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We address the problem of exact and approximate transformation of quantum dichotomies in the asymp-
totic regime, i.e., the existence of a quantum channel E mapping ρ⊗n

1 into ρ⊗Rnn
2 with an error εn (measured

by trace distance) and σ⊗n
1 into σ⊗Rnn

2 exactly, for a large number n. We derive second-order asymptotic
expressions for the optimal transformation rate Rn in the small-, moderate-, and large-deviation error
regimes, as well as the zero-error regime, for an arbitrary pair (ρ1, σ1) of initial states and a commuting
pair (ρ2, σ2) of final states. We also prove that for σ1 and σ2 given by thermal Gibbs states, the derived
optimal transformation rates in the first three regimes can be attained by thermal operations. This allows
us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with
fully general initial states that may have coherence between different energy eigenspaces. Thus, we dis-
cuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel
resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size
effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order
asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations
and classical communication.
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I. INTRODUCTION

A. Statistical inference

Statistical inference is a powerful tool that allows us to
explain the inner workings of the physical world by using
statistical models based on data that hold crucial informa-
tion about reality. From scientific discoveries to techno-
logical advancements, statistical inference is the backbone
of many fields that have shaped our world. This process
begins by forming a hypothesis, constructing an appro-
priate model (often represented by a family of probability
distributions), and testing it against observed data. The the-
oretical foundations of statistical inference provide a solid
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framework for many essential fields, such as statistical esti-
mation [1–4], metrology [5–8], hypothesis testing [9–12],
decision theory [13–16], and machine learning [17–20].

One of the central problems of the theory of statis-
tical inference is to determine which statistical models
are more informative, i.e., which probability distributions
more accurately reflect reality [21–25]. Given two proba-
bility distributions, p1 and p2, that describe some property
of the physical system (e.g., the probability of observing
given energy in the spectrum of a hydrogen atom), we say
that p1 is more informative than p2 when the latter can be
obtained from the former by bistochastic processing. One
can also imagine a more general situation in which the
physical system depends on some hidden parameter and
hence it can be described by multiple models, depending
on the value of the hidden parameter (such a parame-
ter can, e.g., specify whether the system is in or out of
thermal equilibrium). One is then interested in quantify-
ing how well a given collection of models describes the
system in question. In the case in which the hidden param-
eter is binary, the system can be described with a pair
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of probability distributions, (p, q). Now, imagine that we
want to decide whether one pair, (p1, q1), provides a bet-
ter statistical model, i.e., is more informative, than another
pair, (p2, q2). We say that a pair of probability distribu-
tions, or a dichotomy, (p1, q1), is more informative than
(p2, q2) when there exists stochastic processing that maps
p1 into p2, while also mapping q1 into q2. When such pro-
cessing exists, then the first dichotomy relatively majorizes
the second [22], a property that can be characterized using
the techniques of hypothesis testing [21].

Since the processes that underlie our physical obser-
vations are fundamentally quantum and given the recent
rapid development of quantum technologies, it is nat-
ural to ask how the techniques of statistical inference
translate into the quantum realm. This is the main focus
of quantum statistical inference [26–30], a theoretical
framework that forms the bedrock of quantum estima-
tion theory [26,31–33], quantum sensing and metrology
[34–39], quantum statistical mechanics [40–42], and quan-
tum computing [43–45]. The main conceptual difference
between the classical and quantum statistical inference is
the fact that statistical models in quantum theory must
be described by density operators rather than probability
distributions. Therefore, the objects to be compared are
quantum dichotomies denoted by (ρ, σ) for density opera-
tors ρ and σ . We say that the dichotomy (ρ1, σ1) is more
informative than (ρ2, σ2) if there exists a quantum chan-
nel that jointly transforms ρ1 into ρ2 and σ1 into σ2. If
such a channel exists, then the first dichotomy precedes
the second one in the so-called Blackwell order [46,47].
Importantly, when the two density operators forming a
quantum dichotomy commute, they can be simultaneously
diagonalized and can thus be treated classically. This is
not the case for noncommuting quantum dichotomies, in
which case the inference task becomes genuinely quantum.
This regime naturally leads to much richer behavior but is
notoriously harder to characterize.

B. Quantum thermodynamics

Perhaps one of the most impressive applications of
statistical inference is in the field of thermodynamics.
Indeed, modern thermodynamics started from the realiza-
tion that statistical models can effectively describe macro-
scopic processes such as flows of heat and its fluctua-
tions [48,49], phase transitions [50,51], or the dynamics
of chemical reactions [40,52]. These processes gener-
ally involve unfathomable numbers of degrees of free-
dom and therefore finding their complete description by
solving the corresponding equations of motion is usually
beyond reach. It is nowadays widely accepted that when
the numbers of particles are large enough, one can use
the techniques of statistical inference to build statistical
models describing the physical system with an accuracy
(or error) that increases (decreases) with the number of

particles [53–55]. In the limit when the system of inter-
est is composed of infinitely many particles (the so-called
thermodynamic limit), the approximation errors vanish and
all relevant macroscopic observables can be fully charac-
terized using only few relevant quantities known as ther-
modynamic potentials, e.g., the (equilibrium) free energy
[40].

The thermodynamic limit is a convenient mathematical
idealization but it cannot be justified in many experimen-
tally and theoretically relevant situations. More specifi-
cally, when one is interested in the evolution of finite-size
systems, fluctuations of thermodynamic variables cannot
be neglected and the behavior of the system depends on
more than a single thermodynamic potential. This regime
is hardly discussed in thermodynamic textbooks, as it
often requires rather advanced mathematical techniques
of asymptotic analysis. Interestingly, this regime is sur-
prisingly rich and allows us to investigate, i.e., the fun-
damental irreversibility of thermodynamic transformations
[56], which cannot be observed when working solely in the
thermodynamic limit.

Some of the techniques developed within the frame-
work of quantum statistical inference have recently been
adapted to study (quantum) thermodynamic processes.
This has led to the realization that, in an idealized model
of thermodynamics known as the resource theory of ther-
mal operations [57–66], a single quantity—the (quantum)
nonequilibrium free energy—completely characterizes the
optimal rates of all thermodynamic transformations [59].
This interpretation, however, is only valid in the thermody-
namic limit of infinitely many copies of quantum systems.
Despite many significant efforts, characterizing thermody-
namic transformations for general quantum states beyond
the thermodynamic limit has remained a central problem
for the resource theory of quantum thermodynamics. This
difficulty can be easily understood once we realize that the
techniques of statistical inference become accurate only
when the numbers of particles are sufficiently large. On
the other hand, it is known that quantum effects gener-
ally become less relevant with the increase in the size of
systems, meaning that either the coherence per particle
vanishes [67] or that the local observables begin to com-
mute approximately when the system is comprised of a
sufficient number of copies [68]. Therefore, a natural ques-
tion arises: Can we use the tools of quantum statistical
inference to gain new insights into the thermodynamics
of genuinely quantum systems beyond the thermodynamic
limit?

C. Summary of results

In this work, we develop a unified mathematical frame-
work that allows us to compare the informativeness of
quantum dichotomies up to second-order asymptotics (i.e.,
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when the transformed dichotomies consist of a large num-
ber of identical and independent systems) and for vari-
ous error regimes. Our results are applicable for arbitrary
input dichotomies and commuting target dichotomies. This
demonstrates, for the first time, how to compare quan-
tum statistical models outside of the idealized limit of
infinite repetitions of the experiments. Second, we apply
our results on quantum dichotomies to study the funda-
mental laws governing thermodynamic transformations for
large but finite numbers of particles. As a consequence,
we characterize thermodynamic transformations of gen-
eral energy-coherent input states outside of the thermo-
dynamic limit. We observe that, in this regime, quantum
systems can be fully characterized using only a few rel-
evant quantities, in complete analogy with the classical
case. Importantly, this shows that the second-order analysis
is an especially interesting regime where statistical infer-
ence remains highly accurate, while the quantum nature of
the thermodynamic process still plays a prominent role. To
demonstrate this, we study, in full generality, the funda-
mental thermodynamic protocols such as work extraction,
as well as quantifying the minimal free-energy dissipa-
tion when transforming quantum systems. We furthermore
discover three novel resonance phenomena, the most inter-
esting of which indicates that quantum coherence can be
exploited to increase the reversibility of state transforma-
tions. Finally, we also discuss how our general results
on quantum dichotomies can be used to bring novel and
unifying insights into other fields, such as the theory of
entanglement or coherence.

The paper is organized as follows. In Sec. II, we summa-
rize the frameworks of quantum dichotomies (Sec. II A),
as well as the resource theories of thermodynamics
(Sec. II B) and entanglement (Sec. II C), and define
some relevant information-theoretic notions used through-
out the paper (Sec. II D). In Sec. III, we discuss our
main results. In particular, after presenting an auxiliary
lemma on sesquinormal distributions (Sec. III A), we out-
line our main technical results on quantum dichotomies
(Sec. III B), quantum thermodynamics (Sec. III C), and
entanglement (Sec. III D). In Sec. IV, we discuss some of
the applications of our results to the thermodynamic and
entanglement scenarios. In particular, we show how our
results can be used to determine optimal thermodynamic
protocols with coherent inputs (Sec. IV B), we investigate
new types of resonance phenomena (Sec. IV C), and we
briefly elaborate on the relevance of our results for entan-
glement theory (Sec. IV D). In Sec. V, we give proofs for
the asymptotic results that we have described in previous
sections. Specifically, we review and extend the relation-
ship between quantum dichotomies and hypothesis testing
(Sec. V A), present some of the results on hypothesis test-
ing (Sec. V B), and prove the asymptotic transformation
rates in different error regimes (Sec. V C). Finally, we
finish with Sec. VI, which gives a short outlook on the

potential further applications and extensions on our results.
Technical derivations not required to understand the results
are given in the Appendices A–I.

II. FRAMEWORK

We will denote by ≥ the Löwner partial order; i.e., for
two Hermitian matrices A and B, the relation A ≥ B means
that A− B is positive semidefinite. To measure distance
between two density matrices, ρ and σ , we will use trace
distance T(ρ, σ) := 1

2‖ρ − σ‖tr, where ‖X ‖tr := Tr|X | is
the Schatten-1 norm. As a slight abuse of notation, we
will also interchangeably refer to the total variation dis-
tance on classical distributions, T(p , q) := 1

2

∑
i |pi − qi|,

as the trace distance. The fidelity between ρ and σ is given
by F(ρ, σ) := ∥

∥√ρ√σ∥
∥2

tr. All states that we will consider
are finite dimensional and we will denote the local dimen-
sion by d when relevant. We take exp(·) and log(·) to be in
an arbitrary but compatible base and use ln(·) to denote the
natural logarithm.

A. Quantum dichotomies

For two quantum dichotomies, (ρ1, σ1) and (ρ2, σ2), we
will be interested in whether there exists a completely pos-
itive trace-preserving map E such that ρ2 = E(ρ1) and
σ2 = E(σ1). If such a channel exists, then we say that
the first dichotomy precedes the second one in the Black-
well order [21], which we denote by (ρ1, σ1) � (ρ2, σ2)

[69]. We further consider the concept of an approximate
Blackwell order by requiring that the two states are only
reproduced approximately by the channel. That is, we
write (ρ1, σ1) �(ερ ,εσ ) (ρ2, σ2) if and only if there exists a
quantum channel E such that

T(E(ρ1), ρ2) ≤ ερ and T(E(σ1), σ2) ≤ εσ . (1)

It is known that for commuting dichotomies, [ρ1, σ1] =
[ρ2, σ2] = 0, the problem of determining a suitable channel
reduces to the classical problem of comparing probability
distributions. It has been observed in Ref. [70] that in this
case, by employing Blackwell’s equivalence theorem [21],
one can show that (ρ1, σ1) �(ερ ,εσ ) (ρ2, σ2) if and only if

βx(ρ1‖σ1) ≤ βx−ερ (ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1). (2)

Here, βx(ρ‖σ) is the solution of the semidefinite optimiza-
tion problem

min
Q

Tr(σQ), (3a)

subject to 0 ≤ Q ≤ 1, (3b)

Tr(ρQ) ≥ 1− x. (3c)

The two quantities, x and βx(ρ‖γ ), can be interpreted as
two errors appearing in a binary hypothesis-testing prob-
lem. More specifically, βx(ρ‖σ) is the minimum type-II
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error given that the type-I error is upper bounded by x
for a binary hypothesis testing with a null hypothesis ρ
and an alternative hypothesis σ [26]. In the fully quantum
case, i.e., when [ρ1, σ1] 
= 0 and [ρ2, σ2] 
= 0, the con-
ditions specified by Eq. (2) (and referred to as relative
majorization preorder in Ref. [70]) no longer characterize
the Blackwell order [30,71–73], beyond the simplest case
of two-dimensional density matrices [27]. For attempts to
overcome this limitation, see, e.g., Refs. [30,74,75].

B. Resource theory of thermodynamics

In the resource-theoretic approach to thermodynam-
ics, one focuses on a system S with a Hamiltonian H =
∑d

i=1 Ei|i〉〈i| and a heat bath B at some fixed inverse tem-
perature β with an arbitrary Hamiltonian HB [57,58]. The
heat bath is always assumed to be prepared in a thermal
Gibbs state,

γB = e−βHB

ZB
, ZB = Tr

(
e−βHB

)
. (4)

The interaction of the system with the heat bath is mediated
by a unitary U that conserves the total energy, i.e., obeys
the additive conservation law [U, H ⊗ 1B + 1⊗ HB] = 0.
The effective map E that is obtained by evolving the system
and the heat bath using unitary U and discarding part of the
joint system is called a thermal operation (TO) and can be
formally written as

E(ρ) = TrB′
[
U (ρ ⊗ γB)U†] , (5)

where the partial trace can be performed over any sub-
system B′ of the joint system. Note that since we allow
for B′ 
= B, the Hamiltonian of the final system may differ
from H and so we will use γ1 and γ2 to denote the Gibbs
thermal states of the initial and final systems. We say that
ρ1

ε−→
TO

ρ2 when there exists a thermal operation E such that

E(ρ1) = ρ̃2, with ρ̃2 being a final state that is ε-close to the
target state ρ2 in trace distance, i.e., T(ρ̃2, ρ2) = ε.

Characterizing the set of transitions achievable via ther-
mal operations in full generality remains an open prob-
lem. In the semiclassical case, i.e., when ρ1 and ρ2 are
block diagonal in the energy eigenbasis (or, equivalently,
when [ρ1, γ1] = [ρ2, γ2] = 0), the existence of a thermal
operation transforming ρ1 into ρ2 while changing the
Hamiltonian from H1 to H2 is equivalent to the exis-
tence of an arbitrary quantum channel mapping a quantum
dichotomy (ρ1, γ1) into (ρ2, γ2) [58,62]. As a consequence,
Blackwell’s theorem in this case fully characterizes the
set of states achievable under thermal operations [58].
More specifically, as observed in Ref. [70], for energy-
incoherent (block-diagonal) states ρ1 and ρ2, we have

ρ1
ε−→

TO
ρ2 if and only if

βx(ρ1‖γ1) ≤ βx−ε(ρ2‖γ2) for all x ∈ (ε, 1). (6)

The above condition is just a special case of Eq. (2) and
thus we see that the problems of transforming quantum
dichotomies and the thermodynamic state transformation
are very closely related.

C. Resource theory of entanglement

The resource theory of entanglement investigates the
scenario in which a bipartite system is distributed between
two spatially separated agents [76]. The agents can act
locally on their respective parts and can exchange classical
information. The resulting set of free operations is called
local operations and classical communication (LOCC).
Free states of this theory, i.e., states that can be pre-
pared using only LOCC, are given by all separable states.
While a complete characterization of LOCC transforma-
tions for general mixed states remains an open problem,
for pure states there exists a relatively simple characteriza-
tion known as the Nielsen’s theorem [77,78]. The theorem
states that a pure bipartite state ψ1 with Schmidt coef-
ficients p1 can be converted into state ψ2 with Schmidt
coefficients p2 by means of LOCC if and only if there exists
a bistochastic matrix mapping p2 to p1.

It has then been observed in Ref. [70] that Nielsen’s
theorem can be formulated in the language of quantum
dichotomies when the Schmidt vectors of input and output
states, p1 and p2, have equal dimension. More specifi-
cally, by denoting with ρi diagonal matrices with p i on
the diagonals, the existence of a transformation that (1)
maps ρ1 to ρ2 with a transformation error ε and (2)maps a
maximally mixed state into itself, is equivalent to the exis-
tence of a bistochastic matrix mapping p2 into p1 with
an error ε. Now, in Ref. [56] (see the generalization of
Lemma 12 in Appendix D therein), it has been shown that
the latter is equivalent to the existence of a bistochastic
matrix mapping a distribution ε-close to p2 into p1. This
means that an LOCC map transforming ψ1 into ψ2 with
a transformation error ε exists if and only if a quantum
dichotomy (ρ2,1d/d) can be approximately transformed
into (ρ1,1d/d).

To deal with the case of systems with different lengths
of Schmidt vectors, d1 (for input) and d2 (for output), one
can extend the input system with a pure bipartite separable
state with local dimensions d2 and the output system with
an analogous state with local dimensions d1. Then, there
exists an LOCC map transforming general pure bipartite
state ψ1 into ψ ′2 the Schmidt vector p ′

2 of which is ε away
in total variation distance from the Schmidt vector p2 of
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ψ2, if and only if

(

ρ2 ⊗ |0〉〈0|d1 ,
1d1d2

d1d2

)

�(ε,0)

(

ρ1 ⊗ |0〉〈0|d2 ,
1d1d2

d1d2

)

.

(7)

Since states appearing in these dichotomies commute,
Blackwell’s theorem fully characterizes the states achiev-
able under LOCC. More specifically, an LOCC transfor-
mationψ1

ε−−−→
LOCC

ψ2 exists if and only for all x ∈ (ε, 1) one

has

d2βx

(

ρ2

∥
∥
∥
∥
1d2

d2

)

≤ d1βx−ε

(

ρ1

∥
∥
∥
∥
1d1

d1

)

. (8)

Of course, the above conditions are again a special case of
Eq. (2).

D. Information-theoretic and statistical notions

To formulate our results, we will need the follow-
ing notions. First, the von Neumann entropy and entropy
variance are defined as

S(ρ) := −Tr (ρ log ρ) , (9a)

V(ρ) := Tr
(
ρ(log ρ)2

)− S(ρ)2, (9b)

and their relative cousins, the relative entropy [79] and the
relative entropy variance [80,81], as

D(ρ‖σ) := (Trρ (log ρ − log σ)) , (10a)

V(ρ‖σ) := Tr
(
ρ (log ρ − log σ)2

)− D(ρ‖σ)2. (10b)

Note that for σ given by the thermal Gibbs state γ , the
above quantities can be interpreted as nonequilibrium free
energy [59] and free-energy fluctuations [56,82], respec-
tively. We also define two variants of the Rényi relative
entropy [83], namely, the Petz relative entropy Dα [84] and
the minimal relative entropy qDα [85–88], which is

Dα(ρ‖σ) := log Tr
(
ρασ 1−α)

α − 1
, (11a)

qDα(ρ‖σ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log Tr
((√

ρσ
1−α
α
√
ρ
)α)

α − 1
, α ≥ 1

2
,

log Tr
((√

σρ
α

1−α
√
σ

)1−α)

α − 1
, α ≤ 1

2
.

(11b)

Note that if the states are commuting, [ρ, σ ] = 0, then both
relative entropies are identical and in this case we shall

denote this without adornment as Dα . Finally, for classi-
cal probability distributions, we will also use the Shannon
entropy and the related entropy variance,

H(p) := −
∑

i

pi log pi, (12a)

V(p) :=
∑

i

pi (log pi − H(p))2 , (12b)

as well as the Rényi entropies,

Hα(p) = 1
1− α log

(
∑

i

pαi

)

. (13)

The probability density function and the cumulative dis-
tribution function of a normal distribution with meanμ and
variance ν will be denoted by φμ,ν(x) and�μ,ν(x), whereas
their standardized versions (with μ = 0 and ν = 1) by
φ(x) and �(x). We also introduce the function

S(δ)ν (μ) := inf
A≥�

δ(A′,φμ,ν), (14)

where ν ∈ R
+ is a parameter, μ ∈ R, δ is a statistical

distance, and the infimum is taken over cumulative distri-
bution functions A (with probability density function A′),
which are pointwise greater than �. As we shall see in
Lemma 1, this function is a cumulative distribution func-
tion if δ is chosen to be the trace distance. The introduction
of S(δ)ν is inspired by Ref. [89], where the authors have
investigated its special case, called the Rayleigh-normal
distribution, with δ given by the infidelity distance. The
name of the function comes from the fact that, as ν is var-
ied, it interpolates between the normal and the Rayleigh
distribution. In this paper, we will mainly focus on another
special case, with δ given by the trace distance, and will
denote the corresponding cumulative distribution function
simply as

Sν(μ) := 1
2

inf
A≥�

∫

R

|A′(x)− φμ,ν(x)|dx. (15)

We will refer to the above as the sesquinormal distribution,
since we will prove that it interpolates between the normal
and half-normal distributions for varying ν.

III. RESULTS

The main technical result of this paper consists of a
unified approach for capturing the problem of optimal
transformations of quantum dichotomies in the small-,
moderate-, large-, and extreme-deviation regimes. It not
only provides a much simpler and clearer derivation than
the previously known results employing infidelity to mea-
sure transformation error [56,89,90] but it also extends the
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formalism to the case of noncommuting input states. This,
in turn, leads to the main conceptual result of the paper:
the generalization of the second-order asymptotic anal-
ysis of thermodynamic state interconversion to the case
of general (energy-coherent) input states. Before formally
stating all these results, however, we first present auxil-
iary results that concern the properties of the sesquinormal
distribution, which may be of independent interest.

A. Sesquinormal distribution

The sesquinormal distribution has been defined implic-
itly via an optimization in Eq. (15). We start by giv-
ing an explicitly closed-form solution of this optimiza-
tion problem and specify some relevant properties of the
sesquinormal distribution.

Lemma 1 (Sesquinormal distribution). The function Sν
is a cumulative distribution function (cdf) for any ν ∈
[0,∞). Moreover, for ν /∈ {0, 1,∞} the cdf has the closed
form

Sν(μ) = �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ−
√
μ2 + (ν − 1) ln ν
1− ν

)

(16)

and for 0 < ν <∞, the inverse cdf can be expressed as

S−1
ν (ε) = min

x∈(ε,1)

√
ν�−1(x)−�−1(x − ε). (17)

The extreme cases ν = 0 and ν →∞ reduce to the normal
distribution

S0(μ) = lim
ν→∞ Sν(

√
νμ) = �(μ) (18)

and the ν = 1 reduces to the half-normal distribution

S1(μ) = max{2�(μ/2)− 1, 0}. (19)

Finally, the family of sesquinormal distributions has a
duality under reciprocating the parameter

Sν(μ) = S1/ν(μ/
√
ν) or S−1

ν (ε) =
√
νS−1

1/ν(ε). (20)

Proof. See Appendix A. �

B. Noncommuting quantum dichotomies

We now turn to our central results on the second-
order asymptotic analyzes of transformation rates between

quantum dichotomies in all error regimes. Specifically, let
R∗n(εn) denote the largest rate Rn such that

(
ρ⊗n

1 , σ⊗n
1

) �(εn,0)

(
ρ
⊗Rnn
2 , σ⊗Rnn

2

)
. (21)

Theorems 2–7 will all concern the asymptotic scaling of
R∗n(εn), split by the scaling of the error εn measured by trace
distance. We note that one could also consider a two-sided
error variant of this problem with a pair of error sequences,
ε
(ρ)
n and ε(σ)n . We shall neglect this more general problem in

the body of this paper but cover the extension of our results
to this regime in Appendix C. We do this partially because
these two-sided results are not applicable to the resource-
theoretic problems on which we are mostly focused and
partially because this two-sided problem is in fact no more
rich, with the optimal transformation simply diverging to
infinity in many regimes.

Before we move on to the second-order analysis, we
start with the previously studied [59,91–94] first-order
case, which states that the asymptotic transformation rate
is controlled by the relative entropy.

Theorem 1 (First-order rate). For constant ε ∈ (0, 1)
and [ρ2, σ2] = 0, the optimal rate converges:

lim
n→∞R∗n(ε) =

D(ρ1‖σ1)

D(ρ2‖σ2)
. (22)

Furthermore, if we consider more general target dichot-
omies, [ρ2, σ2] 
= 0, then we still have the upper bound:

lim sup
n→∞

R∗n(ε) ≤
D(ρ1‖σ1)

D(ρ2‖σ2)
. (23)

Proof. See Sec. V C. �

Second-order asymptotics form refinements of Theorem
1 that quantify the rate of convergence to this first-order
behavior. A diagram of the different second-order regimes
is presented in Fig. 1. Below, we will state all of our
second-order theorems, with their proofs left to Sec. V.
This analysis is divided up based on the scaling of the error.

The first regime that we consider is that of small devi-
ations, in which the errors considered are constants other
than 0 or 1. In this regime, we find that the rate approaches
the first-order rate as O(1/

√
n), quantified by the relative

entropy variance V(·‖·) as well as the sesquinormal distri-
bution S1/ξ , where ξ is the reversibility parameter [56,89],
given by

ξ := V(ρ1‖σ1)

D(ρ1‖σ1)

/
V(ρ2‖σ2)

D(ρ2‖σ2)
. (24)

Given these, the scaling of the rate in the small-deviation
regime is as follows.
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(ErorrRemige εn) Rate (Rn) Tight?

Zero error Theorem 6 Zero Z No

Large< Theorem 4 Approaching 0 exponentially
[
Z, C

)
No

Moderate< Theorem 3 Approaching 0 subexponentially C − ω(1/
√

n) ∩ o(1) Yes

Small< Theorem 2 Constant, < 0.5 C − Θ(1/
√

n) Yes

Small> Theorem 2 Constant, > 0.5 C + Θ(1/
√

n) Yes

Moderate> Theorem 3 Approaching 1 subexponentially C + ω(1/
√

n) ∩ o(1) Yes

Large> Theorem 5 Approaching 1 exponentialy C, ∞)
Yes

Extreme Theorem 7 Approaching 1 superexponentially ∞ Yes

Rate R

E
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ε

CZ

Zero

error Large<
Moderate<

Small<

Small>

Moderate>
Large> Extreme

0

1

FIG. 1. A summary of our main results. The asymptotics of the transformation rates between quantum dichotomies
(ρ1, σ1)→ (ρ2, σ2) with an error of at most εn allowed on the first state. The table summarizes the different error regimes, i.e., the
different manners in which the error εn and rate Rn can scale. In the above, the first-order rate is C := D(ρ1‖σ1)/D(ρ2‖σ2) and the
zero-error rate is Z. For each result, we just have upper bounds for general target dichotomies but for commuting targets, [ρ2, σ2] = 0,
we have upper and lower bounds. The final column denotes whether these bounds coincide, which they do in all but one regime.

