
PRX QUANTUM 5, 020336 (2024)

Optimization Tools for Distance-Preserving Flag Fault-Tolerant Error Correction

Balint Pato ,1,2,*,¶ Theerapat Tansuwannont ,1,2,†,§,¶ Shilin Huang ,1,2,‖ and
Kenneth R. Brown 1,2,3,4,‡

1
Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA

2
Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA

3
Department of Physics, Duke University, Durham, North Carolina 27708, USA

4
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA

 (Received 22 August 2023; revised 25 January 2024; accepted 2 April 2024; published 16 May 2024)

Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum com-
puter architectures with small-distance quantum error-correcting codes. In this work, we develop several
optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant
quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes.
Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the
adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the
separate X - and Z-counting technique. We evaluate the performance of our tools using numerical simula-
tion of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can
result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color
code of distance 9, from (1.34 ± 0.01)× 10−4 to (1.43 ± 0.07)× 10−3.

DOI: 10.1103/PRXQuantum.5.020336

I. INTRODUCTION

Inside a future large-scale quantum computer, there will
be a continuous battle against unwanted interactions with
the environment. The main goal of fault-tolerant quantum
error-correction (FTQEC) protocols [1] is to create a robust
channel to transfer quantum information from the past to
the future. The threshold theorem states that it is possible
to suppress the failure rate of this channel (the logical error
rate) to an arbitrarily small value given that the physical
error rate of the constituent operations are below the accu-
racy threshold [2–7]. It is essential to reduce both space
and time overhead (the numbers of qubits and gates) for
scalable quantum computing, as decreasing logical error

*balint.pato@duke.edu
†Corresponding author: t.tansuwannont.qiqb@osaka-u.ac.jp
‡ken.brown@duke.edu
§Present address: Center for Quantum Information and Quan-

tum Biology, Osaka University, Toyonaka, Osaka 560-0043,
Japan.

‖Present address: Department of Applied Physics, Yale Uni-
versity, New Haven, Connecticut 06511, USA.

¶These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

rates requires increasing overhead [8–11], and the cur-
rent leading proposals for FTQEC schemes have daunting
requirements [12,13].

An FTQEC scheme is designed to be robust against
propagating errors that emerge from faulty gates during
the execution of the protocol [1]. The scheme also has
to protect against ancilla preparation and measurement
errors, usually through repeated syndrome measurements.
For an [[n, k, d]] stabilizer code [14], which encodes k
logical qubits into n physical qubits and has minimum
distance d, Shor’s solution [1] has been to utilize a cat-
state ancilla register that requires w ancilla qubits and
(d + 1)2/4 rounds of syndrome measurements, where w
is the maximum weight of the stabilizer generators. In
Steane-style syndrome extraction [15], the ancilla register
requires n qubits and is encoded with the same quantum
error-correcting code (QECC) as the data qubits. Similarly,
in Knill-style error correction [16], the ancilla register con-
sists of two blocks of n qubits encoded in the same QECC
as the data qubits.

In contrast to complex ancilla structures, bare ancillas
can also be used to fault-tolerantly extract the syndrome
while preserving the minimum distance for some specific
families of stabilizer codes [17–19] and subsystem codes
[20–22] or by tolerating some loss of distance [23–25].
For a general stabilizer code, however, generator measure-
ments with bare ancillas might not be possible. A series
of works aiming to reduce the size of the ancilla register
has resulted in increasingly lighter-weight constructions

2691-3399/24/5(2)/020336(32) 020336-1 Published by the American Physical Society

https://orcid.org/0000-0001-9502-3368
https://orcid.org/0000-0002-2865-0705
https://orcid.org/0000-0001-6731-8601
https://orcid.org/0000-0001-7716-1425
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.020336&domain=pdf&date_stamp=2024-05-16
http://dx.doi.org/10.1103/PRXQuantum.5.020336
https://creativecommons.org/licenses/by/4.0/

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

[26,27], which have also led to the flag FTQEC schemes
for perfect codes of distance 3 that use only two ancillas
per generator [28], one flag qubit and one syndrome qubit.
The flag schemes later generalized to arbitrary codes of
distance d require d + 1 ancillas per generator [29], while
the schemes for some specific families of codes require
fewer [30–35].

FTQEC schemes based on extraction circuits with cat
states and flag FTQEC schemes both require repetition of
syndrome measurements that can result in a large num-
ber of gates. Adaptive syndrome-measurement schemes
in which the subsequent measurement procedures depend
on the previous syndrome-measurement outcomes have
been explored to reduce the number of rounds required
for FTQEC schemes with Shor-type extraction circuits
[36–38].

During the execution of an FTQEC protocol, faults can
occur at any gate on any round of the syndrome measure-
ments. The only information about the error on data qubits
that we can obtain is a sequence of error syndromes and
we want to find an appropriate recovery operator from this
information. An ideal strategy would be to use all syn-
drome bits from all rounds, i.e., the whole measurement
outcomes in space-time. For some codes with a nice struc-
ture, such as surface codes, an efficient space-time decoder
exists [39]. However, constructing a space-time decoder
for a general stabilizer code is not simple. To simplify
the problem, we will consider an error decoder, which is
composed of two parts: the space and the time decoders.
Under the assumption that the syndrome measurements
can be faulty, the time decoder finds a round of syndrome
measurements that has no faults and gives a correct syn-
drome. The space decoder then uses the correct syndrome
to construct a recovery operator.

Conventionally, flag FTQEC uses a lookup-table
decoder as a space decoder and relies on Shor-style
repeated syndrome measurements as a time decoder,
although there are instances in which this is not the case
[40]. These decoders have pros and cons. The lookup-table
decoder is fast and distance preserving. However, building
a lookup table requires an exhaustive search over all possi-
ble fault combinations up to a certain number of faults and
the table requires a lot of memory to store. Thus, it might
not work well with a code of high distance (unless code
concatenation is applied). The Shor-style time decoder is
simple and compatible with any space decoder. However,
the large time overhead required in the repetition can result
in a lower threshold.

In this work, we build several optimization tools for
both space and time decoders for the purpose of reducing
the overhead of both to obtain better-performing protocols
for flag-qubit-based FTQEC. Most of our tools are appli-
cable to general stabilizer codes but we primarily focus
on self-orthogonal CSS codes (CSS codes in which X -
and Z-type generators are of the same form) in which

the number of physical qubits is odd, the number of log-
ical qubits is 1, and the logical X and Z operators are
transversal for simplicity. Our main results are the follow-
ing. (1) We develop a technique to build a lookup table
more efficiently. Our compact lookup table can leverage
the structure of a self-orthogonal CSS code and requires
87.5% less memory footprint compared to a lookup table
designed for a generic stabilizer code. Our method also
efficiently verifies whether a configuration of the flag cir-
cuits preserves the code distance. The development also
leads to the notion of a fault code, which can be useful
in error sampling for the circuit-level noise model. (2) We
introduce the meet-in-the-middle (MIM) technique, which
can help the lookup-table decoder correct faults when the
number of faults occurring is more than the number of
errors correctable by the underlying code. Although the
correction is not always successful, the higher success
probability can significantly increase the pseudothresh-
old in our simulations. (3) We generalize previous work
[38] on adaptive syndrome-measurement schemes to flag
FTQEC and introduce one-tailed and two-tailed adaptive
time decoders, which are useful in different circumstances.
We also develop a classical processing technique on flag
information that makes our FTQEC protocols compatible
with any fault-tolerant Clifford computation. (4) We use
our optimization tools and perform numerical simulations
on the hexagonal color codes [41] of distances 3, 5, 7,
and 9. The results show that each of our tools can sig-
nificantly reduce the logical error rates and increase the
pseudothreshold for each code while preserving the code
distance. For the hexagonal color code of distance 9, the
pseudothreshold is improved by one order of magnitude,
from (1.34 ± 0.01)× 10−4 to (1.43 ± 0.07)× 10−3, when
all techniques are applied.

This paper is organized as follows. In Sec. II, we define
the noise model in this work, review flag FTQEC, and
provide definitions of fault-tolerant error correction. In
Sec. III, we develop optimization tools for space decoder,
including an efficient method to build a compact lookup
table and the MIM technique. In Sec. IV, we develop opti-
mization tools for time decoder, including the one-tailed
and two-tailed adaptive time decoder, and other extended
techniques for CSS codes. In Sec. V, we provide numeri-
cal results for the hexagonal color codes and observe the
effects of the MIM, the adaptive time decoding, and the
separate X - and Z-counting techniques on the logical error
rates. We discuss and conclude our results in Sec. VI.

II. BACKGROUND

Quantum systems are fragile and can lose their prop-
erties easily when interacting with the environment. To
protect quantum information, one can use a QECC to
encode the quantum data. Quantum error correction (QEC)
is a process that identifies an error when it occurs and

020336-2

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

•
•

•
•

|0〉

FIG. 1. A syndrome-extraction circuit with bare ancilla for
measuring a stabilizer generator of the form ZZZZ.

then applies an appropriate error-correction (EC) operator
to remove the error. However, quantum operations in the
process can be faulty and may introduce more errors to the
system. For this reason, we want to make sure that the QEC
process is fault tolerant, which provides robustness guar-
antees against the impact of noise on the error-correction
implementations.

In this section, we first describe the noise model that
will be used in this work and provide the conventional
definition of fault-tolerant error correction in Sec. II A. We
then review flag FTQEC and provide a revised definition
of fault-tolerant error correction, which is more suitable for
flag FTQEC in Sec. II B.

A. Noise model and conventional definition of
fault-tolerant error correction

An [[n, k, d]] stabilizer code [14] encodes k logical qubits
using n physical qubits and can correct up to τ = �(d −
1)/2� errors, where d is the code distance. A stabilizer code
is described by a stabilizer group, an Abelian group the
elements of which are called stabilizers which is generated
by r = n − k commuting Pauli operators. The code space
is the simultaneous +1 eigenspace of all elements in the
stabilizer group.

The QEC process for a stabilizer code can be done by
first measuring the eigenvalues of all stabilizer genera-
tors. An r-bit string of measurement outcomes is called
the error syndrome (where bits 0 and 1 refer to +1 and
−1 eigenvalues of each generator). An example of a cir-
cuit for measuring an eigenvalue of a stabilizer generator
is displayed in Fig. 1. After the syndrome is obtained, an
appropriate recovery operator will be found by a mapping
called the error decoder. Finally, the recovery operator will
be applied to the data qubits. For Calderbank-Shor-Steane
(CSS) codes [15,42], it is possible to correct X - and Z-type
errors separately. In this work, we follow standard CSS
decoding [43], meaning independent recovery for X - and
Z-type errors, thus not taking the effect of X /Z correlations
such as Y errors into account.

If all gates in the syndrome-measurement process (with
an example circuit in Fig. 1) are perfect, a stabilizer code
of distance d should be able to correct up to τ errors as
desired. However, the above process may not be fault tol-
erant under the circuit-level depolarizing noise. This is
because a single faulty gate may lead to an error that

can propagate to multiple errors on the data qubits, often
referred to as hook errors [39]. These errors can always be
handled by complex ancilla [1,44,45] or flag circuits [28]
and sometimes handled by the circuit order [17–19].

In this work, we use the circuit-level depolarizing noise
model. After each gate, a fault occurs on the support of the
gate. Every single-qubit gate is followed by a single-qubit
Pauli operator P ∈ {X , Y, Z} with probability p/3 each and
every two-qubit gate is followed by a two-qubit Pauli
operator P1 ⊗ P2 ∈ {I , X , Y, Z}⊗2 \ {I ⊗ I} with probabil-
ity p/15 each. In addition, a single-qubit preparation and
measurement can also be faulty; this is modeled by a bit-
flip channel after a single-qubit preparation or before a
single-qubit measurement with error probability p .

One way to define FTQEC is to use the definition
proposed by Aliferis, Gottesman, and Preskill.

Definition 1 (Fault-tolerant error correction [6]). Let
t ≤ �(d − 1)/2�, where d is the distance of a stabilizer
code. An error-correction protocol is t-fault tolerant if the
following two conditions are satisfied:

(1) The error-correction correctness property (ECCP):
for any input code word with an error of weight r, if
s faults occur during the protocol with r + s ≤ t, ide-
ally decoding the output state gives the same code
word as ideally decoding the input state.

(2) The error-correction recovery property (ECRP): if s
faults occur during the protocol with s ≤ t, regard-
less of the weight of the error on the input state, the
output state differs from any valid code word by an
error of weight at most s.

When a QEC protocol satisfies Definition 1, it is guar-
anteed that the output error will have weight ≤ t whenever
the weight of the input error plus the total number of faults
in the protocol is ≤ t. This means that if the next round
of QEC has no faults, it can always correct the output
error from the current round. Normally, we would like to
construct an FTQEC protocol in which t is as close as pos-
sible to τ = �(d − 1)/2�. If t = τ , we say that the FTQEC
protocol preserves the code distance.

B. Flag technique and revised definition of
fault-tolerant error correction

Before describing the flag technique for FTQEC, let
us consider a well-known Shor FTQEC [1] applied to
a stabilizer code of distance d. In this scheme, a stabi-
lizer generator of weight w is measured using a cat state
of the form 1√

2
(|0〉⊗w + |1〉⊗w) and transversal controlled-

NOT (CNOT) gates (see Fig. 2). A circuit of this kind will be
called a Shor-syndrome-extraction circuit. When the cat
state is prepared fault-tolerantly, a single fault in the cir-
cuit can lead to an error of weight no more than one on the
data qubits, so the set of all possible errors arising from up

020336-3

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

•
•

•
•

H

H

H

H

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|0000〉+|1111〉√
2

FIG. 2. A Shor-syndrome-extraction circuit for measuring a
stabilizer generator of the form ZZZZ.

to t faults is exactly the same as a set of all possible errors
on ≤ t qubits in this case. Therefore, any syndrome can
uniquely identify the error (up to a multiplication of some
stabilizer) when the number of faults in the protocol is ≤ t.

One drawback of the Shor-syndrome-extraction circuit
is that the number of required ancilla qubits is equal to
the maximum weight of the stabilizer generators. Also,
fault-tolerant preparation of the ancilla cat state requires
verification [1] or an Divincenzo-Aliferis ancilla decoding
circuit [26], which requires additional space and time over-
head. One possible technique that can reduce the number
of required ancillas for FTQEC is the flag technique [28],
in which each syndrome-extraction circuit uses one ancilla
qubit to keep the syndrome-measurement outcome and a
few flag ancillas to find a location that a fault might have
occurred. A circuit of this kind will be called a flag cir-
cuit (for an example, see Fig. 3). The flag-measurement
outcomes give extra information that can be used to par-
tition set of all possible errors from a certain number of
faults. Therefore, it is possible to distinguish between two
nonequivalent errors that correspond to the same syndrome
if the flag-measurement outcomes associated with each
error are different, making error correction easier.

Here, we define fault combination, the fault set, and the
distinguishability of a fault set as follows.

Definition 2 (Fault combination, combined data error,
and cumulative flag vector [35]). A fault combination

•
•

•
•

|0〉
|0〉 H • • H

FIG. 3. A flag circuit for measuring a stabilizer generator of
the form ZZZZ.

� = {λ1, λ2, . . . , λr} is a set of r faults λ1, λ2, . . . , λr. Sup-
pose that the Pauli error due to the fault λi can propa-
gate through the circuit and lead to data error E(λi) and
flag vector
f (λi). The combined data error E(�) and
cumulative flag vector
F(�) corresponding to the fault
combination � are

E(�) =
r∏

i=1

E(λi), (1)

F(�) =
r∑

i=1

f (λi) (mod 2). (2)

Definition 3 (Distinguishable fault set [35]). Let S be
the stabilizer group of a stabilizer code and let the fault set
Ft denote the set of all possible fault combinations arising
from up to t faults during the measurement of stabilizer
generators of S . We say that Ft is distinguishable if for
any pair of fault combinations �p ,�q ∈ Ft, at least one of
the following conditions is satisfied:

(1)
s(E(�p)) �=
s(E(�q)), or
(2)
F(�p) �=
F(�q), or
(3) E(�p) = E(�q)M for some stabilizer M ∈ S ,

where
s(E) is the error syndrome of a combined error E.
Otherwise, we say that Ft is indistinguishable.

