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We address how one can empirically infer properties of quantum states generated by dynamics involving
measurements. Our focus is on many-body settings where the number of measurements is extensive, mak-
ing brute-force approaches based on postselection intractable due to their exponential sample complexity.
We introduce a general-purpose scheme that can be used to infer any property of the postmeasurement
ensemble of states (e.g., the average entanglement entropy, or frame potential) using a scalable number
of experimental repetitions. We first identify a general class of “estimable properties” that can be directly
extracted from experimental data. Then, based on empirical observations of such quantities, we show how
one can indirectly infer information about any particular given nonestimable quantity of interest through
classical postprocessing. Our approach is based on an optimization task, where one asks what are the min-
imum and maximum values that the desired quantity could possibly take, while ensuring consistency with
observations. The true value of this quantity must then lie within a feasible range between these extrema,
resulting in two-sided bounds. Narrow feasible ranges can be obtained by using a classical simulation of
the device to determine which estimable properties one should measure. Even in cases where this sim-
ulation is inaccurate, unambiguous information about the true value of a given quantity realized on the
quantum device can be learned. As an immediate application, we show that our method can be used to
verify the emergence of quantum state designs in experiments. We identify some fundamental obstruc-
tions that in some cases prevent sharp knowledge of a given quantity from being inferred, and discuss
what can be learned in cases where classical simulation is too computationally demanding to be feasible.
In particular, we prove that any observer who cannot perform a classical simulation cannot distinguish the
output states from those sampled from a maximally structureless ensemble.

DOI: 10.1103/PRXQuantum.5.020347

I. INTRODUCTION

In quantum mechanics, measurements serve both as a
means to extract information about a system, and as a
form of dynamics in of themselves. Not only does the
outcome of a measurement provide information about the
premeasurement state, but it is also used to update one’s
knowledge of the postmeasurement state, effectively lead-
ing to a stochastic “collapse” of the wave function. This
effect is central to a number of longstanding ideas in quan-
tum information science, including active error correction
[1] and measurement-based quantum computation [2,3]. In
recent years, a great deal of interest has emerged in the
study of many-body quantum states that are generated by
such dynamics, leading to the discovery of measurement-
induced entanglement phase transitions [4–13], emergent
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quantum state designs [14–18], and protocols for generat-
ing long-ranged entangled states via nonunitary dynamics
[19–25].

The probabilistic nature of quantum measurements
makes probing such phenomena in experiment a consider-
able challenge. This is because the states of interest cannot
be prepared deterministically; rather, in each repetition of
the experiment, we obtain a different randomly chosen out-
come, and hence a different postmeasurement state. Using
conventional learning techniques, any property of a given
quantum state can only be inferred through repeated prepa-
ration and measurement, which in this context would only
be possible if we run the experiment sufficiently many
times such that each state is realized on multiple occasions.
Such a “postselection”-based approach has a sample com-
plexity that is exponential in the number of measurements
[16,26], which is infeasible for many-body systems.

In this paper, we introduce a method by which prop-
erties of the postmeasurement ensemble of states can be
learned from experimental data, without suffering from
the exponential cost of postselection. Although a given
ensemble-averaged quantity of interest (e.g., the mean
entanglement entropy of the conditional states) may not
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be directly accessible in the sense one usually thinks of,
we show that information about its value can still be
inferred indirectly based on independent observations of
certain other quantities, which we call “estimable prop-
erties.” These latter quantities are constructed such that
they can be directly computed using data obtained from
a scalable number of experimental repetitions.

The basis of our method is to propose the following opti-
mization task: what are the maximum and minimum values
that the quantity of interest could take, based on the empir-
ically observed values of a set of estimable properties?
[See Fig. 1(c).] These extrema provide us with two-sided
bounds for the desired property, i.e., we can conclude that
the true value lies somewhere within this range. Despite
the extremely high-dimensional nature of this optimization
problem (scaling with the number of possible measure-
ment outcomes), we show using analytical arguments how
concrete bounds can be efficiently computed.

The success of our scheme—as quantified by the gap
between minimum and maximum—depends on which
estimable properties we choose to measure. We propose to
use classical simulations of the quantum device to inform
this decision. That is, when we run the experiment and
obtain a particular measurement outcome, a correspond-
ing simulation of the dynamics is run on a classical device
to determine what the best observable to measure is, given
that the outcome in question has occurred. As the fidelity of

the simulation improves, the bounds constructed using our
method become tighter. We benchmark the performance of
the method for particular representative examples, demon-
strating that tight bounds can be constructed even when
there is appreciable mismatch between the simulated and
true states.

This usage of a parallel simulation of the dynamics
can be thought of as analogous to constructing “quantum-
classical correlators,” which have been recently introduced
in the context of measurement-induced dynamics [13,27–
32] as an alternative to feedback-based approaches [12,33].
In contrast to those works, where the inference one makes
is dependent on how closely the quantum and classical
devices behave, our approach allows one to extract unam-
biguous information regarding properties that are intrinsic
to the quantum device alone. While bounds of this kind
have been proved for specific quantities on a case-by-case
basis in Ref. [34], our method can in principle be used to
estimate any ensemble-averaged quantity, with a guaran-
tee that the sharpness of the bounds is optimal for a given
set of estimable parameters. We stress that even though
model-based simulations are employed, the inferences we
make are not contingent on any assumptions regarding the
accuracy of this simulation, thereby allowing one to defini-
tively verify whether or not some phenomenon of interest
is actually realized in experiment. As a concrete example,
we show how the method introduced here can be used
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FIG. 1. (a) In this work, we are interested in ensembles of quantum states EQ [Eq. (1)] that arise from some quantum dynamics fea-
turing measurement. This could be a hybrid quantum circuit, the projected ensemble, or some other protocol of interest. To be general,
we can think of the device as a black box that on a given run of the experiment, with probability pz , outputs a label z (representing the
outcome of all measurements during the dynamics), along with a corresponding quantum state ρQ

z (the postmeasurement conditional
state). To learn properties of the ensemble, we perform a subsequent measurement on the state, here denoted Az , which itself can
depend on z; after many repetitions this allows us to infer properties of the form (8). A classical simulation of the underlying dynamics
can be used to help inform us how to best choose Az (Sec. IV). (b) Having learned the values of these measurable properties, we can
characterize the space of all quantum state ensembles (collections of conditional states ρ = {ρQ

z }) that are consistent with our findings
ρ ∈ K—see Sec. V. (c) For a given ensemble property of interest Ḡ [Eq. (3)], we can construct minimum and maximum values (green
stars) over all ensembles of the empirically deduced set K. We can infer that the true value must lie between these extrema.
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to verify the formation of quantum state designs in the
projected ensemble [14,17]—a class of states with poten-
tial applications in state tomography, benchmarking, and
cryptography [35–39].

By analyzing the nature of the information that one gains
from performing experiments in general terms, we also
identify certain fundamental limitations that in some cases
preclude arbitrarily sharp knowledge about a certain prop-
erty from being known, even in principle. In particular, we
prove a result (Theorem 1) that implies that if the condi-
tional postmeasurement states realized by the device are
not close to being pure on average, then there will always
be some residual uncertainty in the value of the desired
quantity, even if the classical simulation is perfect. We
also consider the possibility that classical simulations of
the device may not be possible due to having too high a
computational complexity. Our conclusion is that, without
the ability to perform some form of simulation, nothing can
be learned about the ensemble of quantum states, besides
the averaged state generated by the device (Theorem 2).
Put simply, this suggests that we should only think of
the postmeasurement conditional quantum states as being
physically accessible if we have some means to predict
something about their structure in advance. Altogether, our
results establish a fundamental separation between what
can and cannot be learned about measurement-induced
dynamics, and pave the way towards an understanding
of how the various phenomena that arise in this con-
text can be leveraged for other purposes, be it quantum
communication, cryptography, or computation.

II. SUMMARY OF MAIN RESULTS

A. Setup

Our aim is to understand how one can infer properties of
postmeasurement quantum states from experimental data.
Specifically, we consider settings where a quantum system
Q is subjected to some dynamics featuring measurements,
and we are interested in properties of the conditional states
of the system at the end of the dynamics. Scenarios that
fit into this category include (but are not limited to) the
following.

(1) Hybrid quantum circuits: models of dynamics typ-
ically defined in discrete time featuring measure-
ments at various points in space and time [4–8,10,
11].

(2) The projected ensemble, where a fixed many-body
state is prepared before measurements of a subset of
degrees of freedom are made [14–17,25].

(3) Continuously monitored quantum systems [8,40–
45], and settings where one is interested in the
quantum jump trajectories of open quantum systems
[46,47].

(4) Systems undergoing error correction and detection,
which involves measuring stabilizer operators [1].

(5) Measurement-based approaches to quantum compu-
tation [2,3].

Since measurements are fundamentally stochastic pro-
cesses, the conditional state of the system after measure-
ments have occurred is itself a random variable. Thus,
in contrast to familiar scenarios where the task is to
learn about a fixed quantum state ρ that can be prepared
deterministically, we are instead concerned with statistical
ensembles of quantum states

EQ = {(pz, ρQ
z )}z∈Z . (1)

In the above, each z ∈ Z is a possible measurement
outcome, which occurs with probability pz, and ρQ

z is
the (normalized) state of the system conditioned on this
outcome—a unit-trace, Hermitian, positive semidefinite
operator.

Such ensembles of states can be thought of as an
abstracted description of any of the abovementioned exam-
ples. We remain indifferent to the exact nature of the
underlying dynamics, and instead picture a scenario where
in each run of an experiment, some oracle (i.e., a “black
box,” the implementation of which we disregard) provides
us with a label z (the measurement outcomes), sampled
from the probability distribution pz, along with a corre-
sponding conditional state ρQ

z . In each run of the actual
experiment, the dynamics of interest is executed, which we
can think of as a single query to this oracle, after which we
can apply some additional measurement whose purpose is
to extract information about ρQ

z [see Fig. 1(a)].
If the measurement outcome z is ignored then this oracle

is equivalent to a device that prepares the averaged state

〈ρQ〉 :=
∑

z

pzρ
Q
z (2)

every time. Properties of 〈ρQ〉 can therefore be learned
using conventional approaches. In some settings, we
may be concerned with properties of this averaged state,
while in others—including many of the examples listed
above—the physics being investigated may be manifest
in the individual conditional states that make up ensem-
ble (1). In the latter case, our wish is to learn properties of
this ensemble EQ beyond those of the average state, using
some fixed number of queries M .

A well-appreciated issue that makes this objective dif-
ficult to achieve in the context of measurement-induced
dynamics is the postselection problem, which we describe
in detail later. In brief, the problem stems from the fact
that in each run of the experiment, we only get a single
copy of the conditional state ρQ

z , which is sampled ran-
domly from the distribution pz. In the regime where the
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number of outcomes |Z| is large (which is to be expected
in many-body settings), the state we get will be differ-
ent every time for any reasonable number of repetitions
M . Evidently, we can immediately rule out the possibility
of learning properties of any individual conditional state
ρ

Q
z∗ , since the probability of this state never occurring is

high. One might still hope to be able to estimate ensemble-
averaged properties from a finite sample {z(1), . . . , z(M )},
i.e., we look to estimate quantities of the form

Ez[G] :=
∑

z∈Z
pzG(ρQ

z ), (3)

where G(σ ) is some function of a density matrix σ , and
Ez denotes an expectation value over the distribution {pz}.
However, in contrast to classical physics, quantum states
cannot be copied, and thus having only single-copy access
to the conditional states limits the information we can
extract about each ρQ

z . In particular, as has been discussed
previously, there is an apparent obstacle to learning prop-
erties of the kind (3) where G(σ ) is a nonlinear function
of σ , since these cannot be expressed as functions of the
average state 〈ρQ〉. A central aim of this paper is to criti-
cally examine this expectation, which is usually presented
in somewhat heuristic terms, and to sharply determine
exactly what can and cannot be inferred about a postmea-
surement quantum state ensemble from experimental data
of a reasonable size M .

B. Results and structure of the paper

Our first step to determine if and how the postselec-
tion problem can be circumvented is to establish a general
class of ensemble properties that can be directly estimated
using a reasonable number of repetitions M . In Sec. III,
we demonstrate that expressions of the form (8) consti-
tute such “estimable properties” of the ensemble, in that
one can construct a function of the experimental data that
equals the property in question on average, without any
additional assumptions being made.

Most properties of the ensemble that are of interest do
not fall within this class, and hence cannot be directly
estimated in the same way. Nevertheless, we demonstrate
how information about some nonestimable property can
be indirectly inferred using independent measurements of
other estimable quantities, using the following logic. Given
a collection of estimable quantities and some empirical
observations of their values (which we get from running
the experiment), we consider the space of all ensembles
that are consistent with these observations. We refer to this
as the feasible space K [Fig. 1(b)], and we can guaran-
tee that the true ensemble realized in the experiment lies
somewhere within K. We can characterize the best possi-
ble state of knowledge about some nonestimable average
Ez[G] by looking at the extremes of this quantity over

the space K. The maximum and minimum possible val-
ues of Ez[G] that are consistent with our observations can
be represented as the solutions to an optimization prob-
lem [Fig. 1(c)]. By solving these optimization problems,
we can construct two-sided bounds for the desired quantity,
i.e., we infer that Ez[G] must be between the minimum and
maximum, both of which can be computed efficiently using
a scalable number of repetitions M . Ideally, the upper and
lower bounds constructed using this approach will be close
to one another, thereby giving us sharp knowledge about
its value. This approach is outlined in detail in Sec. V, and
we apply this idea to construct explicit bounds for various
quantities of interest in Sec. VI.

We are naturally concerned with how successful this
indirect inference scheme can be, as quantified by the
width of the feasible range. To address this issue, one must
first decide how to choose which estimable parameters to
measure. While our analysis works for any such choice,
we can make a decision based on an approach introduced
in previous works, where one constructs cross-correlations
between experimental data and an independent simulation
of the underlying dynamics. These “quantum-classical cor-
relators,” which we describe in Sec. IV, fall within the set
of measurable properties, and hence can be efficiently esti-
mated. (The nature of these simulations need not matter for
the purposes of our inference scheme, but we address some
specifics in the discussion.)

Using this approach, we argue that the sharpness of
the two-sided bounds depend on two key factors. Firstly,
the accuracy of the simulation influences the gap between
the minimum and maximum: naturally, as the simulation
gets closer to the true behavior of the system, the bounds
become tighter. Secondly, the nature of the conditional
states that are realized on the quantum device ρQ

z also plays
an important role. We prove an important result—Theorem
1—which states that regardless of which measurable quan-
tities we compute, there will always be a consistent ensem-
ble that is made up of states that are almost all pure. The
implication is that, when the actual states realized by the
device ρQ

z are mixed, we cannot necessarily constrain the
range of a desired property Ez[G] to be within an arbi-
trarily small window, even if the simulations we use are
perfect. This represents a fundamental obstruction to learn-
ing mixed state ensembles without postselection, which we
discuss in detail in Sec. VIII A.

As an immediate application of our results, we show
how the inference scheme developed here can be used to
verify the emergence of quantum state designs in chaotic
many-body systems [14,17]. We show how one can con-
strain a quantity known as the frame potential, which can
be used to quantify how far an ensemble is from being a
k-design (namely, an ensemble whose kth moments coin-
cide with those of the Haar ensemble [48]). In Sec. VII,
we present a numerical simulation of an experiment that
features both noise and miscalibrations in the Hamiltonian,
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and show that despite these imperfections (which are
inevitably present in any experiment), the frame poten-
tial can be determined to be within a reasonably narrow
window, in the sense described above.

