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We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a supercon-
ducting cavity and that are also parametrically driven by separate external electric fields. For this system,
we formulate a model for spin qubit entanglement in the presence of mutually off-resonant qubit and cavity
frequencies. We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit
entanglement using only ac control and without requiring the qubit and cavity frequencies to be tuned
into simultaneous resonance. The model we derive can be mapped to a variety of qubit types, including
detuning-driven one-electron spin qubits in double quantum dots and three-electron resonant exchange
qubits in triple quantum dots. The high degree of nonlinearity inherent in spin qubits renders these sys-
tems particularly favorable for parametric drive-activated entanglement. We determine multiple common
resonance conditions for the two driven qubits and the cavity and identify experimentally relevant parame-
ter regimes that enable the implementation of entangling gates with suppressed sensitivity to cavity photon
occupation and decay. The parametrically driven sideband resonance approach that we describe provides a
promising route toward scalability and modularity in spin-based quantum information processing through
drive-enabled tunability that can also be implemented in micromagnet-free electron and hole systems for
spin-photon coupling.

DOI: 10.1103/PRXQuantum.5.020339

I. INTRODUCTION

Scaling to many-qubit systems represents a current
challenge in the implementation of quantum information
processing [1,2] due to the highly complex electronics
required to control even a few qubits in most realiza-
tions, combined with the need to minimize dissipation of
quantum information into the environment. One approach
to addressing this challenge is provided by modularity
[3–8], which enables scalability by linking existing, rel-
atively well-controlled, and locally optimized few-qubit
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modules via robust long-range interactions. For semicon-
ductor spin qubits, which represent a promising quantum
information processing platform [9–19], such long-range
interactions can be achieved by coupling spins to pho-
tons in a microwave cavity using the approach of circuit
quantum electrodynamics (cQED) [19–28].

Building on the promise of long coherence times for
spins in silicon [15–17,29–31], strong spin-photon cou-
pling [32–36] as well as coherent photon-mediated inter-
action of two single-electron silicon spin qubits [37,38]
have now been achieved. While these results provide a
path to scalability for spin-based quantum information pro-
cessing, tuning and scaling challenges remain for apply-
ing this approach to more than two qubits. For resonant
cavity-mediated qubit-qubit coupling [37], all qubit fre-
quencies must be tuned into simultaneous resonance with
the cavity frequency, and the micromagnets required in sil-
icon for achieving sufficient spin-charge coupling must be
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precisely positioned for each qubit. In the standard
dispersive approach to cavity-mediated coupling [21,23,
35,38–40], these constraints are partially relaxed as the
cavity virtually mediates the interaction and its frequency
is distinct from those of the qubits. However, an entan-
gling interaction between the two qubits still requires
their (cavity-shifted) frequencies to be tuned into mutual
resonance.

To allow for increased flexibility in achieving qubit-
qubit entanglement, off-resonant coupling approaches have
been developed for cQED systems with superconduct-
ing qubits [23,26,41–47] and related two-qubit gates have
also recently been explored in the context of semiconduc-
tor qubits [48–54]. These approaches enable qubits to be
fixed at optimal operation points where decoherence is
minimized, while interactions are activated via external
microwave driving of either the coupling or one or more
qubits. In particular, driving specific system parameters
can generate interactions via effective resonances between
intrinsically off-resonant elements by virtue of drive-
induced sideband frequencies. Such a parametric approach
for realizing entangling gates has been investigated and
implemented in a variety of forms in superconducting
qubit systems [26,46,47,55–61].

In this work, we consider a pair of qubits based on elec-
tron spins in quantum dots that interact via microwave
photons in a superconducting cavity and that are also
parametrically driven by classical external electric fields
(Fig. 1). For this system, we formulate a model for entan-
glement between the two qubits that incorporates mutually
off-resonant qubit and cavity frequencies and makes use of
the Mollow triplet sidebands of the driven qubits [62,63]
to effectively provide multiple qubit transition frequen-
cies for cavity-mediated coupling. This approach enables
highly tunable qubit-cavity photon interactions and qubit-
qubit entanglement using ac control through the applied
driving fields, without requiring dc tuning of the qubit
frequencies. The spin qubits can therefore be fixed at opti-
mal operation points that allow for maximal coherence
times. The model we develop can be mapped to a variety
of qubit types. Here, we illustrate this mapping for both
single-electron spin qubits in double quantum dots [64,65]
and three-electron resonant exchange (RX) qubits in triple
quantum dots [66,67] in the driven resonant regime [68].

We determine common resonance conditions for the
two driven qubits and the cavity and identify parameters
for implementing multiple entangling gates. In contrast
to the sideband-based gates obtained for the driven res-
onant regime in prior work [68,69], entangling gates do
not require sequences of multiple sideband pulses and
additionally exhibit suppressed sensitivity to cavity pho-
ton occupation, as we verify through two-qubit fidelity
calculations. The enhanced spectral flexibility inherent
in the approach that we describe provides a promis-
ing route toward scalability and modularity in spin-based
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FIG. 1. Schematic illustration of a system for cavity-mediated
coupling of two parametrically driven quantum dot spin qubits
via sidebands. The qubits have transition frequencies ω1 and
ω2 and are coupled to the fundamental mode of a microwave
transmission line resonator (cavity), which has frequency ωc,
with strengths g1 and g2, respectively. The qubits are also driven
by external microwave fields with frequencies ωd

1 and ωd
2. The

approach in this work can be applied to multiple types of qubits
that can be sinusoidally driven, including one-electron spin
qubits in double dots and three-electron resonant exchange (RX)
qubits in triple dots.

quantum information processing through drive-enabled
tunable entanglement that can also be implemented
in micromagnet-free systems for spin-photon coupling
[34–36].

II. THEORETICAL FRAMEWORK

We now develop a general theoretical description of the
sideband-based cavity-mediated entangling gates between
driven qubits discussed in this work. To illustrate the
approach in more concrete terms, we consider two specific
types of quantum dot-based electron spin qubits for which
strong spin-photon coupling has been realized (Fig. 1
and Appendix A): (1) one-electron spin qubits in double
quantum dots with micromagnets for spin-charge coupling
[32,33,38,64]; and (2) three-electron RX qubits in triple
quantum dots, which couple directly to photons through
their intrinsic electric dipole moments [34,35,66–68,70].
Both types of qubits, as well as several other classes of
spin qubits, such as two-electron singlet-triplet qubits [71–
76], quantum dot hybrid qubits [77], and hole spin qubits
in silicon and germanium double quantum dots [36,78],
can be manipulated electrically by parametrically driving
the detuning εj between the (outer) two dots of qubit j
[65–67,79]. We write this driving field as

εj (t) ≡ ε0,j + 2Fj cos
(
ωd

j t + φ′
j

)
(1)

in terms of a dc operation point ε0,j , as well as the ampli-
tude 2Fj , frequency ωd

j , and phase φ′
j of an ac drive that

020339-2



ENTANGLEMENT OF PARAMETRICALLY DRIVEN... PRX QUANTUM 5, 020339 (2024)

sinusoidally modulates the detuning about ε0,j as a func-
tion of time. Here, we fix the qubits at the “sweet-spot”
detuning operation points ε0,j = 0 for j = 1, 2, where
the first derivative of the qubit frequency vanishes for
both one-electron spin and symmetric RX qubits, enabling
leading-order protection from charge noise [64–67,79–85].
The operation point ε0,j = 0 also maximizes the effec-
tive spin-photon coupling strength for one-electron spin
qubits [65,79], while optimization of the RX qubit-photon
coupling strength involves multiple parameters (for more
details, see Appendix A). In what follows, all sums are
over the qubit index j = 1, 2 unless otherwise noted.

As shown in Appendix A, for both one-electron spin
qubits and RX qubits driven according to Eq. (1), the sys-
tem Hamiltonian including the cavity and driving fields
with ε0,j = 0 can be written in the qubit basis as (� = 1)

Hp ≡ ωca†a +
∑

j

ωj

2
σ z

j +
∑

j

gj σ
x
j

(
a + a†)

+
∑

j

2�j cos
(
ωd

j t + φj

)
σ x

j , (2)

where a† and a are photon creation and annihilation opera-
tors for the fundamental mode of the cavity with frequency
ωc, σαj with α = x, y, z and σ z

j ≡ |1〉j 〈1| − |0〉j 〈0| are
Pauli operators and ωj is the transition frequency for spin
qubit j , gj is the strength of the coupling between spin
qubit j and photons in the fundamental cavity mode, and
2�j is the effective driving amplitude for spin qubit j . We
see from Eq. (2) that, for both types of qubits, the detun-
ing drive [Eq. (1)] acting on the electron charge degrees of
freedom is translated into an effective transverse (σx) drive
on the qubit. Note that we have redefined the phases φj of
the drives with respect to Eq. (1) to take into account sign
changes occurring in the derivation of Hp (for details, see
Appendix A).

To derive sideband-mediated entangling interactions
from Eq. (2), we first transform Hp to a frame rotating at
the frequencies of both drives and the cavity via

U1 = e−it
(
ωca†a+∑

j ω
d
j σ

z
j /2

)
, (3)

which is equivalent to an interaction picture for resonant
driving of the qubits, ωd

j = ωj . Defining the cavity-drive
detunings �j ≡ ωc − ωd

j and the qubit-drive detunings
δj ≡ ωj − ωd

j , and making a rotating wave approxima-
tion for

∣∣�j
∣∣ � ωc + ωd

j , 2ωd
j , we drop rapidly oscillating

terms ∼e±i
(
ωc+ωd

j

)
t and ∼e±2iωd

j t and find

H rf
p ≡ U†

1HpU1 − iU†
1U̇1

≈ H0 + V (t) ,

H0 ≡
∑

j

δj

2
σ z

j +
∑

j

�j

(
e−iφj σ+

j + eiφj σ−
j

)
,

V (t) ≡
∑

j

gj

(
e−i�j tσ+

j a + ei�j tσ−
j a†

)
, (4)

where we assume that gj � 2�j and take V (t) as a time-
dependent perturbation to the other terms in Eq. (4).

We initially take the limit gj → 0 and diagonalize H0.
Choosing the phases of the driving fields to be φj = 0 for
j = 1, 2 to simplify the analysis, we find that

H0 =
∑

j

δj

2
σ z

j +
∑

j

�j σ
x
j

≡
∑

j

Wj

2

(
cos θj σ

z
j + sin θj σ

x
j

)
, (5)

where, for convenience, we have re-expressed H0 in terms
of Wj and θj in the last line of Eq. (5), which serve to rede-
fine the Pauli operators σ z

j ≡ |e〉j 〈e| − |g〉j 〈g| and σ x
j in

terms of the dressed-qubit basis
{|e〉j , |g〉j

}
. We can then

diagonalize this Hamiltonian via a rotation around the y
axis for each qubit, described by

Uq = e−i
∑

j θj σ
y
j /2 (6)

where tan θj = 2�j /δj , which yields

H0,q ≡ U†
qH0Uq

=
∑

j

Wj

2
σ z

j (7)

with the dressed-qubit frequencies Wj ≡
√
δ2

j + 4�2
j .

Applying the same rotation Uq [Eq. (6)] to the qubit-cavity
coupling perturbation V (t) then yields the full Hamilto-
nian Hq ≡ H0,q + Vq (t) in the dressed-qubit basis, where
Vq (t) ≡ U†

qV (t)Uq.
Finally, we transform to a second frame rotating at the

dressed-qubit frequencies Wj for the driven qubits via

U2 = e−i
∑

j Wj σ
z
j /2, (8)

which is equivalent to the interaction picture with respect
to H0,q [see Eq. (7)]. In this frame, we find the Hamiltonian

VI (t) ≡ U†
2HqU2 − iU†

2U̇2

= A (t) a† + A† (t) a. (9)
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In Eq. (9), we have defined

A(t) ≡
∑

j

Aj

≡
∑

j

gj

2
ei�j t

[
sin θj σ

z
j − (

1 − cos θj
)

eiWj tσ+
j

+ (
1 + cos θj

)
e−iWj tσ−

j

]
, (10)

which represents a sum of time-dependent qubit operators.
We note that A (t), and therefore VI (t), have the three char-
acteristic frequencies �j and �j ± Wj for qubit j , which
correspond to the Mollow triplet frequencies [62] consist-
ing of the center and sideband frequencies of each driven
qubit. In the present case, these frequencies are uniformly
shifted by the cavity frequency ωc due to the rotating-
frame transformation U1 [Eq. (3)]. Driving the qubits on
resonance such that ωd

j = ωj gives δj = 0 and Wj = 2�j ,
so that sin θj = 1 and cos θj = 0. In this case, Eq. (10)
reduces to

Ar (t) ≡
∑

j

gj

2

[
ei�j tσ z

j − ei(�j +2�j )tσ+
j + ei(�j −2�j )tσ−

j

]
,

(11)

and we find that the three characteristic frequencies for
driven qubit j become �j ,�j ± 2�j .