Note that the cases of faulty flag-qubit measurements are
included when the fault set is calculated for verifying fault
set distinguishability (see Sec. III A). Having a distinguish-
able fault set is key to successful error decoding. Given a
set of syndrome-extraction circuits (with or without flags),
we can calculate the fault set Ft and check whether it is dis-
tinguishable. If it is, all possible errors arising from up to
t faults that correspond to the same syndrome and cumula-
tive flag vector are always logically equivalent. Therefore,
if the syndrome measurements give a syndrome
s and a
cumulative flag vector
F , we can pick any error that corre-
sponds to the pair (
s,
F) to be a recovery operator. Using
this idea, a decoding table and an FTQEC protocol can be
constructed.

With the notion of fault distinguishability, it is possible
to further generalize the definition of FTQEC as follows.

Definition 4 (Fault-tolerant error correction (revised)
[35]). Let t ≤ �(d − 1)/2�, where d is the distance of
a stabilizer code. An error-correction protocol is t-fault
tolerant if the following two conditions are satisfied:

(1) ECCP: for any input code word with an error that
can arise from r faults before the protocol and cor-
responds to the zero cumulative flag vector, if s

020336-4

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

faults occur during the protocol with r + s ≤ t, ide-
ally decoding the output state gives the same code
word as ideally decoding the input state.

(2) ECRP: if s faults occur during the protocol with s ≤
t, regardless of the number of faults that can cause
the input error, the output state differs from any valid
code word by an error that can arise from s faults and
corresponds to the zero cumulative flag vector.

The main difference between these two definitions of
FTQEC is that Definition 4 considers the number of faults
that can cause the input (or the output) error instead of
the weight of the error. An FTQEC protocol satisfying
Definition 4 can be constructed if we can find syndrome-
extraction circuits that give a distinguishable fault set
(for more details, see previous results [35] by one of the
authors of this work and the discussion in Sec. III). In fact,
while the threshold theorem proved by Aliferis et al. [6]
relies on the weight of the error to define fault tolerance
(Definition 1), the theorem has been shown to hold [35]
even if the definition of fault tolerance uses the number
of faults (Definition 4) instead. For flag FTQEC, the use
of Definition 4 can result in simpler FTQEC protocols,
so we will use Definition 4 in the protocol development
throughout this work.

III. OPTIMIZATION TOOLS FOR SPACE
DECODING

In this work, the term “space decoder” refers to a process
that finds a recovery operator from a given syndrome under
the assumption that it is exactly the same as the syndrome
of an error that occurred to the code word. The decoder
succeeds if multiplying the error and the recovery operator
gives a trivial logical operator (a stabilizer) and it fails if
the multiplication gives a nontrivial logical operator. Our
goal is to develop a space decoder such that whenever the
total number of faults in the whole protocol is ≤ t, the
decoder always succeeds. In this work, we are interested
in a lookup-table-based space decoder for flag FTQEC, so
the decoder will use both syndrome and flag information
obtained during the syndrome measurements. Note that the
ability to correct faults for a certain code depends on the
structure of the circuits for syndrome extraction, such as
the ordering of gates.

In this section, we develop optimization tools for space
decoding. In Sec. III A, we discuss how to efficiently
construct a lookup table for error decoding for a distin-
guishable fault set Ft and introduce the notion of a fault
code. In Sec. III B, we discuss the meet-in-the-middle tech-
nique, an additional technique that can help improving our
space decoders for both codes and increase the accuracy of
the decoding.

A. Compact lookup table for minimum-weight
decoding and fault code

In this section, we discuss how to construct the fault
set Ft, verify its distinguishability, and construct the
lookup table for error decoding. With our method, we can
reduce the memory-footprint requirement of the lookup
table by 87.5% for self-orthogonal CSS codes com-
pared to a lookup table designed for generic stabilizer
codes. We also present the framework of fault codes that
enables fast construction using streamlined Pauli-frame
simulation represented as matrix-algebra operations over
GF(2).

A brief summary of our methods is as follows. Let the
weight of a fault combination be the number of faults
that give rise to the fault combination. The decoding table
maps each full syndrome, (
s,
F), to a recovery operator that
corresponds to the combined data error of the minimum-
weight fault combination that results in the full syndrome.
To construct the decoding table, we start by collecting all
weight-1 fault combinations that may arise in the extrac-
tion circuits. We map each resulting full syndrome to its
corresponding data error. At this point, we say that the
search radius of the lookup table is 1. Afterward, we
combine pairs of weight-1 fault combinations to create
all possible weight-2 fault combinations. The combined
data error of each weight-2 fault combination is obtained
by simply taking the product of the data errors and the
full syndrome is obtained by adding full syndromes of the
weight-1 fault combination modulo 2. If the combining
process leads to a new syndrome, we store it in the table.
If the process leads to an existing syndrome, we have a
collision and do one of the following. (1) If the stored com-
bined data error and the new combined data error are the
same up to a stabilizer, then we do nothing. (2) If the stored
combined data error and the new combined data error dif-
fer by a logical operator (up to a stabilizer), then we raise
an error; this implies that F2 is not distinguishable. At this
point, if there is no combination that causes the second case
(i.e., F2 is distinguishable), we say that the search radius
of the lookup table is 2. We can gradually increase the
search radius using similar ideas until we reach the maxi-
mum search radius in which the fault set is distinguishable.
Here, we rely on an efficient representation of the com-
bined data errors using a decomposition of Pauli operators
to pure errors, stabilizers and logical operators [46].

During sampling, the decoder receives a full syndrome
that has been measured. When the decoder finds this
syndrome in the lookup table, it returns the correspond-
ing actual recovery operator (ARO). However, when the
decoder cannot find the syndrome in the lookup table,
it only returns a so-called canonical recovery operator
(CRO). Each syndrome has a unique canonical recovery
operator, which guarantees that applying such an operator
to the erroneous encoded state will map it back to the code
space but with a possible logical error.

020336-5

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

The full description of our methods is presented below.

1. Reducing the memory footprint

To decode an [[n, k, d]] stabilizer code, we can construct
a lookup table that, for all possible fault combinations of
weight 0 to t (where t = �(d − 1)/2�), stores the full syn-
drome
σ = (
s,
F) as the key and maps the combined data
error as the recovery operator. While this approach works,
it is expensive. Let Tstab denote the number of distinct full
syndromes for the fault combinations of weight 0 to t for a
generic stabilizer code. As Tstab and thus the size of the
lookup table grows exponentially in n, n − k (the num-
ber of generators), and the number of circuit locations,
we want to choose a representation to store data as effi-
ciently as possible. For general stabilizer codes, n − k bits
are required for the syndrome bits and n − k bits for the
cumulative flag vector (assuming flag circuits with a single
flag ancilla for simplicity). Meanwhile, the recovery oper-
ator requires 2n bits using the symplectic representation.
Thus we have Tstab(4n − 2k) bits of data in the map.

Leveraging the structure of CSS codes, we can signifi-
cantly improve the memory footprint. Assuming standard
CSS decoding in which two separate lookup tables are
used for X and Z decoding, we denote by rX and rZ the
number of X - and Z-type stabilizer generators satisfy-
ing rX + rZ = n − k. The per-entry cost decreases, as the
entries only need to cater for X - or Z-type operators and
syndromes. Each entry for the X - and Z-type syndromes
will have 2rX and 2rZ bits, respectively, for the syndrome
and the cumulative flag vector and n bits for the recovery
operator. A self-orthogonal CSS code needs only one table,
further decreasing the cost (see more details on the total
number of bits in Appendix A). Moreover, we can reduce
the number of bits for the recovery operator to k using the
following two key ideas:

(1) In general, for an [[n, k, d]] code, each Pauli operator
P ∈ Pn can be decomposed as a product P = EML
of a pure error E, a stabilizer M ∈ S , and a logi-
cal operator L ∈ Pk (where Pk is the k-dimensional
logical Pauli group) [46]. We define a fixed set
of pure errors called canonical recovery operators
(CROs), with one CRO for each unique syndrome
s.

(2) Given a syndrome
s(E), the goal of decoding is to
find a recovery operator R such that RE ∈ S and
thus R converts the error into the logical identity
operation. For any possible Pauli error, we only have
to store its logical class, a value that indicates how
the error is related to a CRO with the same syn-
drome. This enables the map value to be only 2k
bits of information in general and k bits in the case
in which the code is a self-orthogonal CSS code.
In this latter case and with k = 1, the logical class
is 0 if the multiplication of the Pauli operator and

the CRO with the same syndrome is in the stabilizer
group; otherwise, the logical class is 1.

Altogether, for a self-orthogonal CSS code with n � k,
the size of the table can be as small as 12.5% of the
table if we have viewed the code as a generic stabi-
lizer code and stored the full recovery operators instead
of the logical classes. For a CSS code that is not self-
orthogonal, the gain is smaller but still significant (for
detailed calculations around savings for the lookup table,
See Appendix A). Note that if the lookup table is used
for proving distinguishability, all unique syndromes are
required. However, in a real-time decoding architecture,
the entries corresponding to significantly low-probability
fault combinations may be excluded, resulting in further
reduction [47].

2. Constructing the lookup table

We now explicitly describe an algorithm to construct the
lookup table. During the construction of the lookup table,
we have a systemic way to enumerate fault combinations
with their full syndromes and combined data errors instead
of running through a circuit simulator for each case. The
exhaustive enumeration of all possible fault combinations
of weight 0 to t is done in two steps. First, we enumerate
the single faults and capture their full syndrome and logi-
cal class in a single column of the fault-check matrix, Hf,
using matrix algebra over GF(2) to represent the propaga-
tion of errors in our syndrome-extraction circuits. Second,
we combine these columns in all possible combinations of
0 to t faults (

∑t
i=0

(N
i

)
combinations in total, where N is

the number of possible single faults) while keeping track
of the weight of each fault combination. This last step
verifies whether Ft is distinguishable (which is equiva-
lent to verifying whether the protocol is distance preserv-
ing) and at the same time builds a lookup table for the
decoder.

Enumerating weight-1 faults. From here on, we will
only consider a self-orthogonal CSS code, and denote its
parity-check matrix H . In order to list all possible single
faults under the circuit-level depolarizing noise model, it
is sufficient to consider all possible weight-1 faults within
a single round of syndrome measurements. Each column
of the fault-check matrix Hf describes, for each possible
weight-1 fault, what its full syndrome and its logical class
are. As the logical class of each fault depends on how its
CRO is defined, we define the fault-check matrix relative
to the right inverse H−1 of H (for which HH−1 = I(n−k)/2).

The high-level structure of Hf consists of three major
groups of rows and three major groups of columns. The
three groups of rows are the (n − k)/2 generator bits, the
(n − k)/2 flag bits, and the k bits for the logical class. Each
single fault that is represented by a column of Hf can be put
into one of the following three categories:

020336-6

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

(1) Pure data-qubit errors that result only in gener-
ator bits. They do not trigger flags, resulting in
all-zero flag bits. The CRO R of each pure data-qubit
error E can be described by each column of H−1H
(since the syndromes of CROs are H(H−1H) =
(HH−1)H = H); thus the product RE of each E can
be described by each column of In ⊕ H−1H (where
the matrix addition, denoted by ⊕, and multiplica-
tion are over GF(2)). If E is an X -type (or a Z-type)
error, the logical class of RE is described by a k-bit
string in which the ith bit indicates whether RE anti-
commutes with Z̄i (or X̄i). That is, the logical classes
of all pure data-qubit errors are described by

⎛

⎜⎜⎝

J T
1 (In ⊕ H−1H)

J T
2 (In ⊕ H−1H)

. . .

J T
k (In ⊕ H−1H)

⎞

⎟⎟⎠ ,

where Ji is the column vector representing Z̄i (or X̄i).
(2) Flag-ancilla-preparation or -measurement errors

that do not propagate to data qubits; thus, each
single-flag error will result in a single flag bit.
Therefore, all errors of this type have the all-zero
syndrome and logical class 0, while the flag bits can
be easily represented by the (n − k)/2 × (n − k)/2
identity matrix.

(3) Gate faults that cause errors on the syndrome ancilla
that can propagate to data and flag qubits—we order
these faults by top-down and left-right place of
occurrence and capture their effect in syndrome bits,
flag bits, and logical class. The part of the effective
matrix corresponding to this type of fault is denoted
by Hf,gate.

Note that single measurement and reset errors on the syn-
drome ancilla are ignored during this analysis, as their
effects would be removed by the time decoder through the
repetition of syndrome measurements.

Generalizing Hf for a non-self-orthogonal CSS code is
straightforward. In that case, the parity-check matrices for
X - and Z-type errors can be different, leading to different
fault-check matrices. Generalizing Hf for a generic sta-
bilizer code is more complicated but still doable, as all
operators must be considered in the symplectic form. In
that case, the number of rows for the logical class is 2k.
Also, instead of taking the inner product with Ji, whether
each CRO commutes or anticommutes with each logical
operator can be determined by the symplectic inner prod-
uct between the symplectic bit strings representing the
CRO and the logical operator.

In the case in which the code is a self-orthogonal CSS
code, n is odd, k = 1, and the logical X and logical Z

operators are transversal, the fault-check matrix is

Hf =
⎛

⎝
H 0
0 I(n−1)/2 Hf,gate

J T(In ⊕ H−1H) 0

⎞

⎠ ,

where J is the all-one column vector of length n (repre-
senting X ⊗n or Z⊗n).

As an example, consider the first group of columns for
the [[7, 1, 3]] Steane code [15], the stabilizer generators of
which can be defined by the parity-check matrix

H =
⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠ .

One can pick its right inverse H−1 as follows:

H−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 1 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We can see that each column of H−1 gives a Pauli operator
for each syndrome bit. For a data error E of any weight,
the syndrome
s(E) = HE can be recovered with the CRO
defined by R(
s(E)) ≡ H−1
s(E) as

s(E ⊕ R) = H(E ⊕ R)

= HE ⊕ HH−1HE

= HE ⊕ HE = 0.

For example, for E = (0110000)T,
s(E) = (001)T and
R(
s(E)) = (1000000)T; thus RE = (1110000)T, for which
the syndrome is trivial (as RE is a logical operator).

For errors of weight 1 on the data qubits, the operator RE
of each error can be represented by each column of In ⊕
H−1H . Since the logical class of RE can be determined by
its weight parity, the logical classes of this type of errors
are the row of L ≡ J T(In ⊕ H−1H), where J is the all-one
column vector. That is, for the Steane code, the part of Hf
corresponding to pure data-qubit errors is

⎛

⎝
H
0

J T(In ⊕ H−1H)

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Constructing Hf,gate. In this work, we focus on the case that
any Z-type or X -type stabilizer generator of weight w is

020336-7

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

measured using a flag circuit with a single flag ancilla sim-
ilar to the circuit in Fig. 4 (with a slight modification, a
similar construction can also be made for a general flag
circuit). For Hf,gate, we are interested in how the errors
propagate from the syndrome ancilla to the data qubits
and the flag ancilla. The error propagation is represented
via binary matrices, an idea closely related to the “gate
matrix,” where the direction of propagation is the oppo-
site way, toward the ancilla from the data qubits [45,48].
Given single-flag syndrome-extraction circuits for all sta-
bilizer generators and the CNOT ordering for each circuit,
Hf,gate can be calculated via the propagator matrix P and
the aggregator matrix A, defined as follows. For the error-
correction protocol with n data qubits and r flag bits (which
is the same number as the number of X - or Z-stabilizer
generators), The matrix P has n + r rows. The number
of columns of P is

∑r
i=1(w(gi)+ 2), where w(gi) is the

Hamming weight of the ith stabilizer generator (gi). This
is from the fact that for each CNOT gate in the single-flag
syndrome-extraction circuits, the only fault that can lead to
a unique data error after propagation is the fault that leads
to a single Z error on the target qubit of the CNOT (which
is the syndrome ancilla). To simplify the construction, we
construct a submatrix Pi of size (n + r)× (w(gi)+ 2) for
each row gi of H (i.e., each stabilizer generator) and then
concatenate the submatrices to obtain

P = (P1P2 . . .Pr) . (3)

As the order of the CNOT gates matters in subtle ways, for a
given stabilizer generator gi, we represent the CNOT order-
ing by the permutation πi : {1, 2, . . . , w(gi)} → supp(gi),
where πi(j) indicates the control (data) qubit of the j th
CNOT (the target qubit is always the syndrome ancilla). πi

•
• · · · •

•
|0〉
|0〉 H • • H︸ ︷︷ ︸

w − 2 gates

(a)

H • H

(b)

FIG. 4. (a) A flag circuit for measuring a Z-type stabilizer
generator of weight w in this work. A flag circuit for measur-
ing a X -type stabilizer generator of weight w can be obtained
by replacing each CNOT gate that connects the data qubit to the
syndrome ancilla with the gate in (b).

can also be represented by a list. For example, two possi-
ble permutations of CNOT gates in the syndrome-extraction
circuit for measuring g1 of the [[7, 1, 3]] Steane code are
π1 = [4, 5, 6, 7] and π1 = [4, 6, 5, 7].