Theorem 2 (Small-deviation rate). Let �/� denote
(in)equality up to o(1/

√
n). For constant ε ∈ (0, 1) and for

[ρ2, σ2] = 0, the optimal rate is

R∗n(ε) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (25)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bound

R∗n(ε) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (26)

Proof. See Sec. V C 1. �

The second regime that we consider is that of moderate
deviations, in which errors are tending toward either 0 or
1, but only doing so subexponentially. This causes the rate

to approach the first-order rate more slowly than O(1/
√

n);
specifically, as follows.

Theorem 3 (Moderate-deviation rate). Consider an a ∈
(0, 1) and let � / � denote (in)equality up to o

(√
na−1

)
.

Let εn := exp(−λna) for some λ > 0. For [ρ2, σ2] = 0, the
optimal rate is

R∗n(εn) � D(ρ1‖σ1)− |1− ξ−1/2|
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
,

(27a)

R∗n(1− εn) �
D(ρ1‖σ1)+

[
1+ ξ−1/2

] √
2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
.

(27b)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bounds
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R∗n(εn) � D(ρ1‖σ1)− |1− ξ−1/2|
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
,

(28a)

R∗n(1− εn) � D(ρ1‖σ1)+
[
1+ ξ−1/2

] √
2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
.

(28b)

Proof. See Sec. V C 3. �

The third is the large-deviations regime, in which the
error is either exponentially approaching 0 (large devi-
ation, low error) or exponentially approaching 1 (large
deviation, high error). In this case, the error is small or
large enough so that the asymptotic rate shifts away from
the first-order rate and now depends not just on the rel-
ative entropy but also on the Rényi relative entropies;
specifically, as follows.

Theorem 4 (Large-deviation rate, low error). For any
error of the form εn = exp(−λn) with constant λ > 0, if
[ρ2, σ2] = 0, then the optimal rate is lower bounded by

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
qr(μ). (29)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then the optimal rate is upper bounded by

lim sup
n→∞

R∗n(εn) ≤ min
−λ≤μ≤λ

r(μ). (30)

In the above, r and qr are defined in terms of Rényi relative
entropies in Sec. V C 2 and they coincide when [ρ1, σ1] =
[ρ2, σ2] = 0.

Proof. See Sec. V C 2. �

Theorem 5 (Large-deviation rate, high error). For any
error of the form εn = 1− exp(−λn) with constant λ > 0,
if [ρ2, σ2] = 0, then the optimal rate is

lim
n→∞R∗n(εn) = inf

t1>1
0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
.

(31)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bound

lim sup
n→∞

R∗n(εn) ≤ inf
t1>1

0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
.

(32)

Proof. See Sec. V C 2. �

Finally, the fourth regime we consider is that of extreme
deviations, i.e., with superexponentially decaying errors.
The first is the low-error case of errors superexponentially
approaching zero, including exactly zero error. In this case,
we obtain an expression for the asymptotic rate that is
quite similar to the first-order expression but involves a
minimization over the minimal relative entropies instead
of just the relative entropy. It gives an additional oper-
ational interpretation of the minimal Rényi entropy [95]
and it is a noncommutative generalization of Refs. [96,97].
Specifically, the zero-error rate is as follows.

Theorem 6 (Zero-error rate). For [ρ2, σ2] = 0 the opti-
mal zero-error rate is lower bounded,

lim inf
n→∞ R∗n(0) ≥ max

{

inf
α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
, inf
α∈R

→
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)

}

,

(33)

where the divergences
←
Dα and

→
Dα are defined in Eqs. (81a)

and (81b). More generally, if [ρ2, σ2] 
= 0, then the optimal
transformation rate for all n is upper bounded:

R∗n(0) ≤ min
α∈R

qDα(ρ1‖σ1)

qDα(ρ2‖σ2)
. (34)

Proof. See Sec. V C 4. �

Lastly, we are left with the final case of errors exponen-
tially approaching 1, wherein the rate diverges to infinity.

Theorem 7 (Extremely high error rate). For [ρ2, σ2] =
0, if the error is allowed to be superexponentially close to
1, then the optimal rate is unbounded:

lim
n→∞R∗n

(
1− exp(−ω(n))) = ∞. (35)

Proof. See Sec. V C 4. �

Given these theorems, we also make two conjectures.
First, we note that the form of the small-deviation result
(Theorem 2) is identical to the infidelity-based results in
Refs. [56,89]. Our first conjecture is that this extends more
generally to other distance measures.

Conjecture 1. For any fixed and nonmaximal trans-
formation error ε > 0 measured by a (quantum) sta-
tistical distance δ (perhaps subject to some additional
“niceness” constraints), the optimal rate for transform-
ing quantum dichotomies with commuting target states
in the small-deviation regime is given by Eq. (25) with
the sesquinormal distribution, S1/ξ , replaced by the gen-
eralized Rayleigh-normal distributions S(δ)1/ξ , defined in
Eq. (14).
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Second, all of the achievability bounds rely on con-
nections to hypothesis testing that only apply for com-
muting targets [ρ2, σ2] = 0, while all of our optimality
bounds apply for general states. We conjecture that there
might exist alternative protocols capable of saturating
these bounds.

Conjecture 2. All of the optimality bounds in Theo-
rems 2–7 are achievable, for general states, [ρ1, σ1] 
= 0
and [ρ2, σ2] 
= 0.

C. Coherent quantum thermodynamics

Our technical results find applications in quantum ther-
modynamics because of the following result, the proof of
which can be found in Appendix D.

Theorem 8. For σ1 = γ1 and σ2 = γ2, both being ther-
mal Gibbs states, the optimal transformation rates, cap-
tured by Theorems 2, 3, 5, and 7, can be attained by thermal
operations. Moreover, for energy-incoherent input and out-
put states, ρ1 and ρ2, this extends to all error regimes, i.e.,
Theorems 2–7 characterize optimal transformation rates
under thermal operations.

Thus, Theorems 2, 3, 5, and 7 describe optimal rates R∗n
for state transformations under thermal operations between
n copies of generic quantum states ρ1 and R∗nn copies of
energy-incoherent states ρ2, in most error regimes. This
is not true for Theorems 4 and 6 since, as we shall see
in Sec. V C, these proofs explicitly leverage nonthermal
operations when dealing with energy coherent states. Nev-
ertheless, in Appendix D, we show how we can extract
not-necessarily-tight bounds on the achievable rates under
thermal operations in these regimes.

Moreover, one can relatively straightforwardly gener-
alize these results to obtain work-assisted optimal trans-
formation rates. In this case, work is either invested to
increase the rate of transformation or extracted for the
price of decreasing the rate. More precisely, consider an
ancillary battery system W with energy levels |0〉W and
|1〉W separated by an energy gap w [58–60,98,99]. Then,
we say that there exists a w-assisted thermal operation
transforming ρ1 into a state ε-close to ρ2 if

ρ1 ⊗ |0〉〈0|W ε−→
TO

ρ2 ⊗ |1〉〈1|W, (36)

where w > 0 corresponds to work extraction, whereas w <

0 means work investment. As we show in Appendix E,
one can modify the proof of Theorem 2 and arrive at
the following result (note that analogous modifications of
Theorems 3 and 4 are also possible).

Theorem 9 (Optimal work-assisted rate in the smal-
l-deviation regime). Consider a battery system with an

energy gap

w = w1n+ w2
√

n, (37)

with constant w1 and w2. Then, for any fixed transforma-
tion error ε ∈ (0, 1), the optimal rate R∗n for w-assisted ther-
modynamic transformation between n copies of a generic
state ρ1 and R∗nn copies of an energy-incoherent state ρ2 is
given by

R∗n(ε) �
D(ρ1‖γ1)− βw1

D(ρ2‖γ2)
+
√

V(ρ1‖γ1)S−1
1/ξ ′(ε)− βw2√

nD(ρ2‖γ2)
,

(38)

where

ξ ′ := V(ρ1‖γ1)

D(ρ1‖γ1)− βw1

/
V(ρ2‖γ2)

D(ρ2‖γ2)
(39)

and � denotes an equality up to terms of order o(1/
√

n).
Moreover, when ρ2 = γ2, any positive transformation rate
R∗n is possible as long as

βw
n

� D(ρ1‖γ1)+
√

V(ρ1‖γ1)

n
�−1(ε). (40)

D. Entanglement transformations

Due to the relation between transforming commut-
ing quantum dichotomies and LOCC transformations dis-
cussed in Sec. II C, our technical results also find applica-
tions in the resource theory of entanglement.

Theorem 10. For pure bipartite states ψ1 and ψ2 char-
acterized by Schmidt vectors p1 and p2, the optimal trans-
formation rates between ψ1 and ψ2 under LOCC are
captured by Theorems 2–7 with the following substitutions
(including the substitutions in the expression for ξ ):

D(ρi‖σi)→ H(pi), (41a)

V(ρi‖σi)→ V(pi), (41b)

Dt(ρi‖σi), qDt(ρi‖σi)→ Ht(pi). (41c)

The details of the necessary manipulations to arrive at
the above result can be found in Appendix F.

IV. DISCUSSION AND APPLICATIONS

A. Phenomenological model

We start the discussion by giving an intuitive but com-
pletely nonrigorous “derivation” of the thermodynamic
small-deviation rate (rates in other regimes can potentially
also be “derived” in a similar fashion). It is based on
three assumptions. First, assume that the thermodynamic

020335-9



PATRYK LIPKA-BARTOSIK et al. PRX QUANTUM 5, 020335 (2024)

resource content of a given state ρ is a random variable
log ρ − log γ (a difference between log-likelihoods for the
state and the thermal state), so that its mean and vari-
ance are given by the nonequilibrium free energy D(ρ‖γ )
and its fluctuations V(ρ‖γ ). Second, the distribution of
the thermodynamic resource content of ρ⊗n for large n is
a Gaussian with mean nD(ρ‖γ ) and variance nV(ρ‖γ ).
And third, assume that every transformation that does not
increase the resource content, even probabilistically, is
allowed.

Using these three assumptions, let us now find the small-
est transformation error ε for which a thermodynamic
transformation with a rate R∗n from the initial state ρ⊗n

1 to
the target state ρ⊗R∗nn

2 is possible. Cumulative distribution
functions of the resource content of the initial and target
states are given by �μ1,ν1 and �μ2,ν2 , where

μ1 = nD(ρ1‖γ ), μ2 = R∗nnD(ρ2‖γ ), (42a)

ν1 = nV(ρ1‖γ ), ν2 = R∗nnV(ρ2‖γ ). (42b)

Let us also denote the cumulative distribution of the
resource content of the final state by A. Then, the con-
dition for not increasing the resource content is given by
A ≥ �μ1,ν1 (i.e., there is always more probability mass
with lower resource content for the final state as compared
to the initial state). The minimal transformation error is
then given by

ε = inf
A≥�μ1,ν1

δ(A,�μ2,ν2) = inf
A≥�

δ(A,�μ,ν) = Sν(μ),

(43)

where

μ = μ2 − μ1√
ν1

, ν = ν2

ν1
. (44)

Finally, by applying S−1
ν to both sides of Eq. (43), using

the expressions for μ and ν, and keeping only the lead-
ing terms in n, we end up recovering the thermodynamic
small-deviation rate:

R∗n(ε) =
D(ρ1‖γ )+

√
V(ρ1‖γ )/n× S−1

1/ξ (ε)

D(ρ2‖γ ) , (45)

where ξ is given by Eq. (24) with σ1 = σ2 = γ .

B. Optimal thermodynamic protocols with coherent
inputs

The obtained results can be straightforwardly applied
to study the optimal performance of thermodynamic pro-
tocols, where the processed systems may be initially pre-
pared in coherent superpositions of different energy eigen-
states. In what follows, we will briefly discuss how this

can be done and what it means for work extraction, infor-
mation erasure, and thermodynamically free encoding of
information. We note that in all these protocols, the final
states are energy incoherent and thus our results allow one
to study them in full generality.

In the work-extraction protocol, one uses a thermal bath
and n copies of a system in a state ρ to excite the battery
system W over the energy gap w. The aim is to find the
largest possible w as a function of the allowed transforma-
tion error ε. In other words, one wants to find the largest
w for which the following thermodynamic transformation
exists:

ρ⊗n ⊗ |0〉〈0|W ε−→
TO
|1〉〈1|W. (46)

This problem can be directly addressed by employing
Theorem 9 with the target state of the system being
thermal, which results in

w
n
≤ 1
β

(

D(ρ‖γ )+
√

V(ρ‖γ )
n

�−1(ε)

)

. (47)

The above yields the optimal amount of ε-deterministic
work that can be extracted per one copy of the processed
system and generalizes the previous small-deviation
results on work extraction from incoherent states [56] and
pure states [82] to general quantum states.

In the information-erasure protocol, one aims at using
a thermal bath and the deexcitation of a battery system W
with minimal possible energy gap |w| to reset n copies of
a system with a trivial Hamiltonian and in a state ρ into a
pure state |0〉〈0|. This corresponds to finding the smallest
|w| (note that since we deexcite the battery, we have w <

0) for which the following thermodynamic transformation
exists:

ρ⊗n ⊗ |0〉〈0|W ε−→
TO
|0〉〈0|⊗n ⊗ |1〉〈1|W. (48)

Employing Theorem 9 and solving for the w, which allows
us to achieve rate 1, we arrive at the thermodynamic cost
of information erasure per one copy of the system:

|w|
n
� 1
β

(

S(ρ)−
√

V(ρ)
n
�−1(ε)

)

, (49)

which again generalizes the previously known results for
erasing incoherent states.

Finally, the problem of thermodynamically free encod-
ing of information, introduced in Ref. [100] and studied
for incoherent and pure states in Ref. [82], is stated as
follows. A sender is given n copies of a quantum system
ρ that acts as an information carrier and wants to encode
one of M messages into these systems without using any
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thermodynamic resources, hence employing only thermal
operations. The aim is to find the maximal number M
of messages that can be encoded in a way that allows
for decoding them with error probability at most ε. In
Ref. [100], it has been shown that, in the small-deviation
regime, M is upper bounded by

log M (ρ⊗n, ε)
n

� D(ρ‖γ )+
√

V(ρ‖γ )
n

�−1(ε) (50)

and in Ref. [82], it has been proved that the above bound
can be achieved for states ρ that are either energy incoher-
ent or pure. Using the results that we obtained have here,
this can be generalized to arbitrary quantum states ρ in
the following way. Consider the following thermodynamic
transformation:

ρ⊗n ε−→
TO
|0〉〈0|⊗Rn

A , (51)

where the final system A consists of Rn two-level subsys-
tems with trivial Hamiltonians. Note that since all energy
levels of the final systems are degenerate, the sender can
map the state |0〉〈0|⊗Rn

A to any of 2Rn basis states using
thermal operations. Thus, the sender can encode M = 2Rn

messages that, moreover, can be decoded with probability
of error ε simply through a computational-basis measure-
ment. It is then straightforward to employ Theorems 2 and
8 to obtain Eq. (50) with � replaced by �.

C. Resonance phenomena

One of the fundamental observations in the resource the-
ory of thermodynamics is that all state transformations
become reversible in the asymptotic limit [59]. Indeed,
Theorem 1 clearly states that for n→∞, the conver-
sion rates R and R′ for transformations ρ⊗n

1 → ρ⊗Rn
2 and

ρ⊗n
2 → ρ⊗R′n

1 become inversely proportional to each other,
R = 1/R′. This is generally no longer true when we move
outside of the idealized asymptotic scenario with n→∞.
For example, in the thermodynamic protocols analyzed
in Sec. IV B, we have seen the deteriorating effect of
finite-size transformations, i.e., due to the finite number
of thermodynamically processed systems, the transforma-
tions are irreversible and lead to free-energy dissipation
that is related to the free-energy fluctuations measured
by V(ρ‖γ ) [82]. As a result, the performance of small
quantum thermal machines may be seriously limited. Sim-
ilar behavior can be observed in the resource theory of
pure-state entanglement or coherence.

Interestingly, it has recently been found that these
finite-size effects can be significantly mitigated by care-
fully engineering the resource-conversion process [101].
More specifically, by appropriately tuning the initial and
final states, so that the reversibility parameter ξ = 1, the
second-order correction to the optimal rate may vanish in

the limit of zero transformation error. Thus, up to higher-
order terms, reversibility is restored. This intriguing phe-
nomenon, termed resource resonance, was first predicted
in Ref. [89] for pure-state entanglement transformations
and then generalized to thermodynamic transformations
between energy-incoherent states in Ref. [101]. The results
that we have presented in this paper allow us to extend the
resource resonance phenomenon in three novel ways that
we will now discuss.

1. Coherent resonance

For simplicity, let us focus on thermodynamic trans-
formations between n copies of a two-level system in a
general state ρ1 and Rn copies of a two-level system in
an energy-incoherent state ρ2, assuming that the thermal
Gibbs state γ is the same for the initial and final systems.
Using Theorem 2 together with Theorem 8, we obtain
that the optimal transformation error ε for the asymptotic
rate R = D(ρ1‖γ )/D(ρ2‖γ ) (i.e., avoiding dissipation) is
given by

ε = S1/ξ (0), (52)

which vanishes for ξ = 1 and increases from 0 to 1/2
for ξ > 1 and ξ < 1. Without loss of generality, let us
parametrize the initial and final states in the energy eigen-
basis by

ρ1(x) =
(

p x
√

p(1− p)
x
√

p(1− p) 1− p

)

,

ρ2 =
(

q 0
0 1− q

)

, (53)

with p , q, x ∈ [0, 1]. Then, for a fixed p and q (and given
γ ), we can consider a family of initial states parametrized
by x [see Fig. 2(a)]. This corresponds to probabilistic mix-
tures of an energy-incoherent state p|0〉〈0| + (1− p)|1〉〈1|
and a pure coherent superposition of energy eigenstates√

p|0〉 + √1− p|1〉, so that x ∈ [0, 1] smoothly connects
between completely incoherent and completely coherent
initial states. In Fig. 2(b), we present the nontrivial depen-
dence of the transformation error ε on the coherence level
x, where we can observe two resonant values of x for
which error-free and dissipationless transformations (up
to second-order asymptotics) are possible. This clearly
illustrates that quantum coherence can play an important
role in avoiding free-energy dissipation in thermodynamic
transformations of quantum states.

2. Work-assisted resonance

Looking at the optimal work-assisted rate from Theorem
9, we see that the whenever ξ ′ = 1, one can choose w2 = 0
to make the second-order asymptotic correction vanish for
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FIG. 2. Coherent resonance in thermodynamic transformations of two-level systems. (a) The ratio V(ρ‖γ )/D(ρ‖γ ) (encoding the
resonance condition) for qubit states lying in the x-z plane of the Bloch sphere for a thermal state γ = diag(0.95, 0.05) (indicated by
a white triangle). The white disk corresponds to the final state ρ2 = diag(0.75, 0.25), while the dashed white line indicates a family
of initial states ρ1(x) with diagonal (0.85, 0.15) and off-diagonal elements equal to

√
0.85× 0.15× x for x ∈ [0, 1]. (b) The threshold

transformation error ε required to achieve the asymptotic transformation rate D(ρ1(x)‖γ )/D(ρ2‖γ ) for a finite number n of transformed
systems (i.e., ε such that the second-order correction term in Eq. (25) disappears). Resonance is obtained when the relative free-energy
fluctuations V/D are the same for the initial state ρ1(x) and the final state ρ2, i.e., when ξ = 1.

zero transformation error ε. Crucially, the value of ξ ′ can
be controlled by the amount w1 of invested (or extracted)
work per one copy of the system. By choosing

w1 = 1
β

(

D(ρ1‖γ1)− V(ρ1‖γ1)

V(ρ2‖γ2)
D(ρ2‖γ2)

)

, (54)

which results in the optimal rate given by

R = V(ρ1‖γ1)

V(ρ2‖γ2)
, (55)

one can perform an error-free and dissipationless transfor-
mation. In other words, the total initial state of the system
and battery gets transformed to the total final state with
zero error and equal free-energy content (up to second-
order terms). This thus opens a way for bringing two states
into resonance by investing or extracting work.

The work-assisted resonance can be understood by first
noting that the resonance condition can be seen as requir-
ing the total fluctuations of the initial system to be equal to
the total fluctuations of the final system, up to first order in
n. Without work assistance, this means that

V(ρ⊗n
1 ‖γ⊗n

1 ) = V(ρ⊗Rn
2 ‖γ⊗Rn

2 ) (56)

and given the asymptotic value of R, it yields

V(ρ1‖γ1) = D(ρ1‖γ1)

D(ρ2‖γ2)
V(ρ2‖γ2), (57)

which is exactly the original resonance condition ξ = 1.
Now, introducing the battery system does not change the
fluctuations (since at the initial and final time, the battery

is in a pure energy eigenstate with zero fluctuations) but
it affects the rate R. The work-assisted resonance condi-
tion is achieved by increasing or decreasing R through an
appropriate choice of w, so that Eq. (56) is satisfied, which
happens for R given by Eq. (55).

3. Strong resonance

In Ref. [101], a resonance phenomenon has been
observed for transformations operating at the first-order
asymptotic rate. Specifically, such transformations gener-
ically incur a constant error but it has been shown that
if a resonance condition is met, these errors are in fact
exponentially suppressed. That result was built upon the
small- and moderate-deviation results of Refs. [56,89,90]
but large- and extreme-deviation analyses had not been
performed at the time that would allow for exponentially
small errors to be analyzed. By extending to large- and
extreme-deviation analyses in this paper, it can in fact
be seen that there exists an even stronger notion of reso-
nance, which we term strong resonance, in contrast to the
weak resonance of Ref. [101], in which errors are not just
exponentially suppressed but eliminated entirely.

An illustration of weak and strong resonance is pre-
sented in Fig. 3. Weak resonance corresponds to the
second-order corrections in the small- and moderate-
deviation rates (Theorems 2 and 3) vanishing and occurs
when

V(ρ1‖σ1)

D(ρ1‖σ1)
= V(ρ2‖σ2)

D(ρ2‖σ2)
. (58)

Strong resonance corresponds to the situation in which the
large- and extreme-deviation rates (Theorems 4 and 6) also
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FIG. 3. Weak- and strong-resonance phenomena. (a) Weak
resonance, in which the small and moderate regimes at rates
R < C collapse but the large and extreme regimes persist, i.e.,
Z < C. (b) Strong resonance, in which all error regimes at rates
below C collapse, i.e., Z = C. For an explanation of the various
error regimes indicated, as well as the definitions of Z and C, see
Fig. 1.

collapse down to the first-order rate; in other words, when

arg min
α∈R

qDα(ρ1‖σ1)

Dα(ρ2‖σ2)
= 1. (59)

We present a numerical example of a set of states that
exhibit both strong and weak resonance in Appendix G
and discuss the relationship between weak and strong
resonance in Appendix H.

D. Entanglement transformations

Let us now make a few brief comments on Theorem
10. It is very important to note that related results have
previously appeared in the literature. First, in Ref. [89],
the authors have derived the optimal second-order rates
for pure-state bipartite-entanglement transformations in
the small-deviation regime using infidelity to measure
transformation error. Later, in Ref. [90], the authors have
extended these results to the moderate-deviation regime.
Finally, in Ref. [102], the author has investigated exact
asymptotic transformations and derived optimal rates in
the zero-error regime.

Our work differs from these results in three ways. First,
we extend the analysis to the previously unaddressed large-
deviation regime. This allows us to, e.g., predict a strong-
resonance phenomenon for entanglement transformations.
Second, our results hold for a different error measure (trace
distance instead of infidelity). And third, probably most
importantly, we propose a novel methodology employing
dichotomies and hypothesis testing that allows us to easily

characterize asymptotic rates in a unified manner across
various error regimes and avoid many arduous subtleties
along the way. We believe that this approach brings a
significant simplification and clarity as compared to the
previous techniques.

On the flip side, we need to mention that while infi-
delity measure between the Schmidt vectors p1 and p2 has
a clear operational meaning (since it is precisely the infi-
delity between the corresponding entangled states ψ1 and
ψ2), the use of the trace distance may be less useful. Still,
one can directly relate the trace distance δ between p1 and
p2 to the probability P of distinguishing bipartite entangled
states ψ1 and ψ2 locally by one party: P = (1+ δ)/2.

Finally, we recall that it has been proven in Ref. [103]
that the pure-state transformation laws in the resource the-
ory of coherence [104], i.e., conditions under which pure
superpositions of distinguished basis states can be mapped
to each other under incoherent operations, are also charac-
terized by the majorization relation. Thus, Theorem 10 can
be straightforwardly applied to describe optimal rates for
pure-state coherence transformations (put simply, p1 and
p2 need to represent occupations of the initial and target
states in the distinguished basis).

V. DERIVATIONS

In this section, we will give proofs of our results on the
asymptotic analysis of the transformation rates between
quantum dichotomies in several different error regimes.
We will break this analysis down into three stages. In
Sec. V A, we will review the relationship between Black-
well ordering and hypothesis testing, generalizing the
existing analysis beyond the fully commuting case to allow
for results where the input dichotomy is noncommuting
and partial results when the target dichotomy is also non-
commuting. Critically, once established, this connection
allows us to rather straightforwardly extend the existing
asymptotic analyses of hypothesis testing to transforma-
tion rates between quantum dichotomies. In Sec. V B, we
review the existing results around hypothesis testing, with
some necessary technical extensions. Finally, in Sec. V C,
we put everything together, giving the final proofs of
transformation rates in each error regime.