In order to determine the gate operations generated by
the time-dependent Hamiltonian VI (t) in Eq. (9), we use
the Magnus expansion [86] up to second order to approx-
imate the time-evolution operator. For gj � Wj such that
λ ≡ gj /Wj is a small parameter, we write U (τ ) ≈ e−iHeffτ ,
where Heff (τ ) = λH̄ 1 (τ )+ λ2H̄ 2 (τ ) represents an effec-
tive Hamiltonian to O

(
λ2

)
with

λH̄ 1 (τ ) ≡ 1
τ

∫ τ

0
dt VI (t) , (12)

λ2H̄ 2 (τ ) ≡ 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

[
VI (t) , VI

(
t′
)]

. (13)

We first consider the term λH̄ 1 (τ ). From Eqs. (9) and (10),
we see that the integral in Eq. (12) is evaluated via the cor-
responding integrals of A (t) and its Hermitian conjugate.
The first-order term in the effective Hamiltonian is then
given by

λH̄ 1 (τ ) =
∑

j

gj

2

[
f

(
�j

)
sin θj σ

z
j

− f
(
�j + Wj

) (
1 − cos θj

)
σ+

j

+ f
(
�j − Wj

) (
1 + cos θj

)
σ−

j

]
a† + H.c.,

(14)

where we have defined the integral

f (μ) ≡ 1
τ

∫ τ

0
dt eiμt (15)

with frequencies μ = �j ,�j ± Wj . The first-order term
λH̄ 1 (τ ) describes the direct (∼gj ) interaction of each
qubit with the cavity and includes both red (∼σ+

j a, σ−
j a†)

and blue (∼σ+
j a†, σ−

j a) sideband terms. These interaction
terms can be used to generate entanglement via sequences
of multiple sideband pulses [23,42,43,68,69,87].

We now set�j = pj η and Wj = qj η with pj , qj integers
and η ≡ 2π/τ . We also assumeμ 
= 0. In this case, we find
that μ = rj η with rj = pj , pj ± qj 
= 0 also an integer, so
that all integrals f (μ) in Eq. (14) vanish and λH̄ 1 (τ ) = 0.
Thus, when �j and Wj are both integer multiples of the
same frequency η, we can completely eliminate the first-
order sideband interaction terms [Eq. (14)] from Heff (τ ).

To O
(
λ2

)
, the effective interaction Hamiltonian gen-

erating the gate operation is now given entirely by the
second-order term

Heff (τ ) = λ2H̄ 2 (τ ) = 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

[
VI (t) , VI

(
t′
)]

.

(16)

Using Eqs. (9) and (10), we can write the commutator in
Eq. (16) as

[
VI (t) , VI

(
t′
)] = [

VI , V′
I

]
1 + [

VI , V′
I

]
2 ,

[
VI , V′

I

]
1 ≡

∑
j

{[
Aj , A′

j

]
a†2 +

[
A†

j , A′†
j

]
a2

+
([

Aj , A′†
j

]
+

[
A†

j , A′
j

])
a†a

}
,

[
VI , V′

I

]
2 ≡ A†A′ − A′†A, (17)

where
[
VI , V′

I

]
1 contains terms involving only one-qubit

operators and
[
VI , V′

I

]
2 contains all two-qubit operator

terms along with some additional one-qubit operator terms,
as we show below. We note in particular that

[
VI , V′

I

]
2 does

not involve any photon operators.
The form of the qubit-qubit interaction terms in the

effective Hamiltonian, and thus the generated two-qubit
gate, is determined by

[
VI , V′

I

]
2 = A†A′ − A′†A. For j , k =

1, 2, we can write this commutator as
[
VI , V′

I

]
2 = A†A′ − A′†A

=
∑
j ,k

(
A†

j A′
k − A′†

j Ak

)

=
∑

j

(
A†

j A′
j − A′†

j Aj

)

+ A†
1A′

2 − A′†
1 A2 + A†

2A′
1 − A′†

2 A1. (18)
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The terms A†
j A′

j − A′†
j Aj in

[
VI , V′

I

]
2 lead to one-qubit

terms in Heff (τ ), while the qubit-qubit interaction terms
arise entirely from the last line of Eq. (18). In Appendix
B, we show that for �j , Wj 
= 0 and Wj 
= ∣∣�j

∣∣ ,
∣∣2�j

∣∣,
the complete one-qubit contribution to Heff (τ ) appearing at
second order and originating from

[
VI , V′

I

]
1 and

[
VI , V′

I

]
2

reduces to

� = −
∑

j

g2
j

⎡
⎣δ

2
j + 2�j δj + W2

j

2Wj

(
�2

j − W2
j

)
⎤
⎦ σ z

j

(
a†a + 1

2

)
.

(19)

These terms represent parametric driving-induced disper-
sive shifts that can be tuned via the drive amplitudes and
frequencies and are well defined in the absence of decay
provided that Wj 
= ∣∣�j

∣∣. Such shifts can be harnessed for
drive-tunable qubit measurement [88]. Two specific cases
of interest are δj = 0 and δj 
= 0, corresponding to reso-
nant and off-resonant driving of the qubits, respectively.
For δj = 0 and Wj 
= 0, we find from Eq. (19) that � 
= 0
and the dispersive-shift terms persist. In this case, the qubit
frequencies are Wj = 2�j and the dispersive-shift terms in
Eq. (19) become

�r =
∑

j

χj σ
z
j

(
a†a + 1

2

)
,

χj ≡ − g2
j �j

�2
j − 4�2

j
. (20)

As we show in Appendix D for multiple example cases,
the effects of�r on the dynamics for δj = 0 can effectively
be eliminated in specific situations of interest by an appro-
priate choice of parameters and operation times. On the
other hand, for δj 
= 0, we can choose�j and Wj such that
� = 0 (for further details, see Appendix D). The effective
Hamiltonian Heff (τ ) then consists purely of qubit-qubit
interaction terms, which arise from the terms with j 
= k
in Eq. (18).

III. DRIVE-TAILORED ENTANGLING GATES VIA
SIDEBAND RESONANCES

We next focus on the qubit-qubit interaction terms in
Heff (τ ), which are given by

Vqq (τ ) ≡ 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

(
−A1A′†

2 + A′
1A†

2 − H.c.
)

.

(21)

Using Eqs. (10) and (B3) in Appendix B to write Eq. (21)
in terms of functions h (μ1,μ2), h (μ2,μ1), and their com-
plex conjugates, we can identify resonance conditions

μ1 = μ2 that each give rise to specific qubit-qubit terms
in Vqq (τ ). Since μ1 ∈ {�1,�1 + W1,�1 − W1} and μ2 ∈
{�2,�2 + W2,�2 − W2}, there are nine resonance condi-
tions. Each condition corresponds to resonance between a
center or sideband frequency of qubit 1 and a center or
sideband frequency of qubit 2. These conditions and the
corresponding qubit-qubit terms appearing in the effective
Hamiltonian Heff (τ ) are derived in Appendix C and sum-
marized in Table I, where we have defined �±

j ≡ �j ±
Wj .

We now specifically consider the case of resonant
qubit driving (δj = 0 or ωd

j = ωj ), so that Wj = 2�j . The
Hamiltonian for this case is given by VI (t) [Eq. (9)]
with A (t) = Ar (t) as given in Eq. (11). The character-
istic frequencies are therefore �j ,�j + 2�j , and �j −
2�j , corresponding to center, red sideband, and blue side-
band frequencies, respectively, for driven qubit j (shifted
with respect to the cavity frequency ωc). Assuming that
we choose parameters such that the effects of the drive-
induced dispersive-shift terms �r in Eq. (20) can be
neglected (for details, see Appendix D), the evolution gen-
erated by the effective Hamiltonian Heff (τ ) reduces to that
generated by the qubit-qubit interaction Vqq (τ ) in Eq. (21).
Thus, in what follows, we consider only the dynamics
generated by Vqq (τ ).

For each resonance condition, Table I gives the form
of the interaction Vqq ≡ Vqq (τ ) for resonant qubit driving
(second-to-last column), assuming that the dressed-qubit
frequencies W1 and W2 satisfy the associated constraints
(third column). These constraints are based on Eq. (B3)
and are obtained for each resonance condition by apply-
ing the condition μ1 
= μ2 to the remaining resonance
conditions in Table I, so that all qubit-qubit interaction
terms except for the specified interaction Vqq vanish (see
Appendix C). We define a corresponding ideal two-qubit
operation generated by Vqq as Um ≡ U (τm) = e−iVqqτm ,
where τm ≡ mτ = 2πm/η with m = 0, 1, 2, . . . represents
the corresponding gate time and is an integer multiple of
τ . By adjusting the drive amplitudes 2�j and frequen-
cies ωd

j to tune to a particular resonance condition and
set W1 and W2 appropriately, it is then possible to select
desired qubit-qubit interaction terms and two-qubit entan-
gling gates. Examples of universal entangling gates are
given in the last column of Table I. The drives can also
be used to switch off a given interaction by tuning the
sidebands away from the corresponding resonance condi-
tion. We emphasize that: (1) multiple two-qubit interaction
terms exist even with mutually off-resonant frequencies
(i.e., for j 
= k, ωj 
= ωk 
= ωc); and (2) the cavity photon
operators a, a† do not appear explicitly in Vqq, suggest-
ing suppression of errors due to cavity photon decay in
the sideband-based entangling gate approach we propose
in this work. Our analysis of expected gate performance
in Sec. IV quantitatively demonstrates the presence of this
suppressed cavity photon sensitivity.
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TABLE I. Resonance conditions, corresponding qubit-qubit interaction terms Vqq ≡ Vqq (τ ) [Eq. (21)] in the second-order effective
Hamiltonian [Eq. (16)], and generated universal entangling gates for resonant driving of the qubits (δj = 0 for j = 1, 2), such that
Wj = 2�j . The coupling strength for each interaction is given by J = g1g2/4�, where for notational simplicity we use� to represent
the distinct resonant detuning�(R) for each resonance condition R, i.e.,� ≡ �(R), where�(R) is defined in the second column [�(1) ≡
�1 = �2, �(2) ≡ �1 = �+

2 , . . .] with �±
j ≡ �j ± Wj (for details, see Appendix C).

