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We explore superconducting quantum circuits where several leads are simultaneously connected beyond
the tunneling regime, such that the fermionic structure of Andreev bound states in the resulting multiter-
minal Josephson junction influences the states of the full circuit. Using a simple model of single-channel
contacts and a single level in the middle region, we discuss different circuit configurations where the leads
are islands with finite capacitance and/or form loops with finite inductance. We find situations of practical
interest where the circuits can be used to define noise-protected qubits, which map to the bifluxon and
0 − π qubits in the tunneling regime. We also point out the subtleties of the gauge choice for a proper
description of these quantum circuit dynamics.
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I. INTRODUCTION

Josephson junctions are essential ingredients for turn-
ing quantum circuits into artificial atoms [1,2]. When the
degrees of freedom describing the circuit are quantized,
the nonlinear nondissipative Josephson element introduces
the anharmonicity in the potential energy that is required
to isolate a set of levels for their use as a computational
basis. A conventional tunnel junction is characterized by
its charging and Josephson energies, determined, respec-
tively, by its capacitance and its critical current, which
depend on the tunnel barrier and the junction geometry.
This description of the junction as a nonlinear inductive
lumped element is justified when the energy correspond-
ing to the fermionic excitations of the junction itself is
large compared to the lowest circuit levels and, thus, only
bosonic excitations are considered.

More generally, from a mesoscopic perspective, a tun-
nel junction is just a particular case of a weak link between
two superconductors [3]. The coupling being weak, bound
states with phase-dependent energies form to accommo-
date the phase difference between both terminals [4–6].
Solving the energy spectrum of the so-called Andreev
states of this SXS device means the diagonalization of
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the Bogoliubov-de Gennes (BdG) Hamiltonian, i.e., a
fermionic problem which requires a microscopic model
for the X region. In this BdG description, the phase is a
parameter determined by the circuit where the weak link
is embedded, an approach justified when the phase fluc-
tuations are small and the energy corresponding to the
excited circuit levels is large compared to the Andreev
states.

The hybrid situation, involving a mesoscopic junction
where the phase has to be considered as an operator asso-
ciated with the transfer of charge has acquired interest
with the recent realizations of quantum circuits contain-
ing Josephson junctions made out of InAs nanowires and
two-dimensional electron gases (2DEGs) [7–11]. These
junctions may operate away from the tunneling regime and
are better described in terms of high-transmission conduc-
tion channels or with a quantum dot model. The number
of channels, the barriers and chemical potentials can be
tuned using gates, thus enabling the realization of devices
where the control of the junction parameters is critical.
Previous works have already considered this Josephson-
Andreev regime at different degrees of approximation, both
in situations with topological leads, where the fermionic
levels correspond to Majorana states [12–18], and with
trivial Andreev states [15,19–22].

These devices open up the possibility to design hybrid
modes combining the fermionic structure of the weak link
with the bosonic excitations associated to the electromag-
netic collective modes. This is in line with nowadays
efforts towards the physical realization of protected qubits,
based on the concept of a disjoint support of the qubit
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wave functions, which enjoy protection against decoher-
ence from one or more noise sources [23–26]. Such a strat-
egy has been pursued using multimode circuits with con-
ventional junctions [27–37], mesoscopic junctions where
the effect of the Andreev structure is approximated with
a modified Josephson potential [38–45], and mesoscopic
junctions where the treatment of the full Andreev structure
is essential, as is the case of a quantum dot with a level
in resonance with the Fermi level of the superconducting
leads [7,10,20–22].

In this work we explore the properties of multiterminal
Josephson-Andreev junctions when immersed in different
kinds of quantum circuits (see Fig. 1). These are unique
mesoscopic components where the weak-link connects
several superconducting leads that have become experi-
mentally accessible in proximitized 2D structures [46,47].
Since there are several phase difference variables, which
mimic the k space in a solid, there has been consider-
able interest in multiterminal Josephson devices driven
by the possibility of engineering topologically protected

singularities in their spectrum [48–62] and, broadly, other
applications that arise from the introduction of additional
leads [46,63–80]. We find that, just at the level of a triter-
minal junction [Fig. 1(a)], the presence of a third lead
introduces an additional degree of freedom that allows
protected qubits to be defined.

At a more fundamental level, quantum circuits with
Josephson-Andreev junctions pose basic questions on the
proper quantization rules that determine the system Hamil-
tonian in a general, time-dependent situation. For instance,
if a time-dependent external flux constrains the phases of
some circuit elements, the phase-drop distribution between
and within these elements is not a gauge freedom as in the
static situation. The actual drop has to be determined by
the electromagnetic field established in the circuit, which
depends on its structure and geometry [81–85] and on
the currents’ spatial distribution [86–92]. In addition, the
circuit variables bear a different nature depending on the
configuration of the circuit, leading to continuous or dis-
crete charge variables [93–103]. In the present work we

Φ Φ

Φ

(d) Classical phase-biasing limit (e) Charge island configuration (f) Charge-flux hybrid configuration

Al

Buffer

InGaAs barrier

InGaAs barrier
1 2

3

1 2

3

(a) Multiterminal Josephson junction (b) Andreev model (c) Tunnel limit

Circuit element

InAs 2DEG

3

1

2

Gate electrodes

FIG. 1. (a) Possible implementation of the trijunction in a hybrid superconductor-semiconductor heterostructure. An aluminium film
epitaxially grown on top of a 2DEG (pale orange) induce superconductivity by proximity. The 2DEG can be patterned by a defining
a mesa and the junctions are created by etching the Al in some regions (indicated with red lines). The gate electrodes confine the
electrons of the 2DEG in the center and control the coupling with each lead. (b),(c) Models describing the trijunction. The circuit
element indicated in a dashed box represents both limits in (d)–(f). In (b), the middle region is relevant to describe how electrons move
between leads. In this work, we use a single-level quantum dot in the infinite gap regime at even parity, such that the relevant processes
involve the exchange of Cooper pairs between the dot and the leads. In (c), the system is described by effective tunneling processes
of single Cooper pairs between the leads—equivalent to three tunnel Josephson junctions forming a triangle—and may reproduce the
model in (b) under certain limits. (d)–(f) Three circuits we consider with the trijunction element. In (d), the phase is externally fixed
by the external fluxes �1,2. In (e), the trijunction connects three superconducting islands with charging energies ECν . In (f), two leads
form a loop with inductive energy EL, threaded by flux �, and the third lead is a superconducting island.
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analyze this problem for different circuit configurations
and show its impact on the relaxation rates.

The work is organized as follows: in Sec. II, we intro-
duce possible experimental implementations and discuss
the modeling of the junction with a single level between
the leads [Fig. 1(b)], its embedding in a phase-biased
configuration [Fig. 1(d)] and the effect of the phase-drop
distribution on the relaxation rates. In Sec. III, we con-
sider a circuit where the leads are superconducting islands
[Fig. 1(e)] and discuss a transmonlike regime that hosts
two almost degenerate states. In Sec. IV, we connect two
leads in a loop with finite inductance with a third one,
which is an island [Fig. 1(f)], and discuss a regime simulta-
neously protected against charge and flux noise. In Sec. V,
we describe the tunnel limit of a multiterminal junction
[Fig. 1(c)] and its connection to protected multimode
circuits designed with several conventional elements. In
Sec. VI, we summarize and compare the main features
of the analyzed circuits, discuss the effect of quasiparti-
cle poisoning and elaborate on the analysis of decoherence
for feasible implementations. We finish with some conclu-
sions in Sec. VII. Additional details can be found in the
Appendixes.

II. MODELING, PHASE-BIASED
CONFIGURATION, AND GAUGE CHOICE

The basic element that we consider as a building block
for quantum circuits is the Josephson-Andreev trijunc-
tion. As illustrated in Fig. 1(a), it consists of a normal
central region coupled to three superconducting leads.
Such a device can be implemented on a proximitized
2DEG defined, for instance, on a Al/InAs heterostructure
[11,104–107]. We assume that the charge density in the
normal region can be controlled by gates and that a situa-
tion where a few or just one conduction channel on each
terminal can be reached. In such a situation the Josephson
coupling between the leads is mediated by a few Andreev
bound states, sensitive to the phase on each superconduct-
ing contact. Notice that in the configuration of Fig. 1(d)
two well-defined phase differences between the leads can
be controlled by external fluxes �1,2 through the corre-
sponding loops, as indicated in the figure. Within this
section, we assume ideal phase biasing, i.e., loops without
inductance and negligible charging energy.

As commented in the introduction, determining the
Andreev spectrum for such geometry requires solving the
BdG equations with the corresponding boundary condi-
tions for the superconducting phases. This is, in general,
a formidable task that can be undertaken using differ-
ent models and numerical techniques. For the purpose of
the present work, however, we adopt several simplify-
ing assumptions that enable a tractable but still realistic
description of the device.

Assuming a single channel per lead and that the dimen-
sions of the normal region are short compared to the
superconducting coherence length, we describe it in terms
of a single-level model. We denote by d†

σ the operator cre-
ating an electron with spin σ in that level. In addition, we
describe the leads in the so-called infinite-gap limit, which
allows us to include their effect in the normal region as a
frequency-independent pairing self-energy [108–110]. The
effective Hamiltonian for the trijunction is given by (see
Appendix A)

H eff =
∑

σ

εnσ + Un↑n↓ +
3∑

ν=1

[
�νe−iφνd†

↑d†
↓ + h.c.

]
,

(1)

where ε is the position of the central level referred to the
leads chemical potential, U is its charging energy, and �ν
is the tunneling rate to the lead ν, which has a phase φν .

