
PRX QUANTUM 5, 020330 (2024)

High-Order Randomized Compiler for Hamiltonian Simulation

Kouhei Nakaji ,1,2,3,* Mohsen Bagherimehrab ,1,4,† and Alán Aspuru-Guzik 1,4,5,6,7,8

1
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

M5S 3H6
2
Research Center for Emerging Computing Technologies, National Institute of Advanced Industrial Science and

Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
3
Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522,

Japan
4
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 2E4

5
Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada M5G 1M1

6
Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

M5S 3E5
7
Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3E4

8
Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada M5S 1M1

 (Received 3 May 2023; revised 24 January 2024; accepted 2 April 2024; published 8 May 2024)

Hamiltonian simulation is known to be one of the fundamental building blocks of a variety of quantum
algorithms such as its most immediate application, that of simulating many-body systems to extract their
physical properties. In this work, we present qSWIFT, a high-order randomized algorithm for Hamiltonian
simulation. In qSWIFT, the required number of gates for a given precision is independent of the number
of terms in the Hamiltonian, while the systematic error is exponentially reduced with regard to the order
parameter. In this respect, our qSWIFT is a higher-order counterpart of the previously proposed quantum
stochastic drift protocol (qDRIFT), the number of gates in which scales linearly with the inverse of the
precision required. We construct the qSWIFT channel and establish a rigorous bound for the systematic
error quantified by the diamond norm. qSWIFT provides an algorithm to estimate given physical quantities
by using a system with one ancilla qubit, which is as simple as other product-formula-based approaches
such as regular Trotter-Suzuki decompositions and qDRIFT. Our numerical experiment reveals that the
required number of gates in qSWIFT is significantly reduced compared to qDRIFT. In particular, the
advantage is significant for problems where high precision is required; e.g., to achieve a systematic relative
propagation error of 10−6, the required number of gates in third-order qSWIFT is 1000 times smaller than
that of qDRIFT.

DOI: 10.1103/PRXQuantum.5.020330

I. INTRODUCTION

Hamiltonian simulation is a key subroutine of quan-
tum algorithms for simulating quantum systems. Given a
Hamiltonian H =∑L

�=1 h�H�, where h� ≥ 0 and L is the
number of terms, the task in Hamiltonian simulation is to
construct a quantum circuit that approximately emulates
time evolution U(t) := exp(−iHt) of the system for time t.
Several approaches have been established for this task. The

*Corresponding author: kohei.nakaji@utoronto.ca
†Corresponding author: mohsen.bagherimehrab@utoronto.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

conventional approach uses the Trotter-Suzuki decomposi-
tions that provide a deterministic method for Hamiltonian
simulation [1–3]. The gate count of this approach scales
at least linearly with the number of terms L in H [3]; we
note that the gate count in Ref. [2] scales at least quadrat-
ically with L. Although this scaling is formally efficient
it is impractical for many applications of interest, par-
ticularly for the electronic structure problem in quantum
chemistry, where the number of terms in a Hamiltonian is
prohibitively large. An alternative approach is to randomly
permute the order of terms in the Trotter-Suzuki decom-
positions [4]. This randomized compilation provides a
slightly better scaling for the gate count over Ref. [2] but
the gate count still depends quadratically on the number of
Hamiltonian terms.

The quantum stochastic drift protocol (qDRIFT) [5] is
another randomized Hamiltonian-simulation approach but

2691-3399/24/5(2)/020330(23) 020330-1 Published by the American Physical Society

https://orcid.org/0000-0002-3501-5734
https://orcid.org/0000-0001-8564-446X
https://orcid.org/0000-0002-8277-4434
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.020330&domain=pdf&date_stamp=2024-05-08
http://dx.doi.org/10.1103/PRXQuantum.5.020330
https://creativecommons.org/licenses/by/4.0/

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

S
(0) S •

=
H

S
(1) S Z X • X

=
H

(b)(a)

FIG. 1. Quantum circuits for implementing the swift operators S̃(b)
� := S(b)

� ρS(b)†
� (b ∈ {0, 1}). The top line corresponds to an ancilla

qubit and the bottom line corresponds to the qubits in the system. The S gate is defined by the operator eiπ/2eiσz , where σz is the Pauli-Z
operator. (a) The quantum circuit for S̃(0)

� (ρ). (b) The quantum circuit for S̃(1)
� (ρ).

is independent of the number of terms. In qDRIFT, gates
of the form exp(−iH�τ) with a small interval τ are applied
randomly with a probability proportional to the strength
h� of the corresponding term in the Hamiltonian. qDRIFT
improves upon the Trotter-Suzuki approach in that its gate
count is independent of L and � := max� h� (the magni-
tude of the strongest term in the Hamiltonian) and instead
depends on λ :=∑L

�=1 h�. However, qDRIFT has poor
scaling with respect to the precision ε, in contrast to that in
the Trotter-Suzuki approach. We note that there are other
approaches to Hamiltonian simulation with asymptotically
better performance as a function of various parameters [6–
11]. Still, the approaches based on product formulas, e.g.,
Trotter-Suzuki decompositions and qDRIFT, are preferred
for their superior performance in practice [12] and their
predominant usage in experimental implementations [13–
15] due to their simplicity and the fact that they do not
require any ancilla qubits. From this perspective, we focus
on an approach based on product formulas, while having
better gate scaling than the previous methods.

In this paper, we propose the quantum swift proto-
col (qSWIFT) [16], a high-order randomized algorithm
having (i) better scaling with respect to the precision ε

and (ii) the same scaling with respect to λ compared to
qDRIFT. Specifically, the gate count of qSWIFT scales
as O((λt)2/ε1/K), where K is the order parameter, while
that of qDRIFT scales as O((λt)2/ε). For example, with
respect to the precision ε, the gate count of qSWIFT scales
as O(1/

√
ε) for the second order and as O(1/ε1/3) for

the third order. Our qSWIFT algorithm shares its simplic-
ity with the other approaches based on product formulas.
It works in the system with one ancilla qubit (we refer
to the qubits other than the ancilla qubit simply as the
system qubits). We can construct all gate operations with
exp(iH�τ) and the swift operators S̃b

� := S(b)
� ρS(b)†

� , where
S(b)

� is a unitary transformation; the swift operators can be
constructed if we can efficiently implement controlled-H�

gates, as shown in Fig. 1. In the case of qDRIFT, the entire
time evolution is divided into segments and a sampled
time evolution exp(iH�τ) is performed in each segment
[see Fig. 2(a)]. In qSWIFT, we utilize the swift circuit in
addition to the circuit for qDRIFT. The swift circuit also
has segments; in most segments, a sampled time evolu-
tion exp(iH�τ) is performed to the system qubits but in
the other segments, a sequence of the swift operators is

performed [see Fig. 2(b)]. The number of swift operators is
upper bounded by about twice the order parameter. There-
fore, the qSWIFT algorithm can be performed with almost
no additional resources compared to qDRIFT.

We will now describe in more detail how qSWIFT is
carried out. First, we build the qSWIFT channel that simu-
lates the ideal time evolution. We then establish a bound
for the distance between the qSWIFT channel and the
ideal channel, quantified with the diamond norm, which
exponentially decreases by increasing the order parame-
ter. The established bound yields the desired scaling for
the gate count of qSWIFT. It should be noted that the
qSWIFT channel itself is not physical in the sense that it
is not a completely positive and trace-preserving (CPTP)
map. Nevertheless, we can employ the qSWIFT channel
to develop a procedure for measuring a physical quantity
of interest, i.e., computing the expectation value of some
given observable that is exponentially more precise than
the original qDRIFT with respect to the order parameter.

Our numerical analysis also reveals the advantage of
our qSWIFT algorithm. We show the asymptotic behav-
ior of qSWIFT by using electronic molecular Hamiltonians
with the number of qubits being approximately 50 and
we compare the performance with the other approaches
based on product formulas. Specifically, we compute the
required number of gates to approximate the time evolution
with the molecule Hamiltonians with a given systematic
error ε. We show that the number of gates in the third-
order version of qSWIFT is 10 times smaller than that of
qDRIFT when ε = 0.001 for every time region. A signif-
icant reduction of the number of gates is observed when
ε = 10−6; the required number of gates in third-order

(a)

(b)

eiH 1τ eiH 2 τ · · · eiH
N

τ

H
S

(b1)
r+1

S
(b2)

r+1
eiH 1 τ · · · eiH r τ e

iH
r+2τ · · · eiH

N
τ

FIG. 2. Examples of quantum circuits used for qDRIFT and
qSWIFT. (a) A quantum circuit for qDRIFT with N segments.
(b) A swift circuit with N segments, where two swift operators
are performed in the (r + 1)th segment.

020330-2

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

(sixth-order) qSWIFT is 1000 (10 000) times smaller than
that of qDRIFT. We also simulate our qSWIFT algorithm
and the other product-formula-based algorithms by using a
quantum circuit simulator with the small-size (eight-qubit)
molecular Hamiltonian. Its result is consistent with the
result of the asymptotic behavior analysis.

The rest of the paper is organized as follows. In Sec.
II, we briefly review approaches for Hamiltonian sim-
ulation based on product formulas. Sections III and IV
are dedicated to proposing and analyzing our qSWIFT
algorithm. In Sec. III, we introduce the way of constructing
the second-order qSWIFT algorithm. Then, we generalize
the algorithm to the higher order in Sec. IV. In Sec. V, we
validate our algorithm by numerical experiments. Finally,
in Sec. VI, we conclude with some discussions.

II. BACKGROUND

This section covers the key background pertinent to the
following sections. We begin with a brief description of
Hamiltonian simulation and the Trotter-Suzuki formulas
in Sec. II A. Then, we review the qDRIFT algorithm for
Hamiltonian simulation in Sec. II B.

A. Hamiltonian simulation by Trotter-Suzuki formulas

We begin with a brief description of Hamiltonian sim-
ulation. For a given time-independent Hamiltonian of the
form H =∑L

�=1 h�H�, where h� > 0 and H� are Hermitian
operators with ‖H�‖ = 1, the task in Hamiltonian simula-
tion is to find a good approximation of the transformation

U(t) : ρ → U(t)ρU†(t), (1)

where U(t) := eiHt and t is a real parameter. We assume
that we can efficiently implement each eiH�t′ by quantum
gates with t′ as a real number. For example, if we decom-
pose H to the sum of the tensor products of the Pauli
operators, we can efficiently implement each eiH�t′ .

The conventional approach for Hamiltonian simulation
is the Trotter-Suzuki decomposition [1,2]. In the first-order
Trotter-Suzuki decomposition for Hamiltonian simulation,
the entire simulation for time t is divided into r segments
of simulations for time t/r as U(t) = (U(t/r))r and U(t/r)
is approximated as U(t/r) ≈ U(1)

TS(t/r), with

U(1)

TS(t) :=
L∏

�=1

eih�H�t, (2)

which yields the approximation U(t) ≈ (U(1)

TS(t/r))r for
the entire simulation. The second-order Trotter-Suzuki

decomposition is given by U(t) ≈ (U(2)

TS(t/r))r, with

U(2)

TS(t) :=
1∏

�′=L

eih�′ H�′ t/2
L∏

�=1

eih�H�t/2, (3)

which serves as the base case for the recursive formula

U(2k)
TS (t) :=

[
U(2k−2)

TS (pkt)
]2

U(2k−2)

TS ((1 − 4pk)t)

×
[
U(2k−2)

TS (pkt)
]2

(4)

for the 2kth-order decomposition, where pk := 1/(4 −
41/(2k−1)).