A. Hypothesis testing and pinched hypothesis testing

The data-processing inequality ensures that the approxi-
mate Blackwell ordering (ρ1, σ1) �(ερ ,εσ ) (ρ2, σ2) implies

βx(ρ1‖σ1) ≤ βx−ερ(ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1). (60)

Extending this, it is shown in Ref. [70] that the two condi-
tions are in fact equivalent for commuting states [ρ1, σ1] =
[ρ2, σ2] = 0. Thus, for such states, the analysis of trans-
formation rates can be entirely reduced to the analysis of
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hypothesis testing. Unfortunately, the situation for non-
commuting quantum states is not so straightforward: it
is known that such a hypothesis-testing condition is not
generally a sufficient condition for Blackwell ordering
[30,71–73].

While there is no known sufficient condition that can be
phrased in terms of regular hypothesis testing, we instead
consider a modified task that we call pinched hypothesis
testing, which does provide such a sufficient condition for
noncommuting input states. This condition does not, how-
ever, extend to noncommuting target states and we leave
this for future work.

We will use Pτ (·) to denote the pinching with respect to
the eigenspaces of τ . Specifically, it is defined by

Pτ (X ) :=
∑

λ

�λX�λ, (61)

where �λ are the eigenspace projectors of τ , i.e., τ =∑
λ λ�λ. The task of pinched hypothesis testing is to dis-

tinguish between the states Pσ (ρ) and σ or between ρ and
Pρ(σ ). Correspondingly, we define the left-pinched and
right-pinched type-II hypothesis-testing error as

←
β x(ρ‖σ) := βx(Pσ (ρ)‖σ), (62a)
→
β x(ρ‖σ) := βx

(
ρ
∥
∥Pρ(σ )

)
. (62b)

By the data-processing inequality, we know that pinch-
ing cannot make states easier to distinguish and thus the
pinched error is at least the nonpinched error,

←
β x(ρ‖σ),

→
β x(ρ‖σ) ≥ βx(ρ‖σ), (63)

with equality if [ρ, σ ] = 0. Having defined the pinched
error, we now show how it can be used to construct a
sufficient condition for noncommuting Blackwell ordering.

Lemma 2 (Conditions for approximate Blackwell order-
ing for commuting second dichotomy). Consider the
approximate Blackwell ordering (ρ1, σ1) �(ερ ,εσ ) (ρ2, σ2).
A necessary condition for this ordering is given by

βx(ρ1‖σ1) ≤ βx−ερ(ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1). (64)

If the second dichotomy is commuting, [ρ2, σ2] = 0, then
a sufficient condition for this ordering is given by either

←
β x(ρ1‖σ1) ≤ βx−ερ(ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1), (65a)

or

→
β x(ρ1‖σ1) ≤ βx−ερ(ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1). (65b)

Proof. As noted above, the necessary condition sim-
ply follows from the data-processing inequality [70], so
we need only prove the sufficient condition. We start by
assuming that the pinched hypothesis-testing inequality,

Eq. (65a), holds. Expanding out the definition of
←
β x(·‖·),

this is equivalent to

βx
(Pσ1(ρ1)

∥
∥σ1

) ≤ βx−ερ(ρ2‖σ2)+ εσ ∀x ∈ (ερ , 1).
(66)

Pinching a state causes it to commute, in the sense that
[Pσ (·), σ ] ≡ 0. As such, the first dichotomy (Pσ1(ρ1), σ1)

is commuting and the second dichotomy (ρ2, σ2) is also
commuting by assumption. Applying Ref. [70, Theorem
2], this in turn implies the Blackwell ordering on the
pinched states,

(Pσ1(ρ1), σ1
) �(ερ ,εσ ) (ρ2, σ2). (67)

Next, we want to argue that approximate Blackwell order-
ing has a data-processing property. By definition, this
ordering implies the existence of a channel E such that

T
(
E(Pσ1(ρ1)

)
, ρ2

)
≤ ερ and T (E(σ1), σ2) ≤ εσ .

(68)

If we define
←
E := E ◦ Pσ1 and recall that Pσ1(σ1) = σ1,

then these expressions can be rewritten as

T
(←
E (ρ1), ρ2

)
≤ ερ and T

(←
E (σ1), σ2

)
≤ εσ , (69)

which in turn implies the required Blackwell ordering of
the two dichotomies. A similar argument can be given for

Eq. (65b), with
→
E := E ◦ Pρ1 . �

We now have both necessary and sufficient condi-
tions for approximate Blackwell ordering of quantum
dichotomies that are of the same form. Unlike the com-
muting case, however, these two conditions are no longer
identical, involving the pinched and nonpinched variants
of hypothesis testing. As such, this will generally open
up a gap between the upper and lower bounds that can
be placed upon transformation rates using this technique,
which makes this approach unsuitable in the single-shot
setting. However, as we will see later in this section, in the
asymptotic setting the pinched and nonpinched variants of
hypothesis testing have identical asymptotic behavior in
most error regimes, closing these gaps and allowing us to
give optimal expressions of transformation rates beyond
the first-order asymptotics.
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B. Asymptotic analyses of hypothesis testing

In this subsection, we want to review the relevant
asymptotic analyses of hypothesis testing, putting these
results into a common notation for easier use later, as
well as extending these analyses to the pinched variant of
the task where necessary. The cornerstone of asymptotic
analysis of hypothesis testing is Stein’s lemma. While suf-
ficient to give a first-order analysis of transformation rates
between quantum dichotomies, we will see that we require
refinements upon Stein’s lemma to go beyond first order.
We will start this section by describing Stein’s lemma and
giving some intuition for the different regimes of refine-
ments thereto. We will then go through each error regime
reviewing the refined asymptotic analysis in each, extend-
ing these analyses to the pinched variant of the problem as
necessary.

Consider the task of distinguishing between two states
ρ⊗n and σ⊗n. To avoid technical issues, we will assume
that σ is of full support. Intuitively, each additional copy
of the states should give us a constant amount of new infor-
mation, allowing us to multiplicatively reduce the chance
of failing to distinguish the two states, leading to expo-
nentially decreasing hypothesis-testing errors. In general,
there is a trade-off between the type-I and -II errors. A nat-
ural simplification of this more general question would be
the following: if we constrain one of our errors to be con-
stant, how does the other error decay? The answer is that
the error decays exponentially, with that exponent being
given by the relative entropy. This fact is known as Stein’s
lemma and it will form the backbone of this subsection.

Lemma 3 (Quantum Stein’s lemma [105,106]). For any
ε ∈ (0, 1)

lim
n→∞−

1
n

logβε
(
ρ⊗n

∥
∥σ⊗n) = D(ρ‖σ). (70)

As mentioned above, Stein’s lemma alone will only be
sufficient to give first-order rates and we will require more
refined asymptotic analysis to go beyond this. In Fig. 4, we
present a sketch of the various error regimes that we will
consider. The idea is that as n increases, Stein’s lemma
states that the trade-off between the type-I error and type-
II error exponent becomes a step at the relative entropy
and each of the refinements seeks to quantify the rate of
that convergence in different ways. Specifically, as shown
in the table in Fig. 4, our analysis will be divided up based
on the scaling of the type-I error considered. The two most
important regimes will be the small- and large-deviation
regimes, in which the type-I error is a constant bounded
away from 0/1, or exponentially approaching 0/1, respec-
tively. This leaves us with two edge cases: the intermediate
regime of subexponential decay is termed “moderate devi-
ation” and for completeness we also consider the regime
in which the type-I error superexponentially approaches 1,

which will be required for our analysis of transformation
rates in the zero-error setting.

In Appendix H, we will nonrigorously discuss the inter-
play between these regimes and the consistency between
these results and in Appendix I, we will show how all of
the analyses below can be strengthened to have a unifor-
mity property that will be necessary in some of the proofs
of transformation rates given in Sec. V C.

1. Small deviation

The first regime that we consider is the small deviation.
As stated in Fig. 4, in this regime, the type-I error is a
fixed constant between 0 and 1 and we want to know the
asymptotic behavior of the type-II error exponent. Stein’s
lemma tells us that this exponent must approach the rela-
tive entropy and the small-deviation analysis, also known
as the second-order expansion, states that this convergence
happens as �(1/

√
n).

Lemma 4 (Small-deviation analysis of hypothesis test-
ing). For any constant ε ∈ (0, 1), the hypothesis-testing
type-II errors scale as

−1
n

logβε
(
ρ⊗n

∥
∥σ⊗n) � D(ρ‖σ)+

√
V(ρ‖σ)

n
�−1(ε),

(71a)

−1
n

log
←
β ε

(
ρ⊗n

∥
∥σ⊗n) � D(ρ‖σ)+

√
V(ρ‖σ)

n
�−1(ε),

(71b)

where � denotes equality up to terms o(1/
√

n).

Proof. The scaling of βε
(
ρ⊗n

∥
∥σ⊗n

)
is directly a restate-

ment of Ref. [107, Proposition 16], a result that originates
in Refs. [81,108], so we are just left with showing that the

pinched variant
←
β ε

(
ρ⊗n

∥
∥σ⊗n

)
has the same scaling up to

second order.
First, we note that

←
β ε(·‖·) ≥ βε(·‖·), so the upper bound

holds straightforwardly, leaving only the lower bound left
to be proved. For this, we turn to Ref. [108], specifically
combining Eqs. (14), (20), and (27) to give that, for any
0 < δ < ε/3,

←
β ε(ρ‖σ) ≤ βε−2δ(ρ‖σ)× 28(ε − δ)ν(σ )2

δ5(1− ε + δ) , (72)

where ν(σ ) denotes the number of unique eigenvalues of
σ . Note that for any finite-dimensional σ , the number of
eigenvalues of the tensor power σ⊗n only scales polyno-
mially, ν

(
σ⊗n

) ≤ nν(σ ) = nO(1). Using this, we can now
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(Type-IRegime αn) Type-II exponent (− 1
n

log βn) Equal?

Large< Lemma 5 Approaching 0 exponentially
[
0, D(ρ‖σ)

)
No

Moderate< Lemma 6 Approaching 0 subexponentially D(ρ‖σ) − ω(1/
√

n) ∩ o(1) Yes

Small< Lemma 4 Constant, < 0.5 D(ρ‖σ) − Θ(1/
√

n) Yes

Small> Lemma 4 Constant, > 0.5 D(ρ‖σ) + Θ(1/
√

n) Yes

Moderate> Lemma 6 Approaching 1 subexponentially D(ρ‖σ) + ω(1/
√

n) ∩ o(1) Yes

Large> Lemma 5 Approaching 1 exponentialy D(ρ‖σ), ∞)
Yes

Extreme> Lemma 8 Approaching 1 superexponentially ∞ Yes
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log βn
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FIG. 4. The trade-off between the optimal type-I and -II errors. An illustrative sketch of the trade-off between the optimal type-I
and -II errors of the hypothesis test between two states, ρ⊗n and σ⊗n, as n grows. Here, αn is the optimal type-I error, βn the optimal
type-II error, and −(1/n) logβn the type-II error exponent. Each of the gray curves corresponds to a trade-off (αn,βn), for a given
n, with darker curves corresponding to growing n. The fact that these curves approach a step at the relative entropy is equivalent to
Stein’s lemma (see Lemma 3). Each of the colored regions corresponds to a deviation regime in which we will consider refinements to
Stein’s lemma in this subsection. In the table, we present the scaling in each regime. For the details and explicit expressions for all of
the scaling constants, see the corresponding lemmas, (Lemmas 4–6 and Lemma 8). The final column denotes whether the asymptotics
of the pinched and nonpinched variants of hypothesis testing are identical, which they are in all regimes in which both errors are
exponentially decreasing.

substitute ρ → ρ⊗n and σ → σ⊗n, giving

log
←
β ε

(
ρ⊗n

∥
∥σ⊗n) ≤ logβε−2δ

(
ρ⊗n

∥
∥σ⊗n)+ O(log n).

(73)

Importantly, this logarithmic error is o(
√

n) and can there-
fore be neglected to second order. As such, we obtain the
bound

− 1
n

log
←
β ε

(
ρ⊗n

∥
∥σ⊗n) � −1

n
logβε−2δ

(
ρ⊗n

∥
∥σ⊗n),

(74a)

� D(ρ‖σ)+
√

V(ρ‖σ)
n

�−1(ε − 2δ). (74b)

As this holds for any δ ∈ (0, ε/3) and �−1 is continuous
on (0, 1), we can take δ→ 0+, giving

−1
n

log
←
β ε

(
ρ⊗n

∥
∥σ⊗n) � D(ρ‖σ)+

√
V(ρ‖σ)

n
�−1(ε),

(75)

as required. �

2. Large deviation

The next most important error regime is that of large
deviations, which is the regime in which both errors are
exponentially approaching either 0 or 1. Stein’s lemma
suggests that as long as the type-II error exponent is less
than the relative entropy, then the type-I error will also
be exponentially decreasing with n; but if it exceeds the
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relative entropy, then we expect the type-I error to be
exponentially increasing toward 1.

The existing expressions of these results in the litera-
ture are all phrased in terms of these exponents directly.
But, using this notation, the large-deviation regime would
need to be divided up into several different forms based on
whether the errors are approaching 0 or 1, usually termed
the error-exponent and strong-converse-exponent regimes.
Instead, we will combine all of these results in a single
unified notation by concerning ourselves not with error
probabilities but with the error log odds. This unified nota-
tion dramatically simplifies our later proofs, which rely
upon these bounds, and to our knowledge this formulation
has not appeared elsewhere in the literature.

The idea to unify these regimes is to consider a
“signed exponent.” For a quantity pn that is exponentially
approaching 0, the exponent is given by−(1/n) log pn and,
similarly, if pn is exponentially approaching 1, then the
exponent is given by −(1/n) log(1− pn). The idea is to
combine these two functions to give a single expression
that can yield both exponents. Specifically, we will use the
logit function, which is simply the difference between log p
and log(1− p),

L[p] := log
p

1− p
. (76)

As required, now we can think of (1/n)L[pn] as an expo-
nent that covers both cases in which pn is approaching 0 or
1 in the sign of this exponent. Specifically, for any λ > 0,

1
n

L[pn]→−λ ⇐⇒ −1
n

log pn → λ, (77a)

1
n

L[pn]→+λ ⇐⇒ −1
n

log(1− pn)→ λ. (77b)

While there are other functions that have this property, one
thing to note about the logit function specifically is that if p
is a probability, then L[p] is the associated log odds. As we
will see below, it turns out that the standard large-deviation
results can be more succinctly expressed in terms of the
type-I and -II error log odds instead of error probabilities.

To allow us to express the large- (and moderate-) devi-
ation results in terms of the log odds, we will define the
optimal type-II log odds γx(ρ‖σ)—in analogy to the opti-
mal type-II error probability βx(ρ‖σ)—as the solution to
the optimization

min
Q

L
[
Tr(σQ)

]
, (78a)

subject to 0 ≤ Q ≤ 1, (78b)

L
[
1− Tr(ρQ)

] ≤ x. (78c)

And as with the error probability, we will also require the
pinched variants, defined as

←
γ x(ρ‖σ) := γx(Pσ (ρ)‖σ), (79a)
→
γ x(ρ‖σ) := γx

(
ρ
∥
∥Pρ(σ )

)
. (79b)

In terms of error probabilities, these definitions are equiv-
alent to

γx(ρ‖σ) = L
[
βL−1[x](ρ‖σ)

]
, (80a)

←
γ x(ρ‖σ) = L

[←
β L−1[x](ρ‖σ)

]

, (80b)

→
γ x(ρ‖σ) = L

[→
β L−1[x](ρ‖σ)

]

. (80c)

As argued above, a nice feature of this formulation is
that we can describe all large-deviation results in a single
unified way. There are three different regimes of large-
deviation results, only two of which are captured in Fig. 4.
Applying Stein’s lemma (Lemma 3) alongside a dual ver-
sion where we swap the states, we can see that there is a
regime in which both error probabilities decay exponen-
tially, albeit with exponents no greater than the respective
relative entropies. If, however, one of the errors decays
with an exponent greater than the relative entropy, then the
other error will in fact exponentially approach 1. This is
illustrated in Fig. 5, using our log-odds formulation.

Before we give the large-deviation bound, we need
several additional definitions that will be critical for the
pinched case. We define the left-pinched and right-pinched
Rényi relative entropies as

←
Dα(ρ‖σ) := lim

n→∞
1
n

Dα

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n), (81a)

→
Dα(ρ‖σ) := lim

n→∞
1
n

Dα

(
ρ⊗n

∥
∥Pρ⊗n

(
σ⊗n)). (81b)

We note that due to the duality property of the clas-
sical relative entropy (1− α)Dα(p‖q) = αD1−α(q‖p), we
straightforwardly have

(1− α)←Dα(ρ‖σ) = α
→
D1−α(σ‖ρ). (82)

We also note that for α ≥ 0, the left-pinched relative
entropy coincides with the sandwiched relative entropy
and for α ≤ 1, the right-pinched relative entropy coincides
with the reverse-sandwiched relative entropy [85,87], i.e.,

←
Dα(ρ‖σ) = 1

α − 1
log Tr

((√
ρσ

1−α
α
√
ρ
)α)

∀α ≥ 0,

(83a)

→
Dα(ρ‖σ) = 1

α − 1
log Tr

((√
σρ

α
1−α
√
σ

)1−α)
∀α ≤ 1,

(83b)
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but we know of no closed-form solution for either outside
of these ranges. In Appendix B, we show the existence and
some important properties of these relative entropies. A
consequence of these expressions is that the regular rel-
ative entropy can be recovered by taking the limits of α
going to 1 and 0, respectively:

D(ρ‖σ) = lim
α→1

←
Dα(ρ‖σ) = lim

α→0

1− α
α

→
Dα(σ‖ρ). (84)

In our results, we will also need the counterpart quantity
found when exchanging these limits, which we will denote
by D�(ρ‖σ), defined as

D�(ρ‖σ) := lim
α→1

→
Dα(ρ‖σ) = lim

α→0

1− α
α

←
Dα(σ‖ρ). (85)

With regard to this, we note that the data-processing
inequality gives D�(ρ‖σ) ≤ D(ρ‖σ), with equality if
[ρ, σ ] = 0.

With these definitions in hand, we can now present the
large-deviation bound on hypothesis testing.

FIG. 5. The trade-off using log odds. The trade-off between
the type-I and -II error log odds per copy—limn→∞(1/n)L[αn]
and limn→∞(1/n)L[βn], respectively—for the hypothesis test
between ρ⊗n and σ⊗n, in the limit of growing n. The bottom-
left quadrant corresponds to the regime in which both errors are
decaying exponentially, with exponents bound by the relative
entropies D(σ‖ρ) and D(ρ‖σ), respectively. The top-left regime
corresponds to a type-I error that is decaying even more rapidly,
causing the type-II error to instead increase toward 1 and the
bottom-right regime shows the converse of this. This curve is
generated by plotting �λ(ρ‖σ) from Lemma 5 for two randomly
generated d = 5 qudit states.

Lemma 5 (Large-deviation analysis of hypothesis test-
ing). For any λ ∈ R, define the asymptotic nonpinched
and pinched log-odds error per copy as

�λ(ρ‖σ) := lim
n→∞

1
n
γλn

(
ρ⊗n

∥
∥σ⊗n), (86a)

←
�λ(ρ‖σ) := lim

n→∞
1
n
←
γ λn

(
ρ⊗n

∥
∥σ⊗n), (86b)

→
�λ(ρ‖σ) := lim

n→∞
1
n
→
γ λn

(
ρ⊗n

∥
∥σ⊗n). (86c)

Then, all of these limits exist, and each is given by

�λ(ρ‖σ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supt<0
qDt(ρ‖σ)+ t

1− t
λ, λ < −D(σ‖ρ),

inf0<t<1−Dt(ρ‖σ)− t
1− t

λ, −D(σ‖ρ)<λ< 0,

supt>1−qDt(ρ‖σ)+ t
1− t

λ, λ > 0,

(87a)
←
�λ(ρ‖σ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supt<0
←
Dt(ρ‖σ)+ t

1− t
λ, λ < −D�(σ‖ρ),

inf0<t<1−
←
Dt(ρ‖σ)− t

1− t
λ, −D�(σ‖ρ)<λ< 0,

supt>1−
←
Dt(ρ‖σ)+ t

1− t
λ, λ > 0,

(87b)
→
�λ(ρ‖σ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supt<0
→
Dt(ρ‖σ)+ t

1− t
λ, λ < −D(σ‖ρ),

inf0<t<1−
→
Dt(ρ‖σ)− t

1− t
λ, −D(σ‖ρ)<λ< 0,

supt>1−
→
Dt(ρ‖σ)+ t

1− t
λ, λ > 0,

(87c)

including the edge cases

�−D(σ‖ρ)(ρ‖σ) = 0, �0(ρ‖σ) = −D(ρ‖σ), (88a)
←
�−D�(σ‖ρ)(ρ‖σ) = 0,

←
�0(ρ‖σ) = −D(ρ‖σ), (88b)

→
�−D(σ‖ρ)(ρ‖σ) = 0,

→
�0(ρ‖σ) = −D�(ρ‖σ) (88c)

and the limits

�±∞(ρ‖σ) =
←
�±∞(ρ‖σ) =

→
�±∞(ρ‖σ) = ∓∞. (89)

Proof. We start by dividing the range of λ into three
parameter regions, corresponding to the quadrants of
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Fig. 5:

RL := (−∞,−D(σ‖ρ)), (90a)

RM := (−D(σ‖ρ), 0
)
, (90b)

RR := (0,∞). (90c)

We note that the region RM corresponds to the so-
called “error-exponent” regime, in which both the type-I
and type-II errors are exponentially decreasing, whereas
RL/RR are referred to as the “strong-converse” regime, in
which one error is exponentially decaying but the other is
exponentially approaching 1. Regions RM and RL have
been previously studied: in fact, the expressions for �λ on
RM can be derived from Refs. [109,110] and the expres-
sions for �λ on RL can be derived from Refs. [111–113].

By swapping the states, we can extend the result in RL
to RR. Recall that �γ(ρ‖σ) quantifies the optimal type-II
error possible for a given type-I error. As swapping the
states corresponds to exchanging the two error types, this
means that �γ(σ‖ρ) must therefore quantify the optimal
type-I error given for a given type-II error. As such, we
can think of the two functions

λ �→ �λ(ρ‖σ) and λ �→ �λ(σ‖ρ), (91)

as both describing the trade-off between two types of error,
as functions of the type-I and -II errors, respectively, and
they are therefore inverses [114]. So, to find an expression
for �λ on RR, we simply need to find the inverse of the
flipped version on λ ≤ D(ρ‖σ). To this end, we define

f (λ) := sup
t>1

1− t
t

[
λ+ qDt(ρ‖σ)

]
, (92a)

g(λ) := sup
s>1

s
1− s

λ− qDs(ρ‖σ). (92b)

By utilizing the identity

qDα(ρ‖σ) = α

1− α
qD1−α(σ‖ρ), (93)

we can see that f (λ) = �λ(σ‖ρ) for λ ≤ −D(ρ‖σ) and
we now want to argue that g is its inverse. Consider a
composition of f and g, which gives

(f ◦ g)(λ) = sup
t>1

inf
s>1

1− t
t

[
qDt(ρ‖σ)− qDs(ρ‖σ)+ s

1− s
λ

]

,

(94a)

(g ◦ f )(λ) = sup
s>1

inf
t>1

s
1− s

1− t
t

[
λ+ qDt(ρ‖σ)

]
− qDs(ρ‖σ).

(94b)

If we let t = s and s = t in the inner optimizations in each
of these, we obtain (f ◦ g)(λ) ≥ λ and (g ◦ f )(λ) ≥ λ,

respectively. Using these, together with the fact that f is
monotonically nonincreasing, we have

f ◦ g ◦ f = (f ◦ g) ◦ f ≥ f , (95a)

f ◦ g ◦ f = f ◦ (g ◦ f ) ≤ f . (95b)

Thus, we have that f ◦ g ◦ f = f , and so f and g are
quasiinverses. As f is �λ(σ‖ρ) on λ≤ −D(ρ‖σ), then g
must correspond to �λ(ρ‖σ) for λ ∈ RR, as required.

Next, we turn to the pinched variants
←
�λ/
→
�λ—we will

start with
←
�λ. Here, we want to consider the hypoth-

esis testing between the pinched state Pσ⊗n
(
ρ⊗n

)
and

σ⊗n. As these states are no longer independent identically
distributed (IID), this can be considered as a hypothesis-
testing problem between two correlated states. Thank-
fully, the problem of extending the previously mentioned
hypothesis-testing analyses to the case of correlated states
has been considered. Specifically, Ref. [115, Theorem 4.8]
considers the error-exponent regime (RM ) and Ref. [112,
Corollary IV.6] the strong-converse regime (RL/RR). In
both cases, it has been shown that if the regularized rela-
tive entropy exists and is differentiable (see Appendix B),
then the standard IID results can be extended, where the
single-copy relative entropy is replaced with this regular-
ized quantity. For our case, looking at pinched states, this
means that the change when going from nonpinched to
pinched hypothesis testing is

D(ρ‖σ), qD(ρ‖σ)→ ←
D(ρ‖σ). (96)

Making this substitution, we obtain the required expression
for
←
�λ on RL, RM , and RR. An analogous argument can

also be made for
→
�λ.

The only values of λ left to consider are the edge
cases and limits. In each case, these follow from the
monotonicity of �λ/

←
�λ/

→
�λ in λ. The edge cases

�−D(σ‖ρ)(ρ‖σ) = 0, �0(ρ‖σ) = −D(ρ‖σ) (97)

correspond to Lemma 3 (and its state-reversed analogue)
and, similarly,

←
�−D�(σ‖ρ)(ρ‖σ) = 0,

←
�0(ρ‖σ) = −D(ρ‖σ), (98a)

→
�−D(σ‖ρ)(ρ‖σ) = 0,

→
�0(ρ‖σ) = −D�(ρ‖σ) (98b)

to the pinched variants of Stein’s lemma. Lastly, the limits

�±∞(ρ‖σ) =
←
�±∞(ρ‖σ) =

→
�±∞(ρ‖σ) = ∓∞ (99)

follow from the fact that β0(·‖·) =
←
β 0(·‖·) =

→
β 0(·‖·) = 1

and β1(·‖·) =
←
β 1(·‖·) =

→
β 1(·‖·) = 0 generically for any

states of full support. �
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3. Moderate deviation

In the small-deviation regime, we have considered type-
I errors that are constant and in the large-deviation regime,
we have considered type-I errors that are exponentially
approaching 0/1. This leaves a gap for errors that are
approaching 0 or 1 but doing so subexponentially. This is
referred to as the moderate-deviation regime [116–118].
As with large deviations, it will be advantageous to express
these results in terms of type-I and/or type-II log odds.

