
PRX QUANTUM 5, 020345 (2024)

Fault-Tolerant Code-Switching Protocols for Near-Term Quantum Processors

Friederike Butt ,1,2,* Sascha Heußen ,1,2 Manuel Rispler,1,2 and Markus Müller1,2

1
Institute for Quantum Information, RWTH Aachen University, Aachen, Germany

2
Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jülich, Jülich, Germany

 (Received 18 August 2023; revised 14 February 2024; accepted 10 April 2024; published 28 May 2024)

Topological color codes are widely acknowledged as promising candidates for fault-tolerant quan-
tum computing. Neither a two-dimensional nor a three-dimensional topology, however, can provide a
universal gate set {H, T, CNOT}, with the T gate missing in the two-dimensional and the H gate in the three-
dimensional case. These complementary shortcomings of the isolated topologies may be overcome in a
combined approach, by switching between a two- and a three-dimensional code while maintaining the logi-
cal state. In this work, we construct resource-optimized deterministic and nondeterministic code-switching
protocols for two- and three-dimensional distance-three color codes using fault-tolerant quantum circuits
based on flag qubits. Deterministic protocols allow for the fault-tolerant implementation of logical gates on
an encoded quantum state, while nondeterministic protocols may be used for the fault-tolerant preparation
of magic states. Taking the error rates of state-of-the-art trapped-ion quantum processors as a reference, we
find a logical failure probability of 3% for deterministic logical gates, which cannot be realized transver-
sally in the respective code. By replacing the three-dimensional distance-three color code in the protocol
for magic state preparation with the morphed code introduced in Vasmer and Kubica [PRX Quantum 3,
030319 (2022)], we reduce the logical failure rates by 2 orders of magnitude, thus rendering it a viable
method for magic state preparation on near-term quantum processors. Our results demonstrate that code
switching enables the fault-tolerant and deterministic implementation of a universal gate set under realistic
conditions, and thereby provide a practical avenue to advance universal, fault-tolerant quantum computing
and enable quantum algorithms on first, error-corrected logical qubits.

DOI: 10.1103/PRXQuantum.5.020345

I. INTRODUCTION

Universal quantum computation holds the promise to
perform certain computational tasks exponentially faster
than any known classical algorithm [1,2]. In the current
noisy intermediate-scale quantum (NISQ) era, however,
the accuracy of quantum algorithms is limited by noise
[3]. A prospective means of increasing their robustness
against the noise is to encode quantum information on
logical qubits, with each logical qubit consisting of mul-
tiple physical qubits. On these logical qubits, quantum
error correction (QEC) [4,5] can be performed to cor-
rect for errors on physical qubits and, thereby, to recover
the initially encoded information [6,7]. For physical error
rates below a certain threshold, QEC enables practical

*Corresponding author: friederike.butt@rwth-aachen.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

quantum computing for arbitrarily long times given suit-
able, i.e., fault-tolerant (FT), circuit constructions [8–11].
FT circuits can be designed by using transversal gate
operations, which are composed of single-qubit unitaries
acting on individual qubits in each encoded block, such
that potential errors in any of these operations are pre-
vented from proliferating uncontrollably [5,12]. In order
to approximate arbitrary computations on encoded qubits,
a discrete set of operations that forms a universal gate
set can be used, which requires at least one non-Clifford
gate [8,13]. However, the Eastin-Knill theorem states that
no QEC code exists that has a universal, transversally
encoded and, therefore, FT gate set [14]. This complicates
the implementation of a universal FT gate set and poses a
key challenge towards error-corrected universal quantum
computing.

Recent quantum computing experiments are focused on
the practical encoding of qubits on a logical level and
investigate the implementation of a quantum memory. For
example, on trapped-ion systems, the preparation of log-
ical states [15], error-detecting codes [16], FT stabilizer
readouts [17] in a shuttling-based architecture [18], as well
as repeated cycles of QEC [19] have been implemented.

2691-3399/24/5(2)/020345(26) 020345-1 Published by the American Physical Society

https://orcid.org/0009-0007-8954-1274
https://orcid.org/0000-0002-7581-2148
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.020345&domain=pdf&date_stamp=2024-05-28
http://dx.doi.org/10.1103/PRXQuantum.5.020345
https://creativecommons.org/licenses/by/4.0/

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

In superconducting qubits, logical qubits have success-
fully been initialized [20,21], while repeated QEC has been
realized [22–24], as well as error-detection codes [25,26].
Recently, a distance-five surface-code logical qubit out-
performed a distance-three logical qubit, demonstrating
an improvement of performance of QEC codes with an
increasing number of qubits [27]. Rydberg atoms are
a promising candidate for building quantum processors
due to their strong long-range interactions and scalabil-
ity [28,29] and have shown rapid progress in single- and
multiqubit control [30–32] as well as the first elements
of quantum error correction [33]. Advancements in other
qubit architectures have been reported, as, for example, a
three-qubit phase-correcting code in a silicon-based archi-
tecture [34] and fault-tolerant operations on a logical qubit
using spin qubits in diamond [35], among others.

These advancements in practical and scalable imple-
mentations of logical qubits enable FT operations on these
encoded states and motivate the search for ways to achieve
FT, universal quantum computing on near-term devices.
The FT control of an error-corrected single logical qubit
[36] has been demonstrated on a trapped-ion processor, as
well as logical operations in a distance-two error-detecting
surface code on a superconducting architecture [37] and
entangling gates between logical qubits [38]. A univer-
sal set of gates was recently implemented for the first
time on a seven-qubit Steane code, which is the smallest
error-correcting color code, using FT circuit constructions
with flag qubits [39]. Here, the universal gate set is com-
pleted by using magic state injection to realize a logical
non-Clifford operation. The non-Clifford T gate can be
implemented by preparing a magic state fault tolerantly on
an auxiliary system [40,41] and then injecting this magic
state onto the target qubits using a logical CNOT gate [42].

An alternative to magic state injection is to complete
a FT universal gate set using code switching between
codes with complementary transversal gate sets [43–45].
Code switching allows one to transfer encoded information
between specific codes. To do so, stabilizers are measured

to project the state onto the desired codespace. Based
on the measurement outcomes, local Pauli operations are
applied to change the state into the correct +1 eigen-
state of the stabilizers of the target code. One candidate
for implementing a universal gate set with code switch-
ing are two-dimensional color codes, because all Clifford
gates can be implemented transversally [46–49]. For a uni-
versal set of gates, at least one non-Clifford gate such as
the T gate is required, which can only be implemented
transversally in three-dimensional codes, as, for example,
tetrahedral color codes as illustrated in Fig. 1 [50]. By
switching between these two- and three-dimensional color
codes in a FT manner, it is possible to access all gates of a
universal gate set with a transversal implementation.

To achieve fault tolerance for code-switching protocols,
it is not sufficient to simply use FT stabilizer measurements
for error correction. The objective for syndrome measure-
ments for error correction is to detect errors on data qubits
and correct for them. The objective of stabilizer measure-
ments during code switching is to project the state onto
a desired codespace and apply a corresponding switching
operation. In this case, single errors on data qubits invert
the measurement outcomes and can directly introduce log-
ical errors on the target code. Furthermore, the initial code
can have different error-correcting properties than the tar-
get code, which has to be carefully taken into account, as
we discuss in detail in Sec. V.

In this work, we present strategies that allow for
FT switching between two- and three-dimensional color
codes. We explicitly consider the distance-three instances
of these codes. These instances consist of a number of
physical qubits that is available on near-term quantum pro-
cessors while a single arbitrary computational error is cor-
rectable. We make use of auxiliary flag qubits that herald
the presence of errors resulting from faults in the circuits
[40,41,51]. The concept of flag qubits has been extended to
codes with arbitrary distance [47,52,53] and has been used
for the FT initialization of logical qubits [39–41] and the
FT encoding of magic states [54]. We develop FT protocols

Transversal gates

switch

CNOT CNOT
H
S

T

H
S

T

Triangular color code Triangular color code

FIG. 1. Transversal gate set of three-dimensional tetrahedral and two-dimensional triangular color codes. A two-dimensional trian-
gular color code, as depicted on the right, has a transversal implementation of the CNOT and the Hadamard gate. On the left side, a
three-dimensional tetrahedral code is illustrated, which has a transversal implementation of the CNOT gate and the non-Clifford T gate.
By switching between these two code classes, it is possible to access all gates of a universal gate set {CNOT, H, T} with transversal
implementations.

020345-2

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

considering circuit-level noise, i.e., noise models where
all components of the underlying circuits, such as initial-
ization, gate operations, and measurements are modeled
as noisy. We construct new flag-qubit-based circuits for
the encoding of logical states and for sequences of stabi-
lizer measurements, which are resource optimized in terms
of qubit and gate count. Furthermore, we introduce new
nondeterministic code-switching protocols that make use
of a transformed morphed code, which was introduced in
Ref. [55]. The morphed three-dimensional distance-three
color code inherits the FT T gate and makes it a candidate
for completing a universal gate set. We construct a scheme
for the FT preparation of a magic state using this new code.
In doing so, the success rate can be increased significantly
compared to the preparation of a magic state via the ini-
tial three-dimensional color code. Using the morphed code
for magic state preparation, we find similar success rates

as state-of-the-art implementations [39]. We construct an
entire toolbox of modular FT building blocks, which are
illustrated in Fig. 2. Each block is FT by itself and different
blocks can be composed to FT protocols. Table I summa-
rizes the resources for the constructed building blocks and
composite protocols, illustrated in Fig. 2, in terms of the
two-qubit gate count and the number of qubits.

This paper is structured as follows. In Secs. II and III
we briefly review basic properties of two- and three-
dimensional color codes and, specifically, the smallest
instances of these code classes. In Sec. IV, we summarize
the underlying theory for code switching. In Sec. V, we
discuss the different Pauli errors that have to be considered
in detail and present strategies for a FT implementation
of code switching. We introduce FT switching with the
morphed code in Sec. VI and present results of numer-
ical simulations of noisy circuits implementing logical

(a) (b)

(c)

FIG. 2. Codes and FT building blocks used to compose FT code-switching protocols. (a) The tetrahedral [[15, 1, 3]] code (top)
contains 15 physical qubit, encodes one logical qubit and has distance three. The two-dimensional [[7, 1, 3]] Steane code (center)
consists of seven physical qubits and has the same distance and number of logical qubits. The morphed [[10, 1, 2]] code (bottom) is
made up of ten physical qubits, encodes a single logical qubit, but is a distance-two code, so arbitrary single errors are detectable,
yet not correctable. When constructing code-switching schemes, we distinguish between deterministic and nondeterministic protocols.
Deterministic protocols are implemented using the tetrahedral code, correcting for any single error in each block. Nondeterministic
protocols include postselecting during switching and replacing the tetrahedral code with the error-detecting morphed [[10, 1, 2]] code.
(b) FT building blocks for the considered codes. These include the unitary initialization of logical states on the considered codes (left).
The unitary encoding circuits are given in Figs. 20–23. The central blocks represent FT switching to and from the [[7, 1, 3]] Steane
code. The X-EC block represents one round of X -error correction, which is required when switching to the two-dimensional code.
In the illustrated blocks, each tetrahedron can be replaced by the morphed [[10, 1, 2]] code to obtain the corresponding block for the
morphed code. (c) The FT building blocks illustrated in (b) can be combined into FT protocols. The logical FT Hadamard gate for the
tetrahedral [[15, 1, 3]] code (left) can be implemented by, first, switching to the Steane code, then, applying the transversal Hadamard
gate and, lastly, switching back to the tetrahedral code. Similarly, the T gate for the [[7, 1, 3]] Steane code (center) can be realized
by switching to the three-dimensional code, applying the transversal T gate and switching back to the Steane code afterwards. These
two protocols correspond to deterministic FT logical operations, which are not restricted to specific input states. The right column
represents the preparation of a magic state on the [[7, 1, 3]] Steane code with the morphed [[10, 1, 2]] code. After initializing the logical
|+〉 state on the morphed code, a reduced round of X -error detection is applied. Then, a FT T gate is applied to the morphed code,
followed by FT switching to the [[7, 1, 3]] Steane code.

020345-3

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

TABLE I. Required resources for FT building blocks used for
composing FT code-switching protocols as illustrated in Fig. 2.
The center column indicates the number of qubits, which are
required for a given block. The right column contains the num-
ber of CNOT gates that have to be implemented for the specified
protocol. It limits the circuit depth and is an indication for the
experimental circuit complexity. The number of CNOT gates is
specified for the case that no error occurs during the given pro-
tocol, which in the limit of low physical error rates corresponds
to the most likely case. If errors occur, this number can increase
or decrease the number of required two-qubit gates. For exam-
ple, if a flag qubit heralds the presence of an error, a different
set of stabilizers has to be measured afterwards, which changes
the number of CNOT gates. The number of CNOT gates required
for X -error correction on the 15-qubit tetrahedral code is much
higher than for any other block, since all of the ten Z stabilizers
of the tetrahedral code have to be measured twice with flags to
achieve fault tolerance.