Such a model is characterized by a phase diagram with
alternating even and odd parity ground states as a func-
tion of the model parameters [52,62,110–113]. However,
as in the present work we focus on the case of widely open
channels with significant Josephson coupling, we assume
that the trijunction remains always within the even sector,
where H eff is projected as

H eff
even = −ξτz + ξ +

∑

ν

�ν(cosφντx − sinφντy), (2)

with ξ = ε + U/2 and τi the Pauli matrices acting on the
space {|0〉d , |↑↓〉d}. The ground and excited states have
energies

E0,1({φν}) = −ξ ∓
√√√√ξ 2 +

∣∣∣∣
∑

ν

�νe−iφν

∣∣∣∣
2

. (3)

Let us note that, while H eff in Eq. (1) does depend on
the phase gauge choice, its spectrum (3) is only sensi-
tive to the phase differences so for simplicity we take
φ3 = 0. The transition energy E01 = E1 − E0 is shown in
Fig. 2(bottom) for �1 = �2 and different ratios �3/�1,2.
When lead 3 is weakly coupled (left panel), the energy
depends mainly on the phase difference between the two
strongly coupled leads, φ12 = φ1 − φ2, which at π cor-
responds to a minimum in E01. Indeed, in the limit
�3 = 0 we recover the familiar expression E0,1(φ12)+
ξ = ∓

√
ξ 2 + �2

√
1 − T sin2(φ12/2), where T = (�2 −

δ�2)/(ξ 2 + �2) is the transparency of the junction, with
�, δ� = �1±�2 [20]. When the three leads are equally
coupled (right panel), the landscape reveals a discrete set
of extrema and saddle points. In the regime �3 � �1,2, the
phase dependence is weaker and there is a minimum in E01
at φ1,2 ≈ π . On the top of Fig. 2, the Andreev energies
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FIG. 2. Bottom: transition energy E01 versus the phase dif-
ferences φ1,2 for �1 = �2 and different �3. At low coupling �3
(left), the system roughly behaves as a junction between 1 and 2,
and depends on the phase difference φ1 − φ2 between them. At
comparable couplings �1,2,3 (right), the transition landscape has
a set of local minima. The level position is placed at the symme-
try point ε = −U/2, meaning ξ = 0. Top: energies E0,1 (up to a
shift) of the Andreev states along the trajectories highlighted in
the maps, with solid (dash-dotted) lines for ξ = 0.5�1,2 (ξ = 0).

E0,1 corresponding to the trajectories in the (φ1,φ2) plane
indicated in the bottom panels are shown in dash dotted
(solid lines) for ξ = 0 (ξ = 0.5), that is, in (out of) reso-
nance with the dot level. These energies are plotted with
a −ξ shift. We note that in the tunnel (low transparency)
limit ξ � �ν’s we recover the conventional sinusoidal
ground-state dispersion E0({φν}) ≈ −∣∣∑

ν �νe
−iφν

∣∣2
/2ξ ,

which reads −(�1�2/ξ) cosφ12 in the two-terminal case.
This two-level system would be an instance of an

Andreev level qubit [114,115], a kind of qubit defined
with two Andreev states of a junction [116–119], and
the choice of its operating point should consider aspects
such as its sensitivity to noise. The noise in some param-
eter λ produces decoherence through two mechanisms,
pure dephasing and depolarization [120]. On the one hand,
pure dephasing is related with the fluctuations in the
qubit energy, blurring the access to the phase of super-
positions of the type c0 |0〉 + c1eiϕ |1〉, c0,1∈R. For small
noise amplitudes, the associated rate T−1

ϕ (λ) is propor-
tional to |∂E01/∂λ|2. On the other hand, the depolarization
is mainly given by the relaxation from |1〉 to |0〉, and at
small amplitudes the associated rate T−1

1 (λ) is proportional
to | 〈0| ∂H/∂λ |1〉 |2. Several strategies aim at reducing
the effect of the noise: reducing its amplitude, correct-
ing errors, or designing the qubit such that it acquires
an inherent protection [23]. The latter approach can be
explored when introducing different hardware configura-
tions, attempting to reduce the dephasing and the depolar-
ization rates simultaneously. This is not a straightforward
task and it must be noticed that simultaneous protection

against noise in all parameters is impossible. In conven-
tional qubits the noise in the charge offset and the external
flux are emphasized as these are tunable parameters, but
the noise in the Josephson coupling can also be important
[120–122]. In the circuits we consider here, the couplings
can be controlled by gate voltages, so the associated noise
may be relevant too. For simplicity and to illustrate the
principle, throughout this work we focus on the noise in
the external flux, in the energy of the dot level and in the
charge offset of the superconducting islands introduced in
Sec. III. We provide further analysis of decoherence in
Sec. VI.

A. Noise protection of the Andreev qubit

The general challenge for the simultaneous reduction
of dephasing and depolarization produced by noise in one
parameter can be illustrated in the phase-biased configura-
tion of the present section. For example, the noise in ξ has
a dephasing sweet spot at ξ = 0, where E01(ξ) is locally
quadratic. However, at this spot the hybridization between
the bare central level states |0〉d and |↑↓〉d is enhanced,
so the relaxation rate increases (note that ∂H eff/∂ξ ∝
τz and the states are ∝ |0〉d ± |↑↓〉d). The same occurs
with the noise in the external flux, which has dephasing
sweet spots where two states that were degenerate become
hybridized. In the two-terminal case, it occurs in the con-
figuration of perfect transmission (ξ = 0 and �1 = �2
[20], see top panels of Fig. 2) at phase difference φe = π ,
where the two degenerate states carry maximal and oppo-
site supercurrents. There, a deviation in the energy-level
position or in the coupling symmetry hybridizes these
states while flattening the transition energy at the same
time. As will be discussed next, this analysis on the effect
of flux noise must be extended to take into account the
effect of the phase-drop distribution.

In a static situation, the phases in Eq. (2) have a gauge
freedom that manifests through the transformation U =
eif τz/2, where the phase f redistributes the phase drop over
the couplings. In fact, note that the coupling term of H eff

even
in Eq. (2) can be written as

∑
ν �νe

iφντz/2τxe−iφντz/2, so the
transformed coupling term in UH eff

evenU† corresponds to a
shift φν → φν + f . However, if the external fluxes depend
on time, such as in a situation with noise, the transforma-
tion adds to the new Hamiltonian the term −i�U(U−1)′ =
−�f ′τz/2, where the prime indicates time derivative and
f might depend on the internal and external parameters
of the circuit. This nonequivalence means that a Hamil-
tonian with no term ∝ f ′τz would only be correct at a
certain gauge choice [81,82]. Classically, the magnetic
vector potential A—which determines the quantum phase
drop through a Peierls substitution—may be shifted by the
gradient of a scalar function F without altering the mag-
netic field, but if F is time dependent, the complete gauge
transformation must subtract ∂tF from the scalar potential
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V—which determines a voltage profile—so that the electric
field E = −∇V − ∂t A is not modified.

The simplest way to notice this effect is in the flux-noise
matrix element of a junction with two leads. In this case,
the general form of the coupling term in H eff

even is

(�1 cos (−φe/2 + f )+ �2 cos (φe/2 + f ))τx

− (�1 sin (−φe/2 + f )+ �2 sin (φe/2 + f ))τy ,

where f determines how asymmetrically this phase drops
on the couplings between the leads and the dot. Supposing
that this asymmetry is proportional to the phase drop, i.e.,
f = αφe, which would include terms ∝ φ′

eτz in the Hamil-
tonian for a general gauge, the squared matrix element
| 〈0| ∂H/∂φe |1〉 |2 is

(�2
1 + �2

2 + ξ 2)2 − 4�2
1�

2
2

E2
01

− ξ 2

4
+ α(�2

2 − �2
1)

+ α2
(

E2
01

4
− ξ 2

)
,

which is illustrated in Fig. 3. In panel (a), the couplings are
almost symmetric and the matrix element depends slightly
on the sign of α (the gray dashed lines correspond to
the limit of �1 = �2). In panel (b), the couplings are less
symmetric and the sign of α has a strong effect reducing
or boosting the relaxation (the gray dashed lines corre-
spond to the limit of ξ = 0). The matrix element at φe =
π vanishes at α = α0 := �/2δ�, a regime approached in
the fully asymmetric phase-drop distribution α = ±1/2 at
large coupling asymmetry. However, the value |α0|≥1/2
requires that the phase drop winds more than once, an
unlikely situation in a superconducting loop where vor-
tices would appear to accommodate the next flux quantum
whenever the phase surpasses 2π [123–125]. The value at
φe = π becomes a local minimum at α = αm, with 2α2

m :=
(ξ 2 + �2)/(ξ 2 + δ�2), with |αm| ≥ 1/2 too.

The particular f value in each configuration is related
with the electromagnetic field distribution in the circuit
[81–83], a calculation that is out of the scope of the present
work. Our aim here is to identify the main features that
determine it: the shape of the field in the central part of
the junction depends on the geometry and properties of
the circuit in which it is immersed [84], though in the sit-
uation we consider here we expect little variation in the
field profile as the central region is small compared to
a typical field wavelength and presumably homogeneous,
i.e., we expect a symmetric drop of the phase difference.
However, the state of the junction might carry a supercur-
rent, which modifies the field. A calculation in the lines
of Refs. [86,92] (see Appendix A), which imposes elec-
troneutrality in the electrodes, produces a deviation from
the symmetric drop with f = −∑

ν �νφν/�, where � is
the superconducting gap. In the two terminals setup, it

(a) (b)

FIG. 3. Phase dependence of the transition-matrix elements
(in units of � = �1 + �2) for different phase-drop distributions
in a junction with two leads: symmetrically over the couplings
(α = 0), on �1 (α = −1/2), on �2 (α = 1/2), and halfway (α =
∓1/4). (a) Situation close to resonance. Low but finite deviation
from ξ �= 0 and �1 �= �2 (δ� = �1 − �2) produces the high peak
at δ = π due to the anticrossing between E0 and E1 (see Fig. 2
top). The slight asymmetry in the couplings produces asymme-
try over the sign of α (gray dashed lines show the results for
�1,2 = 1). (b) Situation with larger coupling asymmetry, produc-
ing a large asymmetry over the sign of α; dashed lines show the
results for ξ = 0.

gives α = (�1 − �2)/�, which vanishes in the limit of
large gap.

In the setup with three leads [Fig. 1(d)], the coupling
term [Eq. (2)] is
[
�1 cos (−φe1/2 + f )+ �2 cos (φe2/2 + f )

+ �3 cos (φe1/2 − φe2/2 + f )
]
τx −

[
cos → sin

]
τy ,

which in the limit �3→0 is not equivalent to the two
leads case: if the fluxes have the same source and obey
φ1,2e = η1,2φe, then f = (�1η1 − �2η2)φe/2�. For η1,2 =
1, we have the same Hamiltonian as in the two leads
case, but now the phase drops −φe/2 + (�1 − �2)φe/2�
and φe/2 + (�1 − �2)φe/2� can go up to 2π , therefore
becoming able of achieving the relaxation free point α0 for
parameters where 1/2 ≤ |α0| ≤ 1.

We note that there are other transformations Un = eifnτn

(n �= z) that generate the time-dependent terms −�f ′
n τn/2.

The case n = 0 (τ0 = 1) refers to a global energy shift and
introduces a global time-dependent phase with no effects.
The cases n = x, y have no apparent physical interpre-
tation, but the time-dependent term must be kept if the
transformation has been made for example to facilitate
calculations.

As argued in the previous paragraphs, the phase-drop
distribution is very important for the relaxation rates. In
addition, from a broader perspective, its effect is pervasive
on other observable quantities that depend on the matrix
elements, such as the shift of a resonator coupled to the
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circuit or the transition rates between the states in the
junction [126–133].