R Resonance condition Constraints Interaction Vqq Entangling gate
[� ≡ �(R)] (δ1 = δ2 = 0)

1 �1 = �2 W1 
= ±W2 −2J σ z
1σ

z
2 Controlled-phase (Uϕ)

2 �1 = �+
2 W1 
= ±W2, ±2W2 J σ z

1σ
x
2 CNOT

3 �1 = �−
2 W1 
= ±W2, ±2W2 −J σ z

1σ
x
2 CNOT

4 �+
1 = �2 W1 
= ±W2, ±W2/2 J σ x

1 σ
z
2 CNOT

5 �−
1 = �2 W1 
= ±W2, ±W2/2 −J σ x

1 σ
z
2 CNOT

6 �+
1 = �+

2 W1 
= W2, 2W2, W2/2 −J (
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
iSWAP (UiSW)

7 �−
1 = �−

2 W1 
= W2, 2W2, W2/2 −J (
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
iSWAP (UiSW)

8 �+
1 = �−

2 W1 
= −W2, −2W2, −W2/2 J (
σ+

1 σ
+
2 + σ−

1 σ
−
2

)
Double-excitation (UiDE)

9 �−
1 = �+

2 W1 
= −W2, −2W2, −W2/2 J (
σ+

1 σ
+
2 + σ−

1 σ
−
2

)
Double-excitation (UiDE)

To more concretely illustrate the approach, we now con-
sider the effective qubit-qubit interaction and entangling
gates generated between resonantly driven qubits (δj = 0,
Wj = 2�j ) for the specific resonance conditions 7 and 9
in Table I. First, we consider �−

1 = �−
2 (resonance condi-

tion 7), which is equivalent to �1 − W1 = �2 − W2. As
described in Appendix C, the resonance condition can
also be written as ω1 + 2�1 = ω2 + 2�2 for resonantly
driven qubits and describes resonance between the blue
sidebands of both qubits [Fig. 2(a)]. Setting �j = pj η and
Wj = qj η with pj , qj integers leads to the equivalent con-
dition p1 − q1 = p2 − q2. We also define the integer w ≡
p1 − q1 = p2 − q2 such that � ≡ �−

1 = �−
2 = wη. From

Table I, the constraints associated with resonance condi-
tion 7 are W1 
= W2, 2W2, W2/2. Assuming that these con-
straints are satisfied, the qubit-qubit interaction takes the
form Vqq = −J (

σ+
1 σ

−
2 + σ−

1 σ
+
2

)
with coupling strength

J ≡ g1g2/4�.
This interaction can be used to generate the iSWAP

gate, which together with single-qubit rotations consti-
tutes a universal set of quantum gates [89] and also
represents a key element of recently proposed improve-
ments to the implementation of quantum error correc-
tion using the surface code [90]. Since Vqq is indepen-
dent of the photon operators a, a†, Um ≡ e−iVqqτm acts
nontrivially only on the qubits and we can work in
a subspace of fixed photon number n. Thus, we now
project all states and operators into the subspace defined
by Pn ≡ |n〉 〈n|. For notational simplicity, we use Um
to denote the evolution operators within the n-photon
two-qubit subspace {|ee, n〉 , |eg, n〉 , |ge, n〉 , |gg, n〉} in the
remainder of this work unless otherwise specified. Defin-
ing �x ≡ |eg〉 〈ge| + |ge〉 〈eg| (where we have suppressed
the photon-number state |n〉 for convenience), we can
write Vqq = −J�x and Um = eiJ τm�x . In the full two-
qubit dressed basis {|ee〉 , |eg〉 , |ge〉 , |gg〉}, Um takes the

form

Um =

⎛
⎜⎝

1 0 0 0
0 cos(J τm) i sin(J τm) 0
0 i sin(J τm) cos(J τm) 0
0 0 0 1

⎞
⎟⎠ . (22)

In order to obtain an iSWAP gate UiSW, we set τm = mτ =
π/2J . We choose the initial state |ψi〉 = |eg〉 for our anal-
ysis. To cancel the dynamics due to the dispersive-shift
terms in Eq. (20) for this case, we also set χ1 = χ2. As
shown in Appendix D, both the generation of the iSWAP
gate and the drive-induced dispersive shift cancellation
can be achieved for resonance condition 7 by choosing
parameters that satisfy the constraints in Eqs. (D9) and
(D10). These relations are satisfied for multiple sets of
parameters. For the analysis in this work, we choose the
set of parameters shown for resonance condition 7 in
Table II. The evolution time unit in the Magnus expansion
becomes τ = 2π/η = 20 ns, yielding an iSWAP gate time
τm = mτ = 800 ns. As discussed in detail in Appendix D,
the ideal gate evolution generated by Vqq at time τm for
resonance condition 7 and these parameters [described by a
pure state ρ f

I (τm)] approximates well the numerical evolu-
tion directly due to Eq. (9) according to the time-dependent
Schrödinger equation and in the absence of qubit and cav-
ity decay [described by a pure state ρ

(0)
I (τm)], with a

fidelity F0 ≈ 0.998 calculated according to Eq. (D12) (we
choose the subspace with n = 0, 1, 2 and the initial state
|ψi〉 = |eg, 0〉 for the numerical analysis; see Appendix D).

Resonance condition 9 in Table I is given by
� ≡ �−

1 = �+
2 . For resonantly driven qubits, this con-

dition can also be written as ω1 + 2�1 = ω2 − 2�2 (see
Appendix C) and describes resonance between the blue
sideband of qubit 1 and the red sideband of qubit 2
[Fig. 2(b)]. For �j = pj η and Wj = qj η, the resonance
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Blue-blue sideband resonance
Δ ≡ Δ−

1 = Δ−
2

Qubit sidebands in resonance but highly detuned from cavity

ω2 − 2Ω2

ω2 + 2Ω2

ω1 − 2Ω1

ω1 + 2Ω1

Δ−
2Δ−

1

ωc

ω1
ω2

Δ1 Δ2

Δ+
1

Δ+
2

Vqq = −J σ+
1 σ−

2 + σ−
1 σ+

2

ω2 − 2Ω2

ω2 + 2Ω2

Blue-red sideband resonance 
Δ ≡ Δ−

1 = Δ+
2

ωc

ω1
Δ1

Δ2

Δ+
1

ω2
Δ−

1

Δ−
2

Δ+
2

Qubit sidebands in resonance and near cavity

Vqq = J σ+
1 σ+

2 + σ−
1 σ−

2

ω1 + 2Ω1

ω1 − 2Ω1

(a) (b)

FIG. 2. Examples of qubit-qubit interactions enabled by cavity-mediated coupling via resonant sidebands of parametrically driven
qubits. (a) Blue-blue sideband resonance, described by �−

1 = �−
2 (resonance condition 7 in Table I). The diagram shown depicts a

case in which the resonant sidebands are highly detuned from the cavity frequency ωc. (b) Blue-red sideband resonance, described by
� = �−

1 = �+
2 (resonance condition 9 in Table I). The diagram depicts a case in which the resonant sidebands are near the cavity

frequency ωc. In both cases, the qubit frequencies ω1,2 and the cavity frequency ωc are mutually off-resonant, i.e., ω1 
= ω2 
= ωc.

condition can also be expressed as p1 − q1 = p2 + q2.
Accordingly, we now define w ≡ p1 − q1 = p2 + q2 such
that � ≡ �−

1 = �+
2 = wη. Assuming that the constraints

W1 
= −W2, −2W2, −W2/2 associated with resonance con-
dition 9 are satisfied (note that these constraints are
always satisfied for W1,2 > 0), the qubit-qubit interaction
is Vqq = J (

σ+
1 σ

+
2 + σ−

1 σ
−
2

)
with coupling strength J ≡

g1g2/4�.
We again note that Vqq is independent of the pho-

ton operators a, a† and generates the gate Um ≡ e−iVqqτm

within the n-photon subspace at time τm = mτ . In terms of
�′

x ≡ |ee〉 〈gg| + |gg〉 〈ee|, we find Vqq = J�′
x and Um =

e−iJ τm�′
x , yielding

Um =

⎛
⎜⎝

cos(J τm) 0 0 −i sin(J τm)

0 1 0 0
0 0 1 0

−i sin(J τm) 0 0 cos(J τm)

⎞
⎟⎠ (23)

in the full two-qubit dressed basis. The gate at τm = mτ =
−π/2J is analogous to an iSWAP gate but acts in the sub-
space spanned by {|ee〉 , |gg〉}. We denote this gate, which
we refer to as the double-excitation gate, by UiDE. As the
gate is related to UiSW via a rotation of qubit 2, UiDE together
with single-qubit rotations also constitutes a universal set
of quantum gates. For our analysis, we choose the ini-
tial state |ψi〉 = |ee〉 and also set χ1 = −χ2 to cancel the
dynamics due to the dispersive-shift terms in Eq. (20)
(Appendix D). Simultaneous generation of the gate UiDE

and cancellation of the drive-induced dispersive shifts for
resonance condition 9 is possible by choosing parameters
that satisfy the constraints in Eqs. (D16) and (D17). As
in the case of resonance condition 7, these relations are
satisfied for multiple sets of parameters. Here, we choose
the parameters specified in Table II for resonance condi-
tion 9. The evolution time unit in the Magnus expansion is

again τ = 2π/η = 20 ns, yielding a gate time τm = mτ =
200 ns for UiDE. Using Eq. (D12) to compare the ideal gate
evolution generated by Vqq at time τm for resonance condi-
tion 9 and these parameters with the numerical evolution
directly due to Eq. (9) according to the time-dependent
Schrödinger equation and in the absence of qubit and cav-
ity decay again yields a fidelity F0 ≈ 0.998 (as described in
Appendix D, we again choose the subspace with n = 0, 1, 2
along with the initial state |ψi〉 = |ee, 0〉 for the numer-
ical analysis). Note that the parameter values given in
Table II are chosen in accordance with experimental imple-
mentations of one-electron double-dot and three-electron
triple-dot spin qubits (see the descriptions and references
cited for these systems in Appendix A).

We therefore find that (as reflected in the calculated
values of F0), for both resonance conditions 7 and 9 and
appropriately selected parameters, the dynamics due to VI
with cavity photon operators explicitly included are well
approximated by the dynamics generated by just the two-
qubit interaction Vqq, from which cavity photon operators
are absent. In Sec. IV, we show that this absence of explicit
cavity photon dependence in the effective Hamiltonian is
manifested in the full dynamics as suppressed sensitivity
of these sideband-based entangling gates to cavity photon
decay.

IV. SIDEBAND GATE PERFORMANCE IN THE
PRESENCE OF QUBIT AND CAVITY DECAY

To evaluate the performance of the sideband resonance-
based gates UiSW and UiDE and quantitatively illustrate the
reduced dependence of the dynamics on cavity photons,
we use a master-equation analysis and numerically cal-
culate the fidelity with respect to the ideal dynamics for
resonance conditions 7 and 9 in the presence of qubit and
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TABLE II. Parameter values used in the effective interaction
Hamiltonian and entangling gate analysis for resonance con-
ditions 7 and 9 in Table I, assuming resonantly driven qubits
(δj ≡ ωj − ωd

j = 0 for j = 1, 2) such that Wj = 2�j . Each set
of parameters satisfies the associated resonance condition with
Wj = 2�j = qj η, �j ≡ ωc − ωd

j = pj η, �±
j ≡ �j ± Wj , J =

g1g2/4�, χj as given in Eq. (20), and the constraints in Eqs. (D9)
and (D10) [Eqs. (D16) and (D17)] for resonance condition 7 (9).

Parameter

Resonance
condition 7:

� ≡ �−
1 = �−

2

Resonance
condition 9:

� ≡ �−
1 = �+

2

q1 7 12
q2 4 11
p1 20 10
p2 17 −13
w 13 −2
m 40 10
η/2π = 1/τ 0.05 GHz 0.05 GHz
g1/2π 26 MHz 21 MHz
g2/2π 31 MHz 23 MHz
ω1/2π 6 GHz 5.7 GHz
ω2/2π 6.15 GHz 6.85 GHz
ωc/2π 7 GHz 6.2 GHz
W1/2π = 2�1/2π 0.35 GHz 0.6 GHz
W2/2π = 2�2/2π 0.2 GHz 0.55 GHz
�1/2π 1 GHz 0.5 GHz
�2/2π 0.85 GHz −0.65 GHz
�+

1 /2π 1.35 GHz 1.1 GHz
�−

1 /2π 0.65 GHz −0.1 GHz
�+

2 /2π 1.05 GHz −0.1 GHz
�−

2 /2π 0.65 GHz −1.2 GHz
J /2π 0.31 MHz −1.25 MHz
χ1/2π −0.14 MHz 1.25 MHz
χ2/2π −0.14 MHz −1.25 MHz

cavity decay. Here, we assume that dephasing in the orig-
inal qubit basis with rate γj for qubit j and cavity photon
loss with rate κ are the dominant sources of decoherence,
as is relevant for silicon quantum dots [68]. We write the
master equation as [23,68]

ρ̇ = −i
[
Hp , ρ

] +
∑

j

γj

2
(σ zρσ z − ρ)

+ κ

2
(
2aρa† − a†aρ − ρa†a

)
, (24)

with Hp given by Eq. (2). Following steps similar to
those used to obtain the interaction-picture Hamiltonian VI
[Eq. (9)], we transform the master equation in Eq. (24)
to the interaction picture. Moving to a rotating frame
via U1 [Eq. (3)], making a rotating wave approximation
for

∣∣�j
∣∣ � ωc + ωd

j , 2ωd
j , choosing φj = 0, applying Uq

[Eq. (6)] to change to the dressed-qubit basis, and moving
to the interaction picture via U2 [Eq. (8)] yields, after set-
ting δj = 0 for resonant qubit driving and dropping rapidly

oscillating terms ∼e±2iWj t,

ρ̇I = −i [VI , ρI ] +
∑

j

γj

2

(
σ+

j ρIσ
−
j + σ−

j ρIσ
+
j −ρI

)

+ κ

2
(
2aρI a† − a†aρI − ρI a†a

)
, (25)

where ρI ≡ U†
2U†

qU†
1ρU1UqU2. Equation (25) is the master

equation describing the dynamics in the interaction pic-
ture (we find that retaining the rapidly oscillating terms
dropped in the derivation of this equation does not signif-
icantly modify the quantitative results). For the numerical
calculations, we again work in the photon subspace with
n = 0, 1, 2 and set γ1 = γ2 ≡ γ for simplicity. To analyze
the effects of qubit and cavity decay on the performance of
the entangling gates, we calculate the fidelity [91]

F (τm) ≡ Tr
[
ρ
(0)
I (τm) ρI (τm)

]
, (26)

where ρI (τm) denotes the final state at time τm for the evo-
lution obtained by numerically integrating Eq. (25) and
ρ
(0)
I (τm) denotes the final state for the ideal evolution

given by γ = κ = 0 [note that this fidelity is distinct from
F0 given in Eq. (D12)]. We calculate this fidelity as a func-
tion of γ and κ for the resonance conditions 7 and 9 using
the parameter sets in Table II and the initial states chosen
above for the ideal gates UiSW and UiDE. The initial state
is ρI (0) = |ψi〉 〈ψi| = |eg, 0〉 〈eg, 0| for resonance condi-
tion 7 and ρI (0) = |ψi〉 〈ψi| = |ee, 0〉 〈ee, 0| for resonance
condition 9.

