled spin from low-frequency noise,
thus resulting in a high shuttling fidelity. In particular, we
focused on particles moving adiabatically with a constant
velocity v̄ � |ωωωB|l � ωol, which is small compared to
both Zeeman and orbital energies. We also demonstrated in
Sec. V A that the shuttling fidelity can be further improved
by adding a small time-dependent modulation that is nona-
diabatic with respect to |ωωωB|, but still adiabatic compared
to ωo. Here, we show that a substantial improvement in
fidelity also occurs for incomplete rotations of the Zeeman
field, when the constant shuttling velocity is nonadiabatic
compared to the Zeeman field |ωωωB|, but remains adiabatic
compared to ωo.

For concreteness, we consider the weakly inhomoge-
neous Zeeman field

ωωωD
B (z̄) = ωB

[
A cos

(
2z̄
λ

)
n1 + A sin

(
2z̄
λ

)
n2 + n3

]
(63)

with A � 1 and a constant velocity motion with z̄ = v̄t.
This Hamiltonian accurately describes a residual homoge-
neous magnetic field in electronic systems with nanomag-
nets [99] and hole heterostructures, for example in planar
germanium, presenting an incomplete tilting of the g tensor
[70].

When v̄ is adiabatic compared to the Zeeman field v̄ �
ωBl, the shuttling fidelity is dominated by the dephasing
accumulated by the homogeneous component of the Zee-
man field aligned along n3; see Sec. III C. However, here
we focus instead on a different case, where v̄ ∼ ωBl, and
show that in this case there are resonant conditions for v̄
that can substantially filter out low-frequency noise, still
providing a large enhancement in the shuttling fidelity.
We note that, as derived in Appendix A, corrections to
Eq. (2) arising from possible orbital nonadiabaticity are
∝ AωλωB/ωo with ωλ = v̄/λ and remain negligible com-
pared to the leading terms ∝ AωB also in this case because
they are suppressed by the small parameter ωB/ωo � 1.

The resonance condition in this case is straightforwardly
recognizable by moving to a rotating frame with frequency
2ωλ via the transformation e−iωλtσ3 . In this frame, we
immediately recognize the time-independent Rabi Hamil-
tonian

HD = ��

2
σ3 + ��

2
σ1, � = AωB, � = ωB − 2ωλ,

(64)

describing the Rabi oscillation of the spin with Rabi
frequency � at resonance � = 0; see also Eq. (53).

We now focus on local noise sources and we can
straightforwardly verify that the longitudinal component
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of the filter function FL
D is equivalent to FL

P that is given
in Eq. (30). We then find the shuttling fidelity

F̄L
D ≈ e−t/TL

ϕ , TL
ϕ = ωl

(√
N
ν

Tϕ

)2

e2l2/λ2
. (65)

This result is equivalent to Eq. (31); however, we empha-
size that because in this case the Zeeman field is not
fully rotating, the Zeeman energy ωB is not rescaled by
the small prefactor e−l2/λ2

. As a result, at large values of
the ratio l/λ � 1 the Zeeman energy remains large, while
the fidelity is rapidly improved. This critical difference
between this approach and that in Sec. III C is clearly illus-
trated by comparing the dashed and solid gray lines in
Fig. 5(b), corresponding to the Zeeman fields in the two
situations, which yield the same shuttling fidelity (blue
line).

We stress that the condition� = 0 is within the reach of
state-of-the-art experiments. If we consider the experimen-
tally realistic value πλ = 50 nm, achievable in electronic
systems by nanomagnets [99] and corresponding in hole
systems to the gate spacing that determines the tilt of
the g tensor [6,70], we find that, for the typical value
ωB/2π = 1 GHz, high-fidelity shuttling can be achieved at
realistic velocities v̄ = ωBλ/2 = 50 m/s [73]. Our protocol
thus enables at the same time high-fidelity and fast shut-
tling even in the presence of residual large homogeneous
Zeeman fields.