B. Topological properties

This model of the trijunction in a perfect phase-biasing
configuration can be linked with the topological singulari-
ties predicted in general multiterminal junctions [48], since
there are certain configurations where E01 reaches 0, form-
ing a Weyl point. In our case [see Eq. (3)], these points
appear when the parameter ξ and the sum �T = ∑

ν �νe
iφν

vanish, so topological protection in this model against vari-
ations in ξ is not possible, though it is on the �ν’s and
the φν’s. It is convenient to interpret �T as a vector in the
complex plane, formed by the addition of the constituent
numbers of magnitude �ν and direction eiφν . In the case of
two terminals, the only possibility is �1 = �2 with a phase
difference of π . However, with three terminals, if the �ν’s
satisfy the triangle inequality (each side is smaller than the
sum of all the other sides) there is a set of phase differ-
ences that produce a Weyl point—a similar argument has
been recently used to map a general model of a multiter-
minal quantum dot Josephson junction into a two-terminal
one [62]. In this case, the presence of Weyl points would
be protected against variations on the �ν’s, as long as they
continue satisfying the triangular equality. If the number of
terminals is increased to N , the generation of Weyl points
becomes more probable since there are more ways of clos-
ing a polygon with N sides, and they live in a phase space
of N − 1 dimensions.

This configuration can be compared to a mul-
titerminal junction in the tunnel limit, with H =
Re

∑
μ>ν EJμνe

i(φμ−φν). In this case, there is only one
“band” but the points where H = 0 are interesting as they
correspond to a maximum supercurrent, and the EJμν’s play
a role similar to that of the �ν’s for defining these points.

III. CHARGE ISLANDS’ CONFIGURATION

In this section we consider the situation in which the
central region is connected to isolated superconducting
islands [Fig. 1(e)]. In this configuration the number of
Cooper pairs Nν in each island ν is a discrete variable
and the total number of pairs NT = ∑

ν Nν + nd is con-
served, where 2nd is the number electrons in the central
region. This conservation constrains the accessible states
in the basis

∣∣{Nν}, nm
d

〉
for a given value of NT, where the∣∣nm

d

〉
are the states in the central region. In our model,

we consider only |0〉d (nd = 0) and |↑↓〉d (nd = 1), with
n̂d = ∑

σ d†
σdσ /2, so the label m will be dropped from now

on. As a result of the constraint, an instance (value) of
NT can be described with a smaller basis, e.g., one lead
variable can be removed using N̂μ = NT − ∑

ν �=μ N̂ν − n̂d.
The charging effects in and between the islands are

described by a capacitance matrix C such that the
associated Hamiltonian is HC = ( N − ng)

TC−1( N − ng),

where N = (N̂1, N̂2, . . . , N̂N ) is the vector of the number
operators in each of the N islands and ng is composed
of the corresponding effective charge offsets, which indi-
cate the charge configuration in a situation of electrostatic
equilibrium. In general, HC can be interpreted as a confin-
ing potential in the charge basis, and it could also include
capacitive couplings between the leads and the central
region by increasing its size and including n̂d in N . The
particular values of C depend on how the electromagnetic
field accommodates into the geometry and materials of the
device. We consider the regime where the absolute charge
offsets are large enough so that the eigenspectrum of the
N̂ν’s can be extended to Nν ∈ Z for convenience (the ngν’s
are shifted to denote deviations from the integer set closest
to equilibrium).

As discussed in Ref. [20], deep inside the gap and
restricted to the even parity sector, the main tunneling pro-
cess is the effective interchange of Cooper pairs between
the leads and the central level, though microscopically the
electrons actually tunnel one by one [15]. Thus, in the
infinite gap limit discussed in the previous section, the cou-
pling Hamiltonian is Hc = ∑

ν �νe
−iφ̂νd†

↑d†
↓ + h.c., where

e−iφ̂ν decreases Nν by 1 (now the phase is the generator
of the charge translations with [φ̂μ, N̂ν] = iδμν), and d†

↑d†
↓

introduces both electrons of the pair in the dot. The NT
constraint in the Hilbert space |{Nν}, nd〉, which can be

(a) (c)

(b)

FIG. 4. Lattice representation of the island configuration. The
island charge variables Nν define the dimensions of the crystal
and the fermionic states are the atoms in the unit cell (dotted
gray lines), with hollow (full) circles for |0〉 (|↑↓〉). The sets of
connected states for an instance (value) of total charge NT are the
blue dimers in (a), the blue-red chains in (b) and the blue-red-
green grid in (c) for the setups of 1, 2, and 3 leads, respectively.
The dashed lines represent the projection of a single instance
in a space with lower dimension, where the projected variable
is determined by the conservation of NT, e.g., a blue-red chain
in (a), where N2 = NT − N1 − nd. The pale circles in (c) repre-
sent sites of adjacent NT grids, which would be connected in the
presence of a fourth lead.
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described by a gauge symmetry in the phase space [14,20],
may be noticed by the fact that the states |{Nν}, 0〉 and
|{Nν}, ↑↓〉 are not connected in any way, because the cou-
pling conserves the total charge. However, these states are
hybridized when an additional island is introduced—this is
the main feature explored in this section.

If the basis is portrayed as a lattice in the {Nν} space with
a unit cell comprising the fermionic levels, each NT ∈ Z

constitutes an independent set disjoint from the others (see
Fig. 4). Starting with one island and the central level, these
sets are the groups of two sites fulfilling N1 + nd = NT
[the dimers connected with blue lines in Fig. 4(a)]. Then,
when the second island is coupled, the sets are 1D chains
defined by N1 + N2 + nd = NT [the blue and red chains in
Fig. 4(b)]. One of these instances of NT is projected on
panel (a), where the dashed red lines represent the cou-
pling �2 and N2 = NT − N1 − nd. When a third lead is
connected, the chains connect between themselves through
�3 and form a 2D grid fulfilling N1 + N2 + N3 + nd = NT,
depicted in Fig. 4(c) and projected to N1,2 in panel (b). Sim-
ilarly, these grids may be connected when a fourth lead
is included, and so on. In the following subsections, this
kind of circuit is progressively explored along with some
applications for the definition of protected qubits.

A. One terminal

We consider first a single superconducting island with
HC = EC1(N̂1 − ng1)

2 connected to the central region. The
relevant states |N1, nd〉 are

|0, 0〉 → E = EC1n2
g1

|−1, ↑↓〉 → E = EC1(−1 − ng1)
2 + 2ξ ,

(4)

where a translation in N1 = NT would refer to other
instances of total charge [blue dimers in Fig. 4(a)]. The
energies of the NT = 0 instance (ng1 is shifted so that it
refers to the instance with lowest energy) are the solid
black parabolas in Fig. 5(a), hybridized by the tunneling
�1, which opens an anticrossing at ng1 = −1/2 − ξ/EC1
(close to the symbols that indicate the wave functions in
the lower panels). The dashed lines in Fig. 5(a) represent
other instances of NT, which are in principle uncoupled
subspaces.

As indicated in the lower panels, the two-level sys-
tem in the limit �1 � EC is similar to a charge qubit
with a steep ng dependence that would be detrimen-
tal for coherence in the presence of charge noise. In
the opposite limit �1 � EC, the eigenstates approximate
the symmetric and antisymmetric combinations

∣∣N ′
1, ±〉 =

(|N1, 0〉 ± |N1 − 1, ↑↓〉)/√2 for a larger range in ng1 , with
a transition energy approximately 2�1. The dispersion of
E01 over ng1 is reduced (approximately E2

C1
n2

g1
/�1, disre-

garding ξ ), but now the relaxation produced by the noise in
ng1 is larger as ∂H/∂ng1 is nondiagonal in the qubit basis.

When compared with the transmon, this setup does not
suffer the problem of reduced anharmonicity, but we note
that the single-level model of Eq. (1) would not be valid at
arbitrary �1 because the qubit states could approach other
levels in the central region. A more microscopic model of
this configuration has been studied in Ref. [134].

B. Two terminals

When a second terminal is connected to the central
region, the constraint N1 + N2 + nd = NT produces inde-
pendent sets with an infinite number of states, the blue and
red chains in Fig. 4(b). In the extended basis |N1, N2, nd〉,
the coupling �2 (red) connects |0, 0, 0〉 with |0, −1, ↑↓〉,
which in the projected basis |N1, nd〉 appears as a coupling
between |0, 0〉 and |0, ↑↓〉 [red dashed lines in Fig. 4(a)].
To illustrate this we start by considering that the second
terminal is very large so that there is no additional charging
energy.

In this situation, we have HC = EC1(N̂1 − ng1)
2, and in

the limit �1,2 � EC1 , the states (in the reduced basis) |0, 0〉
and |−1, ↑↓〉 maintain the anticrossing given by 2�1 as in
the previous subsection. The coupling �2 does not directly
open anticrossings between |N1, 0〉 and |N1, ↑↓〉, because
their energies never coincide. However, at ng1 = −1/2
[indicated by symbols in Fig. 5(b)] both couplings combine
to hybridize |N1 − 1, nd〉 with |N1, nd〉 through an inter-
mediate state with opposite central-level occupation. For
finite |ξ | � �1,2 the gap opening is approximately (�2

1 +
�2

2)/ξ . The states |N1 − 1, 0〉 and |N1, ↑↓〉 also hybridize
through two intermediate states at ng1≈ − 1/2 + ξ/EC1 ,
with an even smaller anticrossing (the size decreases with
the number of intermediate states needed for the indirect
coupling). In the lower panels we show the different states
|N1〉 contributing to the ground and the first excited eigen-
states. As we discuss next, more and more charge states
contribute as the coupling is increased.

In the limit �1�EC1��2 [corresponding qualitatively
to Fig. 5(c)], the lowest-energy states, approximately∣∣N ′

1, −〉
and

∣∣N ′
1 + 1, −〉

, anticross close to ng1 = N1 open-
ing a gap of the order of �2. Note that these two levels are
completely disjoint at �2 = 0, defining a qubit protected
against relaxation by charge noise. However, as discussed
in the previous subsection, the decoherence produced by
the noise in ng1 may be important for feasible values of �1.

We address now the regime�1,2�EC1 in which the wave
functions extend broadly over the charge states [Fig. 5(d)],
thereby decreasing the modulation produced by the off-
set charge ng1 , just like in the transmon [122]. We note
that transmon implementations in hybrid semiconductor-
superconductor nanostructures provide gate tunability.
The resulting gatemons [39,135,136] are thus more suit-
able to manifest features from the Andreev structure,
in particular when tuned close to resonance [7,10].
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(a) (b) (c) (d)

FIG. 5. Energy dispersion over the charge offset ng1 in the configurations with one and two terminals (EC2 = 0, ξ = 0.2, energies
in units of EC1 ), and wave functions indicated with markers (bottom panels). (a) Small coupling of the central level with island 1: the
instance NT = 0 is in solid lines, and other instances in dashed; some bare |N1, nd〉 states are indicated close to the bottom of their
charging parabolas. (b) Small couplings with islands 1 and 2: finite �1 and �2 connect all states in (a). (c) Large (small) coupling
with terminal 1 (2): �1 dominates the formation of symmetric and antisymmetric combinations. (d) Large couplings (more similar to
a transmon except that the junction is close to resonance, not in the tunnel regime).