In Fig. 3, we plot the error 1 − F (τm) for the two reso-
nance conditions and corresponding two-qubit entangling
gates. We find theoretical fidelities F > 0.995 for the full
range of κ shown (up to κ = 100 kHz) and γ � 1 kHz
(γ � 10 kHz) for resonance condition 7 (9). While γ and
κ are varied over 3 orders of magnitude in both cases, the
error for both resonance conditions depends more strongly
on qubit decay γ than on cavity decay κ . This reduced
dependence on κ is expected for the dispersive regime, in
which the cavity virtually mediates the qubit-qubit inter-
action in the absence of direct qubit-photon interaction,
and was also found in the results of Ref. [68] for the
dispersive regimes relative to the driven resonant regime
of cavity-mediated coupling. We note, however, that the
gates derived here are based on interactions via sideband
resonances, as in the driven resonant regime.

For resonance condition 7, given by �−
1 = �−

2
[Fig. 3(a)], the resonant blue sidebands of the driven qubits
are highly detuned from the cavity frequency ωc, with
�/2π = �−

1 /2π = �−
2 /2π = 0.65 GHz [see Fig. 2(a)].

We see that the error varies over approximately 3 orders
of magnitude with γ but over less than one order of mag-
nitude with κ . The suppressed sensitivity to κ is expected
given the large detuning between the qubit sidebands and
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(a) (b)

Δ ≡ Δ−
1 = Δ−

2 Δ ≡ Δ−
1 = Δ+

2

(MHz)

(MHz)(MHz)

FIG. 3. Error 1 − F [as given by Eq. (26)] in entangling gates of duration τm generated by sideband-based cavity-mediated coupling
of parametrically driven qubits, calculated via numerical solution of the master equation in Eq. (25) as a function of the qubit decay
rate γ and cavity photon decay rate κ . (a) Error in the iSWAP gate UiSW, generated by a blue-blue sideband resonance [Fig. 2(a)] with
the initial state |ψi〉 = |eg, 0〉 and parameters for resonance condition 7 given in Table II. (b) Error in the double-excitation gate UiDE,
generated by a blue-red sideband resonance [Fig. 2(b)] with the initial state |ψi〉 = |ee, 0〉 and parameters for resonance condition 9
given in Table II. The lines are guides for the eye.

the cavity. On the other hand, for resonance condition
9, given by �−

1 = �+
2 [Fig. 3(b)], the resonant side-

bands—the blue sideband of qubit 1 and the red sideband
of qubit 2—are close to ωc. Here, �/2π = �−

1 /2π =
�+

2 /2π = −0.1 GHz [see Fig. 2(b)]. In this case, we see
that the error again varies over approximately 3 orders of
magnitude with γ , but varies over less than 2 orders of
magnitude with κ . The increased variation with κ relative
to resonance condition 7 reflects the smaller detuning �
of the resonant qubit sidebands from the cavity. However,
even in this case, we find that the sensitivity of the error
to κ is suppressed relative to the sideband-based two-qubit
gates in the driven resonant regime (compare Fig. 7 in Ref.
[68]).

While the reduced sensitivity to cavity decay is consis-
tent with the dispersive regime, it also reflects the absence
of explicit cavity dependence in the effective interaction
Hamiltonian Vqq generating the two-qubit entangling gates
[Eq. (21) and Table I]. We have seen (Sec. III) that for
appropriately chosen parameters, the gates generated by
Vqq closely approximate the dynamics due to the full
interaction-picture Hamiltonian VI in Eq. (25), where a and
a† are explicitly present in general [see Eq. (9)]. Thus, the
effective Hamiltonian we derive here illustrates that tuning
the parametric drive frequencies and amplitudes with the
remaining parameters set appropriately effectively enables
suppression of the sensitivity to cavity decay.

V. CONCLUSIONS

In this work, we have developed an approach for achiev-
ing long-range interactions between a pair of driven spin
qubits via cavity-mediated coupling combined with side-
band resonances. Our approach is applicable to a variety
of qubit types that can be controlled via parametric driv-
ing, including one-electron spin qubits in double quantum

dots, three-electron RX qubits in triple quantum dots, and
hole spin qubits, and enables highly tunable qubit-qubit
interactions that can be tailored via the driving fields.
The interactions can also be switched on and off using
only ac control, without requiring dc tuning of the qubits
away from optimal operation points and thus allowing
for improved qubit coherence relative to resonant and
standard dispersive approaches for cavity-mediated qubit
coupling.

We note that the approach that we describe here is based
on the driving of inherently nonlinear effective two-level
systems (i.e., qubits). Reducing the nonlinearity limits gate
speeds and fidelities due to leakage for sufficiently large
drive amplitudes and pulse bandwidths such that transi-
tions to states outside the qubit space can be excited,
in the absence of additional techniques that compensate
for weak anharmonicity [92–94]. Limits to the fidelity
and scalability of other drive-based off-resonant entangling
approaches such as cross-resonance [44,45] and FLIC-
FORQ (fixed linear couplings between fixed off-resonant
qubits) [23,41] gates also exist due to small anharmonici-
ties, required qubit frequency spacing, available bandwidth
for control, and spurious interaction terms ∼σ z

1σ
z
2 [26].

Spin qubits such as those considered in this work are
characterized by highly nonlinear spectra in which differ-
ences of >1 GHz in transition frequencies are routinely
realized, including within hybrid cQED systems [32–34],
and dipole transitions are highly tunable. In addition,
fluxonium superconducting qubits are designed to have
high (>1 GHz) anharmonicities [95–99]. Such qubits with
high inherent nonlinearities should in principle allow for
greater flexibility in the choice of amplitudes, frequen-
cies, and gate times for achieving desired high-fidelity
gates via the parametric driving approach described here,
without requiring the added complexity of low-anharmo-
nicity compensation techniques.
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For our driven-qubit sideband-based approach, we
expect that limits on the driving amplitudes and entangling
rates for implementing high-fidelity gates will instead arise
primarily from the requirements that �j and Wj are both
integer multiples of the same frequency η = 2π/τ to elim-
inate the first-order interaction in Eq. (14), which sets a
lower bound on τ and thus τm since η ≤ ∣∣�j

∣∣ , Wj , together
with the conditions gj � Wj required for the validity of
the effective Hamiltonian, the tuning of the drive ampli-
tudes and frequencies to a desired resonance condition
and interaction (Table I), and the constraints for elimi-
nating other interaction terms and dynamics due to the
parametric drive-induced dispersive shifts. As we have
shown in this work, multiple sets of experimentally rele-
vant [100] parameters exist for which these requirements
can be simultaneously satisfied (see, e.g., Table II) in order
to select desired and eliminate undesired interaction terms.

We have analyzed specific examples of sideband-based
entangling gates that include a 200-ns double-excitation
gate UiDE, which is generated via a blue-red sideband reso-
nance and does not exist for the standard dispersive regime
in the absence of driving fields [21,23,35,38]. Furthermore,
the rates of the entangling gates described in this work are
set by J ∝ �−1, in contrast to the typical ∼�−1

j scal-
ing for standard dispersive entangling gate rates (where
�j = ωc − ωj for resonant qubit driving). As it is pos-
sible to have � < �j for multiple sideband resonance
conditions (see, e.g., Table II), the corresponding entan-
gling gates can potentially be more rapid than those in the
standard dispersive regime. As the gates do not require
sequences of multiple qubit-cavity sideband pulses, the
potential also exists for gate speed improvements relative
to the sideband-based gates in the driven resonant regime
considered in prior work [68,69].

Unlike the resonant and standard dispersive approaches,
realizing cavity-mediated entangling interactions via the
sideband resonance method that we describe here does
not rely on simultaneous mutual resonance among multi-
ple qubit and cavity-photon frequencies. Instead, several
sideband resonance conditions are available for generating
entanglement between dressed qubits even with all orig-
inal qubit and cavity frequencies mutually off-resonant,
providing enhanced spectral flexibility. As a result, the
sideband resonance-based approach represents a poten-
tial alternative to the challenging tuning required to bring
single-spin-qubit frequencies into simultaneous resonance
via precisely oriented micromagnets that has been essen-
tial to spin-spin coupling demonstrations in silicon to
date [37,38]. In the context of extending this entangling
approach to multiple qubits, we note that the spectral
flexibility also enables the sideband resonances between
adjacent pairs of qubits to be separated by energies ∼2W.
These energy separations can be tuned to large values via
the frequencies and amplitudes of the drives, with 2W �
1.1 GHz for the example parameters given for resonance

condition 9 in Table II, and can potentially aid in minimiz-
ing crosstalk. Together with the suppressed sensitivity to
cavity decay expected from our analysis of example entan-
gling gates, these features render the approach that we
present in this work favorable for scaling and promising
for the implementation of modular quantum information
processing with spin qubits.
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APPENDIX A: HAMILTONIAN FOR
CAVITY-COUPLED DRIVEN SPIN QUBITS

The Hamiltonian Hp in Eq. (2) describes parametri-
cally driven qubits coupled via the fundamental mode of
microwave cavity photons and forms the basis for the
sideband-based cavity-mediated entangling gates derived
in this work. Here, we show how we obtain Hp for the two
specific examples of driven spin qubits illustrated in Fig. 1.

1. Driven one-electron spin qubits in double quantum
dots

We first consider two one-electron spin qubits in dou-
ble quantum dots (DQDs) coupled via a microwave cavity
[37,38]. In the following analysis, we take into account
only the lowest-energy orbital level in each dot. The charge
dipole of the electron in each DQD couples to the elec-
tric field of a microwave cavity photon [20], and the spin
of the electron couples to the charge via spin-orbit cou-
pling and/or a magnetic field gradient [101]. We focus
on electrons occupying the lowest-energy valley states
within silicon quantum dots, for which spin-charge cou-
pling is achieved through gradient fields produced by a
micromagnet [32,33,37,38,64].

Assuming coupling to only the fundamental cavity pho-
ton mode with frequency ωc, we write the system Hamil-
tonian including parametrically driven detuning as

Hs = ωca†a + Hd +
∑
j =1,2

gc,j τ
z
j

(
a + a†)

, (A1)

Hd ≡ 1
2

∑
j =1,2

[
εj (t) τ z

j + 2tj τ x
j + Bz

j sz
j + Bx

j τ
z
j sx

j

]
, (A2)

where τ z
j ≡ |L〉j 〈L| − |R〉j 〈R| with |L〉j and |R〉j the

lowest-energy orbital in the left and right dots of DQD
j , respectively, sz

j ≡ |↑〉j 〈↑| − |↓〉j 〈↓| is the Pauli-z oper-
ator for the electron spin in DQD j , and the other Pauli
orbital (charge) and spin operators are defined accordingly.
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The remaining parameters in Eqs. (A1) and (A2) are the
detuning εj between the orbital levels in the left and right
dots, the interdot tunnel coupling 2tj , the Zeeman splittings
Bz

j and Bx
j due to the net magnetic field components along

the z and x axes, respectively (due to both the external and
micromagnet fields [32]), and the charge-cavity coupling
strength gc,j for DQD j .