VI. CONCLUSION

In this work, we showed that the fidelity of the spin
shuttling can be substantially enhanced by engineering
highly inhomogeneous Zeeman fields. We related this sur-
prising effect to the nontrivial deterministic dynamics of
the spin during its motion, which filters out the domi-
nant low-frequency components of the noise. This intrinsic
dynamical decoupling of low-frequency noise is a general

feature that appears in a wide variety of relevant experi-
mental cases, including hole nanostructures in silicon and
germanium as well as in electronic systems with artificial
spin-orbit fields induced by micromagnets. We propose
a framework to describe many scenarios where spins are
shuttled in an inhomogeneous Zeeman field caused by
rotation of principal axes of g tensors, inhomogeneous
magnetic fields, and SOIs. We also include a detailed anal-
ysis of different sources of noise that affect the shuttled
spin in a global or local way. The findings of this work
are summarized in Table I.

Despite some qualitative and quantitative differences in
these cases, we confirm that an inhomogeneous Zeeman
field improves the shuttling fidelity independent of the
noise locality. We also propose protocols where the spin
is moved nonadiabatically compared to the Zeeman energy
that enable further dynamical decoupling of low-frequency
noise and can thus significantly improve the coherence of
shuttling. Our findings clearly demonstrate that highly effi-
cient shuttling can be reached in materials with large SOI
and inhomogeneous Zeeman fields, and that these systems
are not only ideal hosts for compact spin-qubit architec-
tures, but also for long-range spin qubit connectivity, and
are thus ideal candidates for future large-scale quantum
computers.
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APPENDIX A: NONADIABATIC CORRECTIONS

We now discuss in more detail the condition of adia-
baticity of the quantum dot motion compared to the orbital

TABLE I. Summary of the shuttling fidelity for the main examples in each section for global and local noise sources. Corrections
and additional scenarios are discussed in the main text.

Adiabatic motion compared to the Zeeman field (Secs. III and IV)

FID (Sec. III C 1) Inhomogeneous field (Sec. III C 2) SOI (Sec. IV A)

ωωωB(t)/ω̃B n3 e−l2/λ2
R̂1(2ωλt)n3 e−l2/λ2

s R̂1(2ωst)n3

F̄global e−t2/T2
ϕ [Eq. (15)]

{
e−t2fL(ωλt)/T2

ϕ , t � TP

e−t/TP , t � TP
[Eq. (20)] e−t2/T2

ϕ

F̄local e−νt2/NT2
ϕ e−t/TL

ϕ [Eq. (31)] e−t/TL
ϕ

Nonadiabatic motion compared to the Zeeman field (Sec. V)

FID (Sec. III C 1) Time modulation of the position (Sec. V A) Resonant (Sec. V B)

ωωωB(t)/ω̃B n3 e−l2/λ2
R̂1[2ωλt + 2Z cos(ωBt)/λ]n3 [1 + AR̂1(2ωBt)]n3

F̄local e−νt2/NT2
ϕ e−t/TTM

ϕ [Eq. (57)] e−t/TL
ϕ [Eq. (65)]
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degrees of freedom. We stress again that in the main text,
we occasionally lift the condition of adiabaticity com-
pared to the Zeeman field ωB/2π � 10 GHz, but the shut-
tling is always adiabatic compared to the orbital splitting
ωo/2π � 1 THz. First, we derive with a simple pertur-
bative treatment the expected corrections to the model
presented in the main text, and then we verify these cor-
rections by showing that they match an exactly solvable
simple case.

1. Perturbative treatment

Our derivations in the main text always assume that the
quantum dot motion remains adiabatic compared to the

orbital degree of freedom. We now discuss the validity of
this approximation by using a simple model that perturba-
tively includes the contribution of the next excited orbital
state.