The Josephson-Andreev junction should recover the typ-
ical tunnel junction transmon when the central level is
far from resonance. In this case there is an exponen-
tial suppression of the charge dispersion with Eeff

J /EC1 ,
where Eeff

J is the effective amplitude of Cooper pair tun-
neling between the leads [122]. In the resonant limit, the
Josephson-Andreev transmon (JAmon) dispersion is even
more suppressed and becomes dominated by the tunnel-
ing of pairs of Cooper pairs [7,10,20]. In either case, the
dispersion is a nonperturbative effect.

In order to estimate the levels energies, we may disre-
gard this dispersion and use an adiabatic approximation
in the phase space, which consists in using the phase
dependence E0(φe) [Eq. (3)] of the Andreev lowest state
as the effective potential in the phase variable φe → φ̂1.
Then, in the transmonlike limit of localized phase, it is
expanded up to fourth order at φe = 0 to get the harmonic
separation ω ≈ E01 between states and the anharmonicity
αh = E12 − E01 at lowest order. In the tunnel limit ξ��1,2,
ω ≈ 2

√
EC1�1�2/2ξ , and in the resonant limit δ� = 0 =

ξ , with �, δ� = �1±�2, ω ≈ 2
√

EC1�/8. More details are
provided in Appendix B.

1. Two charge islands

In the situation we have analyzed so far, where there
is charging energy only in one island, the spectrum is
periodic in ng1 , as a charge translation in N1 equals to
a charge translation in the charge offset. Moreover, all
instances NT are equivalent, because a charge transla-
tion in N1 also corresponds to a translation in NT. This

also occurs in the situation where the charging energy
only depends on the imbalance between the two islands,
with HC = EC12(N̂1 − N̂2 − ng12)

2, which has been thor-
oughly analyzed in Ref. [20]. However, this is not true in
general when the two leads are islands with finite charging
energies.

In this case, the additional charging term in the reduced
basis,

EC2(N̂2 − ng2)
2 = EC2(NT − N̂1 − n̂d − ng2)

2,

removes the periodicity in the offset charges and the equiv-
alence between NT instances. This is shown in Fig. 6(a),
which uses the same parameters as in Fig. 5(d) except for
the introduction of EC2 = EC1 . We observe in the lower
panels of the figure that now the wave functions corre-
sponding to two different instances delocalize along lines
of fixed total charge in the (N1-N2) plane [see Fig. 4(b)].
The transition to the three leads case (see next subsection)
is similar to the previous discussion when going from one
to two leads in Fig. 5(a), where different instances become
coupled by the additional lead.

C. Three terminals

When a third terminal is connected to the central region,
there are two independent charge variables—we may use
for example the projected basis |N1, N2, nd〉 where N̂3 =
NT − N̂1 − N̂2 − n̂d. In this situation, if the charging poten-
tial is flat in one direction, the wave functions are not
constrained and a continuous band is formed in that direc-
tion. Considering the charging terms as a quadratic form
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(a) (b) (c) (d)

FIG. 6. Energy dispersion over the charge offset ng1 in the configurations with two and three terminals when two of them are islands
with finite charging energy (ng2 = 0, EC3 = 0, energies in units of EC1 = EC2 ) and wave functions indicated with markers, represented
in a N1-N2 space where each cell is divided into a lower and an upper triangle for the level states |0〉 and |↑↓〉, respectively (bottom
panels). (a) Only two terminals as in Fig. 5(d) but now terminal 2 has finite charging energy, which renders the spectrum aperiodic
and nonequivalent between instances (NT = 0 in solid lines, others in dashed). (b) Introducing the coupling �3 with the third terminal,
which connects the different instances (chains) in (a). (c) Large couplings �1,2 (transmon regime in the N1 − N2 direction) and small
coupling �3 (Cooper pair box regime in the orthogonal direction), central level close to resonance. (d) Same with central level far from
resonance (tunneling regime).

in the charge variables, then the previous condition occurs
when one of its principal axes has a 0 eigenvalue. There-
fore, in order to have a discrete set of states, we consider
a fully confining potential. In particular, we select the
potential for the situation where two terminals are islands
with finite charging energies EC1 and EC2 (used in the last
part of the previous subsection), and the third terminal has
no charging energy.

In this case, a finite coupling �3 connects the chains that
were independent instances in the case with two terminals
[Figs. 6(a) and 6(b)], and the wave functions extend in the
number space according to the charging potential. When
the wave functions are broadly extended in charge the sys-
tem can be thought as a set of coupled harmonic oscillators,
a limit which is analyzed in the tunneling regime in Sec. V.
Here, we focus in the limit of small �3 compared with the
charging energy in the transverse direction of the chains,
which suggests the definition of a qubit formed by two
adjacent chains [Figs. 6(c) and 6(d)]. This limit is better
understood in a number basis where one degree of freedom
refers to the extension of the wave function on the direction
of a chain (N12 := N1 − N2, the diagonal in the wave-
function plots in Fig. 6) and the other one refers to the
specific chain (N1 + N2 + nd = NT − N3, the antidiago-
nal). The offset charge does not affect in the chain direction,
but in the orthogonal one it produces charge parabolas.
In the case EC2 = EC1 , illustrated in Fig. 6, the charg-
ing potential in that orthogonal direction is approximately
EC1(N3 + nd + NT + ng1 + ng2)

2/2. Due to the structure of
the wave functions in the resonant and tunneling (large ξ )

limits, where 〈nd〉 ≈ 1/2, 0, respectively [panels (c) and
(d)], the spectrum has minima in ng1 at Z + 1/2 and Z

when setting ng2 = 0. The structure of the wave functions
also determines the size of the anticrossings, which is of
the order 2�3 and �2

3/ξ in the resonant and tunneling
limits, respectively.

D. Discussion

The lattice picture used in this section of charge islands
allows us to relate these systems with the definition of pro-
tected qubits that use states of disjoint support. As argued
in a recent work that addresses the protection enabled by
the resonant regime of a quantum dot junction in a loop
[22] (see Sec. IV A), the idea of this protection can be rep-
resented in a general manner by a 1D lattice where the
nearest-neighbor couplings vanish. In that situation, if only
next-nearest-neighbor couplings are present, the lattice dis-
connects into two separate chains, which become the hosts
of the disjoint states that define the qubit. In our case,
the lattice for the Josephson-Andreev junction with three
leads, where one of them profits from a controllable cou-
pling with the central level [Figs. 4(b) and 4(c)], enjoys a
similar interpretation. Here, two adjacent chains formed by
the arrangement of two leads host the disjoint qubit states.
The difference is that the coupling between the chains,
mediated by the coupling �3 with the third lead, is not com-
pletely equivalent to the reassembling of a single chain but
skips alternate nearest-neighbor couplings and may also
involve other chains. Additionally, in this system the only
parameter that controls the coupling between chains is �3,
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a property that seems to be model independent because no
matter the particular Andreev structure, the conservation of
the total charge forbids interchain coupling if the third lead
is disconnected. This applies to the introduction of more
levels in the modeling of the central region, quasiparticle
states in the leads, or direct tunneling between the leads
[probably relevant for the implementation of Fig. 1(a)].

The problem with this kind of protected Hamiltonian
structures is that the parameter region where the disjoint-
ness takes place is small: the resonant regime of the quan-
tum dot fluxonium requires vanishing ξ and δ� [22], and
the multiterminal island configuration with two indepen-
dent chains requires vanishing �3 for the disconnection,
and fine tuning of the charge offsets for the degeneracy.
These parameters are also a source of dephasing, because
the transition energy varies linearly from the anticrossing.
In particular, the charge noise from the charge offsets ngν’s
is important because the chains are charge states like those
in a Cooper pair box with a tunable Josephson coupling
determined by �3.

Finally, as a curious property, we point out that our
microscopic model of the junction bestows a polyatomic
unit cell to the number lattice. For instance, in the case
with two leads the Hamiltonian equals a Su-Schrieffer-
Heeger (Rice-Mele) model for ξ = (�=)0 [Fig. 4(a)] when
there are no charging energies [137,138]. Increasing the
number of states describing the microscopic part of the
junction would increase the number of sites in the unit
cell, implementing different kinds of crystal Hamiltonians
of N − 1 dimensions, where N is the number of leads.
However, getting evidence of edge states in a topological
phase would require the use of a charging potential able
to provide a steep barrier in the number coordinate while
maintaining a flat potential in the interior of the well.

IV. LOOP CONFIGURATION

We now consider the case where two leads are con-
nected forming a loop [Fig. 1(f)], for which a different,
more macroscopic model is required. We use the vari-
able of tunneled pairs between the leads of the loop N̂12 =
N̂1 − N̂2, conjugate to φ̂12, with charging energy EC12N̂ 2

12.
This model without the separate islands 1 and 2 is qual-
itatively different from the one derived in the previous
section, because the loop disables the island nature of these
leads, rendering the charge difference continuous [93] and
allowing the presence of high-energy persistent current
states [139]. The charge in the remaining island 3 remains
discrete, and the total Hamiltonian is the combination
H12 + H3 + Hd + Hc:

H12 = EC12N̂ 2
12 + EL(2φ̂12 − φe)

2

H3 = EC3(N̂3 − ng3)
2

Hd = ε
∑

σ

d†
σdσ + ud†

↑d↑d†
↓d↓

Hc =
(
�1e−iφ̂12 + �2eiφ̂12 + �3e−iφ̂3

)
d†

↑d†
↓ + h.c., (5)

where the Josephson processes that couple the dot with the
leads in Hc take into account that a tunneling of a pair from
ν = 1(2) to the dot level produces a shift in N1 − N2 by
∓1 (translation e∓iφ̂12 ) and that a tunneling from ν = 3 to
the dot level produces a negative shift in N3 (translation
e−iφ̂3 ). The Hamiltonian can be solved in the |φ12, N3, nd〉
basis with N̂12 = −i∂φ12 .

The phase drop φe = �/�0 is to be distributed among
the inductance and the couplings �1,2. In a dynamical
situation, the correct description for a tunnel junction with-
out Andreev structure corresponds to the phase dropping
completely on the inductance [81,83] (in the absence of
additional time-dependent terms). However, in our case, a
freedom in the drop distribution within the junction is still
present [�1,2 → eif �1,2 in Hc, Eq. (5)]. We note that the
inductive potential EL(2φ̂12 − φe)

2 includes a factor of 2
as the complete transfer of a pair from lead 1 to lead 2
requires two tunneling events. In the limit L→0 (EL→∞),
the phase becomes localized at φ̂12→φe/2, recovering the
model in Sec. II.