To construct Pi, we iterate from j = 1 to w(gi) and cre-
ate a column for each iteration with all zeros except for the
1 in row πi(j). We then insert an all-zero column on the
second from the left and the second from the right positions
(which represent the flag CNOT gates) and set its value to
1 at row n + i. In our running example of g1 = (0001111),
for a permutation of π1 = [4, 6, 5, 7],

Pi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The aggregator matrix A plays the role of propagating the
errors to the end of the syndrome-measurement circuits.
For each gi, we define Ai to be a square matrix of size
(w(gi)+ 2)× (w(gi)+ 2) having a lower triangle set to all
ones and define A = ⊕r

i=1 Ai to be the direct sum of all the
Ai. In our example case of g1,

Ai =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎠
. (5)

Multiplying the propagator and the aggregator matrices
yields

PA =
(
�

�

)
=

(
�1 �2 . . . �r
�1 �2 . . . �r

)
, (6)

where columns of the submatrices �i are the final Pauli
operators and columns of the submatrices�i are the cumu-
lative flag vectors after measuring gi and having a fault
propagated from the syndrome ancilla to the data qubits at
the location corresponding to the given column.

Next, we find the syndromes for these Pauli operators by
multiplying them with the parity-check matrix,

S = H�. (7)

Then, for each syndrome, we define the CRO based on the
right inverse H−1,

	 = H−1S. (8)

020336-8

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

Finally, we determine the logical class L for each of the
faults by adding the parity of the CRO and the propagated
final data error,

L = J T(�⊕). (9)

As a result, the part of Hf corresponding to the gate faults
is

Hf,gate =
⎛

⎝
S
�

L

⎞

⎠ =
⎛

⎝
H�
�

J T(In ⊕ H−1H)�

⎞

⎠ . (10)

The relationship between the full syndrome, the data error,
and the CRO of each fault is as follows. Suppose that the
ith column of Hf (which represents a single fault on the
ith location) contains error syndrome
si, flag vector
fi, and
logical class li. The CRO of the fault is H−1
si, while the
data error of the fault is liJ ⊕ H−1
si. That is, in the case
of a single fault, the actual recovery operator (ARO) that
we need to apply when finding the full syndrome (
si,
fi) is
liJ ⊕ H−1
si.

Verifying distinguishability and building the lookup
table. The fault set Ft is distinguishable if and only if there
is no fault combination from up to 2t faults that gives a
nontrivial logical operator with trivial full syndrome [35].
As the fault-check matrix already contains all the possible
single faults, in the case of t = 1, we only need to extend
the matrix by a column with all zeros (which represents
zero faults) and check whether there is a pair of columns
that are the same except for the logical class. If there is,
the combined data errors of one or two faults add up to
an undetectable logical operator, meaning that F1 is not
distinguishable.

When t ≥ 2, we populate the cache with the logical
classes of higher-weight fault combinations by simply
combining all possible fault combinations of lower-weight
fault combinations while keeping track of the weights of
the fault combinations. We describe the ith fault combi-
nation as a key-value pair [(
si,
Fi) : (li, wi)], where (
si,
Fi)

is the full syndrome, li is the logical class, and wi is
the weight of the fault combination. Combining the ith
and the j th fault combinations gives [(
si ⊕
sj ,
Fi ⊕
Fj) :
(li ⊕ lj , wi + wj)]. As we aim to check whether Ft is dis-
tinguishable, we fill up the cache by combining any pair of
fault combinations that satisfy wi + wj ≤ t. In the case in
which the process gives the new key (the full syndrome)
that already exists in the cache, we have a key conflict.
This can be one of the following cases:

(1) The new and the existing fault combinations have
the same full syndrome and the same logical class
but have different weights. In this case, we store the
fault combination with smaller weight in the cache.

TABLE I. The metrics of the lookup table. The number of
columns of the fault-check matrix counted in the first row results
from the three-part structure of data errors, flag errors, and gate
faults. These columns are not necessarily unique, as can be seen
in the second row, which counts the number of unique columns.
The time to verify distinguishability for the different codes on
a single thread with our C++ code depends on the number of
unique columns; hence the verification of the higher distance
code takes longer than shorter ones. All timings are reported
using Intel Xeon Gold 6226R 2.90-GHz processors. Some fault
combinations have the same full syndrome; hence the cache
size is smaller than the full number of fault combinations. The
cache size in memory is reported from actual usage, including
the overhead of the hash table implementation.

[[7, 1, 3]] [[19, 1, 5]] [[37, 1, 7]] [[61, 1, 9]]

Number of
columns of
Hf

28 88 181 307

Number of
unique
columns

20 62 128 218

Number of
fault combi-
nations

20 1953 349 632 93 263 997

Cache size 20 1587 262 500 67 166 572
Memory ≤1 kB ≤1 kB ≈50 MB ≈1.38 GB
Verification

time
≤1 ms ≤1 ms ≈ 720 ms ≈ 58.9 s

(2) The new and the existing fault combinations have
the same full syndrome but have different logi-
cal classes. As the sum of weights of these two
fault combinations is ≤ 2t, we raise an error—there
exists a fault combination from up to 2t faults that
gives a nontrivial logical operator with trivial full
syndrome, i.e., Ft is not distinguishable.

If, at the end, we find that Ft is distinguishable, we can
construct a lookup table of search radius t from the cache
as follows: for each key-value pair [(
si,
Fi) : (li, wi)] in
the cache, we store a new key-value pair [(
si,
Fi) : liJ ⊕
H−1
si] in the lookup table (the weights are not necessary
for decoding, though they might be useful for estimating
the number of faults that causes the full syndrome). That
is, liJ ⊕ H−1
si is the ARO for the full syndrome (
si,
Fi).
When performing error decoding, the ARO is applied if the
full syndrome obtained from measurements is found on the
lookup table; otherwise, the CRO (H−1
si) is applied.

The lookup table can then be stored in an efficient binary
format on disk or memory as needed. In Table I, we display
the metrics related to the lookup-table decoder obtained by
the above algorithm.

In summary, we perform an exhaustive search of fault
combinations which gives us a lookup table with search

020336-9

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

radius t; this is equivalent to verifying the distinguishabil-
ity of Ft. If we can construct the lookup table with t =
τ = �(d − 1)/2�, we have a minimum-weight decoder that
is distance preserving under the circuit-level depolarizing
noise model. As a hash table requires O(1) amortized com-
plexity for lookup, this decoder is also relatively fast for
numerical simulations or real-time decoding compared to
more complicated algorithms such as MaxSAT decoding
[49], neural-network-based decoding [50], or the restric-
tion decoder [51] with minimum-weight perfect-matching
decoding [52], all of which have at least O(n) complexity.
However, the table size scales exponentially in the num-
ber of qubits, locations, and stabilizer generators, and thus
constructing the lookup table may be impractical for a code
of high distance.

3. The fault code

Any CSS code can be defined by its parity-check matrix
H , which maps a bit string representing a combination
of errors on the data qubits to the error syndrome of the
error combination. In the case of flag FTQEC, where the
circuit-level noise model is considered, we can use simi-
lar ideas and define a fault code by the fault-check matrix
Hf, which maps a bit string representing a combination of
possible faults to the full syndrome of the fault combina-
tion (which includes the error syndrome of the combined
data error and cumulative flag vector) and the logical class
relative to the CRO for the syndrome. It should be noted
that the distance of the fault code might be lower than
the distance of the underlying CSS code; this depends on
the syndrome-extraction circuits, which affect the distin-
guishability of the fault set. We can define the effective
distance deff to be the minimum number of faults that can
give a fault combination with a nontrivial logical opera-
tor and the trivial full syndrome. The number of faults teff
that the fault code can correct is teff = �(deff − 1)/2� (this
is the maximum number of t in which Ft is distinguish-
able). If the effective distance and the code distance are
equal, we say that the error-correction protocol is distance
preserving. Calculation of the distance of classical codes
can be done by determining the spark of the parity-check
matrix H , which is known to be NP-hard, in general [53].
However, the spark algorithm does not work in the case
of degenerate CSS codes, as it reports only the minimum
weight of the stabilizers, which is a lower bound on the
code distance [42]. Our algorithm described in this section
can be viewed as a modified spark algorithm that uses the
logical class information to calculate the distance of the
code (based on H) and also the effective distance of the
fault code (based on Hf).

The perspective of the fault code can also be useful
to extend a technique frequently used for error sampling
(in, e.g., QECSIM [54]) to the circuit-level noise model
beyond the code capacity noise model (memory errors

only) and phenomenological noise model (both memory
and measurement errors). Here, a randomly generated col-
umn vector of Hamming weight w now represents faults
on w locations instead of errors on w qubits. Suppose that
the vector
v represents the fault combination and Hf
v gives
the full syndrome (
s(
v),
F(
v)) and the logical class l(
v). In
an error-correction simulation, the decoder can predict the
recovery operator
r based on the full syndrome. We will
find that the predicted recovery operator causes a logical
error if and only if l(
v) and l(
r) differ.

In principle, this method can lead to a better sampling
rate compared to running the full circuit simulation for
each sample. However, one needs to be aware of the proba-
bility distribution when generating vectors representing the
fault combinations, as each possible single fault might not
occur at the same rate.

B. Meet-in-the-middle technique

If the fault set Ft of each code is distinguishable, the
flag FTQEC protocol can correct up to t faults with cer-
tainty. However, whenever t + 1 or more faults occur, the
error correction is not guaranteed; our decoder can either
remove the error or cause a logical error on the encoded
state. Although the probability of having t + 1 or more
faults is O(pt+1), being able to correct more cases of faults
can lead to a higher pseudothreshold. In this section, we
introduce the meet-in-the-middle (MIM) technique, which
can help to correct errors in the case in which there are
more than t faults in our FTQEC protocol. Note that this
technique is general and could help any FTQEC protocol
with a table-based decoder to correct faults in excess of its
capability if the stabilizer code being used is not a perfect
(or a perfect CSS) code.

The MIM technique is inspired by the bidirectional-
search algorithm [55] to improve the table-based decoder
previously discussed in Sec. II B (see also Sec. III A) in the
case in which the decoder cannot find, in its lookup table,
the full syndrome obtained from measurements. Consider
the case in which the fault set Ft is distinguishable and a
lookup table of search radius t can be constructed. Sup-
pose that more than t faults occur and the full syndrome is
(
sm,
Fm), which is not in the lookup table. The table-based
decoder discussed in Sec. II B will return the canonical
recovery operator, which may cause a logical error after
correction. To make successful error correction more prob-
able in such cases, one could, in principle, construct a
lookup table with a search radius larger than t by relaxing
the distinguishability requirement for fault combinations
with weights higher than t. However, this can be impracti-
cal, as the number of fault combinations grows too quickly
when the search radius increases.

To overcome this issue, we instead conduct a search
during decoding, starting from the missing syndrome
(
sm,
Fm). That is, we construct another decoding table,

020336-10

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

called the MIM table, with search radius at most ρ ≤ t
using ideas similar to the original lookup table but we also
add (
sm,
Fm) to the map key before storing the syndrome in
the MIM table and check whether or not it is in the decod-
ing lookup table. If a new map key in the MIM table is the
same as some map key in the decoding lookup table, the
search stops and the decoder constructs a recovery opera-
tor from two combined data errors from the MIM table and
the decoding table that correspond to the two map keys. If
the MIM search radius reaches ρ and no matching syn-
drome is found, the decoder returns the CRO for the full
syndrome. Using the recovery operator obtained from this
method, we can correct up to t + ρ faults with a probability
higher than that found using the CRO of the full syndrome
only.

An example of error decoding using a lookup table and
the MIM technique is illustrated in Fig. 5. In our FTQEC
protocols for hexagonal color codes of distance 3, 5, 7, and
9, we find that constructing the MIM table with search
radius ρ = t is sufficiently fast to be used at run time.
Note that the MIM technique does not guarantee successful
error correction due to potential degeneracy in syndromes
above the guaranteed number of correctable faults. How-
ever, we do find numerically that the MIM technique has
a positive impact on the performance of our decoders
for the hexagonal color codes for distances 3, 5, 7,
and 9.

IV. OPTIMIZATION TOOLS FOR TIME
DECODING

In general, faults can happen at any point during syn-
drome measurements and the syndrome obtained at each
round of measurements may not be the correct syndrome
(the syndrome of the combined data error at the end of
that round). In particular, measurement errors can lead to a
syndrome that differs from the correct syndrome by some
bits. Errors on the data or ancilla qubits that happen in
the middle of the syndrome extraction can also result in a
syndrome that only captures some parts of the correct syn-
drome. Applying a space decoder to a faulty syndrome can
lead to an incorrect recovery operation. For this reason, one
must perform multiple rounds of syndrome measurements.

The goal of a time decoder is to find a round with
a correct syndrome at least at one point in the whole
syndrome-measurement process. If this can be done, an
FTQEC protocol satisfying both conditions in Definition
4 can be constructed. Note that according to the definition,
it is sufficient to consider only the case in which the total
number of faults in the whole protocol is no more than
t, where t is the number of errors that a stabilizer code
being used can correct. This is because the failure prob-
ability of the FTQEC protocol (the probability of having
t + 1 or more faults in the protocol) will be O(pt+1) sim-
ilar to the failure probability of an ideal error correction

with the same stabilizer code. (Nevertheless, in terms of
better decoding accuracy, it is beneficial to consider cor-
recting some cases of t + 1 or more faults, as suggested by
the MIM technique in Sec. III B.)

In this section, we develop several types of time
decoders for flag FTQEC, building on the ideas of adap-
tive decoders for Shor-style error correction [38]. Different
time decoders use different fault-count-estimation proce-
dures. In Sec. IV A, we describe a conventional way to
perform repeated syndrome measurements for flag FTQEC
in terms of difference vectors, which will be useful for the
development in later sections. In Sec. IV B, we develop
one-tailed and two-tailed adaptive time decoders that uti-
lize flag information in the protocols. The one-tailed adap-
tive decoder is applicable to a larger family of codes,
while the two-tailed adaptive decoder is more optimized
to self-orthogonal CSS codes but needs to be used with an
extended technique so that it becomes fully fault tolerant
when applied to quantum computation. In Sec. IV C, we
develop two extended techniques that can further improve
the performance of our adaptive time decoders for FTQEC,
given that the code being used is a self-orthogonal CSS
code.

A. Shor time decoder for flag FTQEC

In Shor’s original approach [1], the syndrome extraction
is repeated until the same syndrome appears t + 1 times
in a row. Observe that for R repeated but untrustworthy
syndromes, at least R faults are required to make them the
same (we can think of, e.g., having exactly the same mea-
surement errors). Therefore, to make sure that a round with
a correct syndrome exists when considering the case with
up to t faults, it is sufficient to wait for t + 1 repeated mea-
surements. A time decoder with this stop condition will be
referred to as a Shor time decoder.

It is possible to rephrase the Shor time decoder using
the notion of a difference vector. For a syndrome history
(
s1,
s2, . . . ,
sm) of length m, we define a difference vector
δ
to be an (m − 1)-bit string in which δi is 0 if
si+1 =
si, or δi
is 1 if
si+1 �=
si. As two repeated syndrome measurements
are represented by a zero in the difference vector, Shor’s
method can be reformulated as waiting for t consecutive
zeros in
δ.