No. qubits No. CNOT gates

(a) [[15, 1, 3]] → [[7, 1, 3]] 17 18
(a) X-EC for [[15, 1, 3]] 17 120
(a) [[10, 1, 2]] → [[7, 1, 3]] 12 18
(a) X-EC for [[10, 1, 2]] 12 42
(a) [[7, 1, 3]] → [[15, 1, 3]] 17 72
(a) [[7, 1, 3]] → [[10, 1, 2]] 12 34
(b) |0〉 for [[10, 1, 2]] 11 15
(b) |+〉 for [[10, 1, 2]] 10 14
(b) |0〉 for [[15, 1, 3]] 16 25
(b) |+〉 for [[15, 1, 3]] 16 32
(b) initialization bulk 10 20
(c) T gate on [[15, 1, 3]] 15 0
(c) T gate on [[10, 1, 2]] 10 12
(c) MS with [[10, 1, 2]] 12 40

operations in Sec. VIII for a single-parameter noise model.
In Sec. IX, we consider a multiparameter noise model and
estimate the projected performance on near-term devices,
specifically focusing on state-of-the-art trapped-ion quan-
tum processors. Lastly, we provide conclusions and an
outlook in Sec. X.

II. 2D COLOR CODES

Two-dimensional topological color codes were orig-
inally proposed by Bombin et al. [46]. They fall into
the important class of so-called CSS (Calderbank-Shor-
Steane) stabilizer codes [56,57]. They can be specified
by the code parameters [[n, k, d]] where n is the number
of physical qubits, k is the number of encoded logical
qubits, and d is the code distance. The simultaneous +1
eigenspace of all stabilizer generators corresponds to the
codespace spanned by the valid logical states [43]. A
two-dimensional color code can be constructed by placing
qubits on the vertices of a three-valent and three-colorable
lattice [46]. Different vertices are connected by links. Faces
are formed by a closed set of links. Three colors, say red,

blue, and green {R, B, G} are commonly assigned to the
faces. Colors are assigned to links according to the color
of the faces they connect, so that, for example, blue faces
are connected by blue links. Colors are assigned in such a
way that three links of different color meet at each vertex.
By closing the boundaries periodically to form a torus, one
can identify the logical operators of the two-dimensional
color codes as the noncontractible loops on the torus.

A closely related class of two-dimensional color codes
with open boundary conditions are triangular color codes,
as exemplarily illustrated in Fig. 1. They can be con-
structed by placing the described lattice on the surface of
a sphere and removing one vertex and all its neighbor-
ing links and faces. This lattice contains an odd number
of physical qubits and can be deformed into a triangular
shape. X and Z stabilizers are defined on the faces of the
code, which ensures that all stabilizers overlap at an even
number of vertices and, therefore, commute. Logical oper-
ators can be implemented by applying X and Z operations
to all qubits. By applying stabilizers, one finds equiva-
lent string-type logical operators with a minimum length
d, which correspond to the length of one edge of the tri-
angle. Triangular codes encode one logical qubit and have
a transversal implementation of {H, CNOT, S}. This means
that the logical CNOT can be realized by applying physical
CNOT gates to pairs of qubits on two codes. The Hadamard
gate H can be implemented by applying a single H gate
to each physical qubit. It interchanges HX H = Z on each
individual qubit and, therefore, acts as a Hadamard gate on
the logical level since the logical X and Z operators have
the same support. It analogously maps X stabilizers to Z
stabilizers and vice versa and, therefore, H preserves the
stabilizer group. Similarly, the phase gate S can be realized
transversally by applying single qubit S and S† [43]. With
the set of gates {H, S, CNOT}, the whole Clifford group of
gates can be generated transversally [58]. The smallest tri-
angular color code with this set of transversal gates is a
code that is equivalent to the Steane code [59].

A. The Steane code [[7, 1, 3]]

The [[7, 1, 3]] Steane code consists of n = 7 physical
qubit, encodes k = 1 logical qubit and has distance d = 3
[59]. Six stabilizer generators are defined as

SX
R = X0X1X2X3, SZ

R = Z0Z1Z2Z3

SX
G = X1X2X4X5, SZ

G = Z1Z2Z4Z5

SX
B = X2X3X5X6, SZ

B = Z2Z3Z5Z6

(1)

with the color labels red (R), green (G), and blue (B)
and for the indexing given in Fig. 3(a). The two logical
operators can be implemented by applying Pauli X and Z
operators to all seven qubit and are stabilizer equivalent to
operators of minimum weight 3. For example, the logical

020345-4

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

(a) (b)

FIG. 3. Illustration of the two- and three-dimensional
distance-three color codes. (a) The [[7, 1, 3]] Steane code
consists of seven qubits (black dots) forming a green, red,
and blue face (colored faces). The X - and Z-type stabilizers
Sσcol of color {R, G, B} are defined as σ = X , Z Pauli opera-
tors applied to the qubits that form the given face. (b) The
15-qubit tetrahedral code [[15, 1, 3]] has distance three, encodes
one logical qubit and consists of 15 qubits (black dots),
which form three-dimensional units. Four X stabilizers BX

c
are defined on the cells c ∈ {R, B, G, Y} of the code, as, for
example, the red X stabilizer BX

R = X0X1X2X3X7X12X13X14.
Ten independent Z stabilizers BZ

f are defined on the faces
f ∈ {R, B, G, Y, RB, RG, RY, BG, BY, GY} of the code, as, for
example, the red-yellow Z stabilizer BZ

RY = Z7Z12Z13Z14.

Pauli operators can be implemented on the edges of the
triangle with

X = X4X5X6 and Z = Z4Z5Z6. (2)

III. 3D COLOR CODES

To construct a three-dimensional color code, qubits are
arranged on a three-dimensional, four-valent, and four-
colorable lattice structure. Four colors red, green, blue,
and yellow {R, G, B, Y} are assigned to the smaller three-
dimensional units, which are called cells. Cells of the same
color never touch but are connected by links of that same
color, for example, blue cells are connected by blue links
[50]. So, a link has color κ ∈ {R, B, G, Y} if the three cells,
of which the link is part of, have colors different from
κ . The two-dimensional boundaries of the cells are called
faces and have the color labels κ1κ2 according to the col-
ors of the two cells of which they are part of Ref. [60].
This construction can be generalized also to n-dimensional
codes [43,44].

One class of three-dimensional color codes are tetra-
hedral codes, as exemplarily illustrated in Fig. 1. Anal-
ogously to the two-dimensional case, a tetrahedral code
can be constructed by arranging a three-dimensional lat-
tice within the volume of a 3 sphere, in the above-described
manner. By removing one vertex and its neighboring cells,
faces and links, the lattice contains an odd number of
physical qubits and can be deformed into a tetrahedron,
encoding a single logical qubit [50]. One associates faces F

with Z stabilizers and cells C with X stabilizers, ensuring
commutativity since each cell and face contains an even
number of qubits by construction. A codestate |ψ〉 of this
system is characterized by the conditions

SX
c |ψ〉 = |ψ〉 ∀c ∈ C, (3)

SZ
f |ψ〉 = |ψ〉 ∀f ∈ F . (4)

An operator basis is defined for the qubit encoded in the
tetrahedral code by

X = X ⊗n and Z = Z⊗n (5)

with the total number of qubits n. This definition ensures
that all stabilizers commute with the logical Pauli opera-
tors, since the tetrahedral code contains an odd number of
physical qubits and each stabilizer has support on an even
number of vertices. The T gate

T =
(

1 0
0 ei π4

)
. (6)

can be implemented transversally on specific tetrahedral
codes if the following two conditions are fulfilled. Let M
be subset of the set of all physical qubits Q. Then let T
gates be applied to the subset M and T† gates applied to
the subset M C = Q \ M . Then for the support of the X sta-
bilizer G, the transversal T gate can be implemented in this
manner if [43,60,61]

(1) |M ∩ G| − |M C ∩ G| = 0 mod 8.
In words, an equal number of T and T† gates has to
be applied in each cell (mod8).

(2) |M | − |M C| = 1 mod 8.
In words, T has to be applied to one more qubit than
T† in total (mod8).

It has been shown that the tetrahedral [[15, 1, 3]] code is
the smallest distance-three QEC code with a transversal
non-Clifford gate [62].

A. The 15-qubit tetrahedral code [[15, 1, 3]]

The 15-qubit tetrahedral code [[15, 1, 3]], as illustrated
in Fig. 3(b), consists of 15 physical qubits, one encoded
logical qubit and can correct for one arbitrary error [43].
Four X -type stabilizers BX

c are defined on the cells

c ∈ {R, B, G, Y} (7)

of the code, as depicted in Fig. 3(b). Six independent Z-
type stabilizers BZ

f are defined on the faces within the
tetrahedron f ∈ {RB, RG, RY, BG, BY, GY}, and four on the
boundary of the tetrahedron f ∈ {R, B, G, Y}. Any choice

020345-5

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

FIG. 4. Bipartition for the implementation of a transversal
T gate on the tetrahedral [[15, 1, 3]] code. The vertices in the
[[15, 1, 3]] code can be partitioned into two sets, so that vertices
connected by an edge belong to different sets [60]. Given this
kind of bipartition, a T gate can be implemented transversally by
applying single T gates to the qubits on the pink positions and T†

to qubits on the brown positions.

of the three faces on the boundary of each cell generates the
same stabilizer group. The logical operators are defined as

X = X ⊗15 and Z = Z⊗15. (8)

These are stabilizer equivalent to logical X operators with
minimum weight 7 and logical Z operators with minimum
weight 3. Accordingly, the tetrahedral [[15, 1, 3]] code has
distance dx = 7 for X errors and distance dz = 3 for Z
errors, so it is possible to correct X errors of weight less or
equal to 3 and any single Z error, as well as error config-
urations that are stabilizer equivalent to these. The CNOT
gate can be realized in a transversal manner by coupling
two code blocks pairwise with physical CNOT gates. The
H gate cannot be implemented transversally (note that the
stabilizer group is in particular not preserved under the
operation H⊗n). In Fig. 4, we show a bipartition that imple-
ments a transversal T gate according to the above stated
conditions.

IV. CODE SWITCHING

Encoded information can be transferred between spe-
cific stabilizer codes, if they correspond to two variants
of the same subsystem code (subsystem codes also known
as gauge codes). A subsystem code is defined by its gauge
group G, describing a general subgroup of the n-qubit Pauli
group on a set of physical qubits [63,64]. The stabilizer
group S ⊆ G is the center of G, which is generated by
those Pauli operators in G that commute with all elements
in G. A stabilizer code can be viewed as a special case of a
subsystem code where S = G. The subspace of codestates
can be split into a tensor product of the logical qubits and

so-called gauge qubits [43]

|ψ〉 = |ψ〉 ⊗ |g〉G . (9)

Here, |ψ〉 represents the logical state and |g〉G represents
the gauge state. The gauge state corresponds to extra
degrees of freedom, which are not uniquely fixed by the
stabilizers. An element U of G \ S has the effect on this
state |ψ〉

U |ψ〉 = |ψ〉 ⊗ UG |g〉G , (10)

leaving the logical state |ψ〉 unchanged and affecting only
the gauge state |g〉G. Thereby, equivalent codestates can be
generated by applying elements of G \ S without changing
the encoded information. A logical gate L can affect both
the logical state and the gauge state, while preserving the
codespace [43]

L |ψ〉 = (
L′ |ψ〉) ⊗ |g′〉G . (11)

Given the stabilizer group SA of code A, for which S ⊂ SA,
any +1 eigenstate of SA is consequentially also a codestate
in the subsystem. Therefore, any codestate |ψ〉A ∈ SA is
also a subsystem codestate, i.e., it can be written as a tensor
product of a logical state and a gauge state as in Eq. (9)

|ψ〉A = |ψ〉 ⊗ |gA〉G . (12)

Analogously, a second code B defined by stabilizer group
SB can be defined, for which S ⊂ SB, so we can write

|ψ〉B = |ψ ′ 〉 ⊗ |gB〉G . (13)

The stabilizer groups of the three codes considered are
illustrated in Fig. 5. If the logical operators L, LA, and LB
of the three codes can be represented in the same way, and
|ψ〉A and |ψ〉B correspond to the same logical state in their
stabilizer code, they must be logically equivalent in the

FIG. 5. Illustration of the stabilizer groups of two stabilizer
codes A and B within the same subsystem code. The stabilizer
groups of a stabilizer code SA and SB are part of the gauge
group of the corresponding subsystem code G with its center
S . Both codes SA and SB contain S . Therefore, codestates in
A and B can be written as tensor products in the subsystem
|ψ〉A = |ψ〉 ⊗ |gA〉G and |ψ〉B = |ψ ′ 〉 ⊗ |gB〉G.

020345-6

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

subsystem code. Mathematically, this means that |ψ〉 and
|ψ ′〉 are the same logical state for both

|ψ〉A = |ψ〉 ⊗ |gA〉G and |ψ〉B = |ψ ′〉 ⊗ |gB〉G .
(14)

So, in the subsystem code, |ψ〉A and |ψ〉B differ only in
their gauge state |gA〉, |gB〉. Elements of G \ S affect only
the gauge state and leave the logical state unchanged.
These elements can be used to fix the gauge state from
|gA〉 to |gB〉 or vice versa, while leaving the logical state
unchanged.

Now, let us consider switching from code A to code B.
First, those stabilizers of the target code B, which are not
fulfilled initially, have to be measured. This measurement
projects the state randomly into a ±1 eigenstate of the mea-
sured stabilizer. Secondly, elements of G \ S are applied,
which only affect the gauge state, to force the gauge state
into the corresponding state |ψ〉B = |ψ〉 ⊗ |gB〉G.