We describe sinusoidal (ac) driving of the detuning for
each DQD via Eq. (1) and choose the “sweet-spot” detun-
ing operation points ε0,j = 0 for j = 1, 2 where the first
derivative of the charge qubit frequency vanishes, enabling
leading-order protection from charge noise [64,65,79,102].
As in the main text, all sums are over the qubit index
j = 1, 2 unless otherwise noted. We first apply the rotation

Uc = e−i(π/4)
∑

j τ
y
j (A3)

to the charge subspace. The system Hamiltonian Hs
becomes

H ′
s = U†

cHsUc

= ωca†a + H ′
d −

∑
j

gc,j τ
x
j

(
a + a†)

−
∑

j

Fj cos
(
ωd

j t + φ′
j

)
τ x

j , (A4)

H ′
d ≡ 1

2

∑
j

(
2tj τ z

j + Bz
j sz

j − Bx
j τ

x
j sx

j

)
. (A5)

Writing the transformed DQD Hamiltonian H ′
d in the

rotated charge-spin product basis
{|+, ↑〉j , | −, ↓〉j ,∣∣+, ↓〉j , |−, ↑〉j

}
, where |±〉j = (|L〉j ± |R〉j

)
/
√

2 are the
double-dot charge eigenstates for ε0,j = 0, reveals a
block-diagonal structure with two decoupled subspaces
that we label as Ha,j and Hb,j and that are spanned
by

{|+, ↑〉j , |−, ↓〉j
}

and
{|+, ↓〉j , |−, ↑〉j

}
, respectively

[64,101].
Full diagonalization of the DQD low-energy space

including spin for ε0,j = 0 is then achieved by applying

Ud = ei
∑

j

(
�a,j α̂

y
j +�b,j β̂

y
j

)
/2, (A6)

where α̂
y
j ≡ −i

(|+, ↑〉j 〈−, ↓| − |−, ↓〉j 〈+, ↑|), β̂
y
j ≡

−i
(|+, ↓〉j 〈−, ↑| − |−, ↑〉j 〈+, ↓|), and tan�a(b),j = Bx

j /(
2tj ± Bz

j

)
. For

∣∣∣2tj − Bz
j

∣∣∣ � 2tj + Bz
j , tan�a,j � tan�b,j

and the degree of mixing between |−, ↓〉j and |+, ↑〉j is
much smaller than that between |−, ↑〉j and |+, ↓〉j . The
eigenstates in the subspace Ha,j can then be approximated
as [64] |0〉j ≈ |−, ↓〉j and |3〉j ≈ |+, ↑〉j , and the corre-
sponding eigenvalues (for � = 1) are ω0,j = −Wj /2 and

ω3,j = Wj /2 with Wj ≡
√(

2tj + Bz
j

)2
+

(
Bx

j

)2
. Setting

�j ≡ �b,j for notational convenience, the eigenstates in
the subspace Hb,j are given by

|1〉j ≡ sin
(
�j

2

)
|+, ↓〉j + cos

(
�j

2

)
|−, ↑〉j , (A7)

|2〉j ≡ cos
(
�j

2

)
|+, ↓〉j − sin

(
�j

2

)
|−, ↑〉j (A8)

and the corresponding eigenvalues are ω1,j = −Vj /2 and

ω2,j = Vj /2 with Vj ≡
√(

2tj − Bz
j

)2
+

(
Bx

j

)2
. Defining

the operators σ kl
j ≡ |k〉j 〈l|, we find in the DQD eigenstate

basis

H̃s = U†
dH ′

sUd

= ωca†a +
∑

j

3∑
k=0

ωk,j σ
kk
j

−
∑

j

d̃j

[
Fj cos

(
ωd

j t + φ′
j

)
+ gc,j

(
a + a†)]

,

(A9)

where we have defined

d̃j ≡ U†
dτ

x
j Ud

= d01
j σ

01
j + d02

j σ
02
j + d13

j σ
13
j + d23

j σ
23
j + H.c., (A10)

with d01
j = −d23

j ≈ sin
(
�j /2

)
and d02

j = d13
j ≈ cos

(
�j /2

)

for
∣∣∣2tj − Bz

j

∣∣∣ � 2tj + Bz
j .

The Hamiltonian in Eq. (A9) describes each DQD in
terms of a multilevel picture in which the ground state of
the electron is |0〉j ≈ |−, ↓〉j and the highest excited state
is |3〉j ≈ |+, ↑〉j , while the dominant charge-spin charac-
ter of |1〉j and |2〉j for ε0,j = 0 depends on the relative
magnitudes of 2tj and Bz

j [64]. To reduce the DQD descrip-
tion to an approximate two-level picture corresponding
to a spin qubit, we choose the case 2tj > Bz

j (illustrated
in Ref. [64, Fig. 2(a)]) such that |1〉j ≈ |−, ↑〉j is the
first excited state and |2〉j ≈ |+, ↓〉j is the second excited
state for each DQD. We also assume that ω1,j − ω0,j �
ω2,j − ω1,j , which is equivalent to

(Wj − Vj
)
/2Vj � 1,

as well as Fj /Vj , gc,j /Vj � 1. To first order in these small
parameters, Eq. (A9) can be written in the form

H (1)
p ≡ ωca†a +

∑
j

ωj

2
σ z

j +
∑

j

gj σ
x
j

(
a + a†)

+
∑

j

2�j cos
(
ωd

j t + φj

)
σ x

j , (A11)

where we have defined σ z
j ≡ |1〉j 〈1| − |0〉j 〈0| and

the effective spin qubit frequencies ωj ≡ ω1,j − ω0,j =
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(Wj − Vj
)
/2, 2�j ≡ Fj

∣∣sin
(
�j /2

)∣∣ is the effective
amplitude of the drive acting on the spin qubit, gj ≡
gc,j

∣∣sin
(
�j /2

)∣∣ is the effective spin-photon coupling
strength, and the sign of sin

(
�j /2

)
has been taken into

account by making the replacement φ′
j → φj and redefin-

ing the phase of a accordingly in Eq. (A9). The Hamilto-
nian H (1)

p is identical in form to Eq. (2). Finally, we note
that the Hamiltonian for DQD charge qubits [102] at the
operation points ε0,j = 0 [described by setting Bz

j = Bx
j =

0 in Eq. (A2)] can also be written in a form analogous
to Eq. (A11), with σ z,x

j → τ
z,x
j , ωj → 2tj , 2�j → Fj , and

gj → gc,j .

2. Three-electron resonant exchange qubits in triple
quantum dots

We now consider two RX qubits, each defined by the
spin states of three electrons in a triple quantum dot
[66,67], that interact via a microwave cavity [68]. In con-
trast to one-electron spin qubits, each RX qubit couples
directly to the electric field of microwave cavity pho-
tons via an intrinsic electric dipole moment. This dipole
moment arises from the admixture of polarized charge
states in the qubit states, without requiring spin-orbit cou-
pling, magnetic gradients, or the fabrication of additional
device elements such as micromagnets. The Hamiltonian
given in Ref. [68, Eq. (29)], which is used to describe RX
qubits coupled to a microwave cavity in the driven reso-
nant regime, has the same general form as Eq. (2). Here,
we briefly summarize the theory used to derive this Hamil-
tonian for RX qubits and adapt it to the case of silicon triple
quantum dots.

An effective Hamiltonian for each RX qubit can be
obtained from a Hubbard model for electrons confined
within a linear triple quantum dot [67,68]. This model
can be used to calculate a charge stability diagram (Ref.
[67, Fig. 1(b)]) that describes the triple dot in terms of
the lowest-energy charge configuration (n1, n2, n3) (where
ni denotes the occupation number for dot i and the occu-
pation numbers are ordered from the left dot to the right
dot) as a function of the gate voltages applied to the three
dots, which set the on-site energies (−ε1, −ε2, −ε3). For
fixed Vtot ≡ ∑

i εi, the lowest-energy charge configuration
depends on both the detuning ε ≡ (ε3 − ε1) /2 and the rel-
ative middle dot on-site energy Vm ≡ −ε2 + 1

2 (ε1 + ε3).
Distinct charge configurations are coupled via the left-
center and center-right interdot tunneling amplitudes tl and
tr, respectively.

References [67] and [68] consider a three-electron sys-
tem in the subspace of the charge configurations (1, 1, 1),
(2, 0, 1), and (1, 0, 2). The relevant operation point is illus-
trated in Ref. [67, Fig. 1(b)]. Here, we focus on a silicon
triple dot and assume that a sufficiently large (� 100 mT
[66]) static magnetic field is applied to the triple dot. Fur-
thermore, we assume that excited valley states are well

separated in energy from the lowest-energy valley mani-
fold (by a valley-splitting energy EV � 100 µeV [12,103–
105]), such that a single-orbital picture is valid. We can
then define a spin qubit using three-electron states in the
lower-energy S = 1/2 spin subspace, which have a spin
quantum number for the total z component ms = −1/2 due
to the positive electron g factor of silicon. The relevant
subspace is spanned by the (1, 1, 1) states

|e0〉 ≡ |s〉13 |↓〉2

= 1√
2

(
c†

1↑c†
2↓c†

3↓ − c†
1↓c†

2↓c†
3↑

)
|vac〉 , (A12)

|g0〉 ≡
√

1
3

|t0〉13 |↓〉2 −
√

2
3

|t−〉13 |↑〉2

= 1√
6

(
c†

1↑c†
2↓c†

3↓ + c†
1↓c†

2↓c†
3↑ − 2c†

1↓c†
2↑c†

3↓
)

|vac〉 ,

(A13)

together with the (2, 0, 1) and (1, 0, 2) states

∣∣s1,−1/2
〉 ≡ |s〉11 |↓〉3 = c†

1↑c†
1↓c†

3↓ |vac〉 , (A14)

∣∣s3,−1/2
〉 ≡ |↓〉1 |s〉33 = c†

1↓c†
3↑c†

3↓ |vac〉 , (A15)

where |vac〉 denotes the vacuum. In the basis {|e0〉 , |g0〉 ,∣∣s1,−1/2
〉
,
∣∣s3,−1/2

〉}
, the Hubbard Hamiltonian matrix has a

form identical to that given in Ref. [67, Eq. (S7)] for the
case ms = 1/2.

The RX qubit is defined within an effective (1, 1, 1) sub-
space

{
˜|e0〉, ˜|g0〉

}
obtained by perturbatively eliminating

the (2, 0, 1) and (1, 0, 2) states via a Schrieffer-Wolff trans-
formation [67,68]. The resulting effective Hamiltonian can
be written in the form

H (3)
eff = J

2
σ̃ z −

√
3

2
j σ̃ x, (A16)

where σ̃ z ≡ ˜|e0〉 ˜〈e0| − ˜|g0〉 ˜〈g0|, J ≡ (Jl + Jr) /2, j ≡
(Jl − Jr) /2, and the exchange between the center and left
(right) dots is Jl = t2l / (�+ ε)

[
Jr = t2r/ (�− ε)

]
. Here,

� is defined in terms of Hubbard model parameters and
Vm [67,68]. Diagonalizing H (3)

eff yields H0 = ωσ z/2 with
σ z ≡ |1〉 〈1| − |0〉 〈0|, where the eigenstates |0〉 and |1〉
define the RX qubit andω ≡

√
J 2 + 3j 2 is the qubit energy

splitting (here, we set � = 1). As the exchange interactions
Jl and Jr between dots are controlled using only voltages
applied to the triple quantum dot, the RX qubit is a spin
qubit that can be fully manipulated using electric fields
alone [66,67,106,107].
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In addition to being fully controllable via dc electric
field pulses, the RX qubit couples directly to microwave
photons by virtue of the small admixture of the polarized
charge states (2, 0, 1) and (1, 0, 2) in the logical qubit states
[67,68]. This feature enables full resonant control of the
RX qubit via electric fields, in direct analogy to resonant
control of individual electronic and nuclear spins via mag-
netic fields in electron spin resonance (ESR) and nuclear
magnetic resonance (NMR). The same charge admixture
also enables coupling of the qubit to the electric field of
photons in a microwave cavity, with a strength character-
ized by the charge admixture parameter ξ ≡ t/� (here,
t ≡ tl = tr). The parameter ξ is a measure of the electric
dipole moment of the qubit and is inversely proportional
to �, which sets the width of the (1, 1, 1) region and is
tunable via Vm.

