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Quantum neural network architectures that have little to no inductive biases are known to face train-
ability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning
address this challenge by creating models encoding the symmetries of the learning task. This is materi-
alized through the usage of equivariant neural networks the action of which commutes with that of the
symmetry. In this work, we import these ideas to the quantum realm by presenting a comprehensive the-
oretical framework to design equivariant quantum neural networks (EQNNs) for essentially any relevant
symmetry group. We develop multiple methods to construct equivariant layers for EQNNs and analyze
their advantages and drawbacks. Our methods can find unitary or general equivariant quantum channels
efficiently even when the symmetry group is exponentially large or continuous. As a special implemen-
tation, we show how standard quantum convolutional neural networks (QCNNs) can be generalized to
group-equivariant QCNNs where both the convolution and pooling layers are equivariant to the symmetry
group. We then numerically demonstrate the effectiveness of a SU(2)-equivariant QCNN over symmetry-
agnostic QCNN on a classification task of phases of matter in the bond-alternating Heisenberg model. Our
framework can be readily applied to virtually all areas of quantum machine learning. Lastly, we discuss
about how symmetry-informed models such as EQNNs provide hopes to alleviate central challenges such
as barren plateaus, poor local minima, and sample complexity.
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I. INTRODUCTION

Recognizing the underlying symmetries in a given data
set has played a fundamental role in classical machine
learning. For instance, noting that the picture of a cat
still depicts a cat when we translate the pixels of the
image gives a hint as to why convolutional neural networks
[1] have been so successful in image classification: they
process images in a translationally symmetric way [2].

In recent years, the importance of symmetries in
machine learning has been studied in problems with more
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general symmetry groups than translations, leading to the
burgeoning field of geometric deep learning [2]. The cen-
tral thesis of this field is that prior symmetry knowledge
should be incorporated into the model, thus effectively con-
straining the search space and easing the learning task.
Indeed, symmetry-respecting models have been observed
to perform and generalize better than problem-agnostic
ones in a wide variety of tasks [2–9]. As such, a great
deal of work has also gone into developing a mathe-
matically rigorous framework for designing symmetry-
informed models through the machinery of representation
theory. This has provided the basis for so-called equiv-
ariant neural networks (ENNs) [10–14], the key property
of which is that their action commutes with that of the
symmetry group. In other words, applying a symmetry
transformation to the input and then sending it through the
ENN produces the same result as sending the raw input
through the ENN and then applying the transformation.
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Recently, some of the ideas of geometric deep learning
have been imported to the field of quantum machine learn-
ing (QML) [15–19]. QML has become a rapidly growing
framework to make practical use of noisy intermediate-
scale quantum devices [20]. Here, the hope is that by
accessing the exponentially large Hilbert space, quantum
models can obtain a computational advantage over their
classical counterparts [21,22], especially for quantum data
[23–25]. Despite its promise, there are still several chal-
lenges that one needs to address before unlocking the
full potential of QML. In particular, a growing amount of
evidence suggests that models with little to no inductive
biases have poor trainability and generalization, greatly
limiting their scalability [26–41].

Geometric quantum machine learning (GQML) attempts
to solve the aforementioned issues by leveraging ideas
from geometric deep learning to construct quantum mod-
els with sharp inductive biases based on the symmetries
of the problem at hand. For instance, when classifying
between states presenting a large, or a low, amount of mul-
tipartite entanglement [24,42,43], it is natural to employ
models the outputs of which remain invariant under the
action of any local unitary [44]. While recent proposals
have started to reveal the power of GQML [44–52], the
field is still in its infancy and a more systematic approach
to symmetry-encoded model design is needed.

The goal of this work is to offer a theoretical frame-
work for building GQML models based on extending the
notion of classical ENNs to equivariant quantum neural
networks (EQNNs) (see Fig. 1). Our main contributions
can be summarized as follows:

(a) We provide an interpretation for EQNN layers as a
form of generalized Fourier-space action, meaning
that they perform a group Fourier transform, act on

the Fourier components, and transform back. This
allows us to quantify the number of free parameters
in an EQNN layer and it unravels the exciting
possibility of using different group representations
as hyperparameters to act on different generalized
Fourier spaces (Sec. IV).

(b) We introduce a general framework for EQNNs,
extending previous results from unitary quantum
neural networks to channels. We characterize the
different types of EQNN layers such as standard,
embedding, pooling, lifting and projection lay-
ers. This permits a classification of EQNN layers
depending on their input and output representations.
In addition, we also explore how equivariant nonlin-
earities can be introduced via multiple copies of the
data (Sec. IV).

(c) We describe three alternative methods for construct-
ing and parametrizing EQNNs. These are based
on finding the null space of a certain system of
matrix equations, applying the twirling formula over
the symmetry group and using the Choi-operator
representation of channels. Our methods have a bet-
ter complexity than existing methods and can effi-
ciently find unitary or nonunitary equivariant layers
even when the symmetry group is exponentially
large. We discuss strengths and weaknesses of each
approach and general methods to optimize and/or
train equivariant channels (Sec. V).

(d) We exemplify our techniques by showing how to
generalize standard quantum convolutional neural
networks (QCNNs) to group-equivariant QCNNs
where the convolutional and pooling layers are
equivariant to the symmetry group of the task.
As examples, we show how to construct Z2 × Z2
and Zn-equivariant EQNNs (Sec. VI). Moreover,

(a) (b) (c)

group SO
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FIG. 1. A schematic representation of our main results. (a) In GQML, we start by identifying the symmetry group—or groups—that
leave the data labels invariant. For the example shown, the data can be visualized on a three-dimensional sphere and the labels
are invariant under the action of SO(3). (b) Both in classical and quantum machine learning, it has been shown that models with
equivariant layers often have an improved performance over nonequivariant architectures. The key feature of equivariance is that
applying a rotation to the input data and sending it through the layer is the same as first sending the data through the layer and then
rotating the output. On the other hand, feeding either a raw or a rotated data instance into a nonequivariant layer usually leads to
distorted outputs that are not related by a rotation. (c) In this work, we provide a toolbox of methods for creating equivariant quantum
neural networks (EQNNs) that can be readily used to construct quantum architectures with strong geometric priors.
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we present a new architecture called SU(2)-
equivariant QCNN and numerically demonstrate
its advantage over symmetry-agnostic QCNNs in
a quantum phase-classification task of the bond-
alternating Heisenberg model on up to 13 qubits
(Sec. VII).

We conclude with a discussion on how EQNNs pro-
vide hope to alleviate critical challenges in QML such
as ill-behaved training landscapes (barren plateaus and
local minima) and to reduce the sample complexity (data
requirements) of the model. Taken together, we hope that
our results will serve as blueprints and guidelines for a
more representation-theoretic approach to QML.

II. RELATED WORK

A. Equivariance in geometric deep learning

In this section, we provide an overview of the literature
on classical equivariant neural networks (ENNs), leaving
the formal treatment of equivariance to Sec. III.

At a high level, equivariance is a mathematical prop-
erty that preserves symmetries in features throughout a
multilayer ENN. One imposes equivariance onto ENN
layers via tools from group representation theory, the
workhorse behind geometric deep learning [2]. The most
well-known equivariant architecture is the convolutional
neural network (CNN) [1], ubiquitous in image and sig-
nal processing. The relevant symmetry group in CNNs is
the translation group in the plane R2 and one can show
that their convolution and pooling layers are equivariant to
this group [11]. Ideas to generalize CNNs to other groups
and data have first been laid out in Ref. [10] and have fur-
ther been made mathematically rigorous in Refs. [11,12].
These works are concerned with the so-called homoge-
neous ENNs, which include, as special cases, spherical
CNNs (where the relevant group is SO(3)) for spherical
images [6] and Euclidean neural networks (the Euclidean
group E(n) = Rn � O(n) and its subgroups) for molecu-
lar data [53–56]. Notable nonhomogeneous architectures
include graph neural networks (the permutation group
Sn) [4,57,58]. In addition, more advanced representation-
theoretic treatments on nonhomogeneous data [14] have
led to steerable CNNs [59] and gauge-equivariant CNNs
[13] on general manifolds. Moreover, it has been shown
that equivariant layers can be constructed from either
the group-space or Fourier-space perspectives [5]. More
recently, methods for designing equivariant layers have
been studied in Refs. [8,51,60,61]. For a theoretical anal-
ysis of the improvements in training and generalization
error arising from using ENNs, we refer the reader to
Refs. [9,62–64], while the expressibility and universality
of ENNs have been studied in Refs. [65–69].

B. Equivariance in quantum information

Equivariance [70] has a long history in quantum infor-
mation theory [71–91]. As such, we will not attempt here
to review its full impact on the field but, rather, we will
focus on several relevant works where equivariance has
been studied in the context of quantum channels.

To begin, the set of all irreducible SU(2)-equivariant
channels has been characterized in Ref. [92], with exten-
sions to a wide class of finite groups presented in Ref. [93].
The work in Ref. [94] presents conditions to construct
group-equivariant generalized-extreme channels. On the
other hand, the history of equivariance in QML is much
more recent. In Refs. [44,45], the authors lay a theoretical
groundwork for the integration of symmetries into QML.
However, prior works are either nonconstructive [44] or
only work efficiently on restricted sets of problems and
symmetries [45]. In particular, two main types of symme-
tries have been most extensively explored: the action of
the local unitary group SU(d) on each qudit in a correlated
manner U⊗n and the action of the permutation group Sn by
permuting the qudits. It is well-known fact in representa-
tion theory, called the Schur-Weyl duality, that these two
group representations commute.

On the side of SU(d) symmetry, in Ref. [49], the authors
have proposed a specific task—approximating matrix ele-
ments of Sn irreps evaluated on arbitrary group-algebra
elements—together with a novel polynomial-time quan-
tum algorithm, based on the combination of the quantum
Schur transform and Hamiltonian simulation, that poten-
tially achieves a exponential quantum speed-up given
that the best known classical algorithms require O(n!n2)

time. In turn, Ref. [48] exploits the ideas in Ref. [49] to
derive an ansatz—the Sn-equivariant convolutional quan-
tum alternating ansatze (Sn CQA)—that is universal for the
subgroup of SU(d)-equivariant unitaries. As the name sug-
gests, it is based on the qudit permutation action of Sn on
the quantum system that, via Schur-Weyl duality, linearly
spans the subspace of SU(d)-equivariant operators. Inter-
estingly, Sn CQA can be shown to achieve universality in
the subgroup of symmetric unitaries with only four-body
interactions, something that is remarkable given the typical
limitations of universality imposed by locality constraints
[88,95]. The performance and resource requirements of Sn
CQA are benchmarked in Ref. [50].

On the Sn-symmetry side, Ref. [96] has shown that
Sn-equivariant QNNs exhibit a wide range of favorable
properties, such as being immune to barren plateaus, effi-
ciently reaching overparametrization, and being able to
generalize well from few training points. Moreover, meth-
ods for constructing equivariant quantum circuits for graph
problems have been given in [46,47,52,97]. We also note
that, while not explicitly mentioned, some recent quantum
algorithms can be analyzed from an equivariance point of
view [21,23,98–100]. We discuss these in Appendix A.
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III. PRELIMINARIES

Here, we give some of the necessary background in
QML and representation theory to tackle GQML. For a
more comprehensive treatment of these topics, we refer
the reader to the standard textbooks in representation the-
ory [101–103] and the geometric ML-theory literature
[2,12,14]. For a QML-oriented approach to group theory
and representation theory, see Ref. [104].

A. From QML to GQML

For simplicity and concreteness, in this paper we focus
on quantum supervised learning with scalar labels. How-
ever, we remark that GQML is relevant in other contexts,
such as unsupervised learning [105,106], generative mod-
eling [107–110], or reinforcement learning [111,112]. For
instance, the constructions presented here can be readily
adapted to learning problems with nonscalar output (e.g.,
quantum generative models, where the output is a quantum
state or a probability distribution).

