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During time evolution of many-body systems entanglement grows rapidly, limiting exact simulations
to small-scale systems or small timescales. Quantum information tends, however, to flow towards larger
scales without returning to local scales, such that its detailed large-scale structure does not directly affect
local observables. This allows for the removal of large-scale quantum information in a way that preserves
all local observables and gives access to large-scale and large-time quantum dynamics. To this end, we use
the recently introduced information lattice to organize quantum information into different scales, allowing
us to define local information and information currents that we employ to systematically discard long-
range quantum correlations in a controlled way. Our approach relies on decomposing the system into
subsystems up to a maximum scale and time evolving the subsystem density matrices by solving the sub-
system von Neumann equations in parallel. Importantly, the information flow needs to be preserved during
the discarding of large-scale information. To achieve this without the need to make assumptions about the
microscopic details of the information current, we introduce a second scale at which information is dis-
carded, while using the state at the maximum scale to accurately obtain the information flow. The resulting
algorithm, which we call local-information time evolution, is highly versatile and suitable for investigat-
ing many-body quantum dynamics in both closed and open quantum systems with diverse hydrodynamic
behaviors. We present results for the energy transport in the mixed-field Ising model and the magnetiza-
tion transport in the XX spin chain with onsite dephasing where we accurately determine the power-law
exponent and the diffusion coefficients. Furthermore, the information lattice framework employed here
promises to offer insightful results about the spatial and temporal behavior of entanglement in many-body

systems.
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I. INTRODUCTION

Simulating the time evolution of many-body quantum
systems presents a significant challenge, often limiting
the analysis to small-scale systems. The obstacle lies in
the rapid spreading of entanglement through the system
during time evolution [1-3]. As entanglement can induce
quantum correlations between arbitrarily distant-in-space
degrees of freedom that cannot be decomposed into local
parts, the exact representation of generic quantum states
demands an exponentially large number of parameters.
This is related to the exponential growth of the Hilbert
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space with the system size. However, for states exhibit-
ing solely local correlations, such as local product states
or Gibbs states, efficient representation becomes feasible.
This efficiency stems from the possibility of parametrizing
them exclusively through local observables [4—7]. Notably,
the parametrization of the local observables entails a linear
growth of the number of parameters with the system size,
ensuring scalability.

In the paradigmatic case of thermalizing dynamics, local
states are obtained at short evolution times when start-
ing from an initially low-entangled (often product) state.
During this time, exact time evolution with matrix prod-
uct states is feasible [8—13]. While at long times the full
pure state has volume-law entanglement, the reduced den-
sity matrices of small subsystems are thermal, consistent
with the eigenstate thermalization hypothesis [14], and
are well described by local Gibbs states with maximum
entropy subject to constraints such as the energy density
in the initial state [15,16]. Such high-temperature ther-
mal states can be efficiently described by pure states via
purification that introduces ancillary degrees of freedom
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[17-22]. At intermediate times, this representation is how-
ever inefficient, again because of large entanglement in
the purified state. The hope of interpolating between
these two efficient descriptions is thus complicated by
the presence of an entanglement barrier at intermedi-
ate times separating the two limits, excluding efficient
and exact large-scale simulations on current classical
computers.

Seeking to bypass the entanglement barrier, various
approximate algorithms have been proposed, providing
access to quantum dynamics of interacting systems beyond
the system sizes accessible by exact dynamics. The essen-
tial idea connecting different approximate time-evolution
approaches is to only keep track of the most relevant
features in order to represent quantum states with less
than exponential (in system size) degrees of freedom.
In the time-dependent variational principle approach, an
approximate time evolution is obtained by projecting the
time-evolved state into a given fixed subspace of the
Hilbert space. A common example is that spanned by
matrix product states of a fixed bond dimension [23—26], or
related approaches that use a neural network ansatz for the
wave function [27-29]. Other approaches adopt dynami-
cal quantum typicality [30,31]. Most related to our work
are approaches based on density matrix product operators
[32,33], approaches that trade entanglement for mixture
[34,35], cluster truncated Wigner approaches [36], and
other discussion of the entanglement barrier [37,38].

Here, we further develop the local-information approach
for time evolution introduced in Ref. [7]. Central to
this approach is the fundamental question: how does
the emergence of long-range entanglement during the
entanglement-barrier regime impact local density matrices
and, consequently, physical observables? We know that at
late times local density matrices closely resemble thermal
density matrices. Since there is a limited amount of infor-
mation in thermal states, most of the correlations in the
steady state are found on large scales of the order of the
system size. As a result, during time evolution an inher-
ent statistical drift of quantum correlations occurs, which is
consistent with the principles of the second law of thermo-
dynamics for entanglement entropy [39]. This implies that
information flows from smaller to larger scales, bounded
solely by the system size, and generally does not return
to influence the local density matrices. Essentially, the
primary role of the large-scale entanglement is to make
the local density matrices mixed and thermal. Since there
are many different long-range entanglement structures that
give rise to the same local reduced density matrices, the
pivotal idea of the local-information approach is to system-
atically discard long-range entanglement once information
has reached a sufficiently large scale. To make this more
concrete, a proper definition of information is essential,
allowing us to identify its location and scale. This cru-
cial step has been pursued in Ref. [7] by introducing the

concepts of local information and the information lattice
(see Secs. IT A and II B for a recap).

Our approach—which we refer to as local-information
time evolution (LITE)—combines two essential ideas.
First, we divide the system into smaller subsystems, each
characterized by a scale £ and a center n, which denote its
extent (that is, the number of neighboring physical sites it
encompasses) and position on the lattice. Two subsystems,
say subsystem 4 and B, can be independently evolved in
time as long as the quantum state of the combined subsys-
tem AB is not entangled. In this scenario, the equations of
motion for the subsystems are self-contained, allowing for
exact time evolution. This self-containment is achieved by
reconstructing the state of AB from the individual states
of 4 and B using recovery maps (see Sec. I C). During
time evolution, the scale of those combined subsystems AB
that lack entanglement continues to grow as more distant-
in-space physical degrees of freedom become entangled
(see Sec. II D). This growth permits the application of this
reconstruction scheme only up to a time 7 ~ €ax/ULR,
where v g is the Lieb-Robinson speed [40] and £y, is the
maximum manageable subsystem scale achievable through
exact numerical techniques. Second, we extend time evolu-
tion beyond times of about T by implementing a truncation
scheme that maintains entanglement spread without fur-
ther increasing the subsystem scale. To achieve this, one
needs to time evolve the subsystem density matrices on
scale £y, such that the subsystems’ states at lower scales
and the flow of information are not altered. The truncation
scheme proposed in Ref. [7] accomplishes this by introduc-
ing a boundary condition for the information flow at scale
£max suitable for systems characterized by significant chaos
and approximate translation invariance. To transcend these
assumptions, it becomes necessary to construct boundary
conditions on a case-by-case basis, thereby limiting the
general applicability of that algorithm.

In this work, we devise a modified time-evolution
algorithm that eliminates the necessity for assumptions
about the information flow while maintaining it unal-
tered (see Sec. III A). We introduce an additional length
scale €min < fmax, and we deliberately remove informa-
tion on large scales £ > £,;, (see Secs. IIIB and IV C).
To correctly capture the information flow, the removal of
information is done by minimizing information on scale
Lmin under certain constraints determined by the state of
the subsystems at all scales ¢ < £,,x. The resulting LITE
algorithm preserves all local constants of motion with a
range of ¢ < £.,;, physical lattice sites. By circumventing
the need for assumptions on the flow of information, the
algorithm can be applied across a wide variety of models,
potentially including those with unknown hydrodynamic
behavior.

As a benchmark example, we apply the algorithm to
translation-invariant spin chains—specifically, the mixed-
field Ising model. By injecting a finite amount of energy
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in a small spatial region of the system, we investigate
the energy transport in an infinitely extended system up
to timescales much longer than previously obtained (see
Sec. IV). Our results are compatible with those obtained in
other works for the same model [33,41,42]. We carefully
examine the convergence of our algorithm for relevant
numerical parameters such as £y, and €., Importantly,
LITE is also well suited to simulate the dynamics of dissi-
pative systems governed by the Lindblad master equation
in the presence of local dissipators (see Sec. V). The rea-
son is that local dissipators selectively remove information
enhancing the convergence properties of the algorithm. We
demonstrate this by simulating the magnetization transport
in the XX spin chain subject to local dephasing. Per-
fect convergence of the diffusion constant to the analytic
result in Refs. [43—45] is achieved already with truncation
scales (Lmin, £max) for which the algorithm computational
complexity is considerably smaller than the capacities of
modern computers.

II. EXACT TIME EVOLUTION ON THE
SUBSYSTEM LATTICE

A. Subsystems, the subsystem lattice, and the
information lattice

To time evolve density matrices for large systems and
long timescales, we decompose the entire system into
smaller subsystems and solve the corresponding time evo-
lution on each subsystem in parallel. To achieve this task,
we introduce the subsystem lattice.

Let us consider a system composed of a chain of sites,
each representing some physical degree of freedom. We
define subsystem C* as the set of £ + 1 contiguous physi-
cal sites centered around #. In this convention, subsystems
with £ = 0 describe single physical sites. From the picto-
rial representation in Fig. 1(a), we see that if £ is odd, n
is a half-integer; e.g., a subsystem constituting two sites
m and m + 1 (where m € Z is the physical site index) is
denoted C,,, | o If € is even, n is an integer; e.g., C2 indi-
cates the subsystem composed of the three sites m — 1, m,
and m + 1.

Each subsystem C! is uniquely determined by the labels
(n,£). We order (n,£) in a two-dimensional triangular
structure, shown in Fig. 1(b), that we call the subsystem
lattice. Black circles represent the subsystem-lattice points
(n, £). The horizontal axis of the subsystem lattice corre-
sponds to the subsystem center 7, while the vertical axis
increases with the number of physical sites within subsys-
tems. In the following, we refer to £ as “level” or “scale.”
For a finite system of size L, the subsystem lattice is a tri-
angle of base and height of length L, as there are fewer
and fewer possible subsystems for increasing values of .
By increasing £ — £ + ¢/, there are £’ fewer subsystems

FIG. 1.
£ + 1 physical sites and centered around #. (b) Schematic of the
subsystem lattice. The vertical axis labels different levels £, while
the horizontal axis labels the subsystem centers n: n takes inte-
ger values on even levels £ and half-integer values on odd levels.
The red and blue colored regions depict the triangles associated

(a) Schematic of the subsystem C! extending over

with subsystems C# and C* ni1> Tespectively, where m € Z labels
the physical site mdex Such triangles denote that subsystem
C! contains the lower-level subsystems defined on a subset of
the contiguous physical sites C! includes. The two neighboring

subsystems C;, and C,, | share subsystem C, ,, , (in purple).

on level £ 4+ ¢’ compared with level £. The base of the sub-
system lattice corresponds to ¢ = 0 and the topmost label
tol=L—1.

The subsystem lattice is a hierarchical structure: higher-
level subsystems contain a triangle of lower-level sub-
systems that extends all the way down to level zero.
Figure 1(b) illustrates two neighboring subsystems and the
corresponding hierarchy by means of the red and blue tri-
angles. The subsystem with label (n,£) contains at one
lower lever the two subsystems with labels (n — 1/2,¢ —
1) and (n 4+ 1/2,€ — 1). The subsystem (n — 1/2,¢ — 1),
for example, in turn contains at the next lower level the
two subsystems (n — 1,¢ — 2) and (n,¢ — 2), which are
of course also subsystems of the top level (n,£). This
hierarchy continues all the way down to level zero. More-
over, two neighboring subsystems at level £, say (n,{)
and (n + 1,£), share some lower-level subsystems start-
ing with (n 4+ 1/2,£ — 1) [see the red, blue, and purple
triangles in Fig. 1(b)].

So far, the subsystem lattice is just a collection of labels
of subsystems. We wish to endow this lattice with a further
structure by associating these labels with quantum states
and quantum information. To that end, we define C! as the
complement of CY, i.e., the set of all the physical sites that
do not belong to C. We then define the subsystem density
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matrix as

Py = Treg (p) (1
and the subsystem Hamiltonian as [46]

. T

=— 2
"= pn @

where Trge is the trace operator over the complement C,
D(CY) is the Hilbert space dimension of C!, and “:="
denotes “defined to be equal to.” To ease the notation, let
us assume that the Hilbert space dimension is the same for
all the physical sites: D(C?) = d for any n. Furthermore,
we define the von Neumann information of the subsystem
density matrix p! as

Iy == 1(p,) = In(@d*") 4 Tr[p, In(p,)]; 3)

I(pf) quantifies the amount of information in state pf
of subsystem C! [47]. Thus, if (p})?> = p! then in prin-
ciple we have access to In(d‘*!) bits of information.
Instead, if p¢ oc 11 (Where 141 is the identity matrix
of dimension dT! x d*'), we have access to 0 bits of
information.