In practice, performing a simulation of the quantum
device may be a computationally demanding task, and we
discuss the feasibility of such simulations for various spe-
cific cases in Sec. VIII B. It is therefore natural to consider
whether anything can be learned in the case where simu-
lation is not possible. To address this question, we present
a result—Theorem 2—the implication of which is that if
we do not employ some sort of simulation of the dynam-
ics (broadly defined) then we cannot learn anything about
the ensemble of quantum states EQ beyond properties of
the averaged state (2) using a number of repetitions that
scales polynomially with system size. To be specific, in
this regime the true ensemble is indistinguishable from
one where every conditional state ρQ

z is replaced by the
averaged state (2). This suggests that an inability to sim-
ulate the device in question renders the conditional states
inaccessible in experiment. We conclude by discussing this
point, along with some of the other broader implications of
our results in Sec. IX.

III. POSTSELECTION PROBLEM: WHAT CAN
AND CANNOT BE MEASURED

A. The no-coincidence regime

In all the scenarios captured by our generalized setup,
a natural task is to infer properties of the ensemble EQ

using some kind of learning scheme. In particular, for the
purposes of this work, we will be interested in estimat-
ing averaged properties of the states in the ensemble, i.e.,
quantities that can be expressed in the form (3).

We start by addressing the postselection problem in
detail. When it comes to learning properties of postmea-
surement quantum states from experimental data, a fun-
damental difficulty arises when the number of states in
the ensemble |Z| is large—this is typically the case in
the many-body setting, since |Z| scales exponentially with
the number of measurements made, which itself typically
scales with system size and/or time. This places us in a
regime where, for any reasonable number of experimen-
tal repetitions M , the probabilities will satisfy pzM � 1,
meaning that we typically only get access to at most one
instance of each state ρQ

z over the whole experiment.
The significance of this “no-coincidence” regime can be

appreciated relatively straightforwardly: if we are given a
single copy of a given quantum state ρQ

z then whatever
measurement we subsequently perform on it, the distri-
bution of outcomes will depend linearly on the density
matrix ρQ

z . Hence, if there are no coincidences (no value
of z occurs twice or more) then regardless of how we pro-
cess the data, the only quantities that we can infer from the
observed distribution of measurement outcomes are those

that are themselves linear in ρQ
z . If we hastily apply this

logic to quantities of the form (3), this forces us to restrict
ourselves to functions of the form G(ρQ

z ) = Tr[ρQ
z A] for

some observable A. In this case, we write the property in
question as

〈A〉Q := Ez{Tr[ρQ
z A]} = Tr[〈ρQ〉 A], (4)

where 〈ρQ〉 is the average state (2) Such quantities evi-
dently give us no information about the nature of individ-
ual states in the ensemble, and we only learn about the
average state (2).

In contrast, averages of nonlinear functions of the
ensemble states, e.g., squared expectation values G(ρQ

z ) =
Tr[AρQ

z ]2, do contain information beyond that contained
in the average state, which is why these are the quantities
that are of relevance to the various problems described in
Sec. II A. If we had access to multiple copies of each state
ρQ

z then we could in principle learn such nonlinear func-
tions by looking at the full distribution of measurement
outcomes for each z separately. However, in the regimes
we are interested in this demands a prohibitively large
number of experimental repetitions. Our aim is to find a
solution to this postselection problem while keeping the
query complexity bounded.

B. Measurable quantities

To get a more precise picture of exactly what quanti-
ties are or are not experimentally accessible in the no-
coincidence limit, let us consider a general procedure
that can be used to extract information about the ensem-
ble EQ. In a given repetition r ∈ {1, . . . , M }, we obtain
a sample from the ensemble z(r), and subsequently apply
some (generalized) measurement to the quantum system
Q, which can in principle depend on the outcome z(r).
This z-dependent measurement scheme can be represented
by a positive operator-valued measure (POVM) FQ(z) =
{FQ

x (z) : x ∈ X }, where X is a discrete set of measurement
outcomes, and the operators FQ

x (z) are Hermitian positive
semidefinite, satisfying

∑
x∈X FQ

x (z) = I for each z. Con-
ditioned on the outcome z(r), the result x(r) ∈ X occurs
with probability P(x(r)|z(r)) = Tr[FQ

x(r)
(z(r)) · ρQ

z(r)
], which

is linear in ρQ
z(r)

, as discussed above, and together with the
ensemble probabilities pz this defines a joint probability
distribution for the set of possible outcomes of a single run

P(x, z) = pz Tr[FQ
x (z)ρ

Q
z ]. (5)

The full set of data that we acquire from the experiment
{(x(r), z(r)) : r = 1, . . . , M } corresponds to a set of M inde-
pendent, identically distributed samples of pairs X (r) :=
(x(r), z(r)) drawn according to the probabilities (5). Most
obviously, from such a sample we can estimate the average
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of an arbitrary function of these pairs f (X ):

f (X ) := EX f (X ) =
∑

x,z

pz Tr[FQ
x (z)ρ

Q
z ] f (x, z) (6)

with the overline used as shorthand for expectation values
with respect to the samples X . The function f (X (r)) is said
to be an unbiased estimator of the quantity on the right-
hand side of Eq. (6). We focus on the above quantities for
the most part, since they are particularly relevant to ensem-
ble averages of the form (3). However, if we wish to be
even more general, we could also use the sampled data to
estimate functions of n ≤ M independently sampled pairs
fn(X1, . . . , Xn):

fn =
∑

{xi},{zi}

[ n∏

i=1

pziTr[FQ
xi
(zi)ρ

Q
zi

]
]

fn[(x1, z1), . . . , (xn, zn)].

(7)

Quantities (6) and (7) are referred to as estimable param-
eters of distribution (5), because one can find a func-
tion of the sampled data {X (1), . . . , X (M )} that is equal to
these quantities in expectation [49,50]. In fact, any func-
tional over the space of probability distributions that has
an unbiased estimator must be expressible in the forms
written above [51,52]. Hence, these are the only classes
of observables that we can experimentally learn in the
no-coincidence limit.

Returning to Eq. (6), we remark that the ensemble states
ρQ

z only appear through the outcome probabilities (5),
which, as discussed in the previous section, are linear in
the density matrices. It is therefore helpful to rewrite the
average (6) as

f (X ) = 〈Az〉Q :=
∑

z

pz Tr[Azρ
Q
z ], (8)

where we define the family of operators

Az :=
∑

x

FQ
x (z)f (x, z). (9)

Equation (8) gives us a succinct characterization of the
class of quantities that can be learned experimentally with-
out prohibitive postselection overheads. [The more general
estimators (7) can always be decomposed in terms of
the above.] We immediately see that Eq. (4) is the spe-
cial case where we disregard the classical information z
when choosing the measurement scheme and postprocess-
ing function f , i.e., f (x, z) = f (x) and FQ

x (z) = FQ
x , such

that Az becomes z independent. Therefore, quite naturally,
we conclude that in order to probe properties of the ensem-
ble that cannot be characterized solely by the average
density matrix (2), we must adopt a learning strategy that

itself depends explicitly on z. Notably, to do so necessar-
ily requires us to have some a priori knowledge about the
relationship between the labels z and the states ρQ

z . The
essence of our scheme, which we describe in more detail
in the following sections, is to use idealized classical com-
puter simulations of the quantum device to inform us as to
how Az should depend on z.

C. Aside: avoiding midcircuit measurement and
feedforward using classical shadows

As written, the measurable quantities (8) appear to
require a feedforward mechanism, where the outcome z
is used to decide what physical measurement to perform.
Before describing our postselection-free inference scheme
in detail, we briefly pause to explain how this aspect of
the measurement procedure, which may be hard to imple-
ment in practice, can be avoided using ideas from classical
shadow tomography [53]. A similar approach has been
outlined in Ref. [34].

Without feedforward, we must fix the POVM FQ(z)
to be z independent. We make the key assumption that
this fixed POVM is informationally complete [54], i.e., the
collection of operators {FQ

x }x∈X span the full space of oper-
ators over HQ. In this case, one can find a (not necessarily
unique) complementary set of operators F̃Q

x that overall
have the property

∑

x

Tr[FQ
x ρ]F̃Q

x = ρ for all ρ ∈ B(HQ). (10)

Using the nomenclature of Ref. [54], the POVM operators
FQ

x constitute an operator frame, while F̃Q
x is the corre-

sponding dual frame. With this construction in hand, any
observable of the form (8) can be estimated from a set of
experimentally measured data {(x(r), z(r)) : r = 1, . . . , M }
by using the postprocessing function

f (x(r), z(r)) = Tr[Az(r) F̃
Q
x(r)

]. (11)

Combining Eqs. (9) and (10), we see that the average of
such a function equals the right-hand side of Eq. (8) in
expectation,

f (x, z) = 〈Az〉Q . (12)

The above prescription (11) gives us an explicit way of
computing an unbiased estimator for any quantity of the
form (8). Notably, we can do this without deciding on the
operators Az in advance of the physical measurement of
the system, i.e., we can “measure first, ask questions later”
[55]. This feature of informationally complete POVMs
means that we do not need to employ adaptive schemes,
where the physical measurement procedure is decided
based on the sample z.
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A particularly straightforward way to implement an
informationally complete POVM is to use classical shadow
tomography [53,56], which was proposed as a useful way
to study measurement-induced dynamics in Ref. [34]. In
each run of the experiment, we apply a randomly chosen
unitary Uc from a prechosen ensemble U = {(qc, Uc)}c∈C ,
where C is an arbitrary discrete set, before performing
a projective measurement in a fixed basis {|m〉 〈m|}. For
certain choices of U , informational completeness is guar-
anteed, and the dual frame can be computed efficiently.

While there are many such possibilities, as a concrete
example, one can take U to be a uniform distribution over
all single-qubit Clifford gates (i.e., operations of the form
Uc = uc1 ⊗ · · · ⊗ ucN , where uci ∈ {I , HX , HY} with H , HY
Hadamard and Y Hadamard gates, respectively). Then we
can use the dual frame

F̃Q
(m,c) =

NQ⊗

i=1

(3u†
ci

|mi〉 〈mi| uci − I). (13)

Thus, the necessary measurement scheme can be imple-
mented using single-qubit rotations and measurements. In
many settings, this means that we can perform all the mea-
surements simultaneously at the end of the experiment
(both those that generate the ensemble EQ and those we use
to extract information). This is illustrated for the case of the
projected ensemble of a bipartite state |�AB〉 = U(t) |0⊗N 〉
in Fig. 2.

The number of repetitions M required to estimate
〈Az〉Q to a given accuracy can be expressed in terms of
the variance Varx,z f (x, z) = ∑

z pz Tr[FQ
x ρ

Q
z ] Tr[F̃Q

x Az]2.
In the more familiar setting where one wishes to learn
the properties of a fixed state ρ, the variance of a shadow
tomographic estimator can be bounded using a useful con-
struction, the shadow norm ‖A‖2

shadow, which is a function
of the observable to be estimated A, as well as the ensemble
U ; this is defined in Ref. [53]. In the present case, where
we are instead dealing with an ensemble of states, it is
straightforward to show that Varx,z f (x, z) can be bounded
as

Varx,z f (x, z) ≤
∑

z

pz‖Az‖2
shadow. (14)

Thus, the property 〈Az〉Q can be estimated to a good accu-
racy using a reasonable number of experimental repetitions
provided that each of the operators Az is (with high proba-
bility) an operator that itself can be efficiently estimated in
ordinary shadow tomography.

The randomized Pauli measurements discussed above
constitute one particular example of an informationally
complete POVM, but we emphasize that there are many
other alternatives, e.g., those based on global Clifford rota-
tions [53], or even generalized methods that use chaotic

U(t)

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

uc6 uc7 uc8

z1 z2 z3 z4 z5 m6 m7 m8

A B

FIG. 2. Protocol for measuring arbitrary estimable properties
(8) for the projected ensemble using classical shadows, with all
measurements occurring simultaneously at the end of the circuit.
The projected ensemble corresponds to the collection of post-
measurement states that arise when the bipartite state |�AB〉 =
U(t) |0⊗N 〉 is prepared, and then qubits in A are measured in
the computational basis, with outcomes {zi : i = 1, . . . , NA}. The
postmeasurement states are thus defined on the qubits in B; this
figure shows the case NA = 5, NB = 3. As described in the main
text, a shadow-based scheme can be used to probe these states,
which corresponds to performing random on-site unitaries uci
before measuring in the computational basis, with outcomes mi
(to be distinguished from zi, which label the states we are try-
ing to probe). The dual frame (13) is used when reconstructing
estimable properties via Eq. (11).

Hamiltonian evolution and/or ancilla qubits [39,57]. In all
the subsequent analysis, we remain agnostic to the exact
measurement scheme used, and will simply assume that
we have some way to measure the properties (8).

IV. CLASSICAL SIMULATIONS

We have now identified an explicit scheme for mea-
suring quantities of the form 〈Az〉Q [Eq. (8)] without
problematic postselection overheads. However, as men-
tioned previously, our goal is to infer properties of the
ensemble that take the form (3)—specifically, those for
which G(ρ) is a nonlinear function. Here we describe the
idea of “quantum-classical correlators,” where a simula-
tion of the system in question is run in conjunction with
the experiment, and describe what they can tell us about
such nonlinear averages.

By “classical simulations,” we mean the following: each
time we perform a run of the experiment, which gives us
a label z ∈ Z and a measurement outcome x ∈ X , we also
compute and store a representation of some corresponding
state ρC

z on a classical computer. We use the superscript
C to distinguish this “classical” state, which represents the
result of some idealized simulation of the experiment, from
the “quantum” state that is actually realized on the true
device. We emphasize that this simulation can be done
“lazily,” i.e., we only compute ρC

z for those values of z that
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happen to arise in the experiment, as opposed to precom-
puting every state ρC

z in advance, the cost of which would
scale with |Z|. We also do not need to classically sam-
ple from the distribution pz, which in many cases is itself
computationally demanding. The nature, accuracy, and
computational cost of the classical simulation may depend
on the specific physical setting being considered, and we
discuss several particular examples in Sec. VIII B below.
However, for the time being, we presume that some form
of simulation is possible, and motivate our discussion on
the basis that there is some partial correlation between the
classical and quantum states, ρC

z and ρQ
z . The case where

a classical simulation is impossible—either due to incom-
plete knowledge of how the quantum device operates,
or prohibitively high computational cost—is discussed in
Sec. VIII C below.

Let us take the simplest nontrivial case and suppose that
our aim is to learn the average of a particular squared
expectation value Tr[OρQ

z ]2 over the ensemble EQ. We
introduce the following notation for such a quantity:

〈O ⊗ O〉QQ :=
∑

z

pz Tr[O⊗2 · (ρQ
z )

⊗2]

=
∑

z

pz Tr[OρQ
z ]2. (15)

The superscript QQ is used to emphasize that the quantity
in question is a linear functional of the state ρQ

z ⊗ ρQ
z . As

explained in Sec. III, we cannot directly measure this quan-
tity. However, a natural proxy that has been introduced in
several recent works is the “quantum-classical correlator”
[13,27–32], which here we define as

〈O ⊗ O〉QC :=
∑

z

pz Tr[OρQ
z ] Tr[OρC

z ]. (16)

Note that the probabilities pz appearing in Eq. (16) are the
same as those appearing in the fully quantum expression
(15). The above quantity can then be cast in the form (8)
with

Az = Tr[OρC
z ] × O. (17)

Thus, once we collect samples z(r) taken on the quan-
tum device, we can compute the corresponding classical
observables Tr[OρC

z ] and construct an estimator of the
quantum-classical correlator, using the methods prescribed
in Sec. III. Finally, we can also consider a “classical-
classical” correlator

〈O ⊗ O〉CC =
∑

z

pz Tr[OρC
z ]2, (18)

defined by analogy to Eq. (15), again with the probabil-
ities pz set by the quantum device. This is also of the

form (8), with Az = Tr[OρC
z ]2 × I (the quantum states are

disregarded here).
Clearly, in the limit where the classical simulation per-

fectly matches the behavior of the quantum device, ρC
z =

ρQ
z , all these quantities are equal. Thus, we hope that if

the simulation is good, but not perfect, the proxy quantity
(16) will be close in value to the true “quantum-quantum”
observable (15), which is the physically relevant quan-
tity. However, at present we cannot make any definitive
conclusions about the value of the quantum-quantum cor-
relator without making unsubstantiated assumptions about
the accuracy of our classical simulations. Our objective in
the following two sections, which form the most technical
parts of this paper, is to establish methods that allow one
to construct rigorous two-sided bounds for the true value
(15) based on experimental observations of the measur-
able quantities (16) and (18), without making any a priori
assumptions about how accurate the classical simulation is.
That is, even though we are using our classical simulation
as a form of prior “guess” for the conditional states ρQ

z , we
allow for the possibility that this guess is incorrect. This
skeptical approach to learning means that any conclusions
we make about the ensemble will be entirely unambiguous.

