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We develop a general framework for the analysis of two-sided quantum interfaces, composed of
collections of atoms interacting with paraxial light. Accounting for photon-mediated dipole-dipole inter-
actions, our approach is based on the mapping of collective atom-photon interfaces onto a generic
one-dimensional model of light scattering, characterized by a reflectivity parameter r0. This entails two
key practical advantages: (i) the efficiency of the quantum interface in performing various quantum tasks,
such as quantum memory or entanglement generation, is universally given by r0 and is hence reduced
to a measurement or classical calculation of a reflectivity; (ii) the efficiency can be greatly enhanced by
a properly designed photon mode that spatially matches a collective-dipole eigenmode of the atoms. We
demonstrate our approach for realistic cases of finite-size atomic arrays, partially filled arrays, and circular
arrays. This provides a unified approach for treating collective light-matter coupling in various platforms,
such as optical lattices and optical tweezers.
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I. INTRODUCTION

Quantum optical platforms, based on the manipula-
tion of atoms and photons, play an essential role in the
exploration of quantum science and technology. Of crucial
importance is the ability to establish an interface between
photons and atoms. Such an interface allows one to ben-
efit from the low-loss propagation of photons combined
with the quantum coherence or nonlinearity of atoms, with
applications ranging from quantum memories and infor-
mation to many-body physics [1,2]. To this end, a quantum
interface is required to couple a certain target photon mode
that one excites and detects to a relevant spatially matched
atomic degree of freedom. In turn, the efficiency of the
interface is characterized by the ratio between the emis-
sion rate of the atomic degree of freedom to the target
mode and that to the rest of the undesired modes. This
ratio depends on the specific realization: for an ensemble
of atoms trapped in free space [3–13] or along a waveg-
uide [14,15], it is typically given by the so-called optical
depth (OD), whereas for atoms trapped inside a cavity,
this ratio is often identical to the cooperativity parameter
[16,20–24].

Recently, spatially ordered arrays of trapped atoms, as
can be realized in an optical lattice [25,26], have emerged
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as a novel quantum light-matter interface [27–49]. For
arrays with near-wavelength lattice spacing, the combina-
tion of spatial order with the collective response of the
atoms to light considerably reduces the scattering into
unwanted directions. This results in strong and directional
light-matter coupling between a propagating, target pho-
ton mode and a spatially matched collective dipole of the
atoms. In two-dimensional (2D) arrays, the strength of
the coupling is evident and is characterized by the high
reflectivity of the target mode scattered off the array [28–
30]. Moreover, the reflectivity seems to appear in relation
to efficiencies of various quantum applications that were
subsequently proposed, from quantum entanglement gen-
eration and information with photons [50–55] to optome-
chanics [36,37] and quantum memories [27,31]. However,
no clear relation or framework that underscores the general
role of array reflectivity in such light-matter applications
had been established thus far.

In this work, we provide a general approach for the
analysis of two-sided quantum interfaces and apply it to
various realistic atom-array problems. We begin by find-
ing general conditions under which collective atom-photon
interfaces can be mapped to a generic one-dimensional
(1D) model of scattering characterized by a reflectivity.
This mapping entails two important consequences: (i) the
efficiency of the quantum interface in performing var-
ious quantum tasks is characterized by a measurement
or a simple classical calculation of a reflectivity; (ii) we
show how the reflectivity, and hence the efficiency, can be
greatly enhanced by a properly designed photon mode that
spatially matches the collective eigenmodes of the array
structure.
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FIG. 1. Generic 1D model of a two-sided light-matter interface
[Eq. (1)] onto which various systems are mapped. (a) A collective
dipole P̂ of the atomic system is coupled to a spatially matched,
target photon mode Ê at an emission rate �, while scattering
to other modes (loss) at rate γloss. The atom-photon coupling is
taken to be symmetric on both sides [Eq. (4)]. (b) Level structure
of the atoms in the three-level variant of the model, with a tunable
coupling field�(t) [Eq. (6)]. (c) Ladder-configuration version of
three-level atom scheme.

A. Outline and scope

We begin with a brief account of the scope and results.

1. 1D model of a quantum interface: Reflectivity as a
figure of merit (Sec. II)

We introduce a minimal 1D model for a two-sided
atom-photon interface, depicted in Fig. 1: A collective
mode of atomic dipoles P̂ is coupled to a one-
dimensionally-propagating “target” photon mode Ê , while
also scattering to other modes considered as a loss. Denot-
ing the ratio of these couplings by the cooperativity C =
�/γloss, it is found that the on-resonance reflectivity of the
target mode, given by r0 = C/(C + 1), fully characterizes
atom-photon coupling. In particular, r0 is equal to the effi-
ciency of energy conversion between the dipole P̂ and the
target mode Ê and hence emerges as a universal figure
of merit of quantum tasks. This is demonstrated for effi-
ciencies of quantum memory and entanglement generation,
analyzed for corresponding linear and nonlinear variants of
the 1D model.

2. Mapping to the 1D model (Secs. III and VII)

For a given atom-photon system, the first challenge is
to identify the mapping to the two-sided 1D model. We
consider a general collection of atoms interacting with
a paraxial target photon mode in free space, accounting
for collective effects established by induced dipole-dipole

interactions between the atoms. Beginning with a collec-
tion of atoms arranged on a plane, we find in Sec. III
that the mapping is possible if the transverse profile of
the target mode Ê spatially matches an eigenmode P̂ of
the dipole-dipole interaction kernel, whose eigenvalue we
denote by D0 [Fig. 1(a)]. While P̂ can decay to both the
target mode Ê and to other photon modes at total rate
�0 = 2Re[D0], we independently find an expression for its
rate of coupling to the target mode � ≤ �0, yielding the
mapping parameters � and γloss = �0 − � (in the absence
of other single-atom losses). In Sec. VII we extend the
analysis to multiple layers of such planar atomic ensem-
bles, finding that when the distance between the layers is an
integer multiple of half of the resonant wavelength (Bragg
condition), then the mapping to the two-sided 1D model is
still possible, with the rates �0 and � both now multiplied
by the number of layers.

3. Examples (Secs. IV–VII)

We apply our approach for the description and design of
realistic atom-array interfaces:

(i) Two-dimensional and three-dimensional (3D) lat-
tice arrays (Secs. IV and VII). We derive useful analytical
results for typical cases of ordered arrays considering their
finite size and position disorder, as summarized in Tables
I and II. We establish the mapping to the 1D model, show-
ing that a target photon mode in a typical Gaussian-beam
shape matches an approximate eigenmode of the dipole-
dipole interaction, whereas any deviations due to imper-
fections and finite-size effects are accounted for by the loss
parameter γloss. Analytical results for r0 derived from the
mapping are shown to agree with numerical results for both
the reflectivity and the efficiency of a quantum memory
protocol.

(ii) Partially filled arrays (Sec. V). Considering a 2D
ordered array (lattice) with static disorder in the form of
a finite filling fraction, we show how the reflectivity can
be greatly enhanced if we go beyond the typical case of
a Gaussian-beam target mode. Remarkably, by choosing a
target mode that matches a dipole eigenmode, we obtain
efficiencies r0 of 0.99 and 0.94 for filling fractions as low
as 85% and 70%, respectively, instead of much lower effi-
ciencies with a Gaussian-beam target mode. The analytical
results agree with the numerical ones, showing that the
mapping is valid and hence that the enhancement of r0
implies enhanced efficiencies of quantum tasks.

(iii) Circular arrays (Sec. VI). As another deviation
from the translation-invariant case of a lattice, we con-
sider a circular array. We demonstrate different choices
of target modes corresponding to different dipole eigen-
values of the circular structure, again finding good agree-
ment between r0 predicted by our theory and numerical
scattering calculations.
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II. GENERIC 1D MODEL: REFLECTIVITY

We begin by introducing the 1D scattering model of a
two-sided quantum interface onto which collective atom-
photon systems are mapped within our approach.

A. The model

We consider a paraxial mode of light with some finite
mode area, e.g., a Gaussian beam within its Rayleigh
range, propagating along the z direction and described by
the 1D field operator Ê(z, t), with [Ê(z), Ê†(z′)] ∝ δ(z −
z′). This “target mode” interacts with a collection of two-
level atoms and couples to a spatially matched collective
mode of their atomic dipoles, described by the operator P̂
[Fig. 1(a)]. However, since the “collective dipole” P̂ com-
prises discrete atoms, it may, in general, also scatter to
other undesired photonic modes in different directions. A
simple model that captures this scenario is given by

dP̂
dt

=
[

i(δp −�)− � + γloss

2

]
P̂ + i

√
�Ê0(0, t)+ F̂(t),

Ê(z) = Ê0(z)+ i
√
�P̂.

(1)

These Heisenberg-picture equations describe a 1D prob-
lem of the target mode Ê(z) scattered off the collective
dipole P̂. Here, � is the emission rate of the atomic dipole
to the target-mode 1D continuum, with an input quan-
tum field satisfying [Ê0(0, t), Ê†

0 (0, t′)] = δ(t − t′), whereas
γloss is the emission rate to the undesired modes with corre-
sponding quantum vacuum noise 〈F̂(t)F̂†(t′)〉 = γlossδ(t −
t′). δp = ωp − ωa is the detuning between the central fre-
quency of the target mode (ωp ) and that of the “bare”
two-level atom transition (ωa), whereas� is a possible col-
lective shift of the collective atomic dipole. Assuming that
the number of atomic excitations is much lower than the
number of constituent two-level atoms that comprise the
collective dipole, we begin by considering the operator P̂
as a linearized bosoniclike mode (with [P̂, P̂†] = 1), while
the inclusion of nonlinearities is discussed further below.

B. Cooperativity and coupling efficiency

We define the cooperativity C as the branching ratio
between the emission to the desired target mode and that
to undesired modes,

C = �

γloss
. (2)

Quantum mechanically, this is a ratio of spontaneous emis-
sion rates, but it also has a clear classical meaning as the
ratio of radiated energy or power. In Appendix A we illus-
trate this point in two ways. First, we consider an initially

excited dipole P̂ and calculate classically the fraction of
energy radiated into the target mode, finding

r0 ≡ C
C + 1

. (3)

Second, we consider an input continuous wave (cw) illumi-
nation in the target mode and calculate the fraction of the
power absorbed by the dipole P̂ in the steady state. At reso-
nance δp = �, we again obtain r0 from Eq. (3). Therefore,
r0 describes the efficiency of light-matter coupling between
the target mode and the atoms. It originates in the under-
lying classical linear optics problem and is determined by
C. We discuss the relation of C and r0 defined here to other
definitions of cooperativity further below (see Sec. II E).

C. Reflectivity as an efficiency

The coupling efficiency from Eq. (3) can be physically
interpreted as the reflectivity of the 1D scattering problem,
a fact which can become practically useful as discussed
further below. To show that r0 is a reflectivity, we first
note that the model from Eq. (1) pertains to a two-sided
problem by identifying the field operator Ê as the symmet-
ric superposition of corresponding right–propagating and
left-propagating components Ê±, i.e., Ê(z) = 1√

2
[Ê+(z)+

Ê−(−z)]e−ikp z (kp ≡ ωp/c, z > 0); see Fig. 1(a). The input
field in the equation for P̂ is then Ê0(0) = 1√

2
[Ê0,+(0)+

Ê0,−(0)], and the equation for the output field of each
component is

Ê±(z) = Ê0,±(z)+ i

√
�

2
e±ikp zP̂. (4)

For classical cw light shined either from the right or from
the left, we find the amplitude reflectivity as (see Appendix
A)

r = − �

� + γloss + i2(�− δp)
→ r0 = |r(δp = �)|.

(5)

We thus identify that the magnitude of this field reflectivity
at resonance, r0, is equal to the efficiency associated with
power conversion from Eq. (3). For the intensity (power)
reflectivity, we thus have R = r2

0, which lends itself to an
intuitive two-step picture of reflectivity: first, the photons
of the target mode are absorbed by the atoms at efficiency
r0, as discussed in the previous subsection, and then they
are emitted from the atoms to the target mode also at effi-
ciency r0, leading to R = r2

0. While in a cw scenario this
two-step process never really occurs at a certain timing,
this simple picture is useful to understand the physics of
the quantum memory discussed below.
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D. Efficiency of quantum tasks

So far, we have seen that the linear reflectivity r0 quanti-
fies energy conversion between light and matter. Quantum
mechanically, this amounts to the efficiency of converting
atomic excitations to photons and vice versa. We therefore
expect the reflectivity r0 to also appear in efficiencies of
quantum processes and tasks that rely on the coupling of
atomic and photonic excitations. Intuitively, this should
be the case as long as the system can be described by
the 1D model, since r0 is the sole parameter quantify-
ing light-matter coupling. Namely, while different quantum
processes and tasks may require corresponding variations
to the 1D model as discussed below, these variations dif-
fer only in the atomic part, and not in their atom-photon
coupling part, characterized by r0.

We consider two types of quantum processes, linear and
nonlinear. In the former, one is typically interested in faith-
fully transferring quantum properties, such as the quantum
state or certain quantum correlations, of an atomic system
to a photonic one or vice versa. This can be done either
dissipatively or coherently, for purposes of, e.g., quantum
memory or communication. Intuitively, since the essence
of such a linear transformation amounts to the conver-
sion of excitations between light and matter, we would
expect that r0 characterizes the efficiency of such tasks, as
explained above. Mathematically, this is seen by the fact
that the model (1) is essentially characterized by a single
parameter, r0 (equivalently C), which should characterize
all the physics. In Sec. II D 1 below, we show that this is
indeed the case for a typical quantum memory protocol.

In nonlinear processes, one typically exploits nonlinear-
ities in the atomic system to generate quantum correlations
between atomic excitations, which could also be translated
to correlations between outgoing photons. The strength of
the bare atomic nonlinearity is a parameter that may be
independent of r0. However, here as well we expect r0 to
appear in the efficiency of the generation of quantum cor-
relations and their strength: To create atomic excitations in
the first place, one typically shines light, so that r0 would
appear due to the conversion of the driving light to atomic
excitations. Then, for the generation of correlated pho-
tons, correlated atomic excitations are converted back to
light, hence again invoking r0. We demonstrate this using
a modification of the 1D model (1) that includes a non-
linearity, discussing two regimes: weak nonlinearity (Sec.
II D 2) and blockade nonlinearity (Sec. II D 3).

1. Quantum memory efficiency

A relevant example of a linear quantum task is that of
a quantum memory. Although the essence of the physics
of excitation transfer in a quantum memory is captured
by the model (1) as discussed above, the explicit mem-
ory protocol involves a modified atomic structure with a
pair of stable levels. To this end, consider that the atomic

system comprises three-level atoms, with a stable level |s〉
in addition to the ground state |g〉 and the excited state
|e〉 [Fig. 1(b)]. Then there exists another relevant collec-
tive atomic operator, Ŝ, which accounts for the coherence
between the stable levels |g〉 and |s〉, and that is coupled
to P̂ (associated with the levels |g〉 and |e〉) via an external
field �. Equation (1) is now modified to

dP̂
dt

=
[

i(δp −�)− � + γloss

2

]
P̂ + i�Ŝ

+ i
√
�Ê0(0, t)+ F̂(t),

dŜ
dt

= iδ2Ŝ + i�∗P̂,

Ê(z) = Ê0(z)+ i
√
�P̂, (6)

where δ2 = δp − δc is the combined detuning of the two-
photon transition from |g〉 to |s〉 [Fig. 1(b)], and the
emission rate to undesired modes γloss and the corre-
sponding quantum vacuum noise F̂(t) may now include
contributions from processes involving the third level.