Suppose that we are given some data set composed of M
quantum states and scalar labels {ρi, yi}Mi=1, where ρi ∈ R
are quantum states from a data domain R ⊂ B(H), with
B(H) the set of bounded linear operators on H. The labels
come from a label domain Y and are obtained from a
(potentially probabilistic) function:

f : R→ Y (Underlying function). (1)

For example, in binary classification one has Y = {0, 1}.
These data may come from some physical quantum
mechanical process (quantum data [24]) or may be clas-
sical information embedded into quantum states (classical
data [113]). Given the data set, one then optimizes a
learning model:

hθ : R→ Y (Model), (2)

where θ are trainable parameters, with the intent of closely
approximating the underlying function f .

In variational QML [18], the states in the data set are
fed into a trainable quantum circuit, which is usually
modeled by a sequence of parametrized unitary matrices.
However, in this work, we will consider more general
operations—parametrized quantum channels—which we
refer to as quantum neural networks (QNNs). Respectively
denoting the spaces of bounded linear operators in Hin

and Hout as Bin := B(Hin) and Bout := B(Hout), a QNN
is a parametrized completely positive and trace-preserving
(CPTP) linear map Nθ : Bin → Bout .

We can further decompose the QNN as a concatenation
of channels or layers. We say that Nθ is an L-layered QNN
if it can be expressed as Nθ = N L

θL
◦ · · · ◦N 1

θ1
, where

the N l
θ l

(with l = 1, . . . , L) are parametrized CPTP chan-
nels such that θ = (θ1, . . . , θL). From the foregoing, the

lth layer maps between operators acting on some Hilbert
space Hl−1 to operators acting on some (potential differ-
ent) Hilbert space Hl. That is, N l

θ l
: Bl−1 → Bl, where, for

simplicity of notation, we have defined Bl := B(Hl).
After applying the QNN to an input state ρ, one mea-

sures the resulting state with respect to a set of observables
{Oj }j to obtain the expectation values {Tr[Nθ (ρ)Oj ]}j .
Finally, a classical postprocessing step, C, maps these
outcomes to a loss function

�θ (ρ) = C({Tr[Nθ (ρ)Oj ]}j ). (3)

We quantify the performance of the model over the data
set via the so-called empirical loss,

L̂θ ({ρi, yi}Mi=1) =
1
M

M∑
i=1

F(�θ (ρi), yi), (4)

defined in terms of some problem-dependent function F .
Finally, employing a classical computer, one optimizes
over the parameters θ to minimize the empirical loss
until certain convergence conditions are met. The optimal
parameters, along with the loss function, are used to predict
labels.

One of the most important aspects that make or break
the QML scheme are its inductive biases, i.e., the assump-
tions about the problem that one embeds in the structure
of the model. In our case, this amounts to an adequate
choice of the parametrized layers N l

θ l
forming the QNN

and of the measurement operators Oj . In a nutshell, the
inductive biases are responsible for the model explor-
ing only a subset of all possible functions from R to
Y . If these inductive biases are too general or not accu-
rate, the model is expected to train poorly, while models
with appropriate inductive biases can often benefit from
an improved performance [26,31,96]. GQML aims at pro-
viding a framework for incorporating prior geometrical
information in the model with the hope of improving its
trainability, data requirements, generalization, and overall
performance. In particular, the main goal of GQML is to
create models respecting the underlying symmetries of the
domain over which they act. In the next sections, we will
briefly review how to use tools from representation theory
to deal with symmetries, as well as recall basic concepts
such as equivariance and invariance.

B. Symmetry groups and representation theory

The first step toward building a GQML model is to iden-
tify the set of relevant operations that the model needs to
preserve. We say that a QML problem has symmetry with
respect to a group G if the labels are unchanged under the
action of a representation of G on the input states.

Definition 1 (Label symmetries and G-invariance).
Given a compact group G and some unitary representation
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R acting on quantum states ρ, we say that the underlying
function f has a label symmetry if it is G-invariant, i.e., if

f (R(g)ρR(g)†) = f (ρ), ∀g ∈ G. (5)

As previously mentioned, the goal of GQML is to build
models that respect the label symmetries of the data. That
is, we want to build G-invariant models such that hθ (ρ) =
hθ (R(g)ρR(g)†), for any g ∈ G, and for all values of θ .

To further understand how symmetry groups act and
how one can manipulate them, we recall here some basic
concepts from representation theory (for further back-
ground, see Ref. [104]). Namely, given a group G, its
representation describes its action on some vector space
H, which we assume for simplicity to be a Hilbert space.

Definition 2 (Representation). A representation (R,H)
of a group G on a vector space H is a homomorphism R :
G→ GL(H) from the group G to the space of invertible
linear operators on H that preserves the group structure of
G.

Specifically, a group homomorphism R satisfies

R(g1)R(g2) = R(g1g2) ∀g1, g2 ∈ G. (6)

This implies that, for all g ∈ G, the representation of
its inverse is the inverse of its representation, R(g−1) =
R(g)−1, and the representation of the identity element e
is the identity operator on H, R(e) = 1dim(H). Given a
representation, it is relevant to define its commutant.

Definition 3 (Commutant). Given a representation R of
G, we define the commutant of R as the set of bounded
linear operators on H that commute with every element in
R, i.e.,

comm(R) = {H ∈ B(H) | [H , R(g)] = 0 ∀g ∈ G}. (7)

Consider the following remarks about representa-
tions:

(a) A representation is faithful if it maps distinct group
elements to distinct elements in H. As an example
of unfaithfulness, the trivial representation maps all
group elements to the identity in H.

(b) Two representations, R1 and R2, are equivalent
if there exists a change of basis W such that
VR1(g)V† = R2(g) for all g ∈ G, in which case we
denote R1 ∼= R2.

(c) A subrepresentation is a subspace K ⊂ H that is
invariant under the action of the representation, i.e.,
R(g) |w〉 ∈ K for all g ∈ G and |w〉 ∈ K. The group
can then be represented through R|K, the restriction

of R to the vector subspace K. A subrepresenta-
tion K is nontrivial if K 
= {0} (the zero vector) and
K 
= H.

Definition 4. (Irreps) A representation is said to be an
irreducible representation (irrep) if it contains no nontrivial
subrepresentations.

Irreps are the fundamental building blocks of repre-
sentation theory. For any finite or compact group, the
representations can be chosen to be unitary [114]. Hence
in the rest of this paper, we will consider unitary repre-
sentations on complex Hilbert spaces. In the case that the
representation is finite-dimensional, we can go a step fur-
ther and say that the vector space can be decomposed into a
direct sum over irreducible subrepresentations. This leads
to the so-called isotypic decomposition,

H ∼=
⊕
λ

Hλ ⊗C
mλ , R(g) ∼=

⊕
λ

Rλ(g)⊗ 1mλ , (8)

where∼= indicates that there exists a global change of basis
matrix W that simultaneously block diagonalizes the uni-
taries R(g) for all g ∈ G. Here, λ labels the irreps, mλ is
the multiplicity of the irrep Rλ, and Rλ(g) ∈ Cdλ×dλ . Note
that

∑
λ dλmλ = dim(H).

When G is not a finite group, we assume it to be a com-
pact Lie group with an associated Lie algebra g such that
eg = G. That is, g = {a|ea ∈ G}. In particular, if G has a
representation R, then g has a representation r given by the
differential of R, i.e., given a ∈ g, R(ea) = er(a).

In this work, we will mainly focus on the adjoint rep-
resentation of G, as it describes how the group acts on
density matrices (and other bounded operators). A unitary
representation R on H induces an action on B(H), given by

AdR(g)(ρ) = R(g)ρR(g)†, ∀g ∈ G, ρ ∈ B(H). (9)

where AdR(g) denotes the adjoint representation. Note that
for the case of Lie groups, the adjoint representation also
exists at the Lie-algebra level and is given by adr(a)(·) =
[r(a), ·].

To finish this section, we find it convenient to define a
distinction between symmetry groups.

Definition 5 (Inner and outer symmetries). Given a
composite Hilbert space, we call a representation of a
group an inner symmetry if it acts locally on each subsys-
tem and an outer symmetry if it permutes the subsystems.

For instance, when working with n-qubit systems, the
tensor representation of SU(2), R(g ∈ SU(2)) = g⊗n is
an inner symmetry, as it acts locally on each subsystem.
On the other hand, the qubit-permuting representation of
Sn, given by R(g)

⊗n
j=1

∣∣ψj
〉 =⊗n

j=1

∣∣ψg−1(j )
〉

is an outer
symmetry.
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C. Equivariance and invariance in quantum neural
networks

Here, we present a recipe to obtain G-invariant QML
models based on the key concept of equivariance, which
we will first define for linear maps and then for operators.

Given a group G and a representations R, we typically
say that a linear map φ : B(H)→ B(H) is equivariant
if and only if φ ◦ AdR(g) = AdR(g) ◦ φ for all g ∈ G. We
can extend this definition by noting that neither the input
and output representations, nor the Hilbert spaces, need
to be the same. Thus, we consider the following general
definition.

Definition 6 (Equivariant map). Given a group G and
its representations (Rin,Hin) and (Rout,Hout), a linear map
φ : Bin → Bout is (G, Rin, Rout)-equivariant if and only if

φ ◦ AdRin(g) = AdRout(g) ◦ φ, ∀g ∈ G. (10)

The property of equivariance can be visualized via the
following commutative diagram:

The action of an equivariant map φ commutes with the
action of the group. That is, for an equivariant φ, it is
equivalent to (i) first acting with φ and then acting with
Rout or to (ii) first acting with Rin and then acting with φ.
Note that for the special case of Rout being the trivial repre-
sentation, the map is invariant, such that φ ◦ AdRin(g) = φ
for all g ∈ G.

Next, let us define what an equivariant operator is.

Definition 7 (Equivariant operator). Given a group G
and its representation (R,H), an operator O ∈ B(H) is
(G, R)-equivariant if and only if

[O, R(g)] = 0, ∀g ∈ G. (11)

Evidently, Definition 7 implies that O ∈ comm(R), from
which we can easily see that comm(R) is the space
of all equivariant operators. Moreover, we can also see
that the adjoint action of a (G, R)-equivariant operator
is a (G, R, R)-equivariant map. That is, adO ◦ AdR(g) =
AdR(g) ◦ adO.

The previous definitions present us with a recipe to build
GQML models of the form in Eq. (3), the outputs of which
are invariant under the action of the group.

Proposition 1 (Invariance from equivariance). A model
consisting of an (G, Rin, Rout)-equivariant QNN and a
(G, Rout)-equivariant set of measurements is G-invariant.

Proof. For every g ∈ G, ρ ∈ Bin, and θ , we have

hθ (AdRin(g)(ρ)) = C({Tr[Nθ (AdRin(g)(ρ))Oj ]}j )
= C({Tr[AdRout(g)(Nθ (ρ))Oj ]}j )
= C({Tr[Nθ (ρ)Rout(g)†Oj Rout(g)]}j )
= C({Tr[Nθ (ρ)Oj ]}j ) = hθ (ρ). �

Armed with the previous definitions, we are now ready
to present the basic framework for EQNNs.

First, however, we find it instructive to provide an exam-
ple of a classification problem naturally amenable to these
methods. Suppose that we are given the ground states
of the bond-alternating Heisenberg model, which has the
Hamiltonian

H = J1

∑
i even

Si · Si+1 + J2

∑
i odd

Si · Si+1, (12)

where Si = (Si
x, Si

y , Si
z) is the spin operator for the ith qubit.

There are two phases of matter for this Hamiltonian: triv-
ial and topologically protected. As a learning problem, we
consider the task of determining if the states are in the
trivial or topologically protected phases. Consider the rep-
resentation R(g) = g⊗n of SU(2). For a ground state |ψ〉,
one can show that R(g) |ψ〉 is also a ground state. Thus, the
labels of states are invariant under an action of SU(2). In
Sec. VII, we return to this problem and show that a EQNN
significantly outperforms a quantum convolutional neural
network for this task.