From a circuit perspective, the loop-island Hamilto-
nian contains two modes, one fluxlike and one chargelike,
which may be harnessed to devise protected qubits. These
qubits would be similar in nature to the ones conceived
in multimode circuits where several conventional elements
generate the different modes [23]. In the remaining of this
section, we explore the full Josephson-Andreev Hamilto-
nian, first in a one loop configuration, and then introducing
a third floating lead. In Sec. V, we focus on the cotunnel-
ing limit, which allows a straight-forward correspondence
with the protected multielement circuits.

A. Two terminals forming one loop

This configuration is similar to a flux qubit when the
Josephson-Andreev junction is in the tunneling regime
[140–143]. Otherwise, when the Andreev structure is
close to resonance (�1 = �2, ξ = 0), it has been recently
identified as a prospective protected qubit based on two
disconnected states [21,22].

In Fig. 7, we review the main features of the energy
spectrum of this system, along with the corresponding
wave functions. When EL is large compared with EC
[Fig. 7(a)], the phase is localized and we recover the
Andreev states of the central level from Sec. II. We note
that the fermionic structure already provides a difference
with the flux qubits, as the first excited level is an Andreev
state. The associated wave functions (lower panels) are
hybridizations between |0〉 and |↑↓〉 at a localized phase.
In contrast, the excited states of the flux qubit are bosonic
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(a) (b) (c) (d)

(e)

FIG. 7. (a)–(c) Energy dispersion over the external phase φe for decreasing values of EL in the loop configuration with two leads, and
wave functions indicated with markers [bottom panels—they are centered over φ12 ∼ φe/2 because of the form of the inductive term
EL(2φ12 − φe)

2]. Gray lines indicate the resonant case with �1,2 = 1 and ξ = 0 (energies in units of EC12 ), and black lines indicate the
case �1 = 0.95, �2 = 1.05 and ξ = 0.6 (with a shift of −ξ ). (d),(e) Matrix elements associated to noise in φe and ξ for the nonresonant
parameters in (a)–(c) [setting φe = 0.95π in (e)] and α = 0, indicating each case with the colors in the (a)–(c) corners.

in nature, being harmonic oscillatorlike wave functions
with finite phase fluctuations enabled by the charging term,
which acts as a kinetic energy in the phase representation.
This kind of state corresponds to Andreev replicas such as
the higher doublet in Fig. 7(a).

When EL is lowered, there is a competition between the
inductive energy, a parabolic potential in phase represen-
tation, and the potential produced by the charge-transfer
terms. In the tunneling regime this potential is simply
−EJ cos φ̂12, and the wave function may extend over two
minima when φe = π and EJ ∼ EL, or several of the min-
ima when EL � EJ . In the latter case, if the kinetic energy
EC is large compared to EJ , the wave function exceeds the
maxima of the cosine and the phase delocalizes broadly;
otherwise, the wave function localizes at several of the
phase potential minima, and represents a superposition of
discrete current states encircling the loop. In the junction
with internal structure, the Andreev level introduces an
additional degree of freedom. The limit |ξ | � � recov-
ers the previous tunneling regime where the states involve
mainly just the lower energy Andreev state and the higher
one is just virtually occupied to allow the flow of charge.
However, in the resonant limit, both Andreev states par-
ticipate. They are always degenerate at φe = π and if EL
is lowered, their phase dependence decreases, providing
a disjoint basis for a protected qubit insensitive to fluc-
tuations in φe [21,22]. The evolution with decreasing EL
is shown in Figs. 7(a)–7(c) where the black lines refer to
a situation a bit out of resonance and the gray lines to a
situation of full resonance, which maintains the Andreev
degeneracy for any value of EL.

In Figs. 7(d) and 7(e) we show the matrix elements
| 〈0| ∂H/∂λ |1〉 |2 associated to noise in λ = φe (λ = ξ )
between the two lowest energy states with solid (dashed)
lines for the parameters in the panels (a) to (c). There
is a reduction in the matrix elements magnitude with the
decrease of EL as the states spread over φ12 and become
less sensitive to the Andreev degrees of freedom. In gen-
eral, the protection against φe noise is enhanced when
approaching resonance as the states share their structure in
φ12 but are orthogonal in the Andreev sectors. In contrast,
the noise on the parameters ξ , δ� that move away from
resonance is more harmful in that regime as it produces
dephasing due to the linear splitting of the energy levels.
Finally, there is the issue of the phase-drop distribution.
In Figs. 7(d) and 7(e) we have used a symmetric drop in
the couplings with the central level (α = 0), as expected
in an homogeneous field situation with almost symmetric
coupling strengths �1,2. However, a finite α would boost
the effect of the φe noise because the pair-tunneling terms
would start to contribute to ∂H/∂φe.

B. Three terminals: one loop and one island

In the previous subsection we have seen that a low
inductive potential favors the insensitivity to dephasing
produced by φe noise. However, in order to achieve the
protection against decoherence it is necessary to have two
states that are disjoint over a different degree of free-
dom, such that ∂H/∂φe does not connect them. These two
states were provided by the fermionic structure of the junc-
tion in the resonant limit, which fulfils this purpose but
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(a) (b) (c) (d)

(e)

(f)

FIG. 8. (a)–(c) Energy dispersion over the charge offset ng3 (top panels) and the external phase φe (middle panels) in the loop
configuration where a third terminal is a charge island, and wave functions indicated with markers (bottom panels—the colored inset
is a legend that represents the participation of the central level in the wave function). Gray lines indicate the resonant case and black
ones a situation a bit out of resonance. In panel (a), the island is in the transmon regime (delocalized N̂3) and the loop is close to
a phase-biased regime [well-localized phase, parameters of Fig. 7(a) and �3 = 1]. In panel (b), the island is in the Cooper pair box
regime (localized N̂3, with only two states participating in the global wave functions), and the loop in a fluxonium regime [delocalized
phase, parameters of Fig. 7(b) and �3 = 1]. This is similar to a bifluxon. In panel (c), the island has delocalized charge and the loop has
delocalized phase (the resonant condition has a similar spectrum and it is not shown). This is similar to a 0-π qubit—the wave function
is displayed in the |φ12,φ3〉 basis to show that the wave functions of the two lowest states are disjoint. Parameters: �1 = 0.4, �2 = 0.6,
�3 = 1, and ξ = 0.6 (energies in units of EC12 ). (d)–(f) Matrix elements associated to noise in ng3 , φe, and ξ for the nonresonant
parameters in (a)–(c) in the circle markers, and indicating each case with the colors in the (a)–(c) corners.

introduces new sources of noise [21,22]. We explore now
the situation where a third terminal with charging energy is
introduced [Eq. (5)], and how it can provide disjoint states
of a different origin.

We begin in Fig. 8(a) by connecting the loop with two
terminals in the phase-localized regime of Fig. 7(a) to an
island in the transmon regime (delocalized charge). In the
phase-biased limit we have EL→∞, φ̂12→φe/2 and the
configuration is similar to the one in Sec. III B, where
the central region is connected to one charge island and
to one terminal without charging energy. In this anal-
ogy, �3 is the coupling that shifts the occupation number
of the island, and the term �12(φe) = �1e−iφe/2 + �2eiφe/2

is the coupling that connects the central-level states at
a fixed island occupation, which is now tunable by φe.
This arrangement connects all sites in the resulting |N3, nd〉
chain and, as a result, the occupation of the island is deter-
mined by the combination of all the couplings, not only

�3. For instance, the wave function marked with a circle in
Fig. 8(a) has a lower charge dispersion that the one with a
triangle because at φe = π the effective coupling �12(φe)

is reduced.
In Fig. 8(b) we combine the phase extended regime of

Fig. 7(c) in the loop with the island in the Cooper pair box
limit (strongly localized charge, thus, it can be described
with the two number states of lower energy). This situ-
ation benefits of the φe insensitivity already discussed in
the previous subsection, but now the central region and
the island hybridize into essentially 4 levels. The phase
potential they generate can produce disjoint states in the
limit where only one level in the island (central region)
contributes, and thus the central region (island) may be set
at resonance. The first case is similar to the configuration
of the previous subsection, and the second one describes
the tunneling regime in the central region while two island
states play the role of an effective resonant dot (discussed
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in next section and in Appendix D). The protection of this
configuration is analogous to that of a bifluxon qubit [32].

In Fig. 8(c), we set the protected regime in each degree
of freedom. The wave functions are delocalized over φ̂12
and N̂3 (fluxoniumlike and transmonlike), producing flat
transition energies over the parameters ng3 and φe, so
the qubit states are protected against dephasing by the
associated charge and flux noise. The protection against
relaxation occurs because the states have disjoint wave
functions [see lower panels for the wave functions and pan-
els (d) to (f) for the matrix elements associated to noise on
ng3 , φe, and ξ for the settings in panels (a) to (c)]. This
disjointness is only observed in the space |φ12,φ3〉, but the
fact that the wave functions overlap in the space |φ12, N3〉
does not mean that it is not protected against noise on ng3 ,
as the associated operator N̂3 = −i∂φ3 is local in the phase
coordinate. The same applies to a possible charge noise
in the loop with N̂12 → N̂12 − ng12 and to noise in other
parameters with local associated operators. Thus, the pro-
tection of this configuration is analogous to that of a 0 − π

qubit [31]. This and the previous connection with protected
qubits designed in multimode circuits made out from sev-
eral traditional elements will be more easily discussed in
the next section when focusing on the tunneling regime.

V. COTUNNELING LIMIT

At certain limits, a nontunnel Josephson junction
embedded in a circuit can be described as a lumped ele-
ment, i.e., an effective tunnel junction [Fig. 1(c), Sec. III B
and Appendix B], which is characterized by the phase
dispersion of the lowest-energy Andreev state. This adi-
abatic approximation in a multiterminal situation provides
an interpretation in terms of processes that distribute pairs
between the leads, i.e., a combination of lumped junctions
between each terminal. For example, in a three-terminal
configuration with time-reversal symmetry (e.g., in Fig. 2),
the ground state can be written as

E0(φ1,φ2) =
∑

n1,n2∈Z

An1,n2 cos (n1φ1 + n2φ2) ,

where the form ∝ cos (n1φ1 + n2φ2) can be associated to
processes where several Cooper pairs from one lead split
into the other two, and An1,n2 = A−n1,−n2 . This association
may be done by defining the phase variables in correspon-
dence with their operator counterparts in Sec. III. There,
by using the reduced basis |N1, N2〉, a tunneling from termi-
nals 1 → 3 (2 → 3) is produced by the translation operator
e−iφ̂1 (e−iφ̂2 ), and from 1 → 2 by e−iφ̂1+iφ̂2 . In this way, the
phase variables recover their operator nature conjugate to
chargelike variables in the resulting effective Hamiltonian
H eff

J (φ̂1, φ̂2) .