As we aim to correct no more than t faults, the analy-
sis of our time decoders can be made easier by thinking
about the budget of t faults. Shor’s method spends all of
this budget on counting consecutive zeros in the difference
vector and is completely oblivious to other parts of the syn-
drome history (because the counter is reset whenever bit
one appears). We call the parts of the syndrome history
outside of the zero substring the context of the zero sub-
string. As Shor’s method does not take the context into
account, we call this strategy “context unaware.” In the
worst-case scenario for the Shor time decoder, (t + 1)2

020336-11

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

(a) (b)

FIG. 5. An illustration of the error decoding using a lookup table and the MIM technique on the Hilbert space H = C⊗n of the
physical qubits. A code of distance 9 is considered in this example. Using a lookup table with search radius 4 only, any erroneous
states lying on the green (or red) circles, which are up to four faults (circles) away from the logical state |ψL〉 (or |ψ⊥

L 〉), will be
recovered to the logical state |ψL〉 (or |ψ⊥

L 〉). Consider the erroneous state E|ψL〉, which is not on any green or any red circle. In (a),
E|ψL〉 is five faults away from |ψL〉 and six faults away from |ψ⊥

L 〉. Using the MIM table of radius 1, the recovery operator found by
the decoder is R1. Since R1E is a stabilizer, R1 brings the state back to the original state |ψL〉. In (b), E|ψL〉 is six faults away from both
|ψL〉 and |ψ⊥

L 〉. Using the MIM table of radius 2, the recovery operator found by the decoder is either R1 such that R1E is a stabilizer,
or R2 such that R2E is a nontrivial logical operator. In this case, the state after recovery can be either |ψL〉 or |ψ⊥

L 〉.

rounds of syndrome measurements are done before the
stopping condition is satisfied. The context of the zero sub-
strings contains useful information and not counting the
faults in the context results in underestimating the number
of faults that can cause a given syndrome history. Context-
aware strategies that have a better estimate of the number
of faults can stop earlier and execute fewer measurements,
resulting in higher pseudothresholds.

As flag circuits are used in the syndrome extraction,
we also obtain a flag-vector history (
f1,
f2, . . . ,
fm) from m
rounds of syndrome measurements, which also leads to a
cumulative-flag-vector history (
F1,
F2, . . . ,
Fm). Note that
the calculation of a difference vector does not involve flag
vectors; since the cases of faulty flag-qubit measurements
are considered when we evaluate the distinguishability
of a fault set, all flag-measurement outcomes are con-
sidered correct and can be used for error decoding. Our
goal is to find a round such that all syndrome bits are
correct.

The correct syndrome will be used in conjunction with
the flag information obtained right before the measure-
ments of the correct syndrome. Suppose that the code being
used is a CSS code and X -type generator measurements at
round i (which lead to
si,x,
fi,x, and
Fi,x) are done before Z-
type generator measurements (which lead to
si,z,
fi,z, and

Fi,z). If the syndrome from round l is correct according
to the Shor time decoder, Z-type (or X -type) error correc-
tion will be done using
sl,x and
Fl−1,z (or
sl,z and
Fl,x). We
also use similar ideas for error correction with other time
decoders.

Suppose that a table-based space decoder for flag
FTQEC can be constructed (as discussed in Sec. III). Then,
a flag FTQEC protocol with a Shor time decoder is as
follows.

Protocol 1 (Flag FTQEC protocol with Shor time
decoder). Let t = �(d − 1)/2� be the number of errors
that a stabilizer code of distance d can correct. Let
si =
(
si,x,
si,z) and
fi = (
fi,x,
fi,z) be the syndrome and flag vector
obtained from the ith round of full syndrome measure-
ments with flag circuits. Let the cumulative flag vector at
the ith round be
Fi = (
Fi,x,
Fi,z) = ∑i

j =1

fj (mod 2). After

the ith round with i ≥ 2, calculate δi−1. Repeat the syn-
drome measurements until the last t bits of
δ reach zero or
the total number of rounds reaches (t + 1)2. Suppose that
the latest round is round l. Perform Z-type error correc-
tion using (
sl,x,
Fl−1,z) and perform X -type error correction
using (
sl,z,
Fl,x).

B. Adaptive time decoder for flag FTQEC

Recently, FTQEC protocols with adaptive syndrome-
measurement techniques have been proposed by some
of the authors of this work [38]. Instead of using flag
qubits, in that work, each stabilizer generator is mea-
sured using a syndrome-extraction circuit with a cat state
(similar to Shor’s original circuits [1]). The authors show
that using the adaptive strong decoder, it is possible
to reduce the number of syndrome-measurement rounds
in the worst-case scenario from (t + 1)2 rounds to (t +
3)2/4 − 1 rounds. The resulting FTQEC protocol satisfies
the error-weight-based definition of FTQEC (Definition
1) and is applicable to any stabilizer code. In this work,
we extend the adaptive strong-decoder-based measurement
techniques to flag FTQEC and develop protocols satisfying
the revised FTQEC conditions that use the number of faults
instead of the weight of errors (Definition 4). The main
difference from Ref. [38] is that this work also uses flag
information to estimate the number faults occurring in the

020336-12

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

protocol, leading to a faster procedure to find a syndrome
suitable for error correction. We start by describing the key
ideas of Ref. [38] in terms of correlated and uncorrelated
bit histories, which is useful for bounding the number of
faults occurring from below. Afterward, we explain how
each technique in Ref. [38] could be improved using the
flag information.

1. Counting faults in correlated and uncorrelated bit
histories

Let us first consider a way to estimate the number of
faults occurring from a given difference vector
δ. A single
fault can cause either one or two consecutive bits of ones in

δ [38]. Thus, for each substring
κ in
δ, the number of faults
that can cause such a substring is bounded from below by
the number of 11 sequences plus the number of remaining
ones in
κ .

Suppose that the difference vector is of the form
δ =
η11η21 . . . 1ηc, where ηj = 00 . . . 00 are zero substrings
and 1 ≤ j ≤ c. For each ηj of length γj ≥ 1 with 2 ≤ j ≤
c − 1, we define α to be the total number of nonover-
lapping 11 sequences plus the total number of remaining
ones before the substring 1ηj 1 and we define βj simi-
larly but for the substring after 1ηj 1 (for η1 and ηc, β1
and αc are defined similarly to those of other values of ηj
and we let α1 = 0 and βc = 0). The zero substring ηj of
length γj corresponds to γj + 1 consecutive rounds with
the same syndrome, so the number of rounds that can cause
these rounds to give incorrect syndromes is at least γj + 1.
Therefore, under the assumption that there are at most t
faults in the whole protocol, if we find that there exists
γj such that t − αj − βj < γj + 1, the syndromes of the
γj + 1 rounds that give rise to ηj cannot all be incorrect.
For this reason, at least one syndrome corresponding to ηj
is correct and can be used for error correction (for more
details, see the full analysis in Ref. [38]).

For example, assume that the total number of faults
in the protocol is t = 4 and that ten rounds of syndrome
measurements give the following
δ:

Round: 1 2 3 4 5 6 7 8 9 10

δ: 1 1 0|1 0 0 1|0 1

Focusing on the substring 1ηj 1 = 1001, we find that αj =
1 and βj = 1, meaning that the patterns of
δ on the left and
the right sides of 1001 arise from at least two faults and
the number of remaining faults is at most two. We can see
that γj = 2 because of the two zeros in the substring 1001
and this corresponds to three rounds with the same syn-
drome. Since the number of remaining faults that can cause
the pattern 1001 is less than the number of rounds with
the same syndrome, the syndrome of at least one round in
these three rounds must be correct and can be used for error
correction.

There are multiple increasing fine-grained ways of esti-
mating the number of faults in the context around each zero
substring in the difference vector. Here, we use the term
bit history as a general term for a series of syndrome bits
(measurement outcomes) from a given stabilizer genera-
tor, a given flag bit (the measurement outcome of a flag
qubit), or bits in a difference vector (taken as the differ-
ence history of a group of bits). A key element in this
discussion is the notion of correlated and uncorrelated bit
histories.

Under the assumed error model, two-bit histories are
uncorrelated if they are independent of each other. For
example, in our case, the circuit-level depolarizing chan-
nel is memoryless and each fault can cause either one or
two consecutive bits of ones. Thus, different sections of
the same syndrome bit history that are at least two bits
apart are uncorrelated, as they are independent in time.
Similarly, in space, if there are no shared qubits between
two generators, then their syndrome bit histories are com-
pletely independent. Also, flag qubits are always reset
between rounds of measurements and thus all flag bits
are independent. However, when two stabilizer generators
share at least one qubit, their syndrome bit histories are
correlated. Similarly, due to hook errors, the bit history of
the flag qubit and the syndrome bit history of that same
stabilizer generator are correlated.

Our goal is to estimate the number of faults that have
occurred from a given bit history in the case of flag
FTQEC. Estimates from uncorrelated histories can be
summed together. When two or more estimates are from
correlated histories, the best we can do is to take the maxi-
mum of those estimates. Note that the total estimates must
not exceed the actual total number of faults occurring in
any case; otherwise, the error-correction protocol will not
be fault tolerant.

For the estimation in the previous work [38], which is
discussed previously in this section, the bits of the syn-
drome history before and after each substring 1ηj 1 are
uncorrelated to the bits within ηj under the memoryless
depolarizing channel assumption. This means that αj and
βj , which are the minimum numbers of faults that can
cause the substring before and after 1ηj 1, can be inde-
pendently estimated. The estimated number of faults in
the context outside of the zero substring ηj is, therefore,
αj + βj .

In this work, we further extend the fault-counting idea
to flag FTQEC in which flag circuits with a single flag
qubit are used for syndrome extraction. Below, we will
discuss two types of adaptive time decoders with different
stop conditions, namely, one-tailed and two-tailed adap-
tive time decoders. Both protocols are applicable to any
stabilizer code as long as flag circuits for the code that
give a distinguishable fault set can be found. The flag
FTQEC protocol with one-tailed adaptive time decoder
satisfies the FTQEC conditions in Definition 4; thus it is

020336-13

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

applicable to any fault-tolerant quantum computation as
long as the fault-tolerant implementation of other opera-
tions (gate, state preparation, or measurement) also satis-
fies the revised definition of fault tolerance, which con-
siders the number of faults instead of the weight of the
error [35]. Meanwhile, the flag FTQEC protocol with two-
tailed adaptive time decoder does not satisfy the FTQEC
conditions in Definition 4, as the output error may cor-
respond to a nontrivial cumulative flag vector; hence it
is only applicable to quantum memory. Nevertheless, for
a self-orthogonal CSS code, the FTQEC protocol with
the two-tailed adaptive time decoder can be applied to
any fault-tolerant Clifford computation if the cumulative
flag vector is processed appropriately. An analysis of this
extension will be discussed in Sec. IV C.

2. Two-tailed adaptive time decoder

For the substring 1ηj 1 in
δ, suppose that bit one on the
left of ηj is the i1th bit of
δ, and bit one on the right of ηj

is the i2th bit of
δ. Let αj , βj , and γj be defined as before
and let μj and νj be the total numbers of nonzero flag bits
obtained from round 1 to round i1 and from round i2 + 1
onward. Also, let ωj be the sum of the numbers of flag bits
that exceed one bit per round during round i1 + 1 to round
i2. For example, consider the substring 1ηj 1 = 1001 in the
example below:

Round: 1 2 3 4 5 6 7 8 9 10

Number of flag bits: 1 0 2 0|0 2 1|0 0 1

δ: 1 1 0|1 0 0 1|0 1

In this example, αj = 1, βj = 1, γj = 2, μj = 3, νj = 1,
and ωj = 1.

Since a single fault can cause both nontrivial flag bits
and syndrome differences (i.e., syndrome bits and flag bits
are correlated), one has to make sure that the number of
faults is not over-counted. The numbers of faults that can
cause bit histories before and after 1ηj 1 are bounded from
below by α̃j = max(αj ,μj) and β̃j = max(βj , νj), respec-
tively. So an estimate of the number of faults for the
context outside of ηj is α̃j + β̃j .

Next, let us consider ηj of length γj , which corresponds
to γj + 1 consecutive rounds with the same syndrome. To
make all syndromes in this region incorrect requires at least
one fault per round. So if we find a round with more than
one flag bit, the number of flag bits that exceed one bit per
round can be a part of the total estimate. That is, for each
ηj , the total estimate is α̃j + β̃j + ωj .

Under the assumption that there are at most t faults in the
whole protocol, if we find that there exists γj such that t −
α̃j − β̃j − ωj < γj + 1 (or, equivalently, α̃j + β̃j + γj +
ωj ≥ t), we know that a syndrome of at least one round
in the γj + 1 rounds that give rise to ηj must be correct.

Another way to find a correct syndrome is to estimate
the total number of faults that can cause the whole syn-
drome and flag-bit histories. Let N11 be the total number
of nonoverlapping 11 sequences in the whole
δ. Assum-
ing that there are at most t faults in the whole protocol, if
N11 ≥ t, the last round must have a correct syndrome.

Suppose that a table-based space decoder for flag
FTQEC can be constructed. Then, a flag FTQEC protocol
with two-tailed adaptive time decoder is as follows.

Protocol 2 (Flag FTQEC protocol with two-tailed adap-
tive time decoder). Let t = �(d − 1)/2� be the number
of errors that a stabilizer code of distance d can correct.
Let
si = (
si,x,
si,z) and
Fi = (
Fi,x,
Fi,z) be the syndrome and
cumulative flag vector obtained from the ith round of full
syndrome measurements with flag circuits. After the ith
round with i ≥ 2, calculate δi−1. Repeat the syndrome mea-
surements until one of the following conditions is satisfied
and then perform error correction using the error syndrome
corresponding to each condition:

(1) For each ηj in
δ, calculate α̃j , β̃j , γj ,ωj . If at least
one ηj with α̃j + β̃j + γj + ωj ≥ t is found, stop the
syndrome measurements. Let l be the last round of
the γj + 1 rounds that correspond to ηj . Perform Z-
type error correction using (
sl,x,
Fl−1,z) and perform
X -type error correction using (
sl,z,
Fl,x).

(2) Calculate N11 from the whole syndrome and flag-bit
histories. If N11 ≥ t, stop the syndrome measure-
ments. Suppose that the latest round is round l.
Perform Z-type error correction using (
sl,x,
Fl−1,z)

and perform X -type error correction using (
sl,z,
Fl,x).

The two-tailed adaptive time decoder for flag FTQEC
developed in this work uses similar ideas to the adaptive
strong decoder presented in the previous work [38]. There-
fore, the number of syndrome-measurement rounds in the
worst-case scenario is (t + 3)2/4 − 1 when t is odd and is
(t + 2)(t + 4)/4 − 1 when t is even. This can be proved by
assuming that none of the faults causes a nonzero flag bit,
then the rest of the proof follows the proof of Theorem 2
of the previous work [38].

If the syndrome
sl and cumulative flag vector
Fl =∑l
i=1

fi (mod 2) of round l are used for error correction,
any faults that have happened up to round l will be cor-
rected. However, because round l may correspond to some
ηj in the middle of
δ, an output error may correspond to
a nontrivial cumulative flag vector. Therefore, Protocol 2
may not satisfy the FTQEC conditions in Definition 4 and
cannot be applied to fault-tolerant quantum computation.
Nevertheless, Protocol 2 is still applicable to a quantum
memory. To do so, one needs to pass the remaining cumu-
lative flag vector of the current FTQEC routine (the sum
of the flag vectors from round l + 1 onward) to the next
FTQEC routine and use it as an initial flag vector.

020336-14

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

3. One-tailed adaptive time decoder

One-tailed and two-tailed decoders use similar ideas to
estimate the number of faults, except that in the one-tailed
case, the syndrome and cumulative vector for error correc-
tion must be from the very last zero substring in
δ (this
is to ensure that the output error satisfies both conditions
in Definition 4). Suppose that
δ = η11η21 . . . 1ηc for some
positive integer c, ηc has length γc ≥ 1, and bit one on
the left of ηc is the i1th bit of
δ. We define αc as usual
and define μc to be the total number of nonzero flag bits
obtained from round 1 to round i1. Also, we define ωc to be
the sum of the numbers of flag bits that exceed one bit per
round during round i1 + 1 onward. Let α̃c = max(αc,μc).
In this case, the total estimate of the number of faults
occurring is α̃c + ωc.