V. CONVEX OPTIMIZATION APPROACH TO
INFERRING AVERAGES

We have seen in detail how the no-coincidence limit
gives rise to a distinction between properties of quan-
tum state ensembles that can be measured straightfor-
wardly—those of the form 〈Az〉EQ , Eq. (8), which include
“quantum-classical” correlators (16)—versus those that
cannot be directly measured with a reasonable number
of experimental repetitions, e.g., the “quantum-quantum”
correlator (15). In the absence of direct estimation schemes
for the latter class, we are interested in understanding the
best possible state of knowledge that we could in prin-
ciple have about such unobservable quantities, based on
experimentally accessible data. Our intuition, based on
the discussion of the previous section, is that by cross-
correlating experimental outputs with classical simulations
of the quantum system, we can gain some amount of
knowledge about these quantities, even though we cannot
measure them directly. To make this intuition concrete, in
this and the following sections, we aim to address the ques-
tion: given knowledge of a set of observable quantities of
the form (8), what range of values can a particular unob-
servable quantity take, while ensuring consistency with our
observations?

More formally, suppose that from a set of experimen-
tal data, we construct estimates of a family of R scalar
quantities {〈A(i)z 〉 : i = 1, . . . , R}, the outcomes of which
we denote bi. For the moment, we presume that any sta-
tistical uncertainty in these observations can be neglected
(an assumption that we relax later). We wish to determine

020347-8



POSTSELECTION-FREE LEARNING. . . PRX QUANTUM 5, 020347 (2024)

the maximum and minimum possible values that a par-
ticular average EzG(ρQ

z ) can take over all quantum state
ensembles EQ that satisfy

〈A(i)z 〉EQ = bi for all i ∈ {1, . . . , R}. (19)

Denoting the minimum and maximum values of EzG(ρQ
z )

as g∗
±, this will give us a two-sided bound for the desired

average, namely,

g∗
− ≤ EzG(ρQ

z ) ≤ g∗
+. (20)

The determination of g∗
± can be viewed as an optimization

task, where the object being varied over is the ensemble
EQ itself, and the function being extremized is the average
EzG(ρQ

z ). In this section, we study the structure of such
optimization problems at a general level.

A. Set of consistent ensembles

Our first step is to analyze the structure of the space of
quantum state ensembles that satisfy Eq. (19). For suc-
cinctness of notation, we find it useful to represent the
collection of states {ρQ

z }z∈Z in terms of a single large
block-diagonal matrix ρ = ⊕

z∈Z ρ
Q
z , where each block

contains the density matrix ρQ
z for a particular label z. We

can then view ρ as an element of the linear space of matri-
ces M := B(H)⊕|Z|. As for the probabilities pz, while
these are not known to us in full in practice, our ability to
run the experiment means that we can sample from this dis-
tribution; therefore, our approach will be to keep pz fixed,
while allowing the states ρQ

z themselves to vary. With all
this in mind, we begin by formally specifying the space of
valid quantum state ensembles as

K0 :=
{
ρ =

⊕

z∈Z
ρQ

z

∣∣∣∣ ρ
Q
z ∈ D for all z ∈ Z

}
, (21)

where D ⊂ B(H) denotes the space of density matrices for
a single copy of the system Hilbert space H.

We are interested specifically in ensembles that are
consistent with the observations (19). Again, using the
direct sum representation, for each block-diagonal matrix
X = ⊕

z Xz ∈ M, we define the linear function A(i)(X) :=∑
z pz Tr[A(i)z Xz], and we define the space A as

A := {X ∈ M | A(i)(X) = bi for all i = 1, . . . , R}. (22)

Since A is a subspace defined by R linear constraints, A is
a hyperplane of codimension R in M.

Finally, the feasible space is given by the intersection
K = K0 ∩ A. Writing this out in full,

K :=
{
ρ =

⊕

z

ρQ
z

∣∣∣∣ ρ
Q
z ∈ D for all z ∈ Z;

Ez(Tr[A(i)z ρ
Q
z ]) = bi

}
. (23)

Each element of K corresponds to a particular ensemble
that could describe the system, based on the empirical data
(19).

Crucially, we note that, when viewed as a subset of the
linear space M, the set K is convex, i.e., if ρ = ⊕

z ρ
Q
z

and σ = ⊕
z σ

Q
z are two sets of states that both belong to

K then so too does

λρ + (1 − λ)σ =
⊕

z∈Z
[λρQ

z + (1 − λ)σQ
z ] ∈ K (24)

for any λ ∈ [0, 1]. This is a consequence of the convexity
of both the space of density matrices D and the hyperplane
A, along with the fact that the intersection of two convex
sets is itself convex.

B. Convex functions

Concretely, our aim is to determine the range of fea-
sible values that a particular average EzG can take over
the space of feasible ensembles K. Namely, we wish to
characterize the set

G = {g | ∃ρ ∈ K such that Ḡ(ρ) = g}, (25)

where we introduce the shorthand

Ḡ(ρ) :=
∑

z

pzG(ρQ
z ). (26)

The convexity of K will prove useful for this purpose,
in particular for determining the extremal feasible val-
ues g∗

+ = maxg∈G g (similar for the minimum g∗
−). Indeed,

we can formulate such a task in terms of the following
optimization problems (which we write out in longhand
momentarily):

g∗
± := max/min⊕

z ρ
Q
z ∈K

[∑

z

pzG(ρQ
z )

]
(27)

(with g∗
+ corresponding to the maximum, and g∗

− to the
minimum). One can then immediately use these extrema
to bound the average for the true ensemble EQ on both
sides as

g∗
− ≤ Ḡ(EQ) ≤ g∗

+. (28)

This reflects the best possible state of knowledge we could
have about the average Ḡ, based on our observations.
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Optimization problems over convex sets such as
Eq. (27) have been well studied in a wide variety of con-
texts. Most prominently, much work has gone into the
study of convex optimization, which is concerned with
minimizing convex functions (equivalently, maximizing
concave functions) over convex sets. Recall that a func-
tion Ḡ : K → R is convex if, for any two ρ, ρ ′ ∈ K and
any λ ∈ [0, 1], we have

Ḡ[λρ + (1 − λ)ρ ′] ≤ λḠ(ρ)+ (1 − λ)Ḡ(ρ ′). (29)

Convex optimization tasks enjoy many useful properties,
which can be exploited to gain analytical insight into their
solutions, and to design efficient algorithms. For this rea-
son, from hereon we specialize to cases where the function
Ḡ(ρ) is convex, unless mentioned otherwise. From our
construction of Ḡ [Eq. (26)], we see that Ḡ is convex if
the function G(ρQ

z ), the average of which we are inter-
ested in, is itself a convex function over density matrices.
Some particularly pertinent functions that arise in quantum
many-body physics include the following.

(1) Powers of expectation values.—While expectation
values of observables 〈O〉 = Tr[ρO] are linear in ρ,
and hence directly estimable without any additional
analysis, often we are interested in integer powers of
expectation values, Tr[ρO]k. The quantum-quantum
correlator (15) is an example of this with k = 2. We
would need to compute such a quantity if we wanted
to know the variance of 〈O〉 over the ensemble EQ.
We note that Tr[ρO]k is convex for even k ≥ 2,
or for any positive integer when O is semipositive
definite.

(2) Entropies.—Often we are interested in an entropy
associated with a quantum state ρ, or a entropy
of a subsystem of Q. The von Neumann entropy
S(ρ) = − Tr[ρ log ρ] is a concave function of ρ, as
are Rényi entropies Sα(ρ) = (1 − α)−1 log(Tr[ρα])
for α ∈ (0, 1) [58]. Since our subsequent analy-
sis refers explicitly to convex functions, one can
simply work with −S(ρ), which is convex. One
should then bear in mind that the role of minimiza-
tion and maximization of the objective function are
exchanged.

(3) Purities.—A closely related object is the purity
Tr[ρ2] and generalizations to higher powers Tr[ρk].
These are equal to exponentials of Rényi entropies
Sα=k(ρ), and hence give information on how mixed
the states are, either globally or within a subsystem.
It is straightforward to show that Tr[ρk] is convex in
ρ for k ≥ 1.

While our specialization to convex functions may seem
restrictive, we note that any function G(ρ) whose Hessian
(matrix of second derivatives) is bounded can be decom-
posed as a sum of a convex and a concave function [59],

and hence each component can be bounded separately
using the methods described in the following.

C. Duality and certificates for convex optimization
problems

Working with the understanding that Ḡ(ρ) is a convex
function, we now describe our approach to finding the
extrema g∗

±, or approximations thereof. Several standard
techniques and results from the field of convex optimiza-
tion will be used in the following; we refer the interested
reader to Ref. [60] for an introduction to the field and
proofs of various pertinent results.

The standard approach to optimization problems with
equality constraints of the form (19) is to make use of
Lagrange multipliers. For each constraint i = 1, . . . , R, we
introduce a scalar Lagrange multiplier λi, and define the
Lagrange dual functions as [60]

h−(λi) = inf
ρ∈K0

L(ρ, λi), (30a)

h+(λi) = sup
ρ∈K0

L(ρ, λi), (30b)

where the Lagrangian L(ρ, λi) is given by

L(ρ, λi) := Ḡ(ρ)−
∑

i

λi[A(i)(ρ)− bi]. (31)

We emphasize that the domain in Eqs. (30) is K0, with-
out the linear constraints (19). This is significant because
L(ρ, λi) is a sum over z, and thanks to the structure of
K0, we can perform the extremization for each block ρQ

z
separately.

An important concept in the study of optimization prob-
lems is that of strong and weak dualities, which relate
the original optimization task (the “primal problem”) to a
particular secondary task (the “dual problem”). The dual
problem is to find the extreme points

h∗
− := max

λi
h−(λi), h∗

+ := min
λi

h+(λi). (32)

Since h±(λi) are, by definition, the pointwise supremum
and infimum of a family of affine functions, they are con-
cave and convex functions, respectively. The dual prob-
lems are therefore convex optimization problems, even if
the primal is not.

Strong duality is the statement that the solutions to the
primal and dual problems are identical. In our case, by
Slater’s condition [60], strong duality holds for the min-
imization problem, i.e., h∗

− = g∗
−, provided that Ḡ(ρ) is

convex. As for the maximization problem, this is not a
convex optimization problem, since it is equivalent to min-
imizing −Ḡ, which is concave by assumption. There is
still some useful structure exhibited by convex maximiza-
tion problems, which we discuss in Sec. V D below, but
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for the time being, we instead rely on weak duality, which
holds irrespective of the nature of Ḡ. Weak duality states
that h∗

− ≤ g∗
− and h∗

+ ≥ g∗
+. This general property can be

proved using the min-max inequality.
While many efficient algorithms exist that allow one

to solve convex optimization problems numerically, the
high dimensionality of the primal problem (as well as the
stochastic nature of the observations we make) mean that
we cannot directly employ such algorithms as they stand.
One option is to apply such methods to solve the dual prob-
lem, which has dimensionality R, rather than |Z| × d2,
thus making the problem more manageable. While this
numerical approach is perfectly feasible, here we choose
to study these problems analytically, in order to gain more
insight into the structure of these problems. While exact
solutions to the optimization problems are not always
obtainable using analytic methods, we can still invoke
strong or weak duality, which allow us to find primal-dual
certificates: that is, even if we only have an approximate
solution {λi} to the dual problem, we always have the
following series of inequalities:

h−(λi) ≤ h∗
− = g∗

−, h+(λi) ≥ h∗
+ ≥ g∗

+. (33)

Thanks to these relations, if we can evaluate h−(λi) for
some set of Lagrange multipliers, we can certify that the
true minimum is no less than h−(λi). Thus, even if we can-
not determine the exact value of the extrema, we can use
suboptimal solutions of the dual problem to obtain con-
servative estimates of g∗

±, i.e., a rigorous bound that is
guaranteed not to be an overestimate (underestimate) of
the minimum (maximum). In lieu of an exact solution to
either the primal or dual problems, our aim is then to find a
way of obtaining h±(λi) for near optimal λi, so as to obtain
as tight a bound as possible.

By treating these optimization problems analytically,
rather than numerically, we gain valuable insight that
informs us how to choose the operators A(i)z from the very
beginning so as to obtain small feasible ranges; we have
this in mind in Sec. VI below and beyond.

D. Minimization versus maximization

Before we begin the process of constructing explicit
bounds for specific observables, it is important to point
out a fundamental difference between minimization ver-
sus maximization problems for a given convex average
Ḡ(ρ). Namely, the former is a convex optimization prob-
lem (minimizing a convex function over a convex set),
while the latter is not. This difference between the two will
turn out to have important consequences for the tightness
of the bounds that one can infer based on experimental
observations.

While the maximization problem cannot be cast into
a standard convex optimization problem, we can still
invoke a useful property that results from its special

structure: the maximum of a convex function over a
convex set is always attained at at least one extreme
point of the set. Recall that an extreme point of a con-
vex set C is an element τ ∈ C that cannot be expressed
as a nontrivial convex combination of two other ele-
ments. Specifically, τ is extreme if and only if τ = λτ ′ +
(1 − λ)τ ′′ for some λ ∈ (0, 1) implies that τ ′ = τ ′′ = τ

[60]. If G(τ ) is a convex function over C then, for any
nonextreme τ , we can find appropriate elements τ ′, τ ′′ �=
τ such that G(τ ) = G[λτ ′ + (1 − λ)τ ′′] ≤ λG(τ ′)+ (1 −
λ)G(τ ′′) ≤ max[G(τ ′), G(τ ′′)], which proves the claim
stated above.

By considering the eigenstate decomposition of a den-
sity matrix ρ, one can see that the extreme points of the
space D are pure states ρ = |φ〉 〈φ|. This structure is natu-
rally reflected in the extreme points of K. In Appendix A,
we prove the following result.

Theorem 1. Any ensemble ρ that is an extreme point
of the set K [Eq. (23)] has at most R states that are not
globally pure, where R is the number of linear constraints
in Eq. (19).

Since K is necessarily nonempty (the true ensemble EQ

lies within K), and is a closed, linearly bounded subset of
M = B(H)⊕|Z|, at least one extreme point must exist, and
hence we immediately have the following result.

Corollary 1. Given the values of R scalar measurable
properties (19), there exists an ensemble consistent with
these observations for which at most R states are globally
nonpure.

As a result, in the no-coincidence limit, where Rpz � 1,
we can infer that the solution to the maximization prob-
lem is extremely close to the solution of the same problem
with the additional constraint that all states are pure. This
fact imposes fundamental limitations on how wide the fea-
sible range (20) can be made in cases where the actual state
ensemble EQ is significantly mixed,

∑
z pz Tr[(ρQ

z )
2] < 1.

We consider this issue in more detail in Sec. VIII A below.