In particular, we now include in our derivation of Eq. (2)
the effect of the neglected dynamical term −ip∂tz̄, origi-
nating from the time dependence of state ψ[z − z̄(t)]. The
expectation value of this term in the ground state van-
ishes. However, this term provides a coupling to the first
excited state ψ1[z − z̄(t)]; assuming a harmonic potential,
ψ1(z) = H1(z/l)e−z2/2l2/π1/4

√
2l with H1 the first Hermite

polynomial.
The effective Hamiltonian acting on these two states is

H = �

(
ωωωB(z̄) · σσσ/2 −l∂z̄ωωωB(z̄) · σσσ/2√

2 + ∂tz̄σ0/
√

2l
−l∂z̄ωωωB(z̄) · σσσ/2√

2 + ∂tz̄σ0/
√

2l ωωω1
B(z̄) · σσσ/2 + ωoσ0

)
, (A1)

where we have introduced ωωω1
B(z̄) = ∫

dz|ψ1(z)|2ω̃ωωB(z +
z̄). We also use the relation

∫
dzψ(z)ψ1(z)ω̃ωωB(z + z̄) =

−l∂z̄ωωωB(z̄)/
√

2, valid for harmonic potential eigenfunc-
tions and straightforward to derive using the Rodrigues
formula defining Hermite polynomials.

By using second-order perturbation theory, we find the
effective Hamiltonian for the ground state:

H = �

2

[
ωωωB(z̄)+ ∂tz̄

ωo
∂z̄ωωωB(z̄)

]
· σσσ . (A2)

The corrections arising from the orbital nonadiabaticity of
the motion approximately scale as ωλωB/ωo. In our work,
these corrections are most significant when we lift the Zee-
man field adiabaticity condition, in which case we have
approximately ω2

B/ωo, and they still produce small terms
that are quadratic in the magnetic field.

2. Exact solution with an SOI

Here, we validate the perturbative results just derived
by presenting an exact solution for the time-dependent
Schrodinger equation, which fully accounts for nonadia-
batic corrections. This solution describes a spin confined
in a quantum dot moving in a homogeneous Zeeman
aligned to a possibly time-dependent SOI field with a fixed
direction.

We consider the one-dimensional Hamiltonian

H = p2

2m
+ mω2

o

2
z2 + v(t)pσ3 + mω2

oz̄(t)z + �ωB

2
σ3,

(A3)

where the SOI and Zeeman fields are aligned along the
n3 direction. Introducing the usual orbital bosonic lad-
der operators a and a†, the harmonic length l, and the
time-dependent spin-orbit length λs(t) = �/mv(t), we can
rewrite this Hamiltonian as

H
�ωo

= a†a + ωB

2ωo
σ3 + il√

2λs(t)
(a†−a)σz + z̄(t)√

2l
(a†+a).

(A4)

We move to a spin-dependent rotating frame by the unitary
operator

UE(t) = e−it(ωoa†a+ωBσ3/2), (A5)

yielding

HR

�ωo
= α(t)a†+α†(t)a, (A6a)

α(t) = eiωot

√
2

[
z̄(t)

l
+ il
λs(t)

σ3

]
, (A6b)

where we have used U†
E(t)aUE(t) = ae−iωot.

The time-evolution operator of the system can then be
formally found as

U(t) = UE(t)T e−i
∫ t

0 HR(τ )dτ/�. (A7)

In our case, this equation can be evaluated exactly because
the spin sector remains diagonal during the time evolution
and the problem is quadratic in the orbital degree of free-
dom. The explicit exact solution of the time-ordered expo-
nential is obtained by a second-order Magnus expansion
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[119], because [a, a†] = 1 and higher-order commutators
coming from the expansions vanish and the result of the
second-order expansion is exact.

We thus obtain

U(t) = UE(t)e−iφ(t)D[�(t)]. (A8)

We introduced the conventional quantum optical displace-
ment operator D(x) = exa†−x†a, and the spin-dependent
phase-space shift �(t) and phase φ(t) are

�(t) = −iωo

∫ t

0
α(τ)dτ , (A9a)

φ(t) = iω2
o

∫ t

0
dτ

∫ τ

0
dτ ′α(τ)α

†(τ ′)− α†(τ )α(τ ′)
2

.

(A9b)

As a concrete example, we consider the case z̄(t) = v̄t
and a time independent λs, in which case

�(t) = −eiωot

√
2

[
θ1(t)+ i

l
λs
(1 − e−iωot)σ3

]
, (A10a)

θ1(t) = ωlt + i
ωl

ωo
(1 − e−iωot), (A10b)

φ(t) = φ0 −
[
ωst
2

[1 + cos(ωot)] − ωs

ωo
sin(ωot)

]
σ3,

(A10c)

where φ0 is a trivial global spin-independent phase, and
ωl = v̄/l
and ωs = v̄/λs, as in the main
text.