Let us discuss the Trotter-Suzuki decomposition in
the channel representation. The 2kth-order Trotter-Suzuki
channel U (2k)

TS (t) : ρ → U(2k)
TS (t)ρU(2k)

TS (t) is used to approx-
imate the channel U(ρ) as U(ρ) ≈ (U (2k)

TS (t/r))r. For a
given channel C, we denote by Cr′ the r′ repetition of C.
Previous analytic work [2,17,18] has shown that

||U(t) − (U (2k)
TS (t/r))r||	 ≤ ε (5)

for r ∈ O(αL�t(αL�t/ε)1/2k) with α := 2 · 5k−1, where
|| · ||	 is the diamond norm. We note that α here is defined
so that rαL is the number of gates used in the 2kth-order
decomposition. Hence the gate count for the 2kth-order
Trotter-Suzuki decomposition, denoted by GTS, is

GTS = rαL ∈ O

(
α2L2�t(αL�t)

1
2k

ε
1
2k

)

. (6)

Note that the gate count approaches O(L2�t) by increasing
the order parameter 2k but the prefactor scales exponen-
tially with 2k. Because of this rapidly growing prefactor,
Trotter-Suzuki decompositions of finite orders, typically
second (k = 1) or fourth order (k = 2), are used in practice
[5].

We note that Ref. [3] demonstrates that the gate-count
scaling can be more rigorously bounded using the com-
mutator bounds, where the upper bound is represented as
the commutation relation. However, we use the gate-count
scaling in Eq. (6) to compare qSWIFT against qDRIFT [5],
particularly for comparing the numerical experiments in
Ref. [5].

B. Hamiltonian simulation by qDRIFT

Developed by Campbell [5], qDRIFT is an algorithm
for Hamiltonian simulation using a randomized procedure.
While the procedure is randomized, with many repetitions
the evolution stochastically drifts toward the target unitary.
Specifically, the exact time evolution is approximated by N

020330-3

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

repetitions of the qDRIFT channel EN as U ≈ EN
N , with the

qDRIFT channel defined as

EN (ρ) :=
L∑

�=1

p�T�(ρ), (7)

where

T�(ρ) = eiH�τ ρe−iH�τ , (8)

is the unitary channel that we call the time operator and

p� := h�/λ, λ =
∑

�

h�, τ := λt/N , (9)

are three variables used through the paper. To realize the
qDRIFT channel EN , the index � is sampled according
to the probability p� and the quantum state ρ is evolved
through the channel associated with the operator eiH�τ .

For evaluating the systematic error of the approxima-
tion, they define the exact short-time evolution UN as

UN (ρ) := eiHt/N ρe−iHt/N . (10)

Then, they show

d	 (UN , EN) ≤ 2(λt)2

N 2 e2λt/N , (11)

where the diamond distance is defined as

d	
(
U ′, E ′) := 1

2
||U ′ − E ′||	. (12)

They utilize the diamond distance d	
(
U , EN

N

)
as the mea-

sure of the systematic error. By using the subadditive
feature of the diamond distance, they obtain the bound for
the diamond distance as

d	
(
U , EN

N

) ≤ Nd	 (UN , EN)

≤ 2(λt)2

N
e2λt/N

∈ O
(

(λt)2

N

)

. (13)

In other words, to reduce the systematic error within ε, we
need to set N ∈ O((λt)2/ε).

In most of the applications of Hamiltonian simulation,
our interest lies in computing the expectation value of an
observable after applying the time-evolution operator U .

Let us write the expectation value as

q := Tr(QU(ρinit)), (14)

where Q is an observable and ρinit is an input quantum
state. By using the qDRIFT algorithm, we can approxi-
mately compute the value of Q as

q(1) := Tr
(
QEN

N (ρinit)
)

, (15)

where the systematic error is bounded as

|q − q(1)| ≤ 2||Q||∞d	
(
U , EN

N

) ∈ O
(

||Q||∞
(

(λt)2

N

))

.

(16)

III. SECOND-ORDER QSWIFT

In this section, we describe our second-order qSWIFT
as a preparation for introducing the general high-order
qSWIFT in Sec. IV. To elucidate our algorithm, we use
a “mixture function” in our second- and higher-order
qSWIFT. We begin by describing this function in Sec.
III A. Next, we construct the second-order qSWIFT chan-
nel and discuss its error bound in Sec. III B. Finally, in Sec.
III C, we explain how to apply the constructed qSWIFT
channel for computing physical quantities.

A. Mixture function

In constructing our qSWIFT channels, we make use of
a mixture function. As a preparation, let us first define the
following sorting function.

Definition 1 (Sorting function). Let SN be the permuta-
tion group. For positive integers k and N with k < N , let
�A := (A1, . . . ,Ak) and �B := (B1, . . . ,BN−k). We define

the sorting function as

fσ ,k,N−k(�A, �B) := Xσ(1)Xσ(2) · · ·Xσ(N), (17)

where σ ∈ SN and

Xj =
{
Aj j ≤ k,
Bj −k j ≥ k + 1.

(18)

The mixture function is defined by using the sorting
function as follows.

Definition 2 (Mixture function). For positive integers
k and N with k < N , let �A := (A1, . . . ,Ak) and �B :=
(B1, . . . ,BN−k). Then, we define the mixture function as

Mk,N−k(�A, �B) =
∑

σ∈Ssub
N ,k

fσ ,k,N−k(�A, �B), (19)

where the set Ssub
N ,k is the subgroup of the permutation

group SN comprised of all elements σ ∈ SN that satisfies

020330-4

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

the following condition: if both Xi,Xj ∈ �A or ∈ �B, then
σ(i) < σ(j) for any i < j . We remark that the number of
elements in Ssub

N ,k is
(N

k

)
.

For simplicity, if the elements of �B are identical, we
denote the sorting and mixture functions as fσ ,k,N−k(�A,B)

and Mk,N−k(�A,B), respectively. In this case, Xj = B for
j ≥ k + 1. Similarly, we use the notation fσ ,k,N−k(A,B)

and Mk,N−k(A,B) if elements of �A, and also elements of
�B, are identical. In this case, Xj = A for j ≤ k and Xj = B

for j ≥ k + 1.
Note that the sorting function in Eq. (17) and the mixture

function in Eq. (19) are bilinear functions. For example, if
the �th element of �A is a linear combination of elements of
another vector �F , i.e., if A� =∑n cnFn for cn ∈ C, then
we have

Mk,N−k

(

(A1, . . . ,A�−1,
∑

n

cnFn,A�+1, . . . ,Ak), �B
)

=
∑

n

cnMk,N−k

(
(A1, . . . ,A�−1,Fn,A�+1, . . . ,Ak), �B

)
.

(20)

In general, if A� =∑n�
cn�

Fn�
for any �, then the identity

Mk,N−k

(�A, �B
)

=
∑

n1

cn1

∑

n2

cn2 · · ·
∑

nk

cnk

× Mk,N−k

(
(Fn1 , . . . ,Fnk), �B

)
(21)

holds.

B. Second-order qSWIFT channel

To construct the qSWIFT channel, let us define

L�(ρ) := i[H�, ρ], (22)

L(ρ) := i
λ

[H , ρ] =
∑

�

p�L�(ρ), (23)

where the variables λ, p�, and τ are defined in Eq. (9). We
then have

UN = eLτ = I + τL + �(2)UN , (24)

EN =
∑

�

p�eL�τ = I + τL + �(2)EN , (25)

for the ideal time-evolution channel in Eq. (10) and the
qDRIFT channel in Eq. (7), where

�(k)UN =
∞∑

n=k

τ n

n!
Ln, (26)

�(k)EN =
∞∑

n=k

τ n

n!

L∑

�=1

p�Ln
�. (27)

Let �k := �(k)UN − �(k)EN . Then,

�k =
∞∑

n=k

τ n

n!
L(n), L(n) := Ln −

L∑

�=1

p�Ln
�. (28)

Using the definition of �k and Eqs. (24) and (25), we have
UN = EN + �2, which we use to expand U = UN

N as

U = (EN + �2)
N = EN

N +
N∑

k=1

Mk,N−k (�2, EN)

= EN
N + τ 2

2
M1,N−1

(
L(2), EN

)+ M1,N−1 (�3, EN)

+
N∑

k=2

Mk,N−k (�2, EN) , (29)

where we have used �2 = (τ 2/2)L(2) + �3 and linearity
of M1,N−1 to obtain the last equality. Let us denote the first
two terms as

E (2) := EN
N + τ 2

2
M1,N−1

(
L(2), EN

)
. (30)

We refer to E (2) as the second-order qSWIFT channel. In
the following lemma, we provide a bound for the error
in approximating the ideal channel U in Eq. (1) by the
second-order qSWIFT channel E (2), where the error is
quantified as the diamond norm of their difference.

Lemma 1. Let U be the ideal channel in Eq. (1) and
let E (2) be the second-order qSWIFT channel in Eq. (30).
Then, in the region λt ≥ 1,

d	
(
U , E (2)

) ∈ O
((

(λt)2

N

)2
)

, (31)

provided that N ≤ 2
√

2e(λt)2.

We provide the proof in Appendix A 1. By this lemma,
when we consider the reasonable parameter region λt ≥
1, if N ∈ O

(
(λt)2/

√
ε
)

for ε > 0, then d	
(
U , E (2)

) ≤ ε.
This provides a quadratic improvement over the original
qDRIFT with respect to ε.

020330-5

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

C. Implementation of the second-order qSWIFT
channel

The second-order qSWIFT channel that we have con-
structed is not a physical channel, as it is not a CPTP map.
Therefore, we cannot directly implement the qSWIFT
channel itself. However, in most applications of Hamil-
tonian simulation, our interest is in computing physical
quantities, i.e., the expectation value of an observable after
applying the time-evolution operator as described in Sec.
II B. Thus, in the following, we focus on how to compute
q(2) := Tr(QE (2)(ρinit)), for a given observable Q and the
input ρinit. By using q(2), the systematic error is reduced to

|q − q(2)| ≤ 2||Q||∞d	
(
U , E (2)

) ∈ O
(

||Q||∞
(

(λt)2

N

)2
)

,

(32)

where we use Eq. (31), which is the quadratic improvement
in terms of (λt)2/N from the one in qDRIFT, given in Eq.
(16).

Here, we provide a way of computing q(2) by quantum
circuits. We can expand q(2) as

q(2) = q(1) + δq, (33)

where

δq = τ 2

2
Tr
(
QM1,N−1

(
L(2), EN

)
(ρinit)

)
. (34)

For computing q(1), we just need to apply the origi-
nal qDRIFT channel and compute the expectation value.
Thus, we focus on how to compute δq in the following.
More specifically, we will show that δq is computable by
using the swift circuits, composed of the time evolution
exp (iH�τ) and the swift operators shown in Fig. 1.