We can now associate p‘!, H!, and I‘ with the
subsystem-lattice label (n,£¢). These quantities are all
global for subsystem C!, as they comprise (via partial
trace) the same quantities on the lower-level subsystems
contained in the triangle having as topmost site (n, £) and
as base the £ 4 1 contiguous physical sites constituting the
subsystem [see Fig. 1(b)].

One can also have local quantities that are instead exclu-
sively assigned to a single label (n,£). By knowing the
value of a local quantity on (#,£), one cannot infer any
information about its value on any other point in the lattice.
For our purposes, a central example of a local quantity is
mutual information. This is defined as the information in
the state of the union system AB := A4 U B that is neither in
the state of 4 nor of B:

i(4;B) :=I(p4p) — I(ps) —1(pB) +1(psnB) (4)

with 4 N B the overlap region of 4 and B. As in Ref. [7],
we are interested in the local information of the state of
subsystem C¢ that is not present in any of the lower-level
states of C'~| Jp Or Gﬁ;ll P

ifz = 5(65:11/25@5;11/2)‘ (%)

Here, it is implicit that the von Neumann information of
empty subsystems is zero. When we endow the subsys-
tem lattice with the local information, we refer to it as the
information lattice.
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FIG. 2. Schematic of local information [see Eq. (5)] on the
information lattice. The intensity of the colors quantifies the
amount of local information: intense green corresponds to i =
In(4), open circles to i = 0. (a) Local information for a sin-
glet product state on nearest-neighbor sites (bottom orange filled
circles with green connection lines) for L = 10. Local informa-
tion is located only on ¢ = 1 and every second lattice point 7.
(b) Local information for the product state of random singlets
depicted at the bottom.

In Fig. 2, we plot the information lattice for two sim-
ple cases. Figure 2(a) depicts the local information in the
product state of singlets on consecutive pairs of sites (more
intense colors correspond to larger amounts of local infor-
mation). All the information is located on level ¢ =1
where only every other lattice site #n carries nonzero local
information, reflecting the singlet coupling. In the case of
random singlets where pairs are not necessarily between
consecutive sites, as in Fig. 2(b), the configuration of green
points containing information is rearranged. In both cases,
i = In(4) for n = (my +m;)/2 and £ = m; — mg, where
mg (my) is the physical site index of the first (second) spin
of the singlet; otherwise, it = 0.

Importantly, local information is additive, and one can
show [7] that the von Neumann information in the state of
C¢ is given by the sum of the local information i on all the
labels in the triangle with topmost site (n, £); in equation
form

= > i (6)

(n,0)est
with S¢ = {(, ) | C4 C €L},

B. Time evolution on the subsystem lattice

To study time evolution on the subsystem lattice, we
need the equation of motion for the reduced density matrix
pt defined on subsystem C!. This is contained in the uni-
tary time evolution of the full system density matrix p
given by the von Neumann equation (A = 1)
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where [-, -] denotes the commutator. We consider a generic
short-range, one-dimensional Hamiltonian A with a maxi-
mum range of 7 (if » = 0, H contains only onsite terms; for
r =1, there are at most nearest-neighbor couplings; and
so on). By tracing out the complement subsystem C! from
Eq. (7), we obtain the equation of motion for the density
matrix of subsystem C':

dpy = —ilH,, py] — iTrZ([Hfff/z - Hf’pﬁ:ﬂ])
- iTr;([HfIf/z —H,, :Ofi:/z]) ®)

with Tr; (Try) the partial trace operator tracing over the
r leftmost (rightmost) sites of subsystem C!. Here, it is

implicit that, to subtract from Hffrr P (Hfj_’:/z) the lower-

level density matrix H¢, one has to take the tensor product
of the latter with a proper identity matrix; in this case,
it reads 1 ® H! (H! ® 1,). Proper identity matrices to
be used are evident from the specific equations. Thus, we
use this convention throughout this work, unless identity
matrices are explicitly stated. The first term on the right-
hand side of Eq. (8) originates from all the terms of the
Hamiltonian that have no overlap with (_?,f; in this case, the
partial trace over é,f is easily performed, leaving us only
with the commutator of the subsystem Hamiltonian /! and
subsystem density matrix p!. The second and third terms
are given by the terms in the full Hamiltonian that couple
C! to C': if the full Hamiltonian H has coupling terms with
maximum range r then C; and C} are coupled via H,*/ )

and Hﬁ: /»- Note that, to avoid double counting, one has to

subtract H’ in both the second and third terms.

The time evolution in Eq. (8) can be visually understood
with the help of Fig. 1(b) for the case » = 1. The time evo-
lution of the state of subsystem (931 +1/2 (purple triangle)

is determined by the subsystem Hamiltonian /> +12 (con-
taining all the terms within the physical sites at the bottom
of the purple triangle), and by the Hamiltonian terms of
range 7 = 1 that couple those physical sites with the two
(left and right) nearest neighbors. Such coupling terms,
in the framework of the subsystem lattice, are included in
the subsystem Hamiltonians of C’f,; (topmost site of the red
triangle) and C} 41 (topmost site of the blue triangle).
Equation (8) implies that, for solving the time evolu-
tion of the subsystem density matrix p!, one also needs
to solve the time evolution for the higher-level subsystem
density matrices pﬁff P and pﬁ: /- This gives rise to a hier-
archy of equations of motion that, in principle, only closes
when one solves the time evolution of all the subsystems
or, equivalently, the full-system equation (7). To make this
point clearer, let us consider the situation in which we
know the subsystem density matrices for any ¢ and n at
the initial time # = 0, and we want to solve the time evolu-
tion of the subsystems at level £*, denoted C**. Then, for
the infinitesimal time increment &z, we can use Eq. (8) to

compute the exact, time-evolved density matrices p,f* (89).
However, to further increase time by 6¢ and obtain the
exact p,f* (251), we need to know the higher-level density

matrices pfif/rz (87) and ,of;it/’z (81) at time §¢. In summary,
in general, the exact time evolution of the subsystem den-
sity matrices p! can only be obtained by knowing all the

density matrices at each level at any time.

C. Recovery of higher-level subsystem density
matrices from lower-level ones

Knowledge of the density matrices for all subsystems
CY on level ¢* allows us to construct the subsystem
density matrices at all lower levels £ < £* by suitable par-
tial trace operations. The inverse operation is generally
not possible, that is, recovering the density matrices on
higher levels £ > £* only from density matrices of level
£*. As an illustrating example, consider a two-spin den-
sity matrix pgp = |¥) (| with |) the Bell state |¢) =
1/«/§(| Mal M+ 1)l 4)p). In this case, the subsys-
tem density matrices p4 and pp are maximally mixed and
take the form py = 14/D(A4), where 1, denotes the iden-
tity matrix on the Hilbert space of spin 4 and D(4) = 2
denotes its dimension. Clearly, o4 = |¢) (| is not the
only two-spin density matrix for which the subsystem den-
sity matrices p4 and pp are maximally mixed. The same
result is, for instance, obtained for the maximally mixed
two-spin density matrix, o = 1,45/D(AB). Therefore, in
general, given only the lower-level density matrices p4 and
P, the correct density matrix of the enlarged system p4p
cannot be determined.

An important exception is the case when there is no
mutual information between 4 and B, i(4; B) = 0. In this
case, it is possible to reconstruct state p45 from the reduced
states p4 and pp via the so-called Petz recovery maps (see
Appendix B). An example is the twisted Petz recovery map
[48],

pIPRM . explIn(py) + In(pp) — In(panp)].  (9)

For nonzero i(4; B), the twisted Petz recovery map has the
error bound [49]

Try/ (pas — PIERM)? < 2//i(4;B). (10)

Recovery maps can be used to compute the state of higher-
level subsystems on the subsystem lattice, as sketched in
Fig. 3(a). Let us assume that we know the subsystem den-
sity matrices pﬁ* at level £* for any n, and that there is no
local information on level ¢* + 1: i+ =Y i+ = 0.
Then, all the density matrices at level £* 41 can be
computed by using the twisted Petz recovery map as

payin =exp[In(pf) +n(ofy,) —In (o)) (D)

020352-5



CLAUDIA ARTIACO et al.

PRX QUANTUM 5, 020352 (2024)

(a) (b)
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ﬁ+711/2(5t) n Pl (26t) n

FIG. 3. (a) Schematic of the twisted Petz recovery map [see
Eq. (11)]. The density matrices of two neighboring subsystems,
p! and p’,,, can be used to compute the density matrix of the
higher-level subsystem, ,on +1 /2, at the same time, as p1ctor1a11y
1llustrated by the two green arrows. The recovery map is exact
only if i zn 4 /2 = 0. (b) Schematic of the time evolution of p! by
means of the Petz recovery map. This requires knowledge of the
density matrices at level £* + r, as represented by the magenta
arrows and circle. Here, we illustrate the simplest nontrivial case
withr = 1.

Equation (11) involves three subsystem density matrices:
,0,‘;7* and pfil that are known by assumption, and pfi‘l/lz that
is easily obtained by tracing out either the leftmost physi-
cal site from p¢" [i.e., pfjr_l/l2 = Tr} (p!")] or the rightmost
physical site from pﬁil [i.e., Pfjj/lz = Tr}g(,oﬁil)].
Provided that there is no local information on higher
levels as well, that is, i ! = i +2 = ... = i+’ = 0, one
can iterate recovery maps, reconstructing all the density
matrices at level £* 4 r.

D. Exact time evolution on the subsystem lattice via
Petz recovery maps

Recovering higher-level density matrices from lower-
level ones allows us to close the subsystem equation of
motion (8) at level £* < L — 1. Through the Petz recovery
maps, in fact, we can perform the exact time evolution of
the subsystem density matrices.

Let us consider again the situation described at the end
of Sec. II B in which, by knowing the state of the full
system at the initial time ¢ = 0, we can compute pﬁ* (81)
exactly. As we have discussed, to time evolve further, we
need knowledge of p}_7,(8#) and p!, !, (87). Now, pro-
vided that at time §¢ there is no information on levels
O 41,0542, . 0+, that is, T =i+ =... =
i+ = 0, thanks to the recovery maps we can obtain the
higher-level density matrices at time 8¢ [see Fig. 3(a)], and
use them to compute ,oﬁ* (261), as schematically shown in
Fig. 3(b).

After a few time steps, the assumption of zero informa-
tion on levels £* + 1, ..., £* 4+ r will generically no longer
hold. Typically, in ergodic quantum dynamics, correlations
build up and spread throughout the system, adhering to
the principles outlined by the Lieb-Robinson bounds [40].
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FIG. 4. Four different snapshots in time of the information
lattice for a system of 14 spins evolved with random unitary
matrices U = Uydq Ueven, Where Uydgd (Ueven) acts on all pairs of
spins with indexes m and m + 1, where m is odd (even). A single
application of U defines a cycle. The amount of local informa-
tion in a site is indicated by the color intensity. The system is
initialized in a product state &), sies » | 1) (1 | where local infor-
mation is located on only the physical sites at £ = 0 [see panel
(a)]. As U is applied, local information builds up on increasing
scales [see panels (b)—d)]. Note the presence of finite-size effects
at the boundaries that only experience Uyqq.