We focus on the time evolution of the orbital ground
states of HR at time t = 0 and centred at z̄(0) = 0:

|ψ↑↓〉0 = D
(

− ilσ3√
2λs

)
|0, ↑̃↓̃〉 (A11)

with the ↑̃↓̃ spins the pseudospin degrees of freedom
defined by removing the SOI by the usual transforma-
tion D

(
−ilσ3/

√
2λs

)
. The time-evolved state at time

t is

|ψ↑↓〉(t) = e−iωBtσ3/2−iφ(t)eilλsRe[�(t)]σ3/
√

2

× D
[(
�(t)− il√

2λs
σ3

)
e−iωot

]
|0, ↑̃↓̃〉.

(A12)

In particular, when z̄(t) = v̄t, we find that

|ψ↑↓(t)〉 = e−i[ωBt+θ0(t)]σ3/2D
[

− θ1(t)√
2

− i
l√
2λs

σ3

]
|0, ↑̃↓̃〉

= e−i[ωBt+2θ0(t)]σ3/2D
[

− θ1(t)√
2

]
D

[
− ilσ3√

2λs

]
|0, ↑̃↓̃〉

= e−i[ωBt+2θ0(t)]σ3/2D
[

− θ1(t)√
2

]
|ψ↑↓〉0, (A13)

where we have introduced the spin-dependent phase shift

θ0(t) = −ωst + ωs

ωo
sin(ωot). (A14)

In this simple case, it is clear that the nonadiabatic cor-
rections provide fast oscillations of the angles θ0,1(t) that
become suppressed as ωl ∼ ωs � ωo.

More generally, by averaging out the fast oscillations of
period 1/ωo, one can generalize these results as

θ0(t) ≈ −z̄(t)/λs and θ1(t) ≈ z̄(t)/l. (A15)

As expected, we note that the nonadiabatic corrections are
∝ωl,s/ωo and result in additional oscillation terms ∝e−iωot

that we neglect in our adiabatic approximation.

APPENDIX B: ROTATION MATRICES

Here, we provide an explicit expression for the
rotation matrices used in the main text. The unitary
operator

U = e−iθn·σσσ/2, (B1)

with unit vector n = (n1, n2, n3) (such that n · n = 1),
transforms a vector of Pauli matrices σσσ = (σ1, σ2, σ3) as

U†σσσU = R̂n(θ)σσσ . (B2)

The counterclockwise rotation matrix R̂n(θ) rotates a vec-
tor by an angle θ around n and is given by
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R̂n(θ) =

⎛

⎜
⎝

(1 − n2
x) cos(θ)+ n2

x nxny[1 − cos(θ)] − sin(θ)nz nxnz[1 − cos(θ)] + sin(θ)ny

nxny[1 − cos(θ)] + sin(θ)nz (1 − n2
y) cos(θ)+ n2

y nynz[1 − cos(θ)] − sin(θ)nx

nxnz[1 − cos(θ)] − sin(θ)ny nynz[1 − cos(θ)] + sin(θ)nx (1 − n2
z ) cos(θ)+ n2

z

⎞

⎟
⎠. (B3)

For convenience, we also define the rotation matrices
R̂i(θ) around the i = (1, 2, 3) axis as

R̂1(θ) =
⎛

⎝
1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞

⎠ , (B4a)

R̂2(θ) =
⎛

⎝
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎞

⎠ , (B4b)

R̂3(θ) =
⎛

⎝
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞

⎠ , (B4c)

and we report the useful relation

R̂n(θ)A = n(n · A)+ cos θ(n × A)× n + sin θ(n × A).
(B5)

For the discussion in the main text, we are particularly
interested in the solution of the equation

R̂n(θ)n3 = [sin(ϕ) sin(ϕ1), sin(ϕ1) cos(ϕ), cos(ϕ1)],
(B6)

which aligns a general vector parametrized by the angles
ϕ ∈ [0, 2π) and ϕ1 ∈ [0,π) to the third direction. Note
that rotation R̂n(θ) is straightforwardly decomposed as
R̂n(θ) = R̂3(−ϕ)R̂1(−ϕ1). A particular solution for the
vector and angle of the combined rotations valid for
cos(ϕ1) ≥ 0 is