Assuming that there are at most t faults in the whole pro-
tocol, if we find that α̃c + γc + ωc ≥ t, at least one round
in the γc + 1 rounds that give rise to ηc must have a correct
syndrome. This is the first possible stop condition.

The second possible stop condition is similar to what
we have for the two-tailed decoder. Let N11 be the total
number of nonoverlapping 11 sequences in the whole
δ. If
N11 ≥ t, the last round must have a correct syndrome.

Suppose that a table-based space decoder for flag
FTQEC can be constructed. Then, a flag FTQEC protocol
with the one-tailed adaptive time decoder is as follows.

Protocol 3 (Flag FTQEC protocol with one-tailed adap-
tive time decoder). Let t = �(d − 1)/2� be the number
of errors that a stabilizer code of distance d can cor-
rect. Let
si = (
si,x,
si,z) and
Fi = (
Fi,x,
Fi,z) be syndrome
and cumulative flag vector obtained from the ith round
of full syndrome measurements with flag circuits. After
the ith round with i ≥ 2, calculate δi−1. Repeat the syn-
drome measurements until one of the following conditions
is satisfied:

(1) α̃c, γc,ωc satisfy α̃c + γc + ωc ≥ t.
(2) N11 ≥ t.

Suppose that the latest round when any condition is sat-
isfied is round l. Perform Z-type error correction using
(
sl,x,
Fl−1,z) and perform X -type error correction using
(
sl,z,
Fl,x).

The number of rounds of full syndrome measurements
in the worst-case scenario for Protocol 3, which is also
the minimum number of rounds required to guarantee
that error correction can be done, can be found using the
following theorem.

Theorem 1. Suppose that the flag circuits being used
in Protocol 3 give a distinguishable fault set Ft, where
t = �(d − 1)/2� and d is the distance of the stabilizer
code. Performing [t(t + 3)/2] + 2 rounds of full syndrome

measurements is sufficient to guarantee that Protocol 3 is
strongly t-fault tolerant; i.e., both conditions in Definition
4 are satisfied.

Proof. Suppose that
δ = η11η21 . . . 1ηc and γc ≥ 1. We
will show that if none of η1, η11η2, η11η21η3, . . .,
η11η21 . . . 1ηc satisfies any condition in Protocol 3, the
maximum length of such
δ is t(t + 3)/2. In the worst-case
scenario, flag-measurement results do not help in estimat-
ing the number of faults occurring, so we can assume that
α̃c = αc and ωc = 0. Below are the results from analyzing
η1, η11η2, and η11η21η3:

(1) For η1, αc = 0 and γc = γ1, so the maximum length
of η1 such that α̃c + γc ≥ t is not satisfied is t − 1.

(2) For η11η2, αc = 0 and γc = γ2, so the maximum
length of η2 such that α̃c + γc ≥ t is not satisfied is
t − 1.

(3) For η11η21η3, αc = 1 and γc = γ3, so the maximum
length of η3 such that α̃c + γc ≥ t is not satisfied is
t − 2.

By induction, the maximum length of
δ = η11η21 . . . 1ηc
such that α̃c + γc ≥ t is not satisfied is (t − 1)+ 1 +
(t − 1)+ 1 + (t − 2)+ 1 + · · · + 1 + 1 + 0 + 1, which is
t(t + 3)/2. Here,
δ is of the form

00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−1

1 00 . . . 00︸ ︷︷ ︸
t−2

1 00 . . . 00︸ ︷︷ ︸
t−3

1 . . . 1001011.

(11)

The number of rounds that gives
δ of the maximum length
is t(t + 3)/2] + 1. By performing one more round of syn-
drome measurements,
δ is extended by one bit, which must
be bit zero if the total number of faults is no more than
t. In that case, α̃c + γc ≥ t will be satisfied. Therefore,
[t(t + 3)/2] + 2 rounds of full syndrome measurements are
sufficient to guarantee that flag FTEC can be performed.

Note that there are other forms of
δ in which none of η1,
η11η2, η11η21η3, . . ., η11η21 . . . 1ηc satisfies any condition
in Protocol 3 and the length of
δ is [t(t + 3)/2] − 1. For
example, suppose that t = 3. Possible forms of such
δ are
001101011 and 001001111. In any case, one of the condi-
tions in Protocol 3 will be satisfied if one more round of
syndrome measurements is done, so the number of rounds
to guarantee fault tolerance is still [t(t + 3)/2] + 2. �

Note that the number given by Theorem 1 is worse than
that of the two-tailed decoder because we are not allowed
to check whether the syndrome of any round in the middle
can be used for error correction.

An advantage of the FTQEC protocol with the one-
tailed adaptive time decoder is that it is applicable to any
kind of fault-tolerant quantum computation as long as the
corresponding fault-tolerant implementation satisfies the

020336-15

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

revised definitions of fault tolerance, which consider the
number of faults instead of the weight of errors [35]. This is
possible because when the syndrome and cumulative flag
vector for error correction are from the last zero substring
in
δ, it is guaranteed that the output error corresponds to a
zero cumulative flag vector.

C. Extended techniques for CSS codes

In this section, we discuss two additional techniques that
can further improve our flag FTQEC protocols with adap-
tive time decoding. The first technique is separate X and Z
counting, which is applicable to any CSS code. This tech-
nique is based on the ideas from Refs. [37,38] and can be
used to improve the pseudothreshold. The main difference
from the technique developed in Ref. [38] is that this work
also uses flag information to estimate the number of faults
occurring, making the procedure to obtain a syndrome for
error correction terminate faster. The second technique is
the classical processing of the remaining cumulative flag
vector. This technique allows our flag FTQEC protocol
with the two-tailed adaptive time decoder to be applicable
to any fault-tolerant Clifford computation.

1. Separate X and Z counting

For any CSS code, Z-type and X -type errors can be cor-
rected separately. It is possible to improve the number of
measurements by separating the X - and Z-type syndrome-
measurement rounds (which correspond to X - and Z-type
stabilizer generators). In this section, we introduce the XZ
and ZX decoding strategies. In the XZ strategy, first, we
execute a time decoder (which can be a Shor, one-tailed, or
two-tailed decoder) using only the X -type syndromes. The
difference vector for this process is denoted by
δx. After
the decoder returns the X -type syndrome and the cumula-
tive flag vectors for Z-type error correction, we estimate
the number of faults tx that could cause
δx; we define αall,x
to be the total number of nonoverlapping 11 sequences
plus the total number of remaining ones in
δx, define μall,x

to be the total number of nontrivial flag bits in
δx, and
let tx = max(αall,x,μall,x). Given that we spend this num-
ber of faults from our fault budget t, we can reduce the
target number of faults in the stop condition for the Z-
type syndrome measurements. Afterward, we run a time
decoder for Z-type syndromes with the target number of
faults tz = t − tx. The ZX strategy is similar to the XZ
strategy, except that the Z-type generators are measured
first.

When the separate X - and Z-counting technique is
applied to a flag FTQEC protocol, one can find syndromes
for Z-type and X -type error corrections faster compared
to a conventional method where the target numbers of
faults for both types of error corrections are t. However,
a drawback is that the flag FTQEC protocol will only be
compatible with quantum memory. This is because each

type of error correction requires flag information of the
opposite type. In particular, suppose that the time decoder
for X -type syndrome measurements gives syndrome
sx and
cumulative flag vector
Fx and the time decoder for Z-type
syndrome measurements gives syndrome
sz and cumula-
tive flag vector
Fz. Z-type error correction will be done
by applying a space decoder to
sx and the zero cumula-
tive flag vector, while X -type error correction will be done
by applying a space decoder to
sx and
Fz. The cumulative
flag vector
Fx that has not been used will be treated as the
remaining cumulative flag vector of the current FTQEC
routine and used as an initial flag vector for Z-type error
correction in the next FTQEC routine.

2. Classical processing of the remaining cumulative flag
vector

One drawback of a flag FTQEC protocol that uses the
two-tailed adaptive time decoder or the separate X - and Z-
counting technique is that it is only applicable to a quantum
memory, not general fault-tolerant quantum computation.
This is because the output error at the end of each FTQEC
routine may correspond to a nontrivial cumulative flag
vector. To correct such an error, one needs to pass the
flag information from each FTQEC routine (the remain-
ing cumulative flag vector) to the next FTQEC routine.
However, if there is some quantum computation between
two FTQEC routines (as in an extended rectangle [6]), the
error will be transformed and may not be correctable if the
corresponding flag information is not processed properly.

Nevertheless, for any self-orthogonal CSS code, a flag
FTQEC protocol with a two-tailed adaptive time decoder
or separate X and Z counting (or both) can made applica-
ble to any fault-tolerant Clifford computation. For exam-
ple, let us consider an application of a logical Hadamard
gate H̄ between two FTQEC routines. Suppose that the
first FTQEC routine causes an output error ExEz and the
remaining cumulative flag vector is (
Fx,
Fz). Without a
logical Hadamard gate, Ex and Ez can be corrected using
Fz
and
Fx, respectively. A logical Hadamard gate transforms
an X -type error to a Z-type error of the same form and
vice versa. Because the X - and Z-type generators are of the
same form, possible fault combinations for both types of
errors are also of the same form. To correct the transformed
error H̄(ExEz)H̄ † in the second FTQEC routine, one needs
to swap the X - and Z-type cumulative flag vector; i.e., the
initial flag vector for the second FTQEC routine must be
(
Fz,
Fx).

We can apply similar ideas for flag information process-
ing to logical S and logical CNOT gates. The summary of
the classical processing operations for logical H , S, and
CNOT gates is provided in Table II. Because {H , S, CNOT}
generates the Clifford group, a flag FTQEC protocol with
two-tailed adaptive time decoder or separate X and Z

020336-16

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

TABLE II. A list of the required classical processing operations
on the remaining cumulative flag vector in the case in which a
logical Clifford gate is performed between two FTQEC routines.
With these operations, a flag FTQEC protocol with two-tailed
adaptive time decoder or separate X and Z counting is applica-
ble to any fault-tolerant Clifford computation, given that the CSS
code is self-orthogonal.

Remaining
cumulative flag
vector of the
current FTQEC
routine

Logical
Clifford

operation

Initial flag vector
of the next

FTQEC routine

(
Fx,
Fz) H̄ (
Fz ,
Fx)

(
Fx,
Fz) S̄ (
Fx,
Fx ⊕
Fz)

(
Fx,1,
Fz,1|
Fx,2,
Fz,2) CNOT1,2 (
Fx,1,
Fz,1 ⊕
Fz,2|

Fx,1 ⊕
Fx,2,
Fz,2)

counting is applicable to any fault-tolerant Clifford com-
putation given that the CSS code is self-orthogonal. Note
that magic state distillation and injection [56,57] use only
Clifford operations. Thus, our techniques are also applica-
ble to fault-tolerant universal quantum computation given
that high-fidelity magic states are provided.

V. NUMERICAL RESULTS

A. Methods

Our optimization tools for space and time decoders,
including the compact lookup-table construction, the MIM
technique, and the adaptive time decoders for flag FTQEC
are applicable to any stabilizer code. However, we focus
on a specific family of codes where the aforementioned
tools can be simplified and extended techniques, includ-
ing separate X and Z decoding and classical processing
of flag information, are applicable—the family of self-
orthogonal CSS codes in which the number of physical
qubits is odd, the number of logical qubits is 1, and logical
X and Z operators are transversal. To evaluate the perfor-
mance of our tools, we simulate FTQEC protocols on the
[[(3d2 + 1)/4, 1, d]] hexagonal color codes [41] of distance
3, 5, 7, and 9. These codes are planar topological codes
with configurations displayed in Fig. 6. For each code,
stabilizer generators are measured using the syndrome-
extraction circuits with single flag ancilla, as depicted in
Fig. 4. It has been proven that for the hexagonal code
of any distance, the use of flag circuits of this form pre-
serves the code distance regardless of the gate orderings
[32,35]). The simulation is implemented under the circuit-
level depolarizing noise model specified in Sec. II A. As
there is no idling noise in our error model, the syndromes
can be extracted sequentially.

To construct a lookup table for space decoding and to
verify that our circuit configurations preserve the code dis-
tance, we implement the algorithm described in Sec. III A

FIG. 6. The studied members of the hexagonal color code, for
distances 3, 5, 7, and 9 (right to left). Qubits are on the vertices
and stabilizer generators are the plaquettes. As the codes are self-
orthogonal CSS codes, both the X - and Z-stabilizer generators
are described by the same layout.

using C++. The timing for verification alongside the statis-
tics of the lookup table can be found in Table I. The lookup
table for these codes can be generated on the fly before the
sampling starts, as the required time is low enough.

Here, we simulate the storage (i.e., the result of the log-
ical identity operation) of the logical state |0̄〉. We use the
Pauli-frame simulator in STIM [58] to collect measurement
samples and we use CIRQ [59] for constructing the circuits
with the given noise model. After a perfect preparation
of |0̄〉, we perform noisy error correction and recovery.
In the error-correction process, full rounds of syndrome
measurements are repeated until the stop condition of the
time decoder is satisfied. The time decoder returns an
accepted full syndrome (consisting of error syndrome and
cumulative flag vector) and then the space decoder deter-
mines the recovery operation based on the accepted full
syndrome. This recovery operation is applied to the data
qubits afterward. Finally, we apply an ideal error correc-
tion and determine whether the output error is a logical
X error (which corresponds to having |1̄〉 as the output
state).

B. The overall effect of optimization tools

We first compare two protocols: (1) the FTQEC proto-
col with a Shor time decoder without the MIM technique
(the protocol in which none of our optimization tools are
applied) and (2) the FTQEC protocol with the MIM tech-
nique and the two-tailed adaptive time decoder with the
ZX strategy (the best FTQEC protocol in this work, which
is compatible with any Clifford computation on a self-
orthogonal CSS code). The logical error rate pL versus
the physical error rate p for hexagonal color codes of dis-
tance 3, 5, 7, and 9 is plotted in Fig. 7. Our results show
that for each code, applying the optimization tools can
significantly improve the pseudothreshold (the intersec-
tion between each plot and the pL = 2p/3 line). Further-
more, the optimized decoder yields orders-of-magnitude
improvements in the logical error rate in the p = 10−4

error regime.

020336-17

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.22 ± 0.75) × 10−4

d = 5: (3.58 ± 0.29) × 10−4

d = 7: (2.18 ± 0.07) × 10−4

d = 9: (1.34 ± 0.01) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (1.02 ± 0.25) × 10−3

d = 5: (1.58 ± 0.20) × 10−3

d = 7: (1.61 ± 0.16) × 10−3

d = 9: (1.43 ± 0.07) × 10−3

(a)

(b)

FIG. 7. (a) The curve of the logical error rate pL versus the
physical error rate p for the hexagonal color code family without
any of our optimization techniques, using the Shor time decoder
without MIM. (b) The use of the best-performing combination of
our techniques, including MIM and the two-tailed adaptive time
decoder with ZX strategy. Pseudothresholds for each curve (the
pth error rate, which gives pL(pth) = 2pth/3) are included in the
labels and marked with vertical lines. The data points represent
the number of logical errors divided by the total number of sam-
ples at that p error rate and thus estimate the true logical error
rates, which should lie within the shaded areas with high confi-
dence. The dotted helper lines, which are αpt+1, where α = 2

3 p−t
th

retroactively calculated for each curve from its pseudothreshold,
show good agreement with distance preservation.

Under a noise model parametrized by a single parame-
ter p , the fault-tolerant threshold pth is the error probability
under which the logical error rate is guaranteed to decrease
with increasing code distance for a specific code family
and decoder. Our decoders can yield a pth for concatenated
code families using a level-by-level decoder but they will
not yield a threshold for topological code families for two
reasons. The practical reason is that our space decoder,
which uses a lookup table, is not scalable to the large d
limit. The fundamental reason is that the time decoder will
always take
δ in which all bits are one when d is large,
because δj for each round will be 1 with a probability
exponentially close to 1 for finite p . The space decoder
then acts on the final state but lacks the information about

TABLE III. The effect of different time decoders (rows) and
the MIM technique (columns) on the pseudothreshold of the
distance-9 hexagonal color code (for more details on the under-
lying data, see Figs. 8–10).