On the information lattice, this is visualized by the fact
that increasing levels acquire nonzero local information
as time progresses. In Fig. 4, we illustrate a prototypical
example of this generically expected behavior. A system of
14 spins is initialized in a product state &), sies » | 1) (1 |-
Consequently, all local information at ¢ = 0 is located on
the physical sites, i.e., at the information lattice sites with
£ =0 [see Fig. 4(a)]. Subsequently, we evolve this sys-
tem in time by applying random unitary matrices from the
circular unitary ensemble that pairwise couple neighbor-
ing sites U = UyqqUeven, Where Upgd (Ueven) acts on all
pairs of spins with indexes m and m + 1, where m is odd
(even) [50,51]. A single application of U on the state of
the system defines one random unitary evolution cycle (for
each cycle, we apply a different random unitary U). In each
cycle, the largest level with nonzero local information can
increase by a maximum of 4. This induces a quick buildup
of local information at increasing scales [compare Figs.
4(b) and 4(c)]. Note that here the boundaries only expe-
rience Uyqq, Which is why the spread of local information
at the boundary happens slower compared to the bulk of
the system.
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FIG. 5. Schematic of the exact time evolution on the subsys-
tem lattice via Petz recovery maps. The color intensity of the
information-lattice points quantifies the local information located
at a given site. Here £* represents the smallest level with van-
ishing local information. We carry out the time evolution for
each subsystem on £* individually without errors. After a typ-
ical timescale A¢, it is necessary to reassign £* to the updated
minimum level where local information vanishes. For simplicity,
here we consider £}, ,, = £ + 1.

In this example the system is relatively small and the
dynamics can therefore be solved exactly. Nonetheless, the
same exact dynamics could be described by using the sub-
system time evolution based on recovery maps. At each
time ¢, we fix a level £* such that i* = 0 for any £ > ¢*.
Then, the scheme starts by performing the exact time evo-
lution of the states of subsystems C!" having zero local
information [see Fig. 5(a)]. Their equations of motion are
closed via the recovery maps, as described at the beginning
of this section. Whenever an infinitesimal amount of local
information reaches level £* due to spreading correlations,
we update £* to the next smallest level with zero local
information [see Fig. 5(b)]. As an example, in the random-
unitary evolution described above, £* can increase by a
maximum of 4 in each cycle. Therefore, the exact subsys-
tem time-evolution scheme requires a substantial updating
of £* towards increasing levels and, eventually, £* = L — 1
that corresponds to the topmost site of the subsystem lat-
tice, that is, the entire system. As the level £* increases,
the computational resources needed to perform the time
evolution grow exponentially. This is how the challenge of
capturing entanglement growth appears on the information
lattice.

Obviously, given a limited amount of computational
time and resources, employing the exact subsystem time-
evolution algorithm for large systems at long timescales
becomes infeasible. To circumvent this problem, once
£* has reached a maximum value £* = £,,,x set by the
resources at our disposal, we require a suitable trunca-
tion method to continue the time evolution at £,,,, without
further increasing £*.

III. APPROXIMATE TIME EVOLUTION ON THE
SUBSYSTEM LATTICE: THE LITE ALGORITHM

A. Introduction to LITE

Given a maximum level £, on which the
numerical resources allow us to perform the time

evolution, one might be tempted to adopt the naive
approach to closing the equation of motion (8) by sim-
ply ignoring the error term in the Petz recovery map
(10). One would then continue to apply Petz recov-
ery maps to compute the density matrices up to level
Cmax + 7 while keeping £* = £, even though there is
nonvanishing local information on .. This approach,
however, is problematic. The first problem is that the
density matrices at level £, + r obtained by recovery
maps, which we denote pim>*” may not preserve the
lower-level density matrices [for instance, Tt} (pimext") =

Zmax

P /2]. As a result, errors are introduced on all length
scales. In consequence, the algorithm fails to preserve the
local constants of the motion, which leads to unphysical
results.

To remedy this problem, we can use the projected Petz
recovery map (see Ref. [7] and Appendix B2), which
projects the recovered density matrix to have the cor-
rect reduced density matrices, but this gives rise to two
equally severe issues. First, the projection step may vio-
late the positivity of the density matrices, leading to an
immediate breakdown of the time evolution. Second, the
density matrices produced by recovery maps generically
have almost minimal local information. This leads to an
underestimation of local information at levels larger than
£max and, in turn, to an underestimation of the local infor-
mation current from level £, to higher levels [7]. Then,
the spuriously small information current leads to a sig-
nificant buildup of local information at scale £,,,x, which
eventually distorts the dynamics.

In Ref. [7], the issue of the buildup of local infor-
mation at level £, was addressed by fixing the local-
information current from level £y, to higher levels
through an information-current boundary condition that
was empirically motivated by translational invariance and
ergodic diffusive dynamics. Here, we aim to develop a
time-evolution algorithm that does not depend on any spe-
cific assumptions about the information current and is
suitable for diverse hydrodynamic behaviors. Therefore,
instead of attempting to generalize the boundary condi-
tion ansatz of Ref. [7], we adopt a different strategy that
involves removing local information directly. The removal
of information is justified by statistical reasons: we expect
that during the out-of-equilibrium dynamics information
flows from smaller to larger scales and does not return
to influence the lower-level density matrices. This guiding
principle accounts for the second law of thermodynamics
for entanglement entropy [39]. The removal of information
must be approached with caution, as it has the potential
to alter the true dynamics of the system. Any modifica-
tion to the local-information distribution will necessarily
change the local-information currents and thus impact the
dynamics. Our goal is to remove local information in
a way that artificial effects on the overall dynamics are
minimal.
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The key to overcoming this issue is the introduction of
a new length scale €, < £max on which we remove local
information. In order to keep the distribution of local infor-
mation as stable as possible while removing parts of it, we
minimize local information on level £,,;, with the constraint
of keeping the density matrices at lower levels £ < £y
and the information currents on £ < £y, fixed. In prac-
tice, this is achieved by defining the new subsystem density
matrix [52]
—¢

plmin 1= pfmin + X’fmin’ (12)

where Xfmi“ is a Hermitian matrix acting on the Hilbert
space associated with C4min | First, we impose that [53]

Trp(ximin) = Tr (xmin) = 0. (13)

These two conditions ensure that shifting the density
matrix by X,f“““ does not change the density matrices on
lower levels. One can in principle try to minimize infor-
mation solely under conditions (13). The minimization
would consist in finding the optimal X,fmi“ satisfying con-
ditions (13) such that the corresponding local information
iﬁ““" is minimized. However, while this naive minimization
scheme does not distort the distribution of local infor-
mation on levels £ < £, at the time it is applied, this
is not guaranteed at later times since such minimization
modifies the local-information currents. Specifically, just
after the minimization (up to the characteristic timescale
7 of the system), the local-information currents flowing
into level £y, are suppressed, which causes an erroneous
buildup of information on lower levels. This is similar to
the erroneous buildup of information caused by the Petz
recovery maps discussed above. Figure 6(a) schematically
depicts the distribution of local information before (azure)
and after (yellow) the minimization under only constraints
(13), as well as after evolving for an additional time t
(yellow).

This problem is circumvented by imposing a second
constraint on Xfmi“: we enforce that the local-information
currents between £, — 1 and £,;, remain unchanged
under the minimization (see Sec. I1I B below for details).
In this way, after the current-constraint minimization, there
will be no buildup of information at levels £ < £, [see
Fig. 6(b)]. The reason is that local information tends to
accumulate at level £,,;,. However, since the local infor-
mation has just been minimized at level £,,, the accu-
mulation does not induce strong artificial local-information
gradients between different levels; therefore, the dynamics
on lower levels is much less affected.

The current-constraint minimization drastically sup-
presses local information on levels £ > £.;,. In turn,
projected Petz recovery maps performed to compute the
density matrices on levels £ > £,;, become more accurate.

FIG. 6. Schematic of the local-information distribution when
the minimization on £.;, is performed. (a) Minimization under
the only constraint that lower-level density matrices are unaltered
[see Eq. (13)]. When the minimization is performed, the azure
distribution is modified into the yellow one. After a typical time
7, local information accumulates on levels € < £;,. (b) Mini-
mization under the additional constraint of leaving unchanged
local-information currents from £, — 1 to €min. When the min-
imization is performed, one obtains the yellow distribution.
Note that in this case local information on £, is, in general,
larger than in panel (a). After time 7, local information tends to
accumulate on £ ;.

This allows us to continue the subsystem time evolution on
level £* = €y by applying recovery maps up to €uyin + 7.
As the dynamics proceeds and entanglement spreads, local
information reaches higher and higher levels. As described
before, we increase £* as soon as a non-negligible amount
of local information has reached it (this amount should
be set as small as possible; see Sec. IV C below for more
details) up to £* = €. When local information has again
substantially spread up to level £,,,x, we need to repeat the
minimization of local information at level £,,;,. The use of
this two-level scheme endures throughout the entire time
evolution. Importantly, it can be shown that this algorithm
conserves local constants of motion at £ < £, by con-
struction (as discussed in Appendix A). A schematic of the
algorithm is depicted in Fig. 7.

Given the pivotal role of the local-information time evo-
lution in the design of the algorithm, we denote it LITE.
The remaining part of this section is devoted to provid-
ing mathematical details of the LITE algorithm. Readers
not interested in these details can proceed directly to
Sec. IV A.

B. Removal of local information at large scales

1. Time evolution of information and information
currents

To formalize the above discussion, we require a notion
of information currents. The dynamics generated by
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Evolve until

0= Emax
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FIG. 7. Schematic of the LITE algorithm. The color intensity
encodes the local information on the information-lattice sites.
The green connections between the circles illustrate the infor-
mation currents. We use projected Petz recovery maps (PPRMs;
see Appendix B2) to evolve subsystems until £* reaches €.
Once a small amount of information has accumulated at level
Limax, We jump back to level ¢,;, where we minimize the infor-
mation by preserving all density matrices on £ < £y, as well
as the currents flowing in between levels £,,;, — 1 and £,i,. The
minimization constraints are highlighted in the picture by red
contours.

time-evolving subsystem density matrices according to
Eq. (8) leads to a corresponding dynamics of the infor-
mation (5). The time derivative of the von Neumann
information of the state of subsystem C¢ [see Eq. (3)] reads

&It = Tr(V,St d,0b), (14)

where V,8¢ = —1In(p!) — 1441. By expanding the right-
hand side, we decompose this current into two parts, one
flowing left and one flowing right. From Eq. (8) and the
cyclic property of the trace, we obtain

1! =~ (5, {1
- iTr([VpSﬁ,Hffr’/z - Hf]pﬁff/z)
—iTe([V, S5 H, 50 — Hy 0,1 )- (15)

The first term on the right-hand side originates from terms
in the Hamiltonian within Gf; only; therefore, it cannot con-
tribute to the information flow into or out of (#,£). On
a technical level, it vanishes because [V,S!, p!] = 0. The
second term originates only from terms in the Hamilto-
nian within subsystem Gﬁfj /25 thus, it cannot contribute to

the change of the von Neumann information 7:*" /» of the

state of subsystem fo: />~ Pictorially, it does not change
the von Neumann information in the union of the red and
blue regions of Fig. 8(a). We conclude that it must be the

(b)

J;\ / T

FIG. 8. Schematic of the von Neumann information currents
of subsystem C# for » = 2. (a) Schematic of the subsystems
involved in the von Neumann information currents J; (0% _,) and
Jy (pf,’z +1)- The regions of interest are marked by colors. (b) The
currents out of subsystem C# flow into the blue and green regions

that belong to subsystems C5_; and €5 ,.

left current from the red to the blue region. By a similar
argument for the third term, we get

JLr(Pft:/z) = —iTr([VpSﬁ,Hff:/z - Hf]pﬁf:/z) (16)
and
TRyt ) = —iTe([V, Sy Hyll oy — Hylppd7 ) (17)
with
o, = JLV(Pfj/z) + ng(pfi:/z)- (18)

We schematically show J; and J; in Fig. 8(b). The cur-
rents are linear functions of the higher-level subsystem
density matrices pﬁf:/z and pﬁi:/z, respectively (which
motivates the notation). Similar to the subsystem von Neu-

: : 14 7 AT
mann information /,, the von Neumann currents J; (o, ", )

and Jy (,ofi: /») take values on the subsystem lattice. They
are global properties of the subsystem, which implies that
they are not assigned to individual lines that connect lattice
points but to the full subsystem triangle on the subsystem

lattice, and flow between subsystems.

2. Projection onto a constrained subspace

The constraints on x/ discussed in Sec. III A can now be
condensed into four equations:

Tr} (x}) = 0,
Ji(xh) =0,

Trp(xy) =0, (19)
Jr(xh) = 0. (20)

If Egs. (19) and (20) are fulfilled, the density matrices
phi=pt + x! and p! have the same lower-level subsys-
tem density matrices and identical currents on all lev-
els below £. Conditions (19) and (20) are schematically
depicted in Fig. 9 when applied on level £y, and r = 2.
If constraints (19) are satisfied, all density matrices for
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C() C4 n

m Ym—+1

FIG. 9. Schematic of information minimization at level £,
with » = 2. All subsystem density matrices on levels £ < €pin
are kept fixed (indicated by the gray background). Addition-
ally, we demand that the currents (black arrows) out of the red
region to the left [see (a)] and right [see (b)] remain unchanged.
In the region of fixed density matrices (gray), currents are also
automatically preserved.