VI. CONSTRUCTING TWO-SIDED BOUNDS

Having outlined the general structure of our
optimization-based approach in the previous section, we
can now consider a range of different averaged proper-
ties that are of particular physical relevance, and construct
explicit upper and lower bounds for each. Because the
minimization and maximization problems have distinct
characters, it is helpful to consider the two separately for
each observable. The collection of quantities considered
here is by no means exhaustive, and analogous bounds
can be constructed for other observables, but the examples
we choose encompass a broad range of quantities that are
pertinent to measurement-induced dynamics.
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TABLE I. Examples of ensemble-averaged quantities for which we derive upper and lower bounds, and references to the relevant
inequalities derived below. Here, Q1 denotes a subsystem of Q, N is an arbitrary linear map over the space of operators, and the
notation N � 0 indicates that this map is semipositive definite, i.e., 〈〈X |N |X 〉〉 ≥ 0 for all operators X . In some cases, two bounds are
quoted, one of which is simple to evaluate, with the other being more versatile and amenable to optimization. The asterisk indicates
that the bound is vacuous.

Quantity Expression Concave or convex? Lower bound Upper bound

Global purity Ez{Tr[(ρQ
z )

2]} Convex Eqs. (38), (45) Eq. (46)∗

Subsystem purity or Ez{Tr[ρQ
z O]2} or Convex Eq. (49) Eq. (52)

quadratic observable Ez{Tr[ρQ
z N (ρQ

z )]}, N � 0
von Neumann entropy Ez{−Tr[ρQ1

z log ρQ1
z ]} Concave Eqs. (63), (64) Eqs. (56), (58)

Frame potential Ez,z′ Tr[ρQ
z ρ

Q
z′ ]k, k ∈ N Convex Eq. (67a) Eq. (67b)

The logical arguments used to derive bounds for each
quantity follow much the same pattern, and so after deriv-
ing the first several cases, we simply quote the remainder
of our results, leaving the proofs to Appendix B. Readers
who are mainly concerned with the results of our calcu-
lations, rather than the detailed derivations, may skip the
bulk of this section, and instead consult Table I, where
references to specific bounds are listed.

A. Global purity lower bound

One of the simplest possible nonlinear averages that
we can consider is the averaged global purity, G(ρQ

z ) =
Tr[(ρQ

z )
2] (to be distinguished from the purity of a sub-

system of Q, which we treat in Sec. VI C). As mentioned
above, this is a convex function of ρQ

z , and hence the mini-
mization problem can be solved using convex optimization
techniques. The dual function (30a) for this problem can be
formally defined as

h−(λi) = inf
ρ∈K0

∑

z

pz

(
Tr[(ρQ

z )
2] −

∑

i

λi Tr[ρQ
z A(i)z ]

)

+
∑

i

λibi. (34)

By virtue of the product structure of K0 ≡ D⊕|Z|, we
can minimize with respect to each conditional state ρQ

z
separately, giving

h−(λi) =
∑

z

pzF2,−

(∑

i

λiÃ(i)z

)
+

∑

i

λi(bi − ai), (35)

where ai := ∑
z pz Tr[A(i)z ], and Ã(i)z = A(i)z − Tr[A(i)z ]I/d is

the traceless part of A(i)z . Here we have defined a function
over the space of traceless Hermitian operators C,

F2,−(C) := inf
ρ∈D

(Tr[ρ2] − Tr[ρC]). (36)

Evidently, the above depends only on the eigenvalues of C.
In principle, a fully general expression for the above can be

found; however, to make progress in the following, we use
a simple lower bound F2,−(C) ≥ 1/d − Tr[C2]/4. (This
actually becomes an equality if | min eigC| ≤ 2/d.) Invok-
ing this bound, we are left with a manageable expression
for the dual function

h−(λi) ≥ −1
4

∑

z

pz Tr
[(∑

i

λiÃ(i)z

)2]
+

∑

i

λi(bi − ai).

(37)

The right-hand side is readily maximized over the
Lagrange parameters λi, which gives us a lower bound for
the solution of the dual problem, i.e.,

h∗
− ≥ h̃− := 1

d
+

∑

ij

(bi − ai)[L−1]ij (bj − aj ), (38)

where we define the matrix

Lij =
∑

z

pz Tr[Ã(i)z Ã(j )z ]. (39)

The lower bound (38) corresponds to the set of dual param-
eters λi = 2

∑
j [L−1]ij bj , and thus the bound becomes

optimal (h̃− = h∗
−) if the condition min eig(

∑
ij [L−1]ij bj

A(i)z ) ≥ −1/d is met for all z. This condition may or may
not be met for any given set of measurements; regardless,
Eq. (38) constitutes a viable certificate by way of strong
duality (32), in that the averaged global purity of the true
ensemble EQ can be no less than the right-hand side, i.e.,
Ez Tr[(ρQ

z )
2] ≥ h̃−.

1. Incorporating classical simulations

Having reached this point, we can revisit the original
problem and ask: how could we have chosen A(i)z in the
first place in order to make our bound (38) as close as pos-
sible to the true value of the average EzG(ρQ

z )? We can use
the discussion of Sec. IV to guide our intuition. There, we
posited that the quantum-classical correlator (16), which is
a measurable quantity, would serve as a good proxy for
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the quantum-quantum correlator (15), on account of the
fact that the two coincide in the limit of perfect classi-
cal simulation ρQ

z = ρC
z . Here, we can define an analogous

“quantum-classical purity,”

PQC :=
∑

z

pz Tr[ρQ
z ρ

C
z ], (40)

which can evidently be cast in the form of an estimable
quantity (8), and indeed is equal to the desired average
when ρQ

z = ρC
z . Accordingly, it is instructive to consider

an example where this is the only constraint we use, i.e.,
R = 1, with A(1)z = ρC

z and b1 = PQC. Then, altogether,
bound (B9) reduces to

Ez{Tr[(ρQ
z )

2]} ≥ (PQC)2

PCC , (41)

where we define PCC = ∑
z pz Tr[(ρC

z )
2] by analogy to

Eq. (40). The above inequality can also be proved by
independent means using the Cauchy-Schwartz inequal-
ity, first applied to the Hilbert-Schmidt inner product

Tr[ρQ
z ρ

C
z ] ≤

√
Tr[(ρQ

z )2] Tr[(ρC
z )

2], and then to the aver-
age (Ez

√
azbz)

2 ≤ (Ezaz)(Ezbz). This serves as a use-
ful sanity check for our series of bounds h̃− ≤ g∗

− ≤
Ez Tr[(ρQ

z )
2]. We observe that, as the quality of the clas-

sical simulation improves, the corresponding lower bound
should increase, resulting in tighter bounds.

We emphasize, however, that Eq. (38) is far more ver-
satile as a bound than the simple inequality (41). In par-
ticular, we can incorporate multiple constraints (19) that
allows us to use more information than just the averaged
overlap between classical and quantum states. In partic-
ular, since the purity is a quadratic function of the density
matrix, this suggests using more general quantum-classical
correlators that are bilinear in ρQ

z and ρC
z . For this pur-

pose, we introduce the superoperators (linear maps over
the space of operators)

ηQC =
∑

z

pz|ρQ
z 〉〉〈〈ρC

z |, (42a)

ηCC =
∑

z

pz|ρC
z 〉〉〈〈ρC

z |. (42b)

Thinking of these as (d2 × d2)-dimensional matrices, one
can see that one can extract all possible quantum-classical
and classical-classical correlators from the above objects:
for any operators A, B, one has 〈〈A|ηQC|B〉〉 = 〈A† ⊗ B〉QC,
and similar for ηCC. Therefore, if we were to construct a
complete basis of operators {σμ} and measure all corre-
lators of the form 〈σμ ⊗ σ ν〉QC for μ, ν = 1, . . . , d2, we
could fully reconstruct ηQC. For each one of these mea-
sured correlators, we have a Lagrange multiplier λi, and
these can also be organized into a superoperator form that

we call ζ̃CQ. When arranged in this way, the dual function
(37) then becomes

h−(ζ̃CQ) = 2 STr[ηQCζ̃CQ] − STr[(ζ̃CQ)†ζ̃CQ]. (43)

Here, STr[η] denotes the trace of a superoperator η, which
we could write in terms of a complete orthonormal basis of
operators σμ as STr[η] = ∑

μ〈〈σμ|η|σμ〉〉. While the above
holds for any choice of ζ̃CQ, by analogy to Eq. (38) we
can find the optimum choice ζCQ (written without a tilde),
which is the solution to the superoperator equation (which
is guaranteed to exist)

ηCCζCQ = (ηQC)†. (44)

[If ηCC has an inverse, we could write ζCQ = (ηCC)−1

(ηQC)†.] At this dual-optimum point, we obtain the bound

Ez Tr[(ρQ
z )

2] ≥ g∗
− ≥ STr[ηQCζCQ]. (45)

Equation (45) is our first concrete inequality that can be
straightforwardly calculated using classical-quantum cor-
relators. Evidently, in the case of perfect classical simula-
tion ρC

z = ρQ
z , we have ζCQ = id, and the inequalities in

Eq. (45) are both saturated. Hence, although we have lost
some tightness in our calculations, we expect the bound to
be near optimal when the classical simulation is not quite
perfect. We benchmark how tight these inequalities are in
various scenarios in Sec. VII below.

B. Global purity upper bound

In searching for an upper bound for the global purity,
we could in principle set up the maximization problem
(27) in an entirely analogous way to the above, finding an
upper bound for h∗

+ and exploiting weak duality to obtain
a corresponding bound for g∗

+. However, the global purity
has a special significance in this context, which means
that an immediate answer can be obtained by invoking the
corollary of Theorem 1: we know that there exists at least
one ensemble consistent with measurements (19) for which
no more than R of the states ρQ

z are mixed. The existence
of such an ensemble immediately implies that g∗

+ must be
at least

g∗
+ ≥ 1 −

(
1 − 1

d

)
R max

z
pz. (46)

In the no-coincidence limit pz � 1, the above is very close
to 1, which is itself a universally applicable upper bound
for the averaged purity. We conclude that regardless of
which observables A(i)z we measure, we cannot obtain a
nonvacuous upper bound for the averaged global purity.
This fundamental obstruction is related to the special sig-
nificance that global purity has for the structure of K, and
in particular its extreme points. We discuss this issue in
depth in Sec. VIII A below.
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C. Lower bound for subsystem purities and quadratic
observables

Moving beyond the global purity, we can consider
more general functions G(ρQ

z ) that are quadratic in the
conditional states. Most generally, one can write these as

G(ρQ
z ) = 〈〈ρQ

z |N |ρQ
z 〉〉, (47)

where N is a Hermitian superoperator, i.e., a linear
map over the space of operators satisfying 〈〈C|N |D〉〉 =
〈〈D|N |C〉〉∗ for operators C, D. To ensure the convexity of
G, we insist that N is positive semidefinite: 〈〈C|N |C〉〉 ≥ 0
for any operator C; we write this condition as N � 0.
Examples of this include the quantum-quantum correla-
tor 〈O ⊗ O〉QQ [Eq. (15)], which corresponds to N =
|O〉〉〈〈O|. Moreover, the purity of some subsystem of Q,
which we denote Q1 with complement Q2 = Q\Q1, can be
written in this form: one can express purity of Q1 as

TrQ1{(TrQ2 [ρQ
z ])2} =

∑

ν∈Q1

〈〈ρQ
z |σν〉〉〈〈σν |ρQ

z 〉〉, (48)

where {σν} is a basis of operators that respects the tensor
product structure of the Hilbert space HQ = HQ1 ⊗ HQ2 ,
and the notation ν ∈ Q1 denotes that the sum is restricted to
those ν for which σν acts as the identity on Q2. The above
implicitly defines the superoperator N corresponding to
the subsystem purity.

To solve the minimization problem for this class of
observables, we use similar logic to that described in
Sec. VI A, with some modifications. Detailed arguments
are presented in Appendix B 1, which lead to the bound

∑

z

pz〈〈ρQ
z |N |ρQ

z 〉〉 ≥ STr[NηQCζCQ], (49)

where ζCQ is the superoperator that was defined in
Eq. (44). The global purity bound (45) corresponds to
the special case where N = id, the identity superopera-
tor. Again, the above inequality is saturated in the limit
of perfect classical simulation.

D. Upper bound for quadratic observables

The corresponding maximization problem for averages
of the form (47) is not a convex optimization problem, and
so cannot be solved in a fully analogous way. Rather than
directly solving the dual problem, we instead choose to re-
express the problem by first trivially rewriting

N = ‖N ‖∞id + N , (50)

where we define

N = (N − ‖N ‖∞id), (51)

and ‖N ‖∞ = max〈〈C|C〉〉=1〈〈C|N |C〉〉 is the spectral norm
of N when viewed as a matrix. The significance of the

above is that N � 0 by construction, and hence, when
we substitute this into Eq. (47), the second term con-
stitutes a concave function of ρQ

z . The first term simply
gives us a term proportional to the purity Tr[(ρQ

z )
2], which

by Theorem 1 we know to be very close to unity at the
point where the maximum is achieved. Hence, we lose lit-
tle tightness by replacing the first term with the constant
‖N ‖∞.

Being concave, the average of 〈〈ρQ
z |N |ρQ

z 〉〉 can be upper
bounded, using the same method as the lower bound for the
convex function (49). Altogether, we obtain

Ez〈〈ρQ
z |N |ρQ

z 〉〉 ≤ ‖N ‖∞ + STr[NηQCζCQ]

= ‖N ‖∞(1 − STr[ηQCζCQ])

+ STr[NηQCζCQ]. (52)

From Eqs. (49) and (52), it becomes clear that we can con-
strain the average of Eq. (47) to within a window whose
width is determined by the quantity (1 − STr[ηQCζCQ]).
Indeed, from Secs. VI A and VI B, this quantity is itself
equal to the range of values that the global purity can
take. This highlights the significance of Theorem 1: if the
true states ρQ

z realized by the device are themselves mixed
then the purity cannot be constrained to be within an arbi-
trarily narrow window, and in turn, quadratic observables
of this kind cannot be tightly constrained either. Indeed,
even before we performed any of the manipulations in this
section, one could straightforwardly show that

ran(N )+ ran(N ) ≥ ‖N ‖∞ran(id)

= ‖N ‖∞(1 − STr[ηQCζCQ]), (53)

where we used the shorthand ran(N ) = g∗
+ − g∗

− for
the observable Ez[〈〈ρQ

z |N |ρQ
z 〉〉]. Hence, if there is large

uncertainty in the purity then there must also be large
uncertainty in certain quadratic observables (see also
Sec. VIII A below).

E. von Neumann entropy upper bound

The von Neumann entropy S(ρQ
z ) = − Tr[ρQ

z log ρQ
z ] is

another quantity that can be used to characterized mixed-
ness and/or entanglement of quantum states, which has
particular information-theoretic significance. This function
is concave in ρQ

z , and so in this instance the maximization
problem is most easily addressed. The dual function for the
maximization problem is

h+(λi) =
∑

z

pzFS,+

(∑

i

λiA(i)z

)
+

∑

i

λibi, (54)
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where by analogy to F2,−(C) we define FS,+(C) =
supρQ∈D{S(ρQ)− Tr[ρQC]}. A fairly straightforward cal-
culation reveals

FS,+(C) = log Tr[e−C], (55)

which is attained for ρ = e−C/Tr[e−C]. Hence, we have

EzS(ρQ
z ) ≤ h∗

+ = min
λi

{ ∑

i

λibi

+
∑

z

pz log TrQ

[
exp

(
−

∑

i

λiA(i)z

)]}
.

(56)

This upper bound can be applied quite generally, and can
even be used to rederive a result that was obtained in
Ref. [34] using alternative arguments based on the quan-
tum relative entropy: if we have a single constraint with
Az = − log ρC

z then

h+(λ) =
∑

z

pz{log Tr[(ρC
z )
λ] − λTr[ρQ

z log ρC
z ]}. (57)

Setting λ = 1 in the above, we obtain a certificate

EzS(ρQ
z ) ≤ h+(λ = 1) = −

∑

z

pz Tr[ρQ
z log ρC

z ], (58)

the right-hand side of which was introduced in Ref. [34] as
the “quantum-classical entanglement entropy.” Evidently,
we could use exactly the same inequality for the aver-
age von Neumann entropy of a subsystem of Q, provided
one replaced all density matrices with the corresponding
reduced density matrices. The significance of the choice
λ = 1 can be understood by recognizing that λ = 1 is dual
optimal in the limit of perfect simulation ρC

z = ρQ
z , since

inequality (58) is then saturated. If there are small discrep-
ancies in the quantum and classical states, one expects that
the optimal choice of λ will be shifted slightly, and hence
this bound can in principle be tightened by optimizing
over λ.