The goal of a quantum memory is to coherently transfer
the excitations and the quantum state of a pulse of the tar-
get mode Ê into the stable atomic coherence Ŝ. A second
goal is to be able to retrieve these excitations and the quan-
tum state from Ŝ back to the propagating mode of Ê . Within
this process, the dipole P̂ mediates the interaction between
the field and the stable coherence Ŝ, via the tunable cou-
pling �(t). To see this, we adiabatically eliminate P̂ from
Eq. (6), obtaining an equation for Ŝ (see Appendix B)

dŜ
dt

=
[
i(δ2 −�s)− �S + γ S

loss

2

]
Ŝ + i

√
�SÊ0(0, t)+ F̂S(t),

(7)

with (�S, γ S
loss,�s) = ρ × (�, γloss, δp −�), and ρ(t) =∣∣∣ −i�∗(t)

(�+γloss)/2−i(δp −�)
∣∣∣2

. Notably, this equation has exactly the

same form of Eq. (1) for P̂, with an identical reflec-
tivity parameter r0 = �S/(�S + γ S

loss) = �/(� + γloss) that
should characterize its atom-photon excitation transfer.

Indeed, we analyzed the quantum memory protocol for
this model in close analogy to that in Ref. [16] for an
atomic ensemble inside an optical cavity in the fast cavity
regime. We present the details of this analysis in Appendix
B, including the expressions for the control-pulse temporal
shape�(t) needed for optimal storage (retrieval), given the
temporal shape of the input (output) photon wave packet
one wishes to store (retrieve). We find that the optimal stor-
age and retrieval efficiencies are both equal to r0, reflecting
that these are time-reversed processes [16]. The meaning,
revealed by our approach, is that the on-resonance reflec-
tivity r0 = |r(δp = �)| is in fact equal to the quantum
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memory efficiency. As shown above, this in turn stems
from the light-matter coupling efficiency of the underly-
ing scattering problem. In particular, the total efficiency of
the quantum memory is given by the multiplication of the
storage and retrieval efficiencies, r2

0, which is nothing but
the intensity reflectivity. Thus, the memory protocol, using
the temporal tunability of the coupling field �(t), allows
one to break the reflection process into two distinct stages:
absorption (storage) and re-emission (retrieval). But the
combined effect is equivalent to intensity reflection, as
exhibited by the total coupling efficiency r2

0.

2. Quantum correlation efficiency: Squeezing

Correlated states of atoms or photons are useful in, e.g.,
quantum metrology and quantum information processing,
and typically require nonlinearities of the atomic system to
generate them [2,17]. To this end, we introduce a nonlinear
variant of the model (1) by simply adding a nonlinear term
in P̂ to the equation for dP̂/dt, while still keeping P̂ as a
linearized boson mode. For example, for a cubic Kerr-type
nonlinearity we have

dP̂
dt

=
[

i(δp −�)− � + γloss

2

]
P̂ − iVP̂†P̂2

+ i
√
�Ê0(0, t)+ F̂(t), (8)

where V is the nonlinearity parameter associated with
an interaction potential within the atomic system. For
an atomic system within its linear regime, which can
be mapped to the 1D model (1), the mapping to the
above 1D model (8) in the presence of nonlinearities is
not always possible, since interactions and nonlinearities
typically couple different spatial modes in the transverse
directions (x-y plane), thus going beyond a single-channel,
1D picture. However, we discuss in Appendix C com-
mon situations wherein the model (8) does capture the
nonlinear dynamics of the target mode of interest. In partic-
ular: (i) considering an interaction potential V(ra) between
atomic excitations on different atoms at a distance ra from
each other, if the potential is effectively uniform within
the atomic system (as can be realized with Rydberg dress-
ing [18,19]), then V(ra) = V does not couple different
transverse modes and conserves the 1D picture; (ii) for
two-level atoms, where the saturation of atoms yields an
on-site potential, if the excitation is weak enough, the non-
linearity becomes perturbative, resulting in a negligible
effect of other transverse modes on the target mode, thus
yielding the model (8).

We now turn to analyze quantum-squeezing correla-
tions, useful e.g. in quantum metrology, generated both in
the atomic system and the output light. We consider the
model (8) with a weak coherent-state input field of average
amplitude 〈Ê0(0, t)〉 = E , and we solve for the steady-state
perturbatively in E . For the atomic system, treating P̂ as

a collective-spin variable of many two-level atoms, the
bosonic squeezing parameter ξ 2

P amounts to spin squeez-
ing, and we find ξ 2

P ≈ 1 − r0
|E|2

�+γloss
f (V), where f (V) is

a function of V (see Appendix C). Quantum-squeezing
correlations exist for ξ 2

P < 1. Therefore, the second term
characterizes the strength of quantum correlations and is
seen to be proportional to r0. Similarly, for the quan-
tum squeezing parameter of the output field, we obtain
ξ 2

E ≈ 1 − r2
0

|E|2
[Ê0(t),Ê†

0 (t)]
f (V). So, for the light we get that the

strength of quantum correlations is multiplied by another
factor of r0, since atomic correlations are converted to
light, resulting in an overall proportionality with the inten-
sity reflectivity r2

0. Therefore, as anticipated above, while
efficiencies of nonlinear quantum tasks (here strength of
generated correlations) may involve more parameters (e.g.,
V), they also must be proportional to the reflectivity r0
(or r2

0), which is the ultimate parameter quantifying light-
matter coupling within a 1D-like system. Furthermore, we
expect this general idea to apply to various mechanisms of
array nonlinearity: e.g., in Ref. [36], where array nonlin-
earity originates only from an optomechanical effect, the
generated photon correlations were also shown to scale as
the reflectivity.

3. Quantum correlation efficiency: Photon blockade

An even simpler form of nonlinearity is also the
strongest one; namely, that where the atomic system is
effectively allowed to have only a single excitation, due to
strong interactions, V → ∞ in Eq. (8). Such strong nonlin-
earities lead to photon-photon interactions and correlations
that are useful e.g. in photonic quantum gates [2], and
can be simply modeled by an atomic system with a sin-
gle excited level and a single ground level. For a single
atom, this amounts to a two-level atom model, whereas
for an atomic ensemble, e.g., an array, a similar situation
is achieved via Rydberg blockade [60,61]. In the latter,
we consider a third atomic level of each atom, |s〉, taken
as a highly excited, metastable Rydberg state, forming a
ladder system with δ2 = δp + δc [Fig. 1(c)]. For strong
enough interaction between Rydberg states of different
atoms (large blockade radius [61,62]), all multiply excited
states of the form (Ŝ†)n|gg . . . g〉 (n > 1) are far detuned
and truncated [55] (where here again Ŝ is the collective
coherence associated with |g〉 and |s〉).

As in Sec. II D 1, we adiabatically eliminate P̂, obtaining
Eq. (7) for Ŝ, however this time together with the block-
ade condition (Ŝ†)n|gg . . . g〉 = 0 (n > 1). This amounts
to a problem involving scattering off a single two-level
emitter in one dimension, equivalent to the model (8) with
V → ∞. Following Ref. [55], where the specific problem
of a formally infinite 2D array was treated, we solve this
general nonlinear problem analytically: Given a coherent-
state input, we find the steady-state photon correlations of
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the output light. For example, at the resonances δ2 = 0 and
δp = �, we obtain antibunching for the transmitted light,
with g(2)(0) = |1 − r2

0|2. This expression clearly demon-
strates that it is again the reflectivity of the array that
determines the amount of correlations, as was also sug-
gested by the numerical results in Refs. [52,53], where
the utility of such correlations for two-qubit gates was dis-
cussed. In Ref. [55], a similar conclusion was reached also
for the entanglement generated between different trans-
verse modes scattered off a 2D array. The photon blockade
problem thus forms an example of a nonlinear problem
wherein no additional parameters beyond r0 appear (unlike
the case of a finite nonlinearity V). Then the efficiency of
entanglement generation in this quantum nonlinear prob-
lem is given by the efficiency of the underlying classical
linear problem, namely, r0.

E. Why reflectivity? Consequences and relation to
other figures of merit

The considerations presented above establish that the
on-resonance reflectivity r0 forms a figure of merit for
the efficiency of the generic, two-sided 1D quantum inter-
face. This idea has an important practical meaning: for any
given symmetric two-sided system that is mapped onto the
generic 1D model of Eq. (1) [or Eqs. (6) and (8)], the
efficiencies of relevant quantum problems are given by a
well-defined and measurable physical quantity, the linear
reflectivity r0. The latter can be directly extracted from
the measurement, or the simple classical calculation, of the
field reflected off the atomic system.

So, for symmetric, two-sided quantum interfaces, we
argue that the reflectivity is the natural and physically
meaningful figure of merit to consider, and this is the
basis of the approach we present. However, mathemati-
cally, r0 is clearly related to other figures of merit that
exist in the literature. First and foremost, we defined the
cooperativity C in Eq. (2) as a general ratio between
rates of decay to desired (�) and undesired (γloss) modes.
This definition coincides with the known definitions of
cooperativity when the losses to undesired modes arise
from free-space like emission at the individual-atom level
(noncollective), i.e., γloss = γ . For example, in cavity
QED of dilute atomic ensembles, the transverse emission
from atoms inside the cavity to the nonconfined modes
is approximately given by the individual-atom free-space
decay rate, γloss = γ , whereas the emission via the cavity
mirrors is � ∝ γFλ2/Ac, with F being the cavity finesse
and Ac its mode area [2]. In waveguide QED a similar
definition exists, where again γloss = γ is the emission to
nonguided modes and � ∝ γ λ2/Awg, with Awg the area
of the guided mode, yielding the so-called β factor of
waveguide QED, β = C/(C + 1) = r0 [58,59,63]. There-
fore, these known definitions coincide with ours only when
the loss rate does not consider collective effects in the

loss to undesired modes. In contrast, in the situations we
consider below, such as atomic arrays, the losses are very
much affected by collective physics [37], and so these com-
mon definitions, wherein γloss = γ , are not appropriate: for
example, this means that the β factor is not equal to the
reflectivity one measures in such a case.

Another common definition from the literature is the
OD [12,64]. Although similar in essence to the cooperativ-
ity, the observable physical meaning of OD is revealed in
one-sided propagation problems, where back-reflection is
negligible and e−OD expresses the extinction of the field in
transmission. We, instead, consider problems where back-
propagation is very crucial, as we deal with two-sided,
symmetric problems. As we show below, propagation
problems in elongated atomic systems that can be mapped
to our two-sided 1D model satisfy a Bragg condition that
guarantees back-reflection. In such cases, the OD does not
characterize the system well, and the suitable, physically
meaningful figure of merit is the reflectivity r0 introduced
here.

III. MAPPING A COLLECTIVE SYSTEM TO THE
1D MODEL

We now turn to developing a method for the map-
ping of a collective atom-photon system to the generic 1D
model. Starting from the Heisenberg-Langevin equations
of a many-atom system interacting with free-space pho-
tons modes, we find existence conditions for the mapping
and provide the procedure to perform it. In this section
we focus on a planar atomic system in its linear regime;
extensions accounting for multiple planar layers and for
nonlinearities are developed in Sec. VII and Appendix C 2,
respectively.

A. System

We consider a collection of identical three-level atoms
[Fig. 1(c)], n = 1, . . . , N , situated at fixed positions rn =
(r⊥

n , zn) (r⊥ and z denoting projections along transverse x-
y and longitudinal z directions). The atoms are illuminated
by a quantum field with central frequency ωp working
on the |g〉 ↔ |e〉 transition, while an external coherent
field �(t) with frequency ωc couples the levels |s〉 ↔ |e〉
[Fig. 1(b)]. The full Hamiltonian is given by

Ĥ = Ĥf + Ĥs + ĤI . (9)

Here Ĥf = ∑
k⊥

∑
kz

∑
μ �ωk⊥kz â

†
k⊥kzμ

âk⊥kzμ is the Hamil-
tonian of the photons in free space, with boson lowering
operators âk⊥kzμ characterized by the transverse and lon-
gitudinal wave vectors k⊥ = (kx, ky) and kz, respectively,
the polarization index μ, and ωk⊥kz = c

√|k⊥|2 + k2
z . The
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Hamiltonian of the atomic system is

Ĥs =
∑

n

[
�ωeσ̂ee,n + �ωsσ̂ss,n

] − [
��e−iωctσ̂ †

se,n+H.c.
]

,

(10)

where σ̂αα′,n = |α〉n〈α′| and �ωα are the transition operator
(of an atom n) and energy, respectively, of levels α,α′ ∈
{g, e, s}. The atom-photon interaction Hamiltonian in the
dipole approximation reads

ĤI =−
∑

n

[
dgeσ̂ge,n + dseσ̂se,n + H.c.

] ·
[
Ê(r⊥

n , zn)+ H.c.
]

,

(11)

where dge = ded is the dipole matrix element correspond-
ing to the |g〉 ↔ |e〉 transition and dse corresponds to the
|s〉 ↔ |e〉 transition. The quantum field operator is given
by

Ê(r⊥, z, t) = i
∑
k⊥

∑
kz

∑
μ

√
�ωk⊥kz

2ε0L3 ek⊥kzμâk⊥kzμ(t)

× ei(k⊥·r⊥+kzz), (12)

with L3 being the quantization volume and ek⊥kzμ the
photon polarization vector.

B. Heisenberg-Langevin formalism

Writing the Heisenberg equation for the photons in the
laser-rotated frame (σ̂ge,neiωp t → σ̂ge,n, σ̂gs,nei(ωp −ωc)t →
σ̂gs,n), we solve for the photon field under the Born-Markov
approximation, obtaining

Ê(r⊥, z) = Ê0(r⊥, z)+ ω2
pd

ε0c2

∑
n

G(ωp , r⊥ − r⊥
n , z − zn)σ̂ge,n.

(13)

Here Ê(r⊥, z) = e∗
d · Ê(r⊥, z)eiωp t is the slowly varying

envelope of the field around a carrier frequency ωp and
projected onto the transition-dipole orientation ed, whereas
Ê0(r⊥, z) is the corresponding freely evolving input field
[given by Eq. (12) with âk⊥kzμ(t) → âk⊥kzμ(0)e

−iωk⊥kz t].
G(ω, r⊥, z) is the (dyadic) Green’s function of the photon
field in free space at frequency ω, also projected onto the
dipole orientation. The total field is then given by a super-
position of the incoming field and that emitted by the atoms
and propagated via the Green’s function.

Under the same Born-Markov approximation, we inte-
grate out the photonic operators and derive the Heisenberg-
Langevin equations for the atomic operators. Linearizing

the equations in the weak quantum field (e.g., see the
appendix in Ref. [55]), we obtain

dσ̂ge,n

dt
= −

(γs

2
− iδp

)
σ̂ge,n + i�(t)σ̂gs,n + id

�
Ê0(r⊥

n , zn)

+ F̂n + i
�

d2ω2
p

ε0c2

∑
m

G(ωp , r⊥
n − r⊥

m , zn − zm)σ̂ge,m,

(14)

dσ̂gs,n

dt
= iδ2σ̂gs,n + i�∗(t)σ̂ge,n. (15)

Here γs is a spontaneous decay rate due to noncollective
processes: it may include a decay γse from |e〉 to |s〉 and a
noncollective decay due to other imperfections, e.g., posi-
tion disorder in the case of atomic arrays (see below). F̂n
is the corresponding quantum Langevin noise operator sat-
isfying 〈F̂n(t)F̂

†
m(t′)〉 = γsδnmδ(t − t′). δp = ωp − ωe is the

detuning of the |g〉 ↔ |e〉 transition and δ2 = δp − δc is
the two-photon detuning, with δc = ωc − (ωe − ωs) being
the detuning of the |s〉 ↔ |e〉 transition [Fig. 1(b)]. The
Green’s function in Eq. (14) describes the dipole-dipole
interaction between the |g〉 ↔ |e〉 transition dipoles of
pairs of atoms n and m; such a term is absent between the
|s〉 ↔ |e〉 transition dipoles of different atoms since in the
linear regime the probability of exciting two atoms to states
|s〉 and |e〉 is low [55].