£ < Ly are kept fixed (indicated by the gray background).
Furthermore, constraints (20) guarantee that the currents
that flow out of the red region (black arrows) into the blue
[see (a)] and green [see (b)] regions remain unchanged.
Contributions to the currents at £ < £, are already pre-
served due to the imposed trace condition (specifically, the
currents within the gray background). Thus, effectively, the
current constraints (20) add only an additional condition on
the currents that flow directly into level £, (ensuring that
no extra currents are generated by the shift matrix x ).
Importantly, Egs. (19) and (20) represent linear opera-
tions on x!. Thus, we can impose Egs. (19) and (20) by
projecting x! onto the respective kernel of the linear oper-
ators Tr}, Try, J;, and J. Given an arbitrary matrix x., the
projectors onto the (partial) trace-free spaces are defined as

1
Plryl o= x! — Ed ® Try(x,), 1)
1
P Xy = X — Trp(xy) ® 70’. (22)

To merge the projections of Egs. (21) and (22) with the
desired conditions on current (20) in a combined projector,
we use definitions (16) and (17). The current J; of an arbi-
trary, (partial) trace-free matrix PL'P]"x ¢ with subsystem
coordinates (n, £) is given by

JIPRP %) = —iTr([V,S. .

n+r/2’ Hl . ]P;rpzl‘xrf)

n+r/2
(23)
The Hermiticity of the operators (including P;'P]") and the

cyclic property of the trace allows us to rewrite the right-
hand side as

JEPEPI )G = —iTe(f, 51, (24)
where
L =PRIV, S Hy —H ol (25)

Combining the projectors to the kernels of Tr}, Tr}, and
JJ, denoted P/, we get

Pt Tr(f," X)
PIPEPI e = X — —Tr(w)2)ﬁ. (26)

Finally, the current J}, of P/ PX'PT" x £ is given by

Jh(PRPEPI x5y = —i Tr(glx ), (27)
where
= Pinerr[vaﬁ::/z’Hf - H;f—_rr/z]- (28)

Thus, the concatenated total projector P to the kernel of the
system of equations defined by Eqgs. (19) and (20) reads

Tr(gn Xn ) 0

e __ L
PXo = 20~ Tpghy ¥

n n

(29)

Given an arbitrary x!, P projects it to the subspace of
matrices that preserve all subsystem density matrices on
£ < Lmin and information currents on £ < £in.

3. Minimization of local information under constraints

Given P that projects onto the subspace of interest, the
next step is to find the optimal x! that minimizes the
information, or, equivalently, maximizes the von Neumann
entropy, at level £. We want to find &' := Py} such that
S(pf + &) = —Trl(pf + £ In(p + £5)] is maximized.
For ease of notation, we drop the indices n and ¢ in this
section. Expanding the von Neumann entropy up to second
order in & yields (see Appendix C for a detailed derivation)

S(p+8) =S80 +Px)=S(p) + Tr(PV,S x)
1
+ 3T PALP ) + O, (30)
where V,8 = —In(p) — 1 is the entropy gradient,

A, - = Uplhx (U} - U)IU} (1)

is the entropy Hessian at p, U, diagonalizes p, i.e., its
columns are given by the eigenvectors of p, and h is a
matrix with elements

arctanh[(k; — k;)/(k; + k;)]

Kl'—Kj

hyj = — (32)

with the «; the eigenvalues of p. Finally, 4 x B denotes
the elementwise multiplication (or Hadamard product) of
two matrices 4 and B. Importantly, since the eigenval-
ues of the density matrix p are always positive, «; > 0,
from Eq. (32) we see that all the elements of h are strictly
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negative. Thus, we can apply Newton’s method for opti-
mization to find x* such that the von Neumann entropy
S(p + Px*) is maximal (or, equivalently, such that the von
Neumann information is minimal) given the imposed con-
straints. The optimal shift x* that maximizes the entropy
is

x*=—(PA,P) PV,S, (33)

where (-)* denotes the pseudoinverse [54]. To avoid the
nontrivial computation of the pseudoinverse, instead of
using Eq. (33) we numerically solve the related linear
equation

PP x* = —PV,S (34)

via the preconditioned conjugate gradient method [55]
(see Appendix C2 for details). Therefore, we iteratively
update x until convergence is reached and Eq. (34) is
satisfied. To minimize the information at level £, on
the subsystem lattice, we perform the above scheme for
each lattice coordinate (n,£y,) individually. Since the
lower-level density matrices on ¢ < £, and information
currents on £ < £, are kept fixed, the order in which
the subsystem density matrices ,ofmi“ are minimized does
not change the result. Finally, to lighten the notation, we
replace p'min with pyminThis ensures that the symbol p
consistently represents the density matrices used in the
approximate time-evolution scheme.

IV. NUMERICAL SIMULATIONS

A. Local observables: energy distribution and
diffusion coefficient

Time evolving with a time-invariant Hamiltonian
ensures energy conservation. However, if the initial state’s
energy distribution lacks translational invariance, energy
tends to be redistributed as time progresses. This energy
redistribution trajectory hinges on the model’s hydrody-
namics, primarily characterized by Hamiltonian A. Energy
transport can range from localized to subdiffusive, diffu-
sive, ballistic, or even superdiffusive. By initializing the
dynamics from a state featuring localized energy accumu-
lation, one can distinguish the diverse transport regimes
from the energy distribution’s variance over time. For
instance, in a diffusive system, the energy distribution’s
variance grows as « z, an outcome deduced directly from
the diffusion equation. On the other hand, ballistic trans-
port is expected to yield a variance proportional to 2.

Assuming that the system Hamiltonian H is local with
a maximum interaction range », we can write it as the sum
of local terms:

H=Y I, (35)

with m a physical site index. Note that this partition is
not unique. Note furthermore that H # )" H, with H,
defined in Eq. (2). Indeed, the H] are global quantities
on the subsystem lattice covering a range of » + 1 physi-
cal sites; hence, different subsystem Hamiltonians overlap.
A local partition of the Hamiltonian has the advantage
that the expectation value (H) becomes the sum of local
expectation values, and E := (k) quantifies the local
energy.
Given the distribution of the local energy, the corre-
sponding variance is given by
2
) ., (30)

where m =) mE} /(H) is the first moment of the distri-
bution. Furthermore, the diffusion coefficient is

E E!
of = Z(m —ﬁ)zﬁ - <Z(m —m) (}}n)

D := 1d0;. (37)

Even though for time-invariant Hamiltonians 9,(H) = 0,
the local energies are in general not constant. We obtain

0k, = Tr(h,0:p) = i([H, hy,]); (38)
thus,

i (H D)
D_E;(m m) )

. _ E, _ ([H,m])
- l;(m — ) Wi ;(k— m)T. (39)

In diffusive systems, D is expected to be constant as 07 o

Dt and is typically referred to as the diffusion constant.
Generically, the scaling of o is not linear in time and the
diffusion coefficient D depends on time.

Note that similar quantities as those defined in this
section can be introduced in the presence of other con-
served charges, for instance magnetization.

B. Initial states

For a thorough investigation of the transport properties
through the temporal scaling of the diffusion coefficient,
the energy diffusion should occur unimpeded through-
out the system, in particular, without boundary reflec-
tions. Consequently, the analysis necessitates working with
either very large systems or, ideally, systems that are
infinitely extended. In the general case where the Hamil-
tonian is not translation invariant, managing infinitely
extended systems is only feasible when the initial state
approaches thermal equilibrium asymptotically in space,
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thus remaining static [56]. A simple state in this family of
states is given by

pinit:( X pm,oo> ®pﬁ,init®( X pm,oo),

m<n—~t/2 m>n+L/2
(40)

where 0,00 = 14/d is the infinite-temperature single-site
density matrix located at site m, and d is the Hilbert space
dimension of the physical sites. If the Hamiltonian is trace-
less, the product state formed solely from p,, o possesses
zero total energy; if it is not traceless, one can always
redefine the energy by subtracting the trace such that this
condition holds. The initial state (40) thus contains a finite
amount of energy located within a range of £ + 1 physical
sites centered at n (determined only by Pfl,init)-

In practice, Eq. (40) allows us to effectively simulate a
finite system at all times while performing time evolution
of the infinitely extended one. Indeed, the initial state (40)
is asymptotically time invariant, as infinite-temperature
density matrices do not evolve in time. We stress that
this important property holds for any Hamiltonian, includ-
ing those that are nontranslation invariant or disordered.
Consequently, the algorithm exclusively performs time
evolution within the central region of the system, encom-
passing a finite number of sites around #n. This effective
region includes both the physical sites whose state devi-
ates from the infinite-temperature background at time ¢,
and a finite number of physical sites at the boundaries
in the infinite-temperature state. After each time-evolution
step, we check the state of the boundary sites. If the differ-
ence (in norm) between their single-site density matrix and
the infinite-temperature single-site density matrix exceeds
a chosen tolerance, we enlarge the effective system by
adding further physical sites (at infinite temperature) at
each end of it (see Appendix D1 for more details). By
increasing the size of the effective region, we ensure
that energy, while spreading over time, can freely propa-
gate throughout the system. Given £, utilizing Eq. (40)
makes the required computational resources scale linearly
with the effective system size.

One convenient choice for pﬁ,init (used in Sec. IVD
below) is a thermal density matrix with respect to the
subsystem Hamiltonian H!:

Pl e = — exp(—BHY)
n,nit Z n’» (41)

Z = Trlexp(—BH,)].

C. Numerical parameters of LITE

To numerically implement the two-level scheme of
LITE depicted in Fig. 7, one needs to introduce some
threshold parameters. Let us imagine we initialize the sys-
tem in a state with local information only on small levels £

where £ < £* < €pin < max. We then start the time evo-
lution from density matrices on level £* by closing the
equation of motion (8) via the projected Petz recovery map
(see Appendix B 2). As soon as the local information on £*
reaches a small critical threshold value, ¢*, we update £*
to £* 4+ r by computing the higher-level density matrices
via the recovery map. When £* reaches £, and a criti-
cal amount of information has accumulated at €.y, ¢max,
we perform the current-constraint minimization at level
Lmin While keeping all lower-level density matrices and
information currents unaltered. Subsequently, we continue
the time evolution at level £* = £,,;, as described above.
We refer to the application of one minimization as one
evolution cycle.

While €, and £, should be chosen as large as pos-
sible (and such that £y, < €max), and ¢* should be set
as small as possible, a similar extremal condition should
not be applied to gmax. Since the minimization removes
information over time, the total information in the sys-
tem (specifically, the sum of local information over all the
information-lattice sites) shrinks with the number of evolu-
tion cycles. Thus, we define gnmax as the percentage of local
information that we allow on level £,,, measured with
respect to the total information currently in the system.
This implies the need to recompute the total information
in the system at the beginning of each cycle. Choosing too
large values of gmax is problematic as local information
starts to accumulate at £, making Petz recovery maps
less accurate and possibly distorting the dynamics on the
lower levels. On the other hand, infinitely small values for
gmax trigger overly frequent minimizations of local infor-
mation at £,i,. In this case, local information has no time
to travel beyond £y, and the intrinsic dynamics of the
system is altered. Thus, there is an optimal range for gmax
that has to be determined empirically for the system under
consideration.

D. Diffusive dynamics in the mixed-field Ising model

To demonstrate the efficiency of the LITE algorithm, we
apply it to an established model for which the expected
dynamics is known. We show that LITE is able to access
previously unreachable long times with excellent con-
vergence properties. Specifically, we consider the one-
dimensional, mixed-field Ising spin chain with Hamilto-
nian

H = ZJa;a,le + hro,, + hioy, (42)

where o, (with n € {x,y,z}) are Pauli matrices acting on
the physical site m. Hamiltonian (42) represents a nearest-
neighbor, translation-invariant model. A number of recent
works have discussed the same Hamiltonian in the context
of diffusive dynamics [7,25,33]. For Hamiltonian (42), we
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FIG. 10. Diffusion coefficient as a function of time D(¢) for
different £, at fixed £ = 9 and gmax = 0.5%. At short times,
the system has a ballistic behavior, and D(#) increases with time.
Diffusion coefficient D(¢) then saturates to a plateau for ¢ = 20.
The oscillations of D(#) along the plateau are associated with
algorithmic artifacts and shrink to zero as €, increases. The
(average) plateau value of D(?) increases with £, and tends
to an asymptotic value for £,;, — oo (see Fig. 11).

define the local energy as

W, = Jogos, + slhr(oy + opy ) + hi(or + op, D]
(43)

Given that energy is a globally conserved quantity, and
considering an initial state of the form (40), at late times
one expects the variance of the energy distribution to scale
as o = Dt, with D a constant. The exact value of D can
only be determined in large-scale systems and at very long
times.