However, a more serious problem to address is the insta-
bility of the quantum-classical entanglement entropy for
singular or near-singular classical states ρC

z , since log ρC
z

diverges when the eigenvalues of ρC
z are small. This is a

particularly important problem when the ρC
z are close to

being pure, as noted in Ref. [34]. Here, our more general
approach allows one to get around this issue in a systematic
way, since the choice Az = − log ρC

z can be easily altered
in a way that guarantees numerical stability. A natural
choice of regularization is to work directly with the eigen-
value decomposition ρC

z = ∑
n qz,n |χz,n〉 〈χz,n|, and to sep-

arate out the problematic eigenvalues—namely, those that

are below some threshold ε. We are free to separately
measure the two quantities

A(1)z = −�>
z log ρC

z �
>
z , A(2)z = �≤

z , (59)

where we define the projector �≤
z = ∑

qn≤ε |χz,n〉 〈χz,n|
and its complement �>

z = I −�≤
z . The first of these is

similar to the original choice Az = − log ρC
z , but with near-

singular eigenvalues removed, while the second measures
the average weight of ρQ

z lying within the near-singular
subspace �≤

z . We can then proceed as before and find an
optimal bound based on empirical values of the above two
observables. In Appendix B 2, we work out such an upper
bound explicitly. As a particularly simple special case, if
the classical states are all pure, ρC

z = |φC
z 〉 〈φC

z |, then this
improved bound can be expressed in terms of the quantity
δQ = 1 − ∑

z pz 〈φC
z |ρQ

z |φC
z 〉 as

EzSvN(ρ
Q
z ) ≤ H2(δQ)+ δQ log(d − 1), (60)

where H2(p) = −p log p − (1 − p) log(1 − p) is the
Shannon entropy for a binary random variable.

F. von Neumann entropy lower bound

If we focus on the global von Neumann entropy then
arguments similar to those in Sec. VI B can be used to
show that a nonvacuous lower bound cannot be obtained:
Theorem 1 implies the existence of a feasible ensemble
whose average entropy is no greater than R maxz pz log d,
which is small in the no-coincidence limit pz � 1.

As for the von Neumann entropy of a subsystem Q1, this
can in principle be lower bounded, but a direct analysis of
the minimization problem is not straightforward, due to the
concavity of S(ρQ1

z ). Instead, we use a similar approach
to Sec. VI D, where we exploited the fact that the maxi-
mum of a convex function is attained at an extreme point,
which we know to be a (mostly) pure ensemble. There,
we rewrote the desired function in terms of the differ-
ence between the purity and a convex function [Eq. (50)],
thereby allowing the maximization problem to be trans-
formed into a convex optimization task. Here, we use a
similar line of reasoning, by trivially rewriting

S(ρQ1
z ) = S(ρQ

z )− S(ρQ
z |Q1), (61)

where S(ρAB|B) := S(ρAB)− S(ρB) is the conditional
quantum entropy for a bipartite state ρAB. From Theorem
1 and the concavity of S(ρQ1

z ), the desired minimum is
attained for an ensemble that is mostly globally pure, and
so the average of S(ρQ

z )will be close to 0 at this point. This
suggests that we do not lose much tightness in employing
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the bound

g∗
− = min

ρ∈K
EzS(ρQ1

z )

≤ min
ρ∈K

[−EzS(ρQ
z |Q1)]

= − max
ρ∈K

[EzS(ρQ
z |Q1)]. (62)

Crucially, S(ρQ
z |Q1) is a concave function of the global

state ρQ
z (a statement that is equivalent to strong subad-

ditivity of the von Neumann entropy [61]). Thus, we are
left with a convex optimization problem, as desired. In
Appendix B 3, we derive the concrete bound

Ez[S(ρQ1
z )] ≥

∑

i

λibi − Ez log ‖ TrQ2 e
∑

i λiA
(i)
z ‖∞ (63)

for any choice of the Lagrange multipliers λi. Again,
we can specialize to a particular choice of operators A(i)z
to rederive a result of Ref. [34]: taking A(1)z = − log ρC

z
and A(2) = + log ρC1

z , one can set λ1 = λ2 = 1. With this
particular choice, the argument of the logarithm in the

above becomes ‖ TrQ2 elog ρC
z −log ρ

C1
z ⊗IQ2 ‖∞, which can be

shown to be no greater than unity using Theorem 11.29 of
Ref. [62]; we then have

Ez[S(ρQ1
z )] ≥ Ez{Tr[ρQ

z log ρC
z ] − Tr[ρQ1 log ρC1

z ]}.
(64)

As with the other optimization problems considered in this
section, we can choose to use bounds that are simple and
easy to evaluate, such as Eq. (64), or to use the more ver-
satile expression (63), which is more cumbersome, but can
in principle be numerically optimized to obtain a tighter
inequality.

G. Frame potential

The frame potential is a property of a quantum state
ensemble that characterizes the variation between differ-
ent quantum states in the ensemble. For any integer k, it is
defined as

F (k)(EQ) :=
∑

z,z′
pzpz′ Tr[ρQ

z ρ
Q
z′ ]k. (65)

For pure state ensembles, the frame potential can be used
to characterize how far away an ensemble is from being a
quantum state k-design [63,64], namely, an ensemble for
which the kth moments

∑
z pz(ρ

Q
z )

⊗k coincide with those
of the Haar ensemble [48,65] (see Sec. VII B below).

Although the quantity (65) is not manifestly in the form
of the averages (3) considered so far, we can use a sim-
ple trick to bring it into the appropriate form: focusing on
k = 2 for now, we can write F (2) = ∑

z pz〈〈ρQ
z |ηQQ|ρQ

z 〉〉,

where ηQQ is defined by analogy to Eq. (42). We do not
have access to ηQQ in advance, but from bounds (49)
and (52) we can infer that

ηQQ � ηQCζCQ + H.c.
2

, (66a)

ηQQ � ηQCζCQ + H.c.
2

+ (1 − STr[ηQCζCQ])× id,

(66b)

where the notation N � N ′ for two superoperators N ,
N ′ means that 〈〈C|N |C〉〉 ≤ 〈〈C|N ′|C〉〉 for all opera-
tors C. Moreover, by its definition we have ‖ηQQ‖∞ =
max‖C‖2

2=1
∑

z pz Tr[ρQ
z C]2 ≤ 1. Hence, successive appli-

cation of bounds (49) and (52) yields

F (2)(EQ) ≥ STr[(ηQCζCQ)2], (67a)

F (2)(EQ) ≤ STr[(ηQCζCQ)2] + (1 − STr[ηQCζCQ]2).
(67b)

More generally, for higher k, the frame potential can be
expressed in terms of a new “doubled” ensemble EQQ with
the structure

EQQ = {(pzpz′ , ρQ
z ⊗ ρ

Q
z′ )}(z,z′)∈Z×Z . (68)

In words, samples from this ensemble correspond to inde-
pendently sampled pairs (z, z′) of the original ensemble
EQ, and the corresponding states are tensor products ρQ

z ⊗
ρ

Q
z′ . Then, the frame potential (65) of EQ can be interpreted

as an average of the form (3) for EQQ, with the function G
given by

G(σ ) = Tr[σπS]k, (69)

where σ is a density operator on the doubled space, and
πS = ∑

a,b |a ⊗ b〉 〈b ⊗ a| is the swap operator. Bounds for
averages of kth powers of expectations, such as the above,
can in principle be derived using similar approaches to
those described in this section.

VII. NUMERICAL BENCHMARKING

Having derived various bounds for certain ensemble-
averaged quantities of interest, we now present results of
some numerical experiments where we simulate the full
procedure described in this work, including estimation of
the measurable parameters (19) to constructing the bounds.

A. Projected ensemble

As a testbench for our method, we consider the pro-
jected ensemble of a many-body state generated by (pos-
sibly noisy) finite time evolution from a product state.
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For the noiseless case, we take as the premeasurement
state |�(t)〉 = U(t) |0⊗N 〉, where t is an integer-value dis-
crete time, and U(t) = Ut

F is a unitary generated by Flo-
quet evolution with Floquet unitary UF = e−it2H2e−it1H1 .
We choose the Hamiltonians H1,2 to be given by the
one-dimensional tilted-field Ising model with open bound-
ary conditions Hα = ∑N−1

j =1 Jj ,αZj Zj +1 + hx
j ,αXj + hz

j ,αZj
for α = 1, 2, where (Xj , Yj , Zj ) are Pauli operators on site
j . For the purposes of this subsection, we fix Jj ,α = 1,
hz

j ,α = (1 + √
5)/2, hx

j ,1 = 0.4, hx
j ,2 = −0.6. The projected

ensemble considered here is defined as the set of postmea-
surement states arising when N − 1 qubits are measured
in the computational (Pauli-Z) basis, with the qubit on site
j = 1 acting as the “unmeasured” qubit. In cases where
noise is present, we apply an amplitude damping channel
of strength pdec on every qubit after each Floquet period.
Concretely, the system density matrix evolves as ρ(t +
1) = (Ndamp ◦ Nunit)[ρ(t)], where Nunit[ρ] = UFρU†

F and
Ndamp[ρ] = K0ρk†

0 + K1ρK†
1 with

K0 = diag(1,
√

1 − pdec) and K1 =
(

0
√

pdec
0 0

)
.

In the noisy case, where we must compute the full evo-
lution of the density matrix, our exact diagonalization
results are limited to relatively small system sizes. To
ensure cross-comparability between all cases, we fix N =
10 throughout. Note that the specific form of evolution
we choose, along with the parameters selected, do not
have a great deal of bearing on the performance on our
method—indeed, we have considered several different set-
tings and found quantitatively similar performance. For the
purposes of this section, we focus on the particular aver-
age Ḡ = Ez Tr[ρQ

z Z1]2, for which we can use bounds (49)
and (52); again, this choice is not particularly important.

We simulate the full protocol using the shadow tomog-
raphy–based method described in Sec. III C (Fig. 2) to
extract the values of the estimable parameters (8). Specifi-
cally, the procedure involves (1) preparation of the premea-
surement state, (2) applying random on-site Clifford uni-
taries to the unmeasured qubits, (3) projectively measuring
all qubits, (4) processing the measurement outcomes via
the dual frame (13), in terms of which estimators for the
quantum-classical correlators can be obtained, and, finally,
(5) using the bounds derived in the previous section to con-
strain the value of the desired quantity. This is repeated a
finite number of times M .

The finite number of repetitions M means that there will
be some residual uncertainty in the values of the chosen
estimable parameters. Taking the example of correlators
(42), we obtain an estimate η̂QC = ηQC + ε̂QC, where ηQC

is the true value, and ε̂QC is a zero-mean error, whose
variance decays as 1/

√
M (hats are used to denote ran-

dom variables here). Despite this uncertainty, we can still

employ the bounds in a rigorous manner as follows. We
use the estimated value η̂QC as parameters for finding the
optimal Lagrange multipliers [in this case we substitute
η̂QC into Eq. (44) to find ζ̃CQ]. This will give us a set of
Lagrange multipliers that are approximately dual-optimal
point for the true problem, which features ηQC rather than
η̂QC. These Lagrange multipliers can then be substituted
into the dual function [in this case Eq. (43)], which by
virtue of being linear in bi (equivalently, ηQC) can be
evaluated with some error bars based on estimates of the
standard deviation of bi, along with some prechosen con-
fidence level—we pick 99% confidence throughout. One
can then guarantee that the true value is no smaller or
greater (as appropriate) than the constructed value with
probability at least 99%.

As a first check, we can consider the best-case scenario,
where dynamics is noiseless and the classical simulation
is perfect, ρC

z = ρQ
z . We show upper and lower bounds for

the target function Ḡ = Ez(Tr[ρQ
z Z1]2) as calculated via

our method, along with the true value, in Fig. 3. Because of
the fact that the ensemble states are pure and simulation is
perfect, the only source of uncertainty in the inferred value
of Ḡ is from the finite number of samples M , which we deal
with as described above. We show bounds empirically con-
structed for two different sample sizes M , and both lower
and upper bounds will tend towards the true value as M is
increased indefinitely, with corrections scaling as 1/

√
M .

We can now introduce some inaccuracy in the classi-
cally simulated states ρC

z . For this purpose, we consider
the projected ensemble at a fixed time t = 8, using the
same “quantum” states ρQ

z as before. To construct the
imperfect classical states, we employ the same Floquet

FIG. 3. Estimates of the averaged quantity Ḡ =
Ez(Tr[ρQ

z Z1]2) for the projected ensemble generated from
noiseless dynamics as described in the main text. The true value
is shown, along with bounds constructed using our method for
two different choices of the number of experimental repetitions
M = 5000 and M = 50000. In this case, classical simulation
is perfect and the states in the ensemble are pure, so as M is
increased, both upper and lower bounds converge asymptotically
towards the true value.
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evolution as above, but now with some additional spa-
tially dependent randomness in each of the Hamiltonian
parameters Jj ,α , hx,z

j ,α . For each parameter, we pick a per-
turbed value J̃j ,α = Jj ,α(1 + fnj ,α) (similar for h̃x,z

j ,α), where
nj ,α = ±1/2 are chosen independently at random for each
parameter, but kept fixed in all of the data shown here.
The free parameter f represents a fractional uncertainty
in the Hamiltonian parameters; thus, as it is increased, the
quantum and classical states ρQ

z , ρC
z become less corre-

lated. We can keep track of accuracy of the classical states
in our numerical experiment by evaluating the quantity
�QC := ∑

z pz‖ρQ
z − ρC

z ‖1, where ‖ρ − σ‖1 is the trace
distance.

Figure 4 shows data obtained using these inaccurate
classical states. We show both the bounds constructed
based on data from a finite number of experimental sam-
ples M = 50000, along with “asymptotic” (i.e., M → ∞)
bounds, which we obtain by evaluating the right-hand
sides of Eqs. (49) and (52), thus eliminating any statisti-
cal uncertainty. We see that, as the fractional uncertainty
f is increased, the distance between the quantum and clas-
sical states increases, and the bounds become less tight.
For reference, the value of �QC that would be obtained if
ρC

z were chosen as independent random states would be
1; thus, the data towards the right of this plot represent

 (%)

FIG. 4. Effect of the fidelity of the classically simulated states
ρC

z on the tightness of the bounds for the noiseless projected
ensemble at time t = 8. The classical states ρC

z are perturbed
away from the ensemble states ρQ

z by introducing some frac-
tional uncertainty f ∼ δJ/J in the Hamiltonian parameters, as
described in the main text. In the top panel, we include both
bounds constructed based on shadow tomographic data from
M = 50000 repetitions, along with asymptotic bounds, where
we evaluate the right-hand sides of inequalities (49) and (52)
without any statistical uncertainty—this is the value that one
would obtain as M → ∞. The bottom panel shows the aver-
age trace distance between quantum and classical states �QC =∑

z pz‖ρQ
z − ρC

z ‖1, which acts as a measure of how faithful the
simulated states are.

fairly poor simulation. In the absence of noise and for the
specific quantity considered here, crude estimates for the
deviation between the bounds and the true value scale as∑

z pz‖ρQ
z − ρC

z ‖2 (at least in the regime of small �QC),
which is upper bounded by (�QC)2. This quadratic depen-
dence on the distance between quantum and classical states
explains why we see good performance, even when there
is appreciable difference between the two states.