A. Code switching between the [[7, 1, 3]] and [[15, 1, 3]]

Switching between the Steane code and the 15-qubit
tetrahedral code has been discussed and analyzed in
Refs. [44,61,65], among others. In the following, we
briefly review non-FT switching between these codes
before presenting a FT scheme in Sec. V.

One can define a subsystem code whose gauge group G
is generated by all independent X and Z faces that can be
defined on the tetrahedral structure. The stabilizer group
of this subsystem code Ssubsystem is generated by those ele-
ments that commute with all other elements of G and is
therefore generated by the X and Z cells of the tetrahe-
dron. In contrast to the stabilizers of the stabilizer code
[[15, 1, 3]], the Z stabilizers of the subsystem code are not
defined on the ten independent faces of the code, but only
on the four weight-8 cells. The stabilizer group of the sub-
system is part of both the stabilizer group of the Steane
code, together with the bulk, and of the stabilizer group of
the [[15, 1, 3]] tetrahedral code, meaning

Ssubsystem ⊂ (SSteane +bulk),

Ssubsystem ⊂ Stetrahedron.
(15)

Here, the bulk is formed by those data qubits of the tetra-
hedron that are not part of the Steane code (yellow cell).
Note that, if the state fulfills two opposing faces indi-
vidually, then it is also a +1 eigenstate of its products,
which corresponds to the composed cell. Consequentially,
every codestate of the tetrahedral stabilizer code, which is
a +1 eigenstate of all elements of Stetra, is always also
a codestate of the subsystem code. Analogously, every
codestate of the Steane code together with the bulk is also
always a codestate of the subsystem. So, one can write
codestates of the [[15, 1, 3]] code and the [[7, 1, 3]] Steane

code in the subsystem as a tensor product of the corre-
sponding logical state and a specific gauge state, as given
in Eq. (14).

If the logical operators of the three codes have a com-
mon representation, so that |ψ〉 is the same logical state for
both codes, they must be logically equivalent in the sub-
system code. One common representation for the logical
operators of the Steane code and the [[15, 1, 3]] tetrahedral
code corresponds to one side of the tetrahedron, such as

X = X0X1X2X3X4X5X6 and Z = Z0Z1Z2Z3Z4Z5Z6
(16)

for the indexing given in Fig. 3(b). To switch between the
two codes [[7, 1, 3]] and [[15, 1, 3]], first, stabilizers of the
target code have to be measured. This projects the encoded
state into a +1 or −1 eigenstate of the measured stabiliz-
ers. For a negative measurement outcome, a combination
of gauge operators has to be applied that forces the state
into a +1 eigenstate of all stabilizers of the target code.

Concretely, to switch from the [[15, 1, 3]] code to the
Steane code, first, one has to measure the three X faces
of the Steane code, which are SX

R = X0X1X2X3, SX
B =

X2X3X5X6 and SX
G = X1X2X4X5 for the indexing given in

Fig. 3(b). Based on these measurement outcomes, a com-
bination of Z faces connecting the Steane code with the
bulk is applied in order to force the state into the codespace
of the Steane code. For example, let us consider the case
where the measurement outcome of the X faces of the
Steane code is (SX

R , SX
B , SX

G) = (1, 0, 0). This means that
the measurement projected the state onto a +1 eigenstate
of the blue and green faces and a −1 eigenstate of the red
face. In order to force the state into the desired codespace,
we apply the gauge operator BZ

BG = Z2Z5Z11Z13, as illus-
trated in Fig. 7(a). This operator overlaps at an even
number of vertices with the blue and green face, so the
state stays a +1 eigenstate of these stabilizers. It overlaps
at a single vertex with the red face and, therefore, forces the
state into a +1 eigenstate of this stabilizer. Note that this
is in contrast to using single Pauli operations as one would
do for correcting errors on a set of qubits. This would affect
both the gauge state |g〉G and the logical state |ψ〉, as given
in Eq. (9) and, therefore, change the encoded information.

This protocol is inverted for the other direction. To
switch from the Steane code to the [[15, 1, 3]] code, first,
one has to measure the three Z faces that connect the
Steane code and the bulk, which are BZ

RB = Z2Z3Z12Z13,
BZ

RG = Z1Z2Z13Z14, and BZ
BG = Z2Z5Z11Z13. Based on these

measurement outcomes, a combination of the Steane X
faces is applied in order to change the state into the
codespace of the [[15, 1, 3]] code.

V. DETERMINISTIC FT CODE SWITCHING

For the physical implementation of code-switching pro-
tocols on quantum processors, the underlying operations

020345-7

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

have to be constructed in a way that is resilient against
noise. In this section, we aim at finding schemes that tol-
erate any single error on an arbitrary component of the
circuit. Then, the probability that two components of the
circuit fail at the same time and thus cause a logical failure
is order p2, where p is the failure probability for a sin-
gle component [5]. For deterministic schemes, we should
be able to correct any error arising from a single faulty
component in the circuit, which includes faulty measure-
ments, initializations, single- and two-qubit operations. In
order to construct these FT code-switching protocols, a set
of criteria has to be fulfilled.

The first criterion is that the error configuration on
the initial code also has to be correctable on the target
code. For the color codes considered, it is possible to
correct weight-3 X errors on the three-dimensional code,
while it is only possible to correct a single X error on
the two-dimensional code. Starting in a codestate of the
three-dimensional code that contains a weight-3 error con-
figuration, this would initially be correctable. Assuming
perfect switching, which does not introduce any additional
errors, this error configuration would be transferred onto
the two-dimensional code, where a weight-3 error con-
figuration can directly correspond to a logical operator.
Therefore, we perform one round of X -error correction
with flag qubits before switching to the two-dimensional
code. This corrects any previously present configuration
with up to three X errors and corrects for any single error
that occurs during the EC procedure.

The second condition is that we have to be able to
identify errors on data qubits. Specific errors on data
qubits invert the outcome of the stabilizer measurements. If
we cannot distinguish this inverted measurement outcome
from the original information, we do not notice that an

error has occurred and a logical error can be introduced,
as illustrated in Fig. 7. Therefore, one does not directly
achieve fault tolerance for code switching by simply using
the concept of FT stabilizer measurements with flag qubits.
Considering realistic circuitry with noisy components, it is
necessary to consider these errors on data qubits as well.

In general, we can obtain the expectation value of an
operator O, that has a transversal implementation on a
given code, by coupling an auxiliary qubit to the data
qubits that participate in the measurement [66]. Using this
kind of circuit to extract the syndrome is, however, not FT
because single faults can directly cause a logical failure. A
single fault on

(A) auxiliary qubits during a stabilizer measurement,
(B) data qubits before or during a stabilizer measure-

ment,
(C) a measurement of an auxiliary qubit at the end of a

stabilizer readout

can induce a logical error, which we discuss in detail in the
remainder of this section.

A. Errors on auxiliary qubits

Single errors on the auxiliary qubit can propagate onto
data qubits. An X error after the second CNOT gate in the
circuit shown in Fig. 6(a) propagates onto two data qubits.
On the target Steane code, this results in a logical failure,
since in the Steane code, only a single X error is cor-
rectable. Analogously, Z errors on the auxiliary qubit dur-
ing the measurement of a Z stabilizer can lead to a logical
error Z on the target code, since only a single Z error is
correctable in the [[15, 1, 3]] tetrahedral stabilizer code. We
can implement stabilizer measurements, which are FT with

(a) (b)

FIG. 6. Circuits for stabilizer measurements using flag qubits [51]. (a) Circuit for measuring a weight-4 Pauli-X operator containing
an auxiliary qubit, which is coupled to the data qubits. An additional flag qubit is coupled with CNOT gates to the first auxiliary qubit.
An X error in the middle of the circuit, as depicted in red, propagates onto two data qubits and the flag qubit. Measuring the flag
qubit in the end indicates that a potentially dangerous error has occurred. By performing an additional Z-face stabilizer measurement
without flags afterwards, one can detect these errors and correct for them. Since an error before the second or after the next to last
CNOT gate results only in an error, which is equivalent to a weight-1 error on the data qubits, this scheme is FT with respect to errors on
the auxiliary qubits. A Z error during this X -stabilizer measurement, as depicted in green, propagates onto the auxiliary qubit, which
changes the measured syndrome as illustrated in Fig. 7. In order to avoid applying a logical error, these errors on the data qubits have to
be detected and corrected. (b) Circuit for measuring a weight-4 Pauli-Z operator using an additional flag qubit. Analogously, Z errors
on the auxiliary qubits are detected by the flag qubit and can be corrected by performing an additional stabilizer measurement. X errors
on the data qubits during the Z-face measurement can propagate and cause a logical failure.

020345-8

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

respect to these errors on auxiliary qubits, using a flag-
based measurement scheme, as depicted in Fig. 6. The
concept of flag qubits was introduced in Ref. [51] and
has, for example, been used for FT error correction in
color codes in two and three dimensions [47,52,53] and
the initialization of logical qubits [39–41]. Again, an aux-
iliary qubit is coupled to the data qubits via CNOT gates
and a flag qubit is coupled to the auxiliary qubit. If a
dangerous fault occurs on the auxiliary qubit during this
measurement, it still propagates onto one or more of the
data qubits, but it also propagates onto the flag qubit. In
that case, the flag qubit will be measured in the −1 state in
the end and indicates that a potentially dangerous error has
occurred.

If a circuit flags, meaning that a flag qubit was mea-
sured in the corresponding −1 eigenstate, we still have to
identify which error has occurred. The circuit could have
flagged owing to a measurement error in the end, or to an
error before the second to last CNOT gate. Specifically, we
have to check if the flag error leads to a logical failure.
Here, these dangerous flag errors correspond to propagated
weight-2 errors on the data qubits resulting from a sin-
gle error on the auxiliary qubit. In order to localize these
errors, one additional Z (X) stabilizer has to be measured.
After this additional measurement of a single stabilizer, the
complete syndrome is measured again without flag qubits.
Together with the information of which circuit flagged
before, the dangerous weight-2 errors can be identified and
corrected.

B. Errors on data qubits

Errors on the data qubits can propagate onto the aux-
iliary qubit and invert the measurement outcome, as illus-
trated in Fig. 6. Taking this inverted measurement outcome

would cause us to apply the incorrect switching operation
and can lead to a logical failure on the target code.

For example, a single Z error on the top qubit 0 would
invert the measurement outcome of the red face, when
switching from the tetrahedral code to the Steane code.
We would then apply the according switching operation,
as illustrated in Fig. 7(a). But owing to the inverted mea-
surement outcome, we now introduce additional errors on
the data qubits of the Steane code that overlap with the
applied gauge operator. Together with the initial error, this
can directly correspond to a logical operator on the Steane
code. For FT code switching, these errors on data qubits
have to be corrected.

To identify and correct for these errors on data qubits,
one can exploit that the state should always be a +1 eigen-
state of the complete cells. This means that, for switching
from the [[15, 1, 3]] code to the [[7, 1, 3]] Steane code, the
X faces opposite of the measured Steane faces have to
agree with the measured Steane X face to also fulfill the
cells. For example, considering the red cell, as illustrated
in Fig. 3, the state is either in a +1 eigenstate of both
SX

R = X0X1X2X3 and BX
RY = X7X12X13X14 or in a −1 eigen-

state of both these operators so that the state is a +1
eigenstate of the corresponding cell, which is formed by
these two opposing faces [61]. If all three pairs of oppos-
ing faces agree, we know that either no data error or an
error on the corner qubit of the yellow cell (qubit 10) has
occurred and we can proceed. If we find some disagree-
ment, we know that an error has happened on a specific
pair of qubits. To localize the error, we measure the yellow
X cell. If we measure −1, we know that an the error has
occurred on the corresponding qubit of the yellow cell and
can correct for it and continue. If we find +1, we know
that the error has occurred on the Steane code and update
the syndrome accordingly. In practice, the bulk, which is

(a) (b)

FIG. 7. Error configurations on data qubits that can lead to a logical failure. (a) Consider switching from the 15-qubit tetrahedral
code to the target Steane code, which lives on the seven qubits forming the right three-face triangle of the tetrahedron. To transfer the
encoded information to the Steane code, we measure the three X faces of the Steane code. If, for example, a Z error has occurred on
the top qubit of the red cell (large green position on the left) before the measurement, this inverts the measurement outcome of the
corresponding face. If we originally had measured the syndrome (SX

R , SX
B , SX

G) = (0, 0, 0), we would now find (SX
R , SX

B , SX
G) = (1, 0, 0).

Based on this measurement outcome, we would apply BZ
BG to switch to the Steane code (center). If we then consider the Steane code

(right), we effectively applied Pauli-Z operations to the three qubits on the large green positions. This directly corresponds to a logical
Z on the Steane code and results in a logical failure. (b) The three positions where a single X error leads to a logical failure when
switching from the Steane code to the tetrahedral code are depicted in red.

020345-9

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

formed by those data qubits of the tetrahedron that are
not part of the Steane code (yellow cell), can be measured
destructively to localize all potentially dangerous errors on
the data qubits.