IV. THEORY OF EQUIVARIANT LAYERS FOR
EQNNs

In this section, we will shed some light on the impor-
tance of the choice of representation by studying how
EQNNs act on data and how many degrees of freedom
they have. Most notably, we will show that layers that are
equivariant to different representations can process data in
different ways, so that a given layer could potentially “see”
information that is inaccessible to another one. The latter
will point to the crucial importance that intermediate rep-
resentations have. Finally, we will present a classification
of EQNN layers based on their input and output represen-
tations, allowing them to be nonlinear, and even change
the symmetry group under which they are equivariant. Our
results can be summarized in Fig. 2.

A. Equivariant layers as Fourier-space actions

Let us start by analyzing how EQNNs act on data. For
simplicity, we first consider the case in which Rin = Rout =
R, the states in the data set are pure ρ = |ψ〉 〈ψ |, and the
EQNN is unitary, i.e., Nθ (ρ) = U(θ)ρU(θ)†. Note that if
Nθ is a (G, R, R)-equivariant map, then U(θ) is a (G, R)-
equivariant operator and, hence, it belongs to comm(R).
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(a)

(b)

Null space

FIG. 2. The equivariant quantum neural network. (a) The
design procedure. We consider a QML problem composed of a
data set (that can either be quantum mechanical in nature or cor-
responding to classical data that have been encoded in quantum
states) as well as a label symmetry group G. The first step is to
define the input and output representations of G at each layer,
where these can be natural, faithful, nonfaithful, etc. From here,
we will provide different techniques that allow us to construct
the EQNN layers and control, e.g., the locality of their gates. (b)
The EQNN architecture. The dashed lines indicate the represen-
tations of the symmetry group G at specific stages in the EQNN,
which may change between layers. At first, the input state ρin is
acted upon by the representation Rin. The lth layer of the EQNN,
N l

θ l
, must be (G, Rl, Rl+1)-equivariant. In sum, the full archi-

tecture, φ = N L
θL
◦ · · · ◦N 1

θ1
, is (G, Rin, Rout)-equivariant. The

(G, , Rout)-equivariant measurement operator O is in the commu-
tant of the output representation Rout. Note that if we only want
the EQNN to produce an output state equivariantly or invariantly
(e.g., in generative models), we can omit the measurements.

Hence, we can understand the action of U(θ) on |ψ〉 by
studying the structure of the commutant.

Theorem 1 (Structure of commutant (Theorem IX.11.2
in Ref. [101])). Let R be a unitary representation of a
finite-dimensional compact group G. Then, under the same
change of basis W, which block diagonalizes R as in
Eq. (8), any operator H ∈ comm(R) takes the following
block-diagonal form:

H ∼=
⊕
λ

1dλ ⊗ Hλ, (13)

where each Hλ is an mλ-dimensional operator that is
repeated dλ times.

The previous theorem shows that any equivariant uni-
tary can be expressed as U(θ) = W†

(⊕
λ 1dλ ⊗ Uλ(θ)

)
W,

indicating that in the irrep basis, it can only act nontrivially
on the multiplicity space. Drawing a parallelism with the
classical ML literature, where it has been shown that linear

equivariant maps can only act on the group Fourier compo-
nents of the data [5,6,53,57,58], we can also here interpret
EQNNs as a form of generalized Fourier-space action.
Specifically, the action of U(θ) can be understood as (i)
first transforming the data to the generalized Fourier space
W |ψ〉 =⊕λ

∣∣ψλ

〉⊗ |ψλ〉, (ii) acting on each Fourier com-
ponent |ψλ〉 with Uλ(θ), and (iii) transforming back with
W†. That is,

U(θ) |ψ〉 = W†

(⊕
λ

∣∣ψλ

〉⊗ Uλ(θ) |ψλ〉
)

. (14)

Note that this interpretation can be readily generalized to
channels.

Here, we can see that once the representation of G is
fixed, so is the information in the input state to which one
has access (equivariantly). Explicitly, the EQNN cannot
manipulate information stored in the components

∣∣ψλ

〉
of

the input state. As we will see in Sec. IV B, one can still try
to access this information via changes of representation.

Notably, Eq. (14) generalizes group convolution in the
Fourier basis: when R is the regular representation, the
change of basis is the well-known group Fourier trans-
form [91,115] (see Appendix B). This generalized Fourier-
space picture has proved crucial in designing various
classical architectures [5,6,53,57,58]. This also provides a
representation-theoretic justification for the recent quan-
tum “convolutional layers” in Ref. [23]. Recently, this
interpretation of equivariant unitaries has also been noted
for the special case of SU(d)-equivariant quantum circuits
in Refs. [48,49].

B. Free parameters in EQNNs

1. Equivariant unitaries

The Fourier-space picture previously discussed enables
the counting of free parameters in equivariant unitaries.

Theorem 2 (Free parameters in equivariant unitaries).
Under the same setup as Theorem 1, the unitary opera-
tors in comm(R) can be fully parametrized by

∑
λ m2

λ real
scalars.

Proof. Any unitary U in comm(R) takes the block-
diagonal form U =⊕λ 1dλ ⊗ Uλ in the Fourier basis.
Observe that the operators Uλ must also be unitaries,
since U†U =⊕λ 1dλ ⊗ U†

λUλ. A unitary in U(mλ) is
parametrized by m2

λ real scalars; hence, a total number of∑
λ m2

λ parameters suffice to parametrize U. �

Theorem 2 describes how “significant” the symmetry is
to the problem, in the sense that the larger the represen-
tations of G, the smaller is the commutant and thus the
fewer parameters are needed to fully characterize equivari-
ant unitaries. In Table I, we present examples of different
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TABLE I. Free parameters in unitary EQNNs. We show how different symmetries impact the number of free parameters in a
(G, R, R)-equivariant unitary. Here, for set a S, we have defined C[S] ≡ spanC(S).

Group Representation Free parameters comm(R)

None Rtrivial(g) = 12n 4n C[U(2n)]
U(2n) Rdef(g) = g 1 C[12n ]

U(2) Rtens(g) = g⊗n 1
n+ 2

(2n+2
n+1

) ∈ �(2n) C[Rqub(Sn)]

Sn Rqub(g)
⊗n

i=1 |ψi〉 =
⊗n

i=1

∣∣ψg−1(i)
〉 (n+3

3

) ∈ �(n3) C[Rtens(U(2))]

symmetries constraining the number of free parameters in
a unitary EQNN to both exponentially many, polynomially
many, and constant.

2. Equivariant channels

We have already seen how the inductive biases in uni-
tary EQNNs affect their structure and, concomitantly, their
number of free parameters. We now turn our attention
to (G, Rin, Rout)-equivariant channels. First, recall that any
linear channel φ : Bin → Bout, can be fully characterized
through its Choi operator [116]

J φ =
∑

i,j

|i〉 〈j | ⊗ φ(|i〉 〈j |), (15)

which acts in B(Hin ⊗Hout). The action of φ on an input
state ρ ∈ Bin can be recovered from J φ as follows: [117]

φ(ρ) = Trin[J φ(ρ
 ⊗ 1dim(Hout))]. (16)

The Choi operator is related to equivariance via the follow-
ing theorem.

Lemma 1 (Lemma 11 in Ref. [78] paraphrased). A
channel φ is (G, Rin, Rout)-equivariant if and only if J φ ∈
comm(Rin∗ ⊗ Rout), where the asterisk (∗) denotes the
complex conjugate.

Noting that (Rin∗ ⊗ Rout) is a valid representation as per
Definition 2, we can combine Theorem 1 and Lemma 1
to determine a parameter count for general equivariant
channels.

Theorem 3 (Free parameters in equivariant chan-
nels). Let the irrep decomposition of R := Rin∗ ⊗ Rout

be R(g) ∼=⊕q Rq(g)⊗ 1mq . Then, any (G, Rin, Rout)-
equivariant CPTP channels can be fully parametrized via∑

q m2
q − C(Rin, Rout) real scalars, where C(Rin, Rout) is a

positive constant that depends on the considered represen-
tations.

We defer the proof to Appendix C. Intuitively, the
parameter count of equivariant CP maps follows similarly

to the proof of Theorem 2 and the extra term C(Rin, Rout)

arises from imposing that the channel φ must be trace
preserving (TP).

Similar to the classical ML literature [59], the
parameter-count benefit of using equivariant layers can be
assessed via the parameter utilization metric

μ = dim HomCPTP(Rin, Rout)

dim HomCPTP
G (Rin, Rout)

, (17)

where HomCPTP(Rin, Rout) denotes the set of CPTP
maps between Bin and Bout and HomCPTP

G (Rin, Rout)

its (G, Rin, Rout)-equivariant subspace. Note that, dim
HomCPTP(Rin, Rout) = |Hin|2|Hout|2 − |Hin|2 [116]. That
is, the larger μ is, the larger is the benefit of using
an EQNN, in the sense that available parameters are
used more effectively. For instance, by imposing SU(2)-
equivariance on 2-to-2-qubit channels, one reduces the
number of free parameters to less than or equal to 14 (see
Sec. VI), yielding a reduction of μ � 240/14 ≈ 17.

C. Intermediate representations as hyperparameters

Here, let us discuss an aspect of EQNNs that has been
purposely overlooked up to this point. Namely, while the
input representation Rin is fixed by the action of the sym-
metry group on the input data, the intermediate and output
representations acting on the spaces Bl are not. This means
that there exists freedom in choosing a sequence of rep-
resentations (Rin, R1, . . . , Rout) under which the layers are
equivariant. That is, we have the following.

Definition 8 (Layered EQNN). An L-layered G-
equivariant QNN is defined by a sequence of L+ 1 rep-
resentations of G, (Rin, R1, . . . , Rout), and a sequence of
(G, Rl, Rl+1)-equivariant layers.

The equivariance encoded in the L-layered EQNN of
the definition given in Eq. (8) can be visualized via the
following commutative diagram:
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The foregoing discussion allows us to see that N =
N L
θL
◦ · · · ◦N 1

θ1
is an (G, Rin, Rout)-equivariant QNN. Evi-

dently, if we follow such a QNN with (G, Rout)-equivariant
measurements, we achieve a G-invariant model.

Note that, as previously discussed, a representation
defines a Fourier space, meaning that it determines the
space over which a layer of EQNN can act or, alterna-
tively, the information in the states that can be accessed. As
such, one can use intermediate representations to change
how the model accesses and processes information, which
can fundamentally determine the success of the learning
model.

The most general way of fully specifying a representa-
tion is via the multiplicities of the irreps. Thus, the irrep
multiplicities ml

λ of the intermediate representations can
be understood as hyperparameters of the EQNN, similar
to the number of channels in a conventional CNN. While,
in general, there are no strict rules on what representations
to use, here we discuss strategies to choose the intermedi-
ate representations that are physically meaningful and ease
calculations of equivariant layers.

First, one should choose representations that are natural
on quantum systems. For example, on the space of n qubits
H = (C2)⊗n, the unitary group U(2) has a natural repre-
sentation that consists of the identical action on each local
subsystem via R(U) = U⊗n. Similarly, the cyclic group
Zn has a natural action on n qubits corresponding to the
cyclic shifting of the qubits, captured by the representation
R(gt)

⊗n
j=1

∣∣ψj
〉 =⊗n

j=1

∣∣ψj+t mod n
〉
. Second, the follow-

ing proposition asserts that equivalent intermediate rep-
resentations yield the same model expressibility [31,118]
and hence it suffices to consider inequivalent ones when
designing EQNNs. We defer the proof to Appendix C.

Proposition 2 (Insensitivity to equivalent representa-
tions). Consider an EQNN as defined in Definition 8.
Then, changing an intermediate representation, Rl, to
another representation equivalent to it, VRlV†, where V is a
unitary, does not change the expressibility of the EQNN.

Finally, we note that the case of finite groups and regular
representations (i.e., when the intermediate representations
are chosen to be Rreg : G→ C[G] corresponding to the

group action on its own group algebra) has been studied
in the classical literature under the name of homogeneous
ENNs [14]. In this case, any equivariant map is a group
convolution [11], which can be realized as a unitary oper-
ator embedding the classical convolution kernel by the
quantum algorithms in Ref. [119]. Combining this with
quantum algorithms for polynomial transformations of
quantum states [120,121] allows one to quantize classical
homogeneous ENNs. In other words, classical homoge-
neous ENNs can be implemented on a quantum computer
as a special case of EQNNs.

