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Many problems in quantum information theory can be formulated as optimizations over the sequen-
tial outcomes of dynamical systems subject to unpredictable external influences. Such problems include
many-body entanglement detection through adaptive measurements, computing the maximum average
score of a preparation game over a continuous set of target states, and limiting the behavior of a (quan-
tum) finite-state automaton. In this work, we introduce tractable relaxations of this class of optimization
problems. To illustrate their performance, we use them to: (a) compute the probability that a finite-state
automaton outputs a given sequence of bits; (b) develop a new many-body entanglement-detection proto-
col; and (c) let the computer invent an adaptive protocol for magic state detection. As we further show,
the maximum score of a sequential problem in the limit of infinitely many time steps is in general incom-
putable. Nonetheless, we provide general heuristics to bound this quantity and show that they provide
useful estimates in relevant scenarios.
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I. INTRODUCTION

In quantum physics, we are usually concerned with
manipulating quantum systems, whether we interact with
them to cause them to reach (or remain in) a specific
quantum state or measure them in order to observe or cer-
tify some of their properties. Finding new, better, ways
to perform tasks with time-ordered operations lies at the
heart of current research in quantum information science.
Quantum computing relies on a sequential application of
gates to a quantum system and communication protocols
aided by quantum systems depend on performing opera-
tions on these systems and exchanging information in a
specific order. Sequences of operations are also crucial in
less evident situations; e.g., specific sequences of pulses
are applied in order to read out a superconducting qubit [1].

Traditionally, the problem of finding new ways (or
sequences of operations) to complete a specific task has
been dependent on the ingenuity of scientists to come
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up with new protocols. More recently, this type of prob-
lem is also tackled via machine-learning techniques, which
require training a neural network to generate the right
sequence of operations. However, a general method to
optimize over sequential strategies or even a criterion to
decide whether one such sequential protocol is optimal for
a certain task is lacking.

Part of the difficulty in solving these problems lies in the
fact that when operations are performed sequentially, pro-
tocols can be made adaptive, i.e., future operations may
depend on the result of previous ones. Adaptiveness can
lead to great advantages; e.g., it minimizes statistical errors
in entanglement certification [2] and quantum state detec-
tion [3]. However, it also increases the variety of protocols
that must be considered for a specific task and thus the
complexity of optimizing over them. Indeed, while opti-
mization techniques are well established in the context of
single-shot or independently repeated procedures (e.g., in
applications of nonlocality [4,5] or for witnessing entan-
glement [6]), developing them for sequential protocols
remains a challenge.

In this work, we make progress on this problem. Specif-
ically, we introduce a general technique to analyze and
optimize a class of time-ordered processes that we call
sequential models. These are protocols in N rounds, where
in each round an interaction occurs and changes the state
of a system of interest possibly depending on unknown
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or uncontrolled variables. The progress toward a certain
goal is quantified by a reward that is generated at each
round of the protocol and is the object of our optimization
procedure.

Our first result is a technique that allows us to upper
bound the maximum total reward that a sequential model
can generate in N rounds through a complete hierarchy
of increasingly difficult convex-optimization problems. To
illustrate the performance of the hierarchy, we apply it to
upper bound the type-I error of an adaptive protocol for
many-body entanglement detection [2,7]. The technique
generates seemingly tight bounds for large system sizes (of
order N ≈ 100).

The same technique also allows us to deepen the study
of temporal correlations generated by finite-state automata
[8,9]. These models appear in several problems in quan-
tum foundations and quantum information theory, such
as classical simulations of quantum contextuality [10–13],
quantum simulations of classical stochastic processes [14–
16], purity certification [17], dimension witnesses [18–20],
quantum advantages in the design of time-keeping devices
[21–24], and classical simulation of quantum computation
[25]; for more details, see a recent review on temporal
correlations [26]. Specifically, we focus on the problem
of optimal clocks, namely, how good a clock can we
construct, given access to a classical automaton with d
internal states? Using our tools, we solve this problem
for low values of d, by providing upper bounds on the
maximum probability that the automaton outputs the “one-
tick sequence” 000 · · · 01 investigated in Refs. [23,24].
These bounds match the best known lower bounds up to
numerical precision.

In addition to finite sequences of operations, we are
also often interested in letting a protocol or process run
indefinitely, i.e., we are interested in characterizing its
asymptotic behavior as N → ∞. This is, e.g., important
for systems that are left to evolve for a long time or in
cases in which we aim to probe large systems, where this
limit is a good approximation.

To our knowledge, not much is known about time-
ordered processes in the limit of infinitely many rounds
(except for results on asymptotic rates in hypothesis testing
and when taking specific limits [27,28]). In this paper, we
show that there is a fundamental reason for this: there are
sequential models for which no algorithm can approximate
their asymptotic behavior. This follows from undecidabil-
ity results related to finite-state automata; specifically, a
construction from Refs. [29,30]. Nevertheless, we develop
a heuristic method for computing rigorous bounds on the
asymptotic behavior. We further find that in the applica-
tions we consider, these bounds are close to the expected
asymptotic behavior and to the lower bounds we can com-
pute, thus substantiating the usefulness of our method.
More specifically, we use the asymptotic method to bound
the type-I error of the many-body entanglement-detection

protocol mentioned above in the limit of infinitely many
particles. The result is a bound that is, at most, at a distance
of 4 × 10−4 from the actual figure. Our asymptotic method
also bounds the probability that a two-state automaton out-
puts the one-tick sequence in the limit of many time steps
to O(10−2).

Finally, in some circumstances it becomes necessary not
to analyze but to find sequential models with a good per-
formance. That is, given a number of parameters that we
can control—the policy—which might affect the evolution
of the system as well as the reward, we pose the prob-
lem of deciding which policy maximizes the total reward
after N rounds. We propose to tackle this problem via
projected-gradient methods and show how to cast the com-
putation of the gradient of our upper bounds as a tractable
convex-optimization problem. Using this approach, we let
the computer discover a two-state six-round preparation
game to detect one-qubit magic states.

Our paper is structured as follows. In Sec. II, we present
three problems in quantum information theory that we
will use to illustrate our methods throughout. In Sec. III,
we introduce the abstract notion of sequential models and
show how to optimize them, before applying the opti-
mization method in Sec. IV. In Sec. V, we prove that
the asymptotic behavior of sequential models cannot be
approximated in general. We also introduce a heuristic to
tackle asymptotic problems, which we apply in Sec. VI. In
Sec. VII, we pose the problem of policy optimization and
show how to compute the gradient of the upper bounds
derived in Sec. III, over the parameters of the policy. We
use gradient methods to solve a policy optimization prob-
lem in Sec. VIII. Finally, we present our conclusions in
Sec. IX.

II. PROBLEMS WITH TIME-ORDERED
OPERATIONS

A variety of different problems involving quantum sys-
tems are of a sequential nature. In the following, we
introduce three settings that are made up of time-ordered
operations and that all pose challenging open problems to
the quantum information community.

A. Temporal correlations

A finite-state automaton (FSA) is a mathematical struc-
ture that models an autonomous computational device with
bounded memory. More formally [8,9], a d-state automa-
ton is a device described, at every time, by an internal state
σ ∈ �, with |�| = d. At regular intervals, rounds or time
steps, the automaton updates its internal state and gener-
ates an outcome b ∈ B, depending on both its prior internal
state σ and the state y ∈ Y of its input port. Such a dou-
ble state-and-output transition is governed by the transition
matrix P(σ ′, b|σ , y) of the automaton, which indicates the
probability that the automaton transitions to the internal
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state σ ′ and outputs b, given that its input and prior states
were, respectively, y and σ . Overall, the probability of out-
puts b = (b1, . . . , bn) given inputs y = (y1, . . . , yn) can be
computed as

p(b|y) =
∑

σ0,σ1,...,σn

p(σ0)P(σ1, b1|σ0, y1)P(σ2, b2|σ1, y2) . . .

× P(σn, bn|σn−1, yn). (1)

Expressions such as Eq. (1), i.e., generated by a classical
FSA, appear in several problems related to classical sim-
ulations of temporal quantum correlations, such as, e.g.,
classical simulations of quantum contextuality [10–12],
quantum simulations of classical stochastic processes [14–
16], classical simulation of quantum computation [25], and
quantum advantages in the design of time-keeping devices
[21–24].

We are interested in scenarios in which the performance
of a d-state automaton after n time steps is evaluated by yet
another automaton or, more generally, by a time-dependent
process with bounded memory. We wish to bound said
performance over all automata with d states.

This class of problems includes, e.g., computing the
maximum probability that a d-state automaton generates
the so-called “one-tick sequence” 00 . . . 01 (the name
comes from its interpretation as a clock signal “1” for a
tick of the clock). This optimization problem is central
in the discussion of the optimal classical and quantum
models able to generate a time signal, with the conse-
quent quantum advantages in the design of physical clocks.
Unfortunately, there are no general optimization methods
to upper bound the performance of a classical model and
thus demonstrate a quantum advantage. The problem of
optimal quantum clocks has been extensively investigated
both from a theoretical (quantum information and quan-
tum thermodynamics) perspective [21–24,31–36], as well
as from an experimental one [37].

Consider thus an FSA A, with states denoted by σ ∈ �,
with |�| = d, inputs y ∈ Y and outputs b ∈ B. We assume
that the automaton is described by the (unknown) tran-
sition matrix P(σk+1, bk|σk, yk). Let Q be a known time-
dependent process, with an internal state denoted by t and
inputs (outputs) denoted by z (c). The (known) transi-
tion matrix of this process at time steps k = 2, . . . , N is
Qk(tk, ck|tk−1, zk−1). Each state tk of the process is asso-
ciated with a reward αk(tk). At time step 1, the state and
output t1, c1 are generated by the distribution Q1(t1, c1).
Now, let us couple Q with A, in the following way (see also
Fig. 1 for an illustration): after Q generates t1, c1, we input
c1 in the automaton A, i.e., we let y1 = c1. The automa-
ton then transitions through P to a state σ1, outputting b1.
This output is further input into the process Q (by letting
z1 = b1), which in turn generates t2, c2 through Q2, and so
on. At time step N , we consider the sum of all rewards,

FIG. 1. An automaton (blue) coupled to a process Q (green).
The process may, in general, differ from round to round.

∑N
k=1 αk(tk). Our goal is to maximize the expectation value

of the total reward over all d-state automata A. Note that
by convexity, the best strategy is for the automaton to be
initialized in a specific state σ0 = σ̄0 rather than a distribu-
tion thereof [38]. Hence, fixing the initial state, the optimal
automaton is fully characterized in terms of the transition
matrix P that maximizes the expected reward.