Finally, we consider the case where both noise and inac-
curacies in the classical states are present, which reflects
the nature of realistic experiments. Again, we fix t = 8, and
now consider amplitude damping of strength pdec = 0.002
for each qubit and each timestep. Although this value of
pdec appears to be small, the expected number of errors in
the full circuit can be estimated to be N × t × pdec = 0.24,
which has an appreciable effect on the conditional states,
as can be seen in their mean purity, which here is 0.95.
The classical states are generated in the same way as the
ensemble states, including the noise, but with additional
randomness in the Hamiltonian parameters of strength f ,
introduced in the same manner as above.

The results are shown in Fig. 5. The data follow most
of the same trends as before, with higher fractional uncer-
tainty leading to higher deviation �QC, and in turn less
tight bounds. However, because the dynamics is noisy, the
states in the ensemble ρQ

z are no longer pure—in this case
their average purity is

∑
z pz Tr[(ρQ

z )
2] = 0.95. Unlike the

lower bound, the upper bound saturates at a value that
is strictly above the true value of Ḡ even in the limit of
perfect simulation (f = 0). This can be seen as a conse-
quence of Theorem 1: we saw already in Sec. VI B that the
global purity cannot be tightly bounded, and the same goes

 (%)

FIG. 5. As in Fig. 4, but with noisy dynamics (pdec = 0.002),
resulting in a projected ensemble with mixed states, with average
purity

∑
z pz Tr[(ρQ

z )
2] = 0.95. The lower bound approaches the

true value in the limit of perfect simulation, but the upper bound
does not, as a consequence of Theorem 1.
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for other quadratic observables. This issue is discussed in
detail in Sec. VIII A below.

B. Application: verifying emergent quantum state
designs

One feature of the projected ensemble that has attracted
much interest recently is that, under rather generic condi-
tions, the ensemble of postmeasurement states turns out to
form an (approximate) quantum state k-design [14,15,17].
That is, the kth moments of the ensemble

ρ(k) :=
∑

z

pz(ρ
Q
z )

⊗k (70)

agree (closely) with the corresponding moments of the
Haar ensemble

ρ
(k)
Haar :=

∫
dμHaar(ψ)(|ψ〉 〈ψ |)⊗k = �(k)

sym(k+d−1
k

) , (71)

where �(k)
sym is the projector onto the permutation-

symmetric subspace of (HQ)⊗k. Such ensembles of states
are in a certain sense “maximally random,” and this
makes them useful for certain tasks including quantum
state and channel tomography [35,36,38,39,54] and cryp-
tography [37]. Here we demonstrate how our method
can be employed to verifiably conclude whether or not
the projected ensemble realized in an experiment is an
approximate k-design.

For ensembles of pure states, the frame potential con-
stitutes a measure of how far the ensemble is from being
a k-design. Specifically, in Ref. [64] it was shown that
the frame potential (65) is related to the (normalized)
Frobenius distance between the moments (70), (71) via

‖ρ(k) − ρ
(k)
Haar‖2

2
(pure)= F (k)(EQ)− F (k)

Haar (72)

with F (k)
Haar = (k+d−1

k

)−1
the frame potential for the Haar

ensemble. Thus, when the frame potential is minimized,
a k-design can be formed. However, in experiment the
ensemble states can be mixed, and this leads to a sup-
pression of the frame potential that can mimic the effect
of forming a quantum state design—indeed, the right-hand
side of Eq. (72) can even be negative when the states are
mixed. For this case, we need a more generally applicable
bound. By expanding the left-hand side of Eq. (72), we find
that the distance can more generally be re-expressed as

‖ρ(k) − ρ
(k)
Haar‖2

2 = F (k) + F (k)
Haar

(
1 − 2

k!

∑

τ∈�k

Ez[P(τ )z ]
)

,

(73)

where we use the shorthand

P(τ )z =
∏

c∈τ
Tr[(ρQ

z )
|c|]. (74)

Here, each c ∈ τ is a cycle of the permutation group ele-
ment τ , whose length is |c|. In the case k = 2, which we
focus on here, this gives

‖ρ(2) − ρ
(2)
Haar‖2

2 = F (k)(EQ)− 2
d(d + 1)

Ez{Tr[(ρQ
z )

2]}.
(75)

The right-hand side of the above contains the frame poten-
tial and the average global purity. Interestingly, these
appear with opposite signs, and thus we have a difference
between two convex functions, which itself is not convex.
Nevertheless, we can employ the upper and lower bounds
derived in Sec. VI for each term separately.

We can test this method using the same dynamics that
we considered in the previous subsection, including both
noise and inaccuracies in the classical states. The tilted-
field Ising Hamiltonian that generates the Floquet unitary
is understood to be chaotic [66], and hence we expect
to see emergent state designs in the projected ensemble
[17]. The results of our numerical simulations are shown
in Fig. 6. We plot both the true value of distance (75)
along with bounds constructed from simulated experimen-
tal data using M = 50000 repetitions. In this case, the
classically simulated states are generated from noiseless
evolution, but with a fractional uncertainty in the param-
eters of f = 0.5%. Evidently, the distance does indeed
decay towards zero as time increases. For small values
of noise, the bounds we obtain are relatively tight, mean-
ing that in a real experiment (where one would not have
access to the true value), a definitive conclusion regarding
the formation of approximate state designs could be made.
As the noise rate and/or time t increases, the total number
of errors accrued during the circuit increases, and the states
in the ensemble become less pure, as evidenced in the bot-
tom panels of Fig. 6. This leads to bounds that become less
tight, in particular the upper bound.

These results demonstrate that even in the presence of
noise and miscalibrations between the quantum and clas-
sically simulated states, one can make concrete inferences
regarding the closeness of the projected ensemble realized
in experiment to being a quantum state design.

VIII. FUNDAMENTAL LIMITATIONS

So far, we have introduced an optimization-based
approach to inferring properties of postmeasurement
quantum state ensembles, constructed explicit two-sided
bounds for various quantities, and demonstrated an imme-
diate application of our method for the verification of
emergent quantum state designs. Evidently, the method
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FIG. 6. Distance (75) between the k = 2 moments of the projected ensemble from those of the Haar ensemble, as calculated using
our method with M = 50000 experimental repetitions (classical shadows) for various values of pdec (top panel). Classical states are
generated using a fractional parameter uncertainty f = 0.5%, and without noise. For reference, we also show the average trace distance
between quantum and classical states�QC (middle panel), along with 1 − ∑

z pz Tr[(ρQ
z )

2], which measures how far the states are from
being mixed on average (bottom panel).

described in this paper gives us some degree of ability to
learn quantities of interest in the context of measurement-
induced dynamics, but we have already seen that in some
cases there are unavoidable limitations in terms of what
can be unambiguously inferred from experimental data.
In this section, we discuss some of these limitations in
detail, with the aim to more precisely characterize the
boundary between properties of the postmeasurement con-
ditional quantum states that can or cannot be inferred from
experiment.

A. Interpretation and consequences of Theorem 1

Theorem 1 and its corollary immediately tell us some-
thing regarding what can be inferred about certain quan-
tities—most obviously those that measure how mixed
the conditional states ρQ

z are. The average global purity
Ez Tr[(ρQ

z )
2] and the average global von Neumann entropy

EzS(ρQ
z ) are both examples of this; let us consider the

former for concreteness. Suppose that the true ensemble
EQ features states that are appreciably mixed on average,
Ez Tr[(ρQ

z )
2] = 1 − δ, with δ > 0. Even in the best-case

scenario, where we have perfect classical simulations,
we cannot make the range of feasible values [Eqs. (20)
and (23)] significantly narrower than δ, since this range
must include both the true value (1 − δ) and the value
1 − O(e−Hmin(p)) implied by Theorem 1. [Here Hmin(p) =
− log maxz pz is the min-entropy of the distribution pz,
which typically scales linearly with the number of mea-
surements.] So, if the ensemble being probed is not close to
being pure, δ > 0, then although we might hope to obtain

a good lower bound for the averaged purity, we cannot
obtain a good upper bound, and hence there will always be
some uncertainty in our conclusions. We can hope to learn
the purity to a good accuracy if the ensemble being mea-
sured is itself close to pure (something we would not know
in advance, but could verify using our bounds). Indeed,
for perfect simulation, bound (45) tends to the true purity
1 − δ, and hence the range of feasible values (23) has an
optimal width δ.

It may seem counterintuitive that there remains an ambi-
guity in the average purity even when the simulation being
used is perfect. This stems from the difference between
knowing that the simulation is perfect versus having a per-
fect simulation but not knowing (or assuming) that it is
so. To learn something definitive about the ensemble, we
cannot make such an assumption, and this means that we
may not be able to make sharp conclusions even for per-
fect classical simulation. Note also that this limitation is
not intrinsic to the inference method we are proposing in
this paper: it is a fundamental obstruction, in that whatever
strategy we employ, we cannot rule out the possibility of a
mostly pure state ensemble.

As a simple example that allows one to appreciate this
idea intuitively, consider an ensemble defined for a single
qubit (d = 2), where every conditional state is the same,
ρQ

z = ρ
Q
0 , and this fixed state ρQ

0 is mixed. This is repre-
sented by the blue arrow on the Bloch sphere in Fig. 7(a).
If our classical simulation were perfect, ρC

z = ρ
Q
0 , then any

quantum-classical correlator we measure corresponds to
a z-independent choice of Az in Eq. (8), since the classi-
cal states are themselves z independent. Once we measure
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(a)

Tr(XρQ
z )

Tr(Y ρQ
z )

Tr(ZρQ
z ) (b)

Tr(XρQ
z )

Tr(Y ρQ
z )

Tr(ZρQ
z )

FIG. 7. An illustrative example that demonstrates that
Theorem 2 implies a limitation to our ability to sharply deter-
mine the purity of an ensemble. We consider a case where
the quantum ensemble is given by the same mixed state for
each z, i.e., ρQ

z = ρ
Q
0 , represented by a light blue arrow on the

Bloch ball, with subunit length. (a) Perfect classical simulation
also implies that ρC

z = ρ
Q
0 (dark orange arrow). (b) When we

measure quantum-classical correlations using ρC
z = ρ

Q
0 , there

is also another candidate ensemble made up of pure states that
vary between each z (multiple light blue arrows), distributed
such that the same correlations are observed. Since we cannot a
priori know that our simulations are perfect (even if they are),
we cannot use our experimental data to rule out the possibility
that the true scenario is (b).

some collection of quantum-classical correlators, we can
consider which ensembles are consistent with these obser-
vations. The true ensemble is of course one possibility, but
there are also alternative ensembles, made up of pure states
that vary between different z, such that they average out to
the same mixed state ρQ

0 . This is shown by the many blue
arrows in Fig. 7(b). Put simply, Theorem 1 reflects the fact
that based on our experimental observations, we cannot
determine whether the true states are mixed, or whether the
states are pure but our classical simulations are inaccurate:
indeed, both of these have the effect of reducing the values
of the quantum-classical correlators compared to the case
of pure states with perfect simulation. To rule out the possi-
bility of inaccurate classical simulation, one would have to
estimate a number of quantities R that itself scales with the
cardinality of the ensemble |Z|—effectively, one for each
possible value of z. This is of course not possible unless
one uses a number of experimental repetitions M that also
scales with |Z|.

Looking at Fig. 7, we can roughly characterize the dif-
ference between panels (a) and (b) by saying that the mixed
state in (a) is realized as a convex combination of the many
different pure states in (b). When we consider more general
averages of the form (3) with convex functions G (beyond
those like the average global purity), the ensembles (b) will
have a higher value for this average compared to the true
scenario (a), since taking convex combinations of states
will reduce the value of Ḡ. Therefore, the existence of con-
sistent pure-state ensembles implied by Theorem 1 means
that, when the true ensemble is mixed, the upper bounds

of convex functions cannot be made arbitrarily tight. As
for lower bounds of convex averages, these can indeed
be made tight as the fidelity of classical simulation is
improved. Indeed, this is borne out in the various bounds
we derived in Sec. VI: compare, e.g., Eqs. (49) and (52)
in the limit of ρQ

z = ρC
z . The lower bound tends to the true

value, while the upper bound deviates from the true value
by an amount ‖N ‖∞(1 − Ez Tr[(ρQ

z )
2]). One can see this

asymmetry between the upper and lower bounds explicitly
in Fig. 5.

To conclude, the arguments presented above illustrate
the conditions that must be satisfied if we wish to con-
strain the value of a particular nonlinear convex average
(3) to within a small window: not only should the classi-
cal simulation be accurate, but also the conditional states
of the true ensemble should be close to pure—otherwise, it
will be impossible to make the upper bound tight.

Purification transition.—One case where bounds on the
global purity of the system are required is when probing
purification dynamics [9], and so this case deserves spe-
cial attention. Here, an initially mixed state is subjected to
a hybrid unitary-projective circuit, and one asks how the
global purity increases over time. Since the states of inter-
est are necessarily mixed even in the idealized case where
the hybrid circuit is noiseless, one may conclude on the
basis of Theorem 1 that purification dynamics cannot be
probed experimentally. This is indeed the case if one actu-
ally prepares maximally mixed states as the inputs to the
circuit; however, if one instead uses a maximally entan-
gled state between the system and a set of ancillas as the
initial state then the global state will be pure. The purity of
the system can then be thought of as the purity of a sub-
system of the global state, which can be bounded using the
approach outlined in Sec. VI B.

Conveniently, using methods based on classical shadow
tomography one can avoid having to use any ancillas
in an actual experiment: by preparing randomized initial
states and measuring the output states in random bases,
it is possible to construct a classical shadow of the Choi
state describing the hybrid dynamics. This Choi state
is precisely the global state one would obtain by per-
forming conventional shadow tomography on a purified
system-plus-ancilla state. See, for instance, Refs. [67,68].

B. Computational cost of classical simulation

So far, we have considered the classical states ρC
z in

quite general terms, without specifying how (and if) the
states ρC

z are constructed. Recall that the specific computa-
tional task required by our protocol is that upon obtaining
an outcome z in the experiment, we must compute and
store a state ρC

z , which we construct on the basis of some
model of how we expect the quantum device to behave.
Whether or not this task is (even approximately) achiev-
able is an intricate question, and has been discussed to
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some extent in other recent works where quantum-classical
correlators have been introduced [13,27–32]. Here we
explore some examples where we can answer this question
in the affirmative or negative.

Most obviously, some clear examples where such a clas-
sical simulation can be readily performed are in few-body
systems, or many-body systems where the full underlying
dynamics is efficiently simulable, e.g., for Clifford cir-
cuits or free fermionic systems. Going beyond these simple
cases, the first issue to address is whether a representa-
tion of the simulated state can be stored using a scalable
amount of classical memory (irrespective of whether it can
be computed or not). One case where this is certainly pos-
sible is when the conditional states are defined on a O(1)
number of qubits, even if the full quantum device is a
many-body system. For example, in the projected ensem-
ble [14–17], or teleportation transition [25], we can choose
to measure many qubits, leaving only a few unmeasured.
If, on the other hand, the postmeasurement states consist of
extensively many qubits then the states themselves must
have some appropriate structure that allows them to be
represented using some variational ansatz, e.g., a tensor
network.

In terms of the simulation strategy, the approach cho-
sen will naturally depend on the specifics of the system,
and so to make any further statements, we must specialize
to particular types of measurement-induced dynamics. One
example where full simulation can be done efficiently is in
the projected ensemble for a wave function generated by
evolving a product state under some finite-time dynamics
in one spatial dimension (see, e.g., Refs. [14,64]). There,
the state of the unmeasured qubits conditioned on a par-
ticular measurement outcome can be constructed using a
transfer matrix technique, the cost of which is linear in
system size for any fixed time of evolution. Since the
convergence towards emergent state designs is exponen-
tial in time for one-dimensional (1D) systems [64], this
means that, for the scheme described in Sec. VII B, the
computational cost can remain small. The same goes for
many-body teleportation protocols in one dimension [25].
If the time of evolution were to scale with system size,
or we move to higher dimensions, then efficient simula-
tion may not be possible, although depending on the circuit
being simulated there may still be viable options; see, e.g.,
Ref. [69].