Whereas “small deviation” corresponds to type-I log
odds that are constant in n and “large deviation” to any
log odds that scale as ±λn, “moderate” will refer to any
log odds that scale as ±λna, where λ > 0 and a ∈ (0, 1).
We note that in some other papers considering moder-
ate deviations—such as Refs. [117,118]—these results are
considered more generally for any sequence xn such that
limn→∞ xn = 0 and limn→∞ nxn = ±∞. We will restrict
to this polynomial subset of such sequences primarily for
notational convenience but note that all of the results below
can be extended to these more general moderate sequences.

Lemma 6 (Moderate-deviation analysis of hypothesis
testing). For any λ > 0 and a ∈ (0, 1), the type-II log odds
of error scale as

1
n
γ±λna

(
ρ⊗n

∥
∥σ⊗n) � −D(ρ‖σ)∓

√
2V(ρ‖σ)λna−1,

(100a)

1
n
←
γ ±λna

(
ρ⊗n

∥
∥σ⊗n) � −D(ρ‖σ)∓

√
2V(ρ‖σ)λna−1,

(100b)

where � denotes equality up to terms scaling as
o

(√
na−1

)
.

Proof. The nonpinched result is just a restatement of the
hypothesis-testing result from Ref. [117, Theorem 1]. For
the pinched quantity, we will use a similar argument to that
used in the small-deviation case of Lemma 4.

The data-processing inequality
←
γ x(ρ‖σ) ≥ γx(ρ‖σ) triv-

ially gives us a lower bound on the scaling of
←
γ . For the

upper bound, we return to the inequality

←
β ε(ρ‖σ) ≤ βε−2δ(ρ‖σ)× 28(ε − δ)ν(σ )2

δ5(1− ε + δ) (101)

considered previously in the proof of Lemma 4. We want
to use this bound in the two moderate regimes, in which
the type-I error is approaching 0/1. To do this, consider the
two equalities when we substitute δ = ε/4 for the case of ε
approaching 0 and δ = 1− ε for the case of ε approaching

1 (with the added requirement that ε > 3/4), giving

←
β ε(ρ‖σ) ≤ βε/2(ρ‖σ)×

3× 216ν(σ )2

ε4(1− 3ε/4)
, (102a)

←
β ε(ρ‖σ) ≤ β3ε−2(ρ‖σ)× 27(2ε − 1)ν(σ )2

(1− ε)6 . (102b)

Now, we want to make the substitutions ρ → ρ⊗n and
σ → σ⊗n. In the former case, we will substitute ε →
L−1[−λna] and in the latter ε → L−1[+λna]. Taking loga-
rithms and recalling that the number of unique eigenvalues
ν

(
σ⊗n

)
scales only polynomially with n, this gives us the

upper bounds expressed in terms of log odds per copy of

1
n
←
γ ±λna

(
ρ⊗n

∥
∥σ⊗n) ≤ 1

n
γ±λna

(
ρ⊗n

∥
∥σ⊗n)+ O(na−1).

(103)

Lastly, as a < 1, we have that na−1 = o
(√

na−1
)

, allowing
us to neglect this error term, and thus we conclude that
the pinched and nonpinched log odds per copy must scale
identically up to �, as required. �

4. Extreme deviation

Now that we have dealt with type-I errors that do not
approach 0 or 1, approach them subexponentially, and
approach them exponentially, we are left with one final
case: when the error approaches 0 or 1 superexponentially.
We will see that if we consider superexponentially scaling
errors, the problem of hypothesis testing becomes “bor-
ing,” in the sense that we obtain a simple linear trade-off
between the two types of error, as the error constraints are
too strict for any meaningful trade-off. While boring in and
of itself, the analysis of hypothesis testing in this regime
is needed for technical reasons in the proof of the zero-
error transformation rates between quantum dichotomies
to come in Sec. V C 4.

One silver lining of the boringness of this regime is that
we do not need to consider an asymptotic number of states
and we can start with a single-shot statement. The quantum
Neyman-Pearson lemma [26,119] states that the trade-off
between type-I and type-II hypothesis-testing error can be
characterized by Neyman-Pearson tests of the form

Qt := {ρ − tσ > 0} , (104)

for t ≥ 0, where {M > 0} denotes the projector onto the
eigenspaces of M corresponding to positive eigenvalues.
Specifically, the claim is that the optimal trade-off between
the errors is either given by a test of the form Qt or, when t
corresponds to a value at which Qt changes rank, a convex
combination of lims→t− Qs and Qt.
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Recall that the α→±∞ limiting cases of the minimal
divergence are given by the max-divergence [87, Sec. 4.2],

qD+∞(ρ‖σ) = log λmax
(
σ−1/2ρσ−1/2) , (105a)

qD−∞(ρ‖σ) = − log λmax
(
ρ−1/2σρ−1/2) . (105b)

Lemma 7 (Single-shot extreme-deviation analysis of
hypothesis testing). For any x ≤ λmin(ρ),

β1−x(ρ‖σ) = x × exp
(
−qD+∞(ρ‖σ)

)
, (106a)

1− βx(ρ‖σ) = x × exp
(
−qD−∞(ρ‖σ)

)
(106b)

and

→
β 1−x(ρ‖σ) = x × exp

(
−D+∞

(
ρ
∥
∥Pρ(σ )

))
, (107a)

1−
→
β x(ρ‖σ) = x × exp

(
−D−∞

(
ρ
∥
∥Pρ(σ )

))
. (107b)

Also, for any x ≤ λmin (Pσ (ρ)),

←
β 1−x(ρ‖σ) = x × exp

(
−D+∞(Pσ (ρ)‖σ)

)
, (108a)

1−
←
β x(ρ‖σ) = x × exp

(
−D−∞(Pσ (ρ)‖σ)

)
. (108b)

Proof. First, we note that we can rewrite the Neyman-
Pearson test Qt as

Qt =
{
ρ1/2 (

I − tρ−1/2σρ−1/2) ρ1/2 > 0
}

. (109)

Clearly, Q0 = I but from this we can also see that Qt = I
for any t < t∗, where

t∗ := 1/λmax(ρ
−1/2σρ−1/2) = exp

(
qD−∞(ρ‖σ)

)
. (110)

As such, we can see that the first nontrivial projective
Neyman-Pearson test is given by Qt∗ . Since Qt are neces-
sarily not full rank for any t > t∗, they must have a type-I
error of at least λmin(ρ). Thus, to obtain a type-I error of
0 < x < λmin(ρ), we must consider a test that is a convex
combination of Q0 = I and Qt∗ .

Assume for the moment that ρ−1/2σρ−1/2 has a non-
degenerate maximal eigenvector (we will return to this
below), with eigenvalue 1/t∗ and eigenvector |ψ〉. Then,

this first nontrivial projective test is

Qt∗ = I − ρ
−1/2|ψ〉〈ψ |ρ−1/2

〈
ψ

∣
∣ρ−1

∣
∣ψ

〉 . (111)

So a test Q that is a convex combination of Q0 and Qt∗ , and
has type-I error of x, takes the form

Q := I − x × ρ−1/2|ψ〉〈ψ |ρ−1/2. (112)

As 0 ≤ x < λmin(ρ), we have that this is a valid test and
the type-I error is simply given by x as required:

1− Tr(ρQ) = x. (113)

For the type-II error, we obtain the desired expression:

βx(ρ‖σ) = Tr(σQ) (114a)

= 1− x × Tr(σρ−1/2|ψ〉〈ψ |ρ−1/2) (114b)

= 1− x × 〉ψ |ρ−1/2σρ−1/2|ψ〉 (114c)

= 1− x/t∗ (114d)

= 1− x × exp
(
−qD−∞(ρ‖σ)

)
. (114e)

For x > 1− λmin(ρ), a similar argument can be given
mutatis mutandis by considering the last nontrivial test,
which gives

βx(ρ‖σ) = (1− x) exp
(
−qD+∞(ρ‖σ)

)
. (115)

Finally, the pinched results trivially follow from the non-
pinched variants by making the substitution σ → Pρ(σ )
and ρ → Pσ (ρ), respectively.

In the above, we have assumed that ρ−1/2σρ−1/2 has
a nondegenerate maximal eigenvalue—an assumption to
which we now return. The idea now is to show that we
can perturb the state σ by an arbitrarily small amount to
break any such degeneracy. Specifically, consider letting
|ψ〉 be an arbitrary maximal eigenvector of ρ−1/2σρ−1/2

and define the (unnormalized) state σε as

σε := σ + ερ1/2|ψ〉〈ψ |ρ1/2. (116)

We can see that this breaks the degeneracy as

ρ−1/2σερ
−1/2 = ρ−1/2σρ−1/2 + ε|ψ〉〈ψ |, (117)

allowing us to apply the above proof to give expressions
for βx(ρ‖σε). Next, we can see that βx(ρ‖σε)→ βx(ρ‖σ)
as ε → 0+ as the difference is bounded by the trace norm,

|βx(ρ‖σε)− βx(ρ‖σ)| ≤ ‖σε − σ‖Tr (118a)

= ε〈ψ |ρ|ψ〉 (118b)

≤ ε. (118c)

�
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Applying this single-shot analysis to the case of an
asymptotically large number of copies of each state, we
can obtain asymptotic expressions for the log odds per
copy that are comparable with the large-deviation expres-
sions of Lemma 5, for both nonpinched and pinched
hypothesis-testing problems.

Lemma 8 (Extreme-deviation analysis of hypothesis test-
ing). For any λ > − log λmin(ρ),

�±λ(ρ‖σ) = ∓λ− qD±∞(ρ‖σ), (119a)
←
�±λ(ρ‖σ) = ∓λ−

←
D±∞(ρ‖σ), (119b)

→
�±λ(ρ‖σ) = ∓λ−

→
D±∞(ρ‖σ), (119c)

where we recall that

�λ(ρ‖σ) := lim
n→∞

1
n
γ+λn(ρ‖σ), (120a)

←
�λ(ρ‖σ) := lim

n→∞
1
n
←
γ +λn(ρ‖σ), (120b)

→
�λ(ρ‖σ) := lim

n→∞
1
n
→
γ +λn(ρ‖σ). (120c)

Proof. For the nonpinched case, we can simply apply
the single-shot result (Lemma 7) to the states ρ⊗n and σ⊗n,
using the additivity of the qD±∞, and expressing the type-I
and -II errors in terms of log odds.

We will do similarly for the pinched case. First, we use
the pinching inequality

Pσ⊗n
(
ρ⊗n) ≥ ρ⊗n

|spec(σ⊗n)| ≥
ρ⊗n

nd (121)

and so

log λmin
(Pσ⊗n

(
ρ⊗n)) ≥ nλmin(ρ)− O(log n). (122)

Thus, if we have a strict inequality λ > − log λmin(ρ), then

nλ
ev.
>− log λmin

(Pσ⊗n
(
ρ⊗n)) . (123)

Given this, we can now substitute the pinched states into
Lemma 7, which gives the desired expressions for

←
�±λ and

→
�±λ. �

C. Transformation rates

In this section, we will take the asymptotic analysis of
hypothesis testing from the previous section and extend it
to transformation rates between quantum dichotomies. To
be more concrete, for some sequence of errors εn and fixed

states ρ1, ρ2, σ1, and σ2, recall the definition of R∗n(εn) as
the maximum Rn such that

(ρ⊗n
1 , σ⊗n

1 ) �(εn,0) (ρ
⊗Rnn
2 , σ⊗Rnn

2 ). (124)

We will be studying the scaling of R∗n(εn) for various scal-
ing regimes of εn. While we will restrict below to just
the case of such one-sided errors, we cover how these
techniques can be extended, and what the resulting rates
are, in the more general regime of two-sided errors in
Appendix C.

To spare the reader from being subjected to the phrase
“for sufficiently large n” ad nauseam, we use the notation
ev.
< and

ev.
> to denote eventual inequalities for the following

proofs. In other words, we will use an
ev.
<bn and bn

ev.
>an as

shorthand for

∃N : an < bn ∀n ≥ N . (125)

We note that if the quantities are functions, then this will
just denote pointwise eventual inequality, i.e., fn(x)

ev.
<gn(x)

is shorthand for

∀x ∃N (x) : fn(x) < gn(x) ∀n ≥ N (x) (126)

and not

∃N : fn(x) < gn(x) ∀x,∀n ≥ N . (127)

Upgrading from such pointwise inequalities to uniform
inequalities will be important in the achievability proofs to
come, which will require uniform versions of the lemmas
in Sec. V B, which are presented in Appendix I.

We start with the first-order rate, since all of the remain-
ing results in this section are refinements of this first-order
rate. Moreover, all of the remaining proofs will follow a
general approach that extends the proof below. We will
quantify the optimal-transformation-rates regime by pro-
viding both upper and lower bounds, referred to as the
optimality and achievability bounds, respectively. In all
cases, these bounds will follow from Lemma 2, which
provides both necessary and sufficient conditions for the
existence of a transformation in terms of hypothesis-testing
quantities.

The first-order transformation rate is captured by the
following theorem.

Theorem 1 (Restated) (First-order rate). For constant
ε ∈ (0, 1) and [ρ2, σ2] = 0, the optimal rate converges:

lim
n→∞R∗n(ε) =

D(ρ1‖σ1)

D(ρ2‖σ2)
. (128)

Furthermore, if we consider more general target dichot-
omies, [ρ2, σ2] 
= 0, then we still have the upper bound:

lim sup
n→∞

R∗n(ε) ≤
D(ρ1‖σ1)

D(ρ2‖σ2)
. (129)
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Proof. We start with optimality. Consider a rate R >
D(ρ1‖σ1)/D(ρ2‖σ2). As ε ∈ (0, 1), we also have that (1±
ε)/2 ∈ (0, 1), allowing us to apply Lemma 3. On the input
side, this gives

lim
n→∞−

1
n

logβ 1+ε
2

(
ρ⊗n

1

∥
∥σ⊗n

1

) = D(ρ1‖σ1) (130)

and on the target side

lim
n→∞−

1
n

logβ 1−ε
2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)

= lim
m→∞−

R
m

logβ 1−ε
2

(
ρ⊗m

2

∥
∥σ⊗m

2

)
(131a)

= RD(ρ2‖σ2) (131b)

> D(ρ1‖σ1). (131c)

If we let x = (1+ ε)/2, then

βx
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βx−ε

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
, (132)

and so by Lemma 2 this means that transformation at a
rate of R is eventually not possible. Thus, R provides an
upper bound for asymptotic optimal transformation rate.
As this argument holds for any R > D(ρ1‖σ1)/D(ρ2‖σ2)

this means that

lim sup
n→∞

R∗n(ε) ≤
D(ρ1‖σ1)

D(ρ2‖σ2)
. (133)

Next, we proceed to proving the achievability for com-
muting target dichotomies, [ρ2, σ2] = 0. Consider a rate
r < D(ρ1‖σ1)/D(ρ2‖σ2). To show that a rate is achievable,
we need to consider the pinched hypothesis testing of the
input dichotomy. Specifically, we will use the limits from
Lemma 4:

lim
n→∞−

1
n

log
←
β ε

(
ρ⊗n

1

∥
∥σ⊗n

1

) = D(ρ1‖σ1), (134a)

lim
n→∞−

1
n

logβ1−ε
(
ρ⊗rn

2

∥
∥σ⊗rn

2

) = rD(ρ2‖σ2). (134b)

As r < D(ρ1‖σ1)/D(ρ2‖σ2), combining these gives

←
β ε

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<β1−ε

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (135)

But this is only true for specific errors, while Lemma 2
requires such an inequality for all x in a range. How do
we span this gap? For the first-order problem (and high-
error cases of moderate and large deviations), this is easily

solved by simply using the monotonicity of βx(·‖·),
←
β x(·‖·)

and
→
β x(·‖·) as functions of x for fixed states. We can use

this to relax the preceding inequality to

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βx−ε

(
ρ⊗rn

2

∥
∥σ⊗rn

2

) ∀x ∈ (ε, 1). (136)

We note that because this set of inequalities (parametrized
by x) follows from the previous x-independent inequal-
ity, there is no issue of uniformity, i.e., there exists an
x-independent N such that this holds for n ≥ N . As such,
we can apply Lemma 2, which gives that transformation at
a rate of r is eventually achievable and thus

lim inf
n→∞ R∗n(ε) ≥

D(ρ1‖σ1)

D(ρ2‖σ2)
. (137)

�

As with hypothesis testing in Sec. V B, we will now
spend the rest of this subsection giving our refinements on
this first-order result for different regimes of the scaling of
the error εn. A summary of these different regimes is given
in Fig. 1.

1. Small deviation

We start with the small-deviation regime, in which the
error is a constant ε ∈ (0, 1). The proof is broadly similar
to that of the first-order rate in Theorem 1 but more care has
to be taken to capture the second-order contribution, espe-
cially on the achievability side. Also, recall that Eq. (24)
defines the reversibility parameter as

ξ := V(ρ1‖σ1)

D(ρ1‖σ1)

/
V(ρ2‖σ2)

D(ρ2‖σ2)
. (138)

Then, we have the following.

Theorem 2 (Restated) (Small-deviation rate). Let �
/ � denote (in)equality up to o(1/

√
n). For constant ε ∈

(0, 1) and [ρ2, σ2] = 0, the optimal rate is

R∗n(ε) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (139)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bound

R∗n(ε) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (140)
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Proof. Consider a small slack parameter δ > 0 and
define the rate Rn as

Rn := D(ρ1‖σ1)+
√

V(ρ1‖σ1)/n× S−1
1/ξ (ε)+ δ/

√
n

D(ρ2‖σ2)
.

(141)

Recall that by Lemma 1, the term S−1
1/ξ (ε) can be expressed

as a minimum,

S−1
1/ξ (ε) = min

x∈(ε,1)

[
�−1(x)−

√
1/ξ ×�−1(x − ε)

]
.

(142)

Let x∗ > ε denote the value of x at which this minimum is
attained, such that

Rn = D(ρ1‖σ1)

D(ρ2‖σ2)
+ δ√

nD(ρ2‖σ2)
+

√
V(ρ1‖σ1)

nD2(ρ2‖σ2)
�−1(x∗)

−
√

V(ρ2‖σ2)D(ρ1‖σ1)

nD3(ρ2‖σ2)
�−1(x∗ − ε). (143)

Next, we turn to Lemma 4. For the input dichotomy, this
gives

− 1
n

logβx∗
(
ρ⊗n

1

∥
∥σ⊗n

1

)

� D(ρ1‖σ1)+
√

V(ρ1‖σ1)

n
�−1(x∗), (144)

and for the target we can substitute in Rn to obtain

− 1
n

logβx∗−ε
(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)

� RnD(ρ2‖σ2)+
√

RnV(ρ2‖σ2)

n
�−1(x∗ − ε) (145a)

= D(ρ1‖σ1)+
√

V(ρ1‖σ1)

n
�−1(x∗)+ δ√

n
(145b)

� −1
n

logβx∗
(
ρ⊗n

1

∥
∥σ⊗n

1

)+ δ√
n

. (145c)

Due to this δ > 0 term, we can therefore conclude that

βx∗
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βx∗−ε

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
(146)

and so by Lemma 2 the transformations at the rate Rn are
eventually not possible. As this is true for all δ > 0, this

then upper bounds the optimal rate

R∗n(ε) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (147)

We now turn to achievability. Once again, consider a small
slack parameter 0 < δ < ε/2 and define the rate rn as

rn := D(ρ1‖σ1)

D(ρ2‖σ2)
− δ√

nD(ρ2‖σ2)

+ 1√
n

min
y∈[ε,1]

[√
V(ρ1‖σ1)

D(ρ2‖σ2)
�−1(y − δ)

−
√

V(ρ2‖σ2)D(ρ1‖σ1)

D(ρ2‖σ2)
3 �−1(y − ε + δ)

]

. (148)

Again, for convenience, let y∗ denote a minimizer in
the above optimization over y. If we let x ∈ (ε, 1) then
applying Lemma 4 to the input gives

− 1
n

log
←
β x−δ

(
ρ⊗n

1

∥
∥σ⊗n

1

)

� D(ρ1‖σ1)+
√

V(ρ1‖σ1)

n
×�−1(x − δ) (149)

and to the target gives

− 1
n

logβx−ε+δ
(
ρ
⊗rnn
2

∥
∥σ⊗rnn

2

)

� rnD(ρ2‖σ2)

+
√

rnV(ρ2‖σ2)

n
×�−1(x − ε + δ), (150a)

� D(ρ1‖σ1)− δ/
√

n

+
√

V(ρ2‖σ2)D(ρ1‖σ1)

nD(ρ2‖σ2)
�−1(x − ε + δ)

+
√

V(ρ1‖σ1)

n
�−1(y∗ − δ)

−
√

V(ρ2‖σ2)D(ρ1‖σ1)

nD(ρ2‖σ2)
�−1(y∗ − ε + δ). (150b)
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Combining these, we have

− 1
n

logβx−ε+δ
(
ρ
⊗rnn
2

∥
∥σ⊗rnn

2

)

� −1
n

log
←
β x−δ

(
ρ⊗n

1

∥
∥σ⊗n

1

)− δ/√n

−
√

V(ρ1‖σ1)

n
�−1(x − δ)

+
√

V(ρ2‖σ2)D(ρ1‖σ1)

nD(ρ2‖σ2)
�−1(x − ε + δ)

−
√

V(ρ2‖σ2)D(ρ1‖σ1)

nD(ρ2‖σ2)
�−1(y∗ − ε + δ)

+
√

V(ρ1‖σ1)

n
�−1(y∗ − δ). (151)

Recalling that y∗ has been defined as the minimizer over
just such an expression, we obtain

− 1
n

logβx−ε+δ
(
ρ
⊗rnn
2

∥
∥σ⊗rnn

2

)

� −1
n

log
←
β x−δ

(
ρ⊗n

1

∥
∥σ⊗n

1

)− δ/√n. (152)

Because of δ > 0, this in turn implies the eventual
inequality

←
β x−δ

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βx−ε+δ

(
ρ
⊗rnn
2

∥
∥σ⊗rnn

2

)
. (153)

Finally, we can relax out the slack parameter, once again

using the fact that βx and
←
β x are monotone decreasing as

functions of x, giving

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

) ≤ βx−ε
(
ρ
⊗rnn
2

∥
∥σ⊗rnn

2

)
. (154)

We note that in the above proof we have skipped over
the issue of uniformity. While we did show that Eq. (154)
holds for all x eventually, it still remains to be seen that
it eventually holds for all x, the latter of which would be
required to apply Lemma 2. To put it less confusingly,
we have shown that there exists an N such that Eq. (154)
holds for all n > N but we have not ruled out the pos-
sibility that N depends on x. Such a dependence might
mean that there is no x-independent N beyond which this
expression holds for all x, which is what would be needed
by Lemma 2. However, if we swap out Lemma 4 with
its uniform version (Lemma 21, presented and proven in
Appendix I), then we do indeed obtain an N that is inde-
pendent of x (though still dependent on ρ1, ρ2, σ1, σ2,
ε, and δ, of course), removing this issue. Given this, we
can now conclude that Eq. (154) eventually holds for all

x ∈ (ε, 1). Having dealt with this uniformity issue, we can
we can return to Lemma 2, which allows us to conclude
that transformation at the rate rn is eventually possible.
This held true for all small δ > 0. Taking the limit δ→ 0+
and using the continuity of �−1 on (0, 1), we can see that
this rate does indeed limit to the desired expression, lower
bounding the optimal rate as

R∗n(εn) �
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
. (155)

�

2. Large deviation

We now turn to the large-deviation regime, in which we
consider errors that are exponentially approaching either 0
or 1, which we refer to as low and high error. The general
structure of the proof follows that of the small-deviation
case but will be split into two subregimes: high and low
error. In high error, we have that εn is exponentially close
to 1 and so the region x ∈ (εn, 1) is quite small. This allows
us to obtain an optimal expression for the transformation
rate with a single application of the large-deviation anal-
ysis of hypothesis testing Lemma 5, similar to the proof
of the first-order rate (Theorem 1). For the low-error case,
however, the region x ∈ (εn, 1) is quite large, requiring us
to consider hypothesis testing for a whole interval of pos-
sible error exponents. Here, the proof will more closely
follow that of the small-deviation case (Theorem 2), run-
ning into the same uniformity issues. As the high-error
proof is simpler, we shall start there.

Theorem 5 (Restated) (Large-deviation rate, high
error). For any error of the form εn = 1− exp(−λn) with
constant λ > 0, if [ρ2, σ2] = 0, then the optimal rate is

lim
n→∞R∗n(εn) = inf

t1>1
0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
.

(156)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bound

lim sup
n→∞

R∗n(εn) ≤ inf
t1>1

0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
.