This problem can be mathematically rephrased in a way
that will prove useful later. Namely, the coupled systems,
A and Q, can be regarded as a single dynamical system
the internal state sk of which at time step k corresponds
to the probability distribution of the triple (tk, ck, σk), i.e.,
sk := pk(tk, ck, σk). The evolution of this system from one
time step to the next follows the equation of motion,

pk+1(tk+1, ck+1, σk+1)

=
∑

ck ,tk ,σk ,bk

pk(tk, ck, σk)P(σk+1, bk|σk, ck)

× Qk+1(tk+1, ck+1|tk, bk)

=: fk(sk, λ). (2)

Note that the evolution is given here by a polynomial
fk of the state sk and an unknown evolution parameter
λ := (P(σ ′, c|σ , z) : z ∈ Z, c ∈ C, σ ∈ �). In this formu-
lation of the problem, the reward rk at time step k is
given by

rk(sk) :=
∑

tk ,ck ,σk

pk(tk, ck, σk)α(tk). (3)

Note that the reward does not depend on λ here (except via
the pk): such a dependency could, however, be introduced
by using different reward functions rk(sk, λ). In this picture,
our task is to maximize the total reward over all possible
evolution parameters λ.
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B. Entanglement certification of many-body systems

Given an N -partite quantum system, we are often faced
with the problem of determining whether its state is entan-
gled. In principle, this problem can be solved by finding an
appropriate entanglement witness and estimating its value
on the state at hand. However, in addition to the prob-
lem that finding such a witness theoretically is NP-hard
[39], its estimation may involve conducting joint measure-
ments on many subsystems of the N -partite state, a feat that
may not be experimentally possible. Replacing such joint
measurements by estimates based on local measurement
statistics requires, in general, Exp[N ] state preparations,
thus rendering the corresponding protocols infeasible for
moderately sized N (as is the case when the protocol
demands full quantum state tomography).

One way to avoid these problems, i.e., perform single-
system measurements and reduce the number of state
preparations, is to carry out an adaptive protocol [2]. Such
a scheme proceeds as follows. We sequentially measure
the particles that constitute the N -particle ensemble, mak-
ing future measurements depend on previous ones as well
as on previous outcomes. Once we conduct the last mea-
surement, we make a guess on whether the underlying state
was entangled or not.

To choose how to measure each system and to make
our final guess, we use a dynamical system Q. This pro-
cess has internal states tk ∈ T and its transition matrix at
time k = 1, . . . , N − 1 is of the form Qk(tk+1, yk+1|tk, bk),
where bk ∈ B denotes the measurement outcome at time k
and yk+1 labels the measurements to be conducted on the
(k + 1)th particle. For each y ∈ Yk, there exists a positive-
operator-valued measure (POVM) {M k

b|y}b. The final guess
is generated through the function QN (tN+1|tN , bN ), with
tN+1 ∈ {“entangled,” “separable”}. The initial state of the
process and the measurement setting y1 for the first par-
ticle are generated by the distribution Q0(t1, y1). This is
illustrated in Fig. 2.

If the target state ρ the entanglement of which we wish
to detect experimentally admits an efficient matrix product
operator (MPO) decomposition [40], then one can effi-
ciently compute the probability that the process outputs the
result “separable” (see Fig. 3). This probability is usually
called a type-II error or a false negative.

It remains to compute the type-I error, or false posi-
tive, of the entanglement-detection protocol encoded in Q:
that would correspond to the maximum probability that
the process outputs “entangled” when the input is a fully
separable quantum state. In computing this maximum, we
can assume, by convexity, that the player has prepared
a pure product quantum state. That is, at each time step
k, we measure some pure quantum state ρk. Despite this
simplification, computing the type-I error of the scheme
requires maximizing a multilinear function with a size-
O(N ) input. As N grows, this becomes a more difficult
problem.

FIG. 2. The sequential model for entanglement detection. The
particles of an N -party state (green) are measured one by one.
The kth measurement yk depends on the internal state of a finite-
state automaton and the outcome bk affects the transition of the
automaton according to Qk.

Like the problem of computing the maximum perfor-
mance over all d-state automata, maximizing the type-I
error over the set of separable states can be phrased as an
optimization over the sequential outputs of a determinis-
tic dynamical system. In this case, the internal state sk of
the dynamical system at time step k would correspond to
the distribution Pk of tk, yk. The equation of motion of the
system is

Pk+1(tk+1, yk+1) =
∑

tk ,yk ,bk

Pk(tk, yk)tr(M k
bk |yk

ρk)

× Qk(tk+1, yk+1|tk, bk), (4)

where the quantum state ρk can be interpreted as an
uncontrolled external variable h influencing the evolution
of the system. At time step N , the system outputs the

FIG. 3. Efficient computation of the type-II error. The blue
circles represent the tensors making up our MPO target state,
with two vertical legs denoting the bra and ket indices of each
particle and two horizontal legs of dimension D—the bond
dimension—to account for the correlations of the target state.
Defining the green tensors in the way indicated in the figure, their
contraction with the blue tensors equals the type-II error of the
corresponding entanglement-detection protocol. This contraction
can be computed by multiplying matrices of dimension |T||B|D,
as the dashed orange line indicates.
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deterministic outcome

rN (sN ) =
∑

tN ,yN ,bN

PN (tN , yN )tr(M N
bN |yN

ρN )

× QN (tN+1|tN , bN )δtN+1,“entangled”. (5)

C. Independent identically distributed (IID)
preparation strategies in quantum preparation games

The notion of preparation games aims to capture the
structure of general (possibly adaptive) protocols, where
quantum systems are probed sequentially [2]. More pre-
cisely, a quantum preparation game is an N -round task
involving a player and a referee. In each round, the player
prepares a quantum state, which is then probed by the ref-
eree. In round k, before carrying out his measurement,
the referee’s current knowledge of the source used by
the player is encoded in a variable tk ∈ Tk, with |Tk| <
∞, called the game configuration. This variable depends
nontrivially on the past history of measurements and mea-
surement results: in each round, it guides the referee in
deciding which measurement to perform next and changes
depending on its outcome. This double role of the game
configuration can be encoded in the POVM used by the
referee for that round. That is, assuming that the game
configuration before the measurement is t ∈ Tk, the proba-
bility that the new game configuration is t′ ∈ Tk+1 is given
by tr(ρkM k

t′|t), where ρk is the player’s kth-state prepara-
tion; and {M k

t′|t : t′ ∈ Tk+1}, the POVM implemented by the
referee when the game configuration is t. At the end of
the preparation game, a score g(tN+1), where tN+1 denotes
the final game configuration, is generated by the referee
according to some scoring system g(t) for t ∈ TN+1.

In some circumstances—e.g., in an entanglement-
detection protocol where the player tries to (honestly) pre-
pare a specific entangled state—it makes sense to consider
a player that follows an independent identically distributed
(IID) strategy, meaning that the player produces the same
state ρ in each round.

Consider thus the problem of computing the maximum
game score, for a fixed scoring system, achievable with
preparation strategies of the form ρ⊗N , with ρ ∈ C, where
C is some set of states. In Ref. [2], it has been shown
how to compute the maximum score of a preparation game
under IID strategies when the set C of feasible preparations
has finite cardinality. In this work, we consider the case in
which C is continuous.

This problem can be modeled through a dynamical sys-
tem the internal state sk of which at time k corresponds
to Pk(tk), the distribution of game configurations at the
beginning of round k. The equation of motion of the
system is

Pk+1(t′) =
∑

t∈Tk

Pk(t)tr(ρM k
t′|t), (6)

where the unknown evolution parameters λ := ρ ∈ C cor-
respond to the player’s preparation. The dynamical system
outputs a reward at time N , namely,

rN (sN , λ) =
∑

t′∈TN+1

g(t′)
∑

t∈Tk

PN (t)tr(ρM N
t′|t). (7)

Our goal is thus to maximize the reward of the system over
all possible values of the evolution parameter λ, i.e., over
all ρ ∈ C.

As an aside, we note that in some circumstances it
becomes necessary to compute the maximum average
game score achievable by an adversarial player, who has
access to the current game configuration and can thus
adjust their preparation in each round accordingly. Curi-
ously enough, this problem is easier than optimizing over
IID strategies, and, in fact, a general solution is presented
in Ref. [2]. Notwithstanding, we show below that the com-
putation of the maximum game score of a preparation
game under adaptive strategies can also be regarded as a
particular class of the sequential problems considered in
this paper.

III. SEQUENTIAL MODELS AND THEIR
OPTIMIZATION

The three problems described above are—even though
from a physical point of view rather different—structurally
very similar. Indeed, they are all examples of the type of
problem that we introduce more abstractly in the follow-
ing. Consider a scenario in which the state of a dynamical
system is fully described at time step k by a variable
sk ∈ Sk. Between time steps k and k + 1, the system tran-
sitions from sk to another state sk+1 depending on sk, a
number of uncontrolled variables hk ∈ Hk and a number
of unknown evolution parameters λ ∈ �. The equation of
motion that describes this transition is

sk+1 = fk(sk, hk, λ), (8)

where Sk, Hk ∀k, and � are sets of parameter values.
Our goal is to optimize over this type of system, accord-

ing to some figure of merit that is given by the problem at
hand. We model this by assuming that, in each time step,
the system emits a reward (or penalty) rk(sk, hk, λ). Note
that this reward may be the zero function for certain k, so
that this includes problems where only the final outcome
matters as a special case. We shall refer to such a system
from now on as a sequential model (see Fig. 4).

Our goal is to estimate the maximum total reward ν


over all possible values of λ, h1, . . . , hN . That is, we wish
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FIG. 4. A pictorial representation of a sequential model. Note
that the equation of motion itself may capture several interac-
tions or be composed of several steps (e.g., the measurement
of a quantum system followed by the update of a finite-state
automaton).

to solve the problem

ν
 := max
λ,h

N∑

k=1

rk(sk, hk, λ)

such that λ ∈ �, h ∈ ×N
k=1Hk

sk+1 = fk(sk, hk, λ) ∀k.

(9)

We generally assume that the initial state s1 is known; oth-
erwise, we can absorb it into the definition of λ in the sense
that we add one time step that generates the initial state. In
the absence of λ, the above is mathematically equivalent
to a deterministic Markov decision problem, if we regard
h as an action [41].

A. Reformulation of the optimization over sequential
models

To compute the optimal value ν
, we consider an
approach based on dynamical programming methods [41].
It consists in defining value functions Vk(sk, λ), which
represent the maximum reward achievable between time
steps k and N over all possible values of hk, . . . , hN ,
starting from the state sk, and under the assumption that
the evolution parameters take the value λ. Approximat-
ing these functions with polynomials and invoking known
characterizations of positive polynomials on a semial-
gebraic set, we manage to derive monotone converging
sequences of tractable upper bounds on ν
. We remark
that similar ideas have been explored in the context of
continuous-time optimal-control problems, which can be
formulated as an infinite-dimensional linear program, for
which semidefinite-program (SDP) relaxations based on
polynomial optimization techniques exist; see Ref. [42]
and references therein.