For switching back to the tetrahedral code afterwards,
the bulk has to be in a specific state that corresponds to the
+1 eigenstate of its cells and faces. To this end, the bulk
has to be reinitialized into the correct state using the cir-
cuit given in Fig. 22. For switching from the Steane code
to the [[15, 1, 3]] code, we identify only three qubit posi-
tions on which a single X error can lead to a logical failure
indicated in Fig. 7(b), by numerically checking all pos-
sible error positions. We can distinguish these X errors
by measuring the complete Z syndrome of the Steane
code. To avoid further error propagation, we use the flag
qubit scheme for this syndrome measurement. If a cir-
cuit flags, we measure one of the weight-8 X cells using
a single auxiliary qubit to localize dangerous flag errors.
After identifying the dangerous flag error, we remeasure
the syndrome once without flags, to ensure that the syn-
drome contains the detected error. We can then update
the syndrome according to the detected error correctly and
continue.

C. Measurement errors

A single error on the measurement of the first auxiliary
qubit in the circuits in Fig. 6 would invert the measurement
outcome and can lead to a logical failure after applying the
corresponding switching operation. To achieve fault tol-
erance, we repeat the syndrome measurement and take a
majority vote. If we obtain the same syndrome twice, we
assume that no single measurement error has occurred and
continue. If the syndromes are different, we repeat the syn-
drome measurement a third time, without a flag qubit, and
proceed with the result of this last measurement. The prob-
ability that the measurement is incorrect 2 times is order
p2, where p is the failure probability for a single mea-
surement [5]. Note that for switching from [[15, 1, 3]] to
[[7, 1, 3]] it is sufficient to measure only the target stabi-
lizers once, because any measurement error is identified
by checking the agreement of opposing faces as explained
in the previous subsection. The complete FT protocols are
summarized in Appendix A.

VI. NONDETERMINISTIC FT CODE SWITCHING

The above deterministic schemes for code switching
require a large number of gates, as summarized in Table I,
and a large circuit depth due the additional checks that have
to be performed. We propose nondeterministic schemes
as more feasible alternatives on near-term devices. These
schemes achieve lower failure rates than the determinis-
tic protocols, due to effectively postselecting for errors and
reducing the required number of CNOT gates and, therefore,
the circuit depth. However, postselecting results in a finite

success rate, since a fraction of runs is discarded. These
nondeterministic schemes allow, for example, the prepa-
ration of a magic state on a two-dimensional color code
with fewer resources than for the deterministic scheme
while achieving lower logical failure rates. The methods
we describe in the following are postselection and code
morphing to an effective error-detecting code.

A. Code switching with postselection

For FT switching between the Steane and the [[15, 1, 3]]
code, we check for potentially dangerous errors on data
and auxiliary qubits. As discussed in Sec. V, this is done by
measuring extra stabilizers in addition to the gauge oper-
ators and using flag qubits. We now adjust the scheme
to postselect for any detected error: whenever an error is
detected, we now stop the protocol and discard the results.
This includes flag qubits measured in the |1〉 or |−〉 state
and any disagreement in opposing faces for the data error
check. By postselecting [67,68] for any detected error, a
fraction of weight-2 or higher weight errors is sorted out,
resulting in lower logical failure rates. The number of
required qubits and two-qubit gates remains the same as
for the fault-free deterministic protocols, since the exact
same circuits are executed.

B. Code switching with morphed codes

Code morphing was introduced in Ref. [55] and is a
method for generating new codes from existing ones by
effectively turning the logical qubits of a subcode, called
the child code, into bare physical qubits. This new code
inherits the logical gates of the parent code. By morph-
ing a suitable code, it is possible to find a code that still
has a fault-tolerant T gate, but requires fewer qubits and
has lower stabilizer weights, while the code distance is
reduced. Therefore, the number of required CNOT gates for
the additional stabilizer measurements for error checks can
be reduced. This offers a more feasible alternative for code
switching on current experimental setups.

C. Morphing the tetrahedral code [[15, 1, 3]]

The [[15, 1, 3]] code contains a smaller stabilizer code on,
for example, the yellow cell of the code. This smaller sub-
code corresponds to a [[8, 3, 2]] code and is called the child
code. This [[8, 3, 2]] code has a transversal implementation
of the CCZ gate [69].

One can invert the encoding circuit of the [[8, 3, 2]] code,
by reverting the order of gates and the direction of all CNOT
gates, and apply it to the tetrahedral code. Thereby, the
three encoded qubits of the [[8, 3, 2]] are replaced by bare,
physical qubits, leaving the new morphed [[10, 1, 2]] code,
as illustrated in Fig. 8 and discussed in Appendix B. The
new stabilizers of the morphed code can be derived by
replacing the logical operators of the child code with the
corresponding operators acting on the bare physical qubit.

020345-10

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

FIG. 8. Morphing the tetrahedral [[15, 1, 3]] into the [[10, 1, 2]]
error-detecting code. One can morph the tetrahedral [[15, 1, 3]]
code with the yellow cell [[8, 3, 2]], contained in the initial parent
code. By taking the encoding circuit of the [[8, 3, 2]] child code
and applying its inverse to a codestate of the [[15, 1, 3]] parent
code, five qubits are decoupled while keeping the encoded infor-
mation in the remaining qubits. Morphing effectively reduces the
number of qubits and the stabilizer weights while reducing the
distance. Three physical qubits of the yellow cell remain in the
final morphed code, which are depicted in the center of the faces
as qubits 7, 8, and 9. We obtain the [[10, 1, 2]] code, which has
new stabilizers of lower weight than the tetrahedral parent code.

The previous weight-8 X stabilizers of the parent code
are turned into weight-5 cells on the morphed [[10, 1, 2]]
code. We illustrate the weight-5 operators by placing one
extra qubit in the center of the faces of the Steane code, as
depicted in Fig. 8 on the right. These are

B′X
R = X0X1X2X3X7

B′X
B = X2X3X5X6X9

B′X
G = X1X2X4X5X8.

(17)

Three Z stabilizers are defined on the faces of the code,
and three Z stabilizers are defined on the extended face
intersections as

B′Z
R = Z0Z1Z2Z3, B′Z

GB = Z2Z5Z7

B′Z
B = Z2Z3Z5Z6, B′Z

RG = Z1Z2Z9

B′Z
G = Z1Z2Z4Z5, B′Z

RB = Z2Z3Z8.

(18)

The lookup table for the morphed [[10, 1, 2]] code is given
in the Appendix. By morphing a code, we can effectively
trade-off different code properties. In this case, we traded-
off the reduced stabilizer weights against code distance,
since the morphed code is only an error-detecting code
with distance d′ = 2. Note that code morphing is not phys-
ically executed but is a strategy to generate a new code that
can be then used for code-switching protocols.

The logical T gate can be implemented on the [[10, 1, 2]]
code using the circuit shown in Fig. 9(a). This implemen-
tation is not transversal anymore but fault tolerant in the

FIG. 9. Implementation of the FT logical T gate for the
[[10, 1, 2]] code [55]. Single T and T† gates are applied to qubits
0–6 and a CCZ operation is applied to the three qubits in the
center of the faces. The CCZ gate on qubits 7, 8, and 9 can
be decomposed into single-qubit and CNOT gates [70] using the
implementation given on the right. This implementation of T with
a three-qubit gate is still fault tolerant even though errors on
qubits 7, 8, or 9 can propagate onto other data qubits. Any Z
error on these qubits is detectable and all possible X errors on
these qubits are correctable.

sense that all possible errors resulting from a single Z
error can be detected. All possible X errors on qubits 7,
8, and 9, as, for example, X7X8X9, are correctable because
the corresponding Z syndromes do not coincide with any
single-error configuration. Therefore, we can assign the
syndromes to these higher weight X errors and correct
for them. This implementation of T can be understood by
interpreting code morphing as a replacement of the logical
qubits, encoded in the yellow cell, by three bare phys-
ical qubits. The action of the T and T† gates in the FT
implementation of the logical T gate on the yellow cell cor-
responds to a logical CCZ on the three logical qubits of
the child code [[8, 3, 2]] [69]. By morphing the tetrahedral
code, this logical operation CCZ is replaced by the corre-
sponding action on the three bare physical qubits, which
is the CCZ gate on 7, 8, and 9. The CCZ gate itself can
be implemented using only single T, T†, and CNOT gates
as shown in Fig. 9(b). The morphed [[10, 1, 2]] code is the
smallest known stabilizer code that has a FT T gate.

D. FT code switching between [[10, 1, 2]] and [[7, 1, 3]]

In order to switch between the two stabilizer codes,
first, the two codes must have a common representation
of the logical operators and, secondly, a subsystem code
with stabilizer group S has to be defined that suffices S ⊂
S[[∞′,∞,∈]] and S ⊂ (SSteane,Sbulk). The [[10, 1, 2]] code
inherits the logical operators from its parent code, the 15-
qubit tetrahedral code. Since the 15-qubit tetrahedral code
and the Steane code have a common representation of
their logical operators, this condition is consequentially
also fulfilled for the [[10, 1, 2]] code. Furthermore, a suit-
able subsystem can be defined whose gauge group G is
generated by the stabilizers of the [[10, 1, 2]] code, which

020345-11

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

includes the Z faces of the Steane code, and the single-
qubit Pauli operators X7, X8, and X9 for the indexing given
in Fig. 8. The stabilizer group S of the subsystem is then
generated by the weight-5 X -and weight-4 Z faces of the
[[10, 1, 2]] code structure.

We can switch from the [[10, 1, 2]] code to the Steane
code by measuring the stabilizers of the Steane code,
which are not fulfilled by the initial codestate in the
[[10, 1, 2]] code. These stabilizers are the X faces of the
Steane code, since the [[10, 1, 2]] code only fulfills the
weight-5 X cells and not the weight-4 X faces. After
measuring the stabilizers of the target code, we apply com-
binations of the gauge operators B′Z

BG = Z2Z5Z7, B′Z
RG =

Z1Z2Z9, and B′Z
RB = Z2Z3Z8, in order to fix the gauge state

accordingly.
The FT-switching scheme from the 15-qubit tetrahe-

dral code to the Steane code, discussed in the previous
section, can directly be adapted for the morphed code. The
X faces of the Steane code are measured using flag qubits
and errors on data qubits can, again, be detected by mea-
suring opposing pairs of stabilizers in the subsystem. We
need only to replace the bulk measurement with single-
qubit measurements of qubits 7, 8, and 9 in the X basis.
If some disagreement between opposing pairs of stabiliz-
ers, as, for example, between X7 and B′X

R = X0X1X2X3, is
found, we have to discard the corresponding run because
Z errors on the data qubits cannot be uniquely identified in
the subsystem, which makes the protocol nondeterministic.

For switching from the Steane code to the [[10, 1, 2]]
code, we have to measure those stabilizers of the [[10, 1, 2]]
code, which are not fulfilled in the Steane code. These are
the weight-3 Z stabilizers on the extended intersections
of faces (B′Z

RB, B′Z
GB, B′Z

RG). Based on the measurement out-
come, we apply combinations of the Steane X faces. Since
the stabilizers are of weight 3, any error on the auxiliary
qubit during these measurements may indeed propagate
but is only equivalent to a single error on the data qubits.
So, for a FT measurement of the weight-3 stabilizers, we
do not need additional flag qubits. To check for errors on
the data qubits that can lead to a logical failure, we mea-
sure the green and blue Z faces. If some error is discovered
in this check, we discard this run. If no error is found, we
take the measured Z syndrome and continue. These mea-
surements can also be performed without additional flag
qubits, since every dangerous flag error is detectable on
the target code.

In the following section, we present simulation
results for code-switching protocols using the tetrahedral
[[15, 1, 3]] and the morphed [[10, 1, 2]] code.

VII. ERROR MODEL AND SIMULATION
METHODS

In the following simulations, we investigate the logi-
cal failure rates pL for different protocols by performing

Monte Carlo (MC) simulations. We consider circuit-level
noise with a single-error parameter p , which describes the
error rates on each component. This includes single- and
two-qubit gates, as well as measurements and initializa-
tions of physical qubits. Each circuit element is modeled
as an ideal operation Uideal followed by an error E with the
given probability

Ufaulty = E × Uideal. (19)

Furthermore, faulty operators for measurements are placed
before the ideal measurement location. We consider depo-
larizing noise channels on all single- and two-qubit gates,
which are described by the noise operators [39,71,72]

E1 ∈ {σk, ∀k ∈ {1, 2, 3}} (20)

E2 ∈ {σk ⊗ σl, ∀k, l ∈ {0, 1, 2, 3}}\{I ⊗ I} (21)

with the Pauli matrices σk = {I , X , Y, Z} with k =
0, 1, 2, 3. The depolarizing channels are then determined by

ε1(ρ) = (1 − p)ρ + p
3

3∑
i=1

Ei
1ρEi

1 (22)

ε2(ρ) = (1 − p)ρ + p
15

15∑
i=1

Ei
2ρEi

2. (23)

This means that, one of the 3(15) possible combinations
of single(two)-qubit Pauli errors is applied with a given
probability p/3 (p/15). Qubits are prepared in |0〉 and
measured in the Z basis. We model faults on these state
preparations and measurements by applying X errors after
state preparations and before measurements each with a
probability p .

The logical failure rate is determined as follows. At the
end of each MC shot, we perform one round of ideal QEC
on the noisy output states, which maps the state back into
the codespace. Finally, we extract the expectation value of
the corresponding logical operator 〈O〉 classically in soft-
ware, which indicates that a logical error has occurred if
we find an expectation value of −1. Given the expectation
value of the logical operator, we can calculate the logical
failure rate

pL = 1
2

(
1 − 〈O〉) . (24)

We realize nruns MC shots for each protocol and obtain the
logical failure rate pL by averaging over all shots.