We set J =1, hpy = 1.4, and Ay = 0.9045, ensuring
fast entanglement growth and chaotic dynamics [57]. We
initialize the system in state (40) where the part that devi-
ates from the infinite-temperature density matrices p oo
is spanned by three sites and given by Eq. (41) with
B = 0.05. Using the LITE approach, we time evolve this
infinitely extended initial state for different configurations
of the algorithm parameters. After each time-evolution
step, we measure the distribution of energy E; , the corre-
sponding variance according to Eq. (36), and the diffusion
coefficient according to Eq. (39).

In Fig. 10, we depict the diffusion coefficient as a func-
tion of time for different values of £,,;, with fixed €,x = 9
and gmax = 0.5%. At short times, up to the first occur-
rence of minimization, all the curves are identical. In
this first regime of the dynamics, the system has a bal-
listic behavior and D(?) increases with time approaching
its final plateau value. The saturation process is however
longer than the timescales at which minimization appears;
thus, we find a dependence of the saturated value of D(?)
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FIG. 11. Diffusion coefficient D averaged over the time win-

dow ¢ € [20,100] as a function of 1/, for different (a) £max
and (b) gmax. The dashed lines show a linear extrapolation of the
asymptotic value of D for £, — oo, obtained considering the
three data points at largest £, at fixed €.« [panel (a)], and all
the data points at fixed gmax [panel (b)]. This gives the rough
estimate limy,, oo D ~ 1.55.

on £niy: increasing values of £.,;, are associated with an
increasing (average) plateau value of D reached at times
Jt 2 20. Another noticeable feature of Fig. 10 is the oscil-
lations of D forming at increasing times. We attribute these
oscillations to algorithmic artifacts emerging from the min-
imization and the removal of information at £,,;, that can
affect information flow. As £, is increased, the magnitude
of oscillations shrinks consistently. Therefore, they can be
interpreted as finite-scale effects associated with £,;,. Intu-
itively, this depends on the fact that expectation values of
operators with support on a few sites should not be influ-
enced by the dynamics of local information happening at
much larger scales.

Importantly, we find a clear convergence of the average
plateau values of D as a function of 1/£,;,. This conver-
gence is better analyzed in Fig. 11 depicting the diffusion
coefficient D averaged in the interval ¢ € [20,100] as a
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FIG. 12. Colormap of the diffusion coefficient D averaged over
the time window ¢ € [20,100] for different £, and £ at
gmax = 0.5%. Colors remain almost constant by moving on the
horizontal axis, while they differ by moving on the vertical axis.
This implies that D does not depend largely on £y, while it
strongly depends on £,,;,. Moving both from left to right and from
up to down, D increases and approaches the asymptotic value.

function of 1/, for different £,,x and gmax. Using a
linear extrapolation of the asymptotic value of D for
Lmin — 00, we find that lim,_. D ~ 1.55. This value is
within a 5%—10% margin from the values 1.4—1.46 found
for the same model in recent works [33,41,42]. These
discrepancies can be attributed to different reasons. For
instance, we consider longer timescales than Ref. [33] that
predicts the value 1.4; while we time evolve up to Jt ~ 100
and average over ¢ € [20, 100], in Ref. [33] the maximum
evolution time is J¢ ~ 20 at which the diffusion coefficient
has not yet converged to its long-time plateau. In addition,
other works [41] do not provide an asymptotic extrapola-
tion as that in Fig. 11. As the exact value of the diffusion
constant for the mixed-field Ising model is not known, in
Sec. VB below we further benchmark our approach by
applying it to a model for which the exact value of the
diffusion constant has been derived.

Clearly, £y, is the most decisive parameter of our
algorithm as it determines the scale above which the con-
servation of local constants of motion is not guaranteed
(see Appendix A). Given a fixed value of £, the remain-
ing parameters €. and gmax only have a (similar) weak
influence on the resulting value of D, as exemplified in
Figs. 11 and 12. There is, however, a caveat: while £«
sets the maximum value of £,,;, and should be chosen as
large as possible, no such line of reasoning exists for ¢max.
In fact, lowering gmax too much makes the removal of
information via the minimization scheme ineffective, while

1.10 P
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gmiu =3 gmm 6 ‘/“' ko
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1.081 " =4 * g =7 P ////
R
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1.061 }/
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FIG. 13. Power-law exponent y of oZ(#) as a function of the
window time 1/¢,, for several £y, at £ = 9 and gmax = 0.5%.
By linear fits, we extrapolate yo, = lim;, o y. Inset: y» as a
function of 1/£y;,. By a linear fit, we extrapolate Yy, in the
limit of £,,;, — 00, obtaining yZ = 0.999 £ 0.004, compatible
with 1, which is the expected power-law exponent for a diffusive
system.

too large values of gmax lead to an accumulation of infor-
mation at level £,,,x before the minimization at level £,
is triggered, which might distort the information flow and
the system dynamics. Thus, we expect the presence of an
optimal range of values for ¢u,x. Empirically, we do not
find significant differences in the range gmax ~ 0.5%2%
(see Fig. 11).

Figure 10 contains a barely visible yet important sub-
tlety: even in the saturated regime (J¢ 2 20), the diffusion
coefficient D is not entirely constant over the time of
evolution. Instead, we observe a slight time-dependent
increase in D. To quantify the drift, we assume the func-
tional form o7(f) oc Dt and apply a power-law fit to
different time windows in the saturated regime of the time
evolution. We fix the window length to At = 10, and let #,,
denote the initial time of the window. The power-law expo-
nent y as a function of the time window is shown in Fig. 13
for different values of £,,;,,. We find that the flow of the
exponent y supports diffusive dynamics at late times and
large £min: limyg,_; o0 limy, o0 ¥ = 0.999 & 0.004. Impor-
tantly, this shows that the algorithm is able to capture the
correct long-time behavior of local observables. Indeed,
for the current model, any deviation from purely diffusive
behavior would hint at a systematic error in the algorithm
that distorts the dynamics.

V. LINDBLAD DISSIPATIVE DYNAMICS VIA
LOCAL-INFORMATION TIME EVOLUTION

A. The Lindblad master equation within LITE

The von Neumann equation (7) and the subsystem
equation of motion (8) describe the dynamics of closed
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quantum systems. However, in many practical cases,
achieving a reliable description of a quantum-system
dynamics requires considering its interaction with the
external environment [58]. This interaction introduces
quantum dissipation. Unlike closed systems, the dynamics
of open quantum systems cannot be represented by uni-
tary time evolution. Nevertheless, one can often formulate
it in terms of a quantum master equation. Among those,
the Lindblad master equation [59,60] (or Markovian mas-
ter equation) holds a significant role. It characterizes the
evolution of a system that is coupled to a thermal bath
that is memoryless, implying that its timescale is consider-
ably shorter than any other timescale in the problem. The
Lindblad master equation is a first-order linear differential
equation for the system’s density matrix; it reads

. T
b = —ilH, p]+ Y v Lipky = S1LLj p} ). (44)
J

Here, {-, -} is the anticommutator, and Lj,LjT are the Lind-
blad jump operators modeling the dissipative dynamics.
The jump operators describe how the environment influ-
ences the system and must in principle be derived from
the full microscopic Hamiltonian that accounts for the sys-
tem and the environment. The coupling constants y; > 0
quantify the strength of dissipation.

The LITE approach can be readily extended to open
quantum systems governed by the Lindblad master
equation. This extension is particularly straightforward
when dealing with Lindblad jump operators acting on
individual physical sites. In this scenario, the subsystem
equation of motion takes the form

dipy = —ilHy, ps1+ Y Yu(LmpyLl, — (L}, Lus p1)

meCt
Tt ¢ ¢
— T ([H, 5, = Hy. 0,57 5))

— ITeR([HT ) — HE pl D). (45)

Note that m denotes the physical sites within subsystem C£.
Remarkably, the second term on the right-hand side exclu-
sively involves p!, allowing for the seamless inclusion of
onsite dissipators. In fact, this addition does not necessitate
any modifications to the LITE approximate time-evolution
scheme.

As previously discussed, the fundamental idea of the
LITE approach is to selectively remove local informa-
tion while preserving the local dynamics. This strat-
egy enhances the accuracy of recovery maps, facilitat-
ing the closure of the subsystem equation of motion (8).
From this perspective, the introduction of Lindblad dis-
sipators is expected to improve the convergence prop-
erties of the algorithm. Consequently, LITE emerges as

a particularly well-suited approach for addressing sys-
tems with dissipative dynamics. In a concurrent (mainly
experimental) work [61], some of the present authors
applied this approach to reproduce experimental results for
driven nitrogen-vacancy centers in diamonds. Specifically,
in Ref. [61] thermalization is used to engineer and stabilize
mesoscopic shell-like spin textures characterized by spins
exhibiting opposite polarization on either side of a criti-
cal radius. These textures encompass about O(100) spins
and are stable for several minutes. In the following section,
we discuss in detail another application of LITE to open
quantum systems.

B. Numerical results for diffusive dynamics in the
presence of onsite dephasing

To showcase the efficiency of LITE for open systems
within the Lindblad framework, we employ it for a model
for which the exact diffusion coefficient has been analyti-
cally derived [43—45]. Our analysis shows that in this case
LITE is able to obtain the diffusion coefficient with high
precision, even at small scales €, and £y,¢. Specifically,
we simulate an XX spin chain subject to onsite dephas-
ing Lindblad operators. The dynamics of the system is
determined by the Lindblad master equation (45), with
Hamiltonian

H=> J(onomi+0n0m1) (46)
m

and dephasing Lindblad operators acting on each physical
site with coupling strength y:

Ly, =07, ym =7y forall m.

(47)
The presence of local dephasing effectively introduces
interactions in the system that change the transport charac-
teristics from ballistic to diffusive, as previously observed
via matrix-product operator techniques [44,62,63]. The
exact value of the diffusion coefficient for the open chain
in Egs. (46)—(47) was derived to be [43—45]

22

D : (48)
Y

For the system described by Egs. (46)+47) we conduct a
series of simulations using LITE to study magnetization
transport. We initialize the system in state (40) where pﬁ,init
is a product state spanned by 11 sites with a finite negative
magnetization, pf;. = &, o5 With p,, = (o) = —0.2.
As in Sec. IV D, we time evolve this effectively infinitely
extended system for different parameters of the model.
At each time-evolution step, we compute the diffusion
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FIG. 14. For each y, we plot the diffusion coefficient of mag-
netization transport in Eq. (49) at (€min, £max) = (3, 5) (solid line)
and (4, 6) (dashed line) for fixed J = 1. The curves at different
(Lmmin, Lmax) differ at most by about O(10~®), indicating the fast
convergence of LITE in the presence of dissipation. After a short-
time ballistic behavior, D(¢) saturates to a plateau dependent
on y. The long-time diffusion coefficient perfectly agrees with
the exact value in Eq. (48) (dotted lines; see also Fig. 15).

coefficient according to
i _2([H,0,])
Tl k- LD )

where P =) pp.

Results are reported in Figs. 14 and 15. In Fig. 14, we
show the diffusion coefficient as a function of time, D(?),
for different coupling strengths ¥, (Lumin, €max) = (3,5)
(solid lines) and (Lmin, £max) = (4,6) (dashed line). The
diffusion coefficient D(¢) shows remarkable features. First,
the results are almost independent of the scales (£in, £max),
even at those modest values. Moreover, the artificial oscil-
lations present in the closed case (see Fig. 10) are now
completely absent, and the diffusion coefficient is highly
stable and constant in the long-time limit. Finally, we
recover the analytical result in Eq. (48), shown as dotted
lines. In Fig. 15, we further demonstrate the high agree-
ment of the LITE results (purple circles) with the analytical
ones (orange circles) by computing D, that is, the diffusion
constant averaged over the time window ¢ € [30,220], as
a function of 2J2/y. The points are aligned on a straight
line with slope 1, as implied by Eq. (48). The difference
between the LITE results and the exact ones is at most
about O(1079).