In terms of the reward functions, value functions are
given by

VN (sN , λ) = max
hN ∈HN

rN (sN , hN , λ),

Vk(sk, λ) = max
hk∈Hk

rk(sk, hk, λ)+ Vk+1(fk(sk, hk, λ), λ),

(10)

and where we recover ν
 in the final step as

ν
 = max
λ∈�

V1(s1, λ). (11)

The problem of finding ν
 can thus be reduced to

min
V1,...,VN ,ν

ν

such that VN (sN , λ) ≥ rN (sN , h, λ) ∀h ∈ HN , sN ∈ SN , λ ∈ �
Vk(sk, λ) ≥ rk(sk, h, λ)+ Vk+1(fk(sk, h, λ), λ) ∀h ∈ Hk, sk ∈ Sk, λ ∈ �
ν ≥ V1(s1, λ) ∀λ ∈ �.

(12)

Indeed, on one hand, any feasible point of the prob-
lem given in Eq. (12) provides an upper bound on ν
.
On the other hand, the V1, . . . , VN , ν
, as defined by
Eqs. (10) and (11), are also a feasible point of Eq. (12).
Hence the solution of the problem given in Eq. (12)
is ν
.

Unfortunately, unless their domain is finite, there is no
general method for optimization over arbitrary functions.
What is feasible is to solve the problem given in Eq. (12)

under the assumption that {Vk(sk, λ)}k belong to a class of
functions F described by finitely many parameters. Since,
in general, the optimal functions Vk(sk, λ)might not belong
to F , the result ν̄ of such an optimization is an upper bound
on the actual solution ν
 of the problem. The class F of
polynomial functions is very handy, as it is closed under
composition and dense in the set of continuous functions
with respect to the uniform norm. This is the class we are
working on in this paper.
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For the rest of the paper, we thus assume that, for all
k ∈ {1, 2, . . . , N }, fk(sk, hk, λ), rk(sk, hk, λ) are polynomials
on sk, hk, λ and that the sets S, Hk, and � are bounded
sets in some metric space that can be described by a
finite number of polynomial inequalities. Note that under
these assumptions, the value functions are continuous on
sk and λ.

Call, then, νn ≥ ν
 the result of Eq. (12) under the con-
straint that {Vk(sk, λ)}k are polynomials of a given degree
n. Since any continuous function defined on a bounded
set can be arbitrarily well approximated by polynomials,
it follows that limn→∞ νn = ν
.

There is the added difficulty that solving Eq. (12) entails
enforcing positivity constraints of the form

p(x) ≥ 0, ∀x ∈ X , (13)

where p(x) is a polynomial on the vector variable x ∈ R
m

and X is a bounded region of R
m defined by a finite num-

ber of polynomial inequalities (i.e., a basic semialgebraic
set). Fortunately, there exist several complete (infinite)
hierarchies of sufficient criteria to prove the positivity of
a polynomial on a semialgebraic set [43–46]. In alge-
braic geometry, any such hierarchy of criteria is called a
positivstellensatz.

Two prominent positivstellensätze are Schmüdgen’s
[45] and Putinar’s [46]. Both hierarchies have the pecu-
liarity that, for a fixed index k, the set of all polynomials
satisfying the kth criterion is representable through an
SDP. The application of Schmüdgen’s and Putinar’s pos-
itivstellensätze for polynomial optimization thus leads to
two complete hierarchies of SDP relaxations. The SDP
relaxation based on Putinar’s positivstellensatz is known
as the Lasserre-Parrilo hierarchy [47,48]. The reader can
find a description of both hierarchies in Sec. I of the Sup-
plemental Material [49]. While the hierarchy based on
Schmüdgen’s positivstellensatz is more computationally
demanding than the Lasserre-Parrilo hierarchy, it con-
verges faster. In our numerical calculations below, we use
a hybrid of the two.

The use of the kth (sufficient) positivity test of a
given positivstellensatz while optimizing over polyno-
mial value functions of degree n results in an upper
bound νn

k on νn, with limk→∞ νn
k = νn. For our purposes,

the take-home message is that νn
k ≥ ν
, for all k, n and

limn→∞ limk→∞ νn
k = ν
.

We finish this section by noting that there is nothing
fundamental about the use of polynomials to approxi-
mate value functions. In fact, there exist other complete
families of functions that one might utilize to solve the
problem given in Eq. (12). A promising such class is the
set of signomials, or linear combinations of exponentials,
for which there also exists a number of positivsellensätze
in the literature [50,51]. In this case, the corresponding
sets of positive polynomials are not SDP representable but

are nonetheless tractable convex sets. As such, they are
suitable for optimization.

B. Quantum preparation games as sequential models

Sequential models capture the structure of various types
of time-ordered processes, including the three introduced
in Sec. II. Here, we argue that sequential models are actu-
ally rather general: optimizations over adversarial strate-
gies in quantum preparation games can be modeled as
sequential problems too. In fact, their resolution by means
of value functions allows one to rederive previous results
on the topic [2].

Let S be a set of quantum states and consider a prepa-
ration game where the player is allowed to prepare, at
each round k, any state ρ(tk) ∈ S depending on the cur-
rent game configuration tk. This preparation game can be
interpreted as a sequential model with � = ∅, sk = pk(tk),
hk = (ρk(t) : t ∈ Tk) and an equation of motion

pk+1(t′) =
∑

t∈Tk

pk(t)tr(ρk(t)M k
t′|t). (14)

We consider the problem of maximizing the average game
score (or reward)

rN+1(pN+1) =
∑

t∈TN+1

pN+1(t)g(t), (15)

where g is the score function of the game [2].
In principle, we could formulate this problem as

Eq. (12). Note that VN+1 = rN+1 is linear in pN+1. This
motivates us to consider an ansatz of linear value functions
Vk(pk) for this problem. That is, we aim to solve Eq. (12)
under the assumption that

Vk(pk) =
∑

t∈Tk

μk(t)pk(t), (16)

for some vector (μk(t) : t ∈ Tk). The condition Vk(pk) ≥
Vk+1(pk+1) then translates to

∑

t∈Tk

μk(t)pk(t)

≥ max
{ρk(t)}t

∑

t′∈Tk+1

μk+1(t′)
∑

t∈Tk

pk(t)tr(ρk(t)M k
t′|t)

=
∑

t∈Tk

pk(t)max
ρk(t)

tr

⎛

⎝ρk(t)
∑

t′∈Tk+1

Vk+1(t′)M k
t′|t

⎞

⎠ . (17)

020351-7



WEILENMANN, BUDRONI, and NAVASCUÉS PRX QUANTUM 5, 020351 (2024)

Setting pk(t) = δt,j , for j ∈ Tk, we arrive at the recursion
relations

μN+1(t) = g(t),

μk(t) = max
ρk(t)

tr

⎛

⎝ρk(t)
∑

t′∈Tk+1

μk+1(t′)M k
t′|t

⎞

⎠ ,
(18)

which allow us to compute V1(t0). This quantity is, in prin-
ciple, an upper bound on the actual solution of Eq. (12),
because we have enforced the extra constraint that the
value functions are linear. The upper bound is, however,
tight, as can be seen by computing the average score of the
preparation game under the preparation strategy given by
the maximizers ρ̄k(t) of Eq. (18). In fact, all the above is
but a complicated way to arrive at the recursion relations
provided in Ref. [2] to compute the maximum score of a
preparation game.

IV. APPLICATION TO OPTIMIZING
TIME-ORDERED PROCESSES

All the sequential problems considered in this work
could, in principle, be solved (or at least approximated)
through the straightforward application of the Lasserre-
Parrilo hierarchy [47,48]. However, the degree of the poly-
nomials in such problems grows linearly with the number
of steps N , thus making the corresponding SDP intractable
for more than a few iterations. Our reformulation of the
sequential optimization problem as in Eq. (12), on the
other hand, allows us to circumvent this issue and optimize
sequential models for much higher values of N .

A. Optimizations over finite-state automata:
Probability bounds

In this section, we investigate the maximum probabil-
ity with which a classical FSA can generate a given output
sequence. This problem has been extensively investigated
for input-output sequences [12], as well as sequences with
only inputs [23,24]. In particular, we consider the so-
called one-tick sequence, 00 . . . 01, introduced in Ref. [23]
in connection with the problem of optimal clocks. For a
sequence of total length L, we use the compact notation
0L−11. Here, we use the general techniques developed in
Sec. III to tackle this problem. Note that this is an instance
of the type of problem introduced in Sec. II A.

Consider a d-state automaton without inputs and with
binary outputs, i.e., Y = ∅, B = {0, 1}. We wish to compute
the maximum probability that the automaton outputs the
one-tick sequence 0L−11, denoted Pd

max(L). For this pur-
pose, let us construct a simple process Q that, coupled to
the automaton, produces an expected reward that equals
P(0L−11). Q has two internal states, i.e., tk ∈ {0, 1} and no
outputs (C = ∅). Its initial state is t1 = 1, and its transition

matrices are as follows:

Qk(tk+1|tk, bk) = δtk+1,tk(1−bk), for k = 1, . . . , L − 1,

QL(tL+1|tL, bL) = δtL+1,tLbL .
(19)

For time steps k = 1, . . . , L − 1, the process Q therefore
keeps being in state 1 as long as the automaton outputs
0’s; if the automaton outputs any 1, the state of the process
changes to 0 and stays there until the end of the game. At
time step L, process Q receives the output bL. If bL = 0 or
tL = 0, then tL+1 = 0; otherwise, tL+1 = 1. The probability
that the automaton produces the sequence 0L−11 thus cor-
responds to the probability that tL+1 = 1. This corresponds
to a reward function

αk(tk) = 0, for k = 1, . . . , L − 1,

αL+1(tL+1) = δtL+1,1.
(20)

Using the techniques developed in Sec. III, we map this
problem to a polynomial optimization problem. Due to the
choice of reward (together with the process Q), we see
that the only terms from the equation of motion given in
Eq. (2) that contribute to the final reward are the ones with
the correct bk. This allows a further simplification of the
model.

First, let us redefine the internal states of the sequential
model to be the vector

sk = (pk(tk = 1, σk+1))σ , (21)

described by d parameters sσk , with constraints sσk ≥ 0
for σ = 0, . . . , d − 1, and 1 −∑

σ sσk ≥ 0. Next, we rede-
fine the unknown evolution parameter λ to have dimen-
sion d2, through λ := (P(σ ′, b = 0|σ) : σ , σ ′ = 0, 1), with
constraints

P(σ ′, b = 0|σ) ≥ 0, for all σ , σ ′ = 0, . . . , d − 1,

1 −
∑

σ ′
P(σ ′, b = 0|σ) ≥ 0, for σ = 0, . . . , d − 1.

(22)

For k = 1, . . . , L − 1, the equation of motion of this
sequential model is

pk+1(tk = 1, σk+1) =
∑

σk

pk(tk−1 = 1, σk)P(σk+1, 0|σk),

(23)

while the reward function reads

rk = 0, for k = 1, . . . , L − 1;

rL(sL, λ) =
∑

σ

pL(tL = 1, σ)

(
1 −

∑

σ ′
P(σ ′, b = 1|σ)

)
.