The uncertainties on the logical failure rates are calcu-
lated by taking the uncertainty of the mean value for a

020345-12

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

binomial distribution

σpL =
√

pL(1 − pL)

nruns
, (25)

where nruns is the total number of simulation runs and pL
is the estimated logical failure probability. We repeat each
simulation 105 to 106 times, until the relative uncertainty
on a given data point is smaller than 5%. Up to 106 shots
are required for small physical error rates, where error
events are rare.

We use the package PECOS, which is a Python frame-
work for studying, developing, and evaluating quantum
error-correction protocols through numerically perform-
ing stabilizer or state-vector simulations of noisy quantum
circuits [73].

VIII. BUILDING BLOCKS USING FT CODE
SWITCHING

We determine the logical failure rates for each block
given in Fig. 2 by means of the above-described simula-
tion methods. This includes the initialization of the logical
states |0〉 and |+〉 on the tetrahedral [[15, 1, 3]] and the mor-
phed [[10, 1, 2]] code, FT switching in both directions to
and from the [[7, 1, 3]] Steane code, as well as the com-
posite protocols specified in Fig. 2(c). These protocols
implement the Hadamard gate on the tetrahedral code, the
T gate on the Steane code and the preparation of a magic
state on the Steane code via the morphed code.

For the initialization of logical states in the correspond-
ing codes, we construct the circuits shown in Figs. 20, 21,
and 23. The logical failure rates for these protocols are

shown in Fig. 10. In the regime of low physical error rates
p → 0, we identify a quadratic scaling in the logical fail-
ure rate pL ∼ p2 for the FT protocols and a linear scaling
pL ∼ p for the non-FT protocol. This indicates that for the
non-FT protocol, single errors result in a logical failure,
whereas for the FT protocols only weight-2 error config-
urations contribute to pL. Since the circuit depth and the
number of required gates for the [[10, 1, 2]] code is smaller,
as summarized in Table I, there are fewer weight-2 error
configurations that can contribute to the logical failure rate.
Thus, the logical failure rates for the initialization of the
morphed [[10, 1, 2]] code are lower than for the tetrahedral
code.

Figures 11(a) and 11(b) show the logical failure rates for
FT switching with the tetrahedral code. Furthermore, we
determine the logical failure rates for non-FT code switch-
ing, where the corresponding three stabilizers are measured
once without flags. A third simulation considers switch-
ing with the tetrahedral code while postselecting for any
detected error. Whenever a flag is triggered, or an error on
a data qubit is detected, the corresponding run is discarded
and the protocol is restarted as discussed in Sec. VI A.
For the morphed code, we determine the logical failure
rates for FT switching, as well as for the non-FT switch-
ing scheme. These protocols are nondeterministic, since
the [[10, 1, 2]] code is an error-detecting code. For non-FT
switching, the stabilizers are measured once without flags.

The logical failure rates for FT switching from the tetra-
hedral [[15, 1, 3]] code to the [[7, 1, 3]] Steane code inter-
sects with the logical failure rate for non-FT switching.
This crossing point is higher for the inverse direction. The
X -error correction block for switching to the Steane code,
which is necessary to achieve fault tolerance, requires

(a) (b)

FIG. 10. Logical failure rates for the initialization of logical states illustrated in Fig. 2(b). The logical failure rates are shown for
the initialization of (a) |0〉 and (b) |+〉 on the tetrahedral code [[15, 1, 3]] using a FT scheme that includes a verification step (green)
and a non-FT (NFT) scheme without this verification (blue), as well as on the morphed [[10, 1, 2]] code (dark red). The logical failure
rates for the non-FT protocol scale linearly in the error parameter p , since single physical errors can result in a logical failure. For the
FT initializations, we can identify a quadratic scaling in p , verifying that only two physical failures introduce a logical error. For the
[[10, 1, 2]] code, lower failure rates are reached than for the initialization of the same state on the tetrahedral code.

020345-13

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

(a) (b)

(c) (d)

FIG. 11. Logical failure rates and acceptance rates R for building blocks introduced in Fig. 2(b). (a) Logical failure rates for switching
to the Steane code from the tetrahedral code using a fault-tolerant (FT, green) scheme, a non-FT (NFT, blue) scheme and postselection
(PS, purple), as well as for switching to the Steane code from the morphed code using a FT (dark red) and NFT (orange) scheme. The
FT nondeterministic protocols achieve lower logical failure rates than the deterministic ones, while the FT scheme with the [[10, 1, 2]]
code performs best. (b) Logical failure rates for switching from the Steane code to the tetrahedral code using a FT (green) scheme, a
non-FT (blue) scheme and postselection (purple), as well as for switching from the Steane code to the morphed code using a FT (dark
red) and non-FT (orange) scheme. (c) Acceptance rates R for switching from the [[15, 1, 3]] code and the [[10, 1, 2]] code to the Steane
code using nondeterministic protocols. The acceptance rates for the [[10, 1, 2]] code are slightly smaller than for the [[15, 1, 3]] code in
the considered range of the physical error rate p . (d) Acceptance rates R for the inverse switching direction. The acceptance rates for
the [[10, 1, 2]] code are higher than for the [[15, 1, 3]] code in the considered range of the physical error rate p and do not approach 0 for
p → 1.

many CNOT gates, as summarized in Table I. This increases
the number of possible error configurations and, therefore,
leads to an asymmetry between the two switching direc-
tions. Considering switching with the tetrahedral [[15, 1, 3]]
code, we observe that the non-FT schemes achieve simi-
lar values for pL for both switching directions, while for
the FT protocols, these rates differ. The non-FT protocol
is symmetric in the switching directions. In both cases, the
three weight-4 stabilizers have to be measured and each
Pauli error is equally likely in this error model. For the
FT-switching protocols, the directions are not symmetric.
Similarly, non-FT switching from the [[10, 1, 2]] code to
the Steane code achieves higher logical failure rates than
the inverse direction, since the stabilizer weights for the
two directions differ: for switching to the Steane code, the

weight-4 faces are measured, where, for example, a single
error on an auxiliary qubit can cause a logical failure. For
switching from the Steane code to the [[10, 1, 2]] code, only
the weight-3 stabilizers have to be measured.

Figures 11(c) and 11(d) show the acceptance rates for
the nondeterministic protocols, which include switching
with the tetrahedral code with postselection and FT switch-
ing with the morphed code. The acceptance rate

R = nruns,accepted

nruns,total
(26)

indicates the number of runs that are not discarded due
to an error-detection event divided by the total number
of runs. For switching from the [[7, 1, 3]] Steane code to

020345-14

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

the morphed [[10, 1, 2]] code, a larger fraction of runs is
accepted than for the corresponding protocol with the tetra-
hedral [[15, 1, 3]] code. This is inverted for the reverse
direction, while the relative difference between the accep-
tance rates decreases. Furthermore, the acceptance rates do
not go to 0 as p → 1. One reason for this is that any error
configuration that directly corresponds to a logical opera-
tor, is not detected and, therefore, there is always a certain
fraction of runs that is not discarded and causes a logical
failure. The finite acceptance rate for p → 1 considering
FT switching from [[7, 1, 3]] to [[10, 1, 2]] can be traced back
to the partial error detection that is happening on the tar-
get [[10, 1, 2]] code: some Z errors are only detectable and
we have to discard the corresponding run if the respec-
tive syndrome is measured, while other Z errors are still

correctable. If we postselect for any detected Z error on the
[[10, 1, 2]] in the end, we find that the acceptance rate con-
verges to similar values as for the tetrahedral code, which
is discussed in more detail in Appendix B. Accordingly,
note that for lower p values, this also leads to lower log-
ical failure rates pL, at the expense of a further reduced
acceptance rate.

Figures 12(a) and 12(b) show the logical failure and
acceptance rates for the gates that cannot be realized
transversally in the corresponding codes but are neces-
sary in order to complete the universal gate set. For the
Hadamard gate on the tetrahedral [[15, 1, 3]] code, first,
switching to the [[7, 1, 3]] Steane code is applied, followed
by a transversal Hadamard operation on the Steane code
and switching back to the tetrahedral code. Analogously,

(a) (c)

(b) (d)

FIG. 12. Logical failure rates for logical operations illustrated in Fig. 2(c). The logical failure rates are averaged over different initial
states for the non-FT (blue), FT (green), and postselected (PS, purple) implementation of (a) the Hadamard gate on the tetrahedral
[[15, 1, 3]] code and (b) the T gate on the Steane code. The non-FT implementations of both gates achieve similar logical failure rates,
while the FT versions perform worse for the T gate than for the Hadamard gate. Note that for a specific input state, these failure rates
may look different. Different states are sensitive to different kinds of errors and the amount of dangerous error positions throughout the
protocols varies for each type of error. (c) Logical failure rates for the preparation of the magic state T|+〉 on the [[7, 1, 3]] Steane code
using the morphed [[10, 1, 2]] code for the non-FT (orange) and FT (red) scheme. The gray line corresponds to the physical error rate
p . For p < 10−2, the FT scheme the logical failure rate is smaller than p . (d) Acceptance rates R for magic state preparation with the
morphed [[10, 1, 2]] code. For p < 10−2, more than half of the runs is accepted.

020345-15

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

the T gate on the Steane code is implemented by switch-
ing to the tetrahedral code, applying the transversal T gate
and switching back to the initial code. Again, we consider
FT protocols, as discussed in the previous sections, as well
as non-FT switching and a nondeterministic version of the
corresponding protocol, which includes postselection for
any detected error.

The FT protocols outperform only the non-FT schemes
for p ≤ 5 × 10−3, due to the large overhead that is required
to achieve fault tolerance. Again, we observe that the fail-
ure rates for the non-FT scheme on the tetrahedral code
are similar for both operations. In this case, the switching
cycles are symmetric, meaning that after the first switching
step in one protocol, the probability for a given number
of errors is the same as after the first switching step for
the other protocol. For the FT protocols, these may differ,
since the two switching directions include different oper-
ations and a different number of stabilizer measurements.
Non-FT switching from the Steane code to the morphed
[[10, 1, 2]] code achieves lower logical failure rates than for
the inverse direction. For switching from the Steane code,
we need only to measure the weight-3 Z stabilizers. Any
error on the auxiliary qubits may propagate but is always
equivalent to a weight-1 error. For switching in the inverse
direction, the weight-4 faces have to be measured requir-
ing more two-qubit gates and giving rise to logical failures
due to propagated errors on the auxiliary qubits.

Figures 12(c) and 12(d) show the logical failure rates
and acceptance rates for the preparation of a magic state
on the Steane code using the morphed [[10, 1, 2]] code. The
logical failure rates scale quadratically, indicating that no
single error results in a logical failure. The logical failure
rate of the FT scheme surpasses the corresponding physical
error rate at approximately p = 10−2, while keeping more
than 50% of the runs below this point.

To summarize, we observe the characteristic quadratic
scaling at low physical error rates for the constructed
FT code-switching protocols. In addition, we find that
the non-FT code-switching protocol for switching from
the [[7, 1, 3]] Steane code to the morphed [[10, 1, 2]] code
achieves lower physical error rates than FT switching with
the tetrahedral [[15, 1, 3]] code for p ≥ 10−3. Furthermore,
we estimate a breakeven point at a physical error rate of
approximately 1 × 10−2 with an acceptance rate of 50%
for the preparation of a magic state on the Steane code
using the morphed [[10, 1, 2]] code.

IX. PROJECTED PERFORMANCE FOR
TRAPPED-ION QUANTUM PROCESSORS

Noise on real devices cannot be described by a single-
parameter noise model. Error rates can vary for different
circuit components, for example, the two-qubit gate error
rates are typically higher than those of other error sources.

In order to estimate the projected performance on near-
term trapped-ion quantum processors, we consider a mul-
tiparameter noise model with different error rates for each
type of circuit component [25,39,74,75].

We simulate a Hadamard gate for the tetrahedral code, a
T gate for the Steane code and the preparation of a magic
state on the Steane code using a modified noise model.
We specify the depolarizing channel on single-qubit gates
with a parameter p1 and on two-qubit gates with p2. Faulty
measurements and initializations are modeled with faults
with a probability pm and pi, respectively, with which the
state of the qubit is inverted. In the following simulations,
we choose parameter values based on recent benchmarks
on ion-trap processors [19] as p1 = 1 × 10−4, p2 = 3 ×
10−3, pi = 1 × 10−3, and pm = 1 × 10−3. A detailed dis-
cussion on the modeling of noise in ion traps [19,71,72] is
beyond the scope of this work.

Figure 13(a) shows the averaged logical failure rates for
deterministic gates using code-switching protocols. Both
logical failure rates for the deterministic Hadamard gate
on the tetrahedral [[15, 1, 3]] code and the deterministic T
gate on the Steane code are much larger than the estimated
corresponding physical error rate, but are comparable to
recent benchmarks on trapped-ion setups [19,39,41].

Figure 13(b) shows the averaged logical failure rates for
magic state preparation on the Steane code for three differ-
ent protocols. The left bar corresponds to the initialization
of |+〉 on the [[15, 1, 3]] tetrahedral code, the application of
a T gate and, then, switching to the Steane code while post-
selecting for errors on data and auxiliary qubits. Using the
morphed [[10, 1, 2]] code for the same protocol yields a log-
ical failure rate, which is below the corresponding failure
probability of a single physical qubit. Using the morphed
[[10, 1, 2]] code for the preparation of a magic state reduces
pL by 2 orders of magnitude compared to the postselected
implementation for the tetrahedral [[15, 1, 3]] code.