In particular, if we consider only single pair tunneling
processes, the effective tunneling Hamiltonian is

H eff
J = −EJ13 cos φ̂1 − EJ23 cos φ̂2 − EJ12 cos (φ̂1 − φ̂2),

with EJ13 = −2A1,0, EJ23 = −2A0,1, and EJ12 = −2A1,−1.
We use this case to analyze the following limits.

A. Trijunction in an island configuration

In the harmonic limit of an island configuration
(ECν’s � EJμν’s), the wave functions localize in phase so
we can approximate H eff

J ≈ (EJ13 + EJ12)φ̂
2
1/2 + (EJ23 +

EJ12)φ̂
2
2/2 − EJ12 φ̂1φ̂2. The charge offsets ngν’s have no

effect in this limit (the charge becomes continuous and
the ngν a gauge freedom [93]) and we can write H eff

harm =
N T

C N + φT
J φ where N = (N̂1, N̂2)

T, φ = (φ̂1, φ̂2)
T and

C =
(

EC1 + EC3 EC3
EC3 EC2 + EC3

)
,

J = 1
2

(
EJ13 + EJ12 −EJ12−EJ12 EJ23 + EJ12

)
, (6)

such that the Hamiltonian can be diagonalized into two
harmonic modes H eff

harm = ∑
ν ων(a

†
νaν + 1/2) (see details

and extensions provided in Appendix C).
In the limit where one island is in a Cooper pair

box regime (e.g., EC3 � EJ13 , EJ23), that island can be
described with a two-level model, one for each of the
lowest-energy number N3 occupations. As elaborated in
Appendix D, it maps to the model of the Josephson-
Andreev junction with two terminals in Sec. III when
EJ12 = 0 (the terminal 3 would play the role of the central
level).

B. Trijunction with two terminals in a loop and one
island configuration

If two terminals close themselves forming a loop, the
model is similar to the one in Sec. IV, where the variables
are the tunneled pairs between the leads of the loop N̂12
and the number of pairs N̂3 in the island. The effective
Hamiltonian is H12 + H3 + Hc, where

H12 = EC12N̂ 2
12 + EJ12 cos 2φ̂12 + EL(2φ̂12 − φe)

2

H3 = EC3(N̂3 − ng3)
2

Hc = EJ13 cos (φ̂12 + φ̂3)+ EJ23 cos (φ̂12 − φ̂3),

(7)

and the operator ei2φ̂12 transfers a pair from 1 → 2,
eiφ̂12+iφ̂3 from 1 → 3 and eiφ̂12−iφ̂3 from 2 → 3. The
Hamiltonian can be solved in the basis |φ12, N3〉, and
contains two modes, which can be harnessed to devise
protected qubits similarly to multimode circuits designed
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with superconductor-insulator-superconductor (S-I -S) tun-
nel junctions [23]. Two conventional limits are the
following.

On the one hand, if EJ12 � EJ13 , EJ23 , the Hamiltonian is
similar to a “cos 2ϕ” qubit as the potential in φ̂12 is almost
π periodic [35,38]. Physically, the situation with only EJ12
tunneling conserves the parity of tunneled pairs, generating
two disconnected sets of states.

On the other hand, if EJ12 = 0 and EJ13 = EJ23 := E′
J ,

the coupling becomes

Hc = E′
J cos φ̂12 cos φ̂3,

recovering the typical expression for multimode circuits,
such as the bifluxon or the 0 − π qubit, at the correspond-
ing parameter regime [23].

VI. GENERAL DISCUSSION AND OVERVIEW

In this section we summarize and compare the main fea-
tures of the different circuits discussed in previous sections
and provide some estimates for the expected qubit frequen-
cies and decoherence rates. For this purpose we compile
in Table I the relevant information regarding degrees of
freedom, control parameters, and circuit noise sources for

each configuration. We also highlight their correspondence
to conventional superconducting qubits based on tunnel
junctions or other interesting properties.

The first row in this table corresponds to the triterminal
junction with perfect phase-biasing considered in Sec. II.
In this case the control parameters are the external fluxes
�1e, �2e determining the phase differences between the
junction terminals. In this configuration the phases have
no dynamics and we deal with a purely fermionic Andreev
qubit. At the central level degeneracy point, ξ = 0, this
configuration is interesting due to the appearance of pro-
tected crossings (Weyl points) (see Fig. 2). As the central
level becomes more detuned, the energy bands become flat
at the expense of increasing its transition energy. A similar
spectrum has been shown to arise in a bi-SQUID circuit
based on metallic tunnel junctions [144].

The second row in Table I corresponds to the charge
island configurations discussed in Sec. III. The two-
terminal device in the tunnel regime describes the gate-
mon for gate-tunable weak links and when the third lead
is connected, the total charge delocalizes in a plane of
integer quantum variables. We find an interesting regime
[Figs. 6(c) and 6(d)] where the wave functions corre-
spond to the charge chains of two islands coupled through
the third terminal, which thus controls their disjointness.

TABLE I. Summary of the circuit configurations for three terminal junctions analyzed in this work, indicating the relevant quantum
variables and control parameters within our modeling, the main circuit noise sources and the most significant properties. The first row
for the perfect bias case (Sec. II), the second row for charge island configuration (Sec. III), and third row for the mixed configuration
including a loop and a charge island (Sec. IV).

Configuration Quantum variables
Control

parameters Circuit noise Highlights

Perfect phase bias

- Sensitivity of relaxation to
phase-drop distribution

- Appearance of Weyl points
- Connection with Bi-SQUID

nd ∈ Z2
φ1e,φ2e

ξ , �ν
Flux

Charge islands

- Mapping to a discrete lattice:
platform for topology

- Controllable disjointness
Nν ∈ Z (φν ∈ [−π ,π))

nd ∈ Z2

ngν

ξ , �ν
Charge

Hybrid charge/flux

- 0-π and bifluxon in the
tunnel limit

�
- Simultaneous noise pro-

tection to relaxation and
ng , φe dephasing

N12 ∈ R, N3 ∈ Z

(φ12 ∈ R,φ3 ∈ [−π ,π))

nd ∈ Z2

φe, ng3

ξ ,�ν
Charge, flux
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Interestingly, the mathematical (“crystalline”) structure
of the charge island configurations can be mapped into
topological band models.

Finally, the third row in Table I corresponds to the case
where two terminals are shunted by a loop with signifi-
cant inductive energy. In the two-terminal case we explore
the transition from an almost localized phase degree of
freedom to a fluxoniumlike regime. The most interesting
case corresponds to this later one, where there is simul-
taneous protection to decoherence in flux noise due to
the phase delocalization [Fig. 7(c)] and a disjoint support
with respect to the Andreev character [21,22]. When the
third lead is connected, we explored a hybrid configu-
ration in which a charge island is coupled through the
central level to a flux loop with nonzero inductance. We
compare a transmon-(flux qubit)-like regime [Fig. 8(a)], a
(Cooper pair box)-fluxonium-like regime [Fig. 8(b)], and
a transmon-fluxonium-like regime [Fig. 8(c)] with simul-
taneous delocalization in the charge and phase variables
(flat bands in the parameter space) and disjoint wavefunc-
tion support. This is an interesting proposal because it can
realize a 0-π qubit, whose explicit mapping to the con-
ventional implementation we show in the tunnel limit in
Sec. V.

A. Poisoning

We discuss here the effects of quasiparticle (QP) poi-
soning, that takes place when unbound electrons with
energies over the gap tunnel from one region to another
[145]. Though these events may occur at long timescales
compared with some of the present qubit decoherence
times, they can become limiting factors when other deco-
herence sources are optimized, and many strategies are
being developed to decrease the density of excess QPs
as it follows a nonthermal distribution highly dependent
on the implementation. We distinguish two kinds of poi-
soning contributions according to the region where the

(a) (b)

FIG. 9. States with quasiparticle poisoning in the islands.
(a) Three-terminal configuration of Fig. 6(b) with two charge
islands. (b) Charge-flux hybrid configuration of Fig. 8(a) at
ng3 = 1/4.

quasiparticle infiltrates into. As a first scenario, poison-
ing on the charge islands or between capacitively coupled
leads produces a shift Nν → Nν ± 1/2, which is common
in two-terminal devices but more complex in multiter-
minal ones. As we show in Fig. 9, poisoning leads to
the appearance of additional states for the case of three-
terminal devices. In the configuration with two charge
islands [panel (a)], poisoning may occur in any of them
and this provides four families of transitions [146]. In the
situation where all terminals are islands with finite charg-
ing energy, poisoning events from the environment into the
system do modify the spectrum even if they appear in pairs,
because states with different total charge are not equivalent
[e.g., Fig. 6(a)]. In the configuration with a loop and an
island [panel (b)], the states produced by poisoning in the
island depend both on ng3 and φe. The poisoning between
the leads in the loop does not affect the spectrum as the
shunting renders the charge difference continuous and an
static offset charge becomes a gauge freedom [139], but it
does generate relaxation [145,147].

As a second possibility, poisoning on the junction cen-
tral level, in contrast with the previous case, produces a
major rearrangement of the wave function as the quasipar-
ticle mediates the supercurrent. This cannot be described
with a trivial shift of a parameter, but requires a model
that includes the effect of the excess quasiparticles. Within
our infinite gap approximation, isolated QPs at the central
region are not taken into account and thus this odd state
is not included. Including such effects could be possible
by means of models beyond the infinite gap approxima-
tion like the ones used in Refs. [148,149], which can be
undertaken in future studies.