Our findings demonstrate that onsite Lindblad operators
enhance the convergence properties of LITE. We attribute

201 O Numerical O
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1R 101 @
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5 (o)
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0] ©°
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FIG. 15. Diffusion constant of magnetization transport

in Eq. (49) averaged over the time window ¢ € [30,220]

for  (Lmin, max) = (4,6) and gmax = 1% as a function
of 2J%/y (purple circles). Data points correspond to
J=0.1,02,03,04,0.6,0.7,0.8,09 for y=0.1, and

y =0.1,02,03,04,0.5 for J=1. The long-time diffu-
sion constant D agrees with the exact result in Eq. (48) (orange
circles); they differ at most by about O(107%).

this enhancement to the removal of information operated
by dephasing, which in turn improves the accuracy of the
subsystem time evolution via recovery maps. In the sim-
ulations, we have indeed observed that the minimization
protocol is activated only at short timescales, due to the
presence of information at level £,,«. At intermediate and
long timescales, the total amount of information in the sys-
tem is very small. Consequently, efficient time evolution at
a reduced scale £,,x = 3 is feasible without the need for
additional minimization steps or increasing time-evolution
scales £y,x. Thanks to this, Figs. 14 and 15 have been
obtained by using very modest computational resources.

VI. CONCLUSION AND OUTLOOK

We have proposed a novel algorithm (LITE) for the
approximate time evolution of generic local many-body
quantum Hamiltonians. Our approach is based on sta-
tistical arguments concerning the unidirectional flow of
quantum information, which primarily progresses to larger
scales without returning to smaller scales to influence local
observables. By leveraging the concepts of local informa-
tion and information currents, we systematically discard
long-range correlations in a controlled manner. This allows
us to obtain an accurate description of local states at any
given time.

LITE operates by decomposing the system into subsys-
tems and solving their von Neumann equations in parallel.
For closing the (in principle infinite) hierarchy of subsys-
tem equations of motion, we have introduced two scales,
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Lmin and £,,,. Parameter £,,;, defines the scale at which
we systematically remove local information while pre-
serving lower-level density matrices (for £ < £.,;,) and
information currents (for £ < €,). Parameter £y, is the
maximum scale on which time evolution is performed,
and is constrained by available computational resources.
The knowledge of the subsystem states at the maximum
scale £« is used to accurately determine the information
flow on smaller scales. By construction, the LITE approach
conserves all local constants of motion at scales £ < £yin.
Scale £, also controls the accuracy of the results. While
the computational complexity of LITE scales exponen-
tially with the subsystem level ., it increases only
linearly with the total system size, which allows the inves-
tigation of large-scale systems and long timescales. Cru-
cially, LITE does not require any external assumptions on
the information currents, nor does it require the presence
of symmetries, such as translation invariance. Therefore,
this approach is highly versatile and suitable for exploring
the thermalization dynamics (or its absence) across vari-
ous physical contexts, encompassing systems with diverse
hydrodynamic behaviors.

Within the LITE framework, we can initialize time evo-
lution from diverse initial states, including domain walls
in finite-size systems or infinitely extended translation-
invariant states [7]. Here, we have demonstrated its excel-
lent convergence properties when starting from asymptoti-
cally time-invariant states (that is, states in which the state
of the asymptotic region commutes with the Hamiltonian),
particularly those near infinite temperature. This enables
effective simulations of infinitely extended systems. Start-
ing with such states, we have investigated the dynamics
of the mixed-field Ising model for a set of parameters in
which the system is highly chaotic; thus far, other time-
evolution methods, such as matrix product states with finite
bond dimensions, have not obtained concluding results.
Remarkably, we have been able to perform time evolution
up to very long times and get an accurate estimate of the
power-law exponent for energy diffusion and of the energy
diffusion constant.

The LITE approach is especially well suited for inves-
tigating Lindblad dissipative dynamics with local dissi-
pators. In that case, the algorithm converges even faster
than for closed systems due to the additional removal of
information operated by the dissipators. Harkins ef al. [61]
demonstrated this by reproducing experimental results for
the magnetization transport driven by nitrogen-vacancy
centers in diamonds. In addition, here we have shown
results for an open XX spin chain subject to onsite dephas-
ing that presents diffusive transport in the long-time limit
and for which the exact value of the diffusion constant
has been analytically derived [43—45]. The diffusion con-
stant calculated with LITE perfectly agrees with the exact
value, even when computed for small scales £, and
£max- This shows that, in the case of Lindblad dissipative

dynamics, LITE provides accurate results at extremely
modest computational costs. This open doors for unprece-
dented accurate investigations of long-time and large-scale
open many-body quantum systems.

Since LITE relies solely on quantum thermalization and
the consequent entanglement growth, we expect it to also
be particularly appropriate for simulating subdiffusive and
superdiffusive transport in quantum systems. The investi-
gation of these transport regimes is a growingly interesting
research direction at the forefront of theoretical and exper-
imental physics [64,65]. Moreover, while here our focus
has primarily been on one-dimensional nearest-neighbor
Hamiltonians, the LITE approach can be applied to generic
finite-range Hamiltonians and potentially extended to
higher-dimensional systems. In the future, we anticipate
exploring connections between the LITE approach and
tensor network algorithms for time evolution, with the
potential for mutual insights and efficiency improvements.
Additionally, combining a tensor-network ansatz with the
LITE approach for compressing high-level density matri-
ces could yield further algorithmic enhancements. Fur-
thermore, we anticipate the possibility of gaining valuable
insights into the spatial and temporal behavior of entangle-
ment in many-body systems by employing the framework
of the information lattice. The information lattice could
indeed provide additional information on dynamical het-
erogeneity observed in localized systems [66] and, more
generally, on the complex structure of bipartite quan-
tum entanglement in both ergodic and localized systems.
Finally, we expect that the LITE approach will make
valuable contributions in the field of quantum computa-
tion, such as facilitating classically optimized Hamiltonian
simulations on quantum hardware [67,68].
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APPENDIX A: CONSERVATION OF LOCAL
CONSTANTS OF MOTION

A fundamental feature of the LITE approach is the
conservation of local constants of motion on scales smaller
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than the minimization scale, £ < £,. Importantly, trunca-
tion errors inherent to the algorithm do not compromise
this conservation. Consider a local operator ©, which can
be expressed in the form

_ § Lrin—1
O = Onmm
n

(AT)

Cmin—1 .
where o0,™" ~ is an operator acting only on subsystem

Chmin~1 By assumption, © commutes with the Hamilto-
nian: [H, ©] = 0. Then, the expectation value of © at time
t is a constant of the motion:
(9>t = Z Tr[oflm‘“_
n

! ptmin=1(£)] = const. (A2)

In this appendix, we demonstrate that, within the LITE
algorithm, (©), remains unchanged over time, mirroring
the behavior under exact dynamics.

The LITE algorithm comprises two primary steps, as
depicted in Fig. 7 in the main text: local-information mini-
mization and time evolution via Petz recovery maps. First,
let us consider the minimization of local information on
level €. As discussed in Sec. III in the main text, min-
imization under constraints (19) and (20) does not affect
the density matrices on levels £ < £.,;, — 1; thus, this step
does not alter the expectation value (A2). Second, let us
consider the time-evolution step, which corresponds to
the integration of the equation of motion (8). To demon-
strate that time integration also preserves local constants
of motion, it is sufficient to show that

> " Trfofmin=" 9, plmin=! (5] = 0, (A3)

where 8t,o,f"““71 (#) is the time derivative, as defined by the
algorithm. In the LITE approach, it takes the form [see Eq.

(8) in the main text]

dyptmin ! (1) = —i[Hmin=", plmin=1]
— iTr} ([Hf@irn/;lw — Htwin~ ’pnml;‘/21+r])
— TR ((H,m, ™ = Hymin™! pymn 1),
(A4)
Cmin—1+7

where the p, are higher-level density matrices.
These are either known a priori, for instance at the ini-
tial time ¢ = 0, or recovered using projected Petz recovery
maps (see Appendix B 2). In both cases, the density matri-
ces pf;mi“_“rr preserve lower-level density matrices [see
Egs. (B7)«(B9) below]. By the recursive application of
projected Petz recovery maps, we can construct the den-
sity matrix pZ~! acting on the full system, from which the

subsystem density matrices at level £, — 1 for all n can
be obtained by suitable partial trace operations:

=Tr.. ,oLfl.

(3 min—

pﬁmin (A5)
Here G_fmi“fl is the complement subsystem of G,fmin*l, that
is, it is the set of all the physical sites that do not belong to
subsystem Clmin=1, By rewriting Eq. (A4) as

B0, (0) = —i ez 1 ((H, 071D, (AG)

we find that

ZTI- mm_lap mm_l(t)

—IZTI'(O min ™ [H | p _1])

= —iTr(O[H, p*~'])
= —iTr([O, H]p*™")
=0, (A7)

verifying Eq. (A3).

To complete the proof, we need to demonstrate that the
errors due to the finite time-step size used to integrate Eq.
(A4) do not affect the preservation of the local conserved
quantities. In the numerical implementation of LITE, we
exclusively use Runge-Kutta integration methods (as dis-
cussed in Appendix D2). Let us write the Runge-Kutta
integration scheme applied to Eq. (A4) in the general form

K
,Oﬁmin_l(t—i- (St) — pfmin—l(t) + SZZbinmin—l,i + O(StK),
i=1

(A8)
where the b; are the Runge-Kutta parameters, the K,fmi“_l’i
are derivative functions evaluated for different density
matrices [69], and K is the order of the truncation error.
Importantly, derivatives within the LITE approach are
always of the form (A4). Therefore, by the same argument
used in Eq. (A7), we find that

E : Crin—1
Tr(onmm
n

This proves that, by employing Runge-Kutta methods,
(©), is a constant of the motion up to machine preci-
sion (no matter the value of §7). Note that, for other
integration schemes, such as the Suzuki-Trotter decompo-
sition, local conserved quantities are not guaranteed to be
conserved [7].

ictmin=Liy — 0, (A9)

APPENDIX B: DETAILS ON THE PETZ
RECOVERY MAPS

As discussed in the main text, recovery maps are needed
for closing the equations of motion of subsystems at a
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given level ¢* [Eq. (8) in the main text], and, conse-
quently, for performing the approximate time evolution
within the LITE algorithm. The recovery maps employed
in the numerical implementation of LITE are required to be
optimized for computational efficiency and to satisfy the
condition of nonalteration of lower-level density matrices.
Both aspects are discussed in this appendix.

1. Petz recovery maps without error bounds

Let us consider two (potentially) overlapping regions A
and B with corresponding density matrices o4 and pg. If
the mutual information between the states of 4 and B van-
ishes [in equation form, i(4; B) = 0 with i defined in Eq.
(4) in the main text], several analytical expressions can
be employed to reconstruct the state of the union region
AB := A U B using the reduced density matrices o4 and pg.
For instance, three distinct recovery maps yield the same
(exact) density matrix p4p when i(4; B) = 0 [49]:

—1/2 —-1/2 172

P4B = ,0,4 IOAOB PBP 4B Py (B1)
12 —1,2 12 12

= 05 Py PAPg P (B2)

= exp[In(p4) + In(pp) — In(p4np)]. (B3)

J

A
Pny12 =

and if i = n+1’
it 75 0for ¢ =1,.

(s (o1~ 20k (o

0 N120 05—1 \—1/2 e*
(Ops1) / (pn+l/2) /

The last equation corresponds to the twisted Petz recov-
ery map introduced in Eq. (9) of the main text. Only the
twisted Petz recovery map possesses a known error bound
when the mutual information i(4; B) # 0 [see Eq. (10) in
the main text]. While having an error bound is generally
advantageous, recovering p4p from Eq. (B3) necessitates
diagonalizing a larger matrix (with the same dimensions
as pyp) compared to Egs. (B1) and (B2). Indeed, the
recovery of p4p using Egs. (B1) and (B2) involves matrix
diagonalizations only for the smaller density matrices p 4,
pg, and p4np, which significantly enhances computational
efficiency.