D. Field guide to equivariant layers

As previously discussed, intermediate representations
can be considered as hyperparameters for the EQNN. In
what follows, we define and characterize different types
of equivariant layers arising from different intermediate
representations.

1. Standard, embedding, and pooling

We start by presenting a definition that categorizes
equivariant layers based on the sizes of input and output
representations.

Definition 9 (Equivariant layers: standard, embedding,
and pooling). Let N l

θ l
: Bl−1 → Bl be an (G, Rl−1, Rl)-

equivariant layer. We say that N l
θ l

is a pooling layer if
dim(Bl) < dim(Bl−1), an embedding layer if dim(Bl) >

dim(Bl−1), and a standard layer if dim(Bl) = dim(Bl−1).

Definition 9 does not require the layer to be a quantum
channel and is thus applicable beyond the context of quan-
tum to quantum layers, e.g., in quantum algorithms with
classical postprocessing, as we discuss in Appendix A. For
the special case of EQNNs mapping from a Hilbert space
of n qubits to a Hilbert space of m qubits, we say that N l

θ l
is a pooling layer if m < n, an embedding layer if m > n,
and a standard layer if m = n.

Equivariant quantum circuits have been proposed and
used in previous works [45–48,52] mostly in the context
of graph problems. However, we note that these fall into
standard layers and that our framework provides more
flexibility, as the operations need not be unitary. An idea
of pooling layers has been proposed in Ref. [23], although
the pooling layer that the authors have used was not equiv-
ariant to the symmetry of the considered classification task
(see Appendix A). We will provide examples of pool-
ing equivariant layers in later sections. While embedding
layers have been used to map classical data to quantum
data, they are usually not equivariant [38,113] (with a few
notable recent exceptions [45,122]), meaning that all the
symmetry properties of the classical data are lost during the
encoding to quantum states. In addition, to our knowledge,
embedding layers mapping quantum data to quantum data
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Pooling and/or
Projection

Embedding and/or
Lifting

FIG. 3. Different types of equivariant layers in a general archi-
tecture of EQNNs. A standard layer maps data between spaces
of the same dimension. An embedding (pooling) layer maps the
data to a higher-dimensional (smaller-dimensional) space. In a
lifting layer, ker(Rl−1) > ker(Rl), while in a projection layer,
ker(Rl−1) < ker(Rl).

have not been formalized in QML prior to this work. Intu-
itively, embedding layers equivariantly embed the quan-
tum data into a larger Hilbert space, allowing access to
higher-dimensional irreps, and perform nonlinearities (dis-
cussed below). A prototypical general EQNN architecture
using these equivariant layers inspired by the classical
literature [3,14] is illustrated in Fig. 3.

2. Projection and lifting

Another common technique in the classical geometric
deep-learning literature is to relax the symmetry con-
straints in the later layers, typically corresponding to
greater-scale features, of the ENNs. This is achieved by
projection layers (also called reduction layers in some
work [14]), which go from representations Rin to Rout

with ker(Rin) < ker(Rout). Recall that the kernel of a rep-
resentation R is defined as ker(R) := {g ∈ G|R(g) = 1},
so that R is faithful if and only if ker(R) = {e}. Simi-
larly, one can also define lifting layers, where ker(Rin) >

ker(Rout). These lifting layers are used as the first layer
in many homogeneous ENN architectures [3,8,11,12] but
their usefulness is not known in general nonhomogeneous
ENNs [14]. Here, we similarly define projection and lifting
equivariant layers for EQNNs based on the kernels of the
representations as follows.

Definition 10 (Equivariant projection and lifting layers).
A (G, Rl−1, Rl)-equivariant layer is defined as a projec-
tion layer if ker(Rl−1) < ker(Rl) and a lifting layer if
ker(Rl−1) > ker(Rl).

Projections layers usually become necessary in pooling
layers in the presence of outer symmetries that exchange
subsystems (see Definition 5), such as Zn, Dn, or Sn
under qubit-permuting representations. In contrast to inner
symmetries, which act locally or globally as general

unitaries, such as U(2) with R(g) = g⊗n, outer symmetries
typically have no faithful representations when the num-
ber of qubits is reduced by a pooling layer. Hence, in this
case it is convenient to use a nonfaithful representation on
the output Hilbert space of fewer qubits, i.e., a projection
layer. We provide examples of projection layers in Sec. VI.

Lifting layers instead can potentially be beneficial when
the symmetry of the problem is unsubstantial and does not
greatly reduce the number of free parameters in the model,
leading to too expressive EQNNs with potential trainabil-
ity issues. By lifting to a larger group, one can further
reduce the expressibility and potentially improve trainabil-
ity [31,96]. However, the actual benefit of lifting layers is
not known.

Lastly, we note another interpretation of lifting and pro-
jection layers as follows. A nonfaithful representation R of
G with ker(R) = H can be thought of as a faithful repre-
sentation of the quotient group G/H . Then, lifting layers
map from a faithful representation of a quotient group to
that of a larger quotient group while projection layers have
the opposite effect.

3. Nonlinearities

Finally, it is a common practice in QML to assume
repeated access to the data set, which means that one can
potentially access multiple copies of the input state ρ. The
mapping of the form ρ → ρ⊗k, which could be applied in
the first or an intermediary layer of an EQNN, can thus
serve as a nonlinear equivariant embedding layer, where
Rout = (Rin)⊗k.

Definition 11 (Nonlinear equivariant embedding lay-
ers). An order-k equivariant nonlinearity in EQNNs is
defined as the composition of a map adding k − 1 copies
of the input state φnonlinear: ρ → ρ⊗k.

From the Fourier-space perspective, this operation is
analogous to the widely used irrep tensor-product nonlin-
earity in classical ENNs. For instance, the Clebsch-Gordan
decomposition, which computes the tensor product of
SO(3) irreps, has been used in the classical literature to
achieve universal nonlinearity [5–7,53]. In the quantum
setting, on the other hand, the tensor product is performed
naturally by composing systems, giving opportunities for
equivariant data processing on high-dimensional irreps.
Indeed, the first step in the quantum enhanced experi-
ment model [21] performs this nonlinear equivariant layer.
Doing so can drastically simplify nonlinear learning tasks
[21,44] (see Appendix A).

V. METHODS FOR CONSTRUCTING
EQUIVARIANT LAYERS FOR EQNNs

In this section, we describe methods to construct and
train layers in EQNNs. Our first step will be to identify,
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given a group and its in-and-out representations, the space
of equivariant maps. For this purpose, we present three
distinct approaches based on finding the null space of a
system of matrix equations, the twirling technique, and on
the Choi operator. Once the space of equivariant maps is
determined, we discuss how to parametrize and optimize
over them. An overview of the results in this section can
be found in Table II.

A. Simplifying the task of finding equivariant maps

As per Definition 6, a linear map φ is equivariant if it
satisfies the superoperator equation,

φ ◦ AdRin(g) − AdRout(g) ◦ φ = 0, ∀g ∈ G. (18)

The set of all such maps forms a vector space and there-
fore to characterize them all it suffices to find a basis of this
space. While naively it would seem that one needs to solve
Eq. (18) for every g ∈ G, we will now see that it is usually
enough to solve this equation only over a well-chosen sub-
set of elements of the group (or of its Lie algebra for Lie
groups of symmetries).

1. Finite groups

We first consider the case in which G is a finite group.
Here, we recall the concept of a generating set. A sub-
set S = {g1, . . . , g|S|} ⊂ G is a generating set of G if any
element of the group can be written as a product of ele-
ments in the generating set. Denoting 〈S〉 as the closure
of S, i.e., the repeated composition of its elements, we say

that S generates G if 〈S〉 = G. For example, the symmetric
group Sn can be generated by the set of transpositions. It is
a well-known fact in group theory that a finite group can be
generated with a subset S of, at most, size log2(|G|) [102].
Thus, even exponentially large groups can be handled effi-
ciently through their generating set. In particular, we can
simplify the task of finding the equivariant maps via the
following theorem.

Theorem 4 (Finite group equivariance). Given a finite
group G with generating set S, a linear map φ is
(G, Rin, Rout)-equivariant if and only if

φ ◦ AdRin(g) − AdRout(g) ◦ φ = 0, ∀g ∈ S. (19)

2. Lie groups

While Theorem 4 is useful when the group G is finitely
generated, many relevant groups, such as the Lie group
U(d), are not. However, we can consider generating sets
but now at the Lie-algebra level. In Ref. [60], the authors
provide a method for imposing equivariance under Lie
groups, where the equivariance constraint is imposed over
a basis of the Lie algebra. Evidently, this becomes imprac-
tical in the case of large Lie groups, since the method scales
linearly on its dimension. Instead, as we prove below, it
suffices to impose the constraint only over a generating set.
That is, we can consider s = {a1, . . . , a|s|} ⊂ g a generat-
ing set for g if its Lie closure 〈s〉Lie, the repeated nested
commutators of the elements of the set, spans the whole
Lie algebra. With these concepts at hand, we are ready to
impose equivariance at the algebra level.

TABLE II. An overview of the different methods for finding equivariant channels. Generating set size denotes that size of the
generating set for which the method is better suited. Main technique indicates the tools used to create the equivariant channels. Null
space uses a linear-algebraic approach to impose equivariance on the generating set of the group or its algebra. Twirling uses the twirl
formula defined in Eq. (25) or Eq. (26). The Choi operator block parametrizes the Choi operator via an irrep decomposition. Time
complexity denotes the computational complexity of the method. The time complexity of Gaussian elimination is O(d3), where d is
the size of the linear system. Assuming that the generating set has size O(1), then the linear system obtained in the null-space method
is of size 22(m+n), where n and m are the numbers of qubits at the input and output of the map. For twirling and the Choi operator, the
time complexity is dominated by the Haar-integral and irrep decomposition, respectively. In the case of twirling, it can be computed
analytically, approximately, or implemented in circuit depending on the problem at hand. Locality: determines whether we can control
the locality of the operations that we need to implement. CPTP indicates whether the output channel is CPTP and how hard it is to
impose this condition on the output maps. In null space, it is trivial to impose TP on the solution but imposing CP is more involved.
Twirling guarantees CPTP as long as the channel that we twirl is CPTP. In the Choi operator, imposing CP is straightforward but TP
might be more involved due to the dimension mismatch introduced by the irrep decomposition. Kraus rank indicates whether we can
control the Kraus rank of the channel. Notes denotes whether we can find a basis for the equivariant map vector space or if we find one
map at a time.

Generating Main Time Locality CPTP Kraus-rank Notes Examples
Methods set size technique complexity controlled? condition controlled? (Sec. VI)

Null space Small Linear-algebra Gaussian elimination Yes TP easy Yes Find all SU(2)
based O(26(m+n)) equivariant maps

Twirling Any Weingarten calculus Depends, mainly Often Yes Nontrivial One channel Z2 × Z2
and/or in-circuit twirling Haar-integral nontrivial at a time Zn

Choi Any Irrep Depends, mainly Nontrivial CP easy Yes Find all SU(2)
operator decomposition irrep decomposition equivariant maps
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Theorem 5 (Lie group equivariance). Given a com-
pact Lie group G with a Lie algebra g generated by s
such that exponentiation is surjective, a linear map φ is
(G, Rin, Rout)-equivariant if and only if

adrout(a) ◦ φ − φ ◦ adrin(a) = 0, ∀a ∈ s, (20)

where rin and rout are the representations of G induced by
Rin and Rout.

We note that the assumption of surjectivity of the expo-
nential map can be relaxed with the incorporation of
additional constraints. This relaxation, together with per-
tinent examples and proofs of the theorems, are given in
Appendix C.

B. Null space, twirling, and Choi operator

With the foregoing discussions in mind, in this section
we present three different techniques that can be used to
determine equivariant channels.

1. Null-space method

In the null-space method, we formulate the equivariance
constraints as a linear system of matrix equations, one per
element in the generating set, and then solve for their joint
null space. This yields a basis for the vector space of equiv-
ariant linear maps (not necessarily quantum channels). For
the rest of this section, we assume we have a finite group
and a set of generators at the group level. The case of Lie
groups follows analogously by working at the level of the
Lie algebra.