By using

M1,N−1
(
L(2), EN

) =
N−1∑

r=0

EN−1−r
N L(2)E r

N , (35)

which can be derived from the definition in Eq. (19), we
obtain

δq = τ 2

2

N−1∑

r=0

δqr, (36)

where δqr := Tr
(
QEN−1−r

N L(2)E r
N (ρinit)

)
. Now let us move

on to the evaluation of δqr. We transform δqr as

δqr = Tr
(
QEN−1−r

N L(2)E r
N (ρinit)

)
,

=
L∑

�,k=1

p�pkTr
(
QEN−1−r

N L�LkE r
N (ρinit)

)

−
L∑

�=1

p�Tr
(
QEN−1−r

N L2
�E r

N (ρinit)
)

, (37)

where we use Eq. (28) in the second equality. Let two
probability distributions be

P(2)

0 (��) = p�2p�1 , P(2)

1 (��) =
{

p�, �1 = �2 = �,
0, �1 = �2,

(38)

where the input �� is a vector with two elements (�1 and �2).
Also, let

L2(��) := L�2L�1 . (39)

Then, it holds that

δqr :=
1∑

s=0

(−1)s
∑

��
P(2)

s (��)Tr
(

QK(r, ��)(ρinit)
)

, (40)

where we define a channel K(r, ��) as

K(r, ��) := EN−1−r
N L2(��)E r

N . (41)

To evaluate each term of Eq. (40), we utilize a system
with one ancilla qubit. Let us write the density matrix for a
given system with one ancilla qubit as the matrix form

(
ρ00 ρ01
ρ10 ρ11

)

:= |0〉〈0| ⊗ ρ00 + |0〉〈1| ⊗ ρ01

+ |1〉〈0| ⊗ ρ10 + |1〉〈1| ⊗ ρ11. (42)

We define the operation of a quantum channel K̃(r, ��) that
transforms the initial state ρ̃init = |+〉〈+| ⊗ ρinit into a final
state as

ρ̃init =
(

ρinit/2 ρinit/2
ρinit/2 ρinit/2

)

K̃(r,��)�−−−→
(· K(r, ��)(ρinit)/2
K(r, ��)(ρinit)/2 ·

)

, (43)

where the dot (“·”) in the diagonal element denotes a
matrix in which we do not have any interest at this stage.

020330-6

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

Then, it holds that

Tr(QK(r, ��)(ρinit)) = Tr
(

Q̃K̃(r, ��)(ρ̃init)
)

(44)

and, consequently,

δqr :=
1∑

s=0

(−1)s
∑

��
P(2)

s (��)Tr
(

Q̃K̃(r, ��)(ρ̃init)
)

, (45)

where

Q̃ = X ⊗ Q, (46)

where X is the Pauli-X observable for the ancilla qubit.
Therefore, we can evaluate δqr if we implement the chan-
nel K̃(r, ��) by using quantum circuits.

We can specify the channel K̃(r, ��) as follows:

K̃(r, ��) := ẼN−1−r
N L̃�2L̃�1 Ẽ r

N , (47)

where we define ẼN := 1 ⊗ EN and �� = (�1, �2) and where
the operation of the channel L̃� is specified for the input
having the identical nondiagonal elements as follows:

(· ρ

ρ ·
)

L̃��−→
(· L�(ρ)

L�(ρ) ·
)

. (48)

The channel L̃� can be written as the sum of two swift
operators, S̃(0)

� and S̃(1)
� , introduced in Fig. 1 as

L̃� = S̃(0)
� + S̃(1)

� , (49)

which is easily checked by using

(· ρ

ρ ·
)

S̃(0)
��−−→
(· −iρH�

iH�ρ ·
)

,

(· ρ

ρ ·
)

S̃(1)
��−−→
(· iH�ρ

−iρH� ·
)

.

(50)

It can be pedagogically shown that the channel in Eq.
(47) reproduces the transformation in Eq. (43); with ρ ′

init =
ρinit/2, it holds that
(

ρ ′
init ρ ′

init
ρ ′

init ρ ′
init

)
Ẽr

N�−→
(
E r

N (ρ ′
init) E r

N (ρ ′
init)

E r
N (ρ ′

init) E r
N (ρ ′

init)

)

L̃�1�−−→
(· L�1E r

N (ρ ′
init)

L�1E r
N (ρ ′

init) ·
)

L̃�2�−−→
(· L�2L�1E r

N (ρ ′
init)

L�2L�1E r
N (ρ ′

init) ·
)

ẼN−1−r
N�−−−−→

(· K̃(r, ��)(ρ ′
init)

K̃(r, ��)(ρ ′
init) ·

)

.

(51)

By substituting Eqs. (49)–(47), we obtain

K̃(r, ��) =
1∑

b1,b2=0

ẼN−1−r
N S̃(b2)

�2
S̃(b1)

�1
Ẽ r

N . (52)

Finally, from Eqs.(36), (45), and (52),

δq = τ 2

2

1∑

s=0

(−1)s
1∑

b1,b2=0

N−1∑

r=0

∑

��
P(2)

s (��)Tr

×
(

Q̃ẼN−1−r
N S̃(b2)

�2
S̃(b1)

�1
Ẽ r

N (ρinit)
)

,

= (λt)2

2N

1∑

s=0

(−1)s
1∑

b1,b2=0

δq(s, b1, b2), (53)

where in the second equality, we define

δq(s, b1, b2) := 1
N

N−1∑

r=0

∑

��
P(2)

s (��)Tr

×
(

Q̃ẼN−1−r
N S̃(b2)

�2
S̃(b1)

�1
Ẽ r

N (ρ̃init)
)

. (54)

We can evaluate Eq. (54) using Monte Carlo sampling. To
this end, let

PMDRIFT(�k, n) = pk1pk2 · · · pkn (55)

be the probability distribution for product of multiple
qDRIFT probability distributions, where n ∈ Z+ specifies
the number of qDRIFT distributions and kj , for each j ,
goes from 1 to L. Then,

Ẽn
N =

L∑

k1,k2,...kn

PMDRIFT(�k, n)T̃n(�k), (56)

where T̃n(�k) is the unitary channel defined as the sequence
of the time operators

T̃n(�k) := (1 ⊗ Tkn · · ·Tk2Tk1). (57)

We obtain an unbiased estimator of δq(s, b1, b2) as fol-
lows:

(1) Sample � uniformly from {0, 1, . . . , N − 1}.
(2) With probability P(2)

s (��), sample �� = (�1, �2). With
probability PMDRIFT(�k, r) and PMDRIFT(�k′, N −
1 − r), sample �k and �k′.

(3) Estimate

Tr
(

Q̃T̃N−1−r(�k′)S̃(b2)

�2
S̃(b1)

�1
T̃r(�k)(ρ̃init)

)
(58)

with Nshot measurements and set the resulting value
to δq̂(s, b1, b2), which is an unbiased estimator of

020330-7

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

δq(s, b1, b2). The value in Eq. (58) can be evaluated
by applying a swift circuit composed of the time
evolution and the swift operators and estimating the
expectation value of Q̃ by measurements.

We repeat the above process Nsample times and the esti-
mate of δq(s, b1, b2) is computed as the sample average.
By substituting each estimate of δq(s, b1, b2) into Eq. (54),
we obtain the estimate of δq as δq̂. It should be noted that
the swift circuit for evaluating each term of Eq. (58) has
the structure that two swift operators are tucked in between
N − 1 time operators as in Fig. 2(b). Therefore, the num-
ber of gates in the swift circuit is almost the same as the
original qDRIFT, which requires N time operators.

IV. HIGHER-ORDER QSWIFT

In this section, we generalize the second-order qSWIFT
channel introduced in Sec. III B to an arbitrary high-order
channel. First, we construct the higher-order qSWIFT
channel and discuss the error bound in Sec. IV A. Then, in
Sec. IV B, we construct an algorithm to apply the qSWIFT
channel for computing physical quantities.

A. Higher-order qSWIFT channel

To construct a high-order qSWIFT channel, we retain
higher orders of τ in the right-hand side of

U = (EN + �2)
N = EN

N +
N∑

k=1

Mk,N−k(�2, EN), (59)

where Mk,N−k is the mixture function defined in Eq. (19).
We note that �2 is a linear combination of L(n) as per Eq.
(28). Thus, by Eq. (21), we obtain

Mk,N−k(�2, EN) =
∞∑

n1=2

τ n1

n1!

∞∑

n2=2

τ n2

n2!
· · ·

∞∑

nk=2

τ nk

nk!
Mk,N−k

((
L(n1), . . . ,L(nk)

)
, EN
)

=
∞∑

n1,n2,...,nk=2

τ
∑k

j =1 nj

n1!n2! · · · nk!

∞∑

ξ=2

δ

[

ξ ,
k∑

�=1

n�

]

Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
)

=
∞∑

ξ=2

τ ξ

ξ∑

n1,n2,...,nk=2

1
n1!n2! · · · nk!

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦

Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
)

, (60)

where δ[i, j] here is the Kronecker δ. To show the second
equality, we use the identity

∞∑

ξ=2

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ = 1, (61)

which holds for a fixed set of integers {nj }k
j =1 with nj ≥ 2.

In the last equality, we use the fact that the Kronecker
δ is zero if any of n1, n2, . . . , nk is larger than ξ . Trun-
cating the upper limit of ξ yields a high-order qSWIFT
channel. Specifically, we define the high-order qDRIFT as
follows.

Definition 3 (Higher-order qSWIFT). We define the
K th-order qSWIFT channel (K ≤ N) as

E (K) := EN
N +

2K−2∑

ξ=2

τ ξ

N∑

k=1

ξ∑

n1,...,nk=2

1
n1!n2! · · · nk!

δ

×
⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
)

.

(62)

Here, we note that the upper limit N in the second sum-
mation can be replaced with K for K ≤ N because the
terms with k > K become zero by the Kronecker δ. We
remark that setting K = 2 yields the second-order qSWIFT
channel in Eq. (30). Also, by setting K = 1, we reproduce
the qDRIFT channel.

We now provide a bound for the error in approximating
the ideal channel U in Eq. (1) by the high-order qSWIFT
channel E (K) in the following lemma.

Lemma 2. Let U be the ideal channel in and let E (K) be
the K th-order qSWIFT channel. Then, in the region λt ≥ 1,

d	
(
U , E (K)

) ∈ O
((

(λt)2

N

)K
)

. (63)

as far as N ≤ 2
√

2e(λt)2.

The proof is given in Appendix A 2. As in the case of
the second order, when we consider the reasonable param-
eter region λt ≥ 1, if N ∈ O

(
(λt)2/

√
ε
)

for ε > 0, then
d	
(
U , E (K)

) ≤ ε.

020330-8

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

B. Implementation of the higher-order qSWIFT
channel

As we discuss in Sec. III C, the qSWIFT channel is
not a physical channel but we can apply it to computing
the physical quantities. Specifically, we discuss how to
compute

q(K) := Tr
(
QE (K)

)
. (64)

Then, the systematic error is bounded as

|q − q(K)| ≤ 2||Q||∞d	
(
U , E (K)

)

∈ O
(

||Q||∞
(

(λt)2

N

)K
)

, (65)

which can be exponentially small with the order parameter.
Here, we provide the way to compute q(K). We can

expand q(K) as

q(K) = q(1) +
2K−2∑

ξ=2

N∑

k=1

ξ∑

n1,...,nk=2

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ δq(k)(�n)

(66)

= q(1) +
2K−2∑

ξ=2

K∑

k=1

∑

�n∈G2(k,ξ)

δq(k)(�n), (67)

where

δq(k)(�n) := τ
∑k

j =1 nj

n1!n2! · · · nk!

× Tr
(
QMk,N−k

((
L(n1), . . . ,L(nk)

)
, EN
)
(ρinit)

)
,

(68)

with �n = {n1, n2, . . . , nk} and where we replace N in the
second summation with K in the second equality (since
the terms with k > K become zero by the Kronecker
δ.). To obtain Eq. (67), we define the set G2(k, ξ) com-
posed of all vectors with k integer elements {nj }k

j =1 that
satisfies nj ≥ 2 and

∑k
j =1 nj = ξ . As an example, when

using the second-order (K = 2) qSWIFT, the summa-
tion of the second term in Eq. (68) includes only one
term, as

q(2) = q(1) + δq(1) ({2}) . (69)

We see that δq in Eq. (33) corresponds to δq(1) ({2}),
where we write {a1, . . . , ak} as the vector having elements
a1, . . . , ak. As another example, when using the third-order

(K = 3) qSWIFT,

q(3) = q(1) + δq(1) ({2}) + δq(1) ({3}) + δq(1) ({4})
+ δq(2) ({2, 2}) . (70)

Since q(1) is again evaluable by using the original
qDRIFT, we focus on the evaluation of δq(k)(�n) in the
following.