(24)
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FIG. 5. Optimization over two-state automata. The upper
bounds (red) follow a pattern, where from L = 5 on pairs of
consecutive values coincide. Our bounds furthermore match the
explicit automata found in Ref. [23] up to numerical precision,
thus providing a tight bound and proving the optimality of the
models found in Refs. [23,24]. The optimization has been per-
formed with MOSEK [52] and CVXPY [53]. Each solution provided
by the solver has been tested to verify that linear and positivity
constraints are satisfied up to numerical precision.

Now, we apply an SDP relaxation à la Lasserre [47] to
obtain an upper bound on the solution of the sequential
problem for the cases of d = 2 and d = 3. In the latter case,
no nontrivial analytical upper bound has previously been

FIG. 6. Optimization over three-state automata. Our method
allows us also to optimize over three-state automata. Again, we
recover, up to numerical precision, the bound computed with the
explicit model found in Refs. [23,24], proving that our bound
is tight and that the model previously found was optimal. The
optimization has been performed with SCS [54] and CVXPY [53].
Each solution provided by the solver has been tested to verify
that linear and positivity constraints are satisfied up to numerical
precision.

known [23,24]. For details regarding the exact implemen-
tation, we refer to Sec. IIA of the Supplemental Material
[49]. In Figs. 5 and 6, we display the upper bounds com-
puted with this method. We find that, in every case, the
obtained upper bound matches the output probability of the
automaton proposed in Refs. [23,24], up to numerical pre-
cision. This implies that the upper bounds computed are
all tight. The optimal models for these sequences, except
in the case L = d + 1, correspond to the so-called cyclic
model [23]. The model consists of deterministic transitions
from one state to the other, and the probability of emitting
1 is nonzero only in the last state. As a consequence, the
bound depends only on �L/d�, corresponding to the 2- and
3-periodic plateaus observed in Figs. 5 and 6.

In order to compare the performance of our algorithm
with those of the previously known method, namely,
the Lasserre-Parrilo hierarchy [47,48], we also perform
a numerical optimization of our problem with the latter
method. While our method has been able to reach L = 50
for d = 2 and L = 10 for d = 3, the Lasserre-Parrilo hier-
archy could not go beyond the case L = 7 for d = 2. This
boost in performance was to be expected, as the degree
of the polynomials in the Lasserre-Parrilo hierarchy grows
linearly with the number of steps L, whereas in our method
it remains constant. For more details, see Secs. I and II of
the Supplemental Material [49].

In addition to the numerical values for Pd
max, we can also

extract the value functions from our optimizations and use
those to prove our bounds analytically. After deriving those
value functions, we can further use them to find optimal
automata for the problem at hand.

For extracting value functions, let us note first that from
the numerical solutions, the coefficients of the polynomi-
als Vk can be directly extracted, as these are optimization
variables of the problem. However, the value functions
may not be unique and extracting polynomials with suit-
able (rational or integer) coefficients from the numerics
is more challenging. Ways to further simplify these value
functions are elaborated in Sec. IIB of the Supplemental
Material [49].

The method for optimizing sequential models employed
here allows us to derive upper bounds in terms of value
functions, without treating the actual variables of the
model—in this case, the {pk}k and P—explicitly [55]. A
priori, the solution hence does not tell us what the values
of the optimal dynamical systems achieving the bounds
may be, even if the bounds are tight. However, this can
be remedied by first extracting the value functions from
the optimization and then running a second optimization,
this time fixing the value functions and optimizing for
the variables of the sequential model, here {pk}k and P.
More precisely, if we have found an optimal upper bound
ν
, then all value function inequalities have to be tight
and there is an optimal dynamical system that achieves
the bound. Now if we can find a system that satisfies all
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inequalities with equality, then this will automatically be
optimal. To find such a model, we can thus consider the
optimization problem

max
sk ,λ,hk

V1(s1, λ)

subject to VN (sN , λ) = rN (sN , hN , λ)

Vk(sk, λ) = rk(sk, hk, λ)+ Vk+1(fk(sk, hk, λ), λ)

hk ∈ Hk ∀k, sk ∈ Sk ∀k, λ ∈ �.
(25)

This is again a polynomial optimization problem that can
be solved with an SDP relaxation. In the following exam-
ples, we use the SOLVEMOMENT functionality of YALMIP
[56] at level 4 and the solver MOSEK [52] to solve this [57].
We find that in these cases, the problem is feasible and we
extract optimal automata.

(a) In the case d = 2 and L = 3 above, we obtain

V1(s1, λ) = (P(0, 0|0)q1(0)

+ P(0, 0|1)q1(1))P(b = 1|0)
+ (P(1, 0|0)q1(0)

+ P(1, 0|1)q1(1))P(b = 1|1), (26)

where qk(σ ) := pk(1, σ). Note that in this case, this
is the natural optimization problem that one would
also formulate directly to solve the problem at hand;
however, for higher L, the decomposition into value
functions differs. Now, using that the final reward is

r2 = P(b = 1|0)q2(0)+ P(b = 1|1)q2(1) (27)

and the state-transition rules that translate to

q2(0) = P(0, 0|0)q1(0)+ P(0, 0|1)q1(1), (28)

q2(1) = P(1, 0|0)q1(0)+ P(1, 0|1)q1(1), (29)

we immediately see that V1(s1, λ)− r2(s2(s1), λ) =
0. Furthermore, we can derive upper bounds
on V1(s1(s0), λ), where we have from the state-
transition rules q1(0) = P(0, 0|0) and q1(1) =
P(1, 0|0) (as the starting state is q0(1) = 1, q0(2) =
0) that

V1(s1(s0), λ) = (P(1, 0|1)2
+ P(2, 0|1)P(1, 0|2))P(b = 1|1)
+ (P(1, 0|1)P(2, 0|1)
+ P(2, 0|1)P(2, 0|2))P(b = 1|2).

(30)

This gives a polynomial upper bound on the solu-
tion that indeed is upper bounded by 0.29630, as

a numerical maximization of the value function
over the P and qk confirms. The optimization also
shows that this maximum is achieved by an automa-
ton with P(0, 0|0) = P(1, 0|1) = 1

3 , P(1, 0|0) = 2
3 ,

P(0, 0|1) = 0, thus confirming this value as the opti-
mal tight upper bound [58]. This also coincides with
the optimal automaton proposed in Ref. [23].

(b) For d = 2 and L = 4, we obtain the two value
functions [59]

W2(s2, λ) = V1(s2, λ) (31)

W1(s1, λ) = 0.25(1 + q1(0)(q1(0)− P(0, 0|0))
+ q1(1)(q1(1)− P(1, 0|0))) (32)

Now, we can see that 0.25 is an upper bound for
W1(s1, λ), as the state-update rules and q0(0) =
1 and q0(1) = 0 in this case imply that q1(0) =
P(0, 0|0) and q1(1) = P(1, 0|0). As a last relation
[60], we have to check that

W1(s1, λ)− W2(s2(s1), λ) ≥ 0. (33)

A numerical optimization confirms this polynomial
inequality. Requiring that W1(s1, λ) = W2(s2(s1), λ)
while maximizing W1(s1, λ) under the constraints on
s1 and s2 gives an optimal solution for the automaton
of P(1, 0|0) = 1, P(0, 0|0) = 0 and P(0, 0|1) = 1

2 ,
P(1, 0|1) = 0 [61]. This again coincides with the
automaton from [23] for L = 4.

Note that there are usually many different value functions
that could solve the problem. Extracting value functions
with few terms and integer or fractional coefficients from
the optimization problem, however, requires some tun-
ing (see Sec. IIB of the Supplemental Material [49]). The
process becomes more cumbersome as we increase the
number of variables. We thus do not provide value func-
tions for larger L here. We remark that extracting valid
value functions from the optimization is, nevertheless,
always possible.

B. Entanglement detection in many-body systems: The
automaton-guided GHZ game

To illustrate the performance of our SDP relaxations
to solve entanglement certification problems in many-
body systems, we focus our attention on the N -qubit
Greenberger-Horne-Zeilinger (GHZ) state

|�GHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ) (34)

of size up to N = 35. This is a timely application, as GHZ
states of sizes up to 20 qubits can already be prepared
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[62–64]. The main goal in devising such protocols is to
obtain a procedure that requires as few state preparations
as possible, for reliably certifying entanglement. In this
section, we propose such a one-shot protocol and demon-
strate that following this procedure indeed needs fewer
repetitions n than a family of protocols based on shadow
tomography [65].

The main feature of our method is that we work in a
hypothesis-testing setting. This means that we are also able
to prove bounds on the performance of the protocol for
the worst-case separable state (corresponding to the type-
I error), which is difficult to compute and generally not
provided when estimating fidelities. Our method has the
additional advantage of relying only on single-qubit quan-
tum operations (as compared, e.g., to the 18-qubit example
from Ref. [62] that uses two-qubit gates not just in the
preparation but also in the disentangling phase) and it can
also deal with protocols that are adaptive (see Sec. IV C),
(as compared to determining the expectation of an oper-
ator, e.g., the parity [63,64], by fixed measurements or
compared to evaluating Bell inequalities [66]). This latter
aspect is what generally allows us to reduce the number of
repetitions of our protocols.

It is worth remarking that, in any one-shot entanglement-
detection protocol that aims to detect the pure GHZ state,
the type-I and type-II errors eI, eII will satisfy the relation

eI + eII ≥ 1
2

. (35)

To see why, call M the N -qubit effective POVM element
(depending on the protocol, the corresponding POVM will
be global, local operations and classical communication
(LOCC), or one-way LOCC) associated with declaring the
system “entangled” and let σ be the separable state

σ = 1
2
(|0〉〈0|⊗N + |1〉〈1|⊗N ). (36)

Then, we have that

1 − eII − eI(σ ) = tr{M (|�GHZ〉〈�GHZ| − σ)}

≤ 1
2

‖|�GHZ〉〈�GHZ| − σ‖1

= 1
2

, (37)

where eI(σ ) is the probability of declaring σ “entangled.”
Since eI ≥ eI(σ ), we arrive at Eq. (35).

The protocol that we propose in the following satu-
rates the relation in Eq. (35) in the limit N → ∞. In this
sense, despite solely relying on one-qubit measurements,
our protocol is asymptotically optimal.

Let us, then, describe our entanglement-detection proto-
col. The protocol is inspired by the GHZ game, previously

considered in Refs. [67,68], where here the role of the
memory is taken by a classical FSA. We thus call this
protocol the automaton-guided GHZ game. Specifically,
picture a protocol for many-body entanglement verifica-
tion where, for each of the first N − 1 particles, one
of the following two measurements is performed with
probability 1

2 :

M1 = {M1|1 = |+〉〈+|, M2|1 = |−〉〈−|},
M2 = {M1|2 = | + i〉〈+i|, M2|2 = | − i〉〈−i|}, (38)

where |±〉 = 1√
2
(|0〉 ± |1〉) and | ± i〉 = 1√

2
(|0〉 ± i|1〉).

This process is used to update the state of a four-state
automaton that is initialized in state t1 = 1 as displayed
in Fig. 7. For the final particle, we choose measurement 1
for states tN = ±1 of the automaton and measurement 2
for tN = ±i. The verification of an entangled state is con-
sidered successful if the outcome, bN , of this additional
measurement is bN = 1 for tN ∈ {1, i} or bN = 2 for tN ∈
{−1, −i}, in which case we update tN+1 to “entangled”;
otherwise “separable.”