Our method generalizes those in Refs. [60,123] and
proceeds as follows. The first step is to represent the super-
operators in Eq. (19) as matrices, sometimes referred to
as transfer matrices. This can be achieved through the fol-
lowing map φ �→ φ =∑i,j φi,j |Pi〉〉〈

〈
Pj
∣∣, where Pj and Pi

are Pauli operators in the input and output Hilbert spaces,
respectively [124]. Here, φ is a dim(Bout)× dim(Bin)

matrix. The latter transforms Eq. (19) into a matrix mul-
tiplication equation of the form

φ · AdRin(g) − AdRout(g) · φ = 0, ∀g ∈ S. (21)

Next, we will perform a vectorization [125], which maps a
matrix into a column vector and allows us to write Eq. (21)
as

Mg · vec(φ) = 0. (22)

Here, vec(φ) is a dim(Bin) dim(Bout)-dimensional column
vector and

Mg = (AdRin(g))

 ⊗ 1dim(Bout) − 1dim(Bin) ⊗ AdRout(g),

(23)

is a dim(Bin) dim(Bout)× dim(Bin) dim(Bout) matrix.
With the foregoing, we can obtain equivariant maps by
computing the intersection of the null spaces of each Mg ,
i.e.,

vec(φ) ∈
⋂
g∈S

Null(Mg). (24)

In Fig. 4, we present an example of the null-space method.
Here, let us make several important remarks about the

null-space method. First, it is clear that this technique
can rapidly become computationally expensive. For exam-
ple, finding equivariant channels mapping from n qubits
to m qubits by solving the null spaces through Gaus-
sian elimination [126] has a complexity of O(26(m+n)).
Second, let us note that the solutions of Eq. (24) will
lead to a basis for all equivariant linear maps and there-
fore additional steps would be required to find the subset
of physically realizable operations (see Sec. V C). For
instance, we can obtain trace-preserving (TP) maps by
noting that φ is TP if and only if φ contains the term
dim(Hin)/dim(Hout)

∣∣1dim(Hout)

〉〉〈〈1dim(Hin)

∣∣ and no other
terms mapping to

∣∣1dim(Hout)

〉〉.
In practice, we can significantly reduce the computa-

tional complexity of this method by restricting the set
of Pauli operators that we need to consider in the input
and output spaces. This is particularly useful for inner

(a)

(b)

FIG. 4. An example of the null-space method. We demon-
strate how to use the null-space method to determine the space
of 1-to-1-qubit (G,Rin,Rout)-equivariant quantum channels, with
G = Z2 = {e, σ }, Rin = {1, X } and Rout = {1, Z}. (a) The matrix
representation of both in and out adjoint representations of the
symmetry group. (b) A basis for the eight-dimensional solu-
tion space, as well as two possible equivariant channels: φ(ρ) =
Tr[ρ]/2 obtained from the solution in red and φ(ρ) = (X ρX +
ZρZ)/2 obtained by combining the two solutions in green.
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symmetries, where the action of the group can be locally
studied. For example, consider the following lemma.

Lemma 2 (Global equivariance via local equivari-
ance). Let Bin (out) be composite input (output) spaces
of the form Bin (out) =⊗j B

in (out)
j . Then, assume that the

representations acting on each of these spaces takes a
tensor-product structure over subsystems as Rin (out)(g) =⊗

j Rin (out)
j (g). For local equivariant channels mapping

between each pair of in-and-out subsystems φj : Bin
j →

Bout
j that are (G, Rin

j , Rout
j )-equivariant, we have that

⊗
j φj

is (G, Rin, Rout)-equivariant.

Thus, we can find equivariant maps locally and take ten-
sor products of them to obtain a global equivariant layer.
While such an approach can greatly reduce the compu-
tational cost (e.g., solving for 2-to-1-qubit maps requires
dealing with 64× 64 matrices), this will come at the cost
of expressibility, as the composition of local equivariant
channels may have a restricted action when compared to a
general equivariant global channel [88].

In the case of outer symmetries such as G = Sn and
Rin(g) = Rout(g) = Rqub(g) (as defined in Table I), we can
use a generating set S including only local transpositions
(i.e., involving only two-body operators). Thus, if we want
to obtain maps φ containing only one- and two-body terms,
we only need to consider the sub-block of Mg correspond-
ing to one- and two-body Pauli operators, reducing its size
from exponential to only polynomial.

2. Twirling method

We now explain a second method for finding equivariant
maps, based on twirling. This approach was first proposed
in Ref. [45] to determine equivariant unitary channels.
Here, we extend this framework to general nonunitary
quantum channels with (possibly) different representations
in the input and output spaces of φ.

Starting with a given channel φ : Bin → Bout, we define
its twirl over a finite symmetry group G as

TG[φ] = 1
|G|

∑
g∈G

AdRout(g) ◦ φ ◦ Ad
†

Rin(g). (25)

For the case of Lie groups, we replace the summation with
an integral over the Haar measure

TG[φ] =
∫

G
dμ(g)AdRout(g) ◦ φ ◦ Ad

†

Rin(g). (26)

From the invariance of the Haar measure dμ, it is clear that
for all φ, TG[φ] is (G, Rin, Rout)-equivariant. Furthermore,
TG[φ] = φ for all equivariant φ. Combining these observa-
tions, one can see that TG is the projection onto the space

of equivariant maps. This realization allows us to write any
channel φ as

φ = TG[φ]+ φA, (27)

where φA is the “antisymmetric” part of φ, i.e., the part
satisfying TG[φA] = 0. As such, any measure of the form
‖φA‖ quantifies how symmetric φ is.

On the practical side, twirling is easy for small groups,
as one can efficiently evaluate Eq. (25) (for an example, see
Fig. 5). However, for large finite groups or for Lie groups,
a direct computation of the twirling becomes cumber-
some, requiring the use of more advanced techniques. In
Appendix D, we discuss different approaches to implement
Eqs. (25) and (26). These range from analytical meth-
ods based on the Weignarten calculus [127,128] (which
requires knowledge of the commutant of the representa-
tions) to experimental schemes such as in-circuit twirling
and approximate twirling approaches [129]. In particular,
we present two approaches for in-circuit twirling based on
either the use of ancilla qubits or classical randomness.
Both of these are exemplified in Fig. 5.

For completeness, let us compare the twirling method
to the null-space approach. First, we note that one of
the main advantages of twirling is that, unlike in the
null-space method, we are guaranteed that the twirl of a
CPTP channel is also CPTP. However, while the null-space
method allows us to find all equivariant maps, twirling is
performed one map at a time, meaning that finding a com-
plete basis for the equivariant map vector space could be
more intricate (although still possible, as we will show
in Sec. VI). As such, if one wants a single equivariant
channel, twirling is strongly recommended.

(a)

(b)

(c)

FIG. 5. An example of the twirling method. We demonstrate
how to use the twirling method to determine the space of 1-
to-1-qubit (G, Rin, Rout)-equivariant quantum channels, with
G = Z2 = {e, σ }, Rin = {1, X } and Rout = {1, Z}. (a) An explicit
calculation using the twirling formula of Eq. (25). (b) The
ancilla-based scheme for in-circuit twirling. (c) The classical-
randomness scheme for in-circuit twirling. Both of the schemes
in (b) and (c), detailed in Appendix D, recover the twirling in (a).
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3. Choi-operator method

Here, we present a third method for finding equivariant
channels. We recall from Eq. (15) that the Choi operator
of a channel φ is given by J φ =∑i,j |i〉 〈j | ⊗ φ(|i〉 〈j |).
Then, as indicated by Lemma 1, the channel will be equiv-
ariant if J φ ∈ comm(Rin∗ ⊗ Rout) (where the asterisk (∗)
denotes the complex conjugate and R∗ is the so-called dual
representation of R) or, alternatively, if for all g ∈ G,

J φ(Rin(g)
∗ ⊗ Rout(g))− (Rin(g)

∗ ⊗ Rout(g))J φ = 0.
(28)

While we can vectorize Eq. (28) and obtain equivari-
ant maps by solving for the null space of the matrices
(Rin(g)∗ ⊗ Rout(g))
 ⊗ 1dim(Bout) − 1dim(Bin) ⊗ (Rin(g)∗ ⊗
Rout(g)), this would not be significantly different from the
null-space method previously presented.

Instead, here we focus on a different technique based on
the fact that, since Rin∗ ⊗ Rout = R is a valid representa-
tion of G, then it has some irrep decomposition R(g) ∼=⊕

q Rq(g)⊗ 1mq (see Theorem 3) and the Choi operator of
any equivariant map takes the form

J φ ∼=
⊕

q

1dq ⊗ J φq . (29)

Equation (29) allows us to build equivariant maps by con-
trolling precisely how the associated Choi operator acts on
each irrep component of the quantum states. We exemplify
this method In Fig. 6.

Just as in the null-space method, this approach produces
general equivariant linear maps and, hence, additional con-
straints need to be imposed to find the subset of physical
channels. For instance, we can impose TP by requiring that
Trin[J φ] = 1dim(Hout), where Trin indicates the partial trace
over Hin. Then, we know that φ will be completely posi-
tive (CP) if and only if J φ � 0. The last condition implies

(a)

(b)

FIG. 6. An example of the Choi-operator method. We demon-
strate how to use the Choi-operator method to determine the
space of 1-to-1-qubit (G,Rin,Rout)-equivariant quantum channels,
with G = Z2 = {e, σ }, Rin = {1, X } and Rout = {1, Z}. (a) Iso-
typic decomposition of the group representation. (b) We show
that a specific choice for the block-diagonal components of J φ

leads to the map φ(ρ) = (X ρX + ZρZ)/2.

that J φ can be further expressed as [83]

J φ ∼=
⊕

q

1dq ⊗ w†
qwq, (30)

where wk ∈ Cmq×mq . Moreover, the TP conditions lead to∑
q Trin[1dq ⊗ w†

qwq] = 1dim(Hout). Thus, given the irrep
decomposition of R, one can construct a basis of CP
maps in the block-diagonal form of Eq. (30) and impose
the trace-preserving condition afterward [note, however,
that taking the partial trace is now more involved due
to the subspace mismatch introduced by the isomorphism
in Eq. (29)]. Finally, we remark that one could even go
a step further and consider conditions for φ to be an
extremal equivariant CPTP channel [130]. Conditions for
such, however, are much more involved [83].

Here, let us remark that the main limitation of the Choi-
operator approach is that identifying the isomorphism in
the irrep decomposition of Rin∗ ⊗ Rout can be in gen-
eral challenging. For common compact Lie groups, these
decompositions are conveniently implemented in a vari-
ety of software packages [131,132]. That being said, this
method is best suited for local channels, since the size
of the Choi operator scales as dim(Hout) dim(Hin). Thus,
if dim(Hout) dim(Hin) is not prohibitively large, one can
solve for the change of basis of the isotypic decomposition
and identify maps with specific irrep actions.

Lastly, implementing the null-space method requires
representing channels as matrices. (This could be done
for twirling as well.) To check that these maps are actu-
ally channels, i.e., CPTP, we may want to convert from
a matrix to the Choi operator, for which CPTP is read-
ily verified. We discuss how to perform this conversion in
Appendix E 2.

C. Parametrizing the layers of an EQNN

In GQML, we are not only interested in finding equiv-
ariant maps but we also want to parametrize and opti-
mize over them. In this section, we show how one can
parametrize the layers of an EQNN. For simplicity, we
first consider the case of unitary channels and then study
the case of general maps. An overview of the methods
proposed in this section can be found in Fig. 7.