C. The target photon mode

We consider incident light propagating along the z direc-
tion with a transverse mode profile u(r⊥), satisfying the
normalization

∫ ∞
−∞ |u(r⊥)|2dr⊥ = 1. For a paraxial beam,

the typical scale of spatial variations of u(r⊥), denoted by
w, is much larger than the optical wavelength λ = 2πc/ωp .
We define the field projected to this mode as

Êu(z) ≡ 1√
Au

∫ ∞

−∞
Ê(r⊥, z)u∗(r⊥)dr⊥

= i
∑

kz

√
�ωkz

2ε0LAu
âukz e

i(kzz+ωp t), (16)

where Au is an unimportant area scale associated with
the mode. The second equality, appearing as an expan-
sion in one-dimensionally-propagating waves, is obtained
within the paraxial approximation by introducing the
1D continuum of annihilation operators associated with
the transverse mode u(r⊥), âukz = (2π/L)

∑
k⊥

∑
μ e∗

d ·
ek⊥kzμâk⊥kz ũ

∗(k⊥), with ũ(k⊥) being the Fourier transform
of u(r⊥), and [âukz , â†

uk′
z
] = δkz ,k′

z .
For a paraxial mode u(r⊥) of spatial width w � λ,

and considering propagation distances within its Rayleigh
range, z < zR = πw2/λ, diffraction of the mode is negligi-
ble and its propagation along z is expected to be that of an
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effective plane wave in one dimension. Indeed, performing
the projection (16) on the field equation (13), we show in
Appendix D 1 that for w � λ and z < zR, one obtains

Ê±
u (z) = Ê±

u,0(z)+ e±ikp z idkp

2ε0
√

Au

∑
n

u∗(r⊥
n )e

∓ikp zn σ̂ge,n.

(17)

Here kp = ωp/c = 2π/λ, whereas Ê+
u (z) and Ê−

u (z) are the
right- and left-propagating fields [including only kz > 0 or
kz < 0, respectively, in Eq. (16)], sampled at z > zmax and
z < zmin, respectively (zn ∈ [zmin, zmax]).

We identify that E±
u are coupled to P̂± ∝ ∑

n u∗(r⊥
n )

e∓ikp zn σ̃ge,n. However, for a mapping to Eq. (4) of the two-
sided 1D model, we need a single dipole mode P̂ = P̂+ =
P̂−. A simple way to achieve this is by demanding that
eikp zn = e−ikp zn , or

zn = (λ/2)× N ∀n. (18)

From now on we assume a planar system, for which zn =
0 ∀n. The extension of the formalism to 3D structures is
discussed in Sec. VI.

D. The collective dipole in a planar system

The considerations above establish the natural “candi-
date” for the relevant collective dipole in a planar system
given by

P̂ = aeff

∑
n

u∗(r⊥
n )σ̂ge,n. (19)

The normalization length aeff is defined through

∑
n

|u(r⊥
n )|2 = 1/a2

eff, (20)

guaranteeing the bosonic commutation relation [P̂, P̂†] =
1 within the linear regime taken here. We now turn to
writing the equation of motion for P̂ and identifying the
conditions under which it can be mapped to that of the 1D
model of Eq. (1). To this end, we first introduce the
eigenvectors vl,n with eigenvalues Dl of the dipole-dipole

interaction kernel, Dnm ≡ − i
�

d2ω2
p

ε0c2 G(ωp , r⊥
n − r⊥

m , 0),

∑
m

Dnmvl,m = Dlvl,n, Dnm =
∑

l

vl,nvl,mDl, (21)

noting the orthogonality and completeness relations of
eigenvectors of the complex symmetric matrix Dnm,∑

n vl,nvl′,n = δll′ ,
∑

l vl,nvl,m = δnm. Writing Eq. (14) for P̂

using Eqs. (19) and (21), we find

dP̂
dt

=
(

iδp − γs

2

)
P̂ + i�Ŝ + i

d
�

Ê0 + F̂u

− aeff

∑
l

Dl

∑
m

vl,mσ̃ge,m

∑
n

u∗(r⊥
n )vl,n. (22)

Here Ŝ = aeff
∑

n u∗(r⊥
n )σ̂gs,n is the collective coherence

defined as in Eq. (19) with the replacement σ̂ge,n → σ̂gs,n,
and Ê0 and F̂u are similarly transformed via Eq. (19) from
Ê0(r⊥

n , zn) and F̂n, respectively.
The last term describes the coupling of the collec-

tive dipole P̂ to dipole eigenmodes of the form P̂l =∑
m vl,mσ̃ge,m. Coupling of P̂ to other dipole modes pre-

vents the mapping to the single-mode 1D model (1). This
can be remedied if the target mode is equal to one spe-
cific dipole eigenmode l = 0, or if it overlaps only with
quasidegenerate eigenmodes l with Dl ≈ D0, i.e.,

aeffu∗(r⊥
n ) = v0,n, or aeffu∗(r⊥

n ) =
∑

l∈(Dl≈D0)

clvl,n,

(23)

with
∑

l∈(Dl≈D0)
|cl|2 = 1. In either case, Eq. (22) becomes

dP̂
dt

=
[

i(δp −�)− �0 + γs

2

]
P̂ + i�Ŝ + i

d
�

Ê0 + F̂u,

(24)

where we have already decomposed D0 to real and imag-
inary parts, D0 = �0/2 + i�, corresponding to collective
decay and energy shift, respectively. Moreover, applying
the transformation (19) on Eq. (15), we trivially obtain

dŜ
dt

= iδ2Ŝ + i�∗(t)P̂. (25)

E. Mapping to the 1D model

The input-field term Ê0 = aeff
∑

n u∗(r⊥
n )Ê0(r⊥, 0) con-

tains the overlap with the target mode but possibly also
with other photon modes. Using a complete function basis
that spans the transverse x-y plane, we decompose the field
to the target mode component u(r⊥) and other orthogonal
modes (see Appendix D 2), obtaining

i
d
�

Ê0 = i
√
�Ê0(0)+ F̂0. (26)

Here

Ê(0) = 1√
2
(Ê+(0)+ Ê−(0)), Ê±(z) ≡ d

�

√
2Au

a2
eff�

Ê±
u (z),

(27)

is the (normalized) input field at the target mode, written
as a symmetric superposition of right- and left-propagating
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fields, and F̂0 is a noise operator due to the vacuum
field containing other modes. The effective 1D coupling
strength of the target mode to P̂ is seen to be given by �,
which we find to be equal to �1D, the emission rate in a 1D
system with a transverse cross section of a2

eff (see Appendix
D 2),

� = �1D, �1D = d2ωp

ε0�ca2
eff

= 3
4π

λ2

a2
eff

γ , γ = d2ω3
p

3πε0�c3 ,

(28)

where γ is the usual free-space spontaneous emission rate
of a single atom (|g〉 ↔ |e〉 transition).

We observe that while P̂ in Eq. (24) exhibits a collective
decay �0, its coupling to the target mode is characterized
by �. We therefore divide �0 into � and �0 − �, with the
latter expressing the fraction of the collective emission that
is not coupled to the target mode, and where we prove that
�0 ≥ � (see Appendix D 3). Therefore, the total emission
outside of the target mode is given by the sum of the latter
and the noncollective emission γs, yielding

dP̂
dt

=
[

i(δp −�)− � + γloss

2

]
P̂ + i�Ŝ

+i
√
�Ê0(0)+ F̂ , (29)

with

γloss = (�0 − �)+ γs ≥ γs,
�0

2
+ i� = D0. (30)

Correspondingly, the Langevin noise F̂ = F̂0 + F̂u com-
prises noise due to these two loss effects and it satisfies
〈F̂(t)F̂†(t′)〉 = γlossδ(t − t′).

With the collective dipole P̂ in hand, we write also the
field equation (17) in a diagonalized form:

Ê±(z) = Ê0±(z)+ i

√
�

2
e±ikp zP̂. (31)

The scattered field propagates symmetrically on both
sides of the array, so similarly to the input field, we
define the output symmetric field Ê(z) as a symmetric
superposition of the right- and left-propagating fields:
Ê(z) = 1√

2

[
Ê+(z)+ Ê−(−z)

]
e−ikp z (z > 0). The input-

output relation for this symmetric field then reads

Ê(z) = Ê0(z)+ i
√
�P̂. (32)

This equation reveals the mode-preserving light-matter
coupling: input light Ê0 at the target mode u(r⊥) excites the
corresponding collective dipole mode P̂, which will finally
be emitted as output light Ê of the same target mode.

F. Conclusion

We identify that Eqs. (29), (32), and (25) establish the
mapping to the 1D model, Eq. (1) [or Eq. (6)], with the
model parameters � and γloss given in Eqs. (28) and (30).
The paraxial target mode defines the collective dipole P̂
and the effective length aeff in Eqs. (19) and (20), respec-
tively, with the condition that it must be spatially matched
to a dipole eigenmode as in Eq. (23). The latter condi-
tion can be satisfied only if the spatial structure of the
atomic system supports an eigenmode that corresponds to
a paraxial beam. We see below that this is indeed the case
for various arraylike structures, even beyond the purely
translation-invariant structures.

IV. EXAMPLE 1: 2D ORDERED ARRAYS

As a first application of our approach, we derive useful
new analytical results for a familiar case, the 2D square
array. The results are summarized in Tables I and II and
consist of the mapping parameters � and γloss of the 1D
model, for a typical case of a Gaussian-beam target mode
and finite-size, nonideal 2D arrays.

Before we sketch the derivation and present the results,
we begin with some useful intuition on why a 2D ordered
array can be mapped to the 1D model. Considering first
an infinite 2D ordered array, the lattice translation invari-
ance imposes that the dipole eigenmodes are 2D lattice
Fourier modes, l → k⊥. Then a paraxial, Gaussian-beam
target mode with a very large waist w � λ spatially over-
laps with dipole modes of a very small wave vector |k⊥| <
2π/w → 0. The latter can become quasidegenerate for the
relevant timescales, Dk⊥ ≈ Dk⊥=0 [46], thus allowing the
mapping to the 1D model. Considering finite-size arrays,
this reasoning still holds if the array is large enough,
as we show below. This allows us to establish the map-
ping to the 1D model also including finite-size effects and
imperfections.

A. System

We consider a 2D array of identical atoms forming
a square lattice on the x-y plane with lattice spacing a
(Fig. 2). Most of the discussion is dedicated to arrays
whose lattice spacing a is smaller than the relevant opti-
cal wavelength λ = 2πc/ωp , as is typical of an optical
lattice realization [25,26,30], whereas towards the end
we also briefly comment on the case a > λ, relevant to
optical tweezer arrays [56,57]. The atomic positions are
given by the 2D lattice points, zn = 0 and r⊥

n = r⊥
nx ,ny

=
a(nx, ny) (nx and ny being integers). Imperfections due to
small spatial disorder δr in the array atomic positions are
accounted for by supplementing the noncollective decay
term γs in Eq. (14) with the scattering rate γdis ∝ (δr/λ)2

[29,46], leading to γs = γse + γdis (see further discussion
in Sec. IV C). We note that the decay rate γse of the
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FIG. 2. 2D ordered array. A finite-size array with lattice spac-
ing a is situated on the x-y plane (z = 0). The target-mode input
consists of the symmetric combination of fields from both sides,
Ê0,±. The full free-space multimode problem is mapped to the
generic model in Fig. 1(a), with the relevant field and collective
dipole modes projected to the target-mode profile [Eqs. (16) and
(19)] and with the effective parameters � and γloss from Table I.

|s〉 ↔ |e〉 transition may become negligible, e.g., in a
ladder-type atomic configuration [Fig. 1(c)] where |s〉 is
a highly excited metastable level (e.g., Rydberg state).

B. Mapping to the 1D model

The array is illuminated from both sides by a paraxial
target mode with a normalized transverse profile u(r⊥),
as defined in Eq. (16). A typical case is a Gaussian beam
u(r⊥) =

√
(2/πw2)e−(r⊥)2/w2

, with w � λ. Following the
general formalism presented in Sec. III, we expect that
the relevant collective dipoles will follow the same spatial
structure.

In Appendix E we show that the dipole mode P̂ from
Eq. (19) of our general formalism, which matches the
spatial profile u(r⊥) of the target-mode field Ê , approxi-
mately diagonalizes the dipole-dipole kernel in Eq. (14).
This is valid under the following reasonable assumptions:
(i) La = a

√
N � λ, i.e., the linear size of the array is

larger than the length scale associated with the dipole-
dipole interaction (λ), so each atom in the “bulk” (not at the
edges) effectively feels interactions of an infinite array; (ii)√

N � 1, so most atoms are in the bulk, and edge atoms
are negligible in describing collective dipole modes. With
these two assumptions, the collective shift and width are
well approximated by those of a uniformly excited infinite
array, � ≡ �k⊥=0 (see Appendix E), and

�0 ≡ �k⊥=0 = 3
4π

λ2

a2 γ . (33)

Effects due to the finite size of the array are captured here
by its nonperfect overlap with the target mode, as we now
show. The normalization length aeff from Eq. (20) is given
in a 2D array by

aeff = a√
η

,

η =
∫

L2
a

dr⊥|u(r⊥)|2 −−−−→
Gaussian

η = erf2
(

La√
2w

)
, (34)

TABLE I. Mapping of ordered-array interfaces to the generic
1D model in Fig. 1 and Sec. III (model parameters � and γloss).
For a 2D array (N atoms, lattice constant a) the collective cou-
pling rate �0 to the target mode is reduced by the overlap
factor η = erf2

(
a
√

N√
2w

)
< 1 between the target-mode profile (e.g.,

a Gaussian of waist w) and the finite-size array. Here γ is the
individual-atom free-space spontaneous emission rate. For lattice
spacing exceeding the wavelength, a > λ, losses due to scatter-
ing to higher diffraction orders occur [γdiff, Eq. (36)], in addition
to individual-atom losses (γs, e.g., due to disorder) and those due
to nonperfect spatial overlap [(1 − η)�0]. For 3D arrays, phase-
matching conditions enhance collective emission by a factor of
Nz (the number of layers, Fig. 8): for good overlap η → 1, the
cooperativity C = �/γloss also increases by Nz . Comparing these
free-space array cases with a dilute atomic ensemble inside a cav-
ity (e.g., Ref. [16]), we observe a similar scaling of the coupling
� (noting that ∼N/w2 is the effective 2D density in analogy to
Nz/a2 of the array), but with an enhancement of F from the cav-
ity finesse. The cavity enhancement F is required for a dilute
ensemble to combat its large losses arising from individual-atom
transverse scattering out of the cavity at rate γ ∼ �0 [compared
with much smaller losses of ordered arrays, (1 − η)�0, γs; see
Table II].

Emission rate to Emission rate to
target mode undesired modes

� γloss

2D atom array (1 − η)�0 + γs

a < λ (Sec. V)
η�0 = η

3
4π

λ2

a2 γ
2D atom array (1 − η)�0 + γs + γdiff
a > λ (Sec. V)

3D atom array ηNz�0 = η
3

4π
λ2

a2 Nzγ (1 − η)Nz�0 + γs

a < λ (Sec. VI)

Cavity
3

4π
λ2

πw2/2
N

4
π
Fγ γ

(reference case)

where we used w � a to convert a sum into an integral,∑
n → (1/a2)

∫
L2

a
dr⊥. Here η expresses the fraction of the

spatial mode that overlaps with the atomic array of area
L2

a = a2N , and is given by an error function for the Gaus-
sian target mode; in the limit of a large enough array,
La � w, this overlap tends to unity, η → 1. Using the
mode normalization length aeff in Eq. (28) for the coupling
of the array to the target mode, we have � = η�0, with �0
from Eq. (33).