For the case of one-dimensional hybrid quantum cir-
cuits, results on the measurement-induced phase transi-
tion indicate that the dynamics is efficiently simulable
in the area-law phase using matrix product state–based
techniques, but not in the volume-law phase [5,70,71].
This suggests that experimentally learning properties of the
postmeasurement ensemble of conditional states without
employing brute-force postselection is only possible in one
phase. In the volume-law phase, where simulation is pre-
sumably not possible, one cannot use the scheme described

in this paper in practice, and we must instead ask whether
anything nontrivial can be learned in the absence of a sim-
ulation; see Sec. VIII C below. Put simply, in these cases
there exists a set of measurable properties (8) that could in
principle be used to determine some ensemble property of
interest, but to determine the correct operators Az is a com-
putationally intractable task. See also Ref. [34], where the
question of whether entanglement can be probed in area-
versus volume-law phases is considered.

Beyond these examples, it is interesting to consider
whether there may be scenarios in which the computa-
tional task required here (calculating conditional states for
specific values of z) can be done efficiently, even if full
simulation, which would also involve sampling from the
probability distribution—a potentially hard task classically
[72]—is not. One might also consider the possibility of
using a second quantum device to perform the simulation
itself: this certainly would be possible for the projected
ensemble in 1D dual-unitary circuits by leveraging space-
time rotation [73], but whether this can be done efficiently
in other cases is unclear. Finally, we highlight that in
settings where the dynamics features some particular struc-
ture, such as a continuous global symmetry, then it may
be possible to make concrete inferences about the states
in question by employing simulations that only use par-
tial knowledge about the dynamics (e.g., the distribution of
gates employed rather than the exact gates chosen), which
are computationally scalable. Indeed, this was applied in
Refs. [28,74] to demonstrate the feasibility of probing
charge-sharpening transitions in hybrid U(1)-symmetric
circuits. We leave these ideas to future work.

C. Can simulations be avoided?

Having highlighted the fact that constructing the sim-
ulated states ρC

z may not always be possible, this raises
the question of what can be learned without any advanced
knowledge of the structure of the conditional states. To
address this question in a sharp way, we consider a thought
experiment, the implication of which is that if we cannot
perform such a simulation, no information can be gained
about the ensemble beyond the properties of the aver-
aged state (2) using a reasonable number of experimental
repetitions M .

Let us introduce the following hypothetical scenario: we
are given access to a device (oracle) that, when queried,
outputs a label z and state ρQ

z sampled from an ensem-
ble. The ensemble realized by the oracle is one of the
following, chosen with equal a priori probability:

EQ
1 = {(pz, ρQ

z )}z∈Z , (76a)

EQ
2 = {(pz, 〈ρQ〉)}z∈Z , (76b)

with 〈ρQ〉 the average state (2). After querying the oracle
M times, we are asked to determine whether the samples
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came from EQ
1 or EQ

2 . We want to consider this problem
because if we cannot reliably distinguish these two ensem-
bles then we cannot hope to learn any properties of EQ

1
besides those that depend only on 〈ρQ〉.

For the present purpose, we broadly define a simulation
as any method that allows us to obtain some (partial) prior
knowledge of how the labels z map onto properties of the
individual states ρQ

z . Thus, in the scenario we are thinking
about where we do not have access to a simulation, we can
only employ strategies that treat each z on an equal footing,
i.e., we cannot exploit of any contextual information about
what the labels z represent. To make this idea concrete,
we define a simulation-free strategy as one that works the
same if all labels z output by the oracle are first permuted
by some arbitrary τ ∈ �|Z|. In Appendix C, we prove the
following result.

Theorem 2. Given coherent access to M independent
samples of quantum states from one of the two ensembles
EQ

1 or EQ
2 [Eqs. (76)], chosen with equal a priori proba-

bility, then any simulation-free strategy to distinguish EQ
1

from EQ
2 succeeds with probability no greater than

psucc ≤ 1
2

+ M 2
∑

z

p2
z . (77)

Thus, in the regime where M � 2H (2)[pz], with H (2)

[pz] := − log2(
∑

z p2
z ) the collision entropy of distribu-

tion pz, which typically scales linearly with the number
of measurements, we cannot reliably distinguish a given
ensemble EQ

1 from one where the average state 〈ρQ〉 is
supplied independently of z. As a consequence, we can-
not hope to learn any property of an ensemble that is not
contained within the average state (2), unless we obtain
a number of samples that scales exponentially with the
collision entropy of pz. This is even the case when we
can access all M copies of the state simultaneously, which
encompasses situations where we employ adaptive mea-
surement strategies, i.e., protocols where the gates and
measurements that we apply can be chosen in a way that
depends on measurement outcomes that occurred earlier.
Hence, Theorem 2 establishes that the postselection prob-
lem can only be avoided if we incorporate some prior
knowledge about the states ρQ

z into our learning strategy.

IX. CONCLUSION AND OUTLOOK

In this work, we have introduced a scheme that allows
one to infer properties of an ensemble of quantum states
generated by dynamics that involve measurements. We
avoid postselection by insisting that the quantities we
directly measure from the experiment are “estimable prop-
erties” [Eq. (8)], which can be computed using a scalable
number of experimental repetitions. Then, information

about an ensemble averaged property (3) can be indirectly
inferred by solving an optimization problem, as defined in
Sec. V. Our method gives one a lower and upper bound
for the desired quantity, which can be made narrow by
employing simulations of the quantum device on a classi-
cal computer. Crucially, the conclusions we make regard-
ing the ensemble of states generated by the quantum device
are not contingent on any a priori assumptions about the
accuracy of the simulation: any bounds we construct are
entirely rigorous.

Our results clearly have immediate implications for
near-term experiments that probe measurement-induced
dynamics. In Sec. VII B, we saw how the method used
here can be used to infer the emergence of quantum
state designs in the projected ensemble. For other types
of measurement-induced phenomena beyond this exam-
ple, once the relevant order parameters and/or figures of
merit are identified, and corresponding inequalities of the
kind presented in Sec. VI are derived, one can immedi-
ately start using these bounds in the spirit of this work
to indirectly infer the value of this quantity realized in
some experiment. In particular, by virtue of having post-
measurement states defined on a small number of qubits,
we anticipate that experiments for witnessing many-body
teleportation transitions [13,25] should be ideal settings for
the application of our method.

Thinking more generally, the arguments presented in
Sec. VIII point to a sharp distinction between scenarios
where properties of the ensemble of postmeasurement con-
ditional states can or cannot be inferred from experimental
data. One such condition is on the states being probed: if
these are not close to being pure then there will inevitably
be some uncertainty in the value of the desired quantity.
The other pertains to the feasibility of classical simulation:
if simulation is not possible then the states generated by
the dynamics are indistinguishable from the case where
the average state (2) is realized every time. The implica-
tion is that if we hope to use the conditional states ρQ

z
as resources for some useful task then we must neces-
sarily have some prior knowledge about their structure,
i.e., some model to guide our expectation for how ρQ

z
depends on z. This basic expectation should be borne in
mind when considering possible extrinsic applications of
measurement-induced physics in future studies.

While the approach we introduce here is designed with
the aim to characterize properties of the postmeasurement
states, it is helpful to make comparisons to other scenar-
ios where one wishes to make other kinds of inferences
about processes that generate both quantum and classi-
cal data. One example that fits particularly well into this
category is the problem of parameter estimation for con-
tinuously monitored few-body systems [75–79], which has
applications in quantum metrology. There, one again has
to deal with the fact that every repetition of the experiment
results in a different nondeterministic outcome, which can
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be handled by using a parallel classical simulation of the
dynamics conditioned on those quantum trajectories that
arise in the experiment. A key difference is that in parame-
ter estimation, a particular starting assumption is made that
the generator of dynamics is given by some model with a
fixed number of unknown parameters, which we wish to
infer based on the outcomes of the measurements we make.
Because of this strong assumption, inferences can be made
purely from the observed distribution of outcomes, without
measuring the state of the system at the end of the exper-
iment. In cases where such model-based assumptions can
be reliably applied, it may well be possible to incorporate
these into our scheme through modification of the space
K, and this might perhaps allow one to overcome some
of the limitations of Theorem 1. In fact, in the even more
structured setting where one wishes to learn the best can-
didate out of a set of hypotheses for a quantum-classical
process, general bounds on the required sample complex-
ity are known [80,81], and so insights from these works
could suggest strategies for overcoming these limitations.

One type of scenario that has not been explicitly con-
sidered in this work is where the outcomes of measure-
ments are used to determine some subsequent dynam-
ics, i.e., feedback is employed. In such scenarios, which
include error correction [1] and measurement-based com-
putation [2,3] as special cases, nontrivial behavior can
arise even in the averaged state [19,82–87], and this can
be probed in experiment using conventional learning tech-
niques (though one should note that the physics of the
averaged state is still distinct from those of the individ-
ual trajectories ρQ

z [86–88]). Still, if one is interested in
using such “interactive dynamics” to generate states with
some desired property then the choice of feedback applied
could in principle be made based on some knowledge of
the postmeasurement states prior to the conditional unitary
operation. The scheme introduced here can in principle be
used to characterize these “prefeedback” states, which can
then be used to make a constructive choice of feedback
algorithm. Indeed, this type of experimental flow arises in
certain proposals of measurement-based computation [89].
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APPENDIX A: PROOF OF THEOREM 1

To establish Theorem 1, we need the following result,
which is a restatement of claim (5.8) in Ref. [90].

Lemma 1 (Dubins [90]). Let K0 be a linearly bounded
convex subset of a finite-dimensional vector space M. Let
A be an intersection of R hyperplanes in M, i.e., a linear
subspace of codimension R. Then the extreme points of the

intersection K = K0 ∩ A are elements of the R-skeleton of
K0, namely, the union of all faces of K of dimension less
than or equal to R.

When applied to the feasible space K defined in
Eq. (23), we can reduce our problem to a study of the
R-skeleton of K0. Recall that a face of a convex set K0
is a subset F ⊂ K0 with the property that if x ∈ F is
a convex combination of two other elements x = λx′ +
(1 − λ)x′′, where x′, x′′ ∈ K0, then this implies that x′, x′′ ∈
F . All faces have a dimension, which is the dimension
of the smallest affine set containing it—for example, the
faces of dimension zero are singletons, each containing an
extreme point of K0. Here we are interested in the faces of
dimension at most R.

The set K0 in question is a Cartesian product of |Z|
copies of the space of density matrices D over a Hilbert
space of dimension d. Then, our first step is to show that
the faces of K0 are products of faces of D. To demon-
strate this, consider a face F ⊂ C, where C = C1 × C2,
with C1,2 arbitrary convex sets. For a given x1 ∈ C1, denote
by F2(x1) ⊂ C2 the set of points x2 such that the pair
(x1, x2) is an element of F . Note that F2(x1) is a face of
C2, since if x2 = αy2 + (1 − α)z2 then we have (x1, y2) ∈
F and (x1, z2) ∈ F , which, by definition, implies that
y2, z2 ∈ F2(x1). Now take two points x1, x′

1 for which
F2(x1) is nonempty. By convexity of F , if x2 ∈ F2(x1) and
x′

2 ∈ F2(x′
1) then, for any α ∈ [0, 1], we have [αx1 + (1 −

α)x′
1,αx2 + (1 − α)x′

2] ∈ F . Then, by the definition of a
face we have x2, x′

2 ∈ F2[αx1 + (1 − α)x′
1]. This implies

that F2(x1) = F2(x′
1), and hence, for any x1, F2(x1) is

either empty or equal to a fixed set F2, and we conclude
that F = F1 × F2, where F2 is a face of C2. The same
logic applied to the analogously defined set F1(x2) gives
us that F1 must be a face of C1. If we apply this to the mul-
tiple product K0 = ×z∈ZD, we conclude that faces of K0
are products of |Z| faces of D, as claimed above.

With this understood, note that the n-dimensional faces
of K0 are products of faces of D whose dimensions
sum to n. Thus, at least (|Z| − n) factors of any n-
dimensional face of K0 will be zero dimensional. Since a
zero-dimensional face is an extreme point, and the extreme
points of D are pure states [91], then any element of an
n-dimensional face of K0 is an ensemble with no more
than n nonpure states. We conclude that extreme points of
K, which according to the lemma quoted above belong to
the R-skeleton of K0, must have no more than R nonpure
states, thus completing the proof of Theorem 2.

The corollary quoted in the main text follows since
K is a compact, convex subset of M = ⊕

z∈Z B(H),
which is a finite-dimensional vector space, and hence the
Krein-Milman theorem applies. Because K is necessarily
nonempty, at least one extreme point of K must exist.
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APPENDIX B: DERIVATIONS OF LOWER AND
UPPER BOUNDS

In Sec. VI, we outlined how approximate solutions to the
relevant optimization problems could be found for various
specific quantities. Here we include some of the details of
these derivations.

1. Quadratic observables

Here we prove the lower bound (49), which is obtained
using a similar line of reasoning to that discussed in
Sec. VI A. We start with the case where the superopera-
tor N = |O〉〉〈〈O|, i.e., we are considering the average of
G(ρQ

z ) = Tr[ρQ
z O]2. The case of general positive semidef-

inite N � 0 will follow quickly from this case.
We can assume that Tr[O] = 0 without loss of gener-

ality, since any component of O proportional to I can be
subtracted off, yielding an additional term ∝ Tr[〈ρQ〉 O],
which is a property of the average state and hence can
be measured directly. Then, the dual function h−(λi) cor-
responding to this particular primal problem takes the
form

h−(λi) =
∑

z

pzF2,−

(
O,

∑

i

λiÃ(i)z

)
+

∑

i

λi(bi − ai),

(B1)

where ai, Ã(i)z are as in Eq. (35), and we have defined the
function

F2,−(O, C) := inf
ρ∈D

(Tr[ρO]2 − Tr[ρC]) (B2)

by analogy to Eq. (36). While we cannot exactly solve
this problem analytically in full generality, it is possible
in the case where H is a single qubit (Hilbert space dimen-
sion d = 2). Our solution to this case will prove instructive
when it comes to treating the more general scenario d ≥ 2
later; we thus briefly specialize in the following.

Single qubit.—When we fix d = 2, since both C and
O are traceless, one can rescale and perform rotations in
Hilbert space appropriately to map the problem of evalu-
ating F2,−(O, C) to the case O = Z, and C = α1X + α3Z,
where (X , Y, Z) are Pauli matrices, and α1,α3 ≥ 0 are
non-negative scalars. Evidently, α1 and α3 are the com-
ponents of C orthogonal and parallel to O, respectively.
This effectively reduces F2,− to a function of two variables
(α1,α3).

Another useful aspect of the qubit problem that helps
us here is that the space of density matrices D has a sim-
ple geometry that can be straightforwardly characterized:
the conditions that ρ is Hermitian and satisfies Tr[ρ] = 1,
Tr[ρ2] ≤ 1 are necessary and sufficient for ρ to be a valid
density matrix. This leads to the notion of the Bloch ball,
which is a helpful visualization of the space D: any density

matrix can be written as |ρ〉〉 = (|I〉〉 + n1|X 〉〉 + n2|Y〉〉 +
n3|Z〉〉)/2, with �n = (n1, n2, n3) a three-dimensional vec-
tor that specifies the state, which belongs to the unit ball
|�n| ≤ 1. Since the function to be extremized is independent
of n2, we can reduce this to

F (d=2)
2,− (α1,α3) = inf

n2
1+n2

3≤1
[n2

3 − α1n1 − α3n3]. (B3)

A solution to this problem can be formally written down
in terms of the roots of a certain polynomial equation, but
the resulting expression is rather cumbersome and not par-
ticularly informative. Rather, it is useful to consider the
behavior of the above function in the vicinity of α1 =
0. By considering small perturbations around the α1 = 0
solution, we obtain the expansion

F (d=2)
2,− (α1,α3) =

⎧
⎪⎨

⎪⎩
−α

2
3

4
− |α1|

√
1 − α2

3

4
for |α3| ≤ 2,

1 − |α3| for |α3| > 2

+ O(α2
1), (B4)

which is achieved at

n3 = sgn(α3)× min(1, |α3|/2)+ O(α1). (B5)

Looking at Eq. (B4), one notes that the behavior of F (d=2)
2,−

in the directions α1 and α3 is markedly different near the
point α1,3 = 0: the function decreases linearly along α1,
and quadratically along α3. Bearing in mind that α1,3 are
linear combinations of the Lagrange multipliers λi, we con-
sider a stability analysis of the function h−(λi), which is to
be maximized, around the candidate point λi = 0. Quali-
tatively speaking, we find that it is favorable to increase
λi away from zero for those i where the operators A(i)z are
predominately along the Z direction in operator space (α3
dominates), but not those along orthogonal directions (α1
dominates). This is because, for the former subset of λi, the
second term in Eq. (B1) will increase faster than the first
term decreases as λi is varied away from zero.