θ = −sgn(sinϕ) cos−1
(

cosϕ + (1 + cosϕ) cosϕ1 − 1
2

)
,

(B7a)

n =
[

cos
(
ϕ

2

)
cos

(
φ

2

)
, − sin

(
ϕ

2

)
cos

(
φ

2

)
, sin

(
φ

2

)]
,

(B7b)

φ = −2 sin−1
[

tan
(
ϕ

2

)
cot

(
θ

2

)]
. (B7c)

For small positive angles ϕ1 around the third axis, one
can Taylor expand this solution to the first order in ϕ1,

resulting in

θ = − cos−1[cos(ϕ)]sgn[sin(ϕ)] + O(ϕ2
1), (B8a)

φ = π − ϕ1

| sin(ϕ/2)| + O(ϕ2
1), (B8b)

n =
[
ϕ1sgn[sin(ϕ/2)]

2
cot

(
ϕ

2

)
,

−ϕ1sgn[sin(ϕ/2)]
2

, 1
]

,

(B8c)

or, equivalently, unwinding the phases,

θ = −ϕ, (B9a)

n =
[
ϕ1

2
cot

(
ϕ

2

)
, −ϕ1

2
, 1

]
+ O(ϕ2

1), (B9b)

resulting in the vector

R̂n(θ)n3 = [ϕ1 sin(ϕ),ϕ1 cos(ϕ), 1] + O(ϕ2
1). (B10)

APPENDIX C: INTERMEDIATE-RANGE NOISE
SOURCES

We discuss in more detail the role of inhomogeneous
noise with an intermediate range. We focus on systems
with arbitrary SOI. To this end, we consider Hamiltonian
H1D in Eq. (35), and the noise Hamiltonian

H z
N = 1

2n0

∑

k

V(z − zk)hk(t) · σσσ , (C1)

where the function V(z − zk) determines whether the noise
sources are local [V(z) = δ(z)] or global [V(z) = n0]. Here
we consider a homogeneous Zeeman field, i.e., ω̃ωωB(z) =
ω̃ωωB.

We remove the SOI by transformation S in Eq. (38)
and we project the total Hamiltonian onto the moving
dot ground-state wave function, resulting in the effective
Hamiltonian

H = �ωωωB(z̄) · σσσ
2

+ 1
2

H̃HH(z̄, t) · σσσ (C2)

with [see Eq. (40)]

ωωωB(z̄) = ω̃ωωB

∫ +∞

−∞
dz|ψ(z − z̄)|2R̂T

s [2z/λs]R̂T
δ(z)[φs(z)],

(C3a)
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H̃HH(z̄, t) = 1
n0

∑

k

hk(t)
∫ +∞

−∞
dzV(z − zk)|ψ(z − z̄)|2

× R̂T
s [2z/λs]R̂T

δ(z)[φs(z)].
(C3b)

The longitudinal component of the covariance matrix
�̂33, which determines the average shuttling fidelity, is

�̂33 = 1
2π�2

∫ ∞

−∞
dωηηη†(ω, t)Ŝ(ω)ηηη(ω, t) (C4)

with Ŝij (ω) = ∫
dteiωt〈hi(t)hj (0)〉 a general anisotropic

noise spectral function. We introduced the vector

ηηη = 1
n0

∫ t

0
dτe−iωτ

∑

k

∫ +∞

−∞
dzV(z − zk)|ψ[z − z̄(τ )]|2

× R̂T
s [2z/λs]R̂T

δ(z)[φs(z)]
ωωωB[z̄(τ )]
|ωωωB[z̄(τ )]| .

(C5)

Assuming isotropic uncorrelated noise, Ŝij (ω) = δij S(ω),
we find that the longitudinal filter function is F̂33 = F =
ηηη† · ηηη.