This result has the following physical interpretation:
recalling that �0 = �k⊥=0 is the coupling of a paraxial
beam to an infinite array, this coupling is reduced by the
geometrical overlap η of a finite-size array. It accounts
for the fact that a fraction (1 − η) of the beam extends
beyond the finite-size array and hence does not interact
with the atoms [see Fig. 3(b)]. This adds a collective com-
ponent �0 − � = (1 − η)�0 to the loss rate, as also seen
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(a) (b)

FIG. 3. Sources of imperfection and loss in an ordered atom
array. (a) Disorder δr in atomic positions around the perfect lat-
tice points leads to an effectively individual-atom scattering to
undesired modes at rate γdis. (b) The finite size of the array (lin-
ear size La = √

Na) leads to its nonideal overlap with the target
mode, η = erf2(La/

√
2w) < 1, and hence to a fraction (1 − η) of

the collective emission that spills over to undesired modes. The
error scalings induced by these loss mechanisms are summarized
in Table II.

from Eq. (30). To conclude, we get the following mapping
parameters:

� = η�0, γloss = (1 − η)�0 + γs, (35)

with �0 from Eq. (33).

C. Efficiency analysis

As explained above, once the mapping to the 1D model
of Eq. (6) is established, the efficiency of the light-matter
interface is completely determined by the effective param-
eters � and γloss (Table I), and the resulting resonant
reflectivity r0 = C/(C + 1) = �/(� + γloss).

Beginning with the desired emission to the target mode,
� = η�0, it is given by the effective 1D emission rate
multiplied by the overlap factor η between the array and
target-mode cross sections, Eq. (34).

The undesired emission rate γloss from Eq. (35) has
two contributions. The individual-atom rate γs = γse + γdis
includes the emission rate from |e〉 to |s〉 [recalling that
it may become negligible in ladder-type atoms, Fig. 1(c)]
and the disorder-induced scattering. For the latter, we con-
sider a standard deviation δr in atomic positions around the
array lattice positions rn in all directions x, y, z [Fig. 3(a)].
This breaks translation invariance and causes scattering to
directions other than that of the target mode. To lowest
order, this results in an effective individual-atom scatter-
ing rate that can be shown to scale as γdis ∼ (2πδr/λ)2�0
[29,35,37].

For an array comparable in size or smaller than the target
beam cross section (La � w), where η < 1, the collective
decay also contributes to the undesired emission rate (1 −
η)�0. This can be intuitively understood from Fig. 3(b) as
follows: light diffracted from the edges of the array has
an angular spread of λ/La, which could be larger than
the angular spread λ/w contained in the target mode, so
a portion (1 − η) of the light emitted from the array is not
emitted into the desired target mode. For a target Gaussian

TABLE II. Scaling of the error 1 − r0 = 1/(C + 1) ≈ 1/C due
to different sources of imperfection and loss. The error due to
position disorder [Fig. 3(a)] scales quadratically with the stan-
dard deviation δr about the perfectly ordered array positions
[29,35,37]. The error due to the imperfect overlap between the
target mode and the array due to the latter’s finite size [Fig. 3(b)]
scales essentially exponentially better with the atom number
N = L2

a/a
2 (asymptotic result valid for La � w).

Loss
mechanism Effective error Scaling

Disorder 1 − r0 = γdis

�0 + γdis
(2πδr/λ)2

Finite-size array 1 − r0 = 1 − η 2√
π

√
2w

La
exp[−L2

a/(2w2)]

mode, where η is given by erf2
(

La√
2w

)
[Eq. (34)], we obtain

the first correction to the ideal η = 1 case by expanding
to first order in w/La, obtaining 1 − η = 2√

π

exp[−L2
a/(2w2)]

La/(
√

2w)
.

For a quantum memory, this error can then scale expo-
nentially better with the size of the array, or equivalently
with the number of atoms, as was also found numerically
in Refs. [27,31] (for 1D arrays, an exponential improve-
ment was found in the context of subradiant modes [39]).
It should be noted, however, that if other sources of error
are taken into account, such as the dispersion of the Gaus-
sian beam neglected here, the exponential improvement
is not necessarily observed [31]. However, for sufficiently
wide Gaussian beams of even a few λ, this beam dispersion
becomes negligible and the exponential scaling dominates
as also seen below.

D. Direct numerical verification

The scaling of the undesired rates due to both imper-
fections γdis and (1 − η) is summarized in Table II. Test-
ing these analytical predictions using independent direct
numerical calculations can provide the verification for the
mapping to the 1D model and the operational meaning
of the resulting r0 as an efficiency for quantum tasks.
To this end, we begin by using an important principle
revealed in this work—namely, that r0 can be extracted
from scattering experiments when the mapping is valid.
We perform classical numerical calculations of the scat-
tering of a right-propagating Gaussian beam off an array
in different configurations [29]. We scan the frequency of
the incident field looking for peaks in the intensity of the
back-reflected field, thus finding the on-resonance reflec-
tivity R = r2

0. If this extracted value of r0 agrees with
that obtained analytically from the mapping, i.e., r0 =
�/(� + γloss) from Eq. (35) and Table II, then the mapping
to the 1D model is good and r0 should indeed quantify the
efficiency of quantum tasks. The latter can also be checked,
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e.g., for the quantum memory protocol, by a direct calcula-
tion of the memory error ε. This is performed by use of the
numerical method described in Ref. [31], with the same
array configuration and for a retrieval of a spin wave to
the two-sided symmetric target mode, with the same Gaus-
sian shape as in the scattering calculations. Here again, if
the mapping is valid, we should obtain ε = 1 − r0 with
r0 = �/(� + γloss) from the analytical theory. We note that
both these numerical calculations do not include the con-
tribution γse from the |e〉 → |s〉 transition to the individual
decay γs: for the scattering we take two-level atoms and for
the quantum memory calculation method from Ref. [31] a
ladder system is assumed [Fig. 1(c)]; therefore, the only
sources of loss are the noncollective emission due to the
disorder γs = γdis and the imperfect overlap of the beam
with the array (1 − η)�0 from Table II.

We begin by considering the effect of a finite-size array.
Figure 4(a) shows the numerical scattering calculation of
1 − r0 as a function of the number of atoms N = L2

a/a
2

for a fixed beam waist. In this case the atoms are per-
fectly ordered, so the only unwanted emission rate is due
to the imperfect overlap between the array and the beam,
1
C = (1−η)�0

η�0
. It is seen that the numerical calculation agrees

very well with this analytical expression for a Gaussian
beam, η = erf2

(
La√
2w

)
. Exponential scaling is observed

within the parameter regime of our calculations, in agree-
ment with the approximated expression from Table II. In
addition, we also plot in Fig. 4(a) the numerically calcu-
lated error ε of the quantum memory, which is also seen
to agree with the analytical prediction of the 1D mapping,
1 − r0, and the reflectivity extracted from the scattering
calculation. These results show that, at least within the
realistic parameter regime considered here, the mapping
of the paraxial Gaussian target mode and the nonideal
2D ordered array to the 1D model, as summarized in Eq.
(35) and Tables I and II, is indeed valid, establishing the
reflectivity r0 as a figure of merit of this quantum interface.

In addition, we consider weak disorder in atomic posi-
tions for an array size sufficiently larger than the incident
beam waist, so that η ≈ 1 and γloss is completely domi-
nated by the disorder, yielding 1

C = γdis
�0

. The results for
1 − r0 ≈ 1

C extracted from a numerical classical scatter-
ing calculation as described above are plotted in Fig. 4(b)
as a function of the standard deviation of atomic positions
δr. The linear fit to the log-log plot confirms the quadratic
scaling predicted analytically, γdis ∼ (2πδr/λ)2�0 (Table
II). A similar result is also found for the error of the quan-
tum memory evaluated numerically as described above.
The slight difference between the reflectivity and memory
numerical calculations is attributed to the z component of
the position disorder that breaks the symmetry between
right-scattered and left-scattered light and hence leads
to small deviations from the symmetric 1D model. This
affects the reflectivity more than the memory protocol,

(a)

(b)

FIG. 4. Error (inefficiency) 1 − r0 in an ordered 2D array
interface coupled to a Gaussian-beam target mode, estimated
from independent numerical calculations of both the scattering
(reflectivity) and quantum memory efficiency (see Sec. IV C).
Agreement with the predicted analytical scaling in Table II is
exhibited, in correspondence to the dominant source of imper-
fection. (a) Effect of finite array size: 1 − r0 as a function of the
atom number N = L2

a/a
2 for a perfectly ordered array. The error

1 − r0 decreases exponentially with N , as predicted analytically
from the error-function behavior of the overlap η between the
array and the Gaussian target mode. Here the waist and lattice
spacing were fixed to w/λ = 4.8 and a/λ = 0.6, and the reflec-
tivity was extracted from scattered fields calculated at distance
z = 5λ from the array. The corresponding quantum memory error
is obtained from the calculation of the retrieval fidelity [31]
with an identical initial Gaussian profile. (b) Disorder imperfec-
tion: the error 1 − r0 = 1/(C + 1) ≈ 1/C plotted as a function
of the standard deviation δr around perfect 2D array positions
(averaged over 50 disorder realizations). The linear fit to the
log-log plot in both the reflectivity and the memory calcula-
tions verifies the scaling 1/C = γdis/�0 ∼ (2πδr/λ)2 predicted
analytically for a large enough array with respect to the incident-
beam waist, La = √

Na > w (see Table II and the main text).
Numerical parameters: w/λ = 4.8, a/λ = 0.6, and atom num-
ber N = 30 × 30. Slight deviations between the reflectivity and
memory errors arise mainly from the z component of the position
disorder, which breaks the symmetry between left-scattered and
right-scattered light.

recalling that in the former illumination and detection are
in opposite propagation directions, whereas in the latter
they are two-sided. We further verify, by considering x-
y and z position disorder separately, that while both lead to
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the same scaling of the losses, γdis ∝ (δr)2, in the case of x-
y disorder the losses are smaller and the difference between
memory and reflection results practically disappears.

E. Beyond a < λ

Finally, we comment on the situation where the lat-
tice spacing a may exceed the wavelength λ. In this case,
even for an infinite array and plane wave illumination
(w → ∞), scattering of light from the collective dipole
P̂ exists in multiple diffraction orders and not only in the
zeroth-order, incident field direction [29]. These additional
diffraction orders lead to additional loss channels with a
total emission rate γdiff that is added to γloss (Table I) and
that is given by [29,65]

γdiff = �0

∑
(mx ,my )∈LC,�=(0,0)

1 − λ2

a2 |(mx, my) · ed|2√
1 − λ2

a2 (m2
x + m2

y)

. (36)

Here the sum is taken over all diffraction orders (mx, my) �=
(0, 0) (with mx and my integers) that are within the light
cone (LC), i.e., that satisfy |(mx, my)| < a/λ and describe
propagating waves.

V. EXAMPLE 2: PARTIALLY FILLED ARRAY

While the previous example focused on using the
1D model approach to provide a meaningful analytical
description of a quantum interface, we now wish to use
the power of this approach to greatly enhance the interface
efficiency. In particular, previous work commonly assumed
that the target mode is a Gaussian beam [29,31,52,53],
taking advantage of its efficient coupling to an ordered
array (as analyzed in detail in Sec. IV). Going beyond
the lattice symmetry of an ordered array, however, our
1D model apporoach can be harnessed to achieve greatly
enhanced coupling efficiencies by properly designing the
target mode. The idea is that given a collection of atomic
positions, the mapping to the 1D model becomes more reli-
able as the target photon mode is more accurately matched
to a paraxial eigenmode of the dipole-dipole interaction
kernel. If the atomic ensemble is also sufficiently dense,
then radiation from the corresponding dipole eigenmode
will also mostly couple to the target mode, yielding large
efficiency.

We apply this idea to the case of a partially filled atomic
array, showing that the mapping to the 1D model exists,
opening up the possibility for the design of enhanced effi-
ciency of such disordered arrays. From a practical stand-
point, this possibility entails the following advantage: the
stringent requirement to build arrays with a nearly perfect
filling fraction (e.g., the creation of a Mott insulator [30])
is now alleviated if one can measure the atomic positions
of a partially filled array; the latter allows one to calculate
the eigenmodes of the dipole-dipole interaction kernel and

(a) (b)(arb. units) (arb. units)

(arb. units) (arb. units)

(arb. units) (arb. units)

FIG. 5. Paraxial dipole eigenmodes, Eq. (21), of a realization
of a partially filled 2D array with 30 × 30 lattice sites, lattice
constant a/λ = 0.6, and filling fraction (a) 0.85 and (b) 0.95.
The top panel displays the most paraxial eigenmode v0,n repre-
sented on the discrete array sites. The middle panel shows the
corresponding continuous function u(r⊥) constructed from the
interpolation of the eigenmode, and chosen as the target photon
mode. The Fourier transform of the mode u(r⊥) is shown in the
bottom panel: we note its paraxial character evident by its small
bandwidth around k⊥ = (kx, ky) = (0, 0).

accordingly shape the spatial profile of the incident beam
(e.g., using a spatial light modulator).

To simulate how this works, we numerically construct
partially filled arrays by randomly loading atoms into a
perfect 2D lattice. Using the theory of the mapping to the
1D model, Sec. III, we then perform the following pro-
cedure on each random array realization. We generate the
dipole-dipole interaction matrix Dnm ∝ G(ωp , r⊥

n − r⊥
m , 0)

from the atomic positions r⊥
n , and find its eigenvectors vl,n

and eigenvalues Dl as in Eq. (21). Using numerical inter-
polation, we construct from each eigenvector vl,n (defined
on the discrete space r⊥n ) a corresponding continuous nor-
malized function ul(r⊥) (defined on the continuous x-y
space r⊥), satisfying ul(r⊥ = r⊥

n ) ∝ vl,n. Then, perform-
ing a Fourier transform to k⊥-space for each mode ul(r⊥),
we identify the most paraxial mode (denoted by l = 0)
and choose it as our target mode u(r⊥). Finally, the corre-
sponding effective length aeff [Eq. (20)] and eigenvalue D0
determine our mapping parameters � and γloss according
to Eqs. (28) and (30).

Figure 5 shows examples of the most paraxial eigen-
modes of 2D arrays with filling fractions of 0.85 and 0.95.
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FIG. 6. Boosting the efficiency using dipole-eigenmode tar-
get modes. Efficiency (reflectivity) r0 of a partially filled 2D
array as a function of the filling fraction for a randomly filled
square lattice of 30 × 30 sites and lattice constant a = 0.6λ aver-
aged over ten realizations. The theoretically expected value r0 =
�/(� + γloss) (solid red line), determined from Eqs. (28) and
(30) for each realization, exhibits excellent agreement with direct
numerical calculations of both the scattering reflectivity (blue
circles) and the quantum memory efficiency (black crosses): in
the numerical calculations the target mode is taken as the most
paraxial eigenmode constructed as in Fig. 5. High efficiencies
r0 > 0.99 and r0 > 0.94 are observed for filling fractions as low
as 0.85 and 0.70, respectively. In comparison, we plot the numer-
ically calculated reflectivity and quantum memory efficiency for
a Gaussian-beam target mode (with a waist optimized to the
perfectly filled array), which are seen to reach much lower val-
ues, demonstrating the superiority of the eigenmode approach
suggested by the theory.

The top panel presents the eigenmodes vl,n on the dis-
crete atomic sites r⊥

n , whereas the middle panel shows
the corresponding interpolated functions u(r⊥), chosen as
the target modes. The paraxial character of the modes is
evident by their k⊥-space representations (bottom panel),
which are seen to be well concentrated around k⊥ = 0.
This matches their smooth spatial profiles, which avoid
regions of missing atoms.