1. Parametrizing equivariant unitaries

Here, let us consider the case of a unitary EQNN
layer with the same input and output representations.
That is, Hin = Hout, Rin = Rout = R, and N l

θ l
(ρ) =

Ul(θl)ρUl(θl)
†. While this case has been considered in

Refs. [44,45,97], we will here review it for completeness.
The simplest way to parametrize a unitary is by express-

ing it as the exponential of some Hermitian operator usu-
ally known as a generator, i.e., Ul(θl) = e−iθlHl , where θl
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(a)

(b)

FIG. 7. The procedure to parametrize and optimize equivari-
ant quantum neural networks. (a) We provide techniques to
parametrize both equivariant unitaries and general equivariant
channels. (b) Once we have a parametrized EQNN, we can pro-
ceed to train it. Here, we feed the training data into the EQNN,
the outputs of which are used to compute the loss function.
Leveraging a classical optimizer, we find updates for the param-
eters in the EQNN. In the case of channels, if might be necessary
to project the updated map to the feasible CPTP region. Note that
we can use classical compilers to transform a linear combination
of channels into an sequence of gates that we can implement on
a quantum device (Appendix E). The procedure is repeated until
convergence is achieved.

is a trainable parameter. Evidently, we can obtain (G, R)-
equivariant unitaries by taking equivariant generators, i.e.,
Hl ∈ comm(R). Note that we can find equivariant genera-
tors via the null-space or twirling approaches previously
detailed. While these methods have been presented for
superoperators, they can be straightforwardly adapted to
the case of operators. Alternatively, one could use the
Choi-operator approach and require the solution to be
rank-1 (recall that the rank of the Choi operator is the
Krauss rank of the associated channel, with unitaries being
Kraus-rank-1 channels).

2. Parametrizing equivariant channels

Here, we describe how to parametrize and optimize over
equivariant channels. We assume that a basis of equivari-
ant maps (or at least a subset of this basis) has been found
via the null-space or Choi-operator method. As mentioned
before, while it is relatively easy to find equivariant maps,
these need not be physical channels, as they may not be
TP, CP, or either. However, one can still parametrize a set
of non-CPTP equivariant maps and optimize over them
by appropriately constraining the parameters such that the
final map is CPTP.

For instance, when using the Choi-operator method, we
know that the CP condition is satisfied if J φ � 0. Hence,
one could start with some basis of trace-preserving and
trace-annihilating equivariant maps {J φj }, linearly com-
bine them as J (x) =∑j xj J φj , and optimize the set of real
parameters x = {xj } under the constraint that the eigen-
values of J (x) are non-negative. The latter will yield a
region of feasible equivariant quantum channels (for an
example, see Sec. VI). Note that during the optimization
of x, the update rule might take us outside of the equiv-
ariant region, in which case one needs to project back to
the feasible space. We further discuss how such projec-
tion can be performed in Appendix E. Finally, we note that
while it might not be directly obvious how to implement
the ensuing channel, one can always transform it into an
implementable sequence of gates, acting on a potentially
larger space, via compilation techniques [133–136]. Here,
we also remark that in many cases, particularly when the
maps act on large-dimensional spaces, finding the eigen-
values of J (x) might may be quite difficult. For these
scenarios, one can simply optimize over a subset of equiv-
ariant channels (i.e., maps that are already CPTP), which
can be found via twirling. Here, we are guaranteed that any
convex combination of equivariant channels will lie in the
feasible region, since CPTP channels form a convex set
[83].

An alternative approach to constructing equivariant
channels is via the Stinespring dilation picture [116]. In
this case, we use the fact that any channel can be written
as a unitary operation on a larger space, i.e.,

φ(ρ) = TrE[U(ρ ⊗ |e〉 〈e|)U†], (31)

where |e〉 ∈ HE is a fixed reference state on an envi-
ronment Hilbert space HE and where TrE denotes
the trace over HE . If U(Rin(g)⊗ 1dim(HE)) = (Rout(g)⊗
R(E)(g))U, ∀g ∈ G, then φ is a (G, Rin, Rout)-equivariant
channel. Here, we can use any of the tools previously dis-
cussed to find and parametrize U. This approach has the
advantage that by fixing the dimension of the environment,
we can look for channels of small Kraus rank, which are
easier to implement in practice.

VI. APPLICATIONS

In this section, we exemplify the applicability of the
methods presented in the previous sections to design
EQNNs.

A. SU(2)-equivariant QCNN

As a first practical application of the present framework,
we propose to generalize standard QCNNs [23] to group-
equivariant QCNNs. We start by recalling that QCNN have
been successfully implemented for error correction, quan-
tum phase detection [23,137], image recognition [138],
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and entanglement detection [24]. QCNNs exhibit several
key features that make them promising architecture for
the near term, such as having a shallow depth or not
exhibiting barren plateaus [139]. Despite these advantages,
standard QCNNs need not respect the symmetries of a
given task. In what follows, we will show how one can
design equivariant layers for QCNNs, thus promoting them
to group-equivariant QCNNs.

We consider problems where the symmetry group is
SU(2). This symmetry appears in tasks where the data
arise from certain spin-chain models [140–142] and in
tasks related to entanglement measures [42,143,144].
Moreover, we consider the case in which the data cor-
respond to n-qubit quantum states and where the input
representation of G = SU(2) is Rin(g) = Rtens(g) = g⊗n.
For ease of implementation on quantum hardware, we
restrict ourselves to channels with locality constraints (see
Lemma 2). That is, as illustrated in Fig. 8, we want to
build an equivariant QCNN that is composed of alter-
nating layers of 2-to-2 standard equivariant channels act-
ing on neighboring qubits and 2-to-1 equivariant pooling
channels (for completeness, the 1-to-2-qubit equivariant
embedding maps are presented in Appendix F). Of course,
this choice of architecture trades locality at the cost of
expressibility, as there may be more general equivariant
channels on n qubits. However, the success of models with
locality constraints [23,139] suggests that this may be an
interesting regime regardless.

(a)

(b)

FIG. 8. SU(2)-equivariant QCNN. (a) We consider the prob-
lem of building 2-to-2 standard equivariant channels and 2-to-
1 equivariant pooling channels. In the figure, we present the
respective input and output Hilbert spaces, as well as the input
and output representation. (b) In an SU(2)-equivariant QCNN,
we alternate between 2-to-2 channels acting on neighboring
qubits and 2-to-1 equivariant pooling channels that reduce the
feature space dimension.

1. 2-to-2 layers via Choi operator

Let us commence by studying 2-to-2-qubit maps via the
Choi-operator method. Since the input and output repre-
sentations are R(g) = g⊗2, the Choi operator must com-
mute with the representation (g∗)⊗2 ⊗ g⊗2 [see Eq. (28)].
As SU(2)∗ shares the same irrep structure as SU(2), we
can find that the Choi operator for any completely positive
SU(2)-equivariant map takes the form

J φ = (15 ⊗ A)⊕ (13 ⊗ B)⊕ C, (32)

where A is a non-negative scalar and B and C are com-
plex positive semidefinite matrices of dimensions three and
two, respectively. Thus, the space of such CP equivariant
maps is 12 + 22 + 32 = 14 dimensional.

In the special case of 2-to-2 equivariant unitary
layers, where N l

θ l
: (C2)⊗2 → (C2)⊗2 and N l

θ l
(ρ) =

Ul(θl)ρUl(θl)
†, we know that if Ul(θl) = e−iθlHl , it suffices

to use equivariant generators, i.e., such that [Hl, g⊗2] = 0
for all g ∈ SU(2). Here, we can use the Schur-Weyl dual-
ity [44,145], which states that the only possible equivariant
operators are 1 and SWAP, which correspond to the two
elements of the qubit-permutational representation of S2.
Without loss of generality, we can choose Hl = SWAP so
that Ul(θl) = e−iθl SWAP. Following Lemma 2, we know
that if we compose these two-qubit equivariant unitaries as
in Fig. 8, the result will be an n-qubit equivariant unitary.

2. 2-to-1 layers via null space

Next, let us focus on finding 2-to-1-qubit channels
using the null-space approach. Since SU(2) is a Lie
group, we will work at the level of the generators of
its Lie algebra, su(2) = span{X , Y, Z}. Given the repre-
sentations g⊗2 and g, the associated basis representations
of the algebra are {1⊗ X + X ⊗ 1,1⊗ Y + Y ⊗ 1,1⊗
Z + Z ⊗ 1} and {X , Y, Z}. Thus, one needs to simultane-
ously solve for the null space of the following matrices:

MX = adIX+XI

 ⊗ 12 − 14 ⊗ adX ,

MY = adIY+YI

 ⊗ 13 − 14 ⊗ adY,

MZ = adIZ+ZI

 ⊗ 13 − 14 ⊗ adZ .

(33)

Solving, we find five superoperators that form a basis for
2-to-1-qubit (SU(2), g⊗2, g)-equivariant maps. These are

φ1(ρ) = Tr[ρ]
1

2
, φ2(ρ) = Tr[ρ SWAP]

1

2
,

φ3(ρ) = TrA[ρ], φ4(ρ) = TrB[ρ],

φ5(ρ) =
3∑

ijk=1

Tr[ρσiσj ]εijkσk.

(34)
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Notably, in addition to expected SU(2)-equivariant maps
such as trace, partial traces, and SWAP measurement, we
identify a potentially interesting new equivariant map
φ5(ρ) that is dubbed the cross-product map (we further
study its properties in Appendix F). Note that φ1, φ3,
and φ4 are trace preserving while φ5 is trace annihilating.
One can also verify that φ2 may nontrivially alter trace.
As the only map that may do so, we can drop it from
our basis set for being nonphysical. To continue and find
the set of equivariant quantum channels, we first make a
modification to our basis set. In the Pauli basis, we have
φ1 ↔ 2 |1〉〉〈〈1,1| and it is easy to see that both φ3 and
φ4 also contain this term. Thus, we can remove it, leaving
trace-annihilating versions of partial trace, which we will
denote by φ′3 and φ′4. Thus, any TP map must take the form

φ(x, y, z) = φ1 + xφ5 + yφ′3 + zφ′4, (35)

where the coefficients are real numbers. It remains to find
the region such that this channel is CP. This can be done
via the Choi operators of these channels. That is, we would
like to find

{x, y, z ∈ R : J φ1 + xJ φ5 + yJ φ
′
3 + zJ φ

′
4 � 0}. (36)

Note that the coefficients here must be real numbers for the
Choi operator of the sum to be positive (as the Choi oper-
ators in the sum are linearly independent). Requiring the
eigenvalues of this linear combination to be non-negative
yields the feasible region

x, y, z : y + z � 1, and

y + z �
√

3x2 + 4(y2 − yz + z2)− 1.
(37)

This region is illustrated in Fig. 9. Here, we note that
as the set of equivariant channels is convex, this feasible
parameter region is a convex subset of R3.

A crucial aspect to note is that when training the
SU(2)-equivariant QCNN, one can directly train over
the coefficients x, y, and z of each pooling chan-
nel φ(x, y, z) of the form in Eq. (35). When train-
ing an equivariant QCNN, e.g., using gradient descent,
we will obtain parameter updates (x(t+1), y(t+1), z(t+1))←
(x(t), y(t), z(t))− αDt((x(t), y(t), z(t))). To ensure that the
operations remain physical, one would continually solve
the projection at each iteration. This can be turned into the
convex optimization problem

min
x,y,z
‖(x(t+1), y(t+1), z(t+1))− (x, y, z)‖2,

subject to Eq. (37)
(38)

over a convex domain (see Appendix E).

FIG. 9. The region of parameter space leading to CPTP chan-
nels. Using the null-space method, we can find a basis for all
2-to-1 (SU(2), g⊗2, g)-equivariant pooling maps. These can then
be linearly combined to form a general parametrized equivariant
map as in Eq. (35) and we find in Eq. (37) the region in parame-
ters space leading to CPTP channels. Here, we depict said region
as the volume of the hyperbole (red) below the plane (green).

B. Various examples and physical considerations

In this section, we present additional applications of the
methods detailed in Sec. V. In particular, these are now
applied to discrete groups and motivated from practical
problems.

1. Z2 × Z2-equivariant layers

Here, we consider problems with Z2 × Z2 symmetry,
which are common in spin chain models such as the S = 1
Haldane chain [23,140,146], or in classical data on the
two-dimensional plane [45].

We start with a task on n qubits, where the representation
of Z2 × Z2 is given by

Rin(e, e) = 12n , Rin(σ , e) =
∏
i∈O

Xi ⊗ 12n/2 ,

Rin(e, σ) = 12n/2 ⊗
∏
i∈E

Xi, Rin(σ , σ) =
∏

i∈E∪O

Xi.