This protocol succeeds with probability 1 for a GHZ
state of any dimension. Indeed, think of an k-partite GHZ-
like state of the form

1√
2

(|0〉⊗k + α|1〉⊗k) , (39)

where α ∈ {1, −1, i, −i}. Suppose that we measure one of
the qubit states in the basis {|+〉, |−〉} ({|i〉, | − i〉}) and
obtain the result |±〉 (| ± i〉). Then, the final postselected

FIG. 7. The memory update of the four-state automaton in the
GHZ game. The transitions between states depend deterministi-
cally on b and y, which are used to label the edges as b|y. In
each round of the associated sequential model, this updates the
automaton state t ∈ {1, −1, i, −i}.
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FIG. 8. The upper bounds for the winning probability of the
best separable states in the GHZ game. We observe that the win-
ning probability (blue) drops quickly toward 0.5 (green line).
The bounds are displayed up to N = 9 for aesthetic reasons. In
fact, we have checked that we can derive bounds up to N = 35
with this method. With our asymptotic hierarchy (see Sec. VI B),
we further confirm an upper bound on the asymptotic value of
0.5004 as N → ∞.

state is an (k − 1)-partite state of the form given in Eq. (39)
but this time with phase ±α (∓iα).

Due to its transition matrix, the internal state of the
automaton in Fig. 7 keeps track of the phase of the GHZ-
like state, as its qubits get sequentially measured, i.e.,
t = α. The reward function simply verifies that the state
of the last qubit corresponds to 1√

2
(|0〉 + α|1〉).

The procedure introduced in Sec. III allows us to derive
upper bounds on the maximum probability of success that
is achievable with separable states, i.e., the worst-case
type-I error eI. We display our bounds for different sys-
tem sizes n in Fig. 8. Note that the size of the optimization
problem allows us to reach round numbers as high as
N = 35. As the reader can appreciate, eI seems to converge
to 1

2 in the limit N → ∞, thus saturating the inequality
in Eq. (35). Details on the implementation (including pre-
cision issues and how to resolve them in this case) are
presented in Sec. IIC of the Supplemental Material [49].

We further compare the detection performance of
the automaton-guided GHZ game with a family of
entanglement-detection protocols based on shadow tomog-
raphy [65], in the following called shadow protocols.

There exist different protocols for shadow tomography,
depending on the type of measurements conducted on the
qubits. Since for the automaton-guided GHZ game we only
allow the measurement of each qubit individually, we opt
for shadow protocols involving random measurements in
the three Pauli bases.

Our family of shadow protocols for entanglement detec-
tion thus works as follows:

(1) A random measurement in one of the Pauli bases is
carried out on each qubit and both the result and the
basis are recorded. This procedure is repeated for n
experimental rounds (or state preparations).

(2) The resulting classical shadow is then used to pro-
duce an estimator f for the underlying fidelity of the
quantum state with respect to the GHZ state.

(3) If f is greater than a threshold 0 ≤ θ ≤ 1, then the
protocol outputs the result “entangled”; otherwise, it
outputs “separable.”

There is thus one shadow protocol for each value of θ .
The computation of the type-II error eII(θ) for this fam-

ily of protocols is straightforward—not so the computation
of eI(θ), due to the need to optimize the probability that
the protocol outputs “entangled” over the set of separable
input states. Because of this, we replace the maximiza-
tion over all separable states by a maximization over the
three separable states |0〉⊗N , |+〉⊗N , and | + i〉⊗N . The
resulting quantity ẽI(θ) is therefore a lower bound on the
actual value of eI(θ), i.e., eI(θ) ≥ ẽI(θ). Since our aim is
to show that the automaton-guided GHZ game outperforms
the shadow protocols, underestimating the error in the lat-
ter is sufficient, as it provides us with a lower bound on
the advantages that we observe for the automaton-guided
GHZ game.

For different values of θ , we have estimated the type-
I and type-II errors ẽI(θ), eII(θ) of the shadow protocols
for the 5-partite GHZ state in n = 50 experimental rounds
[69]. To compare these numbers against the performance
of the one-round automaton-guided GHZ game, we have
extended the latter to n experimental repetitions in the
following way:

(1) Run the automaton-guided GHZ game for n experi-
mental rounds, noting down the number of times ne
that the protocol outputs “entangled.”

(2) If ne/n exceeds the threshold 0 ≤ φ ≤ 1, declare the
state entangled; otherwise, separable.

Pairs of values (eI, eII) for both families of protocols are
plotted in Fig. 9. Note that the curve for the automaton-
guided GHZ games lies completely below that of the
shadow protocols. In fact, for some values of the thresh-
old φ, the automaton-guided GHZ game exhibits values
with eI ≈ eII = 0. This was to be expected. Indeed, let
ēI ≈ 0.53 be the type-I error of the one-shot GHZ game.
Then, for φ = 1, the entanglement of the GHZ state is still
detected with probability 1 (and so eII = 0). Furthermore,
a separable state can only be mislabeled as entangled with
probability upper bounded by eI = ē50

I ≈ 0.
One might have expected that shadow-based protocols

have the upper hand for large values of the system size N .
Nonetheless, from Fig. 8, it is clear that the (eI(φ), eII(φ))

curve of the automaton-guided protocol will improve with
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FIG. 9. Type-I errors versus type-II errors. The blue squares
denote the automaton method; the red circles, the shadow proto-
cols. For some values of the threshold φ, the automaton method
is essentially perfect.

increasing N . This is not the case for shadow-based GHZ
fidelity estimation (see Ref. [65]). Thus, for larger N , the
advantage of our automaton-guided GHZ game will be
even larger. Finally, we remark that we have compared
our automaton-guided GHZ game with the shadow-based
GHZ fidelity estimation of Ref. [65]. However, a better
estimate on the GHZ fidelity can be obtained by selecting
a different sampling rule, e.g., Paulis from the stabilizer
group, following the idea of Ref. [70].

C. Entanglement detection in many-body systems: The
bit-sequence protocol

To illustrate how our method allows us to optimize pro-
tocols that are genuinely adaptive, we consider here the fol-
lowing family of N -round games that we call bit-sequence
protocols.

In the first round, we perform, with equal probabil-
ity, each of the following measurements and record the
outcome:

M1 = {M1|1 = |0〉〈0|, M2|1 = |1〉〈1|},
M2 = {M1|2 = |+〉〈+|, M2|2 = |−〉〈−|}. (40)

In each of the N − 1 subsequent rounds, we then use the
following procedure. In round k, we take the measurement
outcome (1 or 2) of round k − 1 as the new measurement
choice. We perform the respective measurement and record
the new outcome. After the last measurement in round N ,
we check whether the final outcome is 2, in which case we
assign a reward of 1; otherwise, the reward is 0.

For each N , the bit-sequence protocol defines an N -
qubit operator that is applied to the N -qubit state of which
we aim to certify its entanglement. In the following, we
will consider an N -qubit state, ρN , that is an eigenstate
to the maximal eigenvalue of this operator defined by the
N -round protocol.
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FIG. 10. Upper bounds for the winning probability of the best
separable states compared to ρN in a single shot. The green dots
give an upper bound on the score that can be obtained with sepa-
rable states in the bit-sequence game. We observe that this value
lies strictly below the value that we obtain with the states ρN
(blue).

In Fig. 10, we compare the score, denoted Smax, that
we obtain with ρN with the maximum score that can be
obtained with a separable state. The score for separable
states is computed using the procedure from Sec. III (see
Sec. IID of the Supplemental Material [49]).

In this protocol, the maximal score obtained with separa-
ble states corresponds—as in the protocol of Sec. IV B—to
the maximal type-I error eI, while the score for an entan-
gled state ρN corresponds to 1 − eII(ρN ).

We observe a strict separation between the scores for
ρN and the upper bounds that we obtain for separable
states. This demonstrates that the bit-sequence protocols
can certify the entanglement of this family of states. Our
single-shot protocols can furthermore be turned into n-
round protocols using, e.g., the ideas of metagames from
Ref. [2], in order to amplify this separation.

V. ASYMPTOTIC BEHAVIOR OF SEQUENTIAL
MODELS

In some scenarios, the considered sequential problem
admits a natural generalization to arbitrarily many rounds
or time steps N . In that case, we may also be interested
in the asymptotic behavior of the total reward as N → ∞.
However, as we shall see in the following (Sec. V A), there
are sequential models for which approximately comput-
ing the asymptotic maximum reward (or penalty) is an
undecidable problem. Thus the best we can hope for are
heuristics that work well in practice. In Sec. V B, we intro-
duce such heuristic methods and we demonstrate in Sec. VI
that these methods lead to useful bounds for the problems
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that we have considered in the finite regime in Secs. IV A
and IV B.

A. Sequential models with uncomputable asymptotics

To see that there are sequential models for which the
asymptotic maximum reward cannot be well approxi-
mated, we rely on an intermediate result presented in
Ref. [30], where specific probabilistic finite-state automata
for which their asymptotic behavior cannot be well approx-
imated have been constructed.

Consider a finite-state automaton A with a (finite) state
and input sets � and X , initial state σ0 ∈ �, and no out-
puts. The automaton is said to be freezable if there exists an
input x0 ∈ X that keeps the automaton in the same internal
state. Call some subset A ⊂ � the set of accepted states.
Then, we can consider how likely it is to bring the state
of the automaton from σ0 to some accepted state in n time
steps by suitably choosing the input word (x1, . . . , xn) ∈
X ×n. Define

valn(A) = max
x̄∈X ×n

Prob (σn ∈ A) . (41)

The value of the automaton val(A) is defined as
supn valn(A). Note that if A is freezable, then the function
valn(A) is nondecreasing in n. In that case,

val(A) = lim
n→∞ valn(A). (42)

Given a freezable outputless automaton A, consider the
sequential model with Sk being the set of probability
distributions over �, Hk = X , � = ∅, and s1 = σ0. The
equation of motion is

Pk+1(σ
′) =

∑

σ

Pk(σ )PA(σ ′|σ , h), (43)

where Pk+1 ∈ Sk+1, Pk ∈ Sk, and PA denotes the transition
matrix of the automaton.

In a sequential problem with n rounds, we define
the reward of the system as rk = 0 ∀ k < n, rn(sn) =∑

σ∈A Pn(σ ). From all the above, it is clear that the max-
imum total reward of the system corresponds to ν
n :=
valn(A). Hence, limn→∞ ν
n = val(A).

How difficult is to compute the asymptotic total reward
for this kind of sequential models? The next result provides
a very pessimistic answer [71].