2. The projected Petz recovery map

In the approximate time-evolution scheme of LITE,
we recover higher-level density matrices from lower-level
ones even in the presence of finite (albeit small; see
Appendix D) mutual information between subsystems A
and B. In the subsystem-lattice framework, this translates
to the fact that we recover the density matrices p[ 7 from
the density matrices p!", even though i+ = 0 for ¢’ =
1,...,r. As a first approximation, we define the recovery
map to be implemented in the numerics as

*—1 ) 1/2([06*)1/2 lfl

n+1/2 n+l’ (B4)
=1 \—1/2, 6% \1/2 o
n+1/2) / (:0 / 1f’ n+1’

we average over the two choices. Equation (B4) can be iterated to obtain ﬁfi*”. By using Eq. (B4) when
, ¥, we generate erroneous density matrices at level £* 4+ r with uncontrolled error bounds. The

main problem of hav1ng such errors is that the density matrices ,oz * may not preserve the lower-level density matrices;
for instance, Tr} (,0” ) #* ,on iy As a result, errors are introduced on all length scales, causing the algorithm to fail to

preserve the local constants of the motion.

To remedy this problem, we add a projection step, exemplified here for » = 1. We compute ,0‘Z *+1 via the projected Petz

recovery map as

Gl a0 41
Pn+J1r/2 n++1/2 + nﬁ/za (BS)
where
£*+1 - 4 _T ~0*+1 E o _T ~0*+1 _E =1 TlT ~0*41 :[]'2 B6
Q12 = Lon 17 (Opy 1)1 ® > ® [on1 = T (B 1 )0)] 2 ® [0y31/2 — T Trg(5,, 1)1 ® (B6)
[

Importantly, 0! +1 I, — 0 as ln +1/2 = 0 and the Petz Trﬁ(pﬁf{}z) = TrZ(pf*_T/lz). (B9)

recovery map becomes exact. It is easy to verify that, for
all n, The recovered density matrix p. ++1/12 Serves as an approx-

£*+1

Trile(pn+1/2) = pﬁ*, (B7)
Try (ppt)2) = Phyis (BS)

imation to the exact density matrix of subsystem Gﬁ +J1“/12

and it is used to perform the subsystem time evolution on
level £*. Note that throughout this work the symbol p
is used to denote density matrices employed in the time-
evolution scheme of LITE.

020352-19



CLAUDIA ARTIACO et al.

PRX QUANTUM 5, 020352 (2024)

APPENDIX C: DETAILS ON THE MINIMIZATION
OF LOCAL INFORMATION UNDER
CONSTRAINTS

1. Gradient and Hessian of the von Neumann entropy

We wish to compute the gradient V,S and the Hessian
¢, of the von Neumann entropy at p, which are defined
through the Taylor expansion

S(p +48) = S(p) + Tr(V,S548)

1
+ 5T REHAE) + 067, (C)

where A < 1 is a small perturbation parameter and £ is a
Hermitian matrix. For ease of notation, we drop the indices
n and £ in this and the following appendix. Let us write

P = Z K T,
i

(C2)

J

S(o+18) = S(p) = Y _[1+ In(k)]d:ki

A=0

By using Egs. (C1) and (C4) in Eq. (C5), we find that

1 £2
S(o +21&) = S(p) + Tr(V,88)A — 3 Z 5—7)\2
I G 1y2 3
> Z s In(k)A* + 0(1*), (C6)
i
where

V,S = —In(p) — 1. (C7)

If £ is traceless, as imposed in the minimization scheme of
LITE by constraints (19) [Tr(§) = Tr(Px) = 0], the iden-
tity term when inserted into Eq. (C6) vanishes. Moreover,

we defined éy = (¥;|€]v;) and used the fact that
> —KE?’ 5’; =02k = 8 Te(p +26) = 0. (C8)
ik i

We can further simplify Eq. (C6) by writing

éyéjl _ SUSJ’ l . i,
Y oo k) = Z 5 <2(5” +A”))

ij, i z,z i#f

l ji 1

IJ i#]
(C9)

Y

(9,.ki)*
> (%

where the k; are the density-matrix eigenvalues and the
I1; = |v;) (] are the projectors onto density-matrix eigen-
states |y;). Given Eq. (C2), we write the von Neumann
entropy as

S(p +A8) = (C3)

— > kiln(k),

where the k; are the eigenvalues of the shifted density
matrix p + A€, obtained from standard nondegenerate per-
turbation theory:

Tr(ITETT; E)x2+0(x3)
Ki

K

k; —K1+TI‘(I—I§))»+Z

t#/
(C4)

The Taylor expansion of the von Neumann entropy around
A = 0 reads

224+ 003).

+[1+ ln(k,-)]é)fk,-)) (C5)

i i =0
[

where §; = «; — kj, Aj = k; + k;, and in the second sum
on the right-hand side we have exchanged i <> j. Using
arctanh(x) = %ln(l +x) — %ln(l — Xx), we arrive at

éi-é-,- €
> - B

i, i) ij 7]

(C10)

We now want to use Eq. (C10) in Eq. (C6). Notably,
lim,_, o[arctanh(x/y)/x] = 1/y allows further simplifica-
tions. Then,

L&
_EZE_

= ——Z 5,,5,, arctanh( Y ) (C11)
Ki — Kj Ki + Kj

LD L S

o —
it

By defining
hy = — arctanh[(/cli i—_ Ki; (ki + Kj)]’ (C12)
we arrive at
S(p +A8) = S(,O) + Tr(V,S8)
+ = Z EihiEn? +0(3).  (Cl13)

7]
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The second-order term of the expansion can be rewritten
as

1 PP S -
5 ;&jhgsﬁ = TGO+, (Cl4)

where “x” represents elementwise multiplication. Given
that & = > TLETL = UbgU,, where U, is the unitary
matrix having as columns the eigenvectors of p (i.e., |¥;)),
and by using the cyclic property of the trace, we obtain

1 .,z 1 ;
3 2 Eihi§i = 3THEU, (hx U, D)U] ]
ij

1
= STHs A,(6)], (C15)

where

A (&) = Uy(hx U US (C16)
is the Hessian of the von Neumann entropy at p, applied
oné&.

2. Newton’s optimization and preconditioned
conjugate gradient method

By replacing & = Py, where P is the projector defined
in Eq. (29) of the main text, and using the Hermiticity of
projector P, Eq. (C13) becomes

S(po +Px) =S(p) +Tr(PV,Sx)

+ %Tr(XP%;,PX) +0@EYH. (C17)

Importantly, since the «; > 0 are the eigenvalues of the
density matrix p from Eq. (C12), it is clear that all the
elements of h are strictly negative. Thus, we can apply
Newton’s method for optimization to find x* such that
S(p + Px*) is maximal. Formally, the optimal x* is given
by
* +
x*=—(PH,P) PV,S, (C18)
where (-)" denotes the pseudoinverse [54]. In practice, it is
more convenient to solve the related linear equation system
P, Py* = —PV,S, (C19)
by virtue of numerical methods such as the preconditioned
conjugate gradient method [55]. To ensure fast conver-
gence, we multiply Eq. (C19) from the left by a precondi-
tioning matrix Q approximately equal to the pseudoinverse
(P%P)Jr. Indeed, while computing the pseudoinverse

of PJZ,P is nontrivial, the computation of the following
superoperator is straightforward:

A = U, U U)U (C20)
with h*~! the elementwise inverse of matrix h [see Eq.
(C12)]. Hence, we use as the preconditioning matrix

O=PxX'P. (C21)
In the numerical simulations, to minimize the informa-
tion at level £y, we solve Eq. (C19) with precondition
(C21) for each density matrix p,fmi“ individually. Since the
lower-level density matrices on £ < £, and information
currents on £ < {n, are kept fixed, the order in which
we minimize does not influence the result. We initialize
)(,iZ min a5 the difference between the density matrix obtained
from a projected Petz recovery map (see Appendix B2)
from lower levels and the density matrix pfmi“ before min-
imization. We keep pﬁmi“ fixed, and consequently .77, and
V,S, while we iteratively update ximn until Eq. (C19) is
satisfied. Since the conjugate gradient method is unsta-
ble against small perturbations, it is impossible in practice
to converge within a desired tolerance w. To solve this

issue, we modify our iterative scheme by adding a damping
factor as

(fmin); g = (fmin); + e[ (ximin); 11 — (xfmin); ], (C22)

where j is the iteration index. If ¢ = 1, the damping is not
present; if ¢ = 0, the density matrix is never updated. The
optimal value of ¢ to converge in the minimal number of
iterations should be empirically found on a case-by-case
basis. Here, we set w = 107> and ¢ = 0.9.

APPENDIX D: DETAILS ON THE NUMERICAL
IMPLEMENTATION

As described in Sec. III in the main text, the LITE
algorithm comprises two fundamental stages. First, it
entails the time evolution of subsystems by means of the
projected Petz recovery maps (see Appendix B2). Dur-
ing this time evolution, the subsystem scale £* on which
time evolution is performed dynamically increases until it
reaches the predefined maximum scale £,,,x. Second, once
£* = €max and information has accumulated at £,,,,«, infor-
mation is minimized at scale £,,;,. The minimization of
information ensures that density matrices at levels £ < £y
and the global information current from lower levels to
£min remain fixed. In this appendix, we revisit these steps
from the perspective of their numerical implementation.

1. Asymptotically time-invariant initial states

The LITE approach for time evolution is applicable
across a wide range of initial states. For example, it can be
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used for studying the transport properties of finite-size sys-
tems initialized in specific finite-temperature states, such
as domain-wall states. Furthermore, in scenarios involving
translation-invariant Hamiltonians, the method can be effi-
ciently used for performing time evolution starting from
translation-invariant initial states, as explored in Ref. [7]
for diffusive systems. Nonetheless, the focus of this work
lies in the development of a comprehensive framework for
capturing the time evolution of generic Hamiltonians. This
inclusivity encompasses non-translation-invariant and dis-
ordered Hamiltonians. Consequently, it becomes conve-
nient to initialize the dynamics in states that commute with
the Hamiltonian asymptotically in space. As, by construc-
tion, the state of the asymptotic region does not change
in time, we refer to these states as asymptotically time
invariant. This feature allows us to simulate infinitely
extended systems, as detailed in the following. Thanks to
the absence of boundaries, one can obtain a robust extrap-
olation of the time-dependent behavior of diffusion coeffi-
cients, as the propagation of conserved quantities over time
and space remains unaffected by boundary reflections.

Out of the family of asymptotically time-invariant
states, we consider those given in Eq. (40) in the main text,
reproduced here for completeness:

pinit:( X pm,oo)®p,f,mit®< X pm,oo>
m<n—~{/2

m>n++£/2
(D1)

with o, 00 = 14/d the infinite-temperature single-site den-
sity matrix located on the physical site m with Hilbert
space dimension d. In particular, we can choose [as intro-
duced in Eq. (41) in the main text]

Pl = — exp(—BHY)
n,nit Z n’» (DZ)

Z = Trlexp(—BH,)].

Since infinite-temperature density matrices are invariant
under time evolution [as can be easily seen from Eq. (8) in
the main text], by initializing the system in state (D1), we
only need to solve the subsystem time evolution for those
subsystems in the central region whose state deviates from
the infinite-temperature density matrix. This sets an effec-
tive system on which time evolution is performed. Since
information spreads over time, the effective region needs
to be enlarged during time evolution.