Here, the sets O and E, respectively, contain the odd and
even qubit labels. From the foregoing, we are interested
in finding all equivariant standard unitary channels where
Rin = Rout. Since the group is small, we can readily employ
the twirling method to determine the set of all equivari-
ant generators. The set of all such generators forms a
subalgebra of the unitary algebra u(2n), which we denote
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uZ2×Z2(2n) and which is given by

uZ2×Z2(2n) = span
R

i
{

Pauli strings with even # of Y’s

and Z’s on both E and O
}

.

Next, let us find pooling channels that are equivariant with
respect to Z2 × Z2. Similarly to the SU(2) case previously
considered, the representations of the group act locally,
meaning that we can again consider local 2-to-1 equiv-
ariant pooling maps and later combine them into a global
equivariant channel (see Lemma 2). On any pair of neigh-
boring qubits, the input representations are {1⊗ 1,1⊗
X , X ⊗ 1, X ⊗ X } and we set the output representation
acting on a single qubit to be {1,1, X , X }. Note that the
output representation is not faithful. As |Z2 × Z2| = 4, we
can again readily apply the twirling procedure. To do so,
we begin with a basis for trace-preserving maps; i.e., matri-
ces in the Pauli-string basis of the form 2 |1〉〉〈〈1⊗ 1| +
|Pout〉〉〈〈Pin|, where Pout 
= 1. A simple counting argument
reveals that there are 48 such matrices. By twirling all
48 maps and extracting a linearly independent set, we
find the following 13-element basis for 2-to-1 equivariant
projective poolings:

ϕ1(ρ) = Tr[ρ]
1

2
, ϕ2(ρ) = Tr[ρ]X , (39)

ϕ3(ρ) = Tr[(1⊗ X )ρ]X , ϕ4(ρ) = Tr[(X ⊗ 1)ρ]X ,
(40)

ϕ5(ρ) = Tr[(X ⊗ X )ρ]X , ϕ6(ρ) = Tr[(Y ⊗ 1)ρ]Y,
(41)

ϕ7(ρ) = Tr[(Y ⊗ X )ρ]Y, ϕ8(ρ) = Tr[(Z ⊗ 1)ρ]Y,
(42)

ϕ9(ρ) = Tr[(Z ⊗ X )ρ]Y, ϕ10(ρ) = Tr[(Z ⊗ 1)ρ]Z,
(43)

ϕ11(ρ) = Tr[(Z ⊗ X )ρ]Z, ϕ12(ρ) = Tr[(Y ⊗ 1)ρ]Z,
(44)

ϕ13(ρ) = Tr[(Y ⊗ X )ρ]Z. (45)

2. Zn-equivariant layers

We now proceed to analyze a problem with Zn sym-
metry, the representation of which cyclically shifts qubits
as R(gt)

⊗n
j=1

∣∣ψj
〉 =⊗n

j=1

∣∣ψj+t mod n
〉
. Such symmetry

arises naturally in condensed matter problems with peri-
odic boundary conditions [25,147,148].

Let us start by finding all equivariant standard unitary
maps where Rin = Rout. Since the group is small, we opt
for the twirling approach. For the sake of implementabil-
ity, we will seek channels composed of one- and two-qubit
gates. We can readily see that the twirl of a single-qubit
generator such as X1 leads to the sum of single-qubit

operators T [X1] = 1/n
∑n

j=1 Xj . Similarly, twirling a two-
body generator will lead to a sum of two-body generators
(e.g., Z1Z2

T−→∑
j ZiZj+1). Notably, these generators lead

to equivariant unitaries of the form Ul = e−iθl(1/n)
∑n

j=1 Xj =∏n
j=1 e−iθlXj /n. The foregoing shows a crucial implication

of outer symmetries (such as Zn): in many cases, equiv-
ariance in unitary layers can be achieved by correlating
parameters of local gates within a layer [97,149].

Note that a necessary condition for the foregoing to
hold is that all the terms in the twirled operator must
be mutually commuting. One can see, however, that the
twirl of Z1Y2 leads to

∑
j Zj Yj+1, which is a global oper-

ator the terms of which are noncommuting and that can
be challenging to implement on near-term devices. An
alternative here is to employ a randomized method. First,
we construct unitaries Ul,O =

∏
j∈O e−iθlZj Yj+1 and Ul,E =∏

j∈E e−iθlZj Yj+1 (where we recall that O and E, respec-
tively, contain the odd and even qubit labels), which are
Zn/2-equivariant. Then, to achieve Zn-equivariance, we
can apply either Ul,O or Ul,E at random and with equal
probability, effectively performing the quantum chan-
nel ρ → (Ul,OρU†

l,O + Ul,EρU†
l,E)/2. This channel can be

readily shown to be Zn-equivariant.
This trick of randomly applying local channels can also

be applied to equivariant layers that have different num-
bers of qubits in the input and output. For example, a
Zn-equivariant projection layer that reduces the number of
qubits from n to n/2 is �Zn : ρ → (Trodd ρ + Treven ρ)/2.
Observe that the output representation has a nontrivial ker-
nel isomorphic to Z2, as the number of qubits is halved.
One can readily extend these ideas to projecting pooling
layer over other outer symmetry groups G, such as Sn-
equivariance: �Sn : ρ → (∑

S TrS ρ
)
/
( n

n/2

)
, where S are

uniformly random subsets of n/2 qubits. The Hoeffding’s
bound implies that only O(log |G|) samples are needed for
this method to converge to within a specified error bound.
In a sense, this is similar to the dropout regularization
technique in neural networks [150].

VII. NUMERICAL EXPERIMENTS

In this section, we numerically compare the per-
formance of SU(2)-equivariant QCNNs constructed in
Sec. VI A against a problem-agnostic QCNN in a quantum
phase-classification task. Similar to the classical problem
of assigning the correct labels to images, the task of clas-
sifying quantum phases of matter can be carried out in
a supervised setting and provides a natural playground
to study the efficiency of equivariant quantum learning
model.

A. Bond-alternating Heisenberg model

The one-dimensional (1D) XXX Heisenberg model
describes the behavior of a 1D chain of spin-1/2 particles
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coupled through the standard Heisenberg interaction
Hamiltonian between nearest neighbors:

H =
∑

i

∑
k=x,y,z

JkSk
i Sk

i+1, (46)

where Si is the spin operators for the ith spin, with S =
(Sx, Sy , Sz) = 1

2 (X , Y, Z) and Jx = Jy = Jz = J . The bond-
alternating XXX Heisenberg model is a generalization of
the regular XXX Heisenberg model, in which the exchange
coupling constant alternates between two different values
J1 and J2:

H = J1

∑
i even

Si · Si+1 + J2

∑
i odd

Si · Si+1. (47)

We consider the model described by Eq. (47) with open
boundary conditions and with both the couplings in the
ferromagnetic regime, i.e., J1,2 > 0. In this case, a trivial
phase and a topologically protected phase are defined by
the expectation value of the partial reflection many-body
topological invariant [141,142,151]. The quantum phase
transition between these two phases occurs at a critical
value of the bond-alternation parameter α = J2/J1. When
α < 1, the system is in the trivial phase; otherwise, the
system is in the topologically protected phase.

The Hamiltonian can be readily seen to possess an
SU(2) symmetry. The symmetry extends to the whole sys-
tem through the tensor-product representation Rin(g) =
Rtens(g) = g⊗n. This is also a symmetry of the phase labels,
as quantum phases are global properties of the ground
states of the model and symmetries of the Hamiltonian are
also symmetries of the ground space. Indeed if [H , g⊗n] =
0 and |ψ〉 is a ground state, then g⊗n |ψ〉 is also a ground
state. Thus, a quantum phase classifier can be endowed
with this inductive bias using the SU(2)-equivariant quan-
tum maps from Sec. VI A. Another inductive bias that
we can utilize is translation symmetry: shifting the qubits
by two sites leaves the model unchanged. One way to
exploit this is parameter sharing within each layer of the
SU(2)-equivariant QCNN, as discussed in Sec. VI B.

B. Defining the learning models

We now describe the learning model in more details.
We use the SU(2)-EQCNN architecture in Fig. 8, where
each standard (convolution) layer consists of two brick-
work (sub)layers of two-qubit SU(2)-equivariant gates of
the form U(θ) = e−iθ SWAP. Due to translation symmetry,
we further enable parameter sharing of two-qubit gates
within each of such sublayers. This leads to having two
parameters for each standard convolution layer. If needed,
we can repeat the standard layers more than once before
applying the pooling layer.

Finally, we choose an equivariant observable operator
Ô to measure at the end of the EQCNN. As discussed in

the previous sections, the final equivariant measurements
belong to the commutant of the output representation Rout

of the last layer of the EQCNN. Now, since we need two
outputs to label the two phases ytrivial = 1 and ytopological =
0, it is tempting to end the EQCNN with a binary mea-
surement on m = 1 qubit. However, from the discussion in
Sec. VI A, we know that the commutant of the defining
representation of SU(2) over a single qubit is the triv-
ial set comm(Rnatural) = {1}. Thus we choose a EQCNN
that ends with m = 2 such that the commutant of g⊗2 con-
tains the nontrivial element SWAP. Conveniently, SWAP has
two eigenvalues ±1, so that we can bind, say, the +1 out-
come to ytrivial and the −1 one to ytopological. We adopt this
strategy, with a little modification to have the output of
the EQCNN, that we will indicate as fθ (ρ), take values in
[0, 1]. Namely, we define

fθ (ρ) = Tr[φθ (ρ) SWAP]+ 1
2

, (48)

where φθ denotes the EQCNN that outputs two qubits in
the last layer. Then, we assign the predicted phase label to
any input state ρ as

yθ (ρ) =
{

trivial, if fθ (ρ) > τ ,
topological, if fθ (ρ) < τ , (49)

for some trainable threshold value τ that is initialized to be
τ = 0.5.

We test this EQCNN architecture against a QCNN with
no inductive biases. In particular, we use a QCNN whose
standard layers are inspired by the hardware efficient
ansatz (HEA) [152], whereas the pooling layers consist of
simple alternate partial traces (at each pooling operation
we discard half of the qubits). The classification will then
proceed as for the SU(2) EQCNN, with a SWAP measure-
ment and phase assignment described in Eq. (49). We dub
the nonequivariant QCNN as the HEA QCNN.

C. Training procedure

We use the standard ML pipeline of supervised
learning:

(1) We collect a training data set DNT
train, where NT is

the size of the data set, by choosing some repre-
sentative values of the parameter J2 while always
keeping J1 = 1 and then analytically computing
the ground states |ψ〉J2/J1

g of the Hamiltonian in
Eq. (47). Knowing the phase diagram of the alter-
nating model, which is shown in Fig. 10, especially
that the critical value at which the transition happens
α = J2/J1 = 1, we can then associate these states
with their true labels y ∈ {0, 1}. In particular, we try
a training data set made of NT = (2, 4, 6, 8, 10, 12)
ground states, always distributed homogeneously in
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FIG. 10. The 1D bond-alternating XXX Heisenberg model
[Eq. (47)] and its phase diagram in terms of exchange coupling
constants J1,2 > 0.

the range J2/J1 ∈ [0, 1]. For example, for NT = 2,
we use D2

train = {(|ψ〉0.25
g , 1), (|ψ〉0.75

g , 0)}.
(2) We initialize the learning model at hand, equivariant

or not, with random parameters θ .
(3) We select an optimizer for the learning model. In our

case, we always use ADAM [153], the gold standard
of gradient-based optimization in ML.

(4) For a number of epochs E, we divide the training
data set DNT

train into batches of size nbatch = 2. For
each batch, the training states |ψi〉 are processed by
the model to output the predicted label yθ (|ψ〉) and
the mean-squared-error loss function is computed
by comparing the predictions to the real labels yi:

Lθ = 1
nbatch

nbatch∑
i=1

(yθ (|ψi〉)− yi)
2. (50)

We then compute the gradient of Lθ and use the opti-
mizer to update the parameters of the model. The
goal is to minimize Lθ .