In order to compare our results to existing methods, we
simulate the preparation of a magic state on the Steane
code using a state-of-the-art method [39–41]. Here, the
magic state is prepared non-fault-tolerantly on the Steane
code, followed by a measurement of a logical operator
and one round of error detection on the Steane code. We
observe that the logical failure rate for magic state prepa-
ration with the morphed [[10, 1, 2]] code is competitive
to state-of-the-art magic state preparation on the Steane
code [39,65] in terms of the achievable fidelity, while the
protocol starting with the morphed code requires fewer
two-qubit gates.

The logical failure rates shown in Fig. 13 are averaged
over different initial input states. However, the number of
Pauli-X - and Z-error configurations that cause a logical
failure may vary, depending on the direction of switching
and the given input state. Figure 14(a) shows the failure
rates for the deterministic Hadamard and T gate for ideal
logical input states |0〉 and |+〉. We observe that the failure

020345-16

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

(a) (b)

FIG. 13. Projected performance of logical operations on trapped-ion quantum processors. (a) The projected performance for deter-
ministic Hadamard (left) and T gate (right) is estimated for current ion-trap setups [25]. These protocols correspond to the two left
composite columns in Fig. 2(c). The shown logical failure rates are calculated for an ideal input state. The black dashed line corre-
sponds to the failure rate of the according sequence for a single physical qubit. For both logical gates, the determined logical failure rate
on near-term ion-trap processors is still more than one order of magnitude larger than the expected rate for a single physical qubit. (b)
Logical failure rates for the preparation of the magic state T|+〉 on the Steane code on a logarithmic scale. These protocols correspond
to the composite column in Fig. 2(c) on the right, including a noisy initialization, a noisy application of the T gate, and noisy switching
to the Steane code. For the tetrahedral [[15, 1, 3]] code (left) with postselection, we obtain logical failure rates which are clearly above
the breakeven point (black dashed line) at an acceptance rate of R = 76%. Using the morphed [[10, 1, 2]] code (center) lowers pL by 2
orders of magnitude and increased the acceptance rate to R = 82%. HMS corresponds to the preparation of a heralded magic state on
the Steane code using a state-of-the-art FT implementation [39]. For this scheme, we obtain the lowest failure rates at an acceptance
rate of R = 85%.

rates for the logical input state |+〉 are higher than for the
input state |0〉. Considering the Hadamard gate, this can
be explained by looking at the dangerous Pauli-error posi-
tions on data qubits. As discussed in Sec. V, Pauli-Z errors
on data qubits can induce a logical failure when switch-
ing from the tetrahedral [[15, 1, 3]] code to the [[7, 1, 3]]
Steane code. Analogously, Pauli-X errors on data qubits
can cause a logical failure when switching from the Steane

code to the tetrahedral code. For the initial state |0〉, Pauli-
Z errors do not affect the encoded state, since Z|0〉 = |0〉.
After switching to the Steane code, the state is changed to
|+〉 by applying the Hadamard gate on the Steane code.
The dangerous Pauli-X errors during the second switch-
ing step do not affect this encoded state. So, the Hadamard
gate on |0〉 on the tetrahedral code is inherently less sensi-
tive to these errors on data qubits than on the initial state

(a) (b)

FIG. 14. Projected performance of deterministic logical gates for different encoded states. Projected performance for deterministic
Hadamard (left) and T gate (right) for current ion-trap setups [25] for logical input states |0〉 and |+〉 (a) for perfect and (b) noisy
initialization. The Hadamard on a perfect state |0〉 achieves lower logical failure rates than on a perfect state |+〉. Similarly for the
T gate, we find higher logical failure rates for |+〉 than for |0〉. With the noisy initialization, all logical failure rates increase slightly
while the systematic difference between |0〉 and |+〉 is maintained.

020345-17

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

TABLE II. Projected logical failure rates for logical operations
on an ion-trap quantum processor. For the noise parameters spec-
ified in Sec. IX, which are based on current ion-trap setups, we
determined the logical failure rates for logical operations using
FT code-switching protocols.

Logical operation Code Figure pL × 10−2

H [[15, 1, 3]] 13(a) 2.62(5)
T [[7, 1, 3]] 13(a) 3.01(6)
Magic state [[15, 1, 3]] 13(b) 1.13(2)
Magic state [[10, 1, 2]] 13(b) 1.60(2)× 10−2

Heralded magic state 13(b) 1.00(3)× 10−2

H for perfect |0〉 [[15, 1, 3]] 14(a) 1.52(4)
H for perfect |+〉 [[15, 1, 3]] 14(a) 3.72(6)
T for perfect |0〉 [[15, 1, 3]] 14(a) 1.05(4)
T for perfect |+〉 [[15, 1, 3]] 14(a) 4.96(8)
H for noisy |0〉 [[15, 1, 3]] 14(b) 1.90(4)
H for noisy |+〉 [[15, 1, 3]] 14(b) 4.15(6)
T for noisy |0〉 [[15, 1, 3]] 14(b) 1.29(4)
T for noisy |+〉 [[15, 1, 3]] 14(b) 5.59(7)

|+〉. Furthermore, |0〉 is an eigenstate of the T gate, so it is
expected that logical failure rates are lower than for other
states, in agreement with recent experimental observations
[39]. The values of the numerically obtained logical fail-
ure rates presented in Figs. 13 and 14 are summarized in
Table II.

To estimate the impact of an imperfect initialization,
we determine the logical failure rates for the same pro-
tocols including a noisy initialization which is shown in

Fig. 14(b). The initializations are implemented using the
circuits shown in Figs. 20–24. Including a noisy initial-
ization increases pL by a factor of approximately 1.1.
This indicates that the logical failure rate is dominated by
the noisy switching procedure, rather than by the noisy
initialization of logical input states.

We identify the parameters p2 as a limiting factor for the
above code-switching schemes. It is the largest value in our
noise model and the number of two-qubit gates is much
higher than for any other component. In order to estimate
the sensitivity of the considered protocols to changes in p2,
we choose p1 = pi = pm = 0 and only vary the two-qubit
gate parameter p2. Figure 15 shows the averaged logical
failure rates for the composite protocols as specified in
Fig. 2(c) for this noise model. The logical failure rate for
the initial value of p2 = 3 × 10−3 for the Hadamard gate
is close to the logical failure rates for the above noise
model, where we included errors on single-qubit opera-
tions. This is in alignment with the expectation that faulty
single-qubit operations have a minor impact on the logical
failure rate and the probability for errors on two-qubit gates
p2 is the limiting parameter. Furthermore, we observe that
an improvement of a factor of 5 should suffice to reach
the regime of the corresponding physical error rate for a
FT nondeterministic magic state preparation, as shown in
Fig. 15(b) on the left.

Overall, we report that the morphed [[10, 1, 2]] code can
reduce the logical failure rates by up to 2 orders of mag-
nitude compared to the tetrahedral [[15, 1, 3]] code, as, for
example, for magic state preparation shown in Fig. 13.

(b)(a)

FIG. 15. Scaling of logical failure rates with the two-qubit gate noise parameter p2 for different protocols. (a) Averaged logical
failure rates for the deterministic Hadamard gate on the [[15, 1, 3]] tetrahedral code and the deterministic T gate on the Steane code
according to the protocol specified in Fig. 2(c) given an ideal logical input state. The parameters p1, pi, and pm are set to 0 and p2 is
reduced by a factor n for n = 1, 2, 5, 10. The black dots correspond to the physical error rate of p2/n. The logical failure rates are larger
than this physical error rate for the considered variation in p2. (b) Averaged logical failure rates for the preparation of a magic state on
the Steane code on a logarithmic scale as specified in Fig. 2(c). The preparation of the magic state includes the noisy initialization of
the [[15, 1, 3]] (left) and [[10, 1, 2]] (right) code, the application of the FT T gate and switching to the [[7, 1, 3]] Steane code. We consider
the same variation in the parameter p2 for p1 = pi = pm = 0. For magic state preparation using the tetrahedral [[15, 1, 3]] code and
postselection, the logical failure rate succeeds the corresponding physical failure rate at p2/5, while for the morphed [[10, 1, 2]] code,
pL is already below this rate for the initial value of p2.

020345-18

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

Furthermore, the FT deterministic logical gates are within
reach of recently proposed implementations [39,41,65].

X. CONCLUSIONS AND OUTLOOK

In this work, we have constructed fault-tolerant code-
switching protocols that enable the implementation of a FT
universal gate set on the logical level. We provide specific
instructions for the implementation of code-switching pro-
tocols based on FT building blocks offering multiple meth-
ods as summarized in Fig. 2. Composite code-switching
protocols can be constructed from this suite by compos-
ing building blocks in ways that are most suitable and
optimized for given experimental setups. Based on current
ion-trap quantum processors, we estimate the performance
of code-switching protocols on near-term devices using a
multiparameter noise model and find that the logical failure
rates reach values on par with state-of-the-art magic state
injection [25,39].

A study comparing the overhead and thresholds for
preparing magic states on the Steane code using magic
state distillation (MSD) and deterministic code switching
does not find an advantage in using code switching over
MSD for this task [65]. We complement this study by con-
sidering morphed codes. As demonstrated in our work,
stabilizer weights and, therefore, the circuit depth of a
given protocol can be reduced by replacing the distance-
three tetrahedral color code with the respective morphed
code, which offers a feasible alternative for magic state
preparation on near-term devices.

The presented strategies for FT code switching can
be extended to higher distances. The general scheme
of code switching is not limited to low code distances
[44,61,65,76]. A fault-tolerant switching protocol will
require (repeated) measurement of higher-weight stabi-
lizers, for which techniques to construct flag-qubit-based
fault-tolerant stabilizer measurement circuits have been
worked out for arbitrary distance codes [52]. Further-
more, general tetrahedral color codes can be morphed into
the class of hybrid color-toric codes [55], which can be
used analogously to the described methods for switch-
ing with the respective two-dimensional color code. By
additionally increasing the number of repeated stabilizer
measurements, as specified by the code’s distance, one can,
in principle, generalize the approach explored in this work
to achieve FT code switching for larger-distance codes.

Our numerical results provide a basis for the experi-
mental realization of code-switching protocols on existing
or near-term quantum processors. Our protocols are read-
ily implementable in architectures offering all-to-all qubit
connectivity, such as, e.g., in ion-trap quantum processors
[77,78]. It would be interesting to adapt the protocols and
also consider connectivity of other platforms, in particular,
nearest-neighbor connectivity of superconducting qubits
[79] or dynamically reconfigurable quantum registers of

neutral atom processors [32,80] or shuttling-based trapped-
ion architectures [77,81]. We emphasize that the proposed
protocols and quantum circuit constructions are not lim-
ited to low-distance codes, but can be readily leveraged to
scalable larger-distance two- and three-dimensional color
codes. Furthermore, tailoring FT code switching to setups
with biased noise [82–84] offers the potential of reaching
even lower logical failure rates for suitable experimental
systems with such noise characteristics.

ACKNOWLEDGMENTS

We would like to thank Josias Old for valuable dis-
cussions on FT-encoding circuits. We gratefully acknowl-
edge support by the EU Quantum Technology Flagship
Grant under Grant Agreement No. 820495 (AQTION), the
European Union’s Horizon Europe research and innova-
tion programme under Grant Agreement No. 101114305
(“MILLENION-SGA1” EU Project), the U.S. Army
Research Office through Grant No. W911NF-21-1-0007,
the European Union’s Horizon Europe research and inno-
vation program under Grant Agreement No. 101046968
(BRISQ), the ERC Starting Grant QNets through Grant
No. 804247, by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy “Cluster of Excellence Matter and
Light for Quantum Computing (ML4Q) EXC 2004/1”
390534769. This research is also part of the Munich Quan-
tum Valley (K-8), which is supported by the Bavarian state
government with funds from the Hightech Agenda Bay-
ern Plus. This research is also supported by the Office of
the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via the
U.S. Army Research Office through Grant No. W911NF-
16-1-0070. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of the ODNI, IARPA,
or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright annotation
thereon. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the view of the
U.S. Army Research Office. The numerical simulations
were performed with the aid of computing resources at
Forschungszentrum Jülich.

APPENDIX A: SUMMARY FT CODE-SWITCHING
PROTOCOLS

The following two algorithms summarize the protocols
that we implement for FT switching between [[15, 1, 3]]
and [[7, 1, 3]], which is described in detail in Sec. V. These
include the repetition of measurements in order to correct
any single measurement fault, using the flag qubit scheme

020345-19

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

Protocol . FT switching [[15, 1, 3]] → [[7, 1, 3]]

Input: Logical state in [[15, 1, 3]]
Output: Logical state in [[7, 1, 3]]
1: Measure (SX

R , SX
B , SX

G) with flags
2: if a circuit flagged:
3: Remeasure (SX

R , SX
B , SX

G) without flags
4: Measure one additional stabilizer
5: correct flag errors
6: Measure the bulk (yellow cell) destructively
7: Check agreement of opposing X-faces
8: if BX

Y == −1 and agreement �= (0, 0, 0):
9: (SX

R , SX
B , SX

G) −→ (SX
R , SX

B , SX
G)+ agreement %2

10: Apply switching operation according to lookup table

to correct for fault on auxiliary qubits as well as the perfor-
mance of additional stabilizer measurements to correct for
potentially dangerous errors on data qubits.