Lemma 1 (Lemma 1 from Ref. [30]). For any rational
λ ∈ (0, 1], there exists a family Tλ of freezable probabilis-
tic finite-state automata, with alphabet size |X | = 5 and
with |�| = 62 states, such that, for all A ∈ Tλ:

(a) val(A) ≥ λ or val(A) ≤ λ/2
(b) it is undecidable which is the case

Now, consider the class C of sequential problems for
which the asymptotic value exists and is contained in [0, 1].
This class contains the sequential problem of computing
the value of any automaton in T1. It follows that there is no
general algorithm to compute the asymptotic value of any
sequential problem in C up to an error strictly smaller than
1/4. Otherwise, one could use it to discriminate between
the automata in T1 with value 1/2 and those with value 1,
in contradiction with the above lemma.

B. Heuristic methods for computing upper bounds on
the asymptotics of sequential models

Upper bounds on the asymptotic value of a sequential
model as N → ∞ can be achieved by deriving a function
ν(N ) that upper bounds the solution of the corresponding
sequential problem of size N for any N and taking the
limit. A way to achieve this is to encode, via functional
constraints, recursion relations that define value functions
for arbitrarily high N . For simplicity of presentation, let us
consider a sequential model where rk = 0 for k �= N and
fk, Sk, and Hk are independent of k [72].

In the following, we show how to derive asymptotic
bounds in case of convergence that is polynomial in 1/N
as well as for exponential decay with N . Similar methods
can also be used to bound the solution of the sequential
problem even when the latter diverges, e.g., they can be
used to prove that ν(N ) ≤ 4N 3 (although, in this case,
reducing the corresponding constraints to optimizations
over functions of bounded variables might require some
regularization trick (e.g., Vk → Vk/k3).

1. Sequential models with polynomial speed of
convergence in 1/N

Let us assume that, for high N , ν(N ) ≈ ν̄ + (A/N ) and
we wish to compute ν̄. This problem might arise, e.g.,
when we wish to study the asymptotic type-I error of a
quantum preparation game [2]. To simplify the notation,
we use negative indices −j to denote N − j . Following the
formulation in Eq. (12), in order to obtain an upper bound
on the solution of the sequential problem for size N , we
need to find ν, {V−j (s, λ)}N−1

j =0 such that

V0(s, λ) ≥ r(s, h, λ), (44)

V−(j +1)(s, λ) ≥ V−j (f (s, h, λ), λ), ∀j ∈ {0, . . . , N − 1}
(45)

ν ≥ V−(N−1)(s1, λ). (46)

The value functions V−j obtained according to Eq. (12) are
generally different for each problem size N , so they do not
help us solve the asymptotic problem.

Introducing an extra parameter into the value functions,
in order to account for the increase in j , however, allows us
to use the same value function from some k on. To see this,
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suppose that we manage to show that there exist functions
{W−j (s, λ)}k

j =0, W(α, s, λ) such that

W0(s, λ) ≥ r(s, λ, h), (47)

W−j (s, λ) ≥ W−(j −1)(f (s, h, λ), λ),

∀j ∈ {1, . . . , k}, (48)

W
(

1
k

, s, λ
)

≥ W−k(s, λ), (49)

W
(

α

α + 1
, s, λ

)
≥ W(α, f (s, h, λ), λ), ∀α ∈

[
0,

1
k

]
.

(50)

Then, the functions

V−j (s, λ) :=
{

W−j (s, λ), j = 0, . . . , k,

W
(

1
j , s, λ

)
, j = k + 1, . . . , N − 1,

(51)

satisfy the constraints in Eqs. (44) and (45). Intuitively,
in Eqs. (49) and (50), the variable α must be understood
to represent 1/j , in which case α/(α + 1) corresponds to
1/(j + 1). The constraint in Eq. (50) hence implies the
recursion relation Eq. (45) for all j ≥ k, while the case
j < k is taken care of by Eq. (48). Note that the value of α
is bounded; this is important if we wish to use polynomial
optimization methods to enforce the inequality constraints
in Eq. (50) (see Sec. VI).

Furthermore, if, for some real numbers B, C, . . ., the
extra condition

ν̄ + Aα + Bα2 + Cα3 + · · · ≥ W (α, s1, λ) ,

∀α ∈
[

0,
1
k

]
, (52)

is satisfied, then, by Eq. (46), the function ν̄ + Aα +
Bα2 + Cα3 + · · · upper bounds the solution of the sequen-
tial problem. A heuristic to upper bound ν̄
 on the limit
limN→∞ ν(N ) thus consists in minimizing ν̄ under con-
straints [73] Eqs. (47)–(50) and (52).

The previous scheme is expected to lead to good upper
bounds in situations in which, for high N , the optimal value
functions V0, . . . , V−(N−1) of the problem given in Eq. (12)
satisfy V−(N−1) ≈ V̄ + (Ṽ/N ), for some functions V̄, Ṽ.
That is, they work well as long as limN→∞ V−(N−1) exists.
Experience with dynamical systems suggests, though, that
even if the solution of the sequential problem tends to
a given value ν̄, the sequence (V−(N−1))N might asymp-
totically approach a limit cycle. This means that for
many problems, only every Cth value function follows the
required pattern: in such situations, there exist a natural
number C (the period) and functions V0, . . . , VC−1 such
that, for high enough N , V−N ≈ VR, with R = N (mod C).
Thus, instead of a single recursion relation [Eq. (50)], we
need to construct a family of such relations.

This situation can thus be accounted for by considering
functions {W−j (s, λ)}k

j =0, {Wj (α, s, λ)}C−1
j =0 such that

W0(s, λ) ≥ r(s, λ, h),

W−j (s, λ) ≥ W−(j −1)(f (s, h, λ), λ), j = 1, . . . , k,

W0
(

1
k

, s, λ
)

≥ W−k(s, λ),

W1
(

α

α + 1
, s, λ

)
≥ W0(α, f (s, h, λ), λ), ∀α ∈

[
0,

1
k

]
,

...

WC−1
(

α

α + 1
, s, λ

)
≥ WC−2(α, f (s, h, λ), λ), ∀α ∈

[
0,

1
k + C − 1

]
,

W0
(

α

α + 1
, s, λ

)
≥ WC−1(α, f (s, h, λ), λ), ∀α ∈

[
0,

1
k + C

]
.

(53)

2. Sequential models with exponential speed of
convergence in N

Suppose that the speed of convergence of the sequential
model is exponential, i.e., ν(N ) ≈ ν̄ + Aγ N , for γ < 1.

Assuming, for simplicity, that limN→∞ V−(N−1) exists, how
could we estimate both ν̄ and γ ?

One way to check that the postulated convergence rate
holds is to verify the existence of functions {W−j (s, λ)}k

j =0,
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W(α, s, λ) such that

W0(s, λ) ≥ r(s, λ, h),

W−j (s, λ) ≥ W−(j −1)(f (s, h, λ), λ), j = 1, . . . , k,

W
(
γ k, s, λ

) ≥ W−k(s, λ),

W(γ α, s, λ) ≥ W(α, f (s, λ, h), λ), ∀α ∈ [0, γ k] ,
(54)

and Eq. (52) hold. The last line of the above equation is
the induction constraint, wherein this time α is to be inter-
preted as γ j . As before, we have defined α in terms of
j such that the former quantity is bounded. To treat this
problem within the formalism of convex optimization, one
would try minimizing ν̄ for different values of γ . Each
such minimization, if feasible, would result in an upper
bound ν(N ) on the solution of the sequential problem with
ν(N ) ≈ ν̄ + O(γ N ).

C. Adaptation to finite numerical precision

In standard numerical optimizations, the computer out-
puts value functions that only satisfy the positivity con-
straints in Eqs. (44)–(52) approximately. More generally,
conditions of the form • ≥ 0 are weakened to δ + • ≥ 0,
for some 1 � δ ≥ 0.

For small values of δ, the conditions in Eqs.(44)–(49)
and (52) are not problematic, in the sense that a small
infeasibility of any of these inequalities leads to a constant
increase in the value function by that amount. This is why
in the resolution of Eq. (12), we have so far not considered
numerical precision issues explicitly. Indeed, let {δj }j =k+1
be such that

W0(s, λ)+ δ0 ≥ r(s, λ, h),

W−j (s, λ)+ δj ≥ W−(j −1)(f (s, h, λ), λ), ∀j ∈ {1, . . . , k}

W−k(s, λ) ≤ W
(

1
k

, s, λ
)

+ δk+1,

W (α, s1, λ) ≤ ν̄ + Aα + Bα2 + Cα2 + · · · + δ∞.
(55)

Then, the functions W̃−j := W−j +∑j
i=0 δi and W̃ := W +∑k+1

i=0 δi satisfy conditions Eqs. (44)–(49). If, in addition,
condition Eq. (50) is satisfied by the original functions,
then

ν̄ +
k+1∑

j =0

δk + δ∞ (56)

is a sound upper bound of the asymptotic value of the
game.

However, precision issues become more problematic if
the relation in Eq. (50) is only satisfied approximately,
i.e., if

W
(

α

α + 1
, s, λ

)
+ δ̂ ≥ W(α, f (s, h, λ), λ). (57)

In that case, for N > k, the optimal reward of the N th game
round is upper bounded by

ν̄ +
k+1∑

j =0

δk + δ∞ + δ̂(N − k). (58)

That is, the bound grows linearly with N . In that case, the
asymptotic upper bounds ν̄ obtained numerically can only
be considered valid for N � O

(
1/δ̂

)
.

VI. APPLICATIONS OF ASYMPTOTIC
OPTIMIZATION OF TIME-ORDERED

PROCESSES

In this section, we bound the asymptotic behavior of the
time-ordered processes that have been treated in a finite
regime in Secs. IV A and IV B, respectively, relying on
the techniques from Sec. V. While the former is an exam-
ple of polynomial speed of convergence in 1/N , the latter
illustrates the technique in the exponential case.

A. Asymptotic behavior of finite-state automata

The probability that a two-state automaton generates a
one-tick sequence of length L seems to converge to 0 as
O (1/L). It can also be verified that this is the convergence
rate of the optimal model found in Ref. [23]. In fact, this
model gives the probability of the one-tick sequence

p(2k) = 1
k

(
1 − 1

k

)k−1

≈ 1
ek

, for k → ∞, (59)

where e is the basis of natural logarithms and p(2k − 1) =
p(2k). This explicit example provides an upper bound on
the converge rate for ν(L), i.e., ν(L) cannot converge to
zero faster than 2/eL. Similarly to this model, the value
ν(L) of the sequential game computed numerically satisfies
ν(2k) = ν(2k − 1) from k = 2 onward. This suggests that
we should apply the relaxation Eq. (53), with C = 2.

Remember that sk := (pk(0), pk(1)), where pk(t) denotes
the probability that the automaton has so far produced
the outcome 0 and is in state t and λ := (P(σ ′, 0|σ) :
σ , σ ′), the transition matrix of the automaton. We allow the
discrete-value functions W−k(s, λ) to be linear combina-
tions of all monomials of the form saλb, with a, b = 0, 1, 2.
The continuous-value functions W1 and W2 are linear com-
binations of the monomials saλbαc, with a, b, c = 0, 1, 2.
Positivity constraints such as the last line of Eq. (53) are
mapped to a polynomial problem by multiplying the whole
expression by (1 + α)2.