For global and local noise, we respectively obtain

H̃HH G = h
∫ +∞

−∞
dz|ψ(z − z̄)|2R̂T

s [2z/λs]R̂T
δ(z)[φs(z)],

and H̃HH L = 1
n0

∑

k

|ψ(zk − z̄)|2hkR̂T
s [2zk/λs]R̂T

δ(zk)
[φs(zk)].

(C6)

Here we define h = ∑
k hk. We emphasize that, for global

noise, the SOI-induced rotation is independent of the loca-
tion of the defects and affects noise and the Zeeman

field in the same way. Local noise, on the other hand,
locally rotates the noise fluctuators, yielding a qualitatively
different effect compared to the Zeeman field.

This qualitative difference can be straightforwardly
understood by considering a homogeneous SOI field, such
as vH in Eq. (41). In this case φs(z) = 0 and we find that

ωωωB = ω̃ωω
‖
B+e−l2/λ2

s ω̃ωω
⊥
B R̂T

s (2z̄/λs), (C7a)

H̃HH G = h‖+e−l2/λ2
s h⊥R̂T

s (2z̄/λs), (C7b)

H̃HH L = 1
n0

∑

k

|ψ(zk − z̄)|2hkR̂T
s [2zk/λs], (C7c)

where ‖ and ⊥ refer to components of the vectors parallel
and perpendicular to the SOI ns, respectively.

We now focus on the case where the Zeeman field is
perpendicular to the SOI, e.g., ns = n1 and ω̃ωωB = ω̃Bn3. In
the interaction picture including the dynamics induced by
the Zeeman field, the relevant longitudinal noise is

[H̃HH G]3 = e−l2/λ2
s h · n3, (C8a)

[H̃HH L]3 = 1
n0

∑

k

|ψ(zk − z̄)|2hk · R̂T
s [2(zk − z̄)/λs]n3,

(C8b)

resulting in [see Eqs. (13) and (29)]

FG = e−2l2/λ2
s FFID and FL = FL

P . (C9)

APPENDIX D: EXACT RESULTS FOR THE
FILTER FUNCTIONS

In this appendix, we report exact equations for the filter
functions of a fully precessing Zeeman field and fidelities:

FP = 2[ω2
λ − (ω2

λ + ω2) cos(tω) cos(tωλ)− 2ωωλ sin(tω) sin(tωλ)+ ω2]
(ω2 − ω2

λ)
2

, (D1a)

F̄P = exp
{ 1

8 iπ2η−1 csc(πη)t2−ηTη−2[−(tωλ + i)η−1 + (tωλ − i)η−1 + (−tωλ − i)η−1 − (−tωλ + i)η−1]
}
, (D1b)

FL
P = 1

ω2
l

Re
[

f
(
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Schreiber, and L. Cywiński, Blueprint of a scalable spin
qubit shuttle device for coherent mid-range qubit trans-
fer in disordered Si/SiGe/SiO2, PRX Quantum 4, 020305
(2023).

[74] C. Kloeffel, M. Trif, and D. Loss, Strong spin-orbit inter-
action and helical hole states in Ge/Si nanowires, Phys.
Rev. B 84, 195314 (2011).

[75] C. Kloeffel, M. J. Rancic, and D. Loss, Direct Rashba
spin-orbit interaction in Si and Ge nanowires with different
growth directions, Phys. Rev. B 97, 235422 (2018).

[76] F. N. M. Froning, L. C. Camenzind, O. A. H. van der
Molen, A. Li, E. P. A. M. Bakkers, D. M. Zumbühl,
and F. R. Braakman, Ultrafast hole spin qubit with gate-
tunable spin–orbit switch functionality, Nat. Nanotechnol.
16, 308 (2021).

[77] K. Wang, G. Xu, F. Gao, H. Liu, R.-L. Ma, X. Zhang, Z.
Wang, G. Cao, T. Wang, J.-J. Zhang, D. Culcer, X. Hu,

H.-W. Jiang, H.-O. Li, G.-C. Guo, and G.-P. Guo, Ultra-
fast coherent control of a hole spin qubit in a germanium
quantum dot, Nat. Commun. 13, 206 (2022).

[78] F. N. M. Froning, M. J. Rančić, B. Hetényi, S. Bosco,
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