This rough intuition can be made concrete most straight-
forwardly if we assume that, for each i, A(i)z is either
orthogonal to or parallel to Z. [Such an assumption is not
particularly restrictive—if the A(i)z are measurable then we
can always decompose A(i)z = ∑

μ aiμzσ
μ in terms of com-

ponents along some basis of operators σμ, which we are
free to choose such that one of the σμ is proportional to
O. Then, using our shadow-based scheme, we can always
choose to measure the enlarged set of operators A(i,μ)z :=
aiμzσ

μ for each pair (i,μ) separately without losing any
information, simply by altering the classical postprocess-
ing.] Let us denote the set of i for which 〈〈A(i)z |Z〉〉 = 0 as
I⊥, and those for which A(i)z = cziZ as I‖. We temporar-
ily fix λi∈I⊥ = 0 by hand and then optimize over λi∈I‖ .
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Using expansion (B4) with the appropriate replacement of
parameters, we obtain

h−(λi)|λi∈I⊥=0 =
∑

z

pzF
(d=2)
2,−

(
0,

∑

i∈I‖

λiczi

)
+

∑

i∈I‖

λibi.

(B6)

(Note that we have ai = 0 for i ∈ I‖.) From this point, our
arguments follow a similar structure to those of Sec. VI A.
We can use the bound F (d=2)

2,− (0,α3) ≥ −α2
3/4 to obtain an

analogous expression to Eq. (37), i.e.,

h−(λi)|λi∈I⊥=0 ≥ −1
4

∑

i,j ∈I‖

λiJij λj +
∑

i∈I‖

biλi, (B7)

where we have introduced Jij , an analogue of Lij in
Eq. (38),

Jij =
∑

z

pzcziczj . (B8)

[Equation (B7) actually becomes an equality if we have
| ∑i∈I‖ λiczi| ≤ 2 for all z.] As before, this can be maxi-
mized to obtain a certificate

max
λi : i∈I‖

h−(λi) ≥
∑

i,j ∈I‖

bi[L−1]ij bj =: h̃−. (B9)

Again, optimality of this candidate solution to the dual
problem is not guaranteed, i.e., h̃− might be strictly smaller
than the true optimal value g∗

−. Even so, the above can be
evaluated straightforwardly using experimental data, and
can be used as a lower bound for the quantum-quantum
correlator Ez Tr[ρQ

z O]2.
Beyond a single qubit.—When we generalize beyond

the case of a single qubit d = 2, the optimization over den-
sity matrices in higher-dimensional Hilbert spaces is made
more complicated by the geometric structure of the space
D, which does not have simple interpretations such as the
Bloch ball. For instance, expressions analogous to Eq. (B3)
are not so straightforward. Nevertheless, we can carry the
intuition gained above forward to this case to anticipate
that reasonable bounds can be found by optimizing only λi
for i ∈ I‖, where now I‖ denotes the set of is for which
A(i)z = cziO for scalars ciz, whose complement I⊥ is made
up of operators orthogonal to O in operator space, namely,
Tr[A(i)z O] = 0 for i ∈ I⊥.

Following the same logic as before, we set λi = 0 for
i ∈ I⊥, after which the second argument of the function
F2,− in Eq. (B1) becomes proportional to O. The resulting
minimization problem (B2) can then be directly evaluated

for arbitrary d,

F2,−(O,αO) = −‖O‖2
∞ × min(α2/4, |α|), (B10)

where ‖O‖∞ denotes the spectral norm, equal to the largest
singular value of O. This solution has the same struc-
ture as the qubit case (B4), and hence the same logic can
be used as before to reproduce bound (B9). That is, the
same expression (B9) for h̃− as a lower bound for g∗

− for
arbitrary d.

Now, following the same approach as in Sec. VI A, we
can use quantum-classical correlators to choose the oper-
ators A(i)z . The simplest case, where we use the standard
quantum-classical correlator (16) as the only constraint,
yields

〈O ⊗ O〉QQ ≥ [〈O ⊗ O〉QC]2

〈O ⊗ O〉CC , (B11)

which can be interpreted as a result of the Cauchy-
Schwartz inequality, or, equivalently, the standard inequal-
ity Var(X )Var(Y) ≥ Cov(X , Y)2 for classical random
variables X , Y. If we make use of quantum-classical corre-
lators beyond just 〈O ⊗ O〉QC then we can in principle use
all the information contained in the superoperators ηQC,
ηCC [Eq. (42)]. This allows us to improve the simple bound
above to

〈O ⊗ O〉QQ ≥ 〈〈O|ηQCζCQ|O〉〉, (B12)

where ζCQ is the superoperator implicitly defined in
Eq. (44).

Now, for more general convex quadratic observables
(N � 0), we can always perform a decomposition of the
superoperator N = ∑

a μa|Ca〉〉〈〈Ca|, where theμa ≥ 0 are
eigenvalues and the Ca are eigenoperators. Because of
the non-negativity of μa, we can apply bound (B12) with
O = Ca for each a separately, which gives Eq. (49).

2. Numerically stable upper bound for the von
Neumann entropy

In the main text, we derived a general upper bound for
the average von Neumann entropy (56), which, for the spe-
cial case Az = − log ρC

z , reduces to the quantum-classical
entropy introduced in Ref. [34]. Unfortunately, this leads
to an expression that is numerically unstable when the
classical states ρC

z are near singular, due to the need to
take the logarithm of the operators ρC

z . However, thanks
to the flexibility of our optimization-based approach, we
can devise a simple solution, where we modify the chosen
operators Az to obtain a better bound. Here we consider
the case where we measure the two observables defined in
Eq. (59), denoted A(1,2)

z . For each of these two observables,
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we have a Lagrange multiplier λ1,2. In terms of the expec-
tation values 〈A(1,2)

z 〉, the dual function can be obtained by
minimizing with respect to ρQ

z , giving

h+(λ1,2) = Ez(log{Tr[(�>
z ρ

C
z �

>
z )
λ1 ] + e−λ2rank(�≤

z )}
+ λ1 〈A(1)z 〉 + λ2 〈A(2)z 〉). (B13)

Optimizing for λ1,2 cannot be done exactly using analyt-
ical methods; however, based on the same considerations
as for Eq. (57), it is reasonable to set λ1 = 1 in the above,
after which the minimization over the remaining Lagrange
parameter λ2 can be done approximately. In the limit where
δQ := 〈A(2)z 〉 = Ez Tr[ρQ

z �
≤
z ] is small (i.e., the overlap of

the quantum states with the near-singular eigenstates of ρC
z

is small on average), we find that the value λ2 = log[r(1 −
δQ)/δQ(1 − δC)] is approximately optimal, where we use
the shorthand r = Ezrz = Ezrank[�≤

z ] and δC = Ezδ
C
z =

Ez Tr[ρC
z �

≤
z ]. This gives us a regularized bound

EzSvN(ρ
Q
z )

≤
∑

z

pz

[
− 〈A(1)z 〉 + log

(
1 − δC

z + δQ(1 − δC)

1 − δQ

rz

r

)

− δQ log
(
δQ(1 − δC)

1 − δQ

)]
. (B14)

The above simplifies considerably when the classical states
are pure, where we have log′ ρC

z = 0, rz = (d − 1), and
δC

z = 0, whence the result given in Eq. (60).

3. Lower bound for the subsystem von Neumann
entropy

In the main text, we showed that the minimization prob-
lem for the average von Neumann entropy of a subsystem
Q1 could be turned into a convex optimization problem
by way of the conditional entropy (61), which is concave,
and hence can be maximized. To make progress, it will
be useful to introduce a variational characterization of the
conditional quantum entropy [92]

S(ρQ|Q1) = sup
σQ1 ∈D1

[−S(ρQ‖σQ1 ⊗ IQ2)], (B15)

where S(ρ‖σ) = Tr[ρ log ρ] − Tr[ρ log σ ] is the quantum
relative entropy. After constructing the dual function for
maximizing the conditional entropy, we can use the above
representation, after which result (55) can be used to

perform the optimization over ρQ
z , thus giving

max
ρ∈K

[EzS(Q2|Q1)ρQ
z

] = min
λi

{∑

i

λibi

+ max
σ

Q1
z ∈D1

Ez log Tr
[

exp
(

log σQ1
z ⊗ IQ2 −

∑

i

λiA(i)z

)]}
.

(B16)

Because of the form of Eq. (B15), we have an extra
maximization step to perform over the states σQ1

z . This
cannot be solved exactly in full generality, but we can use
the Golden-Thompson inequality Tr[eA+B] ≤ Tr[eAeB] for
Hermitian matrices A, B to obtain bound (63).

APPENDIX C: PROOF OF THEOREM 2

Here we provide a proof of Theorem 2, which is a
statement regarding our ability to distinguish between the
two ensembles (76). First, we note that having coherent
access to M samples from the ensembles EQ

1 , EQ
2 is equiv-

alent to owning a single copy of the following respective
quantum-classical states:

ρ1,M =
( ∑

z

pz |z〉 〈z| ⊗ ρQ
z

)⊗M

, (C1a)

ρ2,M =
( ∑

z

pz |z〉 〈z| ⊗ 〈ρQ〉
)⊗M

. (C1b)

In this representation, the labels are stored in M clas-
sical registers, each prepared in a state |z〉 〈z|, and the
conditional states are simultaneously stored in M separate
quantum registers. The problem of deciding which of the
two scenarios (C1) is realized by the oracle is a form of
hypothesis testing, which is a well-studied problem. With-
out any constraints on our hypothesis testing strategy, a
standard result due to Helstrom [93] says that the best
strategy is equivalent to performing a generalized measure-
ment described by a two-component POVM E1 + E2 = I,
where E1 is the projector onto the space of positive eigen-
values of ρ1,M − ρ2,M . When one employs this strategy,
one can successfully determine which of the ensembles is
realized with probability psucc = 1/2 + ‖ρ1,M − ρ2,M ‖1/4,
where ‖ρ − σ‖1 is the trace distance between states ρ, σ .
As the number of copies M increases, the success proba-
bility tends towards unity exponentially quickly [94,95],
and so there always exists a strategy that allows us to
distinguish between the ensembles (76) reliably.

However, even though such an optimal hypothesis test-
ing strategy may exist, an observer with limited com-
putational power may not be able to determine what
the correct measurement procedure should be. That is,
although the ensembles may be distinguishable in an
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information-theoretic sense, they may not be computa-
tionally distinguishable. Since the question of the com-
putational complexity of finding the optimal strategy will
depend on the specifics of the ensemble EQ in question,
our starting point will be to assume that simulations of the
device of any kind are not available. This motivates our
definition of a simulation-free strategy as defined in the
main text.

In this context, any simulation-free strategy can still be
represented as a two-component POVM E1,2 acting jointly
on the M classical and M quantum registers that store
states (C1), in the same way as above—this encompasses
protocols that feature measurements in entangled bases,
adaptive strategies, and stochastic operations. Regardless,
we want to restrict ourselves to operations that are sym-
metric among the different labels z, i.e., we treat all
labels equivalently. This implies that we should make a
restriction

(π⊗M
τ ⊗ IQ)E1(π

⊗M
τ ⊗ IQ) = E1 for all τ ∈ �|Z|,

(C2)

where πτ |z〉 = |τ(z)〉 is a permutation operator on a single
classical register, and IQ is the identity operator on all M
quantum registers. Making this restriction forbids us from
using some prior knowledge of how the ensemble states
ρQ

z depend on the states z, i.e., a means to simulate the
dynamics.

Whilst ensuring that Eq. (C2) holds, we want to maxi-
mize the success probability psucc = 1/2 + Tr[E1(ρ1,M −
ρ2,M )]/2, as in standard hypothesis testing. Evidently,
for any such operator E1, we have Tr[E1σ ] = Tr{E1(S ⊗
idQ)[σ ]}, where idQ is the identity superoperator on the
quantum register, and

S[σC] := 1
|Z|!

∑

τ∈�|Z|

π⊗M
τ σCπ⊗M

τ (C3)

projects the operator σC corresponding to the classical
registers onto the subspace that is invariant under per-
mutations of the labels z. Using this construction, it is
straightforward to show that

psucc = 1
2

+ 1
2
‖(S ⊗ idQ)[ρ1,M − ρ2,M ]‖1. (C4)

Now, we can write the argument of the trace norm as

(S ⊗ idQ)[ρ1,M − ρ2,M ] =
∑

�z
p(�z)S[|τ(�z)〉 〈τ(�z)|]

⊗
( M⊗

i=1

ρQ
zi

− 〈ρQ〉⊗M
)

,

(C5)

where we used the shorthand p(�z) = ∏M
i=1 pzi and |τ(�z)〉

= |τ(z1)⊗ · · · ⊗ τ(zM )〉. Now, for a string of labels �z,

define the matrix Rij (�z) = δzi,zj , which specifies which
pairs (zi, zj ) are equal for the given string �z. It holds
that S[|�z〉 〈�z|] is equal to S[|�z ′〉 〈�z ′|] if Rij (�z) = Rij (�z ′)
for all i, j = 1, . . . , M , and they are orthogonal otherwise.
The trace norm in Eq. (C4) then becomes a sum over
contributions from each possible value of Rij ,

‖(S ⊗ idQ)[ρ1,M − ρ2,M ]‖1

=
∑

Rij ∈{0,1}×M2

∥∥∥∥
∑

�z∈Rij

p(�z)
( M⊗

i=1

ρQ
zi

− 〈ρQ〉⊗M
)∥∥∥∥

1
,

(C6)

where the notation �z ∈ Rij denotes a sum over all strings �z
for which Rij (�z) = Rij . At this point, we can start to apply
some upper bounds. We separate out the term in the sum
for which Rij = 0, and by the triangle inequality we have

‖(S ⊗ idQ)[ρ1,M − ρ2,M ]‖1

≤
∑

z /∈0

p(�z)+
∥∥∥∥

∑

�z∈0

p(�z)
( M⊗

i=1

ρQ
zi

− 〈ρQ〉⊗M
)∥∥∥∥

1
.

(C7)

Now we use the definition of the average state, which
implies that

∑
�z p(�z)(⊗M

i=1 ρ
Q
zi
) = 〈ρQ〉⊗M . Hence, we can

infer that

‖(S ⊗ idQ)[ρ1,M − ρ2,M ]‖1

≤
∑

z /∈0

p(�z)+
∥∥∥∥

∑

�z/∈0

p(�z)
M⊗

i=1

ρQ
zi

∥∥∥∥
1
, (C8)

from which we obtain

psucc ≤ 1
2

+
∑

�z/∈0

p(�z). (C9)

The second term in the above corresponds to the proba-
bility of at least one pair of labels (zi, zj ) being equal. A
simple upper bound for this probability is

(M
2

)∑
z p2

z [96],
and hence we obtain the bound quoted in Theorem 2.
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