B. Relaxation and dephasing

We now discuss possible sources of decoherence and
relaxation. On the one hand, the measurement device used
to probe the quantum states of the circuit, which can be a
readout microwave resonator, will induce some relaxation
(by means of Purcell effect, or dressed dephasing [150])
and dephasing (through measurement-induced dephasing).
This contribution depends strongly on the design and can
be mitigated by different well-developed strategies (like
Purcell filters). On the other hand, the noise on the system
parameters produces an inherent decoherence, that is to be
minimized by the choice of the architecture of the device
and its operation point. In circuits with conventional tunnel
junctions those parameters are the offset charge, the exter-
nal flux and the Josephson coupling. But in junctions with
an Andreev structure, each fermionic degree of freedom
(in the single-level model controlled by parameters ξ and
the �ν’s) may also experience its own noise. Other source
of decoherence is the relaxation by dielectric loss, which
depends on the design and the materials [147,151–153].
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There are mainly two kinds of noise affecting a param-
eter: 1/f and quantum Johnson-Nyquist noise [154]. For
instance, a background of two-level systems produces
1/f fluctuations in the offset charges, while the coupling
with a gate is responsible for its Johnson-Nyquist noise
∝ ω cothω/2kBT. Precise models for the spectral noise
from these sources depend on the particularities of the
system. Thus, here we use a simple expression able to
reproduce typical behavior of the spectral noise. As the
crossover between noises occurs typically in the range of
GHz both for offset charge and flux [154–157] this form
can be chosen as

Sλ(ω) = 2πA2
λ

(
1
ω

+ ηλω

1 GHz2 coth
ω

1 GHz

)
,

where Aλ is a noise amplitude, ηλ is a factor adjusting
the Johnson-Nyquist noise and we have used a temper-
ature T ∼ 25 mK ≈ 0.5 GHz and a symmetrized spec-
tral noise such that the relaxation (depolarization) rate
1/Tλ1 = Sλ(E01)| 〈0| ∂H/∂λ |1〉 |2 includes both emission
and absorption at the qubit frequency (we disregard exci-
tation processes to higher-energy states, but in the dis-
joint regime these may be relevant [29]). We use typical
noise amplitudes for charge and flux noise Ang ∼10−4,
Aφe∼10−5, and ηng ∼ 0.01, ηφe ∼ 10 [116,120,122,154].
For the noise in the Andreev structure, we note that few
experiments exist on mesoscopic Josephson junctions pro-
viding an analysis for relaxation and dephasing rates, so
the accuracy of this discussion is limited. However, we
try to give some reasonable estimation, for example, from
the data in Ref. [158], where there is a single central gate,
which mainly controls ξ (also � but with lower lever arm).
Since there are fewer experiments which implement sev-
eral gates, and none of them characterizes the decoherence,
we consider just the effect on ξ . We use the same expres-
sion as for the ng noise corresponding to a gate electrode,
with the prefactor Aξ ∼ 0.04 GHz, which provides the
order of magnitude of the dephasing and relaxation times
found in nanowire junctions (T1 ∼ 1 µs, Tϕ ∼ 50 ns in
Ref. [158], T1 ∼ 10 µs in Ref. [159]), also qualitatively
similar in a point contact [116].

For the dephasing, we account only for the noise close to
ω = 0, i.e., the 1/f contribution, which produces a typical
time Tλϕ

(
1

Tλϕ

)2

= c1A2
λ

(
∂E01

∂λ

)2

+ c2A4
λ

(
∂2E01

∂λ2

)2

,

where c1,2 are coefficients that depend on the cutoff fre-
quencies. We use typical values c1,2 ∼ 30, 1200 [29,120]
(but we do not include those cutoffs for the relaxation
calculation).

We first discuss briefly the charge island configurations
(Sec. III). The most amenable two-terminal configuration

for hosting a qubit is the transmon regime, when the ratio
between effective Josephson coupling Eeff

J and the charging
energy is large enough to reduce the transition dispersion
with the charge offset but not as much as to lose signifi-
cant anharmonicity. This suppression of charge dispersion
is enhanced when the Andreev structure approaches the
resonant condition [7,10,20]. The relaxation from charge
noise is negligible [120,122]. The Andreev structure pro-
vides Eeff

J (Appendix B), which we analyze for simplicity
at δ� = 0 such that Eeff

J = �2/
√
�2 + ξ 2. In conventional

transmons of oxide tunnel barriers, the fluctuations of the
Josephson coupling are produced by spatial reconfigura-
tions of ions inside the junction, among other mechanisms
[122]. In our model of the Josephson-Andreev junction,
we expect additional noise from the gates that control
the position of the level and the couplings. At fixed �,
dephasing by ξ behaves similarly to the dephasing in the

perfect flux bias since E01 ∼ 2
√

EC1Eeff
J . It has a minimum

at ξ = 0, then increases till ξ ≈ �/
√

2 (using the harmonic
limit) and then decreases with a tail that goes with ξ−4.
Another comparison can be made by fixing Eeff

J by moving
� accordingly. In this case, the ξ -dephasing maximum is
at ξ ≈ 4

√
3Eeff

J . Relaxation is negligible as can be noted
in the harmonic and adiabatic limits 〈0| cos φ̂ |1〉 = 0 by
means of parity arguments. Regarding tunability, experi-
ments on gatemons tuned close to resonance have been
performed in the regime EC1<Eeff

J ∼�/8∼5 GHz, with
qubit frequencies in the order of a few GHz [7,10]. In the
case of three terminals in the charge island configuration,
as discussed in Sec. III D, having a low �3 is analogous to
the Cooper pair box regime and, when all �ν are similar, to
a transmonlike regime but in a larger space. This configu-
ration is interesting for fundamental reasons more than for
qubit applications.

We now discuss the loop configurations (Secs. II
and IV), and show the estimated relaxation and dephas-
ing times in the hybrid charge-flux configuration [Fig. 1(f)]
for different regimes (Fig. 10). First, we set �3 = 0 and
EL = 100 GHz to recover the perfect phase-bias config-
uration with two terminals [panels (a) and (b)]. When
decreasing ξ towards the sweet spot [panel (a)], the asso-
ciated dephasing rate, which dominates the decoherence,
is reduced at the expense of an increase in the associ-
ated relaxation rate. The same occurs (b) with the φe noise
towards its dephasing sweet spot. In this sweep, the qubit
frequency oscillates between 10 and 20 GHz reproducing
the measurements in Ref. [158], with � = 10 GHz and
δ� = 5 GHz. We keep these parameters whose realiza-
tion is less challenging than the perfectly resonant limit.
In (c), we increase (logarithmically) the inductance up to
EL = 10 MHz, in the order of the limit of what is feasi-
ble [160], allowing for phase fluctuations. As it is possible
to control the capacitive couplings in the terminals, we
use a large charging energy EC12 = 50 GHz. Thus, the
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Andreev
qubit

Blochnium 0-

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 10. Dephasing (blue lines) and decoherence (red lines) estimated times for different configurations with a loop, while sweeping
the position of the central level (light yellow background), the external flux (light cyan), the island offset charge (light orange), and
other parameters to cross over between different regimes (white). (a),(b) Perfect phase bias with two terminals. (c) Transition to
introduce phase fluctuations until the fluxoniumlike regime is reached in (d). (e) Coupling with the charge island and transition to
0-π -like protected regime in (f),(g). (h) Transition deep into tunnel regime and evolution with island gate and external flux in (i),(j).
Parameters are given in the text, units in GHz. Decoherence times of the Andreev level qubit used for the choice of some parameters
[158] are indicated with a squares; other markers indicate a Blochnium and a 0-π implementation in conventional circuits just for
illustrative purposes [31,160].

result is analogous to a Blochnium [160] as EC12 > Eeff
J ∼

1 GHz, with φe-dephasing sweet spots at φe = 0,π and
large ξ -induced decoherence (d). The qubit frequency in
this panel and the following ones is reduced, in the order
of 10 MHz. When we connect the third lead (e) changing
�3 from 0 up to �3 = 5 GHz, while decreasing (loga-
rithmically) the charging energy EC3 of the island down
to 0.01 GHz—which was set at a large value to avoid
other states (100 GHz)—we arrive at a protected 0-π -
like regime, which is tested over ng3 and φe (f),(g). The
relaxation from all parameters (even ξ ) is reduced because
the states become considerably disjoint, particularly in the
point ng3 = 1/2, φe = 0, though that extreme protection
is lost at finite ξ (h). When the central region is brought
more into the tunnel regime (h),(i),(j), the 0-π -like pro-
tection is maintained. We note that even if the Andreev
structure confers an additional layer of complexity, the rel-
evant parameters to achieve this kind of disjointness—that
occurs in the circuit bosonic variables—are the relations
between the effective Josephson couplings and the charg-
ing energies. Also, the dominant effect of slow dephasing
by ξ noise can be mitigated by several techniques, such as
Hahn echo and other dynamical decoupling sequences. In
addition, we expect no decoherence from the coupling with
other circuit (spurious) modes, which are present in some
implementations of multimode protected circuits with con-
ventional tunnel junctions but are not present in our
charge-flux hybrid configuration [23,28,29,31,35]. Finally,
let us mention that the rather long calculated timescales
are the result of the choice of the parameters in a “hard”

regime, similar to calculations for 0-π implementations in
conventional circuits [23,29].

VII. CONCLUSIONS

Mesoscopic Josephson junctions host localized states
with phase-dependent energy, which can be probed in
spectroscopy and manipulated coherently using micro-
wave pulses. The number of these states, their spin tex-
ture and their energy are sensitive to internal as well as
control parameters such as electric fields applied with
a gate voltage, magnetic fields, or strain. Compared to
standard tunnel junctions, the energy of the fermionic exci-
tations may become of the same order of the collective
bosonic modes of quantum circuits that include capacitors
and inductors. This “mesoscopic embbeding” constitutes
a promising experimental and theoretical research topic
with opportunities to develop hybrid fermionic-bosonic
devices more immune to decoherence than conventional
ones. Additionally, on a fundamental level, these devices
raise questions on the proper modeling and on the correct
quantum circuit rules for their combination. In this work
we have addressed these questions taking a three-terminal
junction connected in different configurations as a model
system.

While exploring the energy spectrum and the wave
functions of these Josephson-Andreev junctions for dif-
ferent circuit configurations we have identified regimes
of charge and/or flux noise protection against dephasing
and/or relaxation. We have discussed different limiting
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cases for each configuration to recover known results, and
for the multiterminal configurations we have shown their
connection with other kinds of protected qubits such as the
bifluxon or the 0 − π qubits obtained using standard tunnel
junctions arrays. This fact highlights how the multimode
character of these circuits can be emulated thanks to the
connectivity of the multiterminal ones, with the additional
value of their higher degree of tunability.