Time decoder Without MIM (×10−4) With MIM (×10−4)

Shor 1.34 ± 0.01 2.79 ± 0.07
One-tailed 2.11 ± 0.05 3.91 ± 0.26
Two-tailed 3.38 ± 0.17 6.30 ± 0.45
Two-tailed XZ — 6.09 ± 0.47
Two-tailed ZX — 14.3 ± 0.7

correlations to properly correct it. This is why an effi-
cient space-time decoder is critical for achieving pth for
topological codes.

We can define an effective threshold p̃th as the error
rate below which increasing the code distance improves
the logical error rate for this finite set of codes. The
optimized protocol yields a p̃th = 1.5 × 10−3, while the
unoptimized protocol yields p̃th = 4.5 × 10−5. We also
note that the crossing point between the codes of distances
d and d − 2 is dropping quickly with the unoptimized
decoder, while it is stable for the optimized decoder over
this code set. The effect of each optimization technique to
the crossing points can be found in Fig. 13 in Appendix
C. In Table III, we summarize the effects of different
optimization tools on the pseudothreshold of the d = 9
color code. In the following sections, we further discuss
the effect of each technique that can contribute to this
improvement.

C. The effect of the meet-in-the-middle technique

In this section, we evaluate the performance of simu-
lated storage that uses the space decoder with and without
the MIM technique. We explore the effect for distances 3,
5, 7, and 9 and compare the effect when the time decoder is
a Shor, one-tail, or two-tail time decoder. We observe a sig-
nificant decrease in logical error rates and an improvement
in pseudothreshold when the MIM technique is applied.
We also find that the benefit increases with the code dis-
tance. In Fig. 8, we show the improvement for the code of
distance 9, where the benefit is the largest. The results for
codes of other distances are provided in Figs. 14–16.

It is clear that both nonadaptive (Shor) and adaptive
time decoders benefit from the MIM technique. The pseu-
dothreshold for the Shor time decoder increases by more
than 100%, from (1.34 ± 0.01)× 10−4 to (2.79 ± 0.07)×
10−4. The pseudothreshold for the one-tailed adaptive time
decoder increases by 85%, from (2.11 ± 0.05)× 10−4 to
(3.91 ± 0.26)× 10−4. Finally, the pseudothreshold for the
two-tailed adaptive time decoder gets a boost of 86%, from
(3.38 ± 0.17)× 10−4 to (6.30 ± 0.45)× 10−4.

020336-18

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
p L

Shor without MIM: (1.34 ± 0.01)×10−4

Shor with MIM: (2.79 ± 0.07)×10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed adaptive without MIM: (2.11 ± 0.05)×10−4

One-tailed adaptive with MIM: (3.91 ± 0.26)×10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

(a)

(b)

(c)

Two-tailed adaptive without MIM: (3.38 ± 0.17)×10−4

Two-tailed adaptive with MIM: (6.30 ± 0.45)×10−4

FIG. 8. The effect of the MIM technique on different time
decoders at distance d = 9: (a) Shor time decoder; (b) one-tailed
adaptive time decoder; (c) two-tailed adaptive time decoder. The
effect is largest for the Shor time decoder, more than doubling
the pseudothreshold. The MIM technique also gives at least a
significant 70% improvement on the adaptive time decoders.

D. The effect of the adaptive time decoders

In this section, we compare the performance of the simu-
lated storage numerical experiments that use different time
decoders when the MIM technique is applied. The results
are displayed in Fig. 9 for the hexagonal code of distance
9 and we refer the reader to Fig. 17 in Appendix C for the
results for the codes of other distances.

For the code of distance 9, in comparison with the
Shor time decoder, the one-tailed adaptive time decoder
improves the pseudothreshold by 40% from (2.79 ±
0.07)× 10−4 to (3.91 ± 0.26)× 10−4. The two-tailed
method achieves (6.30 ± 0.45)× 10−4 pseudothreshold,
which is more than a 125% increase compared to the Shor
time decoder. However, this gain vanishes at lower error
rates and the performances of the Shor and the one-tailed
decoder become similar at around p = 10−4. This is not
surprising, as we expect all adaptive time decoders to con-
verge to a Shor time decoder at lower error rates. The
main reason for this convergence is that the performance
gains for the adaptive techniques come from a decrease in
the average number of rounds for syndrome measurements
and the decrease converges to zero at low error rates. How
fast the decrease converges matters and, in contrast to the
one-tailed approach, the two-tailed time decoder preserves
its performance gain over the Shor time decoder in the
observed error-rate regime as low as 5 × 10−5.

We also provide the plots of the average numbers of full
rounds of measurements for all decoders. In the low-error-
rate regime, all decoders have the same minimum number
of measurement rounds, t + 1, which corresponds to the
case in which all bits in the difference vector are zeros.
We can see the separation more clearly when the phys-
ical error rate is in the 10−3 range; the two-tailed time
decoder requires the fewest rounds, followed by the one-
tailed decoder, and the Shor time decoder performs the
worst. In the high-error-rate regime, all bits in the differ-
ence vector tend to be ones. In this case, the Shor time
decoder requires (t + 1)2 rounds, while both the one-tailed
and two-tailed decoders require 2t + 1 rounds.

E. The effect of the separate X - and Z-counting
technique

In this section, we observe the performance gains when
the separate X - and Z-counting technique is applied. Here,
we compare the FTQEC protocols that use the two-tailed
adaptive time decoder with joint X - and Z-generator mea-
surements (as in Sec. IV B 2), the two-tailed adaptive time
decoder with the XZ strategy, and the two-tailed adaptive
time decoder with the ZX strategy (as in Sec. IV C 1). The
logical error rate is calculated from the number of samples
in which the output error is a logical X error. The pL versus
p plots for the code of distance 9 are shown in Fig. 10 (the
results for codes of other distances can be found in Fig. 18
in Appendix C).

In terms of the pseudothreshold, we observe that the
decoder with separate X and Z counting performs the
best when Z-type generators are measured before X -
type generators. Compared to the two-tailed decoder with
joint X - and Z-generator measurements, the separate two-
tailed ZX decoder improves the pseudothreshold by 127%,
from (6.30 ± 0.45)× 10−4 to (1.43 ± 0.07)× 10−3. This

020336-19

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor with MIM: (2.79 ± 0.07) × 10−4

One-tailed with MIM: (3.91 ± 0.26) × 10−4

Two-tailed with MIM: (6.30 ± 0.45) × 10−4

10−4 10−3 10−2 10−1 100

p

0

5

10

15

20

25

N

Shor with MIM
One-tailed with MIM
Two-tailed with MIM

(a) (b)

FIG. 9. The logical error rates of the one-tailed and two-tailed adaptive time decoders compared to the Shor time decoder with the
corresponding average number of rounds for the hexagonal color code of distance 9: (a) logical error rate pL versus physical error rate
p; (b) average number of rounds N versus physical error rate p .

is mainly because measuring generators of the first type
(X or Z) requires more rounds and it is more probable that
the measurements can cause correlated errors of the same
type as the generators being measured (which are more dif-
ficult to correct than uncorrelated errors, since they require
flag information). Because in our simulations we measure
the performance of storing the logical |0〉 state (thus, a log-
ical X error is counted), the decoder that measures X -type
generators first performs worse. We also observe that there
is no significant difference between the two-tailed decoder
with joint measurements and the two-tailed decoder with
the XZ strategy.

We also provide plots of the average number of full
rounds of measurements for all decoders (where the full
round of single-type generator measurements is counted
as half a round of total measurements). In the low-
error-rate regime, all decoders require t + 1 rounds. For
the original two-tailed decoder, the average number of
rounds increases as the physical error rate increases and
it reaches 2t + 1 rounds in the high-error-rate regime. For
both two-tailed decoders with separate X and Z count-
ing, we find that the average number of rounds increases
near the pseudothreshold, then there are the dips after the

pseudothreshold, and the numbers reach t + 1 rounds in
the high-error-rate regime. The dips come from the fact
that the measurements of generators of the first type (either
X or Z) can stop at less than (2t + 1)/2 rounds but the
estimate of the number of faults occurring can be t, which
then causes the measurements of generators of the second
type to stop at 1/2 rounds. In the high-error-rate regime,
the decoders with separate X and Z counting require
t + 1 rounds, since measuring generators of the first type
requires (2t + 1)/2 rounds while measuring generators of
the second type requires 1/2 rounds on average. Overall,
the decoder that measures Z-type generators first performs
better than the decoder that measures X -type generators
first.

VI. DISCUSSION AND CONCLUSIONS

In this work, we focus on flag FTQEC with lookup-table
decoding and improvements to a decoder consisting of a
time decoder and a space decoder. For the space decoder,
we first develop a technique to build the lookup table more
efficiently in Sec. III A. With our lookup-table construc-
tion method, the lookup table for a self-orthogonal CSS
code requires at least 87.5% less memory compared to the

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM: (6.30 ± 0.45) × 10−4

Two-tailed XZ with MIM: (6.09 ± 0.47) × 10−4

Two-tailed ZX with MIM: (1.43 ± 0.07) × 10−3

10−4 10−3 10−2 10−1 100

p

0

5

N

Two-tailed with MIM
Two-tailed XZ with MIM
Two-tailed ZX with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM: (6.30 ± 0.45) × 10−4

Two-tailed XZ with MIM: (6.09 ± 0.47) × 10−4

Two-tailed ZX with MIM: (1.43 ± 0.07) × 10−3

10−4 10−3 10−2 10−1 100

p

0

5

N

Two-tailed with MIM
Two-tailed XZ with MIM
Two-tailed ZX with MIM

(a) (b)

FIG. 10. The logical error rates of the two-tailed time decoder with XZ and ZX strategies in comparison with the two-tailed adaptive
time decoder with joint X and Z measurements and the corresponding average number of rounds for the hexagonal color code of
distance 9: (a) logical error rate pL versus physical error rate p; (b) average number of rounds N versus physical error rate p .

020336-20

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

lookup table for a generic stabilizer code. The construc-
tion method also verifies the distinguishability of the fault
set corresponding to flag circuits for syndrome measure-
ments. Our construction also leads to the notion of the
fault code, a linear code corresponding to the faults under
circuit-level noise, which simplifies the verification of the
distance of the protocol. More efficient decoding schemes
for the fault code can be an interesting avenue to explore
in future work.

Another optimization tool for space decoding is the
MIM technique in Sec. III B, which could improve the
decoding accuracy when the number of faults in the pro-
tocol is greater than t (where t = �(d − 1)/2� for the code
of distance d). The effect of the MIM technique on the
simulated storage of the hexagonal color codes is dis-
cussed in Sec. V C (see also Fig. 14). We find that for any
kind of time decoder, the logical error rates are reduced
and the pseudothresholds are improved when applying
the MIM technique, with greater improvements at larger
distances.

For the time decoder, we generalize the adaptive
syndrome-measurement technique from the previous work
[38] (which is applicable to Shor-style error correction
[1]) to flag FTQEC and develop one-tailed and two-tailed
adaptive time decoders in Sec. IV B. For a general sta-
bilizer code in which flag FTQEC is possible, the one-
tailed decoder is preferable, as it is compatible with any
fault-tolerant quantum computation, while the two-tailed
decoder is applicable to quantum memory only. Neverthe-
less, for self-orthogonal CSS codes, the two-tailed decoder
is applicable to any fault-tolerant computation built from
Clifford gates and application of T gates by gate tele-
portation using high-fidelity magic states with the help
of the classical processing technique on cumulative flag
vectors developed in Sec. IV C. The effect of the adap-
tive time decoders on the simulated storage is discussed
in Sec. V D. We observe that our adaptive time decoders
can improve the pseudothresholds compared to the non-
adaptive (Shor) time decoder while preserving the code
distance. The two-tailed decoder also outperforms the
one-tailed decoder.

The two-tailed adaptive decoder without MIM in this
work is similar to the adaptive strong decoder in the pre-
vious work [38], except that this work uses flag circuits
instead of syndrome-extraction circuits with cat states. The
numerical results show that using flag circuits results in
a 20–35% increase of the pseudothreshold for the hexag-
onal color codes of distances 3, 5, 7, and 9. This is
mainly because flag circuits have fewer state-preparation
and qubit-measurement locations, although they have more
gates. The previous work [38] also assumes fault-tolerant
preparation of cat states, which requires verification [1] or
an ancilla decoding circuit [26], which can result in higher
space and time overhead. Thus, the pseudothresholds could
be worse in that case if additional requirements are also

considered. It should be noted that flag circuits may not
outperform syndrome-extraction circuits with cat states in
general, as flag FTQEC for other codes may require more
complicated flag circuits.

We can further improve the performance of adaptive
time decoders on self-orthogonal CSS codes by using
the separate X - and Z-counting technique described in
Sec. IV C. Here, we estimate the number of faults occur-
ring from the measurement of generators of the first type
(either X or Z) and then use that information in the
measurement of generators of the second type. The effect
of this technique can be found in Sec. V E. When the
logical |0〉 state is stored, we find that the protocol
that measures Z-type generators before X -type gener-
ators performs the best. We see no significant differ-
ence between the protocol that measures X -type gen-
erators before Z-type generators and the protocol that
measures X - and Z-type generators jointly. Thus, the sep-
arated X and Z counting provides an advantage only
for certain input states, depending on the measurement
order.

Combining all techniques together, we find a signifi-
cant improvement in the pseudothreshold while the code
distance is still preserved. For example, on the hexago-
nal color code of distance 9, the pseudothreshold goes up
from (1.34 ± 0.01)× 10−4 to (1.43 ± 0.07)× 10−3. We
also find that in comparison with the unoptimized decoder,
the crossing points between the codes of distances d and
d − 2 come much closer when all techniques are applied
(as shown in Fig. 7), leading to a higher effective threshold
p̃th for this set of codes.

While our techniques are applicable to a broader fam-
ily of codes, it would be interesting to see how our results
compare with other works that study error decoding on the
hexagonal color codes under circuit-level noise. For exam-
ple, Baireuther et al. [60] have reported a pseudothreshold
above 2 × 10−3 (against pL = p instead of pL = 2p/3)
with a neural-network decoder, which also preserves the
code distance empirically. However, it has also been
reported that training decoders for d > 7 have become
too expensive. By adapting efficient color-decoding algo-
rithms known as the restriction decoder [61] and the pro-
jection decoder [51], Chamberland et al. [32] and Bever-
land et al. [24] have reported threshold values of 2 × 10−3

and 3.7 × 10−3, respectively. The difference between the
threshold values is mostly contributed by different choices
of syndrome-extraction circuits: for each weight-6 stabi-
lizer generator, Ref. [32] has used three flag qubits for
connectivity considerations, while Ref. [24] has not used
any flag qubits. However, both the restriction decoder and
the projection decoder can only correct up to d/3 errors
(for examples of failure modes, see Fig. 15 in Sahay
and Brown [62]) on the color-code family considered in
this paper [63]. Recent preprints have reported distance-
losing schemes to decode the color code with even higher

020336-21

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

thresholds of 4.7 × 10−3 [25], and between
5 × 10−3 to 7 × 10−3 [64] without using flag
qubits.

In contrast to the constructions that utilize the restric-
tion decoder [32] and the projection decoder [24], our
adaptive decoding method preserves the code distance
(although the lookup table is not scalable to codes with
larger distances). It is expected that our method could
become advantageous for the codes of interest when the
physical error rate is below a certain value. However,
the noise models in Refs. [24,25,32,60,64] also consider
idling noise, while our noise model does not. Sequential
syndrome extraction is expected to perform poorly in
architectures where idling noise is dominant (for an anal-
ysis on the [[7, 1, 3]] code, see Appendix B). To improve
performance, our methods need to be combined with opti-
mized schedules specific to the given code family. CNOT
schedule optimization is involved, requiring an enumera-
tion of valid CNOT schedules satisfying basic constraints
and finding the best-performing one using exhaustive
search, similar to how Beverland et al. [24] have found
a well-performing schedule for hexagonal color codes
and bare ancillas. It is thus an open question what the
error regime is where our flag-qubit-based adaptive meth-
ods are advantageous in comparison to the non-distance-
preserving decoders. This analysis will require evalu-
ation using code-specific optimizations under different-
strength idling-noise scenarios, which we leave for future
work.