Similar to the second-order case, we will transform
δq(k)(�n) as a sum of the terms that are evaluable with quan-
tum circuits. The mixture function Mk,N−k(·) included in
Eq. (68) is written as the summation of

(N
k

)
terms as

δq(k)(�n) = τ
∑k

j =1 nj

n1!n2! · · · nk!

∑

σ∈Ssub
N ,k

δq(k)
σ (�n), (71)

where

δq(k)
σ (�n) := Tr

(
Qfσ ,k,N−k

((
L(n1), . . . ,L(nk)

)
, EN
)
(ρinit)

)
,

(72)

where fσ ,k,N−k is the sorting function defined in Eq. (17).
We now move on to the calculation of δq(k)

σ (�n). To this
end, let

D(n)

0 := Ln, D(n)

1 :=
∑

�

p�Ln
�. (73)

We can write L(n) as a linear combination of D(n)
s :

L(n) =
1∑

s=0

(−1)sD(n)
s , (74)

as per Eq. (28). We define two probability distributions:

P(n)

0 (��) = PMDRIFT(��, n), (75)

P(n)

1 (��) =
{

p�, �1 = · · · = �n = �,
0, �a = �b for ∃(a, b),

(76)

where n specifies the number of vectors in �� and we write
the ath element of �� as �a. We see that for n = 2, Eq. (75)
is consistent with Eq. (38). Then, it holds that

D(n)
s =

∑

��
P(n)

s (��)Ln(��), (77)

with

Ln(��) := L�n · · ·L�1 , (78)

020330-9

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

which is consistent with Eq. (39) for n = 2. By using the
bilinearity of the sorting function, we obtain

fσ ,k,N−k
((
L(n1), . . . ,L(nk)

)
, EN
)

=
1∑

s1,...,sk=0

(−1)
∑

c sc fσ ,k,N−k

((
D(n1)

s1
, . . . ,D(nk)

sk

)
, EN

)

=
1∑

s1,...,sk=0

(−1)
∑

c sc
∑

��1,... ��k

P(n1)
s1

(��1) · · · P(nk)
sk

(��k)

fσ ,k,N−k

((
Ln1(

��1), . . . ,Lnk (
��k)
)

, EN

)
, (79)

where we use Eq. (74) in the first equality and Eq. (77) in
the second equality. Substituting the above into Eq. (72),
we obtain

δq(k)
σ (�n) =

1∑

s1,...,sk=0

(−1)
∑

c sc
∑

��1,... ��k

P(n1)
s1

(��1) · · · P(nk)
sk

(��k)

δq(k)
σ

(
�n,
(

��1, . . . , ��k

))
, (80)

where

δq(k)
σ

(
�n,
(

��1, . . . , ��k

))
:= Tr

(
Qfσ ,k,N−k

×
((

Ln1(
��1), . . . ,Lnk (

��k)
)

, EN

)
(ρinit)

)
. (81)

As in Sec. III C, we compute the right-hand side of Eq. (81)
by using the system with one ancilla qubit. Let

L̃n(��) := L̃�n · · · L̃�1 . (82)

By repeatedly operating Eq. (48) with j = �1, . . . , �n, we
obtain the operation of L̃n(��) as

(· ρ

ρ ·
)

L̃n(��)�−−−→
(· Ln(��)(ρ)

Ln(��)(ρ) ·
)

(83)

for a given density operator ρ. Recall the definition of the
sorting function in Eq. (17):

fσ ,k,N−k

((
Ln1(

��1), . . . ,Lnk (
��k)
)

, EN

)
= Xσ(1) · · ·Xσ(N),

(84)

with

Xa =
{
Lna(

��a), a ≤ k,
EN , a ≥ k + 1.

(85)

Then, in the system with one ancilla qubit, it holds that

fσ ,k,N−k

((
L̃n1(

��1), . . . , L̃nk (
��k)
)

, ẼN

)
= X̃σ(1) · · · X̃σ(N),

(86)
with

X̃a =
{
L̃na(

��a), a ≤ k,
ẼN , a ≥ k + 1.

(87)

Since it holds that
(· ρ

ρ ·
)

X̃a�−→
(· Xa(ρ)

Xa(ρ) ·
)

, (88)

the operation of X̃σ(1) · · · X̃σ(N) to the input state ρ̃init =
|+〉〈+| ⊗ ρinit reproduces the operation of Xσ(1) · · ·Xσ(N)

as

ρ̃init =
(

ρinit/2 ρinit/2
ρinit/2 ρinit/2

)
X̃σ(1)···X̃σ(N)�−−−−−−−→

(· Xσ(1) · · ·Xσ(N)(ρinit)/2
Xσ(1) · · ·Xσ(N)(ρinit)/2 ·

)

. (89)

Therefore, the estimation value of the observable Q̃ = X ⊗ Q with the final state in Eq. (89) gives δq(k)
σ

(
�n,
(

��1, . . . , ��k

))
,

i.e.,

δq(k)
σ

(
�n,
(

��1, . . . , ��k

))
= Tr

(
Q̃fσ ,k,N−k

((
L̃n1(

��1), . . . , L̃nk (
��k)
)

, ẼN

)
(ρ̃init)

)
. (90)

Next, we discuss the way of evaluating the right-hand
side of Eq. (90). By substituting Eqs. (49)–(90), we obtain

L̃n(��) =
∑

�b
S̃(�b)

n (��), (91)

with �b ∈ {0, 1}⊗n, where

S̃(�b)
n (��) = S̃(bn)

�n
· · · S̃(b1)

�1
. (92)

020330-10

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

Then with �bj ∈ {0, 1}⊗nj (j = 1, . . . , k), we obtain

fσ ,k,N−k

((
L̃n1(

��1), . . . , L̃nk (
��k)
)

, ẼN

)

=
∑

�b1··· �bk

fσ ,k,N−k

((
S̃(�b1)

n1
(��1), . . . , S̃(�bk)

nk
(��k)

)
, ẼN

)

=
∑

�b1··· �bk

∑

�r
PMDRIFT(�r, N − k)C(�b1,...,�bk)

σ ,k,N−k

×
(
�n,
(
��1, . . . ��k

)
, �r
)

, (93)

where C(�b1,...,�bk)

σ ,k,N−k

(
�n,
(
��1, . . . , ��k

)
, �r
)

is an unitary channel
defined by

C(�b1,...,�bk)

σ ,k,N−k

(
�n,
(
��1, . . . ��k

)
, �r
)

= fσ ,k,N−k

×
((

S̃(�b1)
n1

(��1), . . . , S̃(�bk)
nk

(��k)
)

,
(
T̃r1 , . . . , T̃rN−k

))
.

(94)

We use Eq. (91) in the first equality of Eq. (93) and we use

ẼN :=
L∑

r=1

prT̃r (95)

and

PMDRIFT(�r, N − k) = pr1 · · · prN−k (96)

with �� = {�1 · · · �N−k} in the second equality. By substitut-
ing Eqs. (90)–(93), we obtain

δq(k)
σ

(
�n,
(

��1, . . . , ��k

))

=
∑

�b1··· �bk

∑

�r
PMDRIFT(�r, N − k)

× Tr
(

Q̃C(�b1,...,�bk)

σ ,k,N−k

(
�n,
(
��1, . . . ��k

)
, �r
)

(ρ̃init)
)

. (97)

Finally, combining Eqs. (71), (72), and (80) with Eq. (97),

δq(k)(�n) =
(

N
k

)
τ
∑k

j =1 nj

n1!n2! · · · nk!
1
(N

k

)
∑

σ∈Ssub
N ,k

δq(k)
σ (�n)

= c(k)(�n)
∑

�b1··· �bk

∑

�s
(−1)

∑k
c=1 scδq(k)

×
((

�b1, . . . �bk

)
, �s
)

, (98)

where

δq(k)
((

�b1, . . . �bk

)
, �s
)

:= 1
(N

k

)
∑

σ∈Ssub
N ,k

∑

��1,... ��k

P(n1)
s1

(��1) · · · P(nk)
sk

(��k)

×
∑

�r
PMDRIFT(�r, N − k)Tr

×
(

Q̃C(�b1,...,�bk)

σ ,k,N−k

(
�n,
(
��1, . . . ��k

)
, �r
)

(ρ̃init)
)

, (99)

and we define the coefficient as

c(k)(�n) :=
(

N
k

)
τ
∑k

j =1 nj

n1!n2! · · · nk!
. (100)

We can obtain an unbiased estimator of Eq. (99) using
Monte Carlo sampling. More specifically, we repeat the
following procedure and compute the average of the out-
put; the pth operation works as follows:

(1) Sample σ uniformly from all elements of Ssub
N ,k.

(2) Sample ��1, . . . ��k according to Pn1
s1 (��1) · · · Pnk

sk (��k).
Sample �r according to PMDRIFT(�r, N − k).

(3) Evaluate

Tr
(

Q̃C(�b1,...,�bk)

σ ,k,N−k

(
�n,
(
��1, . . . ��k

)
, �r
)

(ρ̃init)
)

, (101)

with Nshot measurements. We set the result to
δq̂(k)

σp

((
�b1, . . . �bk

)
, �s
)

.

As in the second-order case, we repeat the above
process Nsample times and compute the average of

δq̂(k)
σp

((
�b1, . . . , �bk

)
, �s
)

as δq̂(k)
((

�b1, . . . , �bk

)
, �s
)

, which

gives the estimate of δq(k)
((

�b1, . . . , �bk

)
, �s
)

. Substitut-
ing the estimate into Eq. (98), we obtain the estimate of
δq(k)(�n) as

δq̂(k)(�n) = c(k)(�n)
∑

�b1··· �bk

∑

�s
(−1)

∑k
c=1 scδq̂(k)

×
((

�b1, . . . �bk

)
, �s
)

. (102)

We write the above algorithm to estimate δq(k)(�n) as the
Evalcorrection and summarize it in Algorithm 1. By
using the Evalcorrection, we can construct the algorithm
to compute q(K) according to Eq. (66). We write the
algorithm as qSWIFT and summarize it in Algorithm 2.
Since we can tune Nsample and Nshot depending on δq̂(k)(�n),
we parametrize them as Nsample(�n) and Nshot(�n). We also
write the number of circuits sampled and the number of
measurements for calculating q(1) as N 0

sample and N 0
shot.

020330-11

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

ALGORITHM 1. Evalcorrection.

Input: k, n, N , Nsample, and Nshot

1: for in {0, 1}⊗k do
2: for (b1, ..., bk) in ({0, 1}⊗n1 , ..., {0, 1}⊗nk) do
3: for p = 1 to Nsample do
4: Sample σ uniformly from Ssub

N,k.
5: Sample 1, · · · k according to P n1

s1 (1) · · · P nk
sk (k). Sample according to Pmdrift(− k).

6: With Nshot measurements, estimate the following by the quantum circuit and set it to δq̂
(k)
σp b1, · · · bk :

Tr Q̃C(b1,··· ,bk)
σ,k,N−k 1, · · · k (ρ̃init) ,

7: end for
8: Set δq̂(k) b1, · · · bk = 1

Nsample

Nsample
p=1 δq̂

(k)
σp b1, · · · bk .

9: end for
10: end for
11: Set

δq̂(k)() = c(k)()
b1···bk

(−1)
k
c=1 scδq̂(k) b1, · · · bk .