(157)

Proof. Consider a rate R such that

R > inf
t1>1

0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
. (158)
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Rearranging this gives

sup
t1>1
−qDt1(ρ1‖σ1)+ t1

1− t1
λ

> inf
0<t2<1

−RDt2(ρ2‖σ2)+ t2
1− t2

λ. (159)

Recalling the definition of � from Lemma 5, this is
equivalent to

�+λ(ρ1‖σ1) > R�−λ/R(ρ2‖σ2). (160)

The idea now is to connect this rate to the large-deviation
hypothesis-testing quantities from Lemma 5. Consider
hypothesis testing of the input or target with type-I error
log odds of ±λ. Lemma 5 gives, for the input dichotomy,

lim
n→∞

1
n
γ+λn

(
ρ⊗n

1

∥
∥σ⊗n

1

) = �+λ(ρ1‖σ1), (161)

and for the target dichotomy,

lim
n→∞

1
n
γ−λn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

1

)

= lim
m→∞

R
m
γ−λm/R

(
ρ⊗m

2

∥
∥σ⊗m

1

)
(162a)

= R�−λ/R(ρ2‖σ2). (162b)

We can put the above limits back in terms of the type-II
error probability as

lim
n→∞

1
n

L
[
βL−1[−λn]

(
ρ⊗n

1

∥
∥σ⊗n

1

)] = �+λ(ρ1‖σ1), (163a)

lim
n→∞

1
n

L
[
βL−1[+λn]

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)] = R�−λ/R(ρ2‖σ2),

(163b)

where we recall that L[x] := log(x/(1− x)). As εn is expo-
nentially approaching 1 with an exponent of λ, (1± εn)/2
are exponentially approaching 0 and 1 respectively, both
also with an exponent of λ. Putting this in terms of log
odds as we did in Sec. V B 2, this means that

lim
n→∞

1
n

L
[

1± εn

2

]

= ±λ, (164)

Using the uniformity of the large-deviation analysis of
hypothesis testing shown in Lemma 22 then implies that

Eq. (163) can be extended to

lim
n→∞

1
n

L
[
β 1+εn

2

(
ρ⊗n

1

∥
∥σ⊗n

1

)] = �+λ(ρ1‖σ1), (165a)

lim
n→∞

1
n

L
[
β 1−εn

2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)] = R�−λ/R(ρ2‖σ2). (165b)

Recalling Eq. (160) and using the monotonicity of L [·], we
then have

βxn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βxn−εn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
(166)

for xn := (1+ εn)/2. By Lemma 2, this means that trans-
formation at a rate of R is eventually not possible. As this
held for any R above satisfying Eq. (158), this means that
this implies a corresponding upper bound on the optimal
rate,

lim sup
n→∞

R∗n(εn) ≤ inf
t1>1

0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
,

(167)

as required.
Next, consider a rate r such that

r < inf
t1>1

0<t2<1

←
Dt1(ρ1‖σ1)+

(
t1

t1−1 + t2
1−t2

)
λ

Dt2(ρ2‖σ2)
. (168)

Similar to optimality, this can be rearranged into the
inequality

←
�+λ(ρ1‖σ1) < r�−λ/r(ρ2‖σ2) (169)

and so

←
γ +λn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<γ−λn

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
(170)

or, equivalently,

←
β L−1[+λn]

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βL−1[−λn]

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (171)

Recalling that εn = 1− exp(−λn), we have

lim
n→∞

1
n

L [1− εn] = −λ, (172a)

lim
n→∞

1
n

L [εn] = +λ (172b)

and therefore we eventually have

←
β εn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<β1−εn

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (173)
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Lastly, we use monotonicity of the type-II error, which
allows us to relax this to the broader inequality

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βx−εn

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
, (174)

for all x ∈ (εn, 1). We note that unlike with the proof of the
small-deviation rate (see Lemma 4), there is no concern
about the uniformity of the asymptotic analysis of hypoth-
esis testing, as we only need to apply the large-deviation
analysis in Lemma 5 for a single error exponent λ. This
diversion aside, we can now apply Lemma 2, which allows
us to conclude that the rate r is eventually achievable. As
this was true for any rate of the form Eq. (168), this implies
a corresponding lower bound on the optimal rate,

lim inf
n→∞ R∗n(εn) ≥ inf

t1>1
0<t2<1

qDt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
.

(175)

�

Next, we turn to the trickier case of low error. Before
stating and proving the result, we will need some defini-
tions. As we saw in the high-error case, the proof came
down to satisfying inequalities of the form

�+λ
(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�−λ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
, (176a)

←
�+λ

(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�−λ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
, (176b)

→
�+λ

(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�−λ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
. (176c)

In the low-error case, we will need inequalities of the form

�+μ
(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�+μ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
, (177a)

←
�+μ

(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�+μ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
, (177b)

→
�+μ

(
ρ⊗n

1

∥
∥ρ⊗n

2

) ≤ R�+μ/R
(
ρ⊗Rn

2

∥
∥ρ⊗Rn

2

)
. (177c)

Importantly, for the low-error case, we will need to satisfy
these not just for a single μ but for all −λ ≤ μ ≤ λ (for
details, see the proof below). As such, it will be helpful to
define the rates that saturate the above inequalities. Specifi-
cally, let r(μ),

←
r (μ), and

→
r (μ) denote the largest rates sat-

isfying these inequalities, in the nonpinched, left-pinched,
and right-pinched cases, respectively. By expanding the
definitions of �,

←
� , and

→
� , one can come up with explicit

formulations of these rates, which share their piecewise

structure; specifically,

r(μ) :=

⎧
⎪⎨

⎪⎩

r1(μ), μ < −D(σ1‖ρ1),
r2(μ), −D(σ1‖ρ1) < μ < 0,
r3(μ), μ > 0,

(178a)

←
r (μ) :=

⎧
⎪⎨

⎪⎩

←
r 1(μ), μ < −D�(σ1‖ρ1),
←
r 2(μ), −D�(σ1‖ρ1) < μ < 0,
r3(μ), μ > 0,

(178b)

→
r (μ) :=

⎧
⎪⎨

⎪⎩

r1(μ), μ < −D(σ1‖ρ1),
→
r 2(μ), −D(σ1‖ρ1) < μ < 0,
→
r 3(μ), μ > 0,

(178c)

where

r1(μ) := sup
t2<0

inf
t1<0

−qDt1(ρ1‖σ1)+
(

t1
t1−1 − t2

t2−1

)
μ

−qDt2(ρ2‖σ2)
,

(179a)

r2(μ) := inf
0<t2<1

sup
0<t1<1

Dt1(ρ1‖σ1)+
(

t1
1−t1
− t2

1−t2

)
μ

Dt2(ρ2‖σ2)
,

(179b)

r3(μ) := sup
t2>1

inf
t1>1

qDt1(ρ1‖σ1)+
(

t1
t1−1 − t2

t2−1

)
μ

qDt2(ρ2‖σ2)
, (179c)

and

←
r 1(μ) := sup

t2<0
inf
t1<0

−←Dt1(ρ1‖σ1)+
(

t1
t1−1 − t2

t2−1

)
μ

−Dt2(ρ2‖σ2)
,

(180a)

←
r 2(μ) := inf

0<t2<1
sup

0<t1<1

←
Dt1(ρ1‖σ1)+

(
t1

1−t1
− t2

1−t2

)
μ

Dt2(ρ2‖σ2)
,

(180b)

→
r 2(μ) := inf

0<t2<1
sup

0<t1<1

→
Dt1(ρ1‖σ1)+

(
t1

1−t1
− t2

1−t2

)
μ

Dt2(ρ2‖σ2)
,

(180c)

→
r 3(μ) := sup

t2>1
inf
t1>1

→
Dt1(ρ1‖σ1)+

(
t1

t1−1 − t2
t2−1

)
μ

Dt2(ρ2‖σ2)
.

(180d)

Lastly, similar to r(μ), we define qr(μ) as

qr(μ) :=

⎧
⎪⎨

⎪⎩

r1(μ), μ < −D(σ1‖ρ1),
qr2(μ), −D(σ1‖ρ1) < μ < 0,
r3(μ), μ > 0,

(181)
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where

qr2(μ) := inf
0<t2<1

sup
0<t1<1

qDt1(ρ1‖σ1)+
(

t1
1−t1
− t2

1−t2

)
μ

Dt2(ρ2‖σ2)
.

(182)

These definitions in hand, we can turn to the low-error rate.

Theorem 4 (Restated) (Large-deviation rate, low error).
For any error of the form εn = exp(−λn) with constant
λ > 0, if [ρ2, σ2] = 0, then the optimal rate is lower
bounded by

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
qr(μ). (183)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then the optimal rate is upper bounded by

lim sup
n→∞

R∗n(εn) ≤ min
−λ≤μ≤λ

r(μ). (184)

In the above, r and qr are defined in terms of Rényi rela-
tive entropies in Sec. V C 2 and coincide when [ρ1, σ1] =
[ρ2, σ2] = 0.

Proof. We once again start with optimality. Let 0 < δ <

λ be a small constant and consider a rate R such that

R > min
−λ+δ≤μ≤λ−δ

r(μ). (185)

This means that there exists a −λ < μ∗ < λ such that R >
r(μ∗) and therefore that

�μ∗(ρ1‖σ1) > R�μ∗/R(ρ2‖σ2). (186)

By a similar chain of reasoning to that used in the proof of
Theorem 5, this implies that

βL−1[μ∗n]
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βL−1[μ∗n]

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (187)

Let xn := L−1[μ∗n]. As μ∗ > −λ, we have that xn domi-
nates over εn and so the monotonicity of βx allows us to
relax this to

βxn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βxn−εn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (188)

By Lemma 2, this means that transformation at a rate of
R is eventually not possible. If we now take δ→ 0+, this

gives an upper bound on the optimal rate of

lim sup
n→∞

R∗n(εn) ≤ min
−λ≤μ≤λ

r(μ). (189)

We now turn to achievability. Let δ > 0 be a small constant
and consider a rate r such that

r < min
−λ−δ≤μ≤λ+δ

←
r (μ). (190)

This means that

←
�μ(ρ1‖σ1) < r�μ/r(ρ2‖σ2) (191)

and thus, by Lemma 5,

←
β L−1[μn]

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βL−1[μn]

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
, (192)

for any −λ− δ ≤ μ ≤ λ+ δ. Note that applying Lemma
5 only gives this convergence pointwise but if we swap
this out for the uniform version (Lemma 22, given in
Appendix I), then this can be strengthened to a uniform
statement. Specifically, we obtain that for sufficiently large
n, this holds for all μ such that |μ| ≤ λ+ δ in that range.
Recalling that εn := exp(−λn) and therefore corresponds
to log odds per copy of −λ, we can see that for any
probability yn ∈ (εn/2, 1− εn/2), we have

1
n

L(yn) ∈ [−λ, λ] ⊂ (−λ− δ, λ+ δ) (193)

for sufficiently large n. As such, we have

←
β yn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βyn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
, (194)

for all such yn. Use of the monotonicity of βx and
←
β x allows

us to relax this to

←
β yn−εn/2

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βyn+εn/2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (195)

Lastly, we shift this by xn := yn − ε/2, which yields

←
β yn−εn/2

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βyn+εn/2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
, (196)

for xn ∈ (εn, 1). As in deriving this inequality we have
employed not just the pointwise Lemma 5 but also the uni-
form Lemma 22, we therefore have it uniformly, which
allows us to utilize Lemma 2. This in turn tells us that
transformation at rate r is eventually possible. Taking
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δ→ 0+, this yields the corresponding lower bound on the
optimal rate of

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
←
r (μ). (197)

Repeating the above argument for
→
r (μ) also gives an

achievability bound

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
→
r (μ). (198)

Combining these gives

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
max

{←
r (μ),

→
r (μ)

}
. (199)

By applying Lemma 13, it can be shown that

max{←r (μ),→r (μ)} = qr(μ), (200)

giving the final achievability bound

lim inf
n→∞ R∗n(εn) ≥ min

−λ≤μ≤λ
qr(μ). (201)

�

3. Moderate deviation

So far, we have considered constant error and exponen-
tially decaying error, which leaves a gap of errors that
decay subexponentially, known as the moderate-deviation
regime. Much like the large-deviation case, this will con-
tain a slightly easier high-error case and a slightly trickier
low-error case and the proof will follow as a streamlined
version of the proof used for Theorems 4 and 5. Recall
from Eq. (24) that the reversibility parameter is defined as

ξ := V(ρ1‖σ1)

D(ρ1‖σ1)

/
V(ρ2‖σ2)

D(ρ2‖σ2)
. (202)

Then, we have the following.

Theorem 3 (Restated) (Moderate-deviation rate). Con-
sider an a ∈ (0, 1), and let � / � denote (in)equality up
to o

(√
na−1

)
. Let εn := exp(−λna) for some λ > 0. For

[ρ2, σ2] = 0, the optimal rate is

R∗n(εn) � D(ρ1‖σ1)− |1− ξ−1/2|
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
,

(203a)

R∗n(1− εn) �
D(ρ1‖σ1)+

[
1+ ξ−1/2

] √
2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
.

(203b)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then we still have the upper bounds

R∗n(εn) � D(ρ1‖σ1)− |1− ξ−1/2|
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
,

(204a)

R∗n(1− εn) � D(ρ1‖σ1)+
[
1+ ξ−1/2

] √
2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
.

(204b)

Proof. We begin with the more involved low-error case
of R∗n(εn), returning to the high-error case of R∗n(1− εn) at
the end of the proof. As is customary, we start with opti-
mality. Let 0 < λ′ < λ be a constant and consider a rate Rn
defined as

Rn := D(ρ1‖σ1)− |1− ξ−1/2|
√

2λ′V(ρ1‖σ1)na−1

D(ρ2‖σ2)
. (205)

Applying Lemma 6 to the input state, we obtain

1
n
γ±λna

(
ρ⊗n

1

∥
∥σ⊗n

1

) � −D(ρ1‖σ1)∓
√

2λV(ρ1‖σ1)na−1,

(206)

and for the target state, we have

1
n
γ±λna

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)

� −RnD(ρ1‖σ1)∓
√

2λRnV(ρ2‖σ2)na−1. (207a)

Taking the difference of these and expanding out Rn gives

1
n
γ±λna

(
ρ⊗n

1

∥
∥σ⊗n

1

)− 1
n
γ±λna

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)

� −
√

2λ′V(ρ1‖σ1)na−1|1− ξ−1/2|
∓

√
2λV(ρ1‖σ1)na−1

[
1− ξ−1/2] . (208a)

So if we take s := sgn(ξ−1/2 − 1) to be the sign that makes
this second term positive, then λ′ < λ tells us that this
term must asymptotically dominate and, as such, we can
conclude that

1
n
γsλna

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>

1
n
γsλna

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
. (209)

Recalling that εn := exp(−λna), this means that εn has
asymptotic log odds per copy of −λna, as does 2εn. Using
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this, we can reexpress the above in terms of the type-II
error probabilities as

ξ > 1 : β2εn
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>βεn

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
, (210a)

ξ < 1 : β1−εn
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>β1−2εn

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
.

(210b)

By Lemma 2, this means that transformation at a rate of Rn
is asymptotically not possible and thus that

R∗n(εn) � D(ρ1‖σ1)− |1− ξ−1/2|
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
.

(211)

The achievability proof follows similarly. The idea is that
the bottleneck will appear once at log odds of ±λna−1

and to satisfy both, the rate will require an absolute
value around the term 1− ξ 1/2. For this to give achiev-
ability, we will need to use the uniform version of the
moderate-deviation analysis of hypothesis testing (Lemma
23, presented in Appendix I).

As for the high-error case, this sign issue does not arise.
In this case, we can follow an approach similar to the
achievability proof of Theorem 1. By using Lemma 6, we
can show that

β 1+εn
2

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
>β 1−εn

2

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
1

)
(212)

for an appropriately chosen rate Rn that will yield the
optimality bound and for achievability we first show that

←
β εn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<β1−εn

(
ρ
⊗rnn
2

∥
∥σ⊗rnn

1

)
(213)

and then use monotonicity to extend this to the ordering
required by Lemma 2. �

4. Extreme deviation

The argument for the zero-error case follows similarly
to the low-error large-deviation case.

Theorem 6 (Restated) (Zero-error rate). For [ρ2, σ2]
= 0, the optimal zero-error rate is lower bounded:

lim inf
n→∞ R∗n(0) ≥ max

{

inf
α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
, inf
α∈R

→
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)

}

,

(214)

where the divergences
←
Dα and

→
Dα are defined in Eqs. (81a)

and (81b). More generally, if [ρ2, σ2] 
= 0, then the optimal
transformation rate for all n is upper bounded:

R∗n(0) ≤ min
α∈R

qDα(ρ1‖σ1)

qDα(ρ2‖σ2)
. (215)

Proof. As this is the zero-error case, the optimality side
is pretty straightforward. Any additive and data-processing
quantity Q(·‖·) puts a single-shot bound on the largest
possible transformation rate for all n of the form

R∗n(ε) ≤
Q(ρ1‖σ1)

Q(ρ2‖σ2)
. (216)

If we consider the minimal relative entropies qDα , this gives

R∗n(0) ≤ min
α∈R

qDα(ρ1‖σ1)

qDα(ρ2‖σ2)
. (217)

In the case of coherent outputs, one could include other
possible monotones Q, which could constrain the zero-
error rate further.

Now, we turn to the tricky part, achievability. Consider
a rate constant r such that

r < inf
α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
. (218)

We note that this rate is almost of the form that we want
but involves the pinched relative entropy and not the min-
imal and is therefore suboptimal—we will return to this.
We want to prove that

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

) !
< βx

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
(219)

eventually holds for all x. To do this, we will need to
combine both the extreme- and large-deviation analyses.

First, we start with high errors. Noting that r <
←
D+∞(ρ1‖σ1)/D+∞(ρ2‖σ2) and recalling that

←
Dα is defined

as the pinched-and-regularized relative entropy, this means
that

r
ev.
<

D+∞
(
Pσ⊗n

1

(
ρ⊗n

1

)∥∥
∥σ⊗n

1

)

nD+∞(ρ2‖σ2)
. (220)

The pinching inequality gives

λmin

(
Pσ⊗n

1

(
ρ⊗n

1

)) ≥ λmin(ρ)
n

|spec(σ⊗n)| ≥ λ
dn
min(ρ), (221)

so any x ≤ min{λd
min(ρ1), λr

min(ρ2)}n satisfies

x ≤ λmin

(
Pσ⊗n

1

(
ρ⊗n

1

))
and x ≤ λmin

(
σ⊗rn

1

)
(222)
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and so we can apply Lemma 7 to both states, giving

←
β 1−x

(
ρ⊗n

1

∥
∥σ⊗n

1

) = x exp
(
−D+∞

(
Pσ⊗n

1

(
ρ⊗n

1

)∥∥
∥σ⊗n

1

))

(223a)
ev.
< x exp (−rnD+∞(ρ2‖σ2)) (223b)

= x exp
(
−qD+∞

(
ρ⊗rn

2

∥
∥σ⊗rn

2

))
(223c)

= β1−x
(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (223d)

Similarly, for the low-error case, we can use r <
←
D−∞(ρ1‖σ1)/D−∞(ρ2‖σ2), which gives, for sufficiently
large n, that

1−
←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

) = x exp
(
−D−∞

(
Pσ⊗n

1

(
ρ⊗n

1

)∥∥
∥σ⊗n

1

))

(224a)
ev.
> x exp

(
−rnqD−∞(ρ2‖σ2)

)
(224b)

= 1− βx
(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (224c)

For the remaining range of x, we resort to the
method used in the large-deviation regime. As r <
←
Dα(ρ1‖σ1)/Dα(ρ2‖σ2), we have

←
�λ(ρ1‖σ1) < r�λr(ρ2‖σ2) (225)

for all λ. Using Lemma 5, this means that

←
β L−1[λn]

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<βL−1[λn]

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (226)

This is only a pointwise convergence, which is insufficient
for achievability but, similarly to the proof of Theorem 4,
we can leverage the uniform analysis of Lemma 22 to show
that this inequality must eventually hold uniformly for λ on
a closed interval. If we specifically consider the interval

|λ ≤ max {−d log λmin(ρ1),−r log λmin(ρ2)} | + 1, (227)

then this overlaps with the extreme-deviation cases and
thus we have that, for sufficiently large n,

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

)
< βx

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
(228)

holds for all x ∈ (0, 1). Application of Lemma 2 gives that
transformation at rate r is eventually possible and so

lim inf
n→∞ R∗n(0) ≥ inf

α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
. (229)

Similarly, if we consider the right pinching, we also obtain

lim inf
n→∞ R∗n(0) ≥ inf

α∈R

→
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
. (230)

Now combining both achievability results for left and right
pinching and recalling Lemma 13, gives

lim inf
n→∞ R∗n(0) ≥ max

{

inf
α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
, inf
α∈R

→
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)

}

,

(231)

as required. Note that this is quite close to the achievability
which, due to Lemma 13, can be rewritten as

lim sup
n→∞

R∗n(0) ≤ inf
α∈R

max

{←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
,
→
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)

}

.

(232)

�

In Theorem 8, it has been noted that all of the achiev-
ability results in this paper are, in the thermodynamic
setting, achievable with only thermal operations, except for
Theorem 6, which requires Gibbs-preserving maps. While
all the achievability results in this paper leverage pinch-
ing, which is itself a thermal operation (see Appendix D),
the problem has arisen in this final step involving pinching
either the first or second state. In the case where switching
the pinching is unnecessary, then this is a thermal operation
but that is not generally the case.

Instead of a rate-based statement, we can also phrase
this zero-error statement in terms of eventual Blackwell
ordering [96,97,102], in line with some of the existing
papers looking at similar zero-error transformation ques-
tions. For a pair of dichotomies, we define a notion of
eventual Blackwell ordering as an ordering that appears
for a sufficiently large number of copies, i.e.,

(
ρ⊗n

1 , σ⊗n
1

) ev.�(
ρ⊗n

2 , σ⊗n
2

)
is a shorthand for

∃N :
(
ρ⊗n

1 , σ⊗n
1

) � (
ρ⊗n

2 , σ⊗n
2

) ∀n ≥ N . (233)

Corollary 1 (Eventual Blackwell ordering). Consider a
pair of dichotomies (ρ1, σ1) and (ρ2, σ2). If the target is
commuting, [ρ2, σ2] = 0, and

←
Dα(ρ1‖σ1) > Dα(ρ2‖σ2) ∀α ∈ R, (234a)

or
→
Dα(ρ1‖σ1) > Dα(ρ2‖σ2) ∀α ∈ R, (234b)

then
(
ρ⊗n

1 , σ⊗n
1

) ev.� (
ρ⊗n

2 , σ⊗n
2

)
. Moreover, if

(
ρ⊗n

1 , σ⊗n
1

) ev.�(
ρ⊗n

2 , σ⊗n
2

)
, then this implies the inequalities

qDα(ρ1‖σ1) ≥ qDα(ρ2‖σ2) ∀α ∈ R, (235)

even for noncommuting targets [ρ2, σ2] 
= 0.
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Proof. This follows directly from considering the R = 1
cases of Theorem 6. The inequalities

←
Dα(ρ1‖σ1) > Dα(ρ2‖σ2) ∀α ∈ R, (236a)

or
→
Dα(ρ1‖σ1) > Dα(ρ2‖σ2) ∀α ∈ R, (236b)

give that the zero-error rate is strictly greater than unity,
R∗n(0)

ev.
> 1, and the inequalities

qDα(ρ1‖σ1) ≥ qDα(ρ2‖σ2) ∀α ∈ R (237)

all follow from the data-processing inequality of the mini-
mal Rényi relative entropy. �

Lastly, for completeness, we consider the case of a
superexponentially high error, wherein the asymptotic
transformation rate is unbounded.

Theorem 7 (Restated) (Extremely high error rate). For
[ρ2, σ2] = 0, if the error is allowed to be superexponen-
tially close to 1, then the optimal rate is unbounded,

lim
n→∞R∗n

(
1− exp(−ω(n))) = ∞. (238)

Proof. Consider any constant rate r. As εn is super-
exponentially approaching 1, it must dominate any other
expression approaching 1 exponentially, specifically

εn
ev.
>1− (λmin(ρ1)/2)n and εn

ev.
>1− λmin(ρ2)

rn. (239)

Thus, we have that 1− εn
ev.
<(λmin(ρ1)/2)n and 1−

εn
ev.
<λrn

min(ρ2). Application of Lemma 7 to the input gives

←
β εn

(
ρ⊗n

1

∥
∥σ⊗n

1

)

1− εn
= exp

(−D+∞
(Pσ⊗n

(
ρ⊗n)∥∥σ⊗n)) ,

(240)

and to the target gives

1− β1−εn
(
ρ⊗rn

2

∥
∥σ⊗rn

2

)

1− εn
= exp

(
−rnqD−∞(ρ2‖σ2)

)
. (241)

As n→∞, these type-II errors approach 0 and 1, respec-
tively, and so

←
β εn

(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
<β1−εn

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
. (242)

Use of the monotonicity of x �→ βx(·‖·) allows us to relax
this to

←
β x

(
ρ⊗n

1

∥
∥σ⊗n

1

)
< βx−εn

(
ρ⊗rn

2

∥
∥σ⊗rn

2

)
(243)

for x ∈ (εn, 1). So, by Lemma 2, this means that transfor-
mation at the rate r is eventually achievable. As this entire

argument has worked for any constant r, this therefore
means that the optimal rate must diverge:

lim inf
n→∞ R∗n(εn) = ∞. (244)

�

VI. CONCLUSIONS AND OUTLOOK

In this work, we have analyzed one of the central
problems of the theory of quantum statistical inference,
namely, that of comparing informativeness of two quan-
tum dichotomies (which is directly related to transforming
the first dichotomy into the second one). By focusing on
the asymptotic version of the problem, we have been able
to solve it in various error regimes under the assumption
that the second dichotomy is commutative. More precisely,
we have found optimal transformation rates between many
copies of pairs of quantum states in the small-, moderate-
, large-, and zero-error regimes. We have then employed
the obtained results to derive new thermodynamic laws for
quantum systems prepared in coherent superpositions of
energy eigenstates. Thus, for the first time, we have been
able to analyze the optimal performance of thermodynamic
protocols with coherent inputs beyond the thermodynamic
limit and we have discussed new resonance phenomena
that allow one to mitigate thermodynamic dissipation by,
e.g., employing quantum coherence.

We believe that the success of employing quantum sta-
tistical inference techniques to accurately describe quan-
tum thermodynamic transformations strongly motivates
further exploration of the connections between the two
frameworks. We propose the following three avenues.
First, one of the problems within the resource-theoretic
approach to quantum thermodynamics is the lack of tech-
niques for addressing the regimes of nonindependent sys-
tems. Interestingly, in Refs. [112,115], it is suggested
that the hypothesis-testing approach can be effective for
studying ensembles composed of weakly correlated states.
Potentially, such techniques can be adapted to study the
thermodynamic state transformation problem outside of
the usual uncorrelated setting. Second, one could use quan-
tum statistical inference techniques to develop explicit
thermodynamic protocols. Indeed, one of the criticisms of
the resource-theoretic approach is that many of its conse-
quences are implicit, i.e., one often shows the existence
of protocols but their explicit form is usually not pos-
sible to infer. However, as observed in Ref. [70], the
hypothesis-testing approach allows us to construct explicit
thermal operations starting from the optimal measure-
ment in the related hypothesis-testing problem. We expect
that investigating the explicit form of optimal thermo-
dynamic protocols in different asymptotic regimes can
lead to interesting new insights on the nature of funda-
mental limitations imposed by thermodynamic laws on
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dissipation, reversibility, work processes, etc. And third,
it is a long-standing problem to connect the resource-
theoretic approach to thermodynamics with more standard
approaches [120]. We believe that an especially interest-
ing connection might exist between the resource-theoretic
approach and so-called slow-driving protocols [121]. Here,
we note that both approaches use similar statistical and
geometric techniques. For example, the optimal thermo-
dynamic protocols in the slow-driving regime can be
quantified using the so-called Kubo-Mori metric, which
is also related to the problem of hypothesis testing [122].
Exploring these intrinsic similarities might improve our
understanding of quantum thermodynamics.