To solve this problem, we have used the SDP solver
MOSEK [52], in combination with YALMIP [56]. After
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28 iterations, MOSEK returned the upper bound 0.0265,
together with the unknown message. The solution found
by MOSEK was, however, almost feasible, with parame-
ters AS = 4 × 10−7; DFEAS = 8.6 × 10−7 GFEAS = 7.5 ×
10−11 and MU = 1.3 × 10−7. It is therefore reasonable to
assume [74] that the actual solution of the SDP, which
for some reason MOSEK could not find, is indeed close to
2 × 10−2. This figure is, indeed, greater than the conjec-
tured null asymptotic value but nonetheless a nontrivial
upper bound thereof.

B. Asymptotics of entanglement-detection protocols

We observe that for small N , psep
max behaves as

psep
max ≈ 1

2
+ 1

2N . (60)

This value of psep can also be achieved by preparing the
separable state |+〉⊗N . For completeness, we illustrate this
in Sec. III of the Supplemental Material [49]. This shows
that our bounds from Fig. 8 for the finite-N regime are tight
(up to numerical precision).

The behavior in Eq. (60) also implies that we expect
an asymptotic value of 1

2 . Implementing the procedure to
bound the asymptotic behavior from Sec. V B 2, we have
been able to confirm an upper bound of 0.5004, before
running into precision problems using YALMIP [56] and
the solver MOSEK [52]. For the implementation, we have
extended the one described in Sec. IIC of the Supple-
mental Material [49], with the additional relations from
Sec. V B 2. Note that a value of 1

2 corresponds to randomly
guessing whether the state is entangled and is achievable
for any N with the state Eq. (36). It is thus a lower bound
on eI. Note that gap between the success probability of 1
for the GHZ state and approximately 1

2 for the worst-case
separable state approximately reaches the maximal possi-
ble value of such a gap of 1

2 [as explained in Eq. (37)]. This
illustrates that the multiround GHZ game performs essen-
tially optimally for the task of certifying the entanglement
of a GHZ state.

VII. POLICIES WITH GUARANTEED MINIMUM
REWARD

Let us complicate our sequential model a little bit, by
adding a policy. The idea is that the parameters x describ-
ing our policy also affects the evolution of the system,
i.e.,

sk+1 = fk(sk, hk, λ, x) (61)

as well as the reward rk(sk, hk, λ, x) obtained in each time
step.

Ideally, we would like to find the policy x that mini-
mizes the maximum penalty. That is, we wish to solve the

problem

min
x

max
h,λ

N∑

k=1

rk(sk, hk, λ, x), (62)

under the assumption that Eq. (61) holds and that we know
the initial state s1.

For fixed x, though, it might be intractable to compute
the minimum expected reward. A more realistic and prac-
tical goal is thus to find a policy x and a sufficiently small
upper bound ν on its maximum reward (or penalty) ν
(x).
This is the subject of the next section.

A. Optimization over policies

For any x, let ν(x) denote an upper bound on ν
(x),
obtained through some relaxation of the problem given
in Eq. (12). We propose to use standard gradient-descent
methods or some variant thereof, such as Adam [75],
to identify a policy x
 with an acceptable guaranteed
minimum reward ν(x
).

More concretely, call X the set of admissible policies,
and assume that X is convex. Starting from some guess x(0)

on the optimal policy, and given some decreasing sequence
of non-negative values (εk)k, projected gradient descent
works by applying the iterative equation

x(k+1) = πX
(
x(k) − εk∇xν(x(k))

)
, (63)

where πZ(x) denotes the projection of vector x in set Z,
i.e., the vector z ∈ Z closest to x in Euclidean norm. For
k � 1, we would expect policy x(k) to be close to minimal
in terms of the guaranteed reward ν(x(k)).

The use of gradient methods requires estimating ∇xν(x̄)
for arbitrary policies x̄. Considering that we have so far
obtained bounds ν(x) (for fixed x) numerically from relax-
ations of Eq. (12), this task requires additional theoretical
insight. The rest of this section is thus concerned with for-
mulating an optimization problem to estimate the gradient
of ν(x).

Suppose, for simplicity, that x consists of just one real
parameter, i.e., we wish to compute (d/dx)ν(x̄). Fix the
policy to be x̄, let δx > 0, and let us consider the prob-
lem given in Eq. (12). To arrive at a tractable problem, one
normally considers a simplification of the following type:

ν(x̄) := min
V1,...,VN ,ν

ν

s.t. VN (sN , λ) ≥Q rN (sN , h, λ, x̄),

Vk(sk, λ) ≥Q rk(sk, h, λ, x̄)+ Vk+1(fk+1(sk, hk, λ), λ),

ν ≥Q V1(s1, λ).
(64)

Here, the relation a ≥Q b signifies that the expression
a − b, evaluated on some convex superset Q of the set
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of probability distributions on the variables {sk, hk}k, λ, is
non-negative. In the polynomial problems considered in
this paper, this superset Q is, in fact, dual to the positivstel-
lensatz used to enforce the positivity constraints. In the
case of Putinar’s positivstellensatz, Q would correspond to
the set of monomial averages {〈zi1 · · · ziN 〉} that, arranged
in certain ways, define positive semidefinite matrices (for
details, see Ref. [47]).

Since Q contains all probability distributions, a ≥Q b
implies that a ≥ b and so the solution of Eq. (64) is a fea-
sible point of Eq. (12) and hence an upper bound ν(x̄) on
ν
(x̄). For the time being, we assume that the minimizer
V1, . . . , VN of the problem given in Eq. (64) is unique for
policy x̄. We will drop this assumption later.

Now, let us consider how the problem given in Eq. (64)
changes when we replace x̄ by x̄ + δx. We assume not only
that the solution satisfies ν(x̄ + δx) ≈ ν(x̄)+ μδx but also
that the optimal slack variables V1, . . . , VN also experience
an infinitesimal change, i.e.,

Vk(sk, λ) → Vk(sk, λ)+ V̂k(sk, λ)δx. (65)

That is, not only is the solution differentiable but also the
minimizer of the optimization problem.

Ignoring all terms of the form o(δx) in Eq. (65), it is
clear that ν + μδx is an upper bound on ν
(x̄ + δx) if and
only if

VN (sN , λ)+ V̂N (sN , λ)δx ≥Q rN (sN , h, λ, x̄)+ ∂

∂x
rN (sN , h, λ, x̄)δx, (66)

Vk(sk, λ)+ V̂k(sk, λ)δx ≥Q rk(sk, h, λ, x̄)+ ∂

∂x
rk(sk, h, λ, x̄)δx + Vk+1(sk+1, λ)

+ V̂k+1(sk+1, λ)δx + δx
∑

σ

∂Vk+1

∂sσk+1

∂f σk (sk, hk, λ, x)
∂x

, (67)

ν + μδx ≥Q V1(s1, λ)+ V̂1(s1, λ)δx. (68)

Here, the symbol σ is used to denote the coordinates of
sk+1.

Our goal is now to turn this into an optimization prob-
lem that allows us to find μ. For this purpose, it is useful
to invoke the fact that the slack variables {Vk}k are opti-
mal, i.e., they not only satisfy the conditions in the problem
given in Eq. (64) but all inequalities must be saturated.
Namely, for each k, there exists q ∈ Q such that

〈Vk(sk, λ)− rk(sk, hk, λ)− Vk+1(sk+1, λ)〉q = 0. (69)

To proceed, we need the following lemma, which allows
us to phrase the constraints in Eqs. (66)–(68) in terms of
the quantities V̂k.

Lemma 2. Let a ≥Q 0, and let the set Q′ := {q : q ∈
Q, 〈a〉q = 0} be nonempty. Then, a + âδx ≥Q 0 for δx →
0+ if and only if â ≥Q′ 0.

Proof. Q′ ⊂ Q, so a + âδx ≥Q 0 implies that â ≥Q′ 0.
To see the converse implication, note that, for q ∈ Q \ Q′,
〈a〉q > 0 and therefore limδx→0+〈a + âδx〉q > 0. To deter-
mine if 〈a + âδx〉q ≥ 0 for all q ∈ Q in the limit δx → 0+,
it is thus sufficient to check that the property holds for
q ∈ Q′, i.e., that a ≥Q′ 0. �

By duality, condition â ≥Q′ 0 is equivalent to

ξa + â ≥Q 0, for some ξ ∈ R. (70)

From the above equation and the relations in Eq. (69), it follows that (under the hypothesis that the minimizer V is
differentiable and unique at x̄) the limit D+ν(x̄) ≡ limδx→0+(ν(x̄ + δx)− ν(x̄)/δx) equals

min
μ,V̂,ξ

μ

such that V̂N (sk, λ) ≥Q
∂

∂x
rN (sN , hN , λ, x̄)+ ξN (VN (sk, λ)− rN (sN , hN , λ, x̄)) ,

V̂k(sk, λ) ≥Q
∂

∂x
rk(sk, h, λ, x̄)+ V̂k+1(sk+1, λ)+

∑

σ

∂Vk+1(sk+1, λ)
∂sσk+1

∂f σk (sk, hk, λ, x)
∂x

+ ξk (Vk(sk, λ)− rk(sk, hk, λ, x̄)− Vk+1(sk+1, λ)) ,

μ ≥Q V̂1(s1, λ)+ ξ1 (ν − V1(s1, λ)) .

(71)
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If, in addition, the sets

Q′
k := {q ∈ Q : q (Vk(sk, λ)− rk(sk, hk, λ, x̄)− Vk+1(sk+1, λ)) = 0}, k = 1, . . . , N ,

Q′
0 := {q ∈ Q : q (ν − V1(s1, λ)) = 0} (72)

have each cardinality 1, i.e., Q′
k = {qk}, the problem to solve becomes even simpler, namely,

min
μ,V̂,ξ

μ

such that qN

(
V̂N (sk, λ)

)
= qN

(
∂

∂x
rN (sN , hN , λ, x̄)

)
,

qk

(
V̂k(sk, λ)

)
= qk

(
∂

∂x
rk(sk, h, λ, x̄)+ V̂k+1(sk+1, λ)+

∑

σ

∂Vk+1(sk+1, λ)
∂sσk+1

∂f σk (sk, hk, λ, x)
∂x

)
,

μ = q0

(
V̂1(s1, λ)

)
.

(73)

The derivation of Eq. (71) relies on the hypothesis that
the optimal slack variables V := {Vk}k for policy x = x̄ are
unique. Should this not be true, the procedure to compute
D+ν(x̄) requires solving a nonconvex-optimization prob-
lem. The reader can find it in Sec. IV of the Supplemental
Material [49], together with a heuristic to tackle it.

Now, let us return to the case of a multivariate policy x.
If the gradient ∇xν(x̄) exists, then its ith entry corresponds
to the limit

lim
δx→0+

ν(x̄ + δx|i〉)− ν(x̄)
δx

. (74)

Each of these entries can be computed, in turn, via the
procedure sketched above. This requires solving an opti-
mization problem of complexity comparable to that of
computing ν(x̄). Moreover, each such optimization can be
performed separately for each coordinate of x. Namely, the
process of computing the gradient of ν(x̄) can be paral-
lelized. This allows us, through Eq. (63), to optimize over
policies consisting of arbitrarily many parameters, as long
as we have enough resources to compute ν(x̄).