Output: δq̂(k)()

It should be noted that there is a statistical error in q̂(K)

due to the use of Monte Carlo sampling and the limited
number of measurements. To reduce the statistical error,
we need to increase Nsample(�n), Nshot(�n), N 0

sample, and N 0
shot.

We show how the total number of quantum circuit runs
scales with the order in Appendix B, even though our focus
in this paper is on discussing the reduction of systematic
error and not the statistical error. In the discussion, we
show that the dominant source of the quantum circuit runs
comes from the estimation of �q̂(k)(�n) with limited �n and
that the cost for �q̂(k)(�n) with other �n is negligible when N
is large; consequently, the total number of quantum circuit
runs scales only less than quadratically with K .

In this section, we present the high-order qSWIFT
method by expanding the unitary channel U , where the
systematic error decreases exponentially with the order
parameter. We wish to highlight that it is possible to
construct an all-order qSWIFT, which completely elimi-
nates systematic error, as shown in Appendix C. To avoid
exponentially large statistical errors, we must set N ∈

O
(
(λt)2

)
. The primary drawback of the all-order qSWIFT

is the lack of an upper bound for the number of swift
operators. Therefore, the higher-order qSWIFT is more
appropriate for use in quantum devices with limited gate-
operation capacity. The details of the all-order qSWIFT are
described in Appendix C.

C. Note on the previous higher-order randomized
method

We mention that the work by Wan et al. [19] introduces
a higher-order randomized technique for phase estimation,
where the task is to compute Tr[ρeiHt] with ρ as the ini-
tial state. They propose a randomized approach to estimate
Tr
[
ρeiHt

]
that leverages the linear combination of unitaries

(LCU) scheme. Methodologically, they express eiHt as a
weighted sum of unitary operations and select a term for
sampling based on a specific probability distribution.

While the study in Ref. [19] is primarily focused on
phase estimation, it could be extended to a higher-order

ALGORITHM 2. qSWIFT.

Input: K, N , Nsample(), Nshot(), N0
sample, and N0

shot

1: Estimate Tr(QEN
N (ρinit)) by sampling N0

sample circuits and measuring each circuit N0
shot times; set the result to q̂(1).

2: Set delta = 0.
3: for ξ = 2, ..., 2K − 2 do
4: for k = 1, ..., K do
5: for ∈ G2(k, ξ) do
6: Add the result of Evalcorrection (sample(), Nshot()) to delta.
7: end for
8: end for
9: end for

10: Set q̂(K) = q̂(1) + delta.
Output: q̂(K)

020330-12

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

randomization approach to estimate q = Tr(QU(ρinit)) =
Tr(QeiHtρinite−iHt) by expanding eiHt and e−iHt in a simi-
lar fashion to the LCU technique, which we refer to as the
LCU-based method. Detailed in Appendix D, this method,
as in the all-order qSWIFT presented in Appendix C, is
free from systematic error. Nonetheless, the LCU-based
method demands that all the O((λt)2) time-evolution oper-
ations must be controlled by the ancilla qubit. In contrast,
qSWIFT only requires swift operators to interact with the
ancilla qubit. Appendix D illustrates how the demand for
O((λt)2) time evolutions in the LCU-based method could
lead to a substantial increase in the number of control gates
in comparison to qSWIFT for certain problems.

V. NUMERICAL EXPERIMENTS

In this section, we present two numerical simulations of
qSWIFT. In Sec. V A, we show the asymptotic behavior
of qSWIFT and compare it with Trotter-Suzuki decom-
position and qDRIFT. In Sec. V B, we perform a numer-
ical experiment with the hydrogen-molecule Hamiltonian
and compare its performance with those of the previous
algorithms.

A. Asymptotic behavior

We compute the required number of gates N to achieve
a given systematic error for each evolution time and
each algorithm: qSWIFT, Trotter-Suzuki decomposition,
and qDRIFT. To clarify the difference from the original
qDRIFT, we use the three molecules used in the numeri-
cal experiment of the original paper [5]: propane, ethane,
and carbon dioxide.

For the qSWIFT algorithm, we utilize the third-
order (K = 3) qSWIFT. We also use the sixth-order

qSWIFT (K = 6) as a reference. For the Trotter-Suzuki
decomposition, we use both the deterministic and the ran-
domized methods of the first, second, and fourth order. For
calculating the systematic error of qSWIFT, we use the
bound in Eq. (A22), derived in Appendix A 2. For the error
of qDRIFT and the Trotter-Suzuki decompositions, we uti-
lize the same upper-bound formulas as in the literature [5]
(see Appendixes B and C of Ref. [5]).

In Fig. 3, we show the asymptotic behavior of N
for each time to achieve the systematic error ε = 0.001,
which includes three subfigures corresponding to the three
molecules: propane with the STO-3G basis [Fig. 3(a)],
ethane with the 6-31G basis [Fig. 3(b)], and carbon diox-
ide with the 6-31G basis [Fig. 3(c)]. To generate each
molecule Hamiltonian, we use OpenFermion [20]. For
each figure, we show the third-order qSWIFT by the pink
line (qSWIFT-3), the sixth-order qSWIFT by the pink dot-
ted line (qSWIFT-6), and the qDRIFT by the black line
(qDRIFT). For the Trotter-Suzuki decomposition, the best
of the deterministic methods among the first, second, and
fourth orders is shown by the gray dotted line [TS (Best)]
and the best of the randomized methods is shown by the
green dotted line [RTS (Best)].

We see that the qSWIFT algorithms outperform qDRIFT
for all t in the sense that the required number of gates, N ,
is more than 10 times smaller in the qSWIFT algorithms
than in qDRIFT. While the original qDRIFT reduces the
number of gates in the region t � 108 compared to the
Trotter-Suzuki decompositions, the qSWIFT algorithms
realize a further reduction of the gates. Note that the
improvement from the third-order qSWIFT to the sixth-
order qSWIFT is not as large as that from qDRIFT to
the third-order qSWIFT. Since there is a trade-off between
the order and the number of quantum circuit runs, as we

(a) (b) (c)

FIG. 3. The asymptotic behavior of N for each time for each molecule to achieve the systematic error ε = 0.001. The three subfigures
correspond to the three molecules: (a) propane with the STO-3G basis, (b) ethane with the 6-31G basis, and (c) carbon dioxide with the
6-31G basis. We show the third-order qSWIFT by the pink line (qSWIFT-3), the sixth-order qSWIFT by the pink dotted line (qSWIFT-
6), and the qDRIFT by the black line (qDRIFT). For the Trotter-Suzuki decomposition, the best of the deterministic methods among
the first, second, and fourth orders is shown by the gray dotted line [TS (Best)], and the best of the randomized methods is shown by
the green dotted line [RTS (Best)].

020330-13

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

(a) (b) (c)

FIG. 4. The asymptotic behavior to achieve ε = 10−6. The other settings are the same as in Fig. 3.

discuss in Appendix B, it may be better to utilize the third-
order qSWIFT rather than the sixth-order qSWIFT, though
it depends on the features of the quantum devices.

Figure 4 is the same as Fig. 3 except that the required
systematic error is ε = 10−6. In this case, where more
precise time evolution is necessary, the merit of using
qSWIFT is much clearer. In qSWIFT-3 (qSWIFT-6), the
required number of gates for each time is almost 1000
(10 000) times smaller than that of qDRIFT. The region in
which qDRIFT has an advantage over the Trotter-Suzuki
decomposition is very limited (t � 105–106) due to the bad
scaling of qDRIFT in terms of ε. In contrast, the region in
which qSWIFT has the advantage over the Trotter-Suzuki
decomposition does not change much from the case of ε =
0.001 (t � 109–1010). This result shows the merit of our
algorithm; in the case of qDRIFT, we need to increase the
number of gates to reduce the systematic error but in the
case of our qSWIFT, it can be reduced just by increasing
the order parameter of the algorithm.

We note that as we state at the end of Sec. II A,
we can further improve the bound for the deterministic
Trotter-Suzuki (TS) decomposition by using the com-
mutator bounds [3], represented as the commutator rela-
tion. It should also be noted that the derivation of upper
bounds for qDRIFT and qSWIFT involves many triangular
inequalities that are loosely bounded. Therefore, the upper
bounds for the randomized compiling methods could also
be improved by considering relations between operators,
presenting a promising direction for future research.

B. Simulation of the hydrogen molecule

We estimate Tr(QU(ρinit)) by using the qSWIFT
algorithm described in Algorithm 2 with an observable
Q, a time evolution U , and an input state ρinit. For U ,
we implement the time evolution with the hydrogen-
molecule Hamiltonian with the 6-31G basis and t = 1.
Again, we use OpenFermion [20] to generate the molecule
Hamiltonian. We utilize the Bravyi-Kitaev transformation

[21] for transforming the fermionic operators to Pauli oper-
ators. The number of terms in the Hamiltonian L is 184.
The generated Hamiltonian has eight qubits and, there-
fore, we use a system with nine qubits (including one
ancilla qubit). As for the observable Q, we choose Q =
ZIIIIIII and, as for the input state, we choose ρinit = |+〉⊗8.
For comparison, we also estimate Tr(QU(ρinit)) by using
qDRIFT and the Trotter-Suzuki decomposition. As the
input parameters of qSWIFT, we set N 0

shot = Nshot(�n) =
100, N 0

sample = 400 000, and Nsample(�n) = C(�n) × N 0
sample.

For qDRIFT and the randomized Trotter-Suzuki decom-
position, we sample N 0

sample quantum circuits and perform
N 0

shot measurements for each circuit. For the deterministic
Trotter-Suzuki decomposition, we perform N 0

shot × N 0
sample

measurements. For the quantum circuit simulation, we use
the QULACS software package [22].

In Fig. 5, we show the estimation error of Tr(QU(ρinit))

for each number of gates, N , for each method. In plotting
each point, we perform six trials and show the mean value
and the standard deviation of the mean. For qSWIFT, we
show the result of the second order (qSWIFT-2) with the
purple line and the third order (qSWIFT-3) with the pink
line. The result of qDRIFT (qDRIFT) is plotted with the
black line. For the Trotter-Suzuki decomposition, we show
the first- and second-order results. The minimum N values
for the first and second Trotter-Suzuki decompositions are
184 and 368, respectively (1840 for the fourth order). For
the deterministic Trotter-Suzuki decomposition, the first-
order result (TS-1st) is plotted with the dotted gray line and
the second-order result (TS-2nd) is plotted with the dotted
green line. For the randomized Trotter-Suzuki decompo-
sition, the first-order result (RTS-1st) is plotted with the
dotted yellow line and the second-order result (RTS-2nd)
is plotted with the dotted blue line.

We see that the qSWIFT algorithms outperform the
other methods. In particular, the required N value for the
third-order qSWIFT for achieving ε ∼ 0.001 is almost 10
times smaller than that for qDRIFT, which is consistent

020330-14

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

FIG. 5. The estimation error of Tr(QU(ρinit)) for each number
of gates N for each method with Q = ZIIIIIII and ρinit = |+〉⊗8.
The time evolution is performed by the hydrogen-molecule
Hamiltonian with the 6-31G basis transformed by the Bravyi-
Kitaev transformation. The evolution time is set to be t = 1. In
plotting each point, we perform six trials and show the mean
value and the standard deviation of the mean. For qSWIFT, we
show the result of the second order (qSWIFT-2) with the pur-
ple line and the third order (qSWIFT-3) with the pink line. The
result of the qDRIFT algorithm (qDRIFT) is plotted with the
black line. For the deterministic Trotter-Suzuki decomposition,
the first-order result (TS-1st) is plotted with the dotted gray line
and the second-order result (TS-2nd) is plotted with the dotted
green line. For the randomized Trotter-Suzuki decomposition,
the first-order result (RTS-1st) is plotted with the dotted yellow
line and the second-order result (RST-2nd) is plotted with the
dotted blue line.

with the asymptotic behavior shown in Fig. 3. Conse-
quently, even in the region in which the Trotter-Suzuki
decomposition works better than qDRIFT, the qSWIFT
algorithms outperform the Trotter-Suzuki decompositions.