The efficiency predicted by the 1D model mapping is
given by r0 = �/(� + γloss), with � and γloss estimated
as described in the previous paragraphs. This theoret-
ical prediction for r0 is plotted in Fig. 6 as a func-
tion of the filling fraction, exhibiting excellent agreement
with the numerical calculations of both the reflectivity
and the memory efficiency. For the latter, numerical sim-
ulations are performed as described in Sec. IV D, using
the same partially filled array realizations and by shin-
ing and detecting the corresponding target modes u(r⊥)
from the theory [66]. We observe high efficiencies r0 >

0.99 and r0 > 0.94 even for filling fractions as low as
0.85 and 0.70, respectively. In contrast, when we perform
the scattering (reflectivity) and quantum memory numer-
ical simulations with the same partially filled array but
using a typical Gaussian-beam target mode (whose waist is
optimized for the corresponding finite-size perfect array),

(a) (b)(arb. units) (arb. units)

(arb. units) (arb. units)

(arb. units) (arb. units)

FIG. 7. Two examples (a) and (b) of paraxial eigenmodes
in the circular array described in Sec. VI. The top panel
presents the eigenmodes vl,n on the array sites, the middle panel
shows the corresponding continuous functions ul(r⊥) con-
structed from the eigenmodes by interpolation, and the bottom
panel displays the Fourier transform of these functions. The
paraxial character of the modes is exhibited by their narrow
bandwidth in Fourier space around k⊥ = (kx, ky) = (0, 0).

we observe a quick drop in the efficiency as the filling
fraction is lowered. The clear superiority of the for-
mer results is a direct consequence of the design of the
target mode following our 1D model approach, and should
be useful in enhancing the efficiency of the quantum
interface.

VI. EXAMPLE 3: CIRCULAR ARRAY

Another example that deviates from the 2D-lattice array
is that of a circular array, as depicted in Fig. 7. The
circular array is constructed from several rings, with a
fixed distance a between the rings and a fixed distance b
between the positions of the atoms on each ring. We choose
b = (2π/6)a, so the spacing between atoms on the same
ring is similar to the spacing between atoms on adjacent
rings. Nevertheless, the system lacks the discrete transla-
tion invariance of the 2D ordered array, although it still
exhibits paraxial dipole-dipole eigenmodes. Importantly,
the latter means that the circular array can be mapped to
the 1D model by a proper choice of the target mode, as we
show in the following.
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Using the same mapping procedure described in the pre-
vious section, we begin by numerically calculating the
eigenmodes vl,n of the dipole-dipole interaction kernel Dnm
of the array (Fig. 7, top panel), followed by constructing
the corresponding continuous functions ul(r⊥), satisfying
ul(r⊥ = r⊥

n ) ∝ vl,n (Fig. 7, middle panel). By examining
their Fourier transforms, we choose a pair of modes ul(r⊥)
that are paraxial, i.e., relatively narrow around k⊥ = 0
(Fig. 7, bottom panel). For each such paraxial mode, we
can define the mapping to the 1D model by identifying it
as the target mode. We then find the mapping parameters
and the corresponding efficiency r0 predicted by the theory
for each such target mode, as explained in the previous
section. We perform this procedure for the two parax-
ial eigenmodes presented in Fig. 7, indeed finding that
they both exhibit high efficiencies: i.e., r0 = 0.9459 and
r0 = 0.9242 for the examples from Figs. 7(a) and 7(b),
respectively. We also compare these theoretically predicted
efficiencies with the reflectivity obtained from numeri-
cal scattering calculations using the same target modes,
finding similar results: r0 = 0.9688 and r0 = 0.9560 for
the examples from Figs. 7(a) and 7(b), respectively. The
small differences are attributed to deviations from both
paraxiality and the single-mode picture.

VII. EXTENSION TO MULTIPLE LAYERS

So far we have focused on planar structures where the
atoms are spread along the x-y plane at z = 0. We now
proceed to extend the formalism developed in Sec. III
to include 3D structures consisting of multiple layers of
identical planar structures. We show that by choosing the
separation between the layers to satisfy the Bragg condi-
tion, Eq. (18), the mapping to the 1D model exists and the
collective decay rates increase linearly with the number of
layers. We apply this multilayer formalism to the case of a
3D ordered array.

A. System: Scattering between 2D layers

We consider Nz identical layers, with each layer con-
sisting of N⊥ atoms arranged on a plane, such that the
total number of atoms N is N⊥ × Nz. The atom index
n = (n⊥, j ) now comprises an intralayer x-y index n⊥ =
1, . . . , N⊥ and the index j = 1, . . . , Nz of different layers,
with corresponding atomic operators σ̂αα′,n⊥j at positions
rn = (r⊥

n , zn) → rn⊥j = (r⊥
n⊥ , zj ). We define the collective

dipole of a layer j in analogy to Eq. (19) of the planar,
single-layer case,

P̂j = aeff

∑
n⊥

u∗(r⊥
n⊥)σ̂ge,n⊥j , (37)

and similarly for Ŝj with σ̂gs,n⊥j . Performing this trans-
formation on Eq. (14) for σ̂ge,n⊥j [with the replacement

(r⊥
n , zn) → (r⊥

n⊥ , zj )], we derive the following equation of
motion for Pj (see Appendix F):

dP̂j

dt
=

[
i(δp −�)− γs

2

]
P̂j − �0

2

Nz∑
j ′=1

eikp |zj −zj ′ |P̂j ′

+ i
√
�1DÊ0,j + i�Ŝj + F̂j . (38)

Here we have already taken the mode profile that satisfies
Eq. (23), i.e., it matches a dipole eigenmode of the planar
layers with eigenvalue D0 = �0/2 + i� (recalling that all
layers are identical). The input field on the layer j , given
by Ê0,j = [Ê0,+(zj )+ Ê0,−(zj )]/

√
2, is coupled to the cor-

responding layer by the 1D rate �1D from Eq. (28), and F̂j
is the vacuum noise from individual-decay and dissipative
collective losses, in analogy to F̂ in Eq. (29).

This equation describes the coupling between the collec-
tive dipole P̂j of a layer j , with collective shift� and width
�0, to those of different layers j ′ �= j via the effective inter-
layer dipole-dipole kernel, −(�0/2)e

ikp |zj −zj ′ |. The latter is
proportional to the Green’s function of 1D electrodynam-
ics, and is identical to dipole-dipole interaction familiar
from 1D “waveguide” QED [59,67,68]. Within this pic-
ture, each 2D layer forms a dipole in one dimension,
and these identical dipoles exhibit a collective emission
cos(kp |zj − zj ′ |) and frequency shift sin(kp |zj − zj ′ |).

Therefore, Eq. (38) reveals a picture of multiple 1D-like
scattering between the layers. This 1D electrodynamics
picture is valid under the following reasonable conditions
(see Appendix F for details). First, we assume that all of
the layers lie within the Rayleigh ranges defined by the
finite sizes of both the beam and the layers, zR = πw2/λ

and ∼L2
xy/λ, respectively (Lxy being the linear size of a

planar layer, e.g., Lxy = La = a
√

N for the 2D ordered
array from Sec. IV). This condition is what gives rise to
the approximately diffractionless 1D propagation between
the layers, eikp |zj −zj ′ |. In addition to this far-field propaga-
tion, the layers also interact via evanescent fields, leading
to an additional interaction term between the layers. How-
ever, assuming the separation between any pair of layers is
larger than or on the order of a wavelength, |zj − zj ′ | � λ,
the contribution of these evanescent fields is negligible.
In the following, we discuss how these near fields induce
corrections to the collective detuning � in a 3D ordered
array.

B. Mapping to the 1D model

We now show that by using the Bragg condition, Eq.
(18), i.e., where all layers are situated at integer multiples
of half a wavelength, one can map the multilayer system
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to the generic two-sided model. First, we define the phase-
matched collective dipole of the Nz identical layers as

P̂ = 1√
Nz

Nz∑
j =1

e−ikp zj P̂j , (39)

and similarly for Ŝ. Noting that the Bragg condition
(18) implies that eikp zj = e−ikp zj for any j , we see
that the 1D dipole-dipole term in Eq. (38) becomes
−√

Nz(�0/2)eikp zj P̂. For the input-field term, we similarly
obtain Ê0,j ≈ eikp zj Ê0(0) (see Appendix F). Then, perform-
ing the transformation (39) on Eq. (38), we obtain the 1D
model, Eq. (6), for P̂ with the parameters

� = Nz�1D, γloss = Nz(�0 − �1D)+ γs, (40)

where �1D and Ê0(0) are those from Eqs. (28) and (27),
respectively, and the Langevin noise is given by F̂ =∑

j e−ikp zj F̂j /
√

Nz. Finally, the mapping is completed by
noting that Eq. (17) with the definition of P̂ in Eq. (39) and
the Bragg condition simply yields the field equation of the
two-sided model, Eq. (4).

This result shows that when the Bragg condition is sat-
isfied, the phase-matched collective dipole diagonalizes
the 1D dipole-dipole kernel in Eq. (38). Furthermore, the
resulting mapping to the two-sided model exhibits collec-
tive effects that grow linearly with the number of layers
Nz. For situations where collective effects do not contribute
much to the loss (γloss ≈ γs), the latter implies a linear
growth of the cooperativity C = �/γloss with Nz.

Conversely, when the Bragg condition is far from being
satisfied, mapping to the two-sided model is impossible
and a behavior similar to propagation and extinction can
exist: an effective optical depth growing linearly with Nz
emerges, OD ∝ Nz, leading to exponential decay of the
propagated light e−OD, as discussed in Appendix G.

C. Example: 3D ordered atom array

As an example we consider a 3D ordered array as illus-
trated in Fig. 8(a). Each layer consists of a finite-size 2D
array as described in Sec. IV, and the layers are positioned
at zj = jaz ( j = 1, . . . , Nz) with longitudinal lattice spac-
ing az not necessarily equal to the lattice constant a in the
x-y plane. Moreover, while a can take any value in prin-
ciple, az has to be either an even or an odd multiple of
λ/2 to conform with the Bragg condition (18) that guar-
antees the mapping to the two-sided 1D model. Then the
collective dipole P̂ from Eq. (39) becomes either a sym-
metric or an alternating-sign superposition of the layers P̂j ,
respectively.

1. Mapping to the 1D model

Applying our general results from Eq. (40) to this case,
using those of an individual 2D array layer from Eq. (35),

(a)

(b)

FIG. 8. (a) A 3D ordered atomic array is described as con-
sisting of Nz layers, each being a 2D array (here Nz = 3). (b)
Cooperativity C = �/γloss and error 1 − r0 = 1/(1 + C) ver-
sus the number of layers Nz of a phase-matched array [az =
(λ/2)× N]. For the parameters chosen (a/λ = 0.6, N⊥ = 30,
az/λ = 1, γs = γ , and w/λ = 6), the individual decay dominates
the loss, γloss ≈ γs, so C increases linearly with Nz (see Table I).
Excellent agreement between the analytical theory [Eq. (41)] and
numerical scattering calculations is exhibited.

we find the mapping parameters

� = Nzη�0, γloss = Nz(1 − η)�0 + γs, �0 = 3
4π

λ2

a2 γ .

(41)

Here η is that from Eq. (34), i.e., it describes the spatial
overlap between the target mode and the finite-size 2D
array layers, and we recall it is given by η → erf2

(
La√
2w

)
for a Gaussian target mode of waist w and with La =
a
√

N⊥.
We verify this analytical result via numerical scatter-

ing calculations as described in Sec. IV D. In Fig. 8(b),
we observe excellent agreement between 1 − r0 =
γloss/(� + γloss) obtained analytically from Eq. (41) and
that extracted from the numerical calculation of the reflec-
tivity, as a function of the number of layers Nz (and
considering the same beam waist and finite-size array
parameters). For a closer examination of the scaling with
Nz, we plot the cooperativity C = �/γloss extracted from
the reflectivity via r0 = C/(C + 1). We observe a linear
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dependence of C with Nz, reflecting the fact that we
are working in the regime of individual-decay domi-
nant losses, γloss ≈ γs. To obtain this regime for a per-
fectly ordered array, we considered three-level atoms as in
Fig. 1(b), with the decay rate to the second ground state |s〉
taken to be equal to that to |g〉, i.e., γs = γes = γ . In the
classical numerical calculation, this situation can be sim-
ulated by considering a polarizability of a two-level atom
with a “nonradiative” decay equal to γ [29].

2. Correction due to evanescent fields

While Eq. (38) describes 1D electrodynamics of scat-
tering between the layers, the array is in fact a 3D struc-
ture composed of discrete point dipoles (atoms). The 3D
character of this resulting electrodynamics is revealed by
considering the field close enough to each layer, where its
nonuniform, discrete structure in the x-y plane is evident
by the near fields emanating from the atoms. To see this
in our 3D array case, we derive Eq. (38) as described in
Sec. VII A, but without the assumption that the 2D array
layers are far enough from each other (without assum-
ing that az|j − j ′| � λ). We then obtain Eq. (38) for P̂j =
(a/

√
η)

∑
n⊥ u∗(r⊥

n⊥)σ̂ge,n⊥j , wherein the 1D dipole-dipole
kernel (�0/2)e

ikp |zj −zj ′ | is replaced by the target-mode
projected dipole-dipole kernel (see Appendix H)

Djj ′ = �0

2

∞∑
mx=−∞

∞∑
my=−∞

1 − λ2

a2 |(mx, my) · ed|2√
1 − λ2

a2 (m2
x + m2

y)

× e
ikp

√
1− λ2

a2 (m
2
x+m2

y )az |j −j ′|
. (42)

The sum over (mx, my) accounts for contributions from
the diffraction orders of each 2D layer. It is seen that
every diffraction order (mx, my) mediates a quasi-1D inter-
action between the layers, ∝ eik

mx ,my
z az |j −j ′|, with kmx ,my

z =
kp

√
1 − (λ2/a2)(m2

x + m2
y). The latter represents both one-

dimensionally-propagating or evanescent waves (kmx ,my
z

being real or imaginary, respectively), depending on the
lattice spacing a/λ and the diffraction order (mx, my), sim-
ilarly to the interaction mediated by a multimode waveg-
uide [67]. Considering a subwavelength array, a < λ, only
(mx, my) = (0, 0) can propagate, giving

Djj ′ = �0

2
eikp az |j −j ′| + iεjj ′ , (43)

with

εjj ′ = �0

2

∑
(mx ,my ) �=(0,0)

λ2

a2 |(mx, my) · ed|2 − 1√
λ2

a2 (m2
x + m2

y)− 1

× e
−kp az |j −j ′|

√
λ2

a2 (m
2
x+m2

y )−1
. (44)

This term is a deviation from the purely 1D picture, as
it describes the interaction via the evanescent waves of
higher diffraction orders. Their evanescent character dic-
tates an exponentially decaying interaction at a range
of ξmx ,my = a/(2π

√
m2

x + m2
y − (a/λ)2), which becomes

shorter for increasing orders mx, my and with a typical
length scale a. Assuming an interlayer distance az � ξ1,0,
we can thus treat the term εj ,j ′ as a perturbation. Within
lowest-order perturbation theory, its effect can be esti-
mated as the matrix element between the collective dipole
mode, �′ = 1

Nz

∑Nz
j =0

∑Nz
j �=j ′ εjj ′eikp az( j −j ′). Accounting for

the evanescent fields in this way then still allows for the
mapping to the 1D model, however with the collective
energy shift � of P̂ now supplemented by the above cor-
rection �′. This is indeed verified in Appendix H for the
regime under study.