APPENDIX B: MORPHING THE TETRAHEDRAL
[[15, 1, 3]] CODE INTO THE [[10, 1, 2]] CODE

The parent [[15, 1, 3]] code defined on the tetrahedron
contains a smaller subcode on the yellow cell, which is
a [[8, 3, 2]] stabilizer code. The stabilizers of the [[8, 3, 2]]
code are [69]

SX = X0X1X2X3X7X12X13X14,

S1
Z = Z0Z1Z2Z3Z7Z12Z13Z14,

S2
Z = Z0Z2Z12Z14,

S3
Z = Z1Z7Z12Z14,

S4
Z = Z0Z3Z7Z14.

(B1)

Protocol . FT switching [[7, 1, 3]] → [[15, 1, 3]]

Input: Logical state in [[7, 1, 3]]
Output: Logical state in [[15, 1, 3]]
1: Measure (BZ

RB , BZ
RG, BZ

BG) twice with flags
2: if a circuit flagged:
3: Remeasure (BZ

RB , BZ
RG, BZ

BG) without flags
4: Measure BX

Y

5: Correct flag errors
6: if syndromes disagree:
7: Remeasure (BZ

RB , BZ
RG, BZ

BG) without flags
8: Measure Steane faces (SZ

R , SZ
R , SZ

G) twice with flags
9: if a circuit flagged:
10: Remeasure (SZ

R , SZ
R , SZ

G) without flags
11: Measure one additional stabilizer
12: Correct flag errors
13: if syndromes disagree:
14: Remeasure (SZ

RSZ
R , SZ

G) without flags
15: Update syndrome based on detected error
16: Apply switching operation according to lookup table

for the indexing given in Fig. 16(b). The logical operators
are given by

X1 = X0X2X3X13, Z1 = Z0Z14

X2 = X1X3X7X13, Z2 = Z7Z14

X3 = X1X2X12X13, Z3 = Z12Z14.

(B2)

A logical state |ψ1 ψ2 ψ3〉 can be encoded using the cir-
cuit shown in Fig. 16. We invert this encoding circuit by
reversing the ordering of the applied operations and the
direction of all CNOT gates. We apply this inverted circuit

(a) (b)

FIG. 16. Encoding of a logical state |ψ1 ψ2 ψ3〉 on the [[8, 3, 2]] code. We construct this circuit by initializing a +1 eigenstate of all
stabilizers, as given in Eq. (B1) and coupling qubits 0, 1, and 2, which are in state |ψ1〉, |ψ2〉, and |ψ3〉, to the qubits of the corresponding
logical operator. The first three CNOT gates are not required for the encoding of the [[8, 3, 2]] code, however they are necessary when
using the inverted circuit for morphing the tetrahedral code in order to obtain the desired stabilizer operators.

020345-20

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

FIG. 17. Circuit for morphing the [[15, 1, 3]] code into the [[10, 1, 2]]. We find this circuit by inverting the encoding circuit of the
child [[8, 3, 2]] code and applying it to the yellow cell of the tetrahedral code for the indexing specified in Fig. 3(b). The marked qubits
are effectively decoupled from the remaining ten qubits.

to a codestate of the [[15, 1, 3]] parent code, as shown in
Fig. 17. In doing so, we effectively decouple five qubits,
meaning that they are not entangled with the remaining
ten qubits, while the initial information is still encoded on
these ten remaining qubits. It is important to note that the
circuit shown in Fig. 17 is not physically executed, since
it is meant to generate a new code out of an existing one.
For our protocols, we use the obtained morphed [[10, 1, 2]]
code directly.

Figure 18 summarizes the possible correctable and
detectable Z-error configurations with their respective syn-
dromes for the morphed [[10, 1, 2]] code. Figure 19 shows
the comparison between this partial ED on the target
code after switching from the Steane code to the mor-
phed [[10, 1, 2]] code and full ED, where we discard a run
whenever any Z error is detected. The logical failure rate
decreases when we postselect for any detected Z error, at
the expense of a further lowering of the acceptance rate.

FIG. 18. Lookup table for Z errors on the [[10, 1, 2]] code. Single Z-error configurations, the resulting syndrome measurement for the
above-defined stabilizers and the correction that needs to be applied to get back into the codespace for the qubit indices as specified
in Fig. 8. For example, Z0 and Z7 are not distinguishable, because they are both part of only one cell. Therefore, it is not possible to
correct for all single Z errors.

020345-21

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

(a) (b)

FIG. 19. Logical failure rates and acceptance rates for partial and full ED. (a) Logical failure rates for switching from the Steane
code to the morphed [[10, 1, 2]] code for two different versions of error detection. In partial ED, we postselect only on those errors
which we cannot distinguish from other weight-1 error configurations, as given in Table 18. For full ED, we discard the corresponding
run whenever any Z error is detected in the final round of classical EC on the target code. (b) Acceptance rates for the two versions of
ED. In total, we perform up to 106 Monte Carlo shots for each value of p . Out of these, fewer runs are accepted for full ED.

APPENDIX C: ENCODING CIRCUITS

The following circuits shown in Figs. 20–24 can be used to implement logical states |0〉 and |+〉 on the tetrahedral code
[[15, 1, 3]] and the morphed [[10, 1, 2]] code. We obtain the circuits using the Latin rectangle method [85].

FIG. 20. Circuit for the initialization of |0〉 on the 15-qubit tetrahedral code [[15, 1, 3]]. We obtain this circuit using the Latin rectangle
method [85]. A verification step is added in order to achieve fault tolerance. This verification corresponds to the measurement of a
logical Z = Z2Z5Z14 and detects all incorrectable weight-4 X errors that result from a single propagated error. In total, 25 CNOT gates
and 16 qubits are required to fault tolerantly initialize |0〉.

020345-22

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

FIG. 21. Circuit for the initialization of |+〉 on the 15-qubit tetrahedral code [[15, 1, 3]]. We construct this circuit using the Latin
rectangle method [85]. In this case, the verification step corresponds to the measurement of a logical X = X1X3X5X7X9X12X13 and it
detects all incorrectable weight-2 Z errors that result from a single propagated error. In total, 32 CNOT gates and 16 qubits are required
to fault tolerantly initialize |+〉.

(a) (b)

FIG. 22. Circuit for preparing the bulk for code switching. (a) Encoding circuit of the initialization of the bulk (yellow cell) for
switching from the Steane code to the tetrahedral [[15, 1, 3]] code. Since the bulk has to be prepared in a specific state but does not
encode any information, there is no logical operator that can be used in a verification step. Therefore, two stabilizers have to be
measured in order to verify the resulting state. We choose the stabilizers X1X4X8X12 and X1X2X4X5 in order to detect weight-2 Z errors
on the data qubits, which would result in a logical failure on the target [[15, 1, 3]] code. (b) Indexing of the bulk qubits used for the
encoding circuit in alignment with the previous sections.

020345-23

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

(a) (b)

FIG. 23. Encoding circuit for the FT initialization of the morphed [[10, 1, 2]] code. Circuits for the FT initialization of (a) |0〉 and
(b) |+〉 on the morphed [[10, 1, 2]] code. For the FT initialization of |0〉, the logical operator Z = Z0Z1Z5Z9 is measured to verify the
resulting state. No verification step is required for the FT initialization of |+〉, because every propagated Z error is detectable afterwards
on the [[10, 1, 2]] code.

(a) (b)

FIG. 24. Encoding circuit for the FT initialization of the [[7, 1, 3]] Steane code [39,40]. The logical operator Z = Z0Z2Z5 is measured
in order to detect all single errors that propagate and would cause a logical failure.

[1] P. W. Shor, in Proceedings 35th Annual Symposium on
Foundations of Computer Science (IEEE, Santa Fe, NM,
USA, 1994), p. 124.

[2] L. K. Grover, Quantum computers can search arbitrarily
large databases by a single query, Phys. Rev. Lett. 79, 4709
(1997).

[3] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[4] D. Gottesman, Ph.D. thesis, California Institute of Technol-
ogy, 1997, available online at https://thesis.library.caltech.
edu/2900/2/THESIS.pdf.

[5] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, Massachusetts,
2010).

[6] B. M. Terhal, Quantum error correction for quantum mem-
ories, Rev. Mod. Phys. 87, 307 (2015).

[7] J. Preskill, Reliable quantum computers, Proc. Phys. Soc.
A 454, 385 (1998).

[8] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Russ. Math. Surv. 52, 1191 (1997).

[9] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accu-
racy threshold for concatenated distance-3 codes, Quantum
Inf. Comput. 6, 97 (2006).

[10] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum
computation, Science 279, 342 (1998).

[11] D. Aharonov and M. Ben-Or, Fault-tolerant quantum com-
putation with constant error rate, SIAM J. Comput. 38,
1207 (2008).

[12] N. D. Mermin, Quantum Computer Science: An Introduc-
tion (Cambridge University Press, Cambridge, England,
UK, 2007).

[13] R. Solovay, Lie groups and quantum circuits (2000), MSRI
presentation at http://www.msri.org/publica-tions/ln/msri/
2000/qcomputing/solovay/1/. According to Ref. [43], the
proof was announced by Solovay in 1995 on a virtual
reading group e-mail discussion list.

[14] B. Eastin and E. Knill, Restrictions on transversal
encoded quantum gate sets, Phys. Rev. Lett. 102, 110502
(2009).

[15] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M.
Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt,

020345-24

https://doi.org/10.1103/PhysRevLett.79.4709
https://doi.org/10.22331/q-2018-08-06-79
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.26421/QIC6.2-1
https://doi.org/10.1126/science.279.5349.342
https://doi.org/10.1137/S0097539799359385
http://www.msri.org/publica-tions/ln/msri/2000/qcomputing/solovay/1/
https://doi.org/10.1103/PhysRevLett.102.110502

FAULT-TOLERANT CODE-SWITCHING. . . PRX QUANTUM 5, 020345 (2024)

Quantum computations on a topologically encoded qubit,
Science 345, 302 (2014).

[16] N. M. Linke, M. Gutierrez, K. A. Landsman, C. Figgatt,
S. Debnath, K. R. Brown, and C. Monroe, Fault-tolerant
quantum error detection, Sci. Adv. 3, e1701074 (2017).

[17] J. Hilder, D. Pijn, O. Onishchenko, A. Stahl, M. Orth, B.
Lekitsch, A. Rodriguez-Blanco, M. Müller, F. Schmidt-
Kaler, and U. Poschinger, Fault-tolerant parity readout on a
shuttling-based trapped-ion quantum computer, Phys. Rev.
X 12, 011032 (2022).

[18] Y. Wan, R. Jördens, S. D. Erickson, J. J. Wu, R. Bowler,
T. R. Tan, P.-Y. Hou, D. J. Wineland, A. C. Wilson, and D.
Leibfried, Ion transport and reordering in a 2D trap array,
Adv. Quantum Technol. 3, 2000028 (2020).

[19] C. Ryan-Anderson, J. Bohnet, K. Lee, D. Gresh, A. Han-
kin, J. Gaebler, D. Francois, A. Chernoguzov, D. Luc-
chetti, and N. Brown, et al., Realization of real-time fault-
tolerant quantum error correction, Phys. Rev. X 11, 041058
(2021).

[20] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and J.
M. Gambetta, Experimental demonstration of fault-tolerant
state preparation with superconducting qubits, Phys. Rev.
Lett. 119, 180501 (2017).

[21] K. Satzinger, Y.-J. Liu, A. Smith, C. Knapp, M. Newman,
C. Jones, Z. Chen, C. Quintana, X. Mi, and A. Dunsworth,
et al., Realizing topologically ordered states on a quantum
processor, Science 374, 1237 (2021).

[22] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, and J. Her-
rmann, et al., Realizing repeated quantum error correction
in a distance-three surface code, Nature 605, 669 (2022).

[23] Google Quantum AI, Exponential suppression of bit or
phase errors with cyclic error correction, Nature 595, 383
(2021).

[24] Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan,
Q. Zhu, Z. Wei, T. He, and S. Cao, et al., Realization of an
error-correcting surface code with superconducting qubits,
Phys. Rev. Lett. 129, 030501 (2022).

[25] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff,
Repeated quantum error detection in a surface code, Nat.
Phys. 16, 875 (2020).

[26] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey,
T. C. White, D. Sank, J. Y. Mutus, B. Campbell, and Y.
Chen, et al., State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519, 66
(2015).

[27] Google Quantum AI, Suppressing quantum errors by scal-
ing a surface code logical qubit, Nature 614, 676 (2023).

[28] A. Browaeys and T. Lahaye, Many-body physics with indi-
vidually controlled Rydberg atoms, Nat. Phys. 16, 132
(2020).

[29] M. Saffman, Quantum computing with atomic qubits and
Rydberg interactions: Progress and challenges, J. Phys. B
49, 202001 (2016).

[30] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T.
Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, and
H. Pichler, et al., Parallel implementation of high-fidelity
multiqubit gates with neutral atoms, Phys. Rev. Lett. 123,
170503 (2019).

[31] T. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn,
K. Jooya, P. Eichler, X. Jiang, A. Marra, and B. Grinke-
meyer, et al., Multi-qubit entanglement and algorithms on
a neutral-atom quantum computer, Nature 604, 457 (2022).