VIII. APPLICATION: OPTIMIZATION OF
ADAPTIVE PROTOCOLS FOR MAGIC STATE

DETECTION

Magic states, i.e., states that cannot be expressed as con-
vex combinations of stabilizer states, are a known resource
for quantum computation: together with Clifford gates,
they allow us to conduct universal quantum operations effi-
ciently [76]. This raises the problem of certifying whether
a given source of states is able to produce them [77].

In the qubit case, magic states are those that cannot be
expressed as a convex combination of the eigenvectors
of the three Pauli matrices. Equivalently, magic states are

those the Bloch vector �n of which violates at least one of
the inequalities

⎧
⎨

⎩

3∑

j =1

nj aj ≤ 1 : a1, a2, a3 ∈ {−1, 1}
⎫
⎬

⎭ (75)

(for an illustration, see Fig. 11).
We wish to devise an N -round adaptive measurement

protocol that tells us whether a given source is prepar-
ing magic states. Namely, if the source can just produce
nonmagic states, we expect the protocol to declare the
source “magic” with low probability eI (the type-I error
of the protocol). If, however, the source is actually prepar-
ing independent copies of any quantum state violating one
of these inequalities by an amount greater than or equal to

FIG. 11. Qubit magic states. Represented in the Bloch sphere,
the magic states of a qubit are all those that lie outside the blue
octahedron. In this section, the goal is to certify whether a general
state is magic or not.
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FIG. 12. An illustration of magic state detection. We display
a cut through the Bloch sphere showing nonmagic (blue square)
and magic states (region outside the square). The goal is to devise
an N -round protocol that is able to reliably classify states into
magic and nonmagic ones, as long as the considered magic states
are at least δ away from the nonmagic ones. The protocol derived
below, based on a two-state automaton, is valid in one of the
regions outside the square of nonmagic states.

δ, we wish the protocol to declare the source “nonmagic”
with low probability eII (the type-II error of the protocol)
(see Fig. 12).

To do so, we formulate the protocol as a time-
independent preparation game [2]. That is, in every mea-
surement round k, our knowledge of the magic of the state
is encoded in the configuration t ∈ T of the game, with
|T| < ∞. The state prepared by the source is then mea-
sured by means of the POVM with elements (Mt′|t : t′ ∈
T) ⊂ B(C2)×|T|. The result t′ of this measurement is the
new configuration of the game. When we exceed the total
number of measurement rounds n, we must guess, based on
the current game configuration, whether the state source is
magic or not. For simplicity, we declare the source to be
magic if t ∈ A ⊂ T, with |A| = �|T|/2�. The initial state of
the game, t1, is chosen such that t1 �∈ A.

The game is thus defined by the POVMs {Mt′|t : t′ ∈ T}t.
For computing eI, we assume that the “dishonest” player,
who claims to produce magic states but does not, knows at
every round the current game configuration. They can thus
adapt their state preparation correspondingly to increase
the type-I error. As explained in Sec. III B, the computa-
tion of the maximum score of a preparation game under
adaptive strategies can be cast as a sequential problem
with hk := (ρk(t) : t ∈ Tk). In this case, the set of feasible
states, C, is generated by convex combinations of {ψi}6

i=1,
the eigenvectors of the three Pauli matrices: linear max-
imizations over C therefore correspond to maximizations
over these six “vertices.” Putting it all together, we find

that computing the type-I error of the game amounts to
applying the recursion relation:

μN (t) = max
i

∑

t′∈A

tr(|ψi〉〈ψi|Mt′|t),

μk(t) = max
i

∑

t′
tr(|ψi〉〈ψi|Mt′|t)μk+1(t′),

eI = μ1(t1).

(76)

Let us assume that all the maximizations above have a
unique mazimizer and call i(k, t) the maximizer corre-
sponding to the kth round and game configuration t. Then,
the gradient of eI with respect to the POVM element Mτ ′|τ
satisfies the recursion relations:

�∇μN (t) = δτ ,t|ψi(N ,τ)〉〈ψi(N ,τ)|,
�∇μk(t) =

∑

t′
tr(|ψi(k,t)〉〈ψi(k,t)|Mt′|t) �∇μk+1(t′)

+ δτ ,tμk+1(τ
′)|ψi(k,τ)〉〈ψi(k,τ)|,

�∇eI = �∇μ1(t1). (77)

It can hence be computed efficiently in the number of
measurement rounds.

Now, consider the computation of the type-II error under
IID strategies, the formulation of which as a sequential
problem can be found in Sec. II C. We first focus on
the set Sa of qubit states with Bloch vector �n satisfying∑

j aj nj ≥ 1 + δ, for some a1, a2, a3 ∈ {−1, 1}. Applied
to a source that always produces the same state ρ ∈ S ,
the magic detection protocol can be modeled through a
sequential model, with internal state sk at time k given by
the probability distribution over the game configurations
Pk(t) in round k, just before the measurement. The state
ρ ∈ S prepared by the source is to be identified with the
evolution parameters λ, as the equation of motion of the
model is

Pk+1(t′) =
∑

t

tr(ρMt′|t)Pk(t). (78)

To calculate the type-II error, we assign the model the
rewards rk = 0, for k = 1, . . . , N − 1 and

rN (PN , ρ) =
∑

t

PN (t)
∑

t′∈A

tr(ρMt′|t). (79)

We can thus compute an upper bound on eII(Sa), the max-
imum type-II error achieved with states in class Sa, via the
SDP relaxation of Eq. (12), and its gradient with respect
to the POVM element Mt′|t, via Eq. (71) [78]. We assume
that the solution of problem given in Eq. (12) is unique, so
that the techniques of Sec. IV of the Supplemental Material
[49] are not necessary.
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FIG. 13. The upper bounds for eI + eII as a function of the
number of gradient iterations. Starting from a random prepara-
tion game, we have used the Adam algorithm [75] to decrease
the sum of the type-I and type-II errors of a magic state detec-
tion protocol. For this computation, we set the learning rate of
the algorithm to 0.01.

Our original problem, though, is to compute the type-
II error of all states violating at least one of the facets of
the magic polytope by an amount ≥ δ. Thus we have that
eII = maxa eII(Sa). The gradient (or, more properly said,
subgradient) of this function is �∇eII(Sa
), where a
 is the
argument of maxa eII(Sa).

We are now ready to apply gradient descent to minimize
the combined error eI + eII. We have used the gradient
method Adam [75], followed at each iteration by a projec-
tion onto the (convex) set of protocols {Mt′|t : t′ ∈ T}t∈T,
with Mt′|t ≥ 0, ∀t, t′ ∈ T,

∑
t′ Mt′|t = I, ∀t ∈ T. For |T| =

2, n = 6, gradient descent converges to a value eI + eII ≈
1, probably an indication that one cannot detect all magic
states with a two-state automaton. If, however, we restrict
the problem to that of detecting those states that satisfy the
inequality

∑
i ni ≥ 1 + δ, we arrive at the plot shown in

Fig. 13.
As the reader can appreciate, after a few iterations, the

algorithm successfully identifies a strategy with eI + eII <

1. Beyond 50 iterations, the objective value does not seem
to decrease much further. This curve has to be understood
as a proof of principle that gradient methods are useful to
devise preparation games. Note that for a general prepa-
ration game, the number of components of the gradient is
4|T|2. Optimizations over preparation games with high |T|
would thus benefit from the use of parallel processing to
compute the whole gradient vector.

IX. CONCLUSIONS

We have proposed a method to relax sequential prob-
lems involving a finite number of rounds. This method
allows us to solve optimization problems of sizes that have

not been tractable with previous convex-optimization tech-
niques. Moreover, a variant of the method generates upper
bounds on the solution of the problem in the asymptotic
limit of infinitely many rounds.

We have demonstrated the practical use of our methods
by solving an open problem: namely, we have computed
the maximum probability for any finite-state automaton of
a certain fixed dimension to produce certain sequences,
thus proving that the values conjectured in Refs. [23,24]
are optimal (up to numerical precision). We have further
illustrated how to turn such bounds into analytical results.

As we have shown, the methods are also relevant in the
context of certifying properties of quantum systems, espe-
cially in entanglement detection. Specifically, our method
enables us to bound the misclassification error for sep-
arable states in multiround schemes as well as in the
asymptotic limit, which we illustrate by means of a GHZ-
game-inspired protocol, for which we also show that our
bounds are tight.

Finally, we have explained how to combine these meth-
ods with gradient-descent techniques to optimize over
sequential models with a certified maximum reward. This
has allowed the computer to generate an adaptive protocol
for magic state detection.

In some of our optimization problems, we have found
that otherwise successful SDP solvers, such as MOSEK [52],
have failed in some cases to output a reliable result. The
cause of this atypical behavior is unclear and we lack a
general solution for this issue. That said, the results from
the numerical optimization have still allowed us to extract
and confirm reliable bounds from the optimizations in most
cases.

In two of the considered applications, we have found
tight upper bounds on the quantities of interest. This
may indicate that, at least in reasonably simple cases,
our hierarchical method converges at relatively low lev-
els of complexity. Finding conditions for convergence at
such low levels is an interesting question that we leave
open.

Quantum technologies are currently at the verge of
building computing devices that can be used beyond purely
academic purposes. These involve more than a few par-
ticles and thus the problem of certifying properties of
systems of intermediate sizes is currently crucial. This is
relevant not only from the perspective of a company build-
ing such devices but also from the perspective of a user
who may want to test them independently. This progress
is somewhat in tension with the state of research in certi-
fication, e.g., in entanglement theory, where methods are
only abundant in the few-particle regime. Our GHZ game
illustrates that automaton-guided protocols may bridge this
gap: modeling one-way LOCC protocols through sequen-
tial processes might allow the certification of large classes
of many-body systems, thus offering an alternative to
protocols based on shadow tomography [65,79].
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Our methods are furthermore able to certify systems
beyond the linear regime that is employed when consid-
ering the usual types of witnesses for certifying systems,
which from a mathematical viewpoint essentially distin-
guish convex sets by finding a separating hyperplane. As
suggested in the example of magic states, our techniques
beyond this regime also mean that we can analyze more
general classes of systems simultaneously. Indeed, using
a finite-state automaton of large enough dimension, we
expect to be able to detect any states that have at least
a certain distance from the set of nonmagic states. As
optimization methods improve, we expect such universal
protocols to become more and more common, as they are
also applicable with minimal knowledge about the state of
the system at hand.

Finally, many different problems encountered in quan-
tum information theory have a sequential structure similar
to the one analyzed in this paper. Thus we expect that our
methods will soon find applications beyond those studied
in the present work. In this regard, it would be interesting
to adapt our techniques to analyze quantum communica-
tion protocols. Another natural research line would be to
extend our methods to model interactions with an evolv-
ing quantum system, rather than a (classical) finite state
automaton.
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