We can write the Hamiltonian for the RX qubit including
electric dipole coupling as HRX = H0 + H ′

int, where H ′
int is

the dipole interaction in the RX qubit basis. The opera-
tion point (ε0,�0) for the RX qubit determines the qubit
frequency ω and the specific form of the electric dipole
moment. Variations in both ε and � about this opera-
tion point enable coupling to microwave cavity photons
[34,67,68,70,85] and are implemented via gate voltage
control of the on-site energies −εi. Here, we focus on elec-
tric dipole coupling for small variations in the detuning ε
[67,68]. For this case, the electric dipole moment of the
RX qubit is along the triple-dot axis and can be described
in terms of the operator d = ew0 (n1 − n3)/2, where e is
the magnitude of the electron charge and w0 is the size of
the triple dot (i.e., the distance between the centers of the
outer dots). The operation point ε = ε0 for the RX qubit is
chosen such that the coupling to variations in the detuning
ε [see, e.g., Eq. (1)] is perpendicular to the quantization
axis of the RX qubit. In the basis of the RX qubit states,
the dipole interaction of the triple dot with the fundamental
cavity mode then takes the form [68]

H ′
int = gσ x (

a + a†)
, (A17)

where the effective qubit-photon coupling strength is given
by

g = gc

2

√
(∂εJ )2 + 3 (∂ε j )2

∣∣∣∣
ε=ε0

(A18)

and gc is the charge-cavity coupling strength (an expres-
sion for gc is derived from a circuit model in Ref. [68]). For
the qubit operation point ε0 = 0 chosen in this work, tl =
tr ≡ t and g = √

3ξ 2gc/2. Thus, maximizing ξ maximizes
the coupling strength g.

In the driven resonant regime described in Ref. [68], two
RX qubits interact with microwave cavity photons, the fre-
quency of which we denote here as ωc, in the presence of
an external driving field of frequency ωd ≡ ν applied to

the cavity. A displacement transformation in the regime of
large driving-field amplitude and large cavity-drive detun-
ing

∣∣ωc − ωd
∣∣ � g,

∣∣ω − ωd
∣∣ then effectively transfers the

drive from the cavity to the qubit and leads to Eq. (29) in
Ref. [68] for each qubit. We can write this Hamiltonian for
two RX qubits as

H (3)
p = ωca†a +

∑
j

ωj

2
σ z

j +
∑

j

gj σ
x
j

(
a + a†)

+
∑

j

2�j cos
(
ωd

j t + φj

)
σ x

j , (A19)

where we have redefined the phase φj to match the form
of Hp in Eq. (2). We see that, like H (1)

p in Eq. (A11), H (3)
p

has a form identical to Hp . We also note that this form for
the Hamiltonian can be obtained for cavity-coupled RX
qubits without a displacement transformation by directly
driving the detuning of the RX qubits [66,67] as described
by Eq. (1). Thus, the sideband-based interactions and asso-
ciated entangling gates that we derive from Hp can be
implemented using both RX qubits and one-electron spin
qubits.

APPENDIX B: ONE-QUBIT SECOND-ORDER
TERMS IN EFFECTIVE HAMILTONIAN

In this appendix, we analyze in more detail the one-
qubit terms appearing at second order in the effective
Hamiltonian Heff (τ ) [Eq. (16)], which originate from the
commutators

[
VI , V′

I

]
1 and

[
VI , V′

I

]
2 defined in Eqs. (17)

and (18). The one-qubit terms arising from
[
VI , V′

I

]
1 are

given by

�1 ≡ 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

[
VI , V′

I

]
1

= 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

∑
j

{[
Aj , A′

j

]
a†2 +

[
A†

j , A′†
j

]
a2

+
([

Aj , A′†
j

]
+

[
A†

j , A′
j

])
a†a

}
(B1)

and those arising from
[
VI , V′

I

]
2 are

�2 ≡ 1
2iτ

∫ τ

0
dt

∫ t

0
dt′

∑
j

(
A†

j A′
j − A′†

j Aj

)
, (B2)

where Aj ≡ Aj (t) and A′
j ≡ Aj

(
t′
)
. We note that the

cavity-photon operators a and a† appear in each term of
�1 but are absent from �2.

Substituting for Aj and A′
j using Eq. (10) shows that

evaluating the double integrals in Eqs. (B1) and (B2)
amounts to evaluating double integrals of products of
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exponentials of the form

h
(
μ,μ′) ≡ 1

2iτ

∫ τ

0
dt

∫ t

0
dt′e−iμteiμ′t′

=
{

0, μ 
= μ′

− 1
2μ μ = μ′ (B3)

or its complex conjugate h∗ (
μ,μ′) = −h

(−μ, −μ′).
Here, μ,μ′ ∈ {±�j , ± (

�j + Wj
)

, ± (
�j − Wj

)}
. Since

we set �j = pj η and Wj = qj η with integers pj and qj ,
we have μj = rj η and μ′

j = r′
j η where rj and r′

j are also
integers. Equation (B1) then becomes

�1 =
∑

j

g2
j

({
sin θj sin2

(
θj

2

) [
h

(−�j − Wj ,�j
) − h

(−�j ,�j + Wj
)]
σ+

j

+ sin θj cos2
(
θj

2

) [
h

(−�j + Wj ,�j
) − h

(−�j ,�j − Wj
)]
σ−

j

− sin2
(
θj

2

)
cos2

(
θj

2

) [
h

(−�j − Wj ,�j − Wj
) − h

(−�j + Wj ,�j + Wj
)]
σ z

j

}
a†2

+
{[

sin θj sin2
(
θj

2

)
h

(−�j − Wj , −�j
) + sin θj cos2

(
θj

2

)
h

(−�j , −�j + Wj
)]
σ+

j

+
[

sin θj cos2
(
θj

2

)
h

(−�j + Wj , −�j
) + sin θj sin2

(
θj

2

)
h

(−�j , −�j − Wj
)]
σ−

j

+
[

sin4
(
θj

2

)
h

(−�j − Wj , −�j − Wj
) − cos4

(
θj

2

)
h

(−�j + Wj , −�j + Wj
)]
σ z

j

}

× a†a + H.c.
)

(B4)

and Eq. (B2) becomes

�2 = −
∑

j

g2
j

2

{[
sin θj sin2

(
θj

2

)
h

(
�j ,�j + Wj

) + sin θj cos2
(
θj

2

)
h

(
�j − Wj ,�j

)]
σ+

+
[

sin θj sin2
(
θj

2

)
h

(
�j + Wj ,�j

) + sin θj cos2
(
θj

2

)
h

(
�j ,�j − Wj

)]
σ−

+
[

sin4
(
θj

2

)
h

(
�j + Wj ,�j + Wj

) − cos4
(
θj

2

)
h

(
�j − Wj ,�j − Wj

)]
σz

}

+ H.c.) . (B5)

In the above expressions for �1 and �2, we have
dropped terms proportional to the identity operator that
lead to global energy shifts. Using Eqs. (B4) and (B5)
together with Eq. (B3), we can obtain the resonance con-
ditions μ = μ′ under which h

(
μ,μ′) 
= 0 and particular

one-qubit terms appear (i.e., are nonzero) in the effec-
tive Hamiltonian Heff (τ ). Note that these conditions are
identical for h

(
μ,μ′) and h∗ (

μ,μ′).
The one-qubit resonance conditions and corresponding

forms of the effective Hamiltonian terms are summarized
in Table III. We see that the a2 and a†2 terms occur only

for Wj = ∣∣2�j
∣∣ or �j = 0. Assuming that we choose an

operation point such that these conditions are not satis-
fied, the a2 and a†2 terms can be eliminated from the
Hamiltonian. Additionally, the case Wj = 0 corresponds
to a vanishing gap for dressed qubit j and thus does not
have well-defined physical meaning. We can therefore also
ignore the σ+

j a†a, σ−
j a†a, σ+

j , and σ−
j terms. As a result,

the only remaining one-qubit terms appearing at second
order in the effective Hamiltonian are those of the form
σ z

j a†a in Eq. (B4) and σ z
j in Eq. (B5). These terms exist

for any values of Wj and�j . Finally, we note that Eq. (B3)
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TABLE III. Resonance conditions for the appearance of spe-
cific one-qubit terms in the second-order effective Hamiltonian
of Eq. (16).

Resonance condition Hamiltonian terms

Wj = 2�j σ+
j a2, σ−

j a†2

Wj = −2�j σ+
j a†2, σ−

j a2

�j = 0 σ z
j a2, σ z

j a†2

Wj = 0 σ+
j a†a, σ−

j a†a, σ+
j , σ−

j
Any Wj ,�j σ z

j a†a, σ z
j

is well defined only for μ,μ′ 
= 0, which leads to the
constraints�j 
= 0 and Wj 
= ∣∣�j

∣∣. The full one-qubit con-
tribution to Heff (τ ) for �j , Wj 
= 0 and Wj 
= ∣∣�j

∣∣ ,
∣∣2�j

∣∣
is thus

� ≡ �1 +�2

=
∑

j

g2
j

⎡
⎣sin4

(
θj
2

)

�j + Wj
−

cos4
(
θj
2

)

�j − Wj

⎤
⎦ σ z

j

(
a†a + 1

2

)

= −
∑

j

g2
j

⎡
⎣δ

2
j + 2�j δj + W2

j

2Wj

(
�2

j − W2
j

)
⎤
⎦ σ z

j

(
a†a + 1

2

)
,

(B6)

where we have used cos θj = δj /Wj [see Eq. (5)]. Equation
(B6) represents the dispersive-shift terms induced by the
parametric driving [88].

APPENDIX C: QUBIT-QUBIT INTERACTION
TERMS IN EFFECTIVE HAMILTONIAN

The qubit-qubit interaction terms in Heff (τ ) [Eq. (16)],
and therefore the generated two-qubit gates U (τ ) ≈
e−iHeffτ , are given by Eq. (21). Here, we derive the form
of Vqq (τ ) for each of the nine resonance conditions
μ1 = μ2, where μ1 ∈ {�1,�1 + W1,�1 − W1} and μ2 ∈
{�2,�2 + W2,�2 − W2}. As noted in the main text, these
resonance conditions are obtained by substituting Eq. (10)
into Vqq (τ ), which yields terms with frequency differ-
ences μ1 − μ2, and subsequently applying Eq. (B3) to
identify nonzero terms. In what follows, we use the abbre-
viated notation �±

j ≡ �j ± Wj and refer to the resonance
conditions by the numbers given in Table I.

First, we consider the resonance condition �1 = �2
(resonance condition 1), which is equivalent to ωd

1 = ωd
2

and therefore describes the driving of both qubits at the
same frequency. In order to select a specific form for the
two-qubit interaction, we also assume that the constraints
W1 
= ±W2 are satisfied so that terms in Vqq (τ ) with μ1 −
μ2 
= �1 −�2 remain nonzero and vanish according to
Eq. (B3). In terms of the resonant detuning� ≡ �1 = �2,

we find that Eq. (21) becomes

Vqq (τ ) = g1g2

4
[2h (�,�)− 2h (−�, −�)]

× sin θ1 sin θ2σ
z
1σ

z
2

= −g1g2

2�
sin θ1 sin θ2σ

z
1σ

z
2

= −2J sin θ1 sin θ2σ
z
1σ

z
2 , (C1)

where we have defined J ≡ g1g2/4�. For resonant qubit
driving such that δ1 = δ2 = 0, W1 = 2�1, W2 = 2�2, and
sin θ1 = sin θ2 = 1. In this case, �1 = �2 corresponds to
ω1 = ω2. In other words, since the detunings of both qubit
frequencies from the cavity frequency ωc are aligned, the
center frequencies of the driven qubits are also resonant.
Equation (C1) then reduces to

Vqq (τ ) = −2J σ z
1σ

z
2 , (C2)

which can be used to generate a controlled-phase gate (see
Appendix D).

In a similar way, we can derive the form of the two-
qubit interaction and corresponding constraints for each
of the remaining resonance conditions. Resonance condi-
tion 2 (3), given by �1 = �+

2 (�1 = �−
2 ), is equivalent to

ωd
1 = ωd

2 − W2 (ωd
1 = ωd

2 + W2). For � ≡ �1 = �±
2 , we

find

Vqq (τ ) = ∓g1g2

4
[h (�,�)− h (−�, −�)]

× sin θ1 (1 ∓ cos θ2) σ
z
1σ

x
2

= ±J sin θ1 (1 ∓ cos θ2) σ
z
1σ

x
2 , (C3)

with the same set of constraints W1 
= ±W2, ±2W2 for
each resonance condition. In the case of resonant qubit
driving, the resonance condition �1 = �+

2 (�1 = �−
2 )

corresponds to ω1 = ω2 − 2�2 (ω1 = ω2 + 2�2) such that
the center frequency of qubit 1 is aligned with the red
(blue) sideband of qubit 2. In this case, sin θ1 = 1 and
cos θ2 = 0, which reduces Eq. (C3) to

Vqq (τ ) = ±J σ z
1σ

x
2 (C4)

for �1 = �±
2 .