Regarding the modeling, the nuance of the gauge
choice for time-dependent situations, which includes the
considerations about the noise, emerges as an important
issue to care about. Though we provide some orientation
for this choice in our problem, its strong effect suggests that
experimental guidance would be required for more conclu-
sive estimations. Additionally, several open issues remain
to be investigated, such as the robustness with respect to
quasiparticle poisoning, which requires a more elaborate
model for the superconducting leads, or the design of suit-
able operation protocols. We expect that the present work
could motivate further experimental and theoretical efforts
along these lines of research.
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APPENDIX A: EFFECTIVE HAMILTONIAN IN
PHASE-BIASED CONDITIONS

Our starting point is a single-level model coupled to
superconducting leads, described by a Hamiltonian of
the form

H =
∑

σ

εd†
σdσ + HT +

∑

ν

Hν ,

where Hν correspond to the different terminals (ν ranging
from 1 to 3 in the trijunction case) and

HT =
∑

ν,σ ,k

tνe−iφν/2d†
σ cν,kσ + h.c.

where φν is the superconducting phase on each lead.
Using conventional field theoretical methods one can

integrate out the leads, leading to an effective action on
the dot

Seff =
∫

dtdt′ψ̄d(t)
[
iδ(t − t′) (∂t − ετz)− �̂(t, t′)

]
ψd(t′),

(A1)

where ψd is the Grassman field associated with the dot
Nambu spinor (d↑ d†

↓)
T, and �̂(t, t′) denotes the leads

self-energy given by

�̂(t, t′) =
∑

ν

t2νe
−iφν(t)τz/2ĝ(t − t′)eiφν(t′)τz/2.

For the uncoupled leads Green functions ĝ(t − t′) we can
use the BCS model in the wide-band approximation, i.e.,

ĝ(t − t′) =
∫

dω
2π

eiω(t−t′)
[−ωτ0 +�τx

W
√
�2 − ω2

]
,

where W denotes the bandwidth. In the static case and in
the absence of phase fluctuations (constant φν) Eq. (A1)
can be written as

Seff =
∫

dωψ̄d(ω)

[
ω − ετz −

∑

ν

�ν

(
−ωτ0 +�

(
τx cosφν − τy sinφν

)
√
�2 − ω2

)]
ψd(ω),

where �ν = t2ν/W. In the large gap limit, i.e., ω � � the model is characterized by bound states at

EA({φν}) =
√
ε2 + |

∑

ν

�νe−iφν |2.

On the other hand, in the presence of phase fluctuations Eq. (A1) can be simplified following the lines of Ref. [86]. For
that purpose we approximate ĝ(t − t′) as
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ĝ(t − t′) � δ(t − t′)
−i∂tτ0 +�τx

W�
,

which leads to

Seff =
∫

dtψ̄d(t)

[
i∂t − ετz −

∑

ν

�ν

(
τx cosφν(t)− τy sinφν(t)− τz

φ̇ν(t)
2�

)]
ψd(t).

To remove the φ̇ν terms we redefine ψd(t) → e−i
∑
ν �̃νφνσz

ψd(t), where �̃ν = �ν/2�, so that

Seff =
∫

dtψ̄d(t)
[
i∂t − Ĥeff

]
ψd(t),

where

Ĥeff = e−i
∑
ν �̃νφντz

[
ετz +

∑

ν

�ν
(
τx cosφν − τy sinφν

)
]

× ei
∑
ν �̃νφντz . (A2)

This last expression can be used as the effective Hamil-
tonian for the multiterminal quantum dot junction. In
practice only two out of the three phases {φν} can be con-
sidered independent. Also, in the infinite gap limit one can
disregard the phase prefactors in Eq. (A2).

APPENDIX B: ADIABATIC APPROXIMATION

When transforming from the number space to the phase
space (for simplicity in a two-terminal configuration with
one degree of freedom), it is convenient to interpret the
latter as a discrete grid, that arises when the number
space is truncated to an arbitrarily large interval N ∈
[−N M , N M ] with periodic boundary conditions, defining
|φn〉 = N−1/2

#
∑

N eiNφn |N 〉, with N# = 2N M + 1 and φn =
2πn/N#. This is justified because at finite charging energy
the wave function has no infinite extension in N . Then,
the operator N̂ can be thought as a translation in the |φn〉’s,
with N̂ 2 ≈ 2N 2

# (1 − cos N̂/N#). In the continuum limit this
converts into the second derivative −∂2

φ .
At each point φ, the potential Hamiltonian HA(φ) is

equivalent to the one describing the phase-biased con-
figuration [Eq. (2)], up to a gauge transformation. The
Andreev transformation U(φ)HA(φ)U†(φ) = EA diagonal-
izes the states at each phase point, but then the kinetic term,
given approximately by ECN̂ 2, becomes nondiagonal in the
neighboring phase hoppings:

N̂ 2 → N̂ 2 − i{U(φ)U′†(φ)}, N̂ − (U(φ)U′†(φ))2,

where U′(φ) = ∂φU(φ), and it has been used that
∂φ(U(φ)U†(φ)) = 0. The adiabatic approximation consists
in truncating the Andreev sector to its ground state (with

energy equal to min {EA}) and keeping the main kinetic
term, which is the one with N̂ 2 since in the transmonlike
regime the wave function is strongly delocalized in charge.
We note that the Andreev transformation has distorted the
number translation and that there is a gauge dependence
similar to the one in Sec. II, that arises from the choice
of the reduced number basis (the complete charging term
would also depend on it). When restricted to the truncated
Andreev sector, it has a similar role to a phase-dependent
charge offset and a phase potential, which becomes less
noticeable as the charge delocalizes.

In this limit, the phase localizes and we can expand the
effective potential into an anharmonic oscillator

H eff
osc = ECN̂ 2 + Eeff2

J φ̂2 + Eeff4
J φ̂4,

with Eeffn
J = ∂n

φE0(φ)
∣∣
φ=0/n!, which in the harmonic basis

|m〉 = (a†)m |0〉 /√m!, with a(†) = (Eeff2
J /4EC)

1/4φ̂1 ∓
i(EC/4Eeff2

J )1/4N̂ (see Appendix C), produces states with
energies Em equal to

2
√

ECEeff2
J (m + 1/2)+ ECEeff4

J

4Eeff2
J

(
6m2 + 6m + 3

)
,

up to first-order perturbation theory. This yields a
transition E01 equal to the prefactors on m (the
one with the square root is referred with ω in the
main text) and an anharmonicity αh := E12 − E01 equal
to twice the prefactors on m2. Within the model
of Sec. II, Eeff2

J = (�2 − δ�2)/8
√
�2 + ξ 2 and αh =

EC
(−1/4 + 3(�2 − δ�2)/16(�2 + ξ 2)

)
.

APPENDIX C: SIMULTANEOUS
DIAGONALIZATION IN THE TUNNEL LIMIT

The matrix C in Eq. (6) is positive definite, hence it can
be written [161]

C = (vC)DC(vC)
T =

[
(vC)

√
DC

] [
(vC)

√
DC

]T
:= RTR,

where vC is the matrix made of the orthonormal vec-
tors that diagonalize C into DC. Note that if we define
CN = R−1U, with any orthogonal UT = U−1, we have
CT

N CCN = 1. Now, consider that there is Cφ such that
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CT
φJCφ = DJ with diagonal DJ , and that CT

φ = C−1
N for rea-

sons that will be clear afterwards—it is allowed because
in a Hamiltonian formulation the conjugate variables are
independent [162]. Then the previous equation for DJ
can be written as the diagonalization UT(RJRT)U = DJ ↔
RJRTU = UDJ , showing that U = (u1, u2, . . .) is made of
the eigenvectors from that diagonalization, which is pos-
sible because the matrix product between parenthesis is
symmetric. Multiplying by R−1 it is equivalent to

JRTU = R−1UDJ = R−1R−1TVDJ = CVDJ ,

where V := RTU shows the structure of a generalized
diagonalization into the columns of V = (v1, v2, . . .),
with eigenvalues λ satisfying det(J − Cλ) = 0. Note that
vT

n C
−1vm = vT

n R−1R−1Tvm = uT
num = δnm.

Then we can write H eff
harm = N ′T N ′ + φ′TDJ φ′, with

N ′ = C−1
N

N and φ′ = C−1
φ

φ. Each transformed pair
(N̂ ′

ν , φ̂
′
ν) is uncoupled from the others, and we have

[φ̂′
μ, φ̂′

ν] = 0, [N̂ ′
μN̂ ′

ν] = 0 and [φ̂′
μN̂ ′

ν] = i
∑

α(C
−1
φ )μα

(C−1
N )να = i(C−1

φ C−1T
N )μν = iδμν , where the choice in the

previous paragraph allows the commuting properties in the
transformed operators to be conserved.

Now, defining a(†)ν = c(∗)1ν N̂ ′
ν + c(∗)2ν φ̂

′
ν , imposing the

commutation relations [aμa†
ν] = δμν constrains c1νc2ν =

−1/2. Then, H eff
harm can be made diagonal with the choice

c1,2ν = (DJ )
±1/4
ν i−1/2±1/2/

√
2. Finally, H eff

harm = ∑
ν 2

√
DJν

(a†
νaν + 1/2), where (DJ )ν =

(
b ± √

b2 − 4c
)
/4, with

b =
3∑

α=1

ECα
(
EJα,α−1 + EJα,α+1

)

c =
(

3∑

α=1

ECαECα+1

)(
3∑

α=1

EJα−1,αEJα,α+1

)
,

where the indexes values 0 and 4 refer to the indexes 3
and 1, respectively, and EJμν = EJνμ . Some particular cases
are 2DJν = {0, (EC1 + EC2)EJ12} for EJ13 = 0 = EJ23 , and
2DJν = {EC1EJ13 , EC2EJ23} for EJ12 = 0 = EC3 .

APPENDIX D: TWO-LEVEL ISLAND LIMIT

In the limit EC3 � EJ13 , EJ23 , we can describe island 3
with its two lowest-energy levels corresponding to certain
N3 and N3 + 1, with an energy difference of 2EC3(ng3 −
1/2) (shifting the offset conveniently). In this case it is use-
ful to describe the other two terminals with N̂12 = N̂1 − N̂2
(note that a third variable is not necessary—the charge con-
servation imposes the value of the remaining N̂1 + N̂2).
The tunneling processes between 1 and 2 create an imbal-
ance of two pairs in N12 (−EJ12e−i2φ̂12 + h.c.), while the
tunneling from 1 to the island and from the island to 3 cre-
ates an imbalance of one pair (−EJ13e−iφ̂12 |N3 + 1〉 〈N3| +
h.c. and −EJ23e−iφ̂12 |N3〉 〈N3 + 1| + h.c., respectively).
Thus, in the basis {|N3〉 , |N3 + 1〉},

H eff
2lvs = HC − EJ12 cos 2φ̂12 +

(
−EC3(ng3 − 1/2) −EJ13eiφ̂12 − EJ23e−iφ̂12

−EJ13e−iφ̂12 − EJ23eiφ̂12 EC3(ng3 − 1/2)

)
,

where the correspondence with the two-terminal junction
with a central level is given by ξ = EC3(ng3 − 1/2) and
�1,2 = −EJ13,23 (at EJ12 = 0). From a different perspective,
in the case of EJ12 � EC12 , this tunneling term can be diag-
onalized with the charging term into an oscillator coupled
to the two-level structure. This is similar to what occurs
when coupling a circuit with a reference transmon [112].
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