On a more technical side, we think that a very inter-
esting avenue for further research is to try to generalize
our results so that they also apply to noncommutative out-
put dichotomies [123]. This would open a way to study
fully quantum laws of thermodynamics, where both ini-
tial and final states could be given by superpositions of
different energy eigenstates. While we think that Conjec-
ture 2 may be true, this does not necessarily mean that the
transformation rates in the fully coherent regime would be
simple generalizations of the current results. The reason
for that is that proving Conjecture 2 would only guarantee
such a simple generalization of the rate under transforma-
tions with the so-called Gibbs-preserving operations [124]
and not under thermal operations. In fact, we believe that
in a fully quantum regime, there may be a gap between
the rates achievable with these two sets of free operations
(especially for the zero-error case).

Another technical generalization of our result that we
find highly interesting is to study transformations between
multichotomies, i.e., multipartite transformations from m
states to m states, with dichotomies being the special
case of m = 2. The classical zero-error case of this has
recently been analyzed in Ref. [97] and the quantum and/or
nonzero-error cases are natural generalizations worthy of
study. Physically, such a result could help us to understand
transformations of quantum systems under the constraint
of the symmetry. This is because for a symmetry group G,
the existence of a G-covariant quantum channel mapping
the initial state to the final one is equivalent to the existence
of an unconstrained channel mapping the orbit of the ini-
tial state to the orbit of the final state, with the orbit being
generated by the symmetry elements of G [125].

Finally, there are two aspects of the resonance phe-
nomenon described in this paper that we believe deserve
more attention. First, we think it would be very interest-
ing to find the equivalent of the resonance phenomenon
in more traditional approaches to thermodynamics, beyond
the resource-theoretic treatment. In other words, we would
like to investigate whether such a potential reduction
of free-energy dissipation may appear in actual physical
processes when the parameters are tuned appropriately.
Second, one could look for similar resonance effects in

other resource theories. In particular, we note that pure
state interconversion conditions in the resource theory of
U(1)-asymmetry [126] are ruled by a generalization of
the majorization partial order (called cyclic majorization
in Ref. [127]). Since the resonance appeared for stan-
dard majorization (as we have seen for pure bipartite-
entanglement transformations in this paper), the resource
theory of U(1)-asymmetry seems to be a good candidate to
look for novel resource resonance effects.
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APPENDIX A: PROOF OF LEMMA 1

Lemma 1 (Restated) (Sesquinormal distribution). The
function Sν is a cumulative distribution function (cdf) for
any ν ∈ [0,∞). Moreover, for ν /∈ {0, 1,∞}, the cdf has
the closed form

Sν(μ) = �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ−
√
μ2 + (ν − 1) ln ν
1− ν

)

, (A1)

and for 0 < ν <∞, the inverse cdf can be expressed as

S−1
ν (ε) = min

x∈(ε,1)

√
ν�−1(x)−�−1(x − ε). (A2)

The extreme cases ν = 0 and ν →∞ reduce to the normal
distribution

S0(μ) = lim
ν→∞ Sν(

√
νμ) = �(μ), (A3)

and the ν = 1 reduces to the half-normal distribution

S1(μ) = max{2�(μ/2)− 1, 0}. (A4)

Finally, the family of sesquinormal distributions has a
duality under reciprocating the parameter
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Sν(μ) = S1/ν(μ/
√
ν) or S−1

ν (ε) =
√
νS−1

1/ν(ε). (A5)

Proof. To prove that Sν is a valid cdf, we need to prove
that it is continuous, monotone nondecreasing, and has the
limits

lim
μ→−∞ Sν(μ) = 0 and lim

μ→+∞ Sν(μ) = 1. (A6)

We will see that continuity and the limits both follow from
the closed form below. For monotonicity, we can use the
fact that the total variation distance of two distributions is
unchanged if we shift them along R:

Sν(μ+ ε) = inf
A≥�0,1

T
(
A,�μ+ε,ν

)

= inf
A≥�−ε,1

T
(
A,�μ,ν

)

≥ inf
A≥�0,1

T
(
A,�μ,ν

) = Sν(μ). (A7)

Next, we turn to a closed form of Sν . Recall the definition

Sν(μ) := 1
2

inf
A≥�

∫

R

|A′(x)− φμ,ν(x)| dx. (A8)

To find a closed form, we will suggest a candidate A,
evaluate its total variation distance, and then construct a
lower bound to show that this is optimal among distribu-
tions with A≥�. We split into two cases based on whether
ν ≶ 1. �

a. Case 0 < ν < 1. Start by recalling that the total
variation distance between two measures is the largest
possible difference in probability that they assign to an
event, i.e.,

Sν(μ) = inf
A≥�

sup
R⊆R

∫

R

(
A′(x)− φμ,ν(x)

)
dx. (A9)

Next, consider the set of x such that �(x) ≥ �μ,ν(x) and
φ(x) ≥ φμ,ν(x). For ν < 1, this region is given precisely
by x ≤ X , where

X = μ−√ν
√
μ2 + (ν − 1) ln ν
1− ν . (A10)

Thus, we can lower bound the total variation distance by
considering the region R = (−∞, X ], which gives

Sν(μ) ≥ inf
A≥�

∫ X

−∞

(
A′(x)− φμ,ν(x)

)
dx (A11a)

= inf
A≥�

A(X )−�μ,ν(X ) (A11b)

≥ �(X )−�μ,ν(X ) (A11c)

= �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�μ,ν

(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

(A11d)

= �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ−
√
μ2 + (ν − 1) ln ν
1− ν

)

. (A11e)

Moreover, it can be seen that by taking A(x) :=
max{�(x),�μ,ν(x)} we can saturate this lower bound,
proving it to be optimal among all cdfs such that A ≥ �.

b. Case ν > 1 For ν > 1, we can do a similar proof to
that for ν < 1. Here, we are interested in the region in
which �(x) ≥ �μ,ν(x) and φ(x) ≤ φμ,ν(x), which is now
given by x ≥ X , with X defined as before. Now, looking at
the lower bound given by R = [X ,∞), we obtain the same
as previously:

Sν(μ) ≥ inf
A≥�

∫ ∞

X

(
φμ,ν(x)− A′(x)

)
dx (A12a)

= inf
A≥�

(
1−�μ,ν(X )

)− (
1− A(X )

)
(A12b)

= inf
A≥�

A(X )−�μ,ν(X ) (A12c)

≥ �(X )−�μ,ν(X ) (A12d)

= �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ−
√
μ2 + (ν − 1) ln ν
1− ν

)

. (A12e)

Once again, optimality of this bound is implied by the fact
it is still saturated by A(x) := max{�(x),�μ,ν(x)}.

Now, by taking limits of the closed form, we can see that

lim
ν→0+

Sν(μ) = lim
ν→∞ Sν(

√
νμ) = �(μ) and

lim
ν→1

Sν(μ) = max{2�(μ/2)− 1, 0} (A13)

and by substituting ν → 1/ν it can be straightforwardly
seen that this expression has the duality property

Sν(μ) = S1/ν(μ/
√
ν). (A14)

Having a closed form of the cdf, we turn to the inverse cdf.
To start with, consider an arbitrary ε ∈ (0, 1) and define

μ := inf
x∈(ε,1)

√
ν�−1(x)−�−1(x − ε). (A15)
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To prove the form of the inverse cdf S−1
ν (ε) = μ, it suffices

to show the inverse expression Sν(μ) = ε. We start by not-
ing that the function f (x) := √ν�−1(x)−�−1(x − ε) is
bounded for any x ∈ (ε, 1) and diverges to +∞ for either
x→ ε+ and x→ 1− and, as such, the infimum is in fact a
minimum, so

μ = min
x∈(ε,1)

√
ν�−1(x)−�−1(x − ε). (A16)

Thus, there must exist a y ∈ (ε, 1) at which the infimum is
attained, i.e., f (y) = μ. By the interior extremum theorem,
we must have that this is a stationary point, f ′(y) = 0. The
inverse function rule allows us to evaluate the derivative
of f to be

f ′(x) =
√
ν

φ
(
�−1(x)

) − 1
φ

(
�−1(x − ε)) (A17)

and thus f ′(y) = 0 reduces to
[
�−1(y)

]2 + ln ν = [
�−1(y − ε)]2

. (A18)

To get rid of this shifted Gaussian term, we can use a
substitution

�−1(y − ε) = √ν�−1(y)− μ, (A19)

which gives us a quadratic expression for �−1(y),
[
�−1(y)

]2 + ln ν = [√
ν�−1(y)− μ]2

, (A20)

with a pair of solutions

�−1(y) = −μ
√
ν ±

√
μ2 + (ν − 1) ln ν
1− ν . (A21)

This, however, still has a lingering ± ambiguity. If we
rearrange Eq. (A19) to make ε the subject, we obtain

ε = y −� (√
ν�−1(y)− μ)

. (A22)

Substituting our pair of solutions into this expression gives

ε = � (
�−1(y)

)−� (√
ν�−1(y)− μ)

(A23a)

= �
(

−μ
√
ν ±

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(

−√νμ
√
ν ±

√
μ2 + (ν − 1) ln ν
1− ν − μ

)

(A23b)

= �
(
μ∓√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ∓
√
μ2 + (ν − 1) ln ν
1− ν

)

. (A23c)

Now, we note that
√
μ2 + (ν − 1) ln ν ≥ μ. Using this, we

can see that the positive solution for �−1(x) will corre-
spond to ε ≤ 0 and thus the minimizing x must correspond
to the negative solution, i.e.,

ε = �
(
μ−√ν

√
μ2 + (ν − 1) ln ν
1− ν

)

−�
(√

νμ−
√
μ2 + (ν − 1) ln ν
1− ν

)

. (A24)

Finally, we now have ε = Sν(μ), as required.

Lemma 9 (Asymptotic expansions). For μ→∞, the
sesquinormal cdf can be expanded as

ln [Sν(−μ)] ≈ −1
2

(
μ

1−√ν
)2

, (A25a)

ln [1− Sν(μ)] ≈ −1
2

(
μ

1+√ν
)2

. (A25b)

Similarly, for ε → 0+, the sesquinormal inverse cdf can be
expanded as

S−1
ν (ε) ≈ |1−

√
ν|

√
2 log 1/ε, (A26a)

S−1
ν (1− ε) ≈ (1+

√
ν)

√
2 log 1/ε. (A26b)

Proof. The expansions of the cdf can be found simply
by expanding the closed-form expression in Lemma 1 to
leading order in μ; specifically, using the approximation

√
μ2 + (ν − 1) ln ν ≈ |μ|. (A27)

Use of this approximation and the x→∞ expansion
ln [1−�(x)] ≈ −x2/2 gives the cdf expansions. By
inverting this, we can equivalently obtain the inverse cdf
expansions as well. �

APPENDIX B: PINCHED RELATIVE ENTROPY

In this appendix, we will show the existence and prop-
erties of the pinched Rényi relative entropies. Suppose that
the states ρ, σ are fixed and full rank and define

fn(α) := 1
n

Dα

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n). (B1)

The left-pinched Rényi relative entropy is, as we shall see
below, defined as

←
Dα := limn→∞ fn(α), with

→
Dα defined

similarly. Its existence and properties will be given below
in Theorem 11. The first thing we will note is that while
we do not know of a closed-form solution for

←
Dα and

→
Dα
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in general, they are known to reduce to the sandwiched
and reverse sandwiched entropies for α ≥ 0 and α ≤ 1
respectively [87, Proposition 4.12],

∀α ≥ 0
←
Dα(ρ‖σ) = 1

α − 1
log Tr

((√
ρσ

1−α
α
√
ρ
)α)

,

(B2a)

∀α ≤ 1
→
Dα(ρ‖σ) = 1

α − 1
log Tr

((√
σρ

α
1−α
√
σ

)1−α)
,

(B2b)

and so they inherit the desired properties within these
ranges. As such, we will focus on showing that these prop-
erties extend beyond these ranges where we lack closed-
form expressions. We start by showing that fn, f ′n , and f ′′n
are uniformly bounded.

Lemma 10. For all n and α ≤ 0, fn(α) is nonpositive and
bounded by the minimal entropy

0 ≥ fn(α) ≥ qDα(ρ‖σ). (B3)

Moreover, there exist uniform (i.e., independent of n and
α) bounds on the value and first two derivatives of fn,

|fn(α)| ≤ C0, |f ′n (α)| ≤ C1, |f ′′n (α)| ≤ C2. (B4)

Proof. First, the nonpositivity of fn follows from the fact
that Dα is nonpositive for α ≤ 0. The lower bound on fn
follows from the data-processing inequality (recalling that
the data-processing inequality (DPI) is reversed for α ≤ 0)
and additivity of the minimal relative entropy:

fn = 1
n

qDα

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n) ≥ 1

n
qDα

(
ρ⊗n

∥
∥σ⊗n)

= qDα(ρ‖σ). (B5)

Furthermore, given that qDα(ρ‖σ) ≥ qD−∞(ρ‖σ) for all
α, we have a uniform lower bound on fn, i.e.,
C0 := qD−∞(ρ‖σ).

Next, we turn to the derivatives. Before applying it to
our states, we start by looking at what form the deriva-
tives of the (classical) Rènyi relative entropy take in the
abstract, say, for two classical distributions, p and q. For
notational simplicity, we are going to assume that all log-
arithms below are natural, to avoid factors of ln b. Given
that we are only concerned with nonpositive α and are
not concerned with α = 1, we can switch to looking at
the unnormalized variant of the Rényi relative entropy
of the form (α − 1)Dα(p‖q). Taking derivatives of this
gives

(α − 1)Dα(p‖q) = log
∑

i

pαi q1−α
i , (B6a)

((α − 1)Dα(p‖q))′ =
∑

i ln pi
qi
× pαi q1−α

i
∑

i pαi q1−α
i

, (B6b)

((α − 1)Dα(p‖q))′′ =
(∑

i ln2 pi
qi
× pαi q1−α

i

)
× (∑

i pαi q1−α
i

)2 −
(∑

i ln pi
qi
× pαi q1−α

i

)2

(∑
i pαi q1−α

i

)2 . (B6c)

Conveniently, the first and second derivatives take the form
of moments. Specifically, if we consider the distribution

wi := pαi q1−α
i∑

j pαj q1−α
j

, (B7)

then the derivatives become the mean and variance of ln p
q

with respect to w,

((α − 1)Dα(p‖q))′ =
∑

i

wi ln
pi

qi
, (B8a)

((α − 1)Dα(p‖q))′′ =
∑

i

wi ln2 pi

qi
−

(
∑

i

wi ln
pi

qi

)2

.

(B8b)

So now we can uniformly bound both in terms of
|ln pi/qi| ≤ max{− ln mini pi,− ln mini qi}; specifically,

|((α − 1)Dα(p‖q))′| ≤ max
{

− ln min
i

pi,− ln min
i

qi

}

,

(B9a)
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|((α − 1)Dα(p‖q))′′| ≤ max
{

− ln min
i

pi,− ln min
i

qi

}2

.

(B9b)

Now, we want to return to fn, wherein p = Pσ⊗n
(
ρ⊗n

)

and q = σ⊗n. Before that, we need to deal with the pinch-
ing. Specifically, if we use the the pinching inequality

Pσ⊗n
(
ρ⊗n) ≥ ρ⊗n

|spec(σ⊗n)| ≥
ρ⊗n

nd , (B10)

we can see that

−1
n

ln λmin
(Pσ⊗n

(
ρ⊗n)) ≤ −1

n
ln
λn

min(ρ)

nd

= d ln n
n
− ln λmin(ρ)

≤ d − ln λmin(ρ) (B11)

and thus

max
{

−1
n

ln λmin
(Pσ⊗n

(
ρ⊗n)) ,− ln λmin (σ )

}

≤ M ,

(B12)

where M := max {d − ln λmin(ρ),− ln λmin(σ )}.
Now, we return to fn. We take the unnormalized version

of this,

(α − 1)fn(α) = 1
n
(α − 1)D

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n), (B13)

so by the above arguments the derivatives can be bounded:

|((α − 1)fn(α))′|

≤ max
{

−1
n

ln λmin
(Pσ⊗n

(
ρ⊗n)) ,− ln λmin (σ )

}

≤ M , (B14a)

|((α − 1)fn(α))′′|

≤ max
{

−1
n

ln λmin
(Pσ⊗n

(
ρ⊗n)) ,− ln λmin (σ )

}2

≤ M 2. (B14b)

We thus have that the derivatives of the (α − 1)fn(α) are
bounded, so all that is left is to show is that this necessarily
extends to fn(α) itself. By straightforward algebraic manip-
ulation, we can write the derivatives of the latter quantity

in terms of those of the former; specifically,

f ′n (α) =
((α − 1)fn(α))′ − fn(α)

α − 1
, (B15a)

f ′′n (α) =
((α − 1)fn(α))′′ − 2f ′n (α)

α − 1
. (B15b)

Given that α ≤ 0 and is therefore gapped away from α =
1, this causes no issues. Specifically, if we take C1 := M +
C0 and C2 := M 2 + 2C1, then the desired uniform bounds
hold as required. �

Before attacking the existence and properties of
←
Dα , we

need one final theorem that allows us to leverage these uni-
form bounds to extend properties of {fn}n through to

←
Dα .

This theorem is a corollary of the Arzelà-Ascoli theorem.

Lemma 11 (Arzelà-Ascoli theorem [128,
Corollary 11.6.11]). Let {fn}n be a sequence of differen-
tiable functions on a compact domain that are uniformly
bounded, and the derivative of which is also uniformly
bounded. Then, there exists a uniformly convergent sub-
sequence {fmn}n.

With this in hand, we turn to proving the properties of
the pinched relative entropies.

Theorem 11 (Properties of the pinched relative entropy).
Define the left-pinched relative entropy as

←
Dα(ρ‖σ) := lim

n→∞
1
n

Dα

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n). (B16)

For full-rank states and α ∈ R, the pinched relative entropy
has the following properties:

(i) Existence:
←
Dα(ρ‖σ) exists.

(ii) (Non)positivity:
←
Dα(ρ‖σ) is non-negative for α ≥ 0,

and nonpositive for α ≤ 0.
(iii) Subminimality:

←
Dα(ρ‖σ) ≤ qDα(ρ‖σ) for α ≥ 0 and

←
Dα(ρ‖σ) ≥ qDα(ρ‖σ) for α ≤ 0.

(iv) Differentiability: α �→ ←
Dα(ρ‖σ) is differentiable.

Moreover, all of these properties also extend to the right-
pinched relative entropy:

→
Dα(ρ‖σ) := lim

n→∞
1
n

Dα

(
ρ⊗n

∥
∥Pρ⊗n

(
σ⊗n)). (B17)

Proof. The sandwiched relative entropy has all of the
above properties [87] and coincides with the pinched rela-
tive entropy with α ≥ 0, so we need only show that these
properties hold for α ≤ 0 as well.
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If we consider the composition of pinching a composite
system, we have

(PX ⊗ PY) (PX⊗Y(A)) = (PX ⊗ PY) (A) . (B18)

This, together with the data-processing inequality, gives

Dα

(Pσ⊗(n+m)
(
ρ⊗(n+m))∥∥σ⊗(n+m))

≤ Dα

(
(Pσ⊗n ⊗ Pσ⊗m)

(
ρ⊗(n+m))∥∥σ⊗(n+m)), (B19a)

= Dα

(Pσ⊗n
(
ρ⊗n)∥∥σ⊗n)+ Dα

(Pσ⊗m
(
ρ⊗m)∥

∥σ⊗m)

(B19b)

or, in other words, (n+ m)fn+m(α) ≥ nfn(α)+ mfm(α).
Applying Fekete’s superadditive lemma [129], this super-
addivity implies that fn(α) is convergent in n for
each α.

Next, we want to apply the Arzelà-Ascoli theorem
(Lemma 12). Lemma 11 gives us the uniform bounded-
ness required to apply Lemma 12 to {fn}n, which gives that
there exists a uniformly convergent subsequence {fan}n.
But as we already have established that {fn}n is also conver-
gent, this implies that this convergence is uniform. Next,
using the uniform bound on {f ′′n }n from Lemma 11, we
can also apply Lemma 12 to {f ′n }n, which gives a uni-
formly convergent subsequence {f ′bn

}n. As {fbn}n and {f ′bn
}n

are both uniformly convergent, we can commute through
the limit and the derivative. Using this together with the
convergence of {fn}n, we can see that {f ′n }n must also be

(uniformly) convergent and thus that
←
Dα is differentiable:

lim
n

f ′bn
(α) =

(
lim

n
fbn(α)

)′
=

(
lim

n
fn(α)

)′
=

(←
Dα

)′
.

(B20)

To extend all of these properties to the right-pinched
relative entropy, we can simply use the identity

→
Dα(ρ‖σ) = α

1− α
←
D1−α(σ‖ρ). (B21)

We might suspect that the 1− α denominator causes issues
around α = 1 but as

→
Dα reduces to the reverse sandwiched

relative entropy for α > 1/2, it therefore inherits the above
properties within that range. �

Next, we prove a nice relationship between the two
pinched relative entropies and the minimal relative
entropy.

Lemma 12. The maximum (in magnitude) of the
pinched Rényi relative entropies corresponds to the min-
imal relative entropy:

max
{
|←Dα(ρ‖σ)|, |

→
Dα(ρ‖σ)|

}
= |qDα(ρ‖σ)|. (B22)

Proof. From the subminimality property of the pinched
relative entropy (see Theorem 11), we have

|qDα(ρ‖σ)| ≥ max
{
|←Dα(ρ‖σ)|, |

→
Dα(ρ‖σ)|

}
. (B23)

Next, Ref. [87, Proposition 4.12] gives that
←
Dα corre-

sponds to the sandwiched entropy for α ≥ 0, which in turn
corresponds to the minimal entropy for α > 1/2 [87, Sec.
4.3]. By duality, this means that

→
Dα corresponds to the

reverse sandwiched relative entropy for α ≤ 1 and also to
the minimal for α ≤ 1/2. Thus, this inequality is satisfied
for all α, as required. �

APPENDIX C: TWO-SIDED ERROR

In Theorems 2–7, we have only considered transforma-
tions involving an error on the first state in the dichotomy.
One reason why this has been done is because such
transformations are the relevant transformations for the
resource-theoretic applications of concern (see Secs. II B
and II C). Another is that, as we will see, the more gen-
eral problem in which we allow errors on both states is no
more rich. In this appendix, we will give a summary of
the asymptotic rate scalings for two nonzero errors. In lieu
of giving rigorous proofs of these rates, we will instead
mention how things change from the proofs of Theorems
2–7.

One of the reasons why two nonzero errors do not give
a much richer problem is that there exist errors for which
the rate becomes infinite. To be clear, we do not mean that
the rate diverges as n→∞ (a la Theorem 7) but, instead,
a situation in which the rate is unbounded for a finite n.
This occurs because if the errors as sufficiently large, the
Blackwell order breaks down in its entirety.

Lemma 13 (Breakdown of Blackwell ordering). If
βερ(ρ‖σ) ≤ εσ , then (ρ, σ), Blackwell dominates all
dichotomies, i.e.,

βερ(ρ1‖σ1) ≤ εσ ⇐⇒ (ρ, σ) �(ερ ,εσ ) (ρ
′, σ ′) ∀ρ ′, σ ′.

(C1)

Proof. Using the definition of βx, we have that there
exists a test Q such that

Tr((I − Q)ρ1) ≤ ερ and Tr(Qσ1) ≤ εσ . (C2)

Consider a measure-and-prepare channel based on that
very test, specifically

E(τ ) := ρ2Tr(Qτ)+ σ2Tr((I − Q)τ ). (C3)

Applying this channel, we can easily see that it has the
desired error properties for any output dichotomy:

T (E(ρ1), ρ2) = T(ρ2, σ2)× Tr((I − Q)ρ1) ≤ ερ , (C4a)
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T (E(σ1), σ2) = T(ρ2, σ2)× Tr(Qσ1) ≤ εσ . (C4b)

As for the reverse direction, this simply follows from using
the data-processing inequality for βx and the output states
ρ ′ = |0〉〈0| and σ ′ = |1〉〈1|, as βx(|0〉〈0|‖|1〉〈1|) ≡ 0. �

So now let us move on to transformation rates. Similar to
the one-sided error case, let R∗n(ε

(ρ)
n , ε(σ)n ) denote the largest

Rn such that

(
ρ⊗n

1 , σ⊗n
1

) �
(ε
(ρ)
n ,ε(σ )n )

(
ρ
⊗Rnn
2 , σ⊗Rnn

2

)
, (C5)

where we note that R∗n(εn) := R∗n(εn, 0).
In Theorems 2–7, we have dealt with the cases in which

one error was exactly zero, splitting the results up by
the scaling of the other error into seven different regimes
(small, moderate low or high, large low or high, and
extreme low or high). Naively, one might think that we
then need to consider 49 different regimes for the general
two-sided error problem (see Table I). However, Lemma
14 will allow us to instantly rule out 25 of these regimes in
which neither error is exponentially small.

Lemma 14 (Rate breakdown). Suppose that neither ε(ρ)n
nor ε(σ)n is exponentially bounded, i.e.,

lim
n→∞

1
n

log ε(ρ)n = lim
n→∞

1
n

log ε(ρ)n = 0. (C6)

Then, the rate is eventually infinite: R∗n(ε
(ρ)
n , ε(σ)n )

ev.= +∞.