(5) The QCNN outputs for the training states are used
to update the threshold τ . In particular, only the two
training points that are closer to the critical value
α = 1 are considered and the threshold value is set
to the average of the corresponding outputs.

(6) As an additional figure of merit for the training, we
keep track of the prediction accuracy of the model.

(7) At the end of the last epoch, we let the model predict
the labels of the whole test data set and we compute
its final accuracy as a measure of the goodness of
the training. Then, we also plot the predicted phase
diagram to get a visual proof of the performance of
the model.

D. Training results

We are now ready to illustrate the results of our numer-
ics. First, we must state that we have not been able to
train the EQCNN when using the general 2-to-1 pool-
ing layers described in Sec. VI A, as the projection step
[Eq. (38)] onto the feasible CPTP region seems to cause
instability in the optimizing procedure. We leave a full

numerical analysis of equivariant quantum learning mod-
els to a future upcoming work and here focus on the more
simple tracing pooling operations. That is, the EQCNN
architecture is still the one depicted in Fig. 8 but the pool-
ing operations are just 2-to-1 partial trace channels, cor-
responding to the solution φ3 in Eq. (34). In other words,
the SU(2) EQCNN and HEA QCNN use the same pooling
layers (but still different convolution layers—equivariant
versus HEA). The training results are illustrated in Figs. 11
and 12.

We have considered system sizes ranging from N = 6 to
N = 13 and trained both the EQCNN and the HEA QCNN
according to the training loop described in Sec. VII C
for a fixed number of training epochs E = 750. Since
the two architectures are very different and the EQCNN,
as opposed to the HEA QCNN, uses parameter sharing,
in order to have a fair comparison we have decided to
stack multiple standard layers before each pooling one in
the EQCNN, in such a way as to have a similar amount
of training parameters for both the learning models. In
Fig. 11, we show the predicted phase diagrams for N = 12
and N = 13. The thing that immediately stands out is
Fig. 11(d). While the other three plots basically showcase
similar behavior, with the QCNN at hand being able to effi-
ciently separate the two phases of the alternating model,
Fig. 11(d) shows a cloudy behavior of the HEA-QCNN
predictions, as it has assigned different phases even for
states with similar parameters α. This is in sharp con-
trast with the trained EQCNN [Fig. 11(c)], which has
successfully learned to classify the two phases with excel-
lent accuracy, demonstrating the advantage of equivariant
models.

Interestingly, for the N = 12 qubit case [Figs. 11(a)
and 11(b)], the EQCNN does not significantly outperform
the HEA QCNN. This is due to fact that there is actually no
need for equivariance in that case. Indeed, equivariance is
meant to enhance the performance of learning models that
deal with labels that are invariant under some symmetry
group but this invariance should not come from the invari-
ance of the input states themselves. Think yet again of the
classical problem of classifying images of cats and dogs:
the labels, i.e., the semantic meanings of the images, are
invariant if we translate the images but the images them-
selves are not translation invariant. On the other hand, if we
translate images that are full of either black or white pixels,
instead of showing cats and dogs, the labels (the colors)
of the images are translation invariant simply because the
images do not change. This is what is happening in our
case. We have already discussed that if a Hamiltonian H
is symmetric under a group G, any unitary representa-
tion of it, UG, leaves the ground space unchanged. For a
nondegenerate ground space, this means that the unique
ground state is invariant under the group action, in analogy
to the above black and/or white image example, and thus
equivariant learning models are not needed. For degenerate
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FIG. 11. The predicted phase diagrams. The four panels show the phase diagram of the 1D bond-alternating XXX Heisenberg model
for system sizes of N = 12 and N = 13 qubits, as reconstructed by a trained SU(2) EQCNN or HEA QCNN. In particular, each
panel shows the QCNN output when it is tested against a data set of 500 homogeneously distributed ground states. States the output
of which is above (below) the optimal threshold τ (green dashed line) are colored in blue (red) and classified as belonging to the
trivial (topological) phase. The training points are shown as black crosses. The vertical solid black line is the theoretical critical value
J2/J1 = 1. The configurations leading to the panels are the following: (a) SU(2) EQCNN, N = 12, 60 trainable parameters, 12 training
points; (b) HEA QCNN, N = 12, 63 trainable parameters, 12 training points; (c) SU(2) EQCNN, N = 13, 66 trainable parameters, 12
training points; (d) HEA QCNN, N = 13, 66 trainable parameters, 12 training points. Details about the training procedure are given in
the main text.

ground states, i.e., when the Hamiltonian symmetry is bro-
ken, the symmetry group action does change the ground
states nontrivially and it rotates them within the ground
space. Degenerate ground states are akin to images of
cats and dogs and, as such, equivariance can finally shine.
Indeed, the alternating model is degenerate for odd sys-
tem sizes, while for even system sizes the ground state
is unique. This explains the different behavior shown in
Fig. 11 between N = 12 and N = 13.

The foregoing discussion also motivates the analysis
shown in Fig. 12. There, we show a statistical study of
the performance of the EQCNN and the HEA QCNN
when tackling even and odd system sizes. As is evident
from Fig. 12(a), enforcing equivariance when it is not
needed can be more detrimental than beneficial. Indeed,
the reduced expressibility of the learning model is not com-
pensated by any benefit and training instabilities emerge,
as evidenced by the large error bars in Fig. 12(a). However,

when there is a reason to use equivariance, as there is for
the odd-size states studied in Fig. 12(b), the advantage
of using the EQCNN against a noninformed one is clear.
Already, with only two training points, the equivariant
QCNN performs very well, while the HEA QCNN needs
more training data to generalize well. Interestingly, even
with a minimum number of trainable parameters—that
for the system sizes studied ranges from four to six—the
EQCNN seems to perform better than the nonequivariant
one.

As stated at the outset, this is only a preliminary analysis
on a simple learning task and as such we postpone any gen-
eral conclusions until further studies on the performance
of equivariant quantum learning models on more complex
systems, against different nonequivariant architectures, and
for different symmetry groups. Nonetheless, we think that
the preliminary numerical results shown in this section hint
at confirming that injecting inductive biases into quantum
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FIG. 12. The actual power of equivariance, showing the mean and variance of the testing accuracy reached by trained QCNNs on the
bond-alternating Heisenberg model of (a) even and (b) odd sizes. The average is conducted on both the chosen sizes, (6, 8, 10, 12) for
the even case and (7, 9, 11, 13) for the odd one, and on ten different randomly initialized training runs for each problem size. The results
are plotted against the number of training data points, NT. The blue circles refer to the EQCNN with the same number of parameters
as the HEA QCNN (orange stars). The green circles describe the EQCNN with the minimum number of parameters possible, i.e., the
architecture, as it is, in Fig. 8, with only two standard layers before each pooling layer. These plots demonstrate that equivariance
provides significant improvements when, and only when, there is degeneracy in the ground space.

neural networks boosts their performance, paving the way
to the design of new more efficiently implementable and
trainable variational quantum ML models.

VIII. DISCUSSION AND OUTLOOK

Geometric QML is a new and exciting field that seeks
to produce helpful inductive biases for QML models based
on the symmetries of the problem at hand. While several
proposals already exist in the literature within the field of
GQML [44–48,52], these mainly deal with unitary models
that maintain the same group representation throughout the
computation. In this work, we generalize previous results
and we present a theoretical framework to understand,
design, and optimize over general equivariant channels,
which we refer to as EQNNs. While presented in the set-
ting of supervised learning, our work is readily applicable
to other contexts such as unsupervised learning [105,106],
generative modeling [107–110], or reinforcement learning
[111,112].

Our first main contribution is a characterization of the
action of equivariant layers as generalized Fourier actions.
We argue that the isotypic decomposition of the represen-
tation of the symmetry determines a generalized Fourier
space over which the EQNNs act. This realization not only

allows us to characterize the number of free parameters
in an EQNN but it also unravels the crucial importance
that the choice of representation has. That is, different rep-
resentations have different block-diagonal structures and,
hence, can act on different generalized Fourier spaces and
see different parts of the information encoded in the quan-
tum states. Then, we provide a general classification of
EQNN layers, introducing the so-called standard, embed-
ding, pooling, projection, and lifting layers, and we note
that nonlinearities can be introduced via multiple copies of
the data. As a by-product, we highlight the exciting possi-
bility of accessing higher-dimensional irreps of the group
symmetry via these nonlinearities, which can be a venue to
access information that would otherwise be unavailable.

Our next main contribution is the description of three
methods to construct EQNN layers. In the first, which we
call the null-space method, we map the equivariance con-
straints to a linear system of matrix equations and then
solve for their joint null space. The second method lever-
ages the technique of twirling over a group, whereby a
channel is projected onto the space of equivariant maps.
In our third method, we use the Choi operator of the map
to create equivariant layers with specific irrep actions. Our
methods can find unitary or nonunitary equivariant layers
efficiently even when the symmetry group is exponentially
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large, rendering applications for groups that are inacces-
sible using existing methods in prior literature. We then
compare the strengths and shortcomings of each method,
presenting scenarios in which one should be favored over
the other. Our final key contribution is to show how to
parametrize and optimize EQNNs. In particular, since our
work seeks to find equivariant channels, we discuss how
one can guarantee that the ensuing maps are physical
and potentially easy to implement. To finish, we exem-
plify our methods by generalizing standard QCNNs to
group-equivariant QCNNs and we show how to create,
from the ground up, an SU(2)-equivariant QCNN. Finally,
we apply this model to a quantum phase-classification
task on the 1D bond-alternating Heisenberg model and
numerically demonstrate its superior performance over a
symmetry-agnostic QCNN.

A. Equivariance versus barren plateaus, local minima,
and data requirements

Here, we argue why EQNNs can alleviate some of the
crucial issues in QML, such as barren plateaus, excessive
local minima, and poor data requirements.

First, we recall that the barren-plateau phenomenon
refers to the exponential concentration of gradients exhib-
ited by certain variational quantum models that result in
an exponential flattening of the training landscape and,
concomitantly, in an exponential demand of measurement
shots to accurately resolve a parameter update [27–41].
The presence or absence of barren plateaus has been
directly linked to the expressibility of the model [31,35,
36,39], such that highly expressible architectures exhibit
smaller gradients. In our context, the imposition of symme-
try constraints to the quantum neural network is expected
to shrink—in a problem-oriented way—its expressibility,
alleviating such gradient-vanishing issues.

Another challenge in training QML models is spuri-
ous local minima in the loss landscape. It is known that
agnostic models exhibit landscapes that are plagued by
local minima [154–157]. However, it is also known that
there exists a critical number of trainable parameters above
which the model can become overparametrized, meaning
that all spurious local traps disappear [158]. While reach-
ing the overparametrization regime requires exponentially
deep circuits for agnostic ansatzes, it has been proven that
certain architectures (with reduced expressibilities) can be
efficiently overparametrized with polynomial depth. Thus,
the hope is that by restricting the expressibility of the
model via geometric priors, one can reduce and realisti-
cally reach the overparametrization threshold, thus getting
rid of fake local minima.

Finally, we discuss sample complexity. The ultimate
goal of supervised ML is to make predictions on unseen
data. This is often characterized by generalization bounds,
which measure the difference between the performance of

the learned model on training and testing data. Recent
work has studied the training sample complexity needed
for QML models to generalize [25,159–161]. In particu-
lar, in Ref. [25] it has been shown that the training sample
complexity typically scales polynomially with the number
of trainable parameters. Given a trainable QNN, we have
seen that imposing equivariance can drastically reduce the
numbers of free parameters, thus implying that incorpo-
rating equivariance allows for stronger (more optimistic)
bounds on generalization performance. Further, the bounds
of Ref. [25] are statistical and worst-case (over all possi-
ble learning tasks), meaning that EQNNs when applied to
the corresponding symmetric learning tasks could poten-
tially achieve better generalizations than indicated by these
bounds.

While the previous arguments merely indicate why
equivariance can improve the performance of a model (in
terms of trainability and generalization), these do not con-
stitute a proof that equivariance can indeed fulfill these
promises. However, we refer the reader to the recent work
of Ref. [96] which studies Sn-equivariant models