Hierarchical decoding approaches also provide an inter-
esting avenue to explore with lookup-table-based and
adaptive techniques [65,66]. We conjecture that our tech-
niques may result in efficient predecoders. The lookup
tables and the adaptive syndrome algorithms would have
to be restricted to local sections of topological codes or
sparsely connected modules of other codes. Then, when
the lookup-table decoders cannot decode the local prob-
lems, the more expensive and accurate decoder can attempt
to decode the nonlocal problem.

It should be noted that this work uses the adaptive
syndrome-measurement technique, which assumes fast
qubit preparation and measurement. For the architectures
on which qubit measurement and reset are slow, however,
our method may require a large number of ancillas or may
not be possible. In that case, one may consider using flag
schemes that do not require fast qubit measurement and
reset, such as the flag scheme for any distance-3 code [67]
or the flag scheme in which the flag gadgets are constructed
from the classical Bose-Chaudhuri-Hocquenghem (BCH)
codes [68].

ACKNOWLEDGMENTS

The work was supported by the Office of the Director
of National Intelligence—Intelligence Advanced Research

Projects Activity through an Army Research Office (ARO)
contract (Grant No. W911NF-16-1-0082), the ARO Mul-
tidisciplinary University Research Initiative (MURI) pro-
gram (Grant No. W911NF-16-1-0349), the ARO (Grant
No. W911NF-21-1-0005), and the National Science Foun-
dation Institute for Robust Quantum Simulation (QLCI
Grant No. OMA-2120757).

APPENDIX A: MEMORY-FOOTPRINT SAVINGS
IN THE LOOKUP TABLE

In this appendix, we detail how much saving each of the
ideas in the main text contributes relative to the lookup-
table memory cost of

Mstab = Tstab(4n − 2k) bits, (A1)

when we look at a code as a generic stabilizer code.
If CROs and the logical class are used instead of full
Pauli operators for recovery, then instead of storing the
full 2n bits for recovery, only 2k bits are required. Thus,
Mstab,CRO = Tstab(2n) leading to

Mstab,CRO/Mstab = Tstab(2n)
Tstab(4n − 2k)

= 1
2 − k/n

= 1
2 − R

,

(A2)

where R = k/n is the encoding rate. Thus, for codes with
R → 0 as n → ∞, this alone saves up to 50% in storage.

For CSS codes, as mentioned in the main text, we
assume independent recovery for X - and Z-type errors. Let
TX and TZ denote the number of unique X - and Z-type
nontrivial syndromes (which are obtained by measuring X -
and Z-type generators, respectively). Then, the CSS codes
have two lookup tables mapping pure X - and Z-type syn-
dromes to purely Z- and X -type recovery operators, with
TX + 1 and TZ + 1 entries. Thus, they require only 2rX and
2rZ bits for the map key (a factor of 2 for flags and data
bits) and n bits for the recovery operator. This results in
the following memory cost for the lookup tables of a CSS
code:

MCSS = (TX + 1)(2rX + n)+ (TZ + 1)(2rZ + n) bits

= 2rX TX + 2rX + nTX + n + 2rZTZ

+ 2rZ + nTZ + n bits

= 2(rX TX + rZTZ)+ 2(rX + rZ)

+ n(TX + TZ)+ 2n bits

= 2(rZTZ + rX TX)+ (4n − 2k)+ n(TZ + TX) bits .
(A3)

To compare this with Mstab, we need to take care of the triv-
ial syndrome and introduce a variable, TXZ , for the number

020336-22

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

of unique mixed X /Z syndromes that a generic stabilizer
code representation would yield:

Tstab = TX + TZ + 1 + TXZ . (A4)

Thus, from Eq. (A1),

Mstab = (TX + TZ + 1 + TXZ)(4n − 2k) bits . (A5)

The ratio between the storage cost for a CSS code versus
the cost when the same code is viewed as a generic stabi-
lizer code is hard to bound precisely. Nevertheless, at least
we know that Mstab > MCSS, as the savings are

Mstab − MCSS = (TX + TZ + 1 + TXZ)(4n − 2k)

− (TX + 1)(2rX + n)+ (TZ + 1)(2rZ + n)

= 2(TX rZ + TZrX)+ n(TX + TZ)

+ 2TXZ(2n − k) bits. (A6)

If we use CROs, we can reduce the size of the map values
to k bits from n:

MCSS,CRO = (TX + 1)(2rX + k)+ (TZ + 1)(2rZ + k) bits

= 2rX TX + 2rX + kTX + k + 2rZTZ

+ 2rZ + kTZ + k bits

= 2(rX TX + rZTZ)+ 2(rX + rZ)

+ k(TX + TZ)+ 2k bits

= 2(rX TX + rZTZ)+ 2n + k(TZ + TX) bits.
(A7)

And thus, not surprisingly, the decrease in bits is

MCSS − MCSS,CRO

= (n − k)(2 + TZ + TX) = (n − k)TCSS, (A8)

where TCSS is the total number of entries of the two tables.
If the code is self-orthogonal, then the two tables

coincide, T := TX = TZ , r := rX = rZ . Thus,

MCSS,CRO,SO = 1
2
(2(rZTZ + rX TX)+ 2n + k(TZ + TX))

= 1
2
(2(rT + rT)+ 2n + k(T + T))

= 1
2
(4rT + 2n + 2kT)

= 2rT + n + kT

= (n − k)T + n + kT

= nT + n

= n(T + 1), (A9)

which is consistent with having T + 1 entries, with a map
key of n − k bits (with (n − k)/2 for flags and for gener-
ator bits) and a value with k bits. If we were to view the

10−4 10−3

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

pI = p: (3.71 ± 0.09) × 10−5

pI = p/2: (1.05 ± 0.04) × 10−4

pI = p/5: (2.84 ± 0.18) × 10−4

pI = p/10: (4.85 ± 0.57) × 10−4

pI = 0: (9.60 ± 1.36) × 10−4

FIG. 11. The effect of idling noise on a naive CNOT schedule for the [[7, 1, 3]] code at different idling-noise strengths pI relative to
the gate errors p . In this setup, pI = p is the full standard depolarizing noise model and pI = 0 is the one that we have used to evaluate
our methods in the main text, while pI = p/2, pI = p/5, and pI = p/10 are between those two extremes.

020336-23

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

self-orthogonal CSS code as a generic stabilizer code, we
would obtain Tstab = 1 + 2T + TXZ and thus the ratio is

MCSS,CRO,SO/Mstab = n(T + 1)
Tstab(4n − 2k)

= n(T + 1)
(1 + 2T + TXZ)(4n − 2k)

= T + 1
(1 + 2T + TXZ)(4 − 2R)

≤ 1
8 − 4R

,

(A10)

where we have used the fact that TXZ must be at least 1 for
t > 0 and a nontrivial encoding. This upper bound means
that at a zero rate code, leveraging the structure of a self-
orthogonal CSS code and the CROs can create a memory
footprint less than 12.5% that of the memory footprint of a
lookup table if we view the code as a stabilizer code.

APPENDIX B: THE EFFECT OF IDLING NOISE

To demonstrate the effect of idling noise, we evalu-
ate the [[7, 1, 3]] code under a naive interleaved schedule,
depicted in Fig. 12(a) without noise terms and in Fig. 12(b)
with gate-noise terms with strength p = 0.02 and idling-
noise terms with strength pI = 0.01. Note that further
improvements are possible to reduce idling in the circuit
by doubling the number of flag qubits and ancilla qubits

and measuring X - and Z-stabilizer generators in paral-
lel, similar to the scheme by Beverland et al. [24]. This
will, however, be only possible for the two-tailed adap-
tive decoder and the separate X /Z decoder will not work
by definition. Also, protocol-specific CNOT schedule opti-
mization might be possible, depending on the underlying
quantum code. As we are not aiming to find tools on the
code level, this investigation is beyond the scope of this
paper. It is also interesting to point out that the use of
a single flag ancilla and a single syndrome ancilla forces
sequential execution of the gates within a generator, while
multi-flag-based schemes such as in the work of Cham-
berland et al. [32] allow for multiple CNOT gates to be
executed in the same time step. While our methods here
use single-flag-qubit-based protocols, that angle can be
relaxed if the strength of the idling noise requires it.

Our numerical evaluation results, displayed in Fig. 11,
show that at idling-noise strength pI = p , the pseu-
dothreshold is 20–25 times smaller than the case without
idling noise, pI = 0. However, as the relative strength
of the depolarizing noise p/pI increases, the perfor-
mance rapidly approaches the ideal case. Furthermore,
we can see that our decoders still preserve the dis-
tance, which is expected given that the single-qubit depo-
larizing noise terms do not change the set of errors
to be corrected but only change the strength of some
terms.

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

R

R

R

R

R

R

H

H

H

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

H

H

H

M

M

M

M

M

M

(a)

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

R

R

R

R

R

R

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

H

H

H

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

D(0.02)

D(0.02)

X

X

X

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2

X

X

X

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2

X

X

X

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2 X

X

X

D(0.01)

D(0.01)

DD(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2

X

X

X

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2

X

X

X

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

#2

D(0.02)

#2

D(0.02)

#2

H

H

H

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.02)

D(0.02)

D(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

BF(0.02)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

D(0.01)

M

M

M

M

M

M

(b)

FIG. 12. An interleaved schedule for extracting the Z syndrome of the [[7, 1, 3]] code (a) without and (b) with noise terms at gate
depolarizing strength p = 0.02 and idling-noise strength pI = p/2 = 0.01. The data qubits are 0–6, the ancilla qubits are 7–9, and
the flag qubits are 10 and 11. Brackets above and below the circuit group together gates that are executed during the same time step.
X -type syndrome extraction is similar.

020336-24

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

APPENDIX C: FIGURES FOR ALL DISTANCES

In this appendix, we provide more details on the plots of logical error rate pL versus physical error rate p and the plots
of average number of rounds N versus physical error rate p for hexagonal color codes of distance 3, 5, 7, and 9 when
different combinations of optimization tools are used.

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.22 ± 0.75) × 10−4

d = 5: (3.58 ± 0.29) × 10−4

d = 7: (2.18 ± 0.07) × 10−4

d = 9: (1.34 ± 0.01) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.36 ± 0.71) × 10−4

d = 5: (4.83 ± 0.52) × 10−4

d = 7: (3.99 ± 0.25) × 10−4

d = 9: (2.79 ± 0.07) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.29 ± 0.76) × 10−4

d = 5: (4.34 ± 0.44) × 10−4

d = 7: (3.20 ± 0.17) × 10−4

d = 9: (2.11 ± 0.05) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.22 ± 0.82) × 10−4

d = 5: (6.43 ± 0.80) × 10−4

d = 7: (5.17 ± 0.55) × 10−4

d = 9: (3.91 ± 0.26) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.26 ± 0.80) × 10−4

d = 5: (5.48 ± 0.79) × 10−4

d = 7: (4.68 ± 0.44) × 10−4

d = 9: (3.38 ± 0.17) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (5.35 ± 0.77) × 10−4

d = 5: (7.78 ± 0.86) × 10−4

d = 7: (7.63 ± 0.59) × 10−4

d = 9: (6.30 ± 0.45) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (6.48 ± 0.91) × 10−4

d = 5: (8.77 ± 1.17) × 10−4

d = 7: (7.37 ± 0.59) × 10−4

d = 9: (6.09 ± 0.47) × 10−4

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

d = 3: (1.02 ± 0.25) × 10−3

d = 5: (1.58 ± 0.20) × 10−3

d = 7: (1.61 ± 0.16) × 10−3

d = 9: (1.43 ± 0.07) × 10−3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 13. The threshold-formation effect of increasingly better space and time decoders: (a) Shor without MIM; (b) Shor with MIM;
(c) one-tailed without MIM; (d) one-tailed with MIM; (e) two-tailed without MIM; (f) two-tailed with MIM; (g) two-tailed XZ with
MIM; (h) two-tailed ZX with MIM. Both space-decoding improvements (MIM) and time-decoding improvements (from Shor to
two-tailed ZX strategy) help in making the intersections of the pL versus p curves more focused.

020336-25

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor without MIM: (5.22 ± 0.75) × 10–4

Shor with MIM: (5.36 ± 0.71) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

N

Shor without MIM

Shor with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor with MIM: (4.83 ± 0.52) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

5

6

7

8

9

N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor with MIM: (3.99 ± 0.25) × 10−4

10−4 10−3 10−2 10−1 100

p

0

2

4

6

8

10

12

14

16
N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor with MIM: (2.79 ± 0.07) × 10−4

10−4 10−3 10−2 10−1 100

p

0

5

10

15

20

25

N

Shor without MIM: (3.58 ± 0.29) × 10–4

Shor without MIM: (2.18±0.07) × 10–4

Shor without MIM: (1.34± 0.01) × 10–4

Shor without MIM

Shor with MIM

Shor without MIM

Shor with MIM

Shor without MIM

Shor with MIM

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 14. The effect of the MIM technique on the Shor time decoder for hexagonal color codes of various distances: (a),(c),(e),(g)
logical error rate pL versus physical error rate p; (b),(d),(f),(h) average number of rounds N versus physical error rate p; (a),(b) d = 3;
(c),(d) d = 5; (e),(f) d = 7; (g),(h) d = 9. The improvement is increasing with the code distance, with no improvement at d = 3 and
the biggest one at d = 9.

020336-26

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

One-tailed without MIM: (5.29 ± 0.76) × 10−4

One-tailed with MIM: (5.22 ± 0.82)×10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

N

One-tailed without MIM
One-tailed with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

5

N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

10−4 10−3 10−2 10−1 100

p

0

2

4

6

N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

10−4 10−3 10−2 10−1 100

p

0

5

N

(a) (b)

(c) (d)

(e) (f)

(g) (h)

One-tailed without MIM
One-tailed with MIM

One-tailed without MIM
One-tailed with MIM

One-tailed without MIM
One-tailed with MIM

One-tailed without MIM: (4.34 ± 0.44) × 10−4

One-tailed with MIM: (6.43 ± 0.80) × 10−4

One-tailed without MIM: (3.20 ± 0.17) × 10−4

One-tailed with MIM: (5.17 ± 0.55) × 10−4

One-tailed without MIM: (2.11 ± 0.05) × 10−4

One-tailed with MIM: (3.91 ± 0.26) × 10−4

FIG. 15. The effect of the MIM technique on the one-tailed adaptive time decoder for hexagonal color codes of various distances:
(a),(c),(e),(g) logical error rate pL versus physical error rate p; (b),(d),(f),(h) average number of rounds N versus physical error rate p;
(a),(b) d = 3; (c),(d) d = 5; (e),(f) d = 7; (g),(h) d = 9. The improvement is increasing with distance, with no improvement at d = 3
and the biggest one at d = 9.

020336-27

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed without MIM: (5.26 ± 0.80) × 10–4

Two-tailed with MIM: (5.35 ± 0.77) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

N

Two-tailed without MIM

Two-tailed with MIM

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM: (7.78 ± 0.86) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

5

N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM: (7.63 ± 0.59) × 10−4

10−4 10−3 10−2 10−1 100

p

0

2

4

6

N

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Two-tailed with MIM: (6.30 ± 0.45) × 10−4

10−4 10−3 10−2 10−1 100

p

0

5

N

Two-tailed without MIM: (5.48 ± 0.79) × 10–4

Two-tailed without MIM: (4.68 ± 0.44) ×10–4

Two-tailed without MIM: (3.38 ± 0.17) × 10–4

Two-tailed without MIM

Two-tailed with MIM

Two-tailed without MIM

Two-tailed with MIM

Two-tailed without MIM

Two-tailed with MIM

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 16. The effect of the MIM technique on the two-tailed decoder for hexagonal color codes of various distances: (a),(c),(e),(g)
logical error rate pL versus physical error rate p; (b),(d),(f),(h) average number of rounds N versus physical error rate p; (a),(b) d = 3;
(c),(d) d = 5; (e),(f) d = 7; (g),(h) d = 9. The improvement is increasing with distance, with no improvement at d = 3 and the biggest
one at d = 9.