Proof. The idea here is to show that if neither error is
exponentially shrinking, then eventually we see a break-
down of the Blackwell ordering in the sense of Lemma 14.
As neither error is exponententially decaying, then we can

take any arbitrarily small constant δ > 0 and have that

ε(ρ)n
ev.
> exp(−δn) and ε(σ)n

ev.
> exp(−δn). (C7)

From Lemma 5, we have

γ−δ
(
ρ⊗n

1

∥
∥σ⊗n

1

) = �−δ(ρ1‖σ1). (C8)

Given that �0(ρ‖σ) = −D(ρ‖σ) < 0 and �λ is continu-
ous in λ, then for sufficiently small δ, we will also have
�−δ(ρ‖σ) < −δ. In terms of the type-II error probability,

βexp(−δn)
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
< exp(−δn). (C9)

Lastly, we can use the monotonicity of βx, which gives

β
ε
(ρ)
n

(
ρ⊗n

1

∥
∥σ⊗n

1

) ev.≤ βL−1[−δn]
(
ρ⊗n

1

∥
∥σ⊗n

1

)ev.
< exp(−δn)ev.

<ε(σ)n ,
(C10)

and so for sufficiently large n, Lemma 14 applies and thus
the rate becomes infinite: R∗n(ε

(ρ)
n , ε(σ)n )

ev.= +∞. �

As such, the only regimes left are the cases in which
one error is exponentially small and the other is nonzero.
For simplicity, we will assume that the second error is the
exponentially small error for the rest of this appendix,

ε(σ)n := exp(−nλσ ), (C11)

and will discuss how this nonzero ε(σ)n modifies the results
of Theorems 2–7 for different regimes of ε(ρ)n . As we shall
see below, in the large-deviation low-error regime, we
obtain a nontrivial change in the asymptotic rate (Lemma
17) but in all other regimes we obtain that the one-sided
error results hold unchanged up to a critical value of λ(ρ)n ,
beyond which we see a breakdown similar to Lemma 15,
resulting in an eventually infinite rate (Lemma 16). A clas-
sification of the 49 two-sided error regimes is given in
Table I.

TABLE I. A summary of the two-sided error results. The green results, corresponding to Theorems 2–7, are the one-sided error
results presented in Sec. III. The red region, corresponding to Lemma 15, denotes where the Blackwell order breaks down, resulting in
eventually infinite transformation rates. The yellow region, corresponding to Lemma 16, denotes the regimes in which the one-sided
rates hold until a critical error exponent is reached, beyond which the Blackwell order once again breaks down. Finally the blue region,
corresponding to Lemma 17, denotes the sole regime in which there is a nontrivial change in the transformation rate from the one-sided
error case.

6

4

3

2

3

4 3 3 3

15

14

5 7

16

15

5

7
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1. High errors

We will start with the small- and moderate-deviation
results. In these cases, we will see that as long as the expo-
nent of the second error, λσ , is above a certain critical
exponent, then these regimes are left unchanged. But if it
crosses, we also obtain a complete breakdown.

Lemma 15 (Unchanged two-sided rates). If ε(ρ)n is in the
small- or moderate-deviation regime, eω(n) ≤ ε(ρ)n ≤ 1−
eO(n), and λσ > D(ρ1‖σ1), then the small- and moderate-
deviation results of Theorems 2 and 3 remain unchanged,
and if λσ < D(ρ1‖σ1), then R∗n(ε

(ρ)
n , ε(σ)n )

ev.= +∞.
If ε

(ρ)
n is in the high-error large-deviation regime,

ε
(ρ)
n := 1− exp(−nλ(ρ)n ), and λσ > −�λρ(ρ1‖σ1), then

the high-error large-deviation results of Theorem 5
remain unchanged, and if λσ < −�λρ(ρ1‖σ1), then
R∗n(ε

(ρ)
n , ε(σ)n )

ev.= +∞.
If ε(ρ)n is in the extreme-deviation regime, ε(ρ)n = 1−

exp(ω(n)), then Theorem 7 remains unchanged for any
λ(σ)n .

Proof sketch. We start with the small and moderate
cases. When λσ < D(ρ1‖σ1), we can once again use
Lemma 14. Specifically, the first-order contributions of
Lemmas 4 and 6 give that

lim
n→∞−

1
n

logβ
ε
(ρ)
n

(
ρ⊗n

1

∥
∥σ⊗n

1

) = D(ρ1‖σ1), (C12)

for any ε(ρ)n that is not exponentially approaching either
0 or 1. So, if λσ < D(ρ1‖σ1), then ε(σ)n is decaying with
a smaller exponent and must dominate this expression;
specifically,

β
ε
(ρ)
n

(
ρ⊗n

1

∥
∥σ⊗n

1

) ev.
< ε(σ)n . (C13)

Thus, by Lemma 14, the Blackwell order breaks down and
R∗n(ε

(ρ)
n , ε(σ)n )

ev.= +∞.
Next, we want to argue that for λσ > D(ρ1‖σ1), the

results of Theorems 2 and 3 remain unchanged. Clearly,
allowing errors on the second state can only increase the
optimal transformation rate and so to demonstrate that
this rate remains unchanged, we need only show that the
upper bound (optimality) remains unchanged. The opti-
mality bound of Theorems 2 and 3 comes from applying
Lemma 2, which bounds the rate Rn by

∀x ∈ (
ε(ρ)n , 1

)
: βx

(
ρ⊗n

1

∥
∥σ⊗n

1

) ≤ βx−ε(ρ)n

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
.

(C14)

In the presence of two-sided errors, this changes to

∀x ∈ (
ε(ρ)n , 1

)
:

βx
(
ρ⊗n

1

∥
∥σ⊗n

1

)− ε(σ)n ≤ βx−ε(ρ)n

(
ρ
⊗Rnn
2

∥
∥
∥σ
⊗Rnn
2

)
. (C15)

Now, consider the two terms on the left-hand side. By
Eq. (C12), we know that the first βx term is exponentially
decaying with n, with an exponent of D(ρ1‖σ1), and ε(σ)n
is decaying with an exponent of λσ . As λσ > D(ρ1‖σ1),
we have that this error term is asymptotically dominated;
specifically,

lim
n→∞

βx
(
ρ⊗n

1

∥
∥σ⊗n

1

)− ε(σ)n

βx
(
ρ⊗n

1

∥
∥σ⊗n

1

) = 1. (C16)

As such, the ε(σ)n term in Eq. (C15) is asymptotically
irrelevant, reducing this optimality bound to that given in
Theorems 2 and 3.

We now turn to the high-error large-deviation regime.
From Lemma 5, we have

lim
n→∞−

1
n

logβ
ε
(ρ)
n

(
ρ⊗n

1

∥
∥σ⊗n

1

) = �λρ(ρ1‖σ1). (C17)

So, if λρ < −�λρ(ρ1‖σ1), then

β
ε
(ρ)
n

(
ρ⊗n

1

∥
∥σ⊗n

1

) ev.
< ε(σ)n (C18)

and so by Lemma 14, we can conclude that R∗n(ε
(ρ)
n , ε(σ)n )

ev.=
+∞. If, however, λρ > −�λρ(ρ1‖σ1), then the error term
will be exponentially dominated by all of the relevant
hypothesis-testing quantities in the optimality proof and
therefore Theorem 5 will remain unchanged.

Lastly, Theorem 7 trivially remains unchanged, as the
rate in that regime is unbounded, and introducing error on
the second state can only increase the rate further. �

2. Low errors

Finally, we are left with large deviation and low error.
This is the one regime where a nontrivial change in the
asymptotic rate occurs. For ε(σ)n = 0, we have seen that the
rate is given by r/qr optimized over a range of type-I log
odds determined by the error on the first state. Similarly,
we will see that the optimal rate is once again an opti-
mization of r/qr, this time optimized over a range of type-I
log odds determined by the first state error and type-II log
odds determined by the second state error. Before we can
give the modified result, we first need to define q�λ(ρ‖σ) :=
min

{←
�λ(ρ‖σ),

→
�λ(ρ‖σ)

}
, which we can evaluate using

Lemmas 5 and 13 to be given by

q�λ(ρ‖σ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supt<0
qDt(ρ‖σ)+ t

1− t
λ, λ < −D(σ‖ρ),

inf0<t<1−qDt(ρ‖σ)− t
1− t

λ, −D(σ‖ρ)<λ< 0,

supt>1−qDt(ρ‖σ)+ t
1− t

λ, λ > 0,

.

(C19)
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Using this, we can now give the full two-sided low-error
large-deviation result.

Lemma 16 (Two-sided large deviation, low error). For
any error of the form ε

(ρ)
n = exp(−λρn) with constant

λρ > 0, if [ρ2, σ2] = 0, then the optimal rate is lower
bounded:

lim inf
n→∞ R∗n(ε

(ρ)
n , ε(σ)n ) ≥ inf

−λρ<μ<λρ
−λσ<q�μ(ρ1‖σ1)<λσ

qr(μ). (C20)

Furthermore, if we consider general output dichotomies,
[ρ2, σ2] 
= 0, then the optimal rate is upper bounded by

lim sup
n→∞

R∗n(ε
(ρ)
n , ε(σ)n ) ≤ inf

−λρ<μ<λρ
−λσ<�μ(ρ1‖σ1)<λσ

r(μ). (C21)

In the above, r and qr are defined in Sec. V C 2. Moreover,
these expressions hold even if these domains are empty;
i.e., if �−λρ(ρ1‖σ1) < −λσ , then R∗n(ε

(ρ)
n , ε(σ)n )

ev.= +∞.

Proof sketch. Here, we are just going to provide a
sketch of the proof: for a more rigorous treatment of this
argument, see the proof of Theorem 4. We start with
optimality. Lemma 2 gives that, for any achievable rate R,

∀x ∈ (ε(ρ)n , 1) :

βx
(
ρ⊗n

1

∥
∥σ⊗n

1

)− ε(σ)n ≤ βx−ε(ρ)n

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (C22)

First, we reparametrize x→ x + ε(ρ)n , which gives

∀x ∈ (ε(ρ)n /2, 1− ε(ρ)n /2) :

βx+ε(ρ)n /2 − ε(σ)n ≤ βx−ε(ρ)n /2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (C23)

Next, we want to reparametrize again by the log odds per
copy instead of a probability. Specifically, we will switch
from x to μ, where x = L−1[μn]. Doing so gives

∀μ ∈ (−λρ ,+λρ) :

βL−1[μn]+ε(ρ)n /2

(
ρ⊗n

1

∥
∥σ⊗n

1

)− ε(σ)n

≤ βL−1[μn]−ε(ρ)n /2

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
. (C24)

As |μ| < λρ , we have that the L−1[μn] terms must domi-
nate over the ε(ρ)n terms; specifically,

lim
n→∞

1
n

L
[
L−1[μn]± ε(ρ)n /2

] = μ (C25)

and so this essentially reduces to

∀μ ∈ (−λρ ,+λρ) :

βL−1[μn]
(
ρ⊗n

1

∥
∥σ⊗n

1

)− ε(σ)n ≤ βL−1[μn]
(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)
.

(C26)

Put in terms of log odds per copy, this is

∀μ ∈ (−λρ ,+λρ) :

L−1 [
γμn

(
ρ⊗n

1

∥
∥σ⊗n

1

)]− ε(σ)n ≤ L−1 [
γμn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

)]
.

(C27)

Now, we can use Lemma 5, which gives

lim
n→∞

1
n
γμn

(
ρ⊗n

1

∥
∥σ⊗n

1

) = �μ(ρ1‖σ1), (C28a)

lim
n→∞

1
n
γμn

(
ρ⊗Rn

2

∥
∥σ⊗Rn

2

) = R�μ/R(ρ2‖σ2). (C28b)

So in Eq. (C27) we have that the log-odds terms on both
sides are exponentially scaling. In the absence of ε(σ)n , we
can directly compare this, giving the optimality presented
in Theorem 4.

We can break the analysis of Eq. (C27) into three cases
based on how �μ(ρ1‖σ1) compares to±λσ . If �μ(ρ1‖σ1) <

−λσ , then the left-hand side of Eq. (C27) is eventually
negative and thus trivially satisfied. If−λσ ≤ �μ(ρ1‖σ1) ≤
+λσ , then Eq. (C27) reduces to

�μ(ρ‖σ) ≤ R�μ/R(ρ2‖σ2), (C29)

as we saw in the absence of εσn , which in turn gives the
bound R ≤ r(μ). Lastly, we have �μ(ρ1‖σ1) > +λσ , in
which case the left-hand side of Eq. (C27) scales as 1− εσn ,
so this reduces to

λσ ≤ �μ/R(ρ2‖σ2), (C30)

which is strictly weaker than the constraint R ≤ r(μ) for
the μ for which �μ(ρ1‖σ1) = +λσ . The upshot is that we
are left with an expression similar to Theorem 4, with the
rate being an optimization of r, this time with a constraint
both on μ (coming from ε

(ρ)
n ) and on �μ(ρ1‖σ1) (coming

from ε(σ)n ). Specifically,

R ≤ inf
−λρ<μ<λρ

−λσ<�μ(ρ1‖σ1)<λσ

r(μ). (C31)

The same sort of argumentation works for the achievabil-
ity, where we find that any rate r such that

r ≤ inf
−λρ<μ<λρ

−λσ<q�μ(ρ1‖σ1)<λσ

qr(μ) (C32)

is achievable.
Finally, we note that the above arguments also hold if

the domains of the infima are empty. Specifically, if

�−λρ(ρ1‖σ1) < −λσ , (C33)

then Lemma 14 gives us that the rate breaks down and so
for sufficiently large n, the optimal rate becomes infinite.

�
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APPENDIX D: PROOF OF THEOREM 8

In order to prove Theorem 8, we start with the following
lemma.

Lemma 17. Consider the initial and target states, ρ1 and
ρ2, together with the corresponding thermal states, γ1 and
γ2, such that [ρ2, γ2] = 0. Then, the condition

∀x ∈ (ε, 1) :
←
β x(ρ1‖γ1) ≤ βx−ε(ρ2‖γ2) (D1)

implies that there exists a thermal operation mapping ρ1
into a state ε-close to ρ2 in trace distance:

ρ1
ε−→

TO
ρ2. (D2)

Note that in general, however, the right-pinched variant

∀x ∈ (ε, 1) :
→
β x(ρ1‖γ1) ≤ βx−ε(ρ2‖γ2) (D3)

does not necessarily similarly yield a TO-achievable
Blackwell order.

Proof. First, note that a pinching map with respect to
the eigenspaces of the thermal state γ1 is a thermal oper-
ation and so Pγ1(ρ1) can be obtained from ρ1. Since
[Pγ1(ρ1), γ1] = 0 and [ρ2, γ2] = 0 by assumption, we are
dealing with initial and target states commuting with the
respective thermal states. For such states, however, it is
known from Ref. [70] that the condition

∀x ∈ (ε, 1) : βx(Pγ1(ρ1)‖γ1) ≤ βx−ε(ρ2‖γ2) (D4)

is equivalent to the existence of a thermal operation E map-
ping Pγ1(ρ1) into a state ε-close to ρ2. However, given

the definition of
←
β x from Eq. (62), the above is equiv-

alent to Eq. (D1). Thus, assuming that Eq. (D1) holds,
such E exists and a composition of thermal operations
E ◦ Pγ1 , which is itself a thermal operation, maps ρ1 into
a state ε-close to ρ2. While the right-pinched condition
similarly yields a Blackwell order, the right-pinching oper-
ation Pρ1(·) is not a thermal operation (unless ρ1 and γ1
commute). �

We now need to recall the general strategy used to prove
Theorems 2, 3, 5, and 7 in Sec. V C. In these cases, the
achievability has exclusively used the left-pinched suffi-
cient condition of Lemma 2, showing that this condition
gives a rate with the same asymptotic expansion as the
optimality bound given by the necessary condition of
Lemma 2. Thus, using Lemma 18, we conclude that the
optimal rates from Theorems 2, 3, 5, and 7 in Sec. V C can
be achieved by thermal operations.

In the achievability proofs of Theorems 4 and 6, we
have needed to leverage both left and right pinching and

thus these results are not necessarily TO achievable. In
both proofs, however, we have started by proving separate
achievability results using left and right pinching sepa-
rately and we have constructed the final bound by combin-
ing the two. If we eschew the right-pinch-based bound and
stick to the left-pinch-based bound, then these proofs do
yield weaker, but TO-achievable, rates. For the low-error
large-deviation case of Theorem 4, the TO-achievable
rate is

lim inf
n→∞ R∗n

(
exp(−λn)

) ≥ min
−λ≤μ≤λ

←
r (μ), (D5)

where
←
r (μ) is defined in Sec. V C 2. Similarly, for the

zero-error case of Theorem 6 the TO-achievable rate is

lim inf
n→∞ R∗n(0) ≥ inf

α∈R

←
Dα(ρ1‖σ1)

Dα(ρ2‖σ2)
. (D6)

Furthermore, when dealing with energy-incoherent states,
there is no need for pinching and so one can stick only
to thermal operations. Moreover, for commuting input and
output states, the lower and upper bounds for the optimal
rates in Theorems 4 and 6 coincide (as they only differ
by choice of Rényi divergence) and thus these theorems
yield optimal transformation rates in their respective error
regimes.

APPENDIX E: PROOF OF THEOREM 9

In this appendix, we present how one can modify the
reasoning used to prove Theorem 2 to prove Theorem 9.
Our aim is thus to find R∗n, which is the largest rate Rn for
which the following transformation can be performed by
thermal operations:

ρ⊗n
1 ⊗ |0〉〈0|W

ε−→
TO

ρ
⊗nRn
2 ⊗ |1〉〈1|W. (E1)

Let us recall that here W denotes the ancillary battery sys-
tem with energy levels |0〉W and |1〉W separated by energy
gap w, so that the thermal state of the battery is given by

γW = λ|0〉〈0|W + (1− λ)|1〉〈1|W with λ = 1
1+ e−βw .

(E2)

From Lemma 2, we know that the necessary condition for
that is given by

∀x ∈ (ε, 1) :

βx(ρ
⊗n
1 ⊗ |0〉〈0|W‖γ⊗n

1 ⊗ γW)

≤ βx−ε(ρ
⊗nRn
2 ⊗ |1〉〈1|W‖γ⊗nRn

2 ⊗ γW), (E3)
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whereas from Lemmas 2 and 18, we know that the suffi-
cient condition is given by

∀x ∈ (ε, 1) :
←
β x(ρ

⊗n
1 ⊗ |0〉〈0|W‖γ⊗n

1 ⊗ γW)

≤ βx−ε(ρ
⊗nRn
2 ⊗ |1〉〈1|W‖γ⊗nRn

2 ⊗ γW). (E4)

We will simplify these conditions by using the fact that

←
β x(ρ

⊗n
1 ⊗ |0〉〈0|W‖γ⊗n

1 ⊗ γW)

= βx(Pγ⊗n
1
(ρ⊗n

1 )⊗ |0〉〈0|W‖γ⊗n
1 ⊗ γW) (E5)

and employing the following lemma.

Lemma 18. Consider three quantum states, ρ, σ , and γ ,
where γ =∑

i γi|i〉〈i|. Then, for all x ∈ [0, 1] we have

βx(ρ ⊗ |i〉〈i| ‖σ ⊗ γ ) = γiβx(ρ‖σ). (E6)

Proof. Expanding out the left-hand side of Eq. (E6) using the definition from Eqs. (3a)–(3c) and decomposing the test
as Q :=∑

i,j Qij ⊗ |i〉〈j | yields

βx(ρ ⊗ |i〉〈i| ‖σ ⊗ γ ) = min
Q
{Tr[(σ ⊗ γ )Q] |Tr[(ρ ⊗ |i〉〈i|)Q] ≥ 1− x and 0 ≤ Q ≤ 1} (E7a)

= min
Qkk

{
∑

k

γkTr[σQkk]

∣
∣
∣
∣
∣
Tr[ρQii] ≥ 1− x and 0 ≤ Qkk ≤ 1 for all k

}

(E7b)

= γi min
Qii
{Tr[σQii] |Tr[ρQii] ≥ 1− x and 0 ≤ Qii ≤ 1} (E7c)

= γiβx(ρ‖σ), (E7d)

which proves the claim. �

We can then rewrite Eqs. (E3) and (E4) as

∀x ∈ (ε, 1) : λβx(ρ
⊗n
1 ‖γ⊗n

1 ) ≤ (1− λ)βx−ε(ρ
⊗nR∗n
2 ‖γ⊗nR∗n

2 ), (E8a)

∀x ∈ (ε, 1) : λ
←
β x(ρ

⊗n
1 ‖γ⊗n

1 ) ≤ (1− λ)βx−ε(ρ
⊗nR∗n
2 ‖γ⊗nR∗n

2 ). (E8b)

Taking the minus log of both sides and dividing by n, we thus obtain that the necessary condition and the sufficient
condition for the transformation in Eq. (E1) are given by

∀x ∈ (ε, 1) : −1
n

log
(
βx(ρ

⊗n
1 ‖γ⊗n

1 )
)− βw

n
≥ Rn

(

− 1
nRn

log
(
βx−ε(ρ

⊗nRn
2 ‖γ⊗nRn

2 )
))

, (E9a)

∀x ∈ (ε, 1) : −1
n

log
(←
β x(ρ

⊗n
1 ‖γ⊗n

1 )

)

− βw
n
≥ Rn

(

− 1
nRn

log
(
βx−ε(ρ

⊗nRn
2 ‖γ⊗nRn

2 )
))

. (E9b)

Crucially now, as Lemma 4 tells us that the second-order asymptotic expansions of−(1/n) logβx and−(1/n) log
←
β x are

the same, in the small-deviation regime, the above necessary and sufficient conditions coincide and are given by

∀x ∈ (ε, 1) : D(ρ1‖γ1)+
√

V(ρ1‖γ1)

n
�−1(x)− βw

n
� RnD(ρ2‖γ2)+

√
RnV(ρ2‖γ2)

n
�−1(x − ε), (E10)

where � denotes inequality up to terms o(1/
√

n). Introducing

ξ ′ := V(ρ1‖γ1)

RnV(ρ2‖γ2)
, (E11)
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using the definition and properties of the sesquinormal
distribution, one can rearrange Eq. (E10) to arrive at the
following equivalent condition:

βw
n

� D(ρ1‖γ1)− RnD(ρ2‖γ2)+
√

V(ρ1‖γ1)

n
S−1

1/ξ ′(ε).

(E12)

Clearly, if ρ2 = γ2, then the above is satisfied for any rate
Rn as long as

βw
n

� D(ρ1‖γ1)+
√

V(ρ1‖γ1)

n
�−1(ε), (E13)

which proves the second part of Theorem 9. If ρ2 
= γ2,
then we can expand w and rearrange Eq. (E10) to obtain

Rn � D(ρ1‖γ1)− βw1

D(ρ2‖γ2)
+
√

V(ρ1‖γ1)S−1
1/ξ ′(ε)− βw2√

nD(ρ2‖γ2)
.

(E14)

Now, we note that in the expression for ξ ′, we only need
to account for the constant term of Rn, as any higher-order
terms will result in corrections of the order o(1/

√
n). Thus,

a transformation from Eq. (E1) exists for every rate Rn
satisfying the above inequality with

ξ ′ = V(ρ1‖γ1)

D(ρ1‖γ1)− βw1

/
V(ρ2‖γ2)

D(ρ2‖γ2)
, (E15)

which proves the first part of Theorem 9.

APPENDIX F: PROOF SKETCH OF THEOREM 10

The proof of Theorem 10 largely follows the proofs
covered in Theorems 2–7 and so instead of reproducing
all the gory details, we will instead point out some key

differences and then give the resulting rate expressions.
Consider a transformation |ψ1〉⊗n ε−−−→

LOCC
|ψ2〉⊗Rn for bipar-

tite states |ψ1〉 and |ψ2〉 with local dimensions d1 and d2,
and with Schmidt spectra p1 and p2. Recalling Eq. (8),
such a transformation is possible if and only if

dRn
2 βx

(
p2
⊗Rn

∥
∥f2
⊗Rn) ≤ dn

1βx−ε
(
p1
⊗n

∥
∥f1
⊗n) ∀x ∈ (ε, 1),

(F1)

where f i denotes a uniform distributions of dimension
di and βx(p‖q) should be understood as βx(ρ‖σ), with
ρ and σ being diagonal states and with the diagonals
given by p and q, respectively. Applying the techniques
of Sec. V C to convert hypothesis-testing asymptotics into
transformation-rate asymptotics, we can extract from this
second-order expressions for transformation rates in the
entanglement setting.

Importantly, this condition has three major differences
that will influence the resulting rate expressions. First,
the order of the expression is backward compared to that
seen in the thermodynamic setting, so the resulting rates
will be reciprocated. Second, all hypothesis testing is rel-
ative to uniform states, meaning that all of our rates will
involve information-theoretic quantities relative to the uni-
form states. All of these can be expressed in terms of their
nonrelative analogues, e.g.,

Dα

(
p i

∥
∥f i

) = α

α − 1
log di − Hα(p i). (F2)

And then, third, we have the lingering dimensional factors,
which happen to all cancel out in such a way as to yield rate
expressions broadly similar to those seen in Theorems 2–7.

Taking these modifications into account, if one was
to follow our techniques from Sec. V C mutatis mutan-
dis, the entanglement transformation rates, for λ > 0 and
a, ε ∈ (0, 1), scale as follows:

Zero error : R∗n(0) = min
0≤α≤∞

Hα(p)
Hα(q)

+ o(1), (F3a)

Large deviation (lo) : R∗n(exp(−λn)) = min
−λ≤μ≤λ

r(μ), (F3b)

Moderate deviation (lo) : R∗n(exp(−λna)) = H(p)− |1− ξ−1/2|
√

2V(p)na−1 × S−1
1/ξ (ε)

H(q)
+ o

(√
na−1

)
, (F3c)

Small deviation : R∗n(ε) =
H(p)+√

V(p)/n× S−1
1/ξ (ε)

H(q)
+ o(1/

√
n), (F3d)

Moderate deviation (hi) : R∗n(1− exp(−λna)) = H(p)+ [
1+ ξ−1/2

] √
2V(p)na−1 × S−1

1/ξ (ε)

H(q)
+ o

(√
na−1

)
, (F3e)

Large deviation (hi) : R∗n(1− exp(−λn)) = inf
t1>1

0<t2<1

Ht1(p)−
(

t1
1−t1
+ t2

1−t2

)
λ

Ht2(q)
+ o(1), (F3f)
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where

ξ = V(p)
H(p)

/
V(q)
H(q)

and

r(μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, μ ≤ −D(f ‖p),

sup0<t2<1 inf0<t1<1

Ht1(p)+
(

t2
1−t2
− t1

1−t1

)
μ

Ht2(q)
, −D(f ‖p) ≤ μ ≤ 0,

inft2>1 supt1>1

Ht1(p)+
(

t1
1−t1
− t2

1−t2

)
μ

Ht2(q)
, μ ≥ 0.