The resonance conditions �+
1 = �2 and �−

1 = �2 (res-
onance conditions 4 and 5) describe cases in which the
roles of qubits 1 and 2 are reversed relative to �1 =
�+

2 and �1 = �−
2 , respectively. Accordingly, �+

1 = �2
(�−

1 = �2) is equivalent to ωd
1 − W1 = ωd

2 (ωd
1 + W1 =

ωd
2) and the qubit-qubit interaction takes the form

Vqq (τ ) = ±J (1 ∓ cos θ1) sin θ2σ
x
1σ

z
2 (C5)

for� ≡ �±
1 = �2 and constraints such that W1 ↔ W2 rel-

ative to the constraints for resonance conditions 2 and 3.
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In the case of resonantly driven qubits, �+
1 = �2 (�−

1 =
�2) corresponds to ω1 − 2�1 = ω2 (ω1 + 2�1 = ω2) so
that the center frequency of qubit 2 is aligned with the red
(blue) sideband of qubit 1, and Eq. (C5) becomes

Vqq (τ ) = ±J σ x
1σ

z
2 (C6)

for �±
1 = �2.

We next consider the resonance conditions �+
1 = �+

2
and �−

1 = �−
2 (resonance conditions 6 and 7), which are

equivalent to ωd
1 − W1 = ωd

2 − W2 and ωd
1 + W1 = ωd

2 +
W2, respectively. The form of the effective qubit-qubit
interaction for � ≡ �±

1 = �±
2 is

Vqq (τ ) = −J (1 ∓ cos θ1) (1 ∓ cos θ2)
(
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
,

(C7)

with an identical set of constraints W1 
= W2, 2W2, W2/2
for each resonance condition. For resonant driving of both
qubits,�+

1 = �+
2 (�−

1 = �−
2 ) corresponds to ω1 − 2�1 =

ω2 − 2�2 (ω1 + 2�1 = ω2 + 2�2) such that the red (blue)
sidebands of both qubits are in resonance, and Eq. (C7)
becomes

Vqq (τ ) = −J (
σ+

1 σ
−
2 + σ−

1 σ
+
2

)
(C8)

for both � = �+
1 = �+

2 and � = �−
1 = �−

2 .
Finally, the resonance conditions �+

1 = �−
2 and �−

1 =
�+

2 (resonance conditions 8 and 9) are equivalent to
ωd

1 − W1 = ωd
2 + W2 and ωd

1 + W1 = ωd
2 − W2, respec-

tively. The effective qubit-qubit interaction for � ≡ �±
1 =

�∓
2 takes the form

Vqq (τ ) = J (1 ∓ cos θ1) (1 ± cos θ2)
(
σ+

1 σ
+
2 + σ−

1 σ
−
2

)
,

(C9)

again with an identical set of constraints W1 
= −W2,
−2W2, −W2/2 for each resonance condition. Note that,
for the physically relevant case W1,2 > 0, these constraints
are always satisfied. For resonant driving of both qubits,
�+

1 = �−
2 (�−

1 = �+
2 ) corresponds to ω1 − 2�1 = ω2 +

2�2 (ω1 + 2�1 = ω2 − 2�2), such that the red (blue) side-
band of qubit 1 is in resonance with the blue (red) sideband
of qubit 2. Equation (C9) becomes

Vqq (τ ) = J (
σ+

1 σ
+
2 + σ−

1 σ
−
2

)
(C10)

for both � = �+
1 = �−

2 and � = �−
1 = �+

2 .
The above nine resonance conditions, their associated

constraints, and the corresponding forms of the effective
qubit-qubit interaction Vqq (τ ) for resonant qubit driving
are summarized in Table I of the main text.

APPENDIX D: ELIMINATION OF
DRIVE-INDUCED DISPERSIVE-SHIFT

DYNAMICS FROM EFFECTIVE HAMILTONIAN

As shown in Appendix B, the parametric drive-induced
dispersive-shift terms � [Eq. (B6)] in general exist for
any Wj and �j (provided that Wj 
= ∣∣�j

∣∣). Nevertheless,
it is possible to effectively eliminate the dynamics gen-
erated by � in specific cases by appropriately choosing
parameters and operation times such that the gate in the
presence of � is equivalent to that for � = 0. Here, we
first illustrate this method for the resonant qubit driving
case δj = 0 and the resonance conditions 7 and 9 in Table I
and Fig. 2. We then consider the effects of� for additional
resonance conditions, as well as the off-resonant qubit driv-
ing case δj 
= 0, for which we can choose parameters such
that � = 0.

We first consider resonant qubit driving, described by
δj = 0 such that Wj = 2�j , � = �r, and χj 
= 0. From
Eqs. (16), (20), and (21), the effective Hamiltonian for
�j = pj η and Wj = qj η with pj , qj integers, �j , Wj 
= 0,
and Wj 
= ∣∣�j

∣∣ ,
∣∣2�j

∣∣ is given by

Heff (τ ) = λ2H̄ 2 (τ )

= Vqq (τ )+�r. (D1)

As discussed in the main text, the desired ideal two-qubit
evolution is generated by the qubit-qubit interaction term
Vqq according to Um ≡ e−iVqqτm , where τm ≡ mτ = 2πm/η
is the corresponding gate time. We now also define an evo-
lution operator with the dispersive-shift terms included as
U′

m ≡ e−iHeffτm , where Heff is given by Eq. (D1).
From Eq. (21), we note that Vqq is independent of pho-

ton operators a, a†. We also see from Eq. (20) that �r is
diagonal in the photon number n. We can therefore write

�r =
∑

n

�n, (D2)

where�n ≡ Pn�rPn = 〈n|�r |n〉 Pn is the operator describ-
ing the dispersive-shift terms within the n-photon subspace
and Pn ≡ |n〉 〈n| is the corresponding subspace projector,
and work in a subspace of fixed n. Noting that Vqq (τ ) con-
sists only of qubit operators [see Eq. (21)], we find H (n)

eff ≡
PnHeffPn = Pn

(
Vqq +�r

)
Pn = Vqq +�n, where we now

use Vqq to denote the n-photon subspace operator. In the
basis {|ee, n〉 , |eg, n〉 , |ge, n〉 , |gg, n〉}, �n takes the form

�n =
(

n + 1
2

)⎛
⎜⎝
χ1 + χ2

χ1 − χ2
−χ1 + χ2

−χ1 − χ2

⎞
⎟⎠,

(D3)

while the form of Vqq depends on the particular res-
onance condition according to Table I. The evolution
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with the dispersive-shift terms included is described by
PnU′

mPn = e−iH (n)
eff τm = e−i(Vqq+�n)τm . As in the main text,

we use Um and U′
m to denote the evolution operators

within the n-photon two-qubit subspace and suppress the
photon-number state |n〉 in what follows.

We first consider resonance condition 7, which is
defined by � ≡ �−

1 = �−
2 . In the main text, we have

noted that the ideal evolution within the n-photon sub-
space can be written as Um = eiJ τm�x , where �x ≡
|eg〉 〈ge| + |ge〉 〈eg|. The ideal operation Um therefore acts
nontrivially only within the two-dimensional subspace
{|eg〉 , |ge〉}, and �x has an action analogous to the Pauli
operator σx in this subspace.

From Eq. (D3) and the form of Vqq for resonance con-
dition 7 [Eq. (C8)], we find that H (n)

eff is block diagonal. In
this case, we can write H (n)

eff = PH (n)
eff P + QH (n)

eff Q, where
we have defined the two-qubit subspace projectors

P ≡ |ee〉 〈ee| + |gg〉 〈gg| ,

Q ≡ |eg〉 〈eg| + |ge〉 〈ge| . (D4)

We can then characterize the effect of �n on the dynamics
for a given initial state |ψi〉 via a fidelity

Fs ≡ ∣∣〈ψi| U†
mU′

m |ψi〉
∣∣2

= ∣∣〈ψi| P
(
PU†

mP
) (

PU′
mP

)
P |ψi〉

+ 〈ψi| Q
(
QU†

mQ
) (

QU′
mQ

)
Q |ψi〉

∣∣2
, (D5)

where we have used Um = PUmP + QUmQ and U′
m =

PU′
mP + QU′

mQ.
For resonance condition 7, we find

PH (n)
eff P =

(
n + 1

2

)
(χ1 + χ2)�

′
z,

QH (n)
eff Q =

(
n + 1

2

)
(χ1 − χ2)�z − J�x, (D6)

where we have defined the operators �z ≡ |eg〉 〈eg| −
|ge〉 〈ge| and �′

z ≡ |ee〉 〈ee| − |gg〉 〈gg| in analogy to the
Pauli operator σz. For an initial state |ψi〉 in the subspace
associated with Q, evolution for �n 
= 0 remains within
this space such that U′

m |ψi〉 = QU′
mQ |ψi〉. In the main

text, we consider the initial state |ψi〉 = |eg〉. For the iSWAP
gate UiSW, which is equivalent to Um at time τm = π/2J
[see Eq. (22)], the ideal final state is

∣∣ψf
〉 = UiSW |ψi〉 =

UiSW |eg〉 = i |ge〉.
We now set n = 0 for simplicity [in what follows, gen-

eralization of the expressions to any n using Eq. (D3)
is straightforward and amounts to the replacements
(χ1 ± χ2) /2 → (

n + 1
2

)
(χ1 ± χ2)]. In the presence of �0

and defining the unit vector û ≡ [
(χ1 − χ2) ẑ − 2J x̂

]
/�̃

with �̃ ≡
√
(χ1 − χ2)

2 + 4J 2, the action of the gate is
modified to

QU′
mQ |ψi〉 = e−i �̃τm2 û·� |eg〉

=
[
cos

(
�̃τm

2

)
− i sin

(
�̃τm

2

) (
χ1 − χ2

�̃

)]

× |eg〉 + i sin

(
�̃τm

2

) (
2J
�̃

)
|ge〉 . (D7)

Using Eqs. (D5) and (D7) along with PUmP |ψi〉 =
PU′

mP |ψi〉 = 0, we find

Fs = ∣∣〈ψi| Q
(
QU†

mQ
) (

QU′
mQ

)
Q |ψi〉

∣∣2

= 4J 2

�̃2
sin2

(
�̃τm

2

)
, (D8)

which oscillates with the modified frequency �̃ instead of
J in the ideal case. Nevertheless, we can recover the ideal
dynamics and obtain Fs = 1 for the iSWAP gate time τm =
π/2J by choosing parameters for which χ1 = χ2, such
that QH (n)

eff Q = Vqq and QU′
mQ = QUmQ. The constraints

that must be satisfied by the parameters for resonance con-
dition 7 (in addition to those listed in Table I) are therefore
(a) τm = π/2J , (b) χ1 = χ2, and (c) w ≡ p1 − q1 = p2 −
q2 from the resonance condition itself. From constraint
(a) and using � = wη, we find τm ≡ 2πm/η = π/2J =
2πwη/g1g2, or

g1g2 = w
m
η2, (D9)

while constraint (b) becomes, using Eq. (20) with �j =
pj η, Wj = 2�j = qj η, and � = �−

1 = �−
2 = wη and

incorporating constraint (c),

g2
2

g2
1

=
2 + w

q2

2 + w
q1

. (D10)

We also note that q1, q2, p1, p2, w, and m must all be
integers.

There are multiple sets of parameter values that sat-
isfy these constraints, and we choose one set (given in
Table II) for the fidelity analysis described in this work. To
show that this approach effectively restores the ideal iSWAP
evolution in the absence of the dispersive-shift terms, we
choose n = 0 and compare the ideal state at time τm for
�r = 0 with the numerical solution to the time-dependent
Schrödinger equation for the density matrix in the inter-
action picture, ρ̇I = −i [VI , ρI ], for VI given by Eq. (9),
the initial state ρI (0) = |ψi〉 〈ψi| = |eg, 0〉 〈eg, 0|, and the
chosen set of parameters. For the numerical calculations,
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we work in the photon subspace with n = 0, 1, 2. The ideal
final state is given by

ρ
f
I (τm) = ∣∣ψf

〉 〈
ψf

∣∣
= UiSWρI (0)U†

iSW

= |ge, 0〉 〈ge, 0| . (D11)

For the comparison, we calculate the fidelity [91]

F0 (τm) ≡ Tr
[
ρ

f
I (τm) ρ

(0)
I (τm)

]
, (D12)

where ρ
(0)
I (τm) denotes the numerical solution in the

absence of decay, i.e., for γj = κ = 0 in the master
equation of Eq. (25). For the chosen parameters, we find
F0 ≈ 0.998, confirming that setting χ1 = χ2 effectively
eliminates the modification to the dynamics induced by
the dispersive-shift terms �r and restores the evolution
expected for the iSWAP gate.