[32] S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T.
Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, and
N. Maskara, et al., High-fidelity parallel entangling gates
on a neutral atom quantum computer, ArXiv:2304.05420.

[33] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S.
Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pich-
ler, and M. Greiner, et al., A quantum processor based on
coherent transport of entangled atom arrays, Nature 604,
451 (2022).

[34] K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, and S.
Tarucha, Quantum error correction with silicon spin qubits,
Nature 608, 682 (2022).

[35] M. Abobeih, Y. Wang, J. Randall, S. Loenen, C. Bradley,
M. Markham, D. Twitchen, B. Terhal, and T. Taminiau,
Fault-tolerant operation of a logical qubit in a diamond
quantum processor, Nature 606, 884 (2022).

[36] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D.
Biswas, M. Newman, M. Li, K. R. Brown, and M. Cetina,
et al., Fault-tolerant control of an error-corrected qubit,
Nature 598, 281 (2021).

[37] J. Marques, B. Varbanov, M. Moreira, H. Ali, N. Muthusub-
ramanian, C. Zachariadis, F. Battistel, M. Beekman, N.
Haider, W. Vlothuizen, B. Alessandro, B. Terhal, and L.
DiCarlo, Logical-qubit operations in an error-detecting sur-
face code, Nat. Phys. 18, 80 (2022).

[38] C. Ryan-Anderson, N. Brown, M. Allman, B. Arkin, G.
Asa-Attuah, C. Baldwin, J. Berg, J. Bohnet, S. Braxton,
and N. Burdick, et al., Implementing fault-tolerant entan-
gling gates on the five-qubit code and the color code,
ArXiv:2208.01863.

[39] L. Postler, S. Heußen, I. Pogorelov, M. Rispler, T. Feldker,
M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, and
R. Blatt, et al., Demonstration of fault-tolerant universal
quantum gate operations, Nature 605, 675 (2022).

[40] H. Goto, Minimizing resource overheads for fault-tolerant
preparation of encoded states of the Steane code, Sci. Rep.
6, 1 (2016).

[41] C. Chamberland and A. W. Cross, Fault-tolerant magic state
preparation with flag qubits, Quantum 3, 143 (2019).

[42] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[43] A. Kubica and M. E. Beverland, Universal transversal gates
with color codes: A simplified approach, Phys. Rev. A 91,
032330 (2015).

[44] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-
tolerant conversion between the Steane and Reed-Muller
quantum codes, Phys. Rev. Lett. 113, 080501 (2014).

[45] H. Bombin, Gauge color codes: Optimal transversal gates
and gauge fixing in topological stabilizer codes, New J.
Phys. 17, 083002 (2015).

[46] H. Bombin and M. A. Martin-Delgado, Topological quan-
tum distillation, Phys. Rev. Lett. 97, 180501 (2006).

[47] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Trian-
gular color codes on trivalent graphs with flag qubits, New
J. Phys. 22, 023019 (2020).

020345-25

https://doi.org/10.1126/science.1253742
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1103/PhysRevX.12.011032
https://doi.org/10.1002/qute.202000028
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.3929/ethz-b-000410090
https://doi.org/10.1038/nature14270
https://doi.org/10.5281/zenodo.6804040
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1038/s41586-022-04603-6
https://arxiv.org/abs/2304.05420
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1038/s41586-022-04986-6
https://doi.org/10.5281/zenodo.6461872
https://doi.org/10.1038/s41586-021-03928-y
https://doi.org/10.1038/s41567-021-01423-9
https://arxiv.org/abs/2208.01863
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/srep19578
https://doi.org/10.22331/q-2019-05-20-143
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.91.032330
https://doi.org/10.1103/PhysRevLett.113.080501
https://doi.org/10.1088/1367-2630/17/8/083002
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1088/1367-2630/ab68fd

BUTT, HEUSSEN, RISPLER, and MÜLLER PRX QUANTUM 5, 020345 (2024)

[48] J. Dehaene and B. De Moor, Clifford group, stabilizer
states, and linear and quadratic operations over GF (2),
Phys. Rev. A 68, 042318 (2003).

[49] A. Wu, K. Yin, A. W. Cross, A. Li, and Y. Ding,
Enabling full-stack quantum computing with changeable
error-corrected qubits, ArXiv:2305.07072.

[50] H. Bombin and M.-A. Martin-Delgado, Topological com-
putation without braiding, Phys. Rev. Lett. 98, 160502
(2007).

[51] R. Chao and B. W. Reichardt, Quantum error correction
with only two extra qubits, Phys. Rev. Lett. 121, 050502
(2018).

[52] C. Chamberland and M. E. Beverland, Flag fault-tolerant
error correction with arbitrary distance codes, Quantum 2,
53 (2018).

[53] T. Tansuwannont and D. Leung, Achieving fault tolerance
on capped color codes with few ancillas, PRX Quantum 3,
030322 (2022).

[54] R. S. Gupta, N. Sundaresan, T. Alexander, C. J. Wood,
S. T. Merkel, M. B. Healy, M. Hillenbrand, T. Jochym-
O’Connor, J. R. Wootton, and T. J. Yoder, et al.,
Encoding a magic state with beyond break-even fidelity,
ArXiv:2305.13581.

[55] M. Vasmer and A. Kubica, Morphing quantum codes, PRX
Quantum 3, 030319 (2022).

[56] D. Gottesman, Class of quantum error-correcting codes sat-
urating the quantum Hamming bound, Phys. Rev. A 54,
1862 (1996).

[57] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane,
Quantum error correction and orthogonal geometry, Phys.
Rev. Lett. 78, 405 (1997).

[58] D. Gottesman, The Heisenberg representation of quantum
computers, XXII International Colloquium on Group The-
oretical Methods in Physics, 1999, https://arxiv.org/pdf/
quant-ph/9807006.pdf.

[59] A. Steane, Multiple-particle interference and quantum error
correction, Proc. Phys. Soc. A 452, 2551 (1996).

[60] H. Bombin, Transversal gates and error propagation in 3D
topological codes, ArXiv:1810.09575.

[61] A. M. Kubica, Ph.D. thesis, California Institute of Technol-
ogy, 2018, available online at https://thesis.library.caltech.
edu/10955/.

[62] S. Koutsioumpas, D. Banfield, and A. Kay, The smallest
code with transversal T, ArXiv:2210.14066.

[63] D. Poulin, Stabilizer formalism for operator quantum error
correction, Phys. Rev. Lett. 95, 230504 (2005).

[64] D. Kribs, R. Laflamme, and D. Poulin, Unified and general-
ized approach to quantum error correction, Phys. Rev. Lett.
94, 180501 (2005).

[65] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
universality: A comparative study of the overhead of state
distillation and code switching with color codes, PRX
Quantum 2, 020341 (2021).

[66] J. Preskill, Fault-tolerant quantum computers, 1998,
https://authors.library.caltech.edu/3930/.

[67] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result
of a measurement of a component of the spin of a spin-1/2
particle can turn out to be 100, Phys. Rev. Lett. 60, 1351
(1988).

[68] A. Peres, Quantum measurements with postselection, Phys.
Rev. Lett. 62, 2326 (1989).

[69] E. T. Campbell, The smallest interesting colour code,
Blog post, 2016, https://earltcampbell.com/2016/09/26/the-
smallest-interesting-colour-code/.

[70] E. Barnes, C. Arenz, A. Pitchford, and S. E. Economou,
Fast microwave-driven three-qubit gates for cavity-coupled
superconducting qubits, Phys. Rev. B 96, 024504 (2017).

[71] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Neg-
nevitsky, P. Schindler, T. Monz, U. Poschinger, C. Hempel,
and J. Home, et al., Assessing the progress of trapped-
ion processors towards fault-tolerant quantum computation,
Phys. Rev. X 7, 041061 (2017).

[72] P. Parrado-Rodríguez, C. Ryan-Anderson, A. Bermudez,
and M. Müller, Crosstalk suppression for fault-tolerant
quantum error correction with trapped ions, Quantum 5,
487 (2021).

[73] C. Ryan-Anderson, PECOS: Performance estimator of
codes on surfaces, 2019, https://github.com/PECOS-
packages/PECOS.

[74] C. J. Trout, M. Li, M. Gutiérrez, Y. Wu, S.-T. Wang, L.
Duan, and K. R. Brown, Simulating the performance of a
distance-3 surface code in a linear ion trap, New J. Phys.
20, 043038 (2018).

[75] S. Heußen, L. Postler, M. Rispler, I. Pogorelov, C. D.
Marciniak, T. Monz, P. Schindler, and M. Müller, Strategies
for a practical advantage of fault-tolerant circuit design in
noisy trapped-ion quantum computers, Phys. Rev. A 107,
042422 (2023).

[76] H. Bombín, Dimensional jump in quantum error correction,
New J. Phys. 18, 043038 (2016).

[77] V. Kaushal, B. Lekitsch, A. Stahl, J. Hilder, D. Pijn,
C. Schmiegelow, A. Bermudez, M. Müller, F. Schmidt-
Kaler, and U. Poschinger, Shuttling-based trapped-ion
quantum information processing, AVS Quantum 2, 014101
(2020).

[78] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler,
S. A. Moses, M. Allman, C. Baldwin, M. Foss-Feig, D.
Hayes, and K. Mayer, et al., Demonstration of the trapped-
ion quantum CCD computer architecture, Nature 592, 209
(2021).

[79] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario,
The future of quantum computing with superconducting
qubits, J. Appl. Phys. 132, 160902 (2022).

[80] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A.
Browaeys, G.-O. Reymond, and C. Jurczak, Quantum com-
puting with neutral atoms, Quantum 4, 327 (2020).

[81] S. Moses, C. Baldwin, M. Allman, R. Ancona, L. Ascar-
runz, C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard,
and M. Bohn, et al., A race track trapped-ion quantum
processor, ArXiv:2305.03828.

[82] A. K. Pal, P. Schindler, A. Erhard, Á. Rivas, M.-A. Martin-
Delgado, R. Blatt, T. Monz, and M. Müller, Relaxation
times do not capture logical qubit dynamics, Quantum 6,
632 (2022).

[83] E. Huang, A. Pesah, C. T. Chubb, M. Vasmer, and A. Dua,
Tailoring three-dimensional topological codes for biased
noise, ArXiv:2211.02116.

[84] A. Jain, P. Iyer, S. Bartlett, and J. Emerson, Improved quan-
tum error correction with randomized compiling, Bull. Am.
Phys. Soc. 5, 033049 (2023).

[85] A. M. Steane, Fast fault-tolerant filtering of quantum code-
words, ArXiv:quant-ph/0202036.

020345-26

https://doi.org/10.1103/PhysRevA.68.042318
https://arxiv.org/abs/2305.07072
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PRXQuantum.3.030322
https://arxiv.org/abs/2305.13581
https://doi.org/10.1103/PRXQuantum.3.030319
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevLett.78.405
https://arxiv.org/pdf/quant-ph/9807006.pdf
https://doi.org/10.1098/rspa.1996.0136
https://arxiv.org/abs/1810.09575
https://thesis.library.caltech.edu/10955/
https://arxiv.org/abs/2210.14066
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.94.180501
https://doi.org/10.1103/PRXQuantum.2.020341
https://authors.library.caltech.edu/3930/
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.62.2326
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://doi.org/10.1103/PhysRevB.96.024504
https://doi.org/10.1103/PhysRevX.7.041061
https://doi.org/10.22331/q-2021-06-29-487
https://github.com/PECOS-packages/PECOS
https://doi.org/10.1088/1367-2630/aab341
https://doi.org/10.1103/PhysRevA.107.042422
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1116/1.5126186
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1063/5.0082975
https://doi.org/10.22331/q-2020-09-21-327
https://arxiv.org/abs/2305.03828
https://doi.org/10.22331/q-2022-01-24-632
https://arxiv.org/abs/2211.02116
https://doi.org/10.48550/arXiv.2303.06846
https://arxiv.org/abs/quant-ph/0202036

	I.. INTRODUCTION
	II.. 2D COLOR CODES
	A.. The Steane code [[7, 1, 3]]

	III.. 3D COLOR CODES
	A.. The 15-qubit tetrahedral code [[15, 1, 3]]

	IV.. CODE SWITCHING
	A.. Code switching between the [[7, 1, 3]] and [[15, 1, 3]]

	V.. DETERMINISTIC FT CODE SWITCHING
	A.. Errors on auxiliary qubits
	B.. Errors on data qubits
	C.. Measurement errors

	VI.. NONDETERMINISTIC FT CODE SWITCHING
	A.. Code switching with postselection
	B.. Code switching with morphed codes
	C.. Morphing the tetrahedral code [[15, 1, 3]]
	D.. FT code switching between [[10, 1, 2]] and [[7, 1, 3]]

	VII.. ERROR MODEL AND SIMULATION METHODS
	VIII.. BUILDING BLOCKS USING FT CODE SWITCHING
	IX.. PROJECTED PERFORMANCE FOR TRAPPED-ION QUANTUM PROCESSORS
	X.. CONCLUSIONS AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: SUMMARY FT CODE-SWITCHING PROTOCOLS
	. APPENDIX B: MORPHING THE TETRAHEDRAL [[15, 1, 3]] CODE INTO THE [[10, 1, 2]] CODE
	. APPENDIX C: ENCODING CIRCUITS
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