(F4)

We note that the small- and moderate-deviation rates are
consistent in form with the existing infidelity results of
Refs. [89,117], respectively, and the zero-error rate is a
restatement of Ref. [102].

APPENDIX G: NUMERICAL EXAMPLES OF
STRONG AND WEAK RESONANCE

In this appendix, we will give a numerical example of
a dichotomy transformation that exhibits both weak and
strong resonance in the sense discussed in Sec. IV C 3.
Following Ref. [101], we can construct examples with
resonance by considering two different input states and
varying the relative ratio of their numbers. That is, instead
of just considering the rates Rn and errors εn such that

(ρ⊗n
1 , σ⊗n) �(εn,0) (ρ

⊗Rnn
2 , σ⊗Rnn), (G1)

we can instead consider

(ρ⊗λn
1 ⊗ ρ ′⊗(1−λ)n1 , σ⊗n) �(εn,0) (ρ

⊗Rnn
2 , σ⊗Rnn), (G2)

for some λ ∈ (0, 1). Consider the states

ρ1 = Diag(0.4309, 0.4300, 0.1391), (G3a)

ρ ′1 = Diag(0.5499, 0.2300, 0.2201), (G3b)

ρ2 = Diag(0.5121, 0.3300, 0.1579), (G3c)

σ = Diag(0.3333, 0.3333, 0.3333). (G3d)

These states exhibit weak resonance, as shown in the left
panel of Fig. 6. Alternatively, if we consider the reverse
process of attempting to make a mixture of two possible
output states,

(ρ⊗n
2 , σ⊗n) �(εn,0) (ρ

⊗λRnn
1 ⊗ ρ ′⊗(1−λ)Rnn

1 , σ⊗Rnn), (G4)

(a) (b)

FIG. 6. Examples of (a) strong and (b) weak resonance. The upper blue lines correspond to the first-order rate, à la Theorem 1. The
lower green lines correspond to the zero-error transformation rates, à la Theorem 6. The internal red lines correspond to the optimal
rates at an error level of exp(−μn), with each line corresponding to a different value of μ. In the weak case μ ∈ {0, 0.05, . . . , 2} and
in the strong case μ ∈ {0, 0.01, . . . , 1}. Lastly, the vertical dashed black lines correspond to the mixture at which the weak-resonance
condition is satisfied and the vertical solid black line to where the strong-resonance condition is met.
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then this in fact exhibits strong resonance, as shown in the
right panel of Fig. 6. As we can see, the weak-resonance
condition determines the behavior of rates for high errors.
But when the strong resonance is present, it dominates over
this and in fact determines the behavior of rates at all error
levels.

APPENDIX H: ASYMPTOTIC CONSISTENCY

In this appendix, we will show rather satisfying
“asymptotic consistencies” among our results, namely, the
hypothesis-testing results of Lemmas 4–6 and Lemma 8,
the transformation-rate results of Theorems 2–7, and the
resonance phenomena considered in Sec. IV C 3.

In Sec. V we have considered deriving the asymptotic
behavior of both hypothesis testing and transformation
rates for dichotomies in several different error regimes
(Figs. 1 and 4). Formally, these results must be separately
proven in each of these distinct regimes. Eschewing rigor
for the moment [130], we might ask what happens if we
take results from each error regime and naively take the
limit approaching the neighboring regime. By asymptotic
consistency, we mean that this blasphemous and heretical
procedure manages to reproduce the results of the rigorous
treatments given in Sec. V.

1. Small and moderate deviation

The small-deviation error regime refers to errors ε ∈
(0, 1) that are constant in n and the moderate-deviation
regime concerns errors εn that are subexponentially
approaching either 0 (low error) or 1 (high error). Here,
we will consider starting with the small-deviation results
(Lamma 4 and Theorem 2) and then applying expansions
of this result around ε = 0, 1, showing that this gives
an entirely nonrigorous reproduction of the moderate-
deviation results (Lemma 6 and Theorem 3).

As noted in Ref. [117], the inverse cdf of the standard
Gaussian can be expanded for small positive ε as

�−1(ε) ≈ −
√

ln 1/ε2 and �−1(1− ε) ≈ +
√

ln 1/ε2.
(H1)

Next, consider the small-deviation expansion of the type-II
hypothesis-testing error given in Lemma 4:

−1
n
βε

(
ρ⊗

∥
∥σ⊗n) ≈ D(ρ‖σ)+

√
V(ρ‖σ)

n
×�−1(ε). (H2)

If we simply substitute into these moderate error sequences
εn := exp(−λna) or 1− εn for λ > 0, a ∈ (0, 1) and use
the above expansions, then we recover the moderate-
deviation expansion given in Lemma 6:

−1
n
βεn

(
ρ⊗

∥
∥σ⊗n) ≈ D(ρ‖σ)−

√
2V(ρ‖σ)λna−1, (H3a)

−1
n
β1−εn

(
ρ⊗

∥
∥σ⊗n) ≈ D(ρ‖σ)+

√
2V(ρ‖σ)λna−1.

(H3b)

As for the dichotomy-transformation rates, we need to
consider expansions not just of the standard Gaussian
but also of the sesquinormal distribution considered in
Sec. III A. In Lemma 1, we have seen that the sesquinor-
mal distribution can be expressed in terms of the stan-
dard Gaussian distribution. Using this, we can expand the
sesquinormal inverse cdf for small positive ε as

S−1
1/ξ (ε) ≈ −|1− ξ−1/2|

√
ln 1/ε2 and

S−1
1/ξ (1− ε) ≈ +

[
1+ ξ−1/2]

√
ln 1/ε2. (H4)

Similar to the case of hypothesis testing, if we
take the small-deviation dichotomy-transformation rate
(Theorem 2),

R∗n(ε) ≈
D(ρ1‖σ1)+

√
V(ρ1‖σ1)/n× S−1

1/ξ (ε)

D(ρ2‖σ2)
, (H5)

and substitute moderate error rates, we reproduce the
moderate-deviation results (Theorem 3):

R∗n
(
exp(−λna)

) ≈ D(ρ1‖σ1)− |1− ξ−1/2| ×
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
, (H6a)

R∗n
(
1− exp(−λna)

) ≈ D(ρ1‖σ1)+
[
1+ ξ−1/2

]×
√

2λV(ρ1‖σ1)na−1

D(ρ2‖σ2)
. (H6b)

2. Large and moderate deviation

The moderate-deviation regime serves as a barrier between the small- and large-deviation regimes. As such, an alter-
native way of recovering the moderate-deviation results is to consider the limit of large deviations—specifically, errors
that are exponentially approaching 0 or 1—but then consider the limit where we treat that exponent as arbitrarily small.
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In the case of hypothesis testing, the large-deviation results (Lemma 5) are

1
n
γλn

(
ρ⊗n

∥
∥σ⊗n)→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

supt<0
qDt(ρ‖σ)+ t

1− t
λ, λ ≤ −D(σ‖ρ),

inf0<t<1−Dt(ρ‖σ)− t
1− t

λ, −D(σ‖ρ) ≤ λ ≤ 0,

supt>1−qDt(ρ‖σ)+ t
1− t

λ, λ ≥ 0.

(H7)

Substituting moderate errors into the large-deviation result gives the expressions

1
n
γ−λna

(
ρ⊗n

∥
∥σ⊗n) ≈ inf

0<t<1
−Dt(ρ‖σ)+ t

1− t
λna−1, (H8a)

1
n
γ+λna

(
ρ⊗n

∥
∥σ⊗n) ≈ sup

t>1
−qDt(ρ‖σ)+ t

1− t
λna−1, (H8b)

where λ > 0 and a ∈ (0, 1). In both cases, the optimizations approach t ≈ 1 in this moderate regime, so we can expand
the Rényi entropies using

qDt(ρ‖σ) ≈ Dt(ρ‖σ) ≈ D(ρ‖σ)+ t− 1
2

V(ρ‖σ), (H9)

which gives

1
n
γ−λna

(
ρ⊗n

∥
∥σ⊗n) ≈ inf

t<1
−D(ρ‖σ)+ 1− t

2
V(ρ‖σ)+ t

1− t
λna−1, (H10a)

1
n
γ+λna

(
ρ⊗n

∥
∥σ⊗n) ≈ sup

t>1
−D(ρ‖σ)+ 1− t

2
V(ρ‖σ)+ t

1− t
λna−1. (H10b)

These optimizations can now be explicitly evaluated. To leading order, they give

1
n
γ±λna

(
ρ⊗n

∥
∥σ⊗n) ≈ −D(ρ‖σ)∓

√
2V(ρ‖σ)λna−1, (H11)

which is Lemma 6.
Next, we turn to the dichotomy-transformation rates. We start with the high-error large-deviation result given in

Theorem 5,

R∗n
(
1− exp(−λn)

) ≈ inf
0<t2<1

inf
t1>1

Dt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λ

Dt2(ρ2‖σ2)
(H12)

for λ > 0. Substituting moderate errors, this becomes

R∗n
(
1− exp(−λna)

) ≈ inf
0<t2<1

inf
t1>1

Dt1(ρ1‖σ1)+
(

t1
t1−1 + t2

1−t2

)
λna−1

Dt2(ρ2‖σ2)
. (H13)

As with hypothesis testing, the optimizations will both approach t1, t2 ≈ 1, so we can expand the Rényi entropies around
t1, t2 = 1:

R∗n
(
1− exp(−λna)

) ≈ inf
t2<1

inf
t1>1

D(ρ1‖σ1)+ t1−1
2 V(ρ1‖σ1)+

(
t1

t1−1 + t2
1−t2

)
λna−1

D(ρ2‖σ2)+ t2−1
2 V(ρ2‖σ2)

(H14)

≈ inf
t2<1

inf
t1>1

D(ρ1‖σ1)+
[

t1−1
2 V(ρ1‖σ1)+ λna−1

t1−1

]
+

[
− t2−1

2
D(ρ1‖σ1)
D(ρ2‖σ2)

V(ρ2‖σ2)+ λna−1

1−t2

]

D(ρ2‖σ2)
(H15)
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≈
D(ρ1‖σ1)+ inft1>1

[
t1−1

2 V(ρ1‖σ1)+ λna−1

t1−1

]
+ inft2<1

[
1−t2

2
D(ρ1‖σ1)
D(ρ2‖σ2)

V(ρ2‖σ2)+ λna−1

1−t2

]

D(ρ2‖σ2)
(H16)

≈
D(ρ1‖σ1)+

√
2V(ρ1‖σ1)× λna−1 +

√
2V(ρ2‖σ2)

D(ρ1‖σ1)
D(ρ2‖σ2)

× λna−1

D(ρ2‖σ2)
(H17)

≈ D(ρ1‖σ1)+ [1+ ξ−1/2]
√

2V(ρ1‖σ1)× λna−1

D(ρ2‖σ2)
, (H18)

which is Theorem 3. For the low-error case, we can use the same arguments for r2/qr2 and r3. Specifically, for small
negative μ, we have

r2(−μ) ≈ qr2(−μ) ≈ D(ρ1‖σ1)− [1− ξ−1/2]
√−2V(ρ1‖σ1)× μ

D(ρ2‖σ2)
, (H19a)

r3(μ) ≈ D(ρ1‖σ1)+ [1− ξ−1/2]
√

2V(ρ1‖σ1)× μ
D(ρ2‖σ2)

(H19b)

and thus

R∗n
(
exp(−λna)

) ≈ min
−λna−1≤μ≤λna−1

{
r2(μ), μ < 0,
r3(μ), μ > 0,

(H20a)

≈ D(ρ1‖σ1)+min
{
ξ−1/2 − 1, 1− ξ−1/2

} √
2V(ρ1‖σ1)× λna−1

D(ρ2‖σ2)
(H20b)

≈ D(ρ1‖σ1)− |1− ξ−1/2|
√

2V(ρ1‖σ1)× λna−1

D(ρ2‖σ2)
, (H20c)

once again rederiving Theorem 3.

3. Large and extreme deviation

The other regime neighboring large deviations is
extreme deviations. Here, instead of taking the limit of
an arbitrarily small error exponent, we will instead take
the limit of an arbitrarily large error exponent, as a crude
model of superexponential error.

We start with hypothesis testing. For λ > 0, Lemma 5
gives that

1
n
γλn

(
ρ⊗n

∥
∥σ⊗n) ≈ sup

t>1
−qDt(ρ‖σ)+ t

1− t
λ. (H21)

As qDt(ρ‖σ) is monotonically increasing in t and bounded,
as we take λ→+∞, the optimizing t must also keep
increasing. If we take t→∞, then this gives

1
n
γλn

(
ρ⊗n

∥
∥σ⊗n) ≈ −qD+∞(ρ‖σ)− λ. (H22)

Application of the same argument for −λ gives

1
n
γ−λn

(
ρ⊗n

∥
∥σ⊗n) ≈ −qD−∞(ρ‖σ)+ λ. (H23)

Both of these are precisely the extreme-deviation results
given in Lemma 8.

Next, we turn to the zero-error transformation rate of
dichotomies. Recall that Theorem 4 gives that

R∗n
(
exp(−λn)

) ≥ min
−λ≤μ≤λ

⎧
⎪⎨

⎪⎩

r1(μ), μ < −D(σ1‖ρ1),
qr2(μ), −D(σ1‖ρ1) < μ < 0,
r3(μ), μ > 0,

(H24)

where

r1(μ) := sup
t2<0

inf
t1<0

−←Dt1(ρ1‖σ1)+
(

t1
t1−1 − t2

t2−1

)
μ

−Dt2(ρ2‖σ2)
,

(H25a)

qr2(μ) := inf
0<t2<1

sup
0<t1<1

←
Dt1(ρ1‖σ1)+

(
t1

1−t1
− t2

1−t2

)
μ

Dt2(ρ2‖σ2)
,

(H25b)
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r3(μ) := sup
t2>1

inf
t1>1

←
Dt1(ρ1‖σ1)+

(
t1

t1−1 − t2
t2−1

)
μ

Dt2(ρ2‖σ2)
.

(H25c)

If we take the limit of λ→∞, then the optimization
of μ becomes unconstrained and μ can be seen as a
Lagrange multiplier in the above optimizations. Ignoring
issues of order of limits, this means that optimizations of
μ can be converted into constrained optimizations, with
the constraint being that t1 = t2; specifically,

inf
μ<−D(σ1‖ρ1)

r1(μ) = inf
t<0

←
Dt(ρ1‖σ1)

Dt(ρ2‖σ2)
, (H26a)

inf
−D(σ1‖ρ1)<μ<0

qr2(μ) = inf
0<t<1

←
Dt(ρ1‖σ1)

Dt(ρ2‖σ2)
, (H26b)

inf
μ>0

r3(μ) = inf
t>1

←
Dt(ρ1‖σ1)

Dt(ρ2‖σ2)
. (H26c)

This means that

R∗n(0) � inf
t∈R

←
D(ρ1‖σ1)

D(ρ2‖σ2)
. (H27)

Following the discussion in Theorem 6 about pinching, this
would extend to

R∗n(0) � max

{

inf
t∈R

←
D(ρ1‖σ1)

D(ρ2‖σ2)
, inf

t∈R

→
D(ρ1‖σ1)

D(ρ2‖σ2)

}

. (H28)

4. Strong and weak resonance

In Sec. IV C 3, we have discussed a strong-resonance
phenomenon that arises in the large- and extreme-deviation
regimes, and complements the (weak) resonance discussed
in Ref. [101]. We will now explain how the weak-
resonance condition can be seen as an edge case of the
strong condition. The strong-resonance condition is

arg min
α∈R

qDα(ρ1‖σ1)

Dα(ρ2‖σ2)
= 1 (H29)

or, in other words,

min
α∈R

qDα(ρ1‖σ1)

Dα(ρ2‖σ2)
= D(ρ1‖σ1)

D(ρ2‖σ2)
. (H30)

Weak resonance is a phenomenon that appears in the
small- and moderate-deviation regimes. As we have shown
before, these regimes can be seen as corresponding to val-
ues of α close to 1. So, if we consider only such α values
and expand around α = 1, then this condition becomes

D(ρ1‖σ1)

D(ρ2‖σ2)
= min

α∈R

qDα(ρ1‖σ1)

Dα(ρ2‖σ2)
(H31a)

≈ min
α

D(ρ1‖σ1)+ α−1
2 V(ρ1‖σ1)+ O((α − 1)2)

D(ρ2‖σ2)+ α−1
2 V(ρ2‖σ2)+ O((α − 1)2)

(H31b)

≈ D(ρ1‖σ1)

D(ρ2‖σ2)

[

1+ α − 1
2

(
V(ρ1‖σ1)

D(ρ1‖σ1)
− V(ρ2‖σ2)

D(ρ2‖σ2)

)

+ O((α − 1)2)
]

, (H31c)

which clearly then reduces to the weak-resonance
condition

V(ρ1‖σ1)

D(ρ1‖σ1)
= V(ρ2‖σ2)

D(ρ2‖σ2)
. (H32)

APPENDIX I: UNIFORM HYPOTHESIS-TESTING
CONVERGENCE

An important feature of Lemma 2 is that it requires
an ordering of the type-II errors simultaneously for all
values of x. If one were to naively apply the hypothesis-
testing results in Sec. V A, however, these would only

provide pointwise convergence, instead of the uniform
convergence that such a statement would require. In this
appendix, we show that the hypothesis-testing results of
Sec. V A can all be extended to uniform results as required
essentially for free. This comes from the fact that the quan-
tities being considered are monotonic, in such a way that
rules out the pathologies necessary for nonuniform conver-
gence. Specifically, we will use the following lemma.

Lemma 19 (Proposition 2.1 of [131]). Convergence of
monotone functions on a compact set to a continuous func-
tion is uniform. In other words, if a sequence of functions
{fn}n from [a, b] to R are all monotone and pointwise
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converge to a continuous function f , then that convergence
is in fact uniform.

Lemma 20 (Uniform small-deviation analysis of hypoth-
esis testing). For any δ > 0, there exists a finite N (ρ, σ , δ)
such that both inequalities

∣
∣
∣− logβε

(
ρ⊗n

∥
∥σ⊗n)− nD(ρ‖σ)−

√
nV(ρ‖σ)�−1(ε)

∣
∣
∣

≤ δ√n, (I1a)
∣
∣
∣
∣− log

←
β ε

(
ρ⊗n

∥
∥σ⊗n)− nD(ρ‖σ)−

√
nV(ρ‖σ)�−1(ε)

∣
∣
∣
∣

≤ δ√n (I1b)

hold for all n ≥ N and ε ∈ [δ, 1− δ].

Proof. Start by defining

fn(x) := − logβx
(
ρ⊗n

∥
∥σ⊗n

)− nD(ρ‖σ)√
n

and

←
f n(x) := − log

←
β x

(
ρ⊗n

∥
∥σ⊗n

)− nD(ρ‖σ)√
n

, (I2)

and f (x) := √V(ρ‖σ)�−1(x). Lemma 4 is equivalent to

the statement that fn → f and
←
f n → f pointwise on

(0, 1). However, because βx(·‖·) and
←
β x(·‖·) are monotone

decreasing functions of x, we have that each fn and
←
f |n is

monotone increasing. Thus, if we constrain x to some com-
pact subset of (0, 1)—say, x ∈ [δ, 1− δ]—then the unifor-

mity of fn → f and
←
f n → f follows from Lemma 20.

This in turn implies that there exists an ε-independent con-

stant N (ρ, σ , δ) for which |fn(ε)− f (ε)| ≤ δ and |
←
f n(ε)−

f (ε)| ≤ δ hold for all ε ∈ [δ, 1− δ] and n ≥ N . Expanding
this out gives the required inequalities. �

Lemma 21 (Uniform large-deviation analysis of hypoth-
esis testing). For any constant δ > 0, there exists an
N (ρ, σ , δ) such that the nonpinched and pinched log odds
error per copy are bounded as

|1
n
γλn

(
ρ⊗n

∥
∥σ⊗n)− �λ(ρ‖σ)| ≤ δ, (I3a)

|1
n
←
γ λn

(
ρ⊗n

∥
∥σ⊗n)− ←�λ(ρ‖σ)| ≤ δ, (I3b)

|1
n
→
γ λn

(
ρ⊗n

∥
∥σ⊗n)− →�λ(ρ‖σ)| ≤ δ, (I3c)

for all −1/δ ≤ λ ≤ 1/δ and n ≥ N .

Proof. This proof follows similarly to Lemma 21. Here,
we define

fn(x) := γnx
(
ρ⊗n

∥
∥σ⊗n

)

n
, (I4a)

←
f n(x) :=

←
γ nx

(
ρ⊗n

∥
∥σ⊗n

)

n
, (I4b)

→
f n(x) :=

→
γ nx

(
ρ⊗n

∥
∥σ⊗n

)

n
, (I4c)

as well as f (x) := �x(ρ‖σ),
←
f (x) := ←�x(ρ‖σ), and

→
f (x) := →�x(ρ‖σ). Lemma 5 gives that fn → f ,

←
f n →

←
f ,

and
→
f n →

→
f pointwise on R, and Lemma 20 allows us to

make this uniform on [−1/δ, 1/δ]. This uniform conver-
gence in turn implies the existence of a finite N (ρ, σ , δ)

such that |fn(x)− f (x)| ≤ δ, |
←
f |n(x)−

←
f (x) ≤ δ, and

|
→
f |n(x)−

→
f (x) ≤ δ for any n ≥ N and x ∈ [−1/δ, 1/δ].

Expanding this gives the required inequalities. �

Lemma 22 (Uniform moderate-deviation analysis of
hypothesis testing). For any constant δ > 0 and a ∈ (0, 1),
there exists an N (ρ, σ , δ, a) such that the nonpinched and
pinched log odds error per copy are bounded as
∣
∣
∣
∣
1
n
γλna

(
ρ⊗n

∥
∥σ⊗n)+D(ρ‖σ)+ sgn(λ)×

√
2V(ρ‖σ)λna−1

∣
∣
∣
∣

≤ δ
√

na−1, (I5a)
∣
∣
∣
∣
1
n
←
γ λna

(
ρ⊗n

∥
∥σ⊗n)+D(ρ‖σ)+ sgn(λ)×

√
2V(ρ‖σ)λna−1

∣
∣
∣
∣

≤ δ
√

na−1, (I5b)

for all −1/δ ≤ λ ≤ 1/δ and n ≥ N .

Proof. For this, we define

fn(x) :=
1
nγxna

(
ρ⊗n

∥
∥σ⊗n

)+ D(ρ‖σ)√
na−1

and

←
f n(x) :=

1
n

←
γ xna

(
ρ⊗n

∥
∥σ⊗n

)+ D(ρ‖σ)√
na−1

, (I6)

and f (x) := −sgn(x)×√2V(ρ‖σ)|x|. Lemma 6 is equiv-

alent to the statement that fn,
←
f n → f pointwise on R.

As γx and
←
γ x are monotone-increasing functions, we can

apply Lemma 20 to upgrade this convergence to uni-
form, which gives that there exists a N (ρ, σ , δ, a) such that

|fn(x)− f (x)| ≤ δ and |
←
f |n(x)− f (x) ≤ δ for any n ≥ N

and x ∈ [−1/δ, 1/δ]. Expanding these out gives the desired
bounds. �
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[127] K. Szymański, Ph.D. thesis, Jagiellonian University,
2022.

[128] J. Lebel, Basic Analysis II: Introduction to Real Analysis
(CreateSpace Independent Publishing, Palo Alto, 2018),
Vol. 2.

[129] M. Fekete, Über die Verteilung der Wurzeln bei gewissen
algebraischen Gleichungen mit ganzzahligen Koeffizien-
ten, Math. Z. 17, 228 (1923).

[130] May the Lord forgive us. . . .
[131] S. Resnick, Heavy-Tail Phenomena: Probabilistic and

Statistical Modeling (Springer, New York, 2007).

020335-54

https://doi.org/10.1088/1367-2630/17/4/043003
https://doi.org/10.1088/1367-2630/10/3/033023
https://doi.org/10.1007/BF01504345
https://doi.org/10.1007/978-0-387-45024-7

	I.. INTRODUCTION
	A.. Statistical inference
	B.. Quantum thermodynamics
	C.. Summary of results

	II.. FRAMEWORK
	A.. Quantum dichotomies
	B.. Resource theory of thermodynamics
	C.. Resource theory of entanglement
	D.. Information-theoretic and statistical notions

	III.. RESULTS
	A.. Sesquinormal distribution
	B.. Noncommuting quantum dichotomies
	C.. Coherent quantum thermodynamics
	D.. Entanglement transformations

	IV.. DISCUSSION AND APPLICATIONS
	A.. Phenomenological model
	B.. Optimal thermodynamic protocols with coherent inputs
	C.. Resonance phenomena
	1.. Coherent resonance
	2.. Work-assisted resonance
	3.. Strong resonance

	D.. Entanglement transformations

	V.. DERIVATIONS
	A.. Hypothesis testing and pinched hypothesis testing
	B.. Asymptotic analyses of hypothesis testing
	1.. Small deviation
	2.. Large deviation
	3.. Moderate deviation
	4.. Extreme deviation

	C.. Transformation rates
	1.. Small deviation
	2.. Large deviation
	3.. Moderate deviation
	4.. Extreme deviation


	VI.. CONCLUSIONS AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: PROOF OF LEMMA 1
	. 
	. 
	. 


	. APPENDIX B: PINCHED RELATIVE ENTROPY
	. APPENDIX C: TWO-SIDED ERROR
	1.. High errors
	2.. Low errors

	. APPENDIX D: PROOF OF THEOREM 8
	. APPENDIX E: PROOF OF THEOREM 9
	. APPENDIX F: PROOF SKETCH OF THEOREM 10
	. APPENDIX G: NUMERICAL EXAMPLES OF STRONG AND WEAK RESONANCE
	. APPENDIX H: ASYMPTOTIC CONSISTENCY
	1.. Small and moderate deviation
	2.. Large and moderate deviation
	3.. Large and extreme deviation
	4.. Strong and weak resonance

	. APPENDIX I: UNIFORM HYPOTHESIS-TESTING CONVERGENCE
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