020336-28

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor: (5.36 ± 0.71) × 10−4

One-tailed: (5.22 ± 0.82) × 10−4

Two-tailed: (5.35 ± 0.77) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

N

Shor
One-tailed
Two-tailed

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor: (4.83 ± 0.52) × 10−4

One-tailed: (6.43 ± 0.80) × 10−4

Two-tailed: (7.78 ± 0.86) × 10−4

10−4 10−3 10−2 10−1 100

p

0

1

2

3

4

5

6

7

8

9

N

Shor
One-tailed
Two-tailed

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor: (3.99 ± 0.25) × 10−4

One-tailed: (5.17 ± 0.55) × 10−4

Two-tailed: (7.63 ± 0.59) × 10−4

10−4 10−3 10−2 10−1 100

p

0

2

4

6

8

10

12

14

16
N

Shor
One-tailed
Two-tailed

10−4 10−3 10−2 10−1 100

p

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

p L

Shor: (2.79 ± 0.07) × 10−4

One-tailed: (3.91 ± 0.26) × 10−4

Two-tailed: (6.30 ± 0.45) × 10−4

10−4 10−3 10−2 10−1 100

p

0

5

10

15

20

25

N

Shor
One-tailed
Two-tailed

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 17. A comparison of the one-tailed and two-tailed adaptive time decoders with the Shor time decoder for hexagonal color codes
of various distances: (a),(c),(e),(g) logical error rate pL versus physical error rate p; (b),(d),(f),(h) average number of rounds N versus
physical error rate p; (a),(b) d = 3; (c),(d) d = 5; (e),(f) d = 7; (g),(h) d = 9. The improvement is increasing with distance, with no
improvement at d = 3 and the biggest one at d = 9. Here, all decoders use MIM-enhanced space decoding.

020336-29

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 18. A comparison of the two-tailed time decoder with joint measurements and the two-tailed time decoders with the XZ and ZX
strategies for hexagonal color codes of various distances: (a),(c),(e),(g) logical error rate pL versus physical error rate p; (b),(d),(f),(h)
average number of rounds N versus physical error rate p; (a),(b) d = 3; (c),(d) d = 5; (e),(f) d = 7; (g),(h) d = 9. Here, all decoders
use space decoding with MIM.

020336-30

OPTIMIZATION TOOLS FOR DISTANCE-PRESERVING FLAG. . . PRX QUANTUM 5, 020336 (2024)

[1] P. W. Shor, in 37th Annual Symposium on Foundations
of Computer Science (IEEE, Burlington, VT, USA, 1996),
p. 56.

[2] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum
computation: Error models and thresholds, Proc. R. Soc.
London, Ser. A 454, 365 (1998).

[3] A. Y. Kitaev, Quantum computations: Algorithms and error
correction, Russ. Math. Surv. 52, 1191 (1997).

[4] J. Preskill, Reliable quantum computers, Proc. R. Soc.
London, Ser. A 454, 385 (1998).

[5] D. Aharonov and M. Ben-Or, Fault-tolerant quantum com-
putation with constant error rate, SIAM J. Comput. 38,
1207 (2008).

[6] P. Aliferis, D. Gottesman, and J. Preskill, Quantum accu-
racy threshold for concatenated distance-3 codes, Quantum
Inf. Comput. 6, 97 (2006).

[7] D. Aharonov, A. Kitaev, and J. Preskill, Fault-tolerant quan-
tum computation with long-range correlated noise, Phys.
Rev. Lett. 96, 050504 (2006).

[8] A. M. Steane, Overhead and noise threshold of fault-
tolerant quantum error correction, Phys. Rev. A 68, 042322
(2003).

[9] A. Paetznick and B. W. Reichardt, Fault-tolerant ancilla
preparation and noise threshold lower bounds for the 23-
qubit Golay code, Quantum Inf. Comput. 12, 1034 (2012).

[10] C. Chamberland, T. Jochym-O’Connor, and R. Laflamme,
Overhead analysis of universal concatenated quantum
codes, Phys. Rev. A 95, 022313 (2017).

[11] R. Takagi, T. J. Yoder, and I. L. Chuang, Error rates and
resource overheads of encoded three-qubit gates, Phys. Rev.
A 96, 042302 (2017).

[12] C. Gidney and M. Ekerå, How to factor 2048 bit RSA inte-
gers in 8 hours using 20 million noisy qubits, Quantum 5,
433 (2021).

[13] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T.
Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken, A. Sun-
daram, and A. Vaschillo, Assessing requirements to scale
to practical quantum advantage, ArXiv:2211.07629.

[14] D. Gottesman, Ph.D. thesis, California Institute of Technol-
ogy, 1997, https://doi.org/10.7907/rzr7-dt72.

[15] A. Steane, Multiple-particle interference and quantum error
correction, Proc. R. Soc. London, Ser. A 452, 2551
(1996).

[16] E. Knill, Scalable quantum computing in the presence
of large detected-error rates, Phys. Rev. A 71, 042322
(2005).

[17] Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90, 062320
(2014).

[18] S. Huang and K. R. Brown, Fault-tolerant compass codes,
Phys. Rev. A 101, 042312 (2020).

[19] M. Li, M. Gutiérrez, S. E. David, A. Hernandez, and K.
R. Brown, Fault tolerance with bare ancillary qubits for a
[[7, 1, 3]] code, Phys. Rev. A 96, 032341 (2017).

[20] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,
Subsystem surface codes with three-qubit check operators,
Quantum Inf. Comput. 13, 963 (2013).

[21] M. Li, D. Miller, and K. R. Brown, Direct measurement
of Bacon-Shor code stabilizers, Phys. Rev. A 98, 050301
(2018).

[22] O. Higgott and N. P. Breuckmann, Subsystem codes with
high thresholds by gauge fixing and reduced qubit over-
head, Phys. Rev. X 11, 031039 (2021).

[23] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant
quantum computing with color codes, ArXiv:1108.5738.

[24] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
universality: A comparative study of the overhead of state
distillation and code switching with color codes, PRX
Quantum 2, 020341 (2021).

[25] J. Zhang, Y.-C. Wu, and G.-P. Guo, Facilitating practical
fault-tolerant quantum computing based on color codes,
ArXiv:quant-ph/2309.05222.

[26] D. P. DiVincenzo and P. Aliferis, Effective fault-tolerant
quantum computation with slow measurements, Phys. Rev.
Lett. 98, 020501 (2007).

[27] T. J. Yoder and I. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[28] R. Chao and B. W. Reichardt, Quantum error correction
with only two extra qubits, Phys. Rev. Lett. 121, 050502
(2018).

[29] R. Chao and B. W. Reichardt, Flag fault-tolerant error cor-
rection for any stabilizer code, PRX Quantum 1, 010302
(2020).

[30] C. Chamberland and M. E. Beverland, Flag fault-tolerant
error correction with arbitrary distance codes, Quantum 2,
53 (2018).

[31] T. Tansuwannont, C. Chamberland, and D. Leung, Flag
fault-tolerant error correction, measurement, and quan-
tum computation for cyclic Calderbank-Shor-Steane codes,
Phys. Rev. A 101, 012342 (2020).

[32] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Trian-
gular color codes on trivalent graphs with flag qubits, New
J. Phys. 22, 023019 (2020).

[33] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A. W. Cross, Topological and subsystem codes on low-
degree graphs with flag qubits, Phys. Rev. X 10, 011022
(2020).

[34] T. Tansuwannont and D. Leung, Fault-tolerant quantum
error correction using error weight parities, Phys. Rev. A
104, 042410 (2021).

[35] T. Tansuwannont and D. Leung, Achieving fault tolerance
on capped color codes with few ancillas, PRX Quantum 3,
030322 (2022).

[36] C. Zalka, Threshold estimate for fault tolerant quantum
computation, ArXiv:quant-ph/9612028.

[37] N. Delfosse and B. W. Reichardt, Short Shor-style syn-
drome sequences, ArXiv:2008.05051.

[38] T. Tansuwannont, B. Pato, and K. R. Brown, Adaptive
syndrome measurements for Shor-style error correction,
Quantum 7, 1075 (2023).

[39] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, J. Math. Phys. 43, 4452
(2002).

[40] C. Chamberland, A. Kubica, T. J. Yoder, and G. Zhu, Tri-
angular color codes on trivalent graphs with flag qubits,
ArXiv:1911.00355v3.

[41] H. Bombin and M. A. Martin-Delgado, Topological quan-
tum distillation, Phys. Rev. Lett. 97, 180501 (2006).

[42] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

020336-31

https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1098/rspa.1998.0166
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1137/S0097539799359385
https://doi.org/10.26421/QIC6.2-1
https://doi.org/10.1103/PhysRevLett.96.050504
https://doi.org/10.1103/PhysRevA.68.042322
https://doi.org/10.26421/QIC12.11-12-10
https://doi.org/10.1103/PhysRevA.95.022313
https://doi.org/10.1103/PhysRevA.96.042302
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/2211.07629
https://doi.org/10.7907/rzr7-dt72
https://doi.org/10.1103/PhysRevA.71.042322
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.101.042312
https://doi.org/10.1103/PhysRevA.96.032341
https://doi.org/10.26421/QIC13.11-12-4
https://doi.org/10.1103/PhysRevA.98.050301
https://doi.org/10.1103/PhysRevX.11.031039
https://arxiv.org/abs/1108.5738
https://doi.org/10.1103/PRXQuantum.2.020341
https://arxiv.org/abs/quant-ph/2309.05222
https://doi.org/10.1103/PhysRevLett.98.020501
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.1103/PhysRevLett.121.050502
https://doi.org/10.1103/PRXQuantum.1.010302
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1103/PhysRevA.101.012342
https://doi.org/10.1088/1367-2630/ab68fd
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevA.104.042410
https://doi.org/10.1103/PRXQuantum.3.030322
https://arxiv.org/abs/quant-ph/9612028
https://arxiv.org/abs/2008.05051
https://doi.org/10.22331/q-2023-08-08-1075
https://doi.org/10.1063/1.1499754
https://arxiv.org/abs/1911.00355v3
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevA.54.1098

PATO, TANSUWANNONT, HUANG, and BROWN PRX QUANTUM 5, 020336 (2024)

[43] N. Delfosse and J.-P. Tillich, in 2014 IEEE International
Symposium on Information Theory (IEEE, Honolulu, HI,
USA, 2014), p. 1071.

[44] A. M. Steane, Active stabilization, quantum computation,
and quantum state synthesis, Phys. Rev. Lett. 78, 2252
(1997).

[45] S. Huang and K. R. Brown, Between Shor and Steane: A
unifying construction for measuring error syndromes, Phys.
Rev. Lett. 127, 090505 (2021).

[46] D. Poulin, Optimal and efficient decoding of concatenated
quantum block codes, Phys. Rev. A 74, 052333 (2006).

[47] P. Das, A. Locharla, and C. Jones, in Proceedings of the
27th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ACM, Lausanne, Switzerland, 2022), p. 541.

[48] S. Huang and K. R. Brown, Constructions for measuring
error syndromes in Calderbank-Shor-Steane codes between
Shor and Steane methods, Phys. Rev. A 104, 022429
(2021).

[49] L. Berent, L. Burgholzer, P.-J. H. S. Derks, J. Eisert, and
R. Wille, Decoding quantum color codes with MaxSAT,
ArXiv:2303.14237.

[50] N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advan-
tages of versatile neural-network decoding for topological
codes, Phys. Rev. A 99, 052351 (2019).

[51] N. Delfosse, Decoding color codes by projection onto
surface codes, Phys. Rev. A 89, 012317 (2014).

[52] O. Higgott and C. Gidney, Sparse Blossom: Correcting
a million errors per core second with minimum-weight
matching, ArXiv:2303.15933.

[53] A. M. Tillmann and M. E. Pfetsch, The computational com-
plexity of the restricted isometry property, the nullspace
property, and related concepts in compressed sensing, IEEE
Trans. Inf. Theory 60, 1248 (2013).

[54] D. Tucket, QECSIM is a PYTHON 3 package for simulat-
ing quantum error correction using stabilizer codes (2021),
https://github.com/qecsim/qecsim.

[55] R. E. Korf, in Encyclopedia of Information Systems, edited
by H. Bidgoli (Elsevier, New York, 2003), p. 31.

[56] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[57] S. Bravyi and J. Haah, Magic-state distillation with low
overhead, Phys. Rev. A 86, 052329 (2012).

[58] C. Gidney, STIM: A fast stabilizer circuit simulator,
Quantum 5, 497 (2021).

[59] CIRQ Developers, CIRQ v.1.1.0, Full list of authors:
https://github.com/quantumlib/Cirq, Zenodo (2022), https://
doi.org/10.5281/zenodo.10247207.

[60] P. Baireuther, M. Caio, B. Criger, C. W. Beenakker, and T.
E. O’Brien, Neural network decoder for topological color
codes with circuit level noise, New J. Phys. 21, 013003
(2019).

[61] A. Kubica and N. Delfosse, Efficient color code
decoders in d ≥ 2 dimensions from toric code decoders,
ArXiv:1905.07393.

[62] K. Sahay and B. J. Brown, Decoder for the triangular color
code by matching on a Möbius strip, PRX Quantum 3,
010310 (2022).

[63] See Appendix A of the third arXiv version of Ref. [32].
[64] C. Gidney and C. Jones, New circuits and an open source

decoder for the color code, ArXiv:2312.08813.
[65] N. Delfosse, Hierarchical decoding to reduce hard-

ware requirements for quantum computing, ArXiv:2001.
11427.

[66] S. C. Smith, B. J. Brown, and S. D. Bartlett, Local
predecoder to reduce the bandwidth and latency of
quantum error correction, Phys. Rev. Appl. 19, 034050
(2023).

[67] P. Prabhu and B. W. Reichardt, Fault-tolerant syndrome
extraction and cat state preparation with fewer qubits,
ArXiv:2108.02184.

[68] B. Anker and M. Marvian, Flag gadgets based on classical
codes, ArXiv:2212.1073.

020336-32

https://doi.org/10.1109/ISIT.2014.6874997
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1103/PhysRevLett.127.090505
https://doi.org/10.1103/PhysRevA.74.052333
https://doi.org/10.1145/3503222.3507707
https://doi.org/10.1103/PhysRevA.104.022429
https://arxiv.org/abs/2303.14237
https://doi.org/10.1103/PhysRevA.99.052351
https://doi.org/10.1103/PhysRevA.89.012317
https://arxiv.org/abs/2303.15933
https://doi.org/10.1109/TIT.2013.2290112
https://github.com/qecsim/qecsim
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2021-07-06-497
https://github.com/quantumlib/Cirq
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.1088/1367-2630/aaf29e
https://arxiv.org/abs/1905.07393
https://doi.org/10.1103/PRXQuantum.3.010310
https://arxiv.org/abs/2312.08813
https://arxiv.org/abs/2001.11427
https://doi.org/10.1103/PhysRevApplied.19.034050
https://arxiv.org/abs/2108.02184
https://arxiv.org/abs/2212.1073

	I.. INTRODUCTION
	II.. BACKGROUND
	A.. Noise model and conventional definition of fault-tolerant error correction
	B.. Flag technique and revised definition of fault-tolerant error correction

	III.. OPTIMIZATION TOOLS FOR SPACE DECODING
	A.. Compact lookup table for minimum-weight decoding and fault code
	1.. Reducing the memory footprint
	2.. Constructing the lookup table
	3.. The fault code

	B.. Meet-in-the-middle technique

	IV.. OPTIMIZATION TOOLS FOR TIME DECODING
	A.. Shor time decoder for flag FTQEC
	B.. Adaptive time decoder for flag FTQEC
	1.. Counting faults in correlated and uncorrelated bit histories
	2.. Two-tailed adaptive time decoder
	3.. One-tailed adaptive time decoder

	C.. Extended techniques for CSS codes
	1.. Separate X and Z counting
	2.. Classical processing of the remaining cumulative flag vector

	V.. NUMERICAL RESULTS
	A.. Methods
	B.. The overall effect of optimization tools
	C.. The effect of the meet-in-the-middle technique
	D.. The effect of the adaptive time decoders
	E.. The effect of the separate X- and Z-counting technique

	VI.. DISCUSSION AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: MEMORY-FOOTPRINT SAVINGS IN THE LOOKUP TABLE
	. APPENDIX B: THE EFFECT OF IDLING NOISE
	. APPENDIX C: FIGURES FOR ALL DISTANCESQ20
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