VI. DISCUSSION AND CONCLUSIONS

Hamiltonian simulation is a crucial subroutine of var-
ious quantum algorithms. Approaches based on product
formulas are favored in practice, due to their simplic-
ity and ancilla-free nature. There are two representative
product-formula-based methods: Trotter-Suzuki decompo-
sitions and qDRIFT [5]. The Trotter-Suzuki decomposi-
tions have the issue that the number of gates depends
on the number of terms in the Hamiltonian, at least lin-
early. In contrast, qDRIFT avoids the dependency on the
number of terms but has the issue that the number of gates
is dependent on the systematic error ε as O(1/ε).

In this paper, we propose qSWIFT, a high-order random-
ized algorithm having the advantages of both the Trotter
Suzuki decompositions and qDRIFT, in the sense that its
gate count is independent of the number of terms and
that the gate count is asymptotically optimal with respect
to the precision. We construct the qSWIFT channel and
bound the systematic error by the diamond norm. We prove
that the qSWIFT channel satisfies the required precision,
which decreases exponentially with the order parameter
in terms of the diamond norm. Then we construct the
algorithm by applying the qSWIFT channel to estimate
given physical quantities. The algorithm requires a system
as simple as qDRIFT; it requires just one ancilla qubit and
only the time-evolution operators and the swift operators
constructible with the gate in Fig. 2(b) are necessary to
construct the quantum circuits. Our numerical demonstra-
tion shows that qSWIFT outperforms qDRIFT with respect
to the number of gates for the required precision. In partic-
ular, when high precision is required, there is a significant
advantage of using qSWIFT; the number of gates in the
third-order (sixth-order) qSWIFT is 1000 (10 000) times
smaller than qDRIFT to achieve the systematic error of
ε = 10−6.

As a future direction, it is beneficial to perform case
studies to investigate the performance of qSWIFT in spe-
cific problems. In particular, the literature [23] points out
that qDRIFT does not perform well in phase-estimation
problems, contrary to the originally expectations [5], due
to the relatively large systematic error for a given num-
ber of gates. In contrast, since qSWIFT can successfully
reduce systematic error by increasing the order parame-
ter, we expect that the performance in phase estimation
is significantly improved with qSWIFT. Also, as we note
in Sec. I, there are algorithms using many ancilla qubits
[6–11] that achieve a better asymptotic gate scaling with
respect to λ and t, though their constant prefactors is rela-
tively large compared to qDRIFT and qSWIFT. Comparing
qSWIFT with those algorithms and discussing the advan-
tages of each algorithm in specific problems is a promising
direction for future work.

Whether we can improve the scaling with respect to λt
within the framework of qDRIFT and qSWIFT is another
important open question. Unlike qDRIFT and qSWIFT,
where the number of gates required for a given error scales
quadratically with λt, the scaling with t can be improved
by increasing the order parameter in the Trotter-Suzuki
decomposition. The development of methods to enhance
the λt scaling would further expedite the realization of
practical Hamiltonian simulations.

ACKNOWLEDGMENTS

We thank Nathan Wiebe for helpful discussions. K.N.
acknowledges the support of Grant-in-Aid for the Japan
Society for the Promotion of Science (JSPS) Research

020330-15

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

Fellow Grant No. 22J01501. A.A.-G. acknowledges sup-
port from the Canada 150 Research Chairs program and
the Canadian Institute for Advanced Research (CIFAR).

A.A.-G. acknowledges the generous support of Anders G.
Frøseth.

APPENDIX A: BOUND FOR THE SYSTEMATIC ERRORS IN QSWIFT CHANNELS

1. Error bound for the second-order qSWIFT channel

In this subsection, we prove the error bound given in Lemma 1 for our second-order qSWIFT channel. To this end,
we utilize the triangle and submultiplicative properties of the diamond norm. Namely, we utilize

||A + B||	 ≤ ||A||	 + ||B||	, (A1)

||AB||	 ≤ ||A||	||B||	, (A2)

for given channels A and B.
The diamond distance between the exact time evolution and the qSWIFT channel can be evaluated as

d	
(
U , E (2)

) = 1
2
||M1,N−1 (�3, EN) +

N∑

k=2

Mk,N−k (�2, EN) ||	

≤ 1
2
||M1,N−1 (�3, EN) ||	 + 1

2

N∑

k=2

||Mk,N−k (�2, EN) ||	

≤ 1
2

∞∑

n=3

τ n

n!
||M1,N−1(L(n), EN)||	 + 1

2

N∑

k=2

∞∑

n1,...nk=2

τ
∑k

j nj

n1! · · · nk!
||Mk,N−k

((
L(n1), . . . ,L(nk)

)
, EN
) ||	, (A3)

where we use Eqs. (A1) and (A2) to show the inequality. By the definition of the mixture function Mk,N−k in Eq. (19)
and using the triangle and submultiplicative properties of the diamond norm, we obtain

||Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
) ||	 ≤

∑

σ∈Ssub
N ,k

||fσ ,k,N−k
((
L(n1), . . . ,L(nk)

)
, EN
) ||	

≤
(

N
k

) k∏

j =1

||L(nj)||	||EN ||N−k
	

≤
(

N
k

)

2k+∑k
j =1 nj . (A4)

To show the last inequality, we use

||L(n)||	 ≤ ||L||n	 +
L∑

�=1

p�||L�||n	 ≤ 2n+1, (A5)

which holds since ||L||	 ≤ 2 and ||L�||	 ≤ 2.
By using Eq. (A4),

d	
(
U , E (2)

) ≤ 1
2

∞∑

n=3

τ n

n!

(
N
1

)

2n+1 + 1
2

N∑

k=2

∞∑

n1,...nk=2

τ
∑k

j nj

n1! · · · nk!

(
N
k

)

2k+∑k
j =1 nj

= 1
2

∞∑

n=3

Nτ n

n!
2n+1 + 1

2

N∑

k=2

ξ∑

n1,...nk=2

∞∑

ξ=4

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ τ ξ

n1! · · · nk!

(
N
k

)

2k+ξ , (A6)

020330-16

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

where, in the second line, we use

∞∑

ξ=4

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ = 1, (A7)

which holds for a fixed set of integers {nj }k
j =1 with nj ≥ 2

and k ≥ 2. By using that 1/n ≤ 1/2 in the summand of the
first term and 1/nj ≤ 1/2 in the summand of the second
term, we obtain

d	
(
U , E (2)

) ≤ 1
2

∞∑

n=3

(2τ)nN + 1
2

∞∑

ξ=4

N∑

k=2

(2τ)ξ
(

N
k

)

×
ξ∑

n1,...nk=2

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦

= 1
2

∞∑

n=3

(2τ)nN + 1
2

∞∑

ξ=4

�ξ/2�∑

k=2

(2τ)ξ
(

N
k

)

×
ξ∑

n1,...nk=2

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ , (A8)

with �x� as the largest integer that does not exceed a real
value x, where we use the fact that the summand of the
second term vanishes if k ≥ �ξ/2�. Using

ξ∑

n1,...,nk=2

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ ≤ ξ k, (A9)

we obtain

d	
(
U , E (2)

) ≤ 1
2

∞∑

n=3

(2τ)n
(

N
1

)

+ 1
2

∞∑

ξ=4

�ξ/2�∑

k=2

(2τ)ξ
(

N
k

)

ξ k

≤ 1
2

∞∑

n=3

(2τ)nN + 1
2

∞∑

ξ=4

(2τ)ξ N �ξ/2�
�ξ/2�∑

k=2

ξ k

k!

≤ 1
2

∞∑

n=3

(2τ)nN + 1
2

∞∑

ξ=4

(2eτ)ξ N �ξ/2�

≤ 1
2

∞∑

ξ=3

(2eτ)ξ N �ξ/2�, (A10)

where to show the third inequality, we use

�ξ/2�∑

k=1

ξ k

k!
≤

∞∑

k=0

ξ k

k!
= eξ . (A11)

Now let us evaluate 1
2

∑∞
ξ=2K−1(2eτ)ξ N �ξ/2� (in the cur-

rent case, K = 2). It can be evaluated, depending on

whether ξ is odd (ξ = 2m with m as an integer) or even
(ξ = 2m − 1), as

∞∑

ξ=2K−1

1
2
(2eτ)ξ N �ξ/2�

≤ 1
2

∞∑

m=K

(2eτ)2mN m + 1
2

∞∑

m=K

(2eτ)2m−1N m−1

= 1
2

(

1 + 1
2eNτ

) ∞∑

m=K

(2eτ)2mN m

= η(λt, N)

(
(2eλt)2

N

)K

, (A12)

as far as

(2eλt)2

N
< 1, (A13)

where

η(x, N) := 1
2

(

1 + 1
2ex

)
1

1 − (2ex)2/N
. (A14)

By setting K = 2, we obtain the bound

d	
(
U , E (2)

) ≤ η(λt, N)

(
(2eλt)2

N

)2

. (A15)

In the reasonable parameter range 1 ≤ λt ≤ √
N/2

√
2e

(where the latter inequality holds by choosing suitable N),
it holds that η(λt, N) ≤ 3/2 and therefore

d	
(
U , E (2)

) ≤ 3
2

(
(2eλt)2

N

)

∈ O
((

(λt)2

N

)2
)

. (A16)

2. Error bound for the higher-order qSWIFT channels

We now prove the error bound given in Lemma 2 for
the K th-order qSWIFT channel. By the definition of this
channel in Eq. (62), we have

d	
(
U , E (K)

) = 1
2
||�(∞) − E (K)||	 (A17)

= 1
2

∞∑

ξ=2K−1

τ ξ

N∑

k=1

ξ∑

n1,...,nk=2

1
n1!n2! · · · nk!

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦

× Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
)

(A18)

020330-17

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

≤ 1
2

∞∑

ξ=2K−1

τ ξ

N∑

k=1

ξ∑

n1,...,nk=2

1
n1!n2! · · · nk!

δ

⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦

× ||Mk,N−k
((
L(n1), . . . ,L(nk)

)
, EN
) ||	, (A19)

where we have used the triangular inequality Eq. (A1).
By substituting Eq. (A4) into Eq. (A17), we obtain

d	
(
U , E (K)

) ≤ 1
2

∞∑

ξ=2K−1

τ ξ

N∑

k=1

ξ∑

n1,...,nk=2

1
n1!n2! · · · nk!

δ

×
⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦
(

N
k

)

2ξ+k

≤ 1
2

∞∑

ξ=2K−1

(2τ)ξ
N∑

k=1

(
N
k

) ξ∑

n1,...,nk=2

δ

×
⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦

= 1
2

∞∑

ξ=2K−1

(2τ)ξ
�ξ/2�∑

k=1

(
N
k

) ξ∑

n1,...,nk=2

δ

×
⎡

⎣ξ ,
k∑

j =1

nj

⎤

⎦ . (A20)

We use 1/nj ≤ 1/2 for (nj ≥ 2) in the second inequal-
ity and to show the third equality, we use the fact that
summands with k > �ξ/2� vanish. Using Eq. (A9), we
obtain

d	
(
U , E (K)

) ≤ 1
2

∞∑

ξ=2K−1

(2τ)ξ
�ξ/2�∑

k=1

(
N
k

)

ξ k

≤ 1
2

∞∑

ξ=2K−1

(2τ)ξ N �ξ/2�
�ξ/2�∑

k=1

ξ k

k!