To avoid any boundary-induced distortions in the
dynamics, we perform the following procedure. We initial-
ize the effective system at # = 0 as composed of 3(€ipit + 1)
physical sites, where £iyi; is the correlation scale of pﬁ‘fr‘l‘lt
deviating from the infinite-temperature state. As depicted
in Fig. 16(a), while the central region (blue area) is in

Cini . . .
state p, # 1 1 /d“nitt! and contains local informa-

tion (green filled circles), the boundary states (red area) are

at infinite temperature and do not contain local information
(open circles). The states in the gray areas are obtained by
recovery maps of lower-level density matrices. Given the
presence of the central region deviating from infinite tem-
perature, they are, in general, not thermal. Let us assume
that local information on sites (n, £init) 1S smaller than the
threshold value gy (see Appendix D 2), such that we can
perform time evolution on level £* = £;,;;. This assump-
tion makes the following discussion valid for any level £*
on which time evolution is performed and for any extent
of the effective system. Figure 16(b) shows that, before
performing the time-evolution step, we enlarge the effec-
tive system by 7 infinite-temperature physical sites at each
boundary. This ensures that we can recover all the nec-
essary density matrices on level £* +  and perform time
evolution on all subsystems on level £* that, after the time-
evolution step, can deviate from the infinite-temperature
state. Note that the additional higher-level density matri-
ces up to level £* are infinite-temperature density matrices
by construction. We perform the time-evolution step at
£* as prescribed by Eq. (8) in the main text. We then
check whether at the later time 67 some physical sites that
were in the red areas at + = 0 are in a state that deviates
from the infinite temperature one, as sketched in Fig. 16(c)
by the broadening of the blue area. If so, we need to
enlarge the effective system. Note that at most » physical
sites may deviate from the infinite-temperature state after
a time-evolution step. To prevent any boundary-induced
distortion, we keep £* + 1 physical sites at infinite tem-
perature at each end of the effective system. Therefore,
if needed, we remove excess infinite-temperature phys-
ical sites at the boundaries. Numerically, we determine
whether a physical-site state is at infinite temperature by
computing the norm of the difference between the actual
state and 1,/d and check if it is smaller than p. We set
p =10"12,

2. Runge-Kutta integration scheme

We time evolve each subsystem density matrix pf* by
integrating the subsystem equation of motion [see Eq. (8)
in the main text] by means of Runge-Kutta integration
methods:

K
Py (t+8t) = ph () +8tY by +O@). (D)

i=1

Here the b; are the Runge-Kutta parameters, the Kf;*’i are
the derivative functions given by Eq. (A4) evaluated for
different density matrices [69], and K is the order of the
truncation error. We use an adaptive fifth-order Runge-
Kutta method with an embedded fourth-order method used
to estimate the time-step error [70]. Such adaptive meth-
ods are characterized by a dynamic time step set by the
time-step error €; we set the time-step error tobe e < 1073,
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FIG. 16. Schematic of the effective system used in the numerical simulations with asymptotically time-invariant initial states and
r = 1. The color intensity of the information-lattice points quantifies the local information located on a given site. (a) The effective
system at # = 0 comprises a central region (blue area) deviating from the infinite-temperature state and containing local information (as
indicated by the green filled circles). On each boundary, there are £y + 1 infinite-temperature physical sites (red areas). If it qo*,
we set £* = i (otherwise, we need to extend the effective system to higher levels; see Fig. 17). (b) Before performing a time-
evolution step, we enlarge the effective system by adding r infinite-temperature physical sites at each boundary. (c) We perform a
time-evolution step of length §¢ by numerically integrating the subsystem von Neumann equations [Eq. (8) in the main text]. We then
check whether after the time step some physical sites that were in the red areas deviate from the infinite-temperature state. We remove
unnecessary physical sites at the boundaries of the effective system in order to always keep £* + 1 infinite-temperature physical sites
at the boundaries.

Runge-Kutta methods, although particularly well suited
for the LITE approach since they preserve the local con-
stants of motion (see Appendix A), can fail due to the
presence of small eigenvalues of pﬁ* (9). In fact, in this case,
the matrices needed to compute the derivative functions
K,f*’i can have negative eigenvalues. Since the subsystem
time evolution (8) is only defined for positive semidefinite
matrices, this can cause the failure of the Runge-Kutta inte-
gration step. The smallest eigenvalues typically increase
when there is a flow of information from small to large
scales. Therefore, this failure is more likely to occur early
in the time evolution or when there is suppressed flow of
information from small to large scales (as might happen in
disordered systems).

In the simulations presented in this article for

the asymptotically time-invariant initial states in Egs.

(D1) and (D2), small eigenvalues can be remedied
by shifting the density matrices to be time evolved,
,of*, by the infinite-temperature state multiplied by a
factor o:

Ppshit (1) = Tral\ P (0 + Wlﬂm . (D4)

In fact, given that the boundaries of the system are in the
infinite-temperature state by construction, such a shift does
not create additional local information and clearly removes
close-to-zero eigenvalues, thus improving numerical sta-
bility. After shifting the density matrices, we perform the
projected Petz recovery map and the Runge-Kutta time-
evolution step. At the later time ¢ + 8¢, we shift back the

020352-23



CLAUDIA ARTIACO et al. PRX QUANTUM 5, 020352 (2024)

(a) ¢

/ effective system

K*

(b) updating £* at t

Poo Poo Poo Poo 7 Poo Poo Poo Poo Poo M

FIG. 17. Schematic of the effective system used in the numerical simulations with asymptotically time-invariant initial states and » =
1 (a) before and (b) after updating £*. The intensity of the green color of the information-lattice points quantifies the local information
located on a given site. To update the effective system in the case i > g+ for any n, as sketched by the green filled circles in (a), we

add r infinite-temperature physical sites at each boundary and increase £* by r, as sketched in (b).

density matrices: depending on the properties of the state of the system. For
instance, for an asymptotically time-invariant initial state

o* o* o . . : . :

P, (430 = (1 + a)p, gin(t + 80 — ey L yex 1. in which thgn}?oundary state.: is the Q1bbs state [i.e., Pasymp <?<

(D5) exp (—BH,™)], a convenient choice would be to suEstl—

tute in Eq. (D4) the identity matrix with exp (—8H,™).

Unfortunately, there is no general guarantee that, by per- ~ We note that the positivity issue is not present for other

forming the projected Petz recovery map and the Runge-  integration schemes, such as the Suzuki-Trotter decompo-

Kutta time-evolution step on the shifted density matri-  sition [7], Which, however, has the importanj[ drawback of
ces in Eq. (D4), one conserves the same convergence not preserving thg local constants of the motion.

properties as with the unshifted matrices. In particu- After each time step, we evaluate whether to

lar, the shift should be chosen on a case-by-case basis ~ dynamically update the level £* at which time evolution is

ALGORITHM 1. Pseudocode for the minimization of local information. We use the notation {p,‘f} to indicate the set of the subsystem
density matrices at fixed ¢ and for all n. We pass to the function MINIMIZATION all the density matrices at level £, and the numerical
parameter gmax (note that g,y is set at the beginning of the simulation and never changes). First, the total information in the system
and on level ¢, are computed. If the information on level £y, ifmaxexceeds gmax times the total information in the system, i,
REDUCE-TO-¢ i, is called. This function finds all density matrices at level £, by suitable partial-trace operations on those at level
Cmax- In addition, it removes excess infinite-temperature physical sites in order to keep only £, + 1 infinite-temperature physical
sites at each boundary of the effective system. Then, MINIMIZE minimizes the information for each density matrix at level £,,;, while
keeping all lower-level density matrices (on £ < £y,;,) and information currents (on £ < £, fixed.

MINIMIZATION({ p&2#% } | grmax)

ltot = Z{all lattice points} i // compute total information in the system

jlmax — > jbmax gy compute information at level i ax

if i > Grax dot
{p it} = REDUCE-ToO- Emm({p rax 1) // obtain the density matrices at level £imin by partial trace
{p e MINIMIZE({p 1) / minimize the information of each density matrix at level fiin
return {p5=in}

else :

return {pimax}

0O Otk W
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TABLE 1. Numerical parameters of the LITE algorithm. These parameters are set at the beginning of the simulation and never
change.

Parameter Description Prescription Numerical value
Limin Minimization level As large as possible 34,....8
Lmax Maximum level at which time evolution is performed As large as possible (€max > €min) 4,5,....9
Gmax Information threshold to activate the minimization On a case-by-case basis 0.5%2%

w Convergence tolerance of the minimization As small as possible 1073

& Damping factor of the minimization On a case-by-case basis 0.9

P Threshold to enlarge the effective system As small as possible 10712

go+ Threshold to update £* As small as possible 10-10

€ Runge-Kutta error As small as possible <1078

performed. If any subsystem state at level £* has acquired
more information than a threshold value g,+ we increase
£* by r. In this work, we set g~ = 107'°. As depicted in
Fig. 17, when using an asymptotically time-invariant initial
state, this implies increasing the level £* by r and enlarging
the effective system by r physical sites on both boundaries.

3. Minimization of local information

The minimization of local information is performed
when two conditions are satisfied: (i) the scale on which
time evolution is performed £* equals €,y; (ii) the total
amount of information on scale £y, imx =" jimex,
exceeds a threshold percentage value, gm,x, of the total

information in the system, iot = Y_ (a1 jattice points) it. The
minimization is performed on each subsystem-lattice site
(n,€min) individually. Because of the conservation of
lower-level density matrices and currents, changing the
order of the sites on which minimization is performed
does not alter the result. After minimization, the effective-
system level is reduced to £n,; time evolution is then
performed on £,;,. A pseudocode for the minimization is
given in Algorithm 1.

4. Flow of the LITE algorithm

The flow of the two-level scheme of the LITE approach
for time evolution is detailed in Algorithm 2. In addition,

ALGORITHM 2. Pseudocode for the two-level scheme of LITE. We use the notation { ,of} and {(n, £)} to indicate the set of the
subsystem density matrices and subsystem labels at fixed £ and for all n. ENLARGE-SYSTEM and REMOVE-ADDITIONAL-SITES take
care of enlarging the effective system and removing unnecessary infinite-temperature physical sites at the boundaries, respectively
(see Fig. 16). Here p is a threshold parameter used when comparing the density matrices of the physical sites at the boundaries of
the effective system to infinite-temperature density matrices (see the text). PPRM applies projected Petz recovery maps to recover
higher-level density matrices. RUNGE-KUTTA performs one time-evolution step by numerically integrating the subsystems’ equations
of motion. COMPUTE-OBSERVABLES computes relevant physical observables on the time-evolved density matrices. Finally, if any
information-lattice point possesses local information higher than g+ and the time-evolution level £* is smaller than £,,,,, the effective
system is enlarged and updated to level £* + r (see Fig. 17); if £* = £, the function MINIMIZE is called and checks whether the
minimization at level £,,;, should be performed; if neither of these situations is satisfied, the density matrices at level £* are returned.

TIME-EVOIVE({p%, }, qe*, D, Gmax)
1 ENLARGE-SYSTEM({p% }) / enlarge the system by r sites on each end

2 {ph} — {(p% +alyeii/d ) /(14 @)} / shift all density matrices at level £* to remove close-to-zero eigenvalues
3 {pf:_‘_tr/Q} = PPRM({p% }) # compute all density matrices at level £* + r via projected Petz recovery maps
4 for (n,l*) € {(n,0*)}:
5 pf: — RUNGE—KUTTA(pf: , pf:jfm, pf;rtT/z) // perform a time-evolution step for all density matrices at level £*
6 CoMPUTE-OBSERVABLES({p5 })
7 {5~ {4+ )ph —alyeeia/dUFY / unshift all density matrices at level £*
8 REMOVE—ADDITIONAL—SITES({pf: },p) # remove unnecessary infinite-temperature physical sites at the boundaries
9 if (any i5 > g and £ # lpay):
10 0"« 0" +r // update £* to £* +r
11 {p5 "} «~ PPRM({p% }) / compute all density matrices at level £* + r via projected Petz recovery maps
12 return {p, 7"}
13 elseif " = lmax:
14 return MINIMIZATION({pﬁmaX}, @max) #/ check whether to minimize information at level £min
15 else:
16 return {p5 }
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in Table I we summarize the numerical parameters and the
numerical values employed in this work.

5. Parallelization

The three numerically costly operations of the LITE
algorithm are the projected Petz recovery map (see
Appendix B2), the time-evolution step via the adap-
tive Runge-Kutta integration method (see Appendix D 2),
and the local-information minimization on level £, (see
Appendix D 3). All these operations are based on matrix-
diagonalization or matrix-multiplication routines; thus,
they significantly profit from OpenMP parallelization [71].
Since these operations have to be carried out for each den-
sity matrix individually, it is beneficial to additionally use
an MPI multiprocessing approach [72]. However, note that
different parts of the algorithm require different inputs:
for instance, assuming that » = 1, to recover via the pro-
jected Petz map the density matrix at subsystem lattice
site (n,£* 4+ 1), we require the lower-level density matri-
ces at (n — 1/2,£*) and (n + 1/2, £*); whereas to numer-
ically solve the subsystem time-evolution equation at
(n —1/2,¢%), we require the higher-level density matrices
at both n—1,£+1) and (n,£* +1). Thus, different
(independent) MPI processes have to be interfaced and
exchange density matrices throughout the algorithm exe-
cution.
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