We now apply this approach to resonance condition 9,
which from Table I is given by � ≡ �−

1 = �+
2 . From

the form of Vqq [Eq. (C10)], the effective Hamiltonian
for this case is again block-diagonal and can be written
as H (n)

eff = PH (n)
eff P + QH (n)

eff Q. As described in the main
text, ideal evolution within the n-photon subspace can
be expressed as Um = e−iJ τm�′

x , where �′
x ≡ |ee〉 〈gg| +

|gg〉 〈ee|. The ideal evolution in this case occurs nontriv-
ially only within the two-dimensional subspace associated
with P in Eq. (D4), and we find that

PH (n)
eff P =

(
n + 1

2

)
(χ1 + χ2)�

′
z + J�′

x,

QH (n)
eff Q =

(
n + 1

2

)
(χ1 − χ2)�z. (D13)

If we now assume that the initial state |ψi〉 lies within the
subspace associated with P, evolution for �n 
= 0 remains
within this space such that U′

m |ψi〉 = PU′
mP |ψi〉. Here,

we consider the initial state |ψi〉 = |ee〉. For the double-
excitation gate UiDE described in the main text, which is
equivalent to Um at time τm = −π/2J [see Eq. (23)] the
ideal final state is

∣∣ψf
〉 = UiDE |ψi〉 = UiDE |ee〉 = i |gg〉.

Again, we set n = 0 for simplicity [with straight-
forward generalization of expressions to any n via
(χ1 ± χ2) /2 → (

n + 1
2

)
(χ1 ± χ2)]. In terms of û′ ≡[

(χ1 + χ2) ẑ + 2J x̂
]
/�′ with �′ ≡

√
(χ1 + χ2)

2 + 4J 2,
the modified action of the gate in the presence of �0 is

given by

PU′
mP |ψi〉 = e−i�

′τm
2 û′·�′ |ee〉

=
[

cos
(
�′τm

2

)
− i sin

(
�′τm

2

) (
χ1 + χ2

�′

)]

× |ee〉 − i sin
(
�′τm

2

) (
2J
�′

)
|gg〉 .

(D14)

Since QUmQ |ψi〉 = QU′
mQ |ψi〉 = 0, Eq. (D5) then reduces

to

Fs = ∣∣〈ψi| P
(
PU†

mP
) (

PU′
mP

)
P |ψi〉

∣∣2

= 4J 2

�′2 sin2
(
�′τm

2

)
. (D15)

Fs now oscillates with the modified frequency�′ instead of
J in the ideal case. We can again recover the ideal dynam-
ics and obtain Fs = 1 for the gate time τm = −π/2J by
choosing parameters such that χ1 = −χ2, which yields
PH (n)

eff P = Vqq and PU′
mP = PUmP. Thus, the constraints

that must be satisfied by the parameters for resonance
condition 9 (in addition to those listed in Table I) are
(a) τm = −π/2J , (b) χ1 = −χ2, and (c) w ≡ p1 − q1 =
p2 + q2 from the resonance condition. From constraint (a)
and using � = wη, we find τm ≡ 2πm/η = −π/2J =
−2πwη/g1g2, which gives

g1g2 = −w
m
η2. (D16)

On the other hand, constraint (b) with constraint (c) incor-
porated becomes [again using Eq. (20) with �j = pj η,
Wj = 2�j = qj η, and � = �−

1 = �+
2 = wη],

g2
2

g2
1

=
2 − w

q2

2 + w
q1

. (D17)

As before, q1, q2, p1, p2, w, and m must all be integers.
There are once again multiple sets of parameter val-

ues that satisfy these constraints, and we choose one set
(given in Table II) for the analysis described in this work.
We now show that the ideal evolution described by UiDE

in the absence of the dispersive-shift terms is restored
for χ1 = −χ2 and the chosen parameters. Working in the
photon subspace with n = 0, 1, 2 and numerically solv-
ing ρ̇I = −i [VI , ρI ] for resonance condition 9 with the
initial state ρI (0) = |ψi〉 〈ψi| = |ee, 0〉 〈ee, 0|, we compare
the γj = κ = 0 solution ρ(0)I (τm) at time τm with the ideal
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(�r = 0) final state

ρ
f
I (τm) = ∣∣ψf

〉 〈
ψf

∣∣
= UiDEρI (0)U†

iDE

= |gg, 0〉 〈gg, 0| (D18)

via the fidelity in Eq. (D12). We find F0 ≈ 0.998, showing
that setting χ1 = −χ2 effectively eliminates the modifica-
tion to the dynamics induced by the dispersive-shift terms
and restores the expected gate evolution generated by Vqq
for resonance condition 9. The small error 1 − F0 found for
both resonance conditions 7 and 9 also serves as a measure
of the validity of the model that we develop in this work.

By choosing parameters that satisfy additional con-
straints, a similar approach can be used to eliminate
dispersive-shift dynamics for general initial states |ψi〉
with arbitrary photon number n, as well as for other res-
onance conditions and the corresponding interactions and
two-qubit gates listed in Table I. For a general initial state

|ψi〉 = cee |ee, n〉 + ceg |eg, n〉 + cge |ge, n〉 + cgg |gg, n〉 ,
(D19)

both the subspaces associated with P and Q must be taken
into account. For resonance condition 7, we find

PU′
mP |ψi〉 = Pe−i�nτmP

= e−i
(

n+ 1
2

)
(χ1+χ2)τm |ee, n〉 〈ee, n|

+ ei
(

n+ 1
2

)
(χ1+χ2)τm |gg, n〉 〈gg, n| (D20)

and PUmP |ψi〉 = P |ψi〉, while for resonance condition 9,

QU′
mQ |ψi〉 = Qe−i�nτmQ

= e−i
(

n+ 1
2

)
(χ1−χ2)τm |eg, n〉 〈eg, n|

+ ei
(

n+ 1
2

)
(χ1−χ2)τm |ge, n〉 〈ge, n| (D21)

and QUmQ |ψi〉 = Q |ψi〉. From the forms of Eqs. (D20)
and (D21), we see that setting χj = 2πkj with kj an integer
for j = 1, 2, along with k1 = k2 (k1 = −k2) for resonance
condition 7 (9) to satisfy χ1 = χ2 (χ1 = −χ2) eliminates
the dynamical phases due to �r and restores the ideal evo-
lution due to Vqq within a subspace of fixed n, or for an
integer average photon number

〈
a†a

〉
.

We now consider the other resonance conditions in
Table I. Resonance condition 1 is given by � ≡ �1 = �2
and (assuming that the associated constraints listed in the
table are satisfied by W1 and W2) yields Vqq = −2J σ z

1σ
z
2 .

This interaction is equivalent to that which generates a
Mølmer-Sørensen gate in the original qubit basis [108]
and can be used to construct a controlled-phase gate

in the dressed-qubit basis considered here. Using Um =
e−iVqqτm = ei2J τmσ z

1σ
z
2 , a sequence for a controlled-phase

gate is given by

Uϕ = ei2J τme−i2J τmσ z
1 e−i2J τmσ z

2 Um

=

⎛
⎜⎝

1
1

1
eiϕ

⎞
⎟⎠ , (D22)

where ϕ ≡ 8J τm, which shows that Um for� ≡ �1 = �2
is equivalent to a controlled-phase gate up to single-qubit
rotations. For ϕ = (2l + 1) π or τm = (2l + 1) π/8J with
l an integer, Uϕ represents a controlled-Z gate UCZ.

To determine conditions for eliminating the dispersive-
shift dynamics in the case of resonance condition 1, we
can compare the action of Um and U′

m = e−i(Vqq+�n)τm =
e−i�nτmUm, both of which now act in the full two-qubit
space, on a general state |ψi〉 in this space [Eq. (D19)] via

Fs = ∣∣〈ψi| U†
mU′

m |ψi〉
∣∣2

= ∣∣〈ψi| e−i�nτm |ψi〉
∣∣2

=
∣∣∣∣|cee|2 e−i

(
n+ 1

2

)
(χ1+χ2)τm + ∣∣ceg

∣∣2 e−i
(

n+ 1
2

)
(χ1−χ2)τm

+ ∣∣cge
∣∣2 ei

(
n+ 1

2

)
(χ1−χ2)τm + ∣∣cgg

∣∣2 ei
(

n+ 1
2

)
(χ1+χ2)τm

∣∣∣∣
2

.

(D23)

In this case, we can in principle recover the ideal dynamics
and obtain Fs = 1 for any state |ψi〉 by choosing parame-
ters that satisfy χj = 2πkj with kj an integer for j = 1, 2
and that also satisfy τm = ϕ/8J , p1 = p2 from the reso-
nance condition, and q1 
= ±q2 from Table I to obtain a
controlled-phase gate Uϕ according to the construction in
Eq. (D22). For UCZ, τm = (2l + 1) π/8J , and we can pro-
ceed to identify potential parameter sets by choosing, e.g.,
l = 0 and setting τm ≡ 2πm/η = π/8J in analogy to the
analysis described above for resonance conditions 7 and 9.

The remaining physically distinct case in Table I is that
of resonance condition 4, given by � ≡ �+

1 = �2 and
corresponding to Vqq = J σ x

1σ
z
2 when W1 and W2 satisfy

the listed constraints. This interaction can be used to con-
struct a controlled-NOT (CNOT) gate [45]. We note that Vqq,
and therefore Um and U′

m, are block diagonal with the
associated subspace projectors P′ = |ee〉 〈ee| + |ge〉 〈ge|
and Q′ = |eg〉 〈eg| + |gg〉 〈gg|. If we choose |ψi〉 = |eg〉
such that P′UmP′ |ψi〉 = P′U′

mP′ |ψi〉 = 0, we find from a
calculation similar to that in Eqs. (D5) and (D8),

Fs = ∣∣〈ψi| U†
mU′

m |ψi〉
∣∣2

= 4J 2

�̄2
sin2

(
�̄τm

2

)
(D24)
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with �̄ ≡
√
χ1 + 4J 2. In this case, recovering the dynam-

ics for �r = 0 requires χ1 = 0, which is not possible for
δj = 0 and g1, 2�1 
= 0 [see Eq. (20)]. Similar results hold
for other initial states |ψi〉. While Fs = 1 is not achievable
exactly for resonance condition 4 when δj = 0, choos-
ing appropriate parameters to minimize χj in principle
allows Fs to be made arbitrarily close to unity, enabling
the dynamics for �r = 0 and thus the gate generated by
Vqq = J σ x

1σ
z
2 to be well approximated. The dispersive-

shift dynamics can also be eliminated in this case for
δj 
= 0, as we describe below. The other resonance con-
ditions in Table I lead to effective interactions Vqq that are
either identical in form to those considered above or have
the roles of qubits 1 and 2 reversed.

Finally, we consider the conditions under which the one-
qubit contribution to Heff (τ ), including the dispersive-shift
terms �, can be made to vanish for each qubit individ-
ually. In this case, Heff (τ ) = Vqq (τ ) consists solely of
qubit-qubit interaction terms. Setting � = 0 in Eq. (19)
yields the condition δ2

j + 2�j δj + W2
j = 0 or, equiva-

lently, δ2
j + 2pj ηδj + q2

j η
2 = 0. We note that for resonant

driving, described by δj = 0, the one-qubit contribution
� 
= 0 unless Wj = 0, which is not physically mean-
ingful (see Appendix B). Thus, provided that the drive
frequency is not on resonance with the qubit frequency(
ωd

j 
= ωj

)
, the dispersive-shift terms can be eliminated

individually for each qubit by an appropriate choice of
parameters.

We note that dynamical phase errors due to the drive-
induced dispersive-shift terms, as well as any additional
dispersive shifts arising at higher orders in the Mag-
nus expansion, could potentially also be compensated via
a time-dependent qubit-drive detuning [109,110] imple-
mented by modulating either the amplitude or frequency
(via, e.g., a linearly chirped drive frequency) in time.
While this approach may partially reduce the parameter
constraints we describe, it also imposes additional tem-
poral requirements on the control fields needed during
operation of the gates. Here, we have presented an alterna-
tive approach that relies on appropriately fixed parameter
values. Detailed analysis and optimization of control meth-
ods for correcting these phase shifts are left for future
work.
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