VIII. DISCUSSION: UNIVERSAL APPROACH

This work introduces an approach for analyzing two-
sided quantum light-matter interfaces by putting forward
the universal role of the reflectivity. The approach roughly
consists of two complementary parts: (1) Introducing a
minimal 1D scattering model of a two-sided quantum
interface that is characterized by a reflectivity r0. Within
the model we found that the efficiencies of quantum tasks
are given by r0. (2) Development of the mapping proce-
dure collective atom-array interfaces onto the 1D model,
including general results for the efficiency r0 and the way
to enhance it.

Going forward, this approach opens the prospect for a
unified treatment of more applications and platforms. First,
consider quantum protocols and tasks beyond those dis-
cussed here; say, the generation of photonic 1D cluster
states via an array [50]. Then, instead of estimating the
result of an application of the protocol on the full atom-
array system, the idea promoted here is to implement it on
the simple 1D model (or its suitable variant). The result, in
terms of r0, can then be related to the required atom-array
system via the mapping from Eqs. (28) and (30) (or from
Tables I and II, in the specific case of ordered atomic arrays
and a Gaussian target mode).

Second, consider that one is interested in atom-array
interfaces beyond the examples covered in this paper. As
demonstrated here, for any atomic structure, one can first
verify if the mapping conditions are met (i.e., the exis-
tence of a paraxial dipole eigenmode, in addition to the
Bragg condition of a multilayer structure). When the con-
ditions are met, the efficiency r0 is simply extracted by a
measurement or a classical calculation of the reflectivity.
For interfaces that do not exactly conform to the mapping
conditions specified in this paper, it will be interesting to
develop, along similar lines, an alternative approach for a
mapping to a generalized, yet simple model of an interface.
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APPENDIX A: REFLECTIVITY AS AN
EFFICIENCY

Here we provide details on the classical treatment of the
1D scattering problem in Sec. II, highlighting the role of
the resonant reflectivity r0 as the efficiency of radiation and
absorption. Considering first the radiation from an initially
excited dipole in the absence of incident fields, we solve
classically Eq. (1) for the atomic dipole P, with the initial
conditions P(0) = 1 and E0 = 0 (ignoring vacuum noise in
the classical regime), finding

P(t) = e[i(δp −�)−�+γloss
2 ]t. (A1)

Inserting this in the equation for the output target field, we
obtain

E = i
√
�e[i(δp −�)−�+γloss

2 ]t. (A2)

The fraction of energy that is emitted to the target mode is
then

∫ ∞

0
|E |2dt = �

� + γloss
= C

1 + C
= r0. (A3)

That is, we proved that the radiation efficiency from
the dipole to the desired target mode is given by the
on-resonance reflectivity |r(δp = �)| = r0.

Next, we turn to the absorption problem, considering
a cw illumination in the target mode and calculating the
fraction of power absorbed by the dipole P in the steady
state. We notice that the interaction term in the dynam-
ical equation (1) for P can be derived from an effective
interaction Hamiltonian H = −�

√
�E0P† + H.c. This has

the form of a force f = �
√
�E0 at a frequency ωp acting

on a dipole “coordinate” P. From linear response the-
ory [69], the power dissipated on the dipole is given by
W = 1

2ωp Im[χ(ωp)]|f |2, where χ is the susceptibility of
the system defined by P = χ f = χ�

√
�E0. To find χ , we

solve classically the equation for P in the steady state,

P = 1
�+γloss

2 − i(δp −�)
i
√
�E0, (A4)

identifying χ as

χ = i/�
�+γloss

2 − i(δp −�)
. (A5)

Therefore, on resonance δp = �, the energy absorbed by
the system is given by

W = ωp

�

1
� + γloss

|�
√
�E0|2 = �

� + γloss
�ωp |E0|2. (A6)

Since the input power is �ωp |E0|2, we find that the absorp-
tion efficiency, which is the ratio between the absorbed
power and the input power, is given by

�

� + γloss
= C

1 + C
= r0, (A7)

again given by the resonant reflectivity.
Finally, to show that r0 indeed describes the on-

resonance reflectivity, we turn to the two-sided model
from Eq. (4) and solve it classically for a cw input field,
E0,±(z) = E0,±(0)e±ikp z. Solving for P in the steady state,
and inserting the solution into Eq. (4) for the field, we
find, for example, for the right-propagating component (for
z > 0)

E+(z)e−ikp z = (1 + r)E0,+(0)+ rE0,−(0), (A8)

with r = r(δp) from Eq. (5). That is, the left-going field
is reflected with amplitude r and the right-going field is
transmitted with amplitude 1 + r, as in a 1D problem with
reflectivity r, which becomes r0 at resonance δp = �.

APPENDIX B: QUANTUM MEMORY PROTOCOL
AND EFFICIENCY

In this appendix we discuss the quantum memory pro-
tocol for optimizing the memory efficiency in a general
1D model. We follow Ref. [16], where this problem was
solved for an effectively equivalent problem of atoms in
a cavity, and we show how by controlling the temporal
pulse shape of the coupling field the storage and retrieval
efficiencies can be optimized to r0 = C

1+C .
We assume that all atoms initially populate the ground

state. We define the storage efficiency es (retrieval effi-
ciency er) of a photon pulse of length T (Tr) as the
ratio between the number of stored excitations (retrieved
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photons) and the number of incoming photons (stored
excitations)

es = 〈Ŝ†(T)Ŝ(T)〉∫ T
0 〈Ê†

0 Ê0〉dt
, er =

∫ t0+Tr
t0

〈Ê†Ê〉dt

〈Ŝ†(t0)Ŝ(t0)〉
, (B1)

so the total efficiency of the whole process, storage plus
retrieval, is given by etotal = eser.

Beginning with the storage problem, we first define
the input pulse shape h0(t), which is nonzero at [0, T],
and is normalized according to

∫ T
0 |h0(t)|2dt = 1. To

define h0(t), we introduce a complete, orthonormal set
of functions {hp(t)} that satisfy

∫ ∞
0 dth∗

p(t)h
′
p(t) = δp ,p ′

and
∑

p h∗
p(t)hp(t′) = δ(t − t′), and corresponding photon-

mode-lowering operators âp = ∫ ∞
0 dtÊ0(t)h∗

p(t), such that
the quantum field can be written as Ê0(t) = ∑

p hp(t)âp .
By adiabatically eliminating P̂ from Eq. (6), we obtain the
dynamical equation for Ŝ,

dŜ
dt

=
[

i(δ2 −�s)− �S + γ S
loss

2

]
Ŝ

+
[
i
√
�SÊ0(0, t)+ F̂S(t)

]
eiϕ , (B2)

with F̂S =
√
γ S

loss/γlossF̂ and

{�S(t), γ S
loss(t),�s(t)} = ρ(t)× {�, γloss, δp −�},

√
ρeiϕ = −i�∗(t)

(� + γloss)/2 − i(δp −�)
. (B3)

In Eq. (7) we dropped the unimportant phase ϕ to sim-
plify the presentation. Assuming that we have incident
light only in the pulse mode h0(t), we solve the equation
for Ŝ, obtaining

es = C
1 + C

∣∣∣∣
∫ T

0
h0(t)f (t)dt

∣∣∣∣
2

, (B4)

with

f (t) = −
�S+γ S

loss
2 + i�S

�(t)

√
γloss(1 + C)

× e
− ∫ T

t dτ

(
�S+γ S

loss
2 +i(�S−δ2)

)

. (B5)

We note that
∫ T

0 |f (t)|2dt ≤ 1, with the equality achieved
under the condition

∫ T
0 �Sdt � 1. Therefore, when this

condition is fulfilled,
∣∣∣∫ T

0 h0(t)f (t)dt
∣∣∣2

can be seen to be
a scalar product between normalized eigenfunctions h0(t)

and f (t), so es ≤ C
1+C , with the equality achieved when

f (t) = h∗
0(t). Extracting �(t) from f (t) = h∗

0(t), we thus
get the following dependence of the coupling field pulse
shape on the quantum field pulse shape:

�(t) = − γloss+�
2 − i(�− δp)√
γloss + �

× h0(t)(√∫ t
0 |h0(τ )|2dτ

)(
1+i2

�−δp
γloss+�

) eiδ2(T−t). (B6)

This is the control pulse shape that maximizes the storage
efficiency of the pulse h0(t), giving es = C

1+C = r0.
To calculate the retrieval efficiency, we similarly define

the output pulse shape that we want to retrieve, hr(t)
being nonzero at [t0, t0 + Tr] and normalized according to∫ t0+Tr

t0
|hr(t)|2dt = 1. Then, by solving again the dynami-

cal equation, but now with the initial condition 〈Ŝ(t0)〉 �= 0
and with an input field that contains only the vacuum, we
find that the optimal retrieval is given by

er = C
1 + C

(
1 − e− ∫ t0+Tr

t0
(�S+γ S

loss)dτ
)

. (B7)

Again, if
∫ t0+Tr

t0
[�S(τ )+ γ S

loss(τ )]dτ � 1, the retrieval
efficiency will be maximized up to er = C

1+C = r0. As with
the calculation performed for the storage process, we can
determine the control pulse shape that will maximize the
retrieval efficiency. We obtain the (conjugate) time-reverse
expression as in Eq. (B6). That is, the optimal control that
retrieves the photons into a mode hr(t) is just the (con-
jugate) time reverse of the control needed to optimally
store an input pulse with a reversed time shape. The rea-
son is that the storage and retrieval are reversed symmetric
processes of each other [16].

APPENDIX C: NONLINEAR 1D MODEL

Here we elaborate on the calculation of quantum squeez-
ing in the nonlinear model of Eq. (8), and on typical
realizations of the model.

1. Quantum squeezing correlations in the weakly
nonlinear regime

The Heisenberg-Langevin equation (8) can be associ-
ated with the open-system dynamics of a boson mode P̂
affected by a non-Hermitian Hamiltonian,

ĤNH =
(
−δ′ − i

γ ′

2

)
P̂†P̂ +

(
i�∗P̂ − i�P̂†

)
+ V

2
P̂†P̂†P̂P̂,

� = −i
√
�〈Ê0(0, t)〉 =

√
�E , δ′ = δp −�,

γ ′ = � + γloss,
(C1)
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and corresponding quantum jumps. For weak enough exci-
tation, |�| � γ ′, quantum jump events can be ignored (for
times t � γ ′/|�|2) and the dynamics are approximately
governed by the above non-Hermitian Hamiltonian ĤNH.
Consistent with the weak-excitation limit, we can write
a general state of the bosonic system P̂ as an expansion
in its number-state basis up to two excitations, |ψ〉 =
c0|0〉 + c1|1〉 + c2|2〉. Assuming that the atoms are ini-
tially in their ground state, c0(t = 0) = 1, we solve the
Schrödinger equation for the steady state of |ψ〉 under the
Hamiltonian ĤNH perturbatively in |�|/γ ′ � 1, finding

c0 ≈ 1 − |�|2
δ′2 + (γ ′/2)2

, c1 ≈ �

iδ′ − γ ′/2
,

c2 ≈
√

2�2

(iδ′ − γ ′/2)(i2δ′ − iV − γ ′)
.

(C2)

The squeezing parameter of a bosonic mode P̂ satisfying
[P̂, P̂†] (as in the linearized collective dipole we consider)
is defined by

ξ 2
P = min

θ
var[P̂e−iθ + P̂†eiθ ]

= 1 + 2
(
〈P̂†P̂〉 − |〈P̂〉|2 − |〈P̂2〉 − 〈P̂〉2|

)
, (C3)

At the steady state, we perform the averages with the state
|ψ〉 and its coefficients from Eq. (C2), using the operator
P̂ at t = 0 (in the Schrödinger picture), obtaining, up to
second order in �,

ξ 2
P = 1 − |�|2

4(γ ′/2)2 + δ′2 f (V) → 1 − r0
|E |2

� + γloss
f (V),

(C4)

with f (V) = 8
∣∣ v

1+v
∣∣2 and v = −iV/2

−γ ′+iδ′ . Here the arrow sig-
nifies the result on resonance δ′ = 0 (δp = �), which is
given in the main text. Since ξ 2

p < 1 implies quantum cor-
relations, their strength is quantified by the second term,
which is proportional to the incoming photon rate |E |2
multiplied by its conversion efficiency to atomic excita-
tions, given by r0. It turns out that the bosonic squeez-
ing calculated here for the approximate boson mode P̂
is equal to the spin-squeezing parameter of the collec-
tion of two-level atoms that constitute P̂: the generaliza-
tion of spin squeezing to a nonuniform superposition of
two-level atoms [in P̂ with couplings proportional to the
mode u(rn) for an atom n] is discussed in, for example,
Ref. [70], whereas its approximation as that of bosonic
squeezing is valid in the linearized, weak-excitation limit
as discussed here.

Turning to the output field, Ê(z), the squeezing is
defined in Eq. (C3), however with the normalization of

the vacuum noise [Ê(z, t), Ê†(z, t)] = [Ê0(0, t), Ê†(0, t)] =
δ(t = 0) ≡ V0,

ξ 2
E = min

θ
var[Ê(z)e−iθ + Ê(z)†eiθ ]/V0

= 1 + 2
V0

(
〈Ê†Ê〉 − |〈Ê〉|2 − |〈Ê2〉 − 〈Ê〉2|

)
. (C5)

We calculate the required correlators using the expression
in Eq. (1) that relates Ê(z) to P̂ and the correlators of P̂
found above, yielding

ξ 2
E = 1 − �

V0

|�|2
4(γ ′/2)2 + δ′2 f (V) → 1 − r2

0
|E |2
V0

f (V),

(C6)

as given in the main text.

2. Mapping of collective systems to the 1D nonlinear
model

We discuss two typical situations wherein nonlinearities
in a collective atomic system exist and their mapping to the
1D nonlinear model of Eq. (8) is possible.

a. All-to-all pairwise interaction potential

Consider the general collective system from Sec. III A
for two-level atoms (i.e., where the control field van-
ishes, � = 0, so the third level |s〉 is irrelevant). Within
the linearized regime wherein σ̂ge,n is taken as a local
bosonic lowering operator, we add nonlinearity by con-
sidering long-range interaction Vnm = V(rn − rm) between
pairs of atoms n and m occupying the excited state
|e〉. Realistically, this can be achieved by the method
of Rydberg dressing where the excited states |e〉 are
weakly and off-resonantly coupled to Rydberg states
that exhibit strong interatomic van der Waals inter-
actions [18,19]. This will add an interaction term to
the atomic Hamiltonian Ĥs in Eq. (10) of the form
V̂ = (1/2)

∑
n
∑

m Vnmσ̂
†
ge,nσ̂ge,nσ̂

†
ge,mσ̂ge,m. The Rydberg-

dressing potential Vnm = V(rn − rm) is approximately con-
stant within a typical range Rc that can extend to a few
microns [18,19], and we assume for simplicity that all
atoms in a layer are within this range, |rn − rm| � Rc, so
Vnm ≈ const ≡ V. For a planar system, we recall the eigen-
modes of the dipole-dipole kernel from Eq. (21) and define
the corresponding collective-dipole operators

P̂l ≡
∑

n

vl,nσ̂ge,n ⇒ σ̂ge,n =
∑

l

vl,nP̂l. (C7)

Using the orthogonality of the modes vl,n as specified
below Eq. (21) and taking the mode l = 0 that matches the
target photon mode to be real as before (v0,n = v∗

0,n), we
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obtain the interaction term as V̂ = (V/2)(
∑

n σ̂
†
ge,nσ̂ge,n)

2 =
(V/2)(P̂†P̂ + ∑

l�=0
∑

l′ �=0 P̂†
l P̂l′

∑
n v

∗
l,nvl′,n)2, recalling the

notation P̂ = P̂l=0. Since all modes are initially unpopu-
lated and the light from the target mode excites the mode
l = 0, the second term with the double sum over l, l′ �= 0
modes effectively vanishes. The first term can be organized
to give the term (V/2)P̂†P̂†P̂P̂ (with an additional negligi-
ble energy correction term proportional to P̂†P̂), which in
turn gives rise to the required nonlinear term −iVP̂†P̂P̂ in
Eq. (8), thus realizing the 1D nonlinear model.

b. Bare nonlinearity of a two-level-atom array

Considering again a collection of two-level atoms as in
Sec. III A for � = 0, we now wish to account for the non-
linearity caused by the two-level nature of the atoms. Our
starting point is the Heisenberg-Langevin equation for the
atoms (e.g., in a planar ensemble, zn = 0 for simplicity),

dσ̂ge,n

dt
= −

(γs

2
− iδp

)
σ̂ge,n +

(
−1 + 2σ̂ †

ge,nσ̂ge,n

)

×
(

id
−�

Ê0(r⊥
n )− F̂n +

∑
m

Dnmσ̂ge,m

)
, (C8)

where we recall the dipole-dipole kernel Dnm ≡ −(i/�)
(d2ω2

p/ε0c2)G(ωp , r⊥
n − r⊥

m , 0). This equation is equivalent
to Eq. (14) in Sec. III A (with � = 0), however, without
our performing linearization, as manifested by the factor
σ̂z,n ≡ −1 + 2σ̂ †

ge,nσ̂ge,n, which is taken to be −1 in the
linear regime.