≤ 1
2

∞∑

ξ=2K−1

(2eτ)ξ N �ξ/2�, (A21)

where to show the last inequality, we use Eq. (A11). By
using Eq. (A12), we obtain

d	
(
U , E (K)

) ≤ η(λt, N)

(
(2eλt)2

N

)K

. (A22)

In the reasonable parameter range, 1 ≤ λt ≤ √
N/2

√
2e

again, it holds that η(λt, N) ≤ 3/2 and therefore

d	
(
U , E (K)

) ≤ 3
2

(
(2eλt)2

N

)

∈ O
((

(λt)2

N

)K
)

. (A23)

Note that in drawing Figs. 3 and 4, we have used the
formula given in Eq. (A22).

APPENDIX B: STATISTICAL ERROR

Due to the sampling error and the shot noise, there
is a statistical error in δq̂(k)(�n). Let us estimate the sta-
tistical error in the following. For simplicity, we set
Nshot(�n) = 1. Let �q

(
(�b1, �b2, . . . , �bk), �s

)
as the statistical

error of δq̂(k)
((

�b1, . . . �bk

)
, �s
)

. Then, from the central limit
theorem, it behaves as

�q

(
(�b1, �b2, . . . , �bk), �s

)
∼

Var
(
δq̂(k)

((
�b1, . . . �bk

)
, �s
))

√
Nsample(�n)

,

(B1)

where Var(A) denotes the variance of the variable A. In
the rest of the section, we use “∼” with the same meaning.
Since

−1 ≤ δq̂(k)
((

�b1, . . . �bk

)
, �s
)

≤ 1, (B2)

from Popoviciu’s inequality on variances, it holds that
Var

(
δq̂(k)

((
�b1, . . . �bk

)
, �s
))

≤ 1, and

�q

(
(�b1, �b2, . . . , �bk), �s

)
� 1
√

Nsample(�n)
. (B3)

Using the fact that each δq̂(k)
((

�b1, . . . �bk

)
, �s
)

is inde-

pendent, we can estimate the statistical error of δq̂(k)(�n)

as

|δq(k)(�n) − δq̂(k)(�n)| ≤ c(k)(�n)

√
√
√
√
∑

�b1··· �bk

∑

�s

[
�q

(
(�b1, �b2, . . . , �bk), �s

)]2

� c(k)(�n)

√
2
∑

j nj +k

Nsample(�n)
, (B4)

020330-18

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

where to show the second inequality, we use
∑

�b1··· �bk

∑
�s 1

= 2
∑

j nj +k. In other words, the statistical error is bounded
as

|δq(k)(�n) − δq̂(k)(�n)| ≤ ε, (B5)

if we set

Nsample(�n) ∼ [c(k)(�n)]2 × 2
∑

j nj +k

ε2 . (B6)

Let N (k)
total(�n) be the total circuit run for calculating δq̂(k)(�n).

Then, it holds that

Ntotal(�n) = 2
∑

j nj +k × Nsample(�n)∼ [c(k)(�n)]2 × 22
∑

j nj +2k

ε2 .

(B7)

Let us further clarify the implication of Eq. (B7). Recall
that in the qSWIFT algorithm, we only compute δq̂(k)(�n) if

k∑

j =1

nj = ξ , nj ≥ 2 (∀j). (B8)

When the condition in Eq. (B8) is satisfied, it holds that

c(k)(�n) ≤ N k
(

τ ξ

2k

)

, (B9)

where ξ ≥ 2k (the equality holds when nj = 2 for all j).
Conversely,

c(k)(�n) ≤

⎧
⎪⎨

⎪⎩

(
(λt)2

2N

) ξ
2 , if nj = 2 for all j ,

√
2
N

(
(λt)2

2N

) ξ
2 , otherwise,

(B10)

meaning that c(k)(�n) is suppressed by the factor
√

2/N
unless nj = 2 is satisfied for all j . Therefore, the domi-
nant source of the quantum circuit runs comes from the

calculation of δq̂(k)(�n) with nj = 2 for all j ; and the num-
ber of measurements for calculating δq̂(k)(�n) with other �n
asymptotically becomes negligible as N becomes large. In
the asymptotic limit, the total number of quantum circuit
runs Ntotal for computing all terms in q(K) within the error
ε in 2K th-order qSWIFT can be estimated as

Ntotal ≈ N 0
sample + N (1)

total ({2}) + N (2)

total ({2, 2})
+ · · · N (K)

total ({2, . . . 2}) (B11)

∼ 1
ε2

K∑

k=0

(
(2λt)2

N

)ξ

, (B12)

which includes the number of samples N 0
sample to com-

pute q(1). The approximation in the first line denotes the
asymptotic limit. To obtain the last expression, we use Eq.
(B7) and also use that if N 0

shot = 1, the required number of
samples to reduce the statistical error of q(1) within ε is

N 0
sample ∼ 1

ε2 (B13)

from the central limit theorem. To reduce the statisti-
cal error of q(K) to less than εtotal, we should set ε =
εtotal/

√
K + 1, and therefore,

Ntotal ∼ K + 1
ε2

total

K∑

k=0

(
(2λt)2

N

)ξ

. (B14)

Thus, if we fix εtotal, Ntotal scales less than quadratically
with K as far as (2λt)2/N < 1.

APPENDIX C: ALL-ORDER QSWIFT

In the main text, we have constructed the second-order
and higher-order versions of qSWIFT, which include sys-
tematic errors dependent on the order parameter. In this
section, we demonstrate that we can create an all-order
version of qSWIFT that has no systematic error.

The expectation value of an observable can be expanded
as

Tr (QU(ρinit)) = Tr
(
Q(EN + �2)

N (ρinit)
) = Tr

⎛

⎝Q

(

EN +
∞∑

n=2

τ n

n!
L(n)

)N

(ρinit)

⎞

⎠

= Tr

⎛

⎝Q

⎛

⎝EN +
∞∑

n=2

τ n

n!

∑

��

1∑

s=0

(−1)sP(n)
s (��)Ln(��)

⎞

⎠

N

(ρinit)

⎞

⎠

= Tr

⎛

⎝Q̃

⎛

⎝ẼN +
∞∑

n=2

τ n

n!

∑

��

1∑

s=0

(−1)sP(n)
s (��)L̃n(��)

⎞

⎠

N

(ρ̃init)

⎞

⎠ = Tr
(

Q̃ŨN
N (ρ̃init)

)
, (C1)

020330-19

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

where we use Eq. (28) in the second equality and we use
Eqs. (74) and (77) in the third equality. We can readily
show the fourth equality by using Eq. (89). In the last
equality, we define

ŨN := ẼN +
∞∑

n=2

τ n

n!

1∑

s=0

∑

�b∈{0,1}⊗n

∑

��
(−1)sP(n)

s (��)S̃(b)
n (��).

(C2)

We can rewrite ŨN by using the physical channel as
follows:

ŨN = ẼN +
∞∑

n=2

2n+1τ n

n!
1
2

1∑

s=0

1
2n

∑

�b∈{0,1}⊗n

×
∑

��
(−1)sP(n)

s (��)S̃(b)
n (��)

= ẼN +
∞∑

n=2

β(n)W̃n

= BE (all)
N . (C3)

In the second equality of Eq. (C3), we define

β(n) := 2n+1τ n

n!
, W̃n := 1

2

1∑

s=0

1
2n

∑

�b∈{0,1}⊗n

∑

��
(−1)sP(n)

s (��)S̃(b)
n (��), (C4)

where W̃n(n ≥ 2) is the physical channel; we can imple-
ment the process by sampling s and �b uniformly, sampling
�� according to P(n)

s (��), and applying (−1)sS̃(b)
n (��). In the

last equality, we define

B := 1 +
∞∑

n=2

β(n) = e(2 ln 2)τ − 4τ − 1, (C5)

and the channel as E (all)
N , the physical channel implemented

by applying EN with the probability 1/B and Wn(n ≥ 2)

with the probability β(n)/B. Consequently, we obtain

Tr (QU(ρinit)) = BN Tr
(

Q̃
(
E (all)

N

)N
(ρ̃init)

)

. (C6)

We see that there is no systematic error on the right-hand
side. For a given number of samples, denoted as Nsample,

the statistical error εst scales as

εst ∈ O
(

BN
√

Nsample

)

. (C7)

Since BN < e(2 ln 2)(λt)2/N , we obtain Nsample ∈ O(1/ε2
st) by

setting N ∈ O
(
(λt)2

)
.

We note that even though N is upper bounded, there is
no theoretical upper bound on the number of gates, as the
count of swift operators in W̃n is determined by n. Here, n
is not bounded and can take on a large value with prob-
ability β(n)/B. Conversely, the count of swift operators
in the second- or higher-order qSWIFT is upper bounded
by the order parameter and, therefore, the number of gates
is also upper bounded. Thus, in practical situations where
the number of operational gates is limited, the second- or
higher-order qSWIFT may be more advantageous than the
previously introduced all-order qSWIFT.

APPENDIX D: NOTE ON THE LCU-BASED
RANDOMIZED APPROACH

The literature [19] provides a higher-order randomized
method for phase estimation. The calculation includes
the evaluation of Tr

[
ρeiHt

]
with H =∑L

�=1 h�H�, where
again we define {H�}L

�=1 so that h� > 0 and we define
λ :=∑� h�. For that, the authors propose an all-order ran-
domized method for estimating Tr

[
ρeiHt

]
based on the

linear combination of the unitary (LCU) approach. In this
appendix, we show that by extending the randomized
method, we can construct another all-order randomized
method for estimating Tr(QeiHtρe−iHt), which is the target
of our qSWIFT algorithm.

We begin by reviewing the method given in Ref. [19]
and discuss how to extend this method to estimate the
expectation value of an observable. Then, we discuss
the difference between the LCU-based approach and the
all-order qSWIFT introduced in Appendix C.

1. The LCU-based randomized approach

To estimate Tr[ρeiHt], the authors of Ref. [19] utilize the
expansion

eiHt/N =
∑

m

cmWm, (D1)

where

Wm → (i sign(t))nH�1 . . . H�nV(n)

�′ ,

cm → 1
n!

(
λ|t|
N

)n
√

1 +
(

λt
N (n + 1)

)2

p�1 . . . p�np�′ > 0,

(D2)

020330-20

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

with

V(n)

�′ = exp(iθnH�′), with θn := arccos

×
⎛

⎝

[

1 +
(

λt
N (n + 1)

)2
]−1/2

⎞

⎠ . (D3)

The multi-index m denotes the indices (n, ��, �′). Then,

eiHt =
∑

m1,...,mN

cm1 . . . cmN Wm1 . . . WmN = CN

∑

m1,...,mN

qm1 · · · qmN Wm1 . . . WmN , (D4)

where qm = cm/C with C =∑m cm. Since qm > 0 and∑
m qm = 1, {qm} can be interpreted as a probability dis-

tribution.

By using the expansion, we obtain

Tr
[
ρeiHt] = CN

∑

m1,...,mN

qm1 · · · qmN

× (Re
[
Tr
(
ρWm1 · · · WmN

)]

+ i Im
[
Tr
(
ρWm1 · · · WmN

)])
. (D5)

We can estimate the right-hand side, by sampling
(m1 · · · mN) according to qm1 · · · qmN , and evaluate the real
part and the imaginary part of Tr

(
ρWm1 · · · WmN

)
by the

Hadamard test repeatedly. There is no systematic error.
The statistical error εst scales as

εst ∈ O
(

CN
√

Nsample

)

, (D6)

where Nsample is the number of sampling the set of indices (m1, . . . , mN). In Ref. [19], C ∈ O
(
exp

(
(λt)2/N 2

))
, i.e.,

CN = O
(
exp

(
(λt)2/N

))
in our notation. Thus, we need N = O

(
(λt)2

)
so that Nsample ∈ O

(
1/ε2

st

)
.

2. Application to the Hamiltonian-simulation problem

We can utilize the expansion in Eq. (D4) to calculate the expectation value after applying the time evolution:

Tr
(
QeiHtρe−iHt) = C2N

∑

m′
1...m′

N

∑

m1...mN

qm′
1
. . . qm′

N
qm1 . . . qmN Tr

(
QWm′

1
. . . Wm′

N
ρW†

m1
. . . W†

mN

)
(D7)

= C2N
∑

m′
1...m′

N

∑

m1...mN

qm′
1
. . . qm′

N
qm1 . . . qmN Re

[
Tr
(

QWm′
1
. . . Wm′

N
ρW†

m1
. . . W†

mN

)]
, (D8)

where we use that the left-hand side is the real value
in the second equality. As in the case of Eq. (D5),
we can estimate the value of Eq. (D8), by sam-
pling (m1, . . . , mN) and (m′

1, . . . , m′
N) and estimating

Re
[
Tr
(

QWm′
1
· · · Wm′

N
ρW†

m1 · · · W†
mN

)]
by the Hadamard

test. Again, there is no systematic error and by setting
N = O((λt)2), the number of samples Nsample scales as
Nsample ∈ O(1/ε2

st). Therefore, the behavior of both the sys-
tematic error and the statistical error with respect to N is
the same as that of the all-order qSWIFT introduced in
Appendix C.

However, the LCU-based method and our qSWIFT
approach have a key distinction: the former expands the
unitary operation, while the latter expands the unitary
channel. This difference in expansion methodology results
in distinct quantum circuits. In the LCU-based approach,
the Hadamard test is necessary for calculating the real
part of the trace function, requiring the implementation
of controlled-Wm operations. For instance, the quantum
circuit for evaluating Eq. (D8) is depicted in Fig. 6 (we

note that the circuit is also used in another higher-order
randomization protocol [24]). Given that each Wm opera-
tion involves a rotational operator of the form eiH�t′ (with
t′ as a real value), a total of 2N controlled-eiH�t′ opera-
tions are needed for the circuit. Conversely, in the qSWIFT
approach, as illustrated in Fig. 2, no controlled-eiH�t′ oper-
ations are necessary. The only interactions with the ancilla
qubit involve swift operators, as all exponential time-
evolution operators are encapsulated within the qDRIFT
channel, which can be implemented without the need for
an ancilla qubit.

The implementation of the controlled-eiH�t′ operation
requires additional controlled gates in the LCU-based

H • • X • • X H

Wm1
· · · Wm

N
Wm1 · · · WmN

FIG. 6. The quantum circuits for evaluating Eq. (D8) by the
LCU-based approach.

020330-21

NAKAJI, BAGHERIMEHRAB, and ASPURU-GUZIK PRX QUANTUM 5, 020330 (2024)

methods compared to the implementation of eiH�t′ oper-
ation. In particular, in the simulation where the one-
body term is dominant, the LCU-based method needs
many more controlled gates than in qSWIFT. To demon-
strate this, let us consider the following Hamiltonian,
written as the summation of the multibody terms (the
first summation) and the one-body terms (the second
summation):

H = J
h′

sumn

L′
∑

�=1

h′
�P� + h

csum

n∑

j =1

∑

k=x,y,z

ck
j σ

k
j . (D9)

The first summation corresponds to L′ multibody terms,
where P� is the tensor product of the Pauli operators that
act nontrivially on multiple qubits, with h′

� as a real coef-
ficient, h′

sum :=∑� |h′
�|, and J is a positive value. The

second summation corresponds to 3n one-body terms, with
n as the number of qubits, σ k

j as one of the Pauli opera-
tors acting on the j th qubit, ck

j and h′
� as real coefficients,

csum =∑b
j =1
∑

k=x,y,z |ck
j |, and h as a positive value. We

assume the case in which the one-body term is dominant
in the sense that J � h. The sum of all absolute values of
the coefficients is given as λ = J/n + h.

Our objective of the simulation is approximately to com-
pute Tr

(
QeiHtρe−iHt

)
using directly implementable time

evolutions: eiP�t′ and eiσ k
j t′ . Note that the collective neu-

trino oscillation problem is an example of Hamiltonian
simulation where the one-body term is dominant and has
been already discussed in Ref. [25]. On the one hand,
in the LCU-based approach, the required number of con-
trolled time-evolution gates is O((λt)2) and since each
controlled time evolution requires at least one controlled
gate, the total number of controlled gates is also O((λt)2).
On the other hand, the number of time-evolution gates is
also O((λt)2) in the all-order qSWIFT. However, most of
the time-evolution gates sampled are eiσ k

j t′ , which do not
need the controlled gate; the number of eiP�t′ sampled is
O(J/(λn)) on average. Since each eiP�t′ requires at most
O(n) controlled gates, the total number of controlled gates
in qSWIFT is at most

O
(

(λt)2 × J
λn

× n
)

∼ O
(

(λt)2 × J
h

)

, (D10)

where to show the expression on the right-hand side, we
use λ ∼ h since J � h. Therefore, for the simulation with
the Hamiltonian in Eq. (D9), qSWIFT achieves a signifi-
cant reduction of the controlled-NOT (CNOT) gates by the
factor J/h.

[1] M. Suzuki, Fractal decomposition of exponential operators
with applications to many-body theories and Monte Carlo
simulations, Phys. Lett. A 146, 319 (1990).

[2] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders,
Efficient quantum algorithms for simulating sparse Hamil-
tonians, Commun. Math. Phys. 270, 359 (2007).

[3] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, The-
ory of Trotter error with commutator scaling, Phys. Rev. X
11, 011020 (2021).

[4] A. M. Childs, A. Ostrander, and Y. Su, Faster quantum
simulation by randomization, Quantum 3, 182 (2019).

[5] E. Campbell, Random compiler for fast Hamiltonian simu-
lation, Phys. Rev. Lett. 123, 070503 (2019).

[6] D. W. Berry and A. M. Childs, Black-box Hamiltonian sim-
ulation and unitary implementation, Quantum Inf. Comput.
12, 29 (2012).

[7] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Simulating Hamiltonian dynamics with a truncated
Taylor series, Phys. Rev. Lett. 114, 090502 (2015).

[8] D. W. Berry, A. M. Childs, and R. Kothari, in 56th
Annual IEEE Symposium on Foundations of Computer Sci-
ence (IEEE Computer Society, Berkeley, California, USA,
2015), p. 792.

[9] G. H. Low and I. L. Chuang, Optimal Hamiltonian simu-
lation by quantum signal processing, Phys. Rev. Lett. 118,
010501 (2017).

[10] G. H. Low and I. L. Chuang, Hamiltonian simulation by
qubitization, Quantum 3, 163 (2019).

[11] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019 (Association for Computing
Machinery, New York, USA, 2019), p. 193.

[12] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y.
Su, Toward the first quantum simulation with quantum
speedup, Proc. Natl. Acad. Sci 115, 9456 (2018).

[13] K. R. Brown, R. J. Clark, and I. L. Chuang, Limitations
of quantum simulation examined by simulating a pairing
Hamiltonian using nuclear magnetic resonance, Phys. Rev.
Lett. 97, 050504 (2006).

[14] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Ger-
ritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Ram-
bach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C.
F. Roos, Universal digital quantum simulation with trapped
ions, Science 334, 57 (2011).

[15] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G.
Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, and
J. Y. Mutus, et al., Digital quantum simulation of fermionic
models with a superconducting circuit, Nat. Commun. 6, 1
(2015).

[16] The code for the qSWIFT algorithm is available at
https://github.com/konakaji/qswift.

[17] A. M. Childs, A. Ostrander, and Y. Su, Faster quantum
simulation by randomization, Quantum 3, 182 (2019).

[18] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y.
Su, Toward the first quantum simulation with quantum
speedup, Proc. Natl. Acad. Sci. 115, 9456 (2018).

[19] K. Wan, M. Berta, and E. T. Campbell, Randomized quan-
tum algorithm for statistical phase estimation, Phys. Rev.
Lett. 129, 030503 (2022).

[20] J. R. McClean, N. C. Rubin, K. J. Sung, I. D. Kivlichan,
X. Bonet-Monroig, Y. Cao, C. Dai, E. S. Fried, C. Gidney,

020330-22

https://doi.org/10.1016/0375-9601(90)90962-N
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.1103/PhysRevLett.123.070503
https://doi.org/10.26421/QIC12.1-2
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1103/PhysRevLett.97.050504
https://doi.org/10.1126/science.1208001
https://doi.org/10.1038/ncomms8654
https://github.com/konakaji/qswift
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1103/PhysRevLett.129.030503

HIGH-ORDER RANDOMIZED COMPILER... PRX QUANTUM 5, 020330 (2024)

and B. Gimby, et al., Openfermion: The electronic structure
package for quantum computers, Quantum Sci. Technol. 5,
034014 (2020).

[21] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum compu-
tation, Ann. Phys. 298, 210 (2002).

[22] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M.
Nakadai, J. Chen, K. M. Nakanishi, K. Mitarai, R. Imai,
and S. Tamiya, et al., QULACS: A fast and versatile quan-
tum circuit simulator for research purpose, Quantum 5, 559
(2021).

[23] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R.
McClean, N. Wiebe, and R. Babbush, Even more effi-
cient quantum computations of chemistry through tensor
hypercontraction, PRX Quantum 2, 030305 (2021).

[24] P. K. Faehrmann, M. Steudtner, R. Kueng, M. Kiefer-
ova, and J. Eisert, Randomizing multi-product formulas for
Hamiltonian simulation, Quantum 6, 806 (2022).

[25] A. Rajput, A. Roggero, and N. Wiebe, Hybridized methods
for quantum simulation in the interaction picture, Quantum
6, 780 (2022).

020330-23

https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.1103/PRXQuantum.2.030305
https://doi.org/10.22331/q-2022-09-19-806
https://doi.org/10.22331/q-2022-08-17-780

	I.. INTRODUCTION
	II.. BACKGROUND
	A.. Hamiltonian simulation by Trotter-Suzuki formulas
	B.. Hamiltonian simulation by qDRIFT

	III.. SECOND-ORDER QSWIFT
	A.. Mixture function
	B.. Second-order qSWIFT channel
	C.. Implementation of the second-order qSWIFT channel

	IV.. HIGHER-ORDER QSWIFT
	A.. Higher-order qSWIFT channel
	B.. Implementation of the higher-order qSWIFT channel
	C.. Note on the previous higher-order randomized method

	V.. NUMERICAL EXPERIMENTS
	A.. Asymptotic behavior
	B.. Simulation of the hydrogen molecule

	VI.. DISCUSSION AND CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: BOUND FOR THE SYSTEMATIC ERRORS IN QSWIFT CHANNELS
	1.. Error bound for the second-order qSWIFT channel
	2.. Error bound for the higher-order qSWIFT channels

	. APPENDIX B: STATISTICAL ERROR
	. APPENDIX C: ALL-ORDER QSWIFT
	. APPENDIX D: NOTE ON THE LCU-BASED RANDOMIZED APPROACH
	1.. The LCU-based randomized approach
	2.. Application to the Hamiltonian-simulation problem

	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