Performing the transformation (C7) to collective dipole
operators corresponding to the eigenmodes of Dnm, and
using the techniques and definitions from Sec. III E, we
find Eq. (C8) becomes

dP̂l

dt
=

(
iδp − γs

2
− Dl

)
P̂l + F̂l + i

√
�Ê0(0)δl,0

− 2
∑

l′

∑
l′′

P̂†
l′ P̂l′′

[∑
n

vl,nvl′,nvl′′,n

(
id
�

Ê0(r⊥
n )+ F̂n

)]

+ 2
∑

l′

∑
l′′

∑
l′′′

P̂†
l′ P̂l′′ P̂l′′′

(∑
n

vl,nvl′,nvl′′,nvl′′′,n

)
.

(C9)

As before, here we assumed that the target mode profile
corresponds to a specific dipole eigenmode l = 0, u(r⊥

n ) =
v0,n/aeff, as manifested by the Kronecker δ δl,0 multiply-
ing the target-mode, input-field term Ê0(0). The second
and third lines describe the coupling between different
eigenmodes l caused by the nonlinearity.

We now consider that input photons exist only in the tar-
get mode, whereas all other modes are in the vacuum, so

F̂l is a vacuum field and Ê0(0) contains photons. Assuming
weak-field excitation, we then treat Ê0(0) perturbatively
and expand Eq. (C9) up to third order in Ê0(0) [noting, for
example, that all P̂l�=0 are at most of third order in Ê0(0)],
finding the equation for P̂ = P̂l=0

dP̂
dt

= i(δp −�)P̂ − γs + �0

2
P̂ +

(
i
√
�Ê0(0)+ F̂

)

+ i2�

(∑
n

v4
0,n

)
(P̂†P̂)P̂ + �0

(∑
n

v4
0,n

)
(P̂†P̂)P̂

+ 2(P̂†P̂)

[∑
n

v3
0,n

(
id
�

Ê0(r⊥
n )+ F̂n

)]
, (C10)

where we recall the notation D0 = �0/2 + i�. The first
line describes the linear terms, with the first term includ-
ing the dispersive, Hamiltonian shift �, and the other two
terms describing dissipation and corresponding input fields
(or noise), respectively. The second and third lines describe
the three analogous nonlinear terms with an additional fac-
tor of order P̂†P̂ that is taken to be small in the perturbative,
weak-excitation regime considered here. The first term,
of order proportional to �P̂†P̂P̂, gives rise to a Kerr-like
nonlinear potential as in the 1D nonlinear model. The sec-
ond, dissipative term, proportional to �0P̂†P̂P̂, can become
negligible with respect to the first term if we assume that
� � �0, which is the case, for example, in dense enough
arrays (due to the dominant 1/r3 scaling of the near-
field dispersive part of dipole-dipole interaction compared
with the 1/r scaling of the dissipative radiation part [29].
When the dissipative term is negligible, its corresponding
input-field term [the last term in Eq. (C10)] must also be
ignored. To conclude, assuming that � � �0 and that the
last two terms in Eq. (C10) are ignored and by identifi-
cation of V = −�∑

n v
4
0,n, Eq. (C10) is directly mapped

to the 1D nonlinear model from Eq. (8) [we recall that
γloss = (�0 − �)+ γs, Eq. (30)].

APPENDIX D: MAPPING THE COLLECTIVE
SYSTEM TO THE 1D MODEL

Here we provide details on the mapping of the dynami-
cal equations of the collective system to the 1D model.

1. The input-output relation Eq. (17)

Performing the projection (16) on the field equation
(13), we have

Êu(z) = Êu,0(z)+ 1√
Au

ω2
pd

ε0c2

∑
n

σ̂ge,n

×
∫ ∞

−∞
G(ωp , r⊥ − r⊥

n , z − zn)u∗(r⊥)dr⊥. (D1)
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Writing the Green’s function as an in-plane momentum
expansion [29], we have

G(ωp , r⊥ − r⊥
n , z − zn) =

= i
8π2

∫ ∞

−∞
dk⊥

(
1 − |k⊥·ed|2

k2
p

)
eik⊥·

(
r⊥−r⊥

n

)
eikz |z−zn|

kz
,

(D2)

with kp = 2π/λ and kz =
√

k2
p − |k⊥|2. Inserting this into

Eq. (D1), we obtain

Êu(z) = Êu,0(z)+ 1√
Au

i
4π

ω2
pd

ε0c2

∑
n

σ̂ge,n

×
∫ ∞

−∞
dk⊥

(
1 − |k⊥·ed|2

k2
p

)
eikz |z−zn|

kz
e−ik⊥·r⊥

n ũ∗(k⊥),

(D3)

where ũ(k⊥) = 1
2π

∫ ∞
−∞ e−ik⊥·r⊥u(r⊥)dr⊥ is the

Fourier transform of the transverse mode. We now con-
sider the paraxial approximation in which the width of
the spatial transverse mode u(r⊥) is much larger than
the wavelength, w � λ, and we consider propagation
distances within its Rayleigh range z < zR = πw2/λ, so
diffraction of the mode can be ignored. In Fourier space
this means that ũ(k⊥) has a very narrow width of approx-
imately 2π/w around k⊥ = 0, allowing us to approximate
kz =

√
k2

p − |k⊥|2 ≈ kp and |k⊥·ed |2
k2

p
� 1; the requirement

z < zR further allows us to approximate the phase fac-
tor eikz |z−zn| ≈ eikp |z−zn|. Under these approximations, we
obtain [by further transformation of ũ∗(k⊥) back to real
space]

Êu(z) = Êu,0(z)+ idkp

2ε0
√

Au

∑
n

u∗(r⊥
n )e

ikp |z−zn|σ̂ge,n.

(D4)

Decomposing Êu(z) into Ê+
u (z) and Ê−

u (z), which are the
right-propagating and left-propagating fields [including
only kz > 0 or kz < 0, respectively], sampled at z > zmax
and z < zmin, respectively (zn ∈ [zmin, zmax]), we arrive at
Eq. (17).

2. The input-field term Eq. (26)

For the mapping of the atomic equation (22) to the
1D model, we diagonalized the equation assuming that
the condition (23) is valid. Here we give some details on
the mapping of the input-field term. We introduce a com-
plete basis {uβ(r⊥)} that spans the function space of the
x-y plane, such that

∑
β uβ(r⊥)u∗

β(r
′
⊥) = δ(r⊥ − r′

⊥). In
the case of a Gaussian mode, the basis is the Hermite

Gauss modes and u(r⊥) ≡ u0(r⊥) is the Gaussian mode
β = 0. With this basis, the photon field can be written as an
inverse transformation Ê(r⊥, z) = ∑

β

√
Aβ Êβ(z)uβ(r⊥),

and so

id
�

aeff

∑
n

Ê0(r⊥
n , 0)u∗(r⊥

n ) =

= id
�

aeff

√
AuÊu,0(0)

∑
n

u∗(r⊥
n )u(r

⊥
n )

+ id
�

aeff

∑
β �=0

√
Aβ Êβ,0(0)

∑
n

uβ(r⊥
n )u

∗(r⊥
n )

= i
√
�Ê0(0)+ F̂0. (D5)

Here we assumed that only the (Gaussian) u(r⊥) mode,
with β = 0, is populated, and the quantum noise oper-
ator F̂0 = id

�
aeff

∑
β �=0

√
Aβ Êβ,0(0)

∑
n u∗

β(r
⊥
n )u(r

⊥
n ) acco-

unts for the vacuum fluctuations of other modes.

3. The upper bound on �

Here we prove that the total collective decay rate of the
atomic system, �0 = 2Re[D0], is always greater than or
equal to the coupling to the target mode �, ensuring the
self-consistency of our formalism. We recall that here D0 is
the eigenvalue of the dipole-dipole interaction kernel that
corresponds to the relevant eigenmode, v0,n = aeffu∗(r⊥

n ),

D0 =
∑
n,m

v0,nDnmv0,m

= −i
3
2
λγ

∑
n,m

v0,nG(ωp , r⊥
n − r⊥

m , 0)v0,m. (D6)

Using again the in-plane momentum expansion of the
Green’s function, Eq. (D2), we obtain

D0 = 3
4
λγ

∫ ∞

−∞

dk⊥
4π2

(
1 − |k⊥ · ed|2

k2
p

)
|v0,k⊥|2√
k2

p − |k⊥|2
,

(D7)

with v0,k⊥ = ∑
n v0,ne−ik⊥·r⊥

n being the Fourier transform
of the eigenmode, and where we assumed that v0,n is real
(verified in all cases considered). From the square-root
term, we note that the real part, which describes radia-
tion, contains only in-plane momenta within the light cone,
|k⊥| < kp , as expected. In turn, the radiated field from the
discrete-space paraxial eigenmode v0,n should be similar
to its corresponding continuous-space interpolation given
by the target mode u(r⊥). Therefore, since in momentum
space the target mode is narrow around k⊥ = 0 (being
paraxial), so is vk⊥ within the light cone. For the real part,
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this then allows us to approximate 1 − |k⊥·ed |2
k2

p
≈ 1 and√

k2
p − |k⊥|2 ≈ kp within the integrand, obtaining

�0 = 2Re[D0] = 3
4π
λ2γ

∫ ∞

−∞

dk⊥
4π2 |v0,k⊥|2. (D8)

Moreover, since the target mode is normalized, we
can multiply the right-hand-side of Eq. (D8) by 1 =∫ ∞
−∞

dk⊥
4π2 |ũ(k⊥)|2, and using the Cauchy–Schwarz inequal-

ity, we obtain

�0 = 3
4π
λ2γ

∫ ∞

−∞

dk⊥
4π2

∣∣v0,k⊥
∣∣2

∫ ∞

−∞

dk′
⊥

4π2

∣∣ũ(k′
⊥)

∣∣2

≥ 3
4π
λ2γ

∣∣∣∣
∫ ∞

−∞

dk⊥
4π2 v0,k⊥ ũ∗(k⊥)

∣∣∣∣
2

. (D9)

In turn, we note, also using Eq. (20) for aeff, that

∣∣∣∣
∫ ∞

−∞

dk⊥
4π2 v0,k⊥ ũ∗(k⊥)

∣∣∣∣
2

=
∣∣∣∣∣
∫ ∞

−∞

dk⊥
4π2

∑
n

v0,ne−ik⊥·r⊥
n ũ∗(k⊥)

∣∣∣∣∣
2

=
∣∣∣∣∣
∑

n

aeffu∗(r⊥
n )

∫ ∞

−∞

dk⊥
4π2 e−ik⊥·r⊥

n ũ∗(k⊥)

∣∣∣∣∣
2

= a2
eff

∣∣∣∣∣
∑

n

|u∗(r⊥
n )|2

∣∣∣∣∣
2

= 1
a2

eff

. (D10)

Finally, inserting this into Eq. (D9) and using Eq. (28) for
�, we obtain the required inequality,

�0 ≥ 3
4π

λ2

a2
eff

γ = �. (D11)

APPENDIX E: MAPPING THE 2D ORDERED
ARRAY TO THE 1D MODEL

In the following, we show that the collective dipole
mode P̂ that corresponds to an arbitrary paraxial tar-
get mode u(r⊥) forms an approximate eigenmode of the
dipole-dipole interaction kernel of a finite-size 2D ordered
array, with an eigenvlaue D0 = �k=0/2 + i�k=0 equal to
that of a plane wave eigenmode k⊥ = 0 of an infinite 2D
array.

To show this we focus on the dipole-dipole interaction
term in the second line of Eq. (14), projected to the paraxial

target mode via the transformation (19) with aeff = a√
η
,

a√
η

i
3
2
γ λ

∑
n

∑
m

G(ωp , r⊥
n − r⊥

m , 0)σ̂ge,mu∗(r⊥
n ), (E1)

where
d2ω2

p
�ε0c2 = (3/2)γ λ was used. Considering the inverse

Fourier transformation of the target mode, u(r⊥) =
(1/2π)

∫
ũ(k⊥)eik⊥·r⊥dk⊥, we obtain

= a√
η

i
3
2
γ λ

∑
m

σ̂ge,m
1

2π

×
∫

dk⊥ũ∗(k⊥)Gm(ωp , k⊥, 0)e−ik⊥·r⊥
m , (E2)

where we defined Gm(ωp , k⊥, 0) = ∑
n G(ωp , r⊥

n − r⊥
m , 0)

e−ik⊥·(r⊥
n −r⊥

m ). Next we assume that the array is larger than
the wavelength La � λ → √

N � λ/a, so each atom in
the “bulk” (not at the edges) effectively feels interac-
tions of an infinite array (our noting the Green’s func-
tion oscillation length scale λ). This assumption also
implies that

√
N � 1, so most of the atoms are in

the bulk, and are therefore dominant in the descrip-
tion of collective dipole modes. Under these conditions,
we can consider Gm(ωp , k⊥, 0) as that of an atom m
in the bulk, for which Gm(ωp , k⊥, 0) ≈ G(ωp , k⊥, 0) =∑

n∈infinite G(ωp , r⊥
n , 0)e−ik⊥·r⊥

n , where G(ωp , k⊥, 0) is for
an infinite array. Then, considering the paraxial charac-
ter of the target mode, we assume that ũ∗(k⊥) is centered
at k⊥ = 0 at a bandwidth much narrower than that of the
Green’s function G(ωp , k⊥, 0) [29], such that the latter is
effectively sampled at k⊥ = 0, giving

= a√
η

i
3
2
γ λG(ωp , 0, 0)

∑
m

σ̂ge,mu∗(r⊥
m)

= −
(
�k=0

2
+ i�k=0

)
P̂, (E3)

where we used the transformation (19) to P̂ with aeff = a√
η
.

This result shows that the dipole-dipole kernels exhibits a
diagonal form for the collective dipole mode P̂, with a cor-
responding eigenvalue i 3

2γ λG(ωp , 0, 0) = �k=0
2 + i�k=0.

The latter is simply the collective decay and shift of the
uniform collective dipole of an infinite array [29], thus
giving the result expressed in Eq. (33).

APPENDIX F: MAPPING THE MULTILAYER
SYSTEM TO THE 1D MODEL

Here we elaborate on the extension of the mapping pro-
cedure to a multilayer system discussed in Sec. VII. First,
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we perform the transformation (37) on Eq. (14) for σ̂ge,n⊥j
[with the replacement (r⊥

n , zn) → (r⊥
n⊥ , zj )], obtaining

dP̂j

dt
=

(
iδp − γs

2

)
P̂j + i�Ŝj + i

d
�

Ê0,j + F̂u,j

− aeff

∑
n⊥

u∗(r⊥
n⊥)

∑
m⊥

∑
j ′

Dn⊥,m⊥(zj − zj ′)σ̂ge,m⊥j ′ ,

(F1)

with Dn⊥,m⊥(zj − zj ′) = i
�

d2ω2
p

ε0c2 G(ωp , r⊥
n⊥ − r⊥

m⊥ , zj − zj ′)

and Ê0,j = aeff
∑

n u∗(r⊥
n )Ê0(r⊥, zj ) (and an analogous

definition for F̂u,j ). We split the summation over the layers
into the self-interacting term j = j ′, which can be treated
as in the single-layer case (see Appendix D),

aeff

∑
n⊥

u∗(r⊥
n⊥)

∑
m⊥

Dn⊥,m⊥(0)σ̂ge,m⊥j =
(
�0

2
+ i�

)
P̂j ,

(F2)

and the interlayer interaction term j �= j ′,

aeff

∑
n⊥

u∗(r⊥
n⊥)

∑
m⊥

∑
j ′ �=j

Dn⊥,m⊥(zj − zj ′)σ̂ge,m⊥j ′ . (F3)

Using the in-plane momentum expansion of the Green’s
function, Eq. (D2), we obtain

= aeff
3
4
λγ

∑
n⊥

u∗(r⊥
n⊥)

∑
m⊥

∑
j ′ �=j

∫ ∞

−∞

dk⊥
4π2

(
1 − |k⊥·ed|2

k2
p

)

× eik⊥·
(

r⊥
n⊥−r⊥

m⊥
)

eikz |zj −zj ′ |

kz
σ̂ge,m⊥j ′ . (F4)

We assume that the target mode is equal to the
eigenmode l = 0, aeffu∗(r⊥

n⊥) = v0,n, and using v0,k⊥ =∑
n v0,ne−ik⊥·r⊥

n , we can write

= 3
4
λγ

∑
m⊥

∑
j ′ �=j

∫ ∞

−∞

dk⊥
4π2

(
1 − |k⊥·ed|2

k2
p

)
v0,−k⊥e−ik⊥·r⊥

m⊥

× eikz |zj −zj ′ |

kz
σ̂ge,m⊥j ′ . (F5)

The term eikz |zj −zj ′ | includes interactions between different
layers via propagating fields and evanescent fields, corre-
sponding to in-plane momentum components inside and
outside the light cone, i.e., |k⊥| < kp (real kz) and |k⊥| >
kp (imaginary kz), respectively. However, assuming that
|zj − zj ′ | > 1/kp ∼ λ for all zj and zj ′ , the exponentially
decaying contribution of the evanescent fields is negligi-
ble (we discuss a correction due to these near fields in the

case of an ordered array in Appendix H). In turn, inside the
light cone |k⊥| ≤ kp , the eigenmode v0,k⊥ is narrow since
the target mode is paraxial (see also Appendix D 3). Tak-
ing in addition |zj − zj ′ | < πw2/λ = zR for all zj and zj ′ ,
we can thus approximate eikz |zj −zj ′ | ≈ eikp |zj −zj ′ |, obtaining

=
∑
j ′ �=j

eikp |zj −zj ′ |aeff
3
4
λγ

∑
n⊥

u∗(r⊥
n⊥)

∑
m⊥∫

LC

dk⊥
4π2

(
1 − |k⊥·ed|2

k2
p

)
eik⊥·

(
r⊥

n⊥−r⊥
m⊥

)
1
kz
σ̂ge,m⊥j ′ .

(F6)

Noting that the above expression is equal to
∑

j ′ �=j eikp |zj −zj ′ |

multiplied by the real part of the analogous term in the
single-layer case, Eq. (F2), we have

= �0

2

∑
j ′ �=j

eikp |zj −zj ′ |P̂j . (F7)

The field term i(d/�)Ê0,j is treated as in Eq. (D5), giving
i(d/�)Ê0,j = i

√
�1DÊ0,j + F̂0,j , with Ê0,j = [Ê0,+(zj )+

Ê0,−(zj )]/
√

2. Collecting everything together we have

dP̂j

dt
=

[
i(δp −�)− γs

2

]
P̂j − �0

2

Nz∑
j ′=1

eikp |zj −zj ′ |P̂j ′

+ i
√
�1DÊ0,j + i�Ŝj + F̂j , (F8)

with F̂j = F̂u,j + F̂0,j , yielding Eq. (38).
For the input-field term, we use Eqs. (27) and (16) with

âukz (t) → âukz (0)e
−ic|kz |t (for the free, input field) to obtain

Ê0,j = 1√
2

[Ê0,+(zj )+ Ê0,−(zj )]

= i
√

c
2L

∑
kz≥0

[
âu,+kz e

ikzzj + âu,−kz e
−ikzzj

]
e−i(c|kz |−ωp )t.

(F9)

We now wish to approximate the phase factors e±ikzzj ≈
e±ikp zj , which is justified if the correction �kzj <

�kLmax � 1 is small, where here �k is the bandwidth
of kz around kp accounted for by our theory and Lmax is
the maximal interatomic distance. Recalling that within
the paraxial approximation we have ωkz ≈ c|kz|, we find
that the bandwidth on kz follows the bandwidth of fre-
quencies,�ω � τ−1

s , which is determined by the temporal
resolution required to describe system dynamics τs ∼ γ−1.
This condition for a small phase correction �kLmax � 1
then translates to the condition τs � Lmax/c. This con-
dition is consistent with the Markov approximation used
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to derive the Heisenberg-Langevin equation (14), wherein
the maximal propagation time of photons that mediate the
dipole-dipole interaction, Lmax/c, is assumed to be shorter
than the dynamics of the system τs. With this reasonable
assumption, and considering the Bragg condition eikp zj =
e−ikp zj , we have

Ê0,j = i
√

c
2L

∑
kz≥0

[
âu+kz + âu−kp

]
e−i(c|kz |−ωp )teikp zj

= eikp zj
1√
2

[Ê0,+(0)+ Ê0,−(0)] = eikp zj Ê0(0). (F10)

Finally, performing the transformation to the phase-
matched collective dipole P̂, Eq. (39), on Eq. (F8) and
recalling the Bragg condition e−ikp zj = eikp zj , we obtain the
1D model equation (6) for P̂ with the parameters specified
in Eq. (40).

For the field equation we start with the analogue of
Eq. (D4), with an additional summation over the layers,
obtaining

Êu(z) = Êu,0(z)+ idkp

2ε0
√

Au

1
aeff

Nz∑
j =1

eikp |z−zj |P̂j . (F11)

The difference from the single-layer case is that now each
layer has an extra relative phase proportional to its posi-
tion along the z axis. Under the Bragg condition, this
phase is identical for all layers up to a sign, yielding the
same sign for 2zj /λ even or alternating signs for 2zj /λ

odd. In either case, the phase of each layer matches the
phase of the collective dipole P̂j . With these consider-
ations, the input-output relation for the symmetric field
Ê(z) = 1√

2

[
Ê+(z)+ Ê−(−z)

]
e−ikp z (z > 0) reduces to

Ê(z) = Ê0(z)+ i
√

Nz�1DP̂, (F12)

again consistent with the 1D model (6) with the parameters
from Eq. (40).

APPENDIX G: MULTILAYER SYSTEM BEYOND
THE BRAGG CONDITION

In this appendix, we investigate the propagation of light
within the multilayer system with arbitrary interlayer spac-
ing, and in particular when the Bragg condition is not
satisfied and the connection to the OD can be established.
Our starting point is Eq. (38) for the coupling between
layers, in the form of 1D propagation. We consider the
case �0 = �1D, wherein the interlayer 1D propagation is
channeled via only the target mode. This means that col-
lective effects between layers are mediated via only the
target mode and do not contribute to the losses, which are
due to only the individual loss of each layer, γs (as in the

⋯

FIG. 9. Multilayer system represented as a series of building
blocks (optical elements), each comprising a single layer fol-
lowed by a propagation over distance az . The input and output are
divided into forward and backward propagation on the left-hand
and right-hand sides of the multilayer system.

case of perfect spatial overlap η = 1 for the example of
a 3D ordered array). Such lossy 1D propagation is natu-
rally accounted for by the transfer matrix method [71,72].
This method enables the calculation of the transmission
and reflection coefficients of a series of optical elements by
assigning a matrix to each element that connects forward-
propagating and backward-propagating waves from each
side, thereby accounting for all interference effects. In our
multilayer system, all elements are identical and comprise
a single layer followed by free propagation over a distance
az (see Fig. 9). The transfer matrix of each such element is

m = 1
t1

(
t21 − r2

1 r1
−r1 1

) (
eikp az 0

0 e−ikp az

)
, (G1)

where r1 = − �1D
�1D+γs+2i(�−δp ) and t1 = 1 + r1 are the

reflectivity and transmissivity of a single layer. The trans-
fer matrix for a system comprising Nz layers is then
M = mNz , connecting the right and left fields as (A, B)T =
M · (C, D)T (Fig. 9). The reflection and transmission coef-
ficients associated with the multilayer system are given
by r = M12/M22 and t = 1/M22, allowing us to easily
compute them numerically.

In principle, the overall propagation is composed of
multiple scattering of backward-propagating and forward-
propagating waves. In the following, we discuss two
important regimes, where backscattering is dominant and
absent, respectively. For the former, we consider the lat-
tice spacing az/λ = 0.5 satisfying the Bragg condition, as
assumed in our theory of the mapping to the two-sided 1D
model. In Fig. 10(a), we observe the agreement between
the transfer matrix calculation and the theoretical predic-
tion of Eq. (40), r = − Nz�1D

�Nz1D+γs+2i(�−δp ) . Notably, even in
the presence of significant loss terms, γs � �1D, the addi-
tion of layers in phase-matching Bragg conditions results
in a remarkably high reflectivity. In contrast, consider now
the case az/λ = 0.25, which deviates significantly from
the Bragg condition. Since in this case phase matching in
reflection does not exist, we expect backscattering to be
negligible, and forward-only propagation (as with Bloch
waves in the middle of the band). Indeed, we observe in
Fig. 10(b) that the reflectance is substantially diminished.
In turn, the transmittance exhibits an exponential decay
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1.0

0.0

1.0

0.0

(a) (b)

FIG. 10. Intensity transmittance (T) and reflectance (R) as a
function of the number of layers Nz for interlayer spacing (a)
az/λ = 0.5 and (b) az/λ = 0.25. Solid and dotted lines represent
transfer-matrix numerical calculations and theoretical analytical
predictions, respectively (see the text). In both plots the ratio
between individual losses and collective emission to the target
mode of each layer is taken to be γs/�1D = 10.

with the number of layers Nz due to the losses γs. Such
lossy, forward-only propagation can be connected to the
concept of OD in dilute atomic ensembles. Estimating
the transmittance analytically in the regime of a large
loss rate (γs � �0) on resonance, we find that the inten-
sity transmittance follows an exponential decrease with
Nz, exp

(
−2�0Nz

γs

)
= e−2OD, exhibiting excellent agree-

ment with the transfer matrix calculation [Fig. 10(b)].
We thus find that the OD is equal to the cooperativity
C = �1DNz/γs of the analogous two-sided phase-matched
system considered in our work [Eq. (40)].

Importantly, while both regimes are characterized by
the same light-matter coupling strength (C = OD), their
response to light is very different: the extinction in trans-
mittance in the two-sided phase-matched system is due to
its strong reflection and it exhibits a power-law decrease
with Nz, t = 1 + r ∝ N−1

z , whereas in the non-phase-
matched system, characterized by an OD, the extinction in
transmittance is due to losses and it decays exponentially
with Nz.

APPENDIX H: CORRECTION �′ TO THE 3D
ARRAY COLLECTIVE SHIFT

Here we elaborate on the estimation of the correction�′
to the collective shift, as discussed in Sec. VII subsection
C2 for the collective dipole P̂ of a 3D ordered array. First,
to get Eq. (38) for 2D array layers P̂j with the full dipole-
dipole kernel Djj ′ from Eq. (42) replacing the 1D-like
dipole-dipole kernel (�0/2)e

ikp |zj −zj ′ |, we do the following:
Starting from Eq. (14) and performing the transformation
to P̂j , we obtain the interaction term in analogy to that in
Eq. (E1) in the 2D array case, with the Green’s function
now having a z-axis argument, G(ωp , r⊥

n⊥ − r⊥
m⊥ , az(j −

j ′)). Using methods similar to those described in Appendix
E, we then arrive at the interlayer dipole-dipole kernel

(a) (b)

FIG. 11. Intensity reflection coefficient R of a 3D multilayered
array as a function of detuning δp −� and the ratio a/λ for (a)
az = λ, and (b) az = λ/2. The detuning correction �′ (dashed
line) fits the maximal reflectivity. The reflectivity was calculated
for an array with Nz = 10, η = 1, and γloss = 0.05�0.

Djj ′ = − i
�

d2ω2
p

ε0c2 G(ωp , k⊥ = 0, az(j − j ′)), (H1)

where G(ωp , k⊥, z) = ∑
n⊥∈infinite G(ωp , r⊥

n⊥ , z)e−ik⊥·r⊥
n⊥ is

evaluated for a sum over an infinite array. The latter sum is
performed with the transverse-momentum presentation of
the Green’s function as in Ref. [29], yielding Eq. (42) for
Djj ′ .

As explained in the main text, the correction �′ to the
collective shift comes from a perturbative treatment of the
evanescent-field component, εj ,j ′ , of the interaction Djj ′
between layers; see Eq. (44). To first order in perturbation
theory, the correction to the relevant collective eigenmode
from Eq. (39), |v〉 = (1/

√
Nz)

(
1, e−ikp azj , . . . , e−ikp azNz

)
, is

given as usual by the matrix element 〈v|ε|v〉,

�′ = 1
Nz

∑
j �=j ′

eikp(znz −zmz )εj ,j ′ . (H2)

We now verify that this approximation is sufficiently accu-
rate for relevant cases. To this end, we consider the cal-
culation of the 3D array reflectivity in two ways. From
the mapping to the generic 1D model (1), we readily pre-
dict that the optimal reflectivity is obtained at a resonance
shifted by �′, i.e., for δp = �+�′, using �′ from Eq.
(H2). This is compared with an exact calculation that does
not rely on the first-order perturbative approximation of
Eq. (H2) and the subsequent mapping to the generic 1D
model. Beginning with Eq. (38) with the full interlayer
kernel from (42) (including εj ,j ′), we classically solve for
the dipole Pj of the layer j given a cw input field using
a simple matrix inversion performed numerically. Then,
plugging this solution into Eq. (F11), we find the total field
and the reflectivity. The results of this exact numerical cal-
culation for the example of an ordered array are presented
in Fig. 11 as a function of the detuning and the ratio a/λ
and for both types of phase-matched collective dipoles,
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i.e., az = λ and az = λ/2. Maximal reflectivity is indeed
observed to overlap the curve of �′(a/λ) calculated from
Eq. (H2) as a function of a/λ, as predicted by the approx-
imate generic 1D model with the shift �′. As a relevant
example, consider the lattice spacing a/λ = 0.68 corre-
sponding to a typical optical lattice experiment [30]: in
this case, we see in Fig. 11 excellent agreement between
the position of the maxima of the exact result and the
corresponding value of �′. To conclude, we find that the
mapping to the generic 1D model is valid for the regions
of interest, using the small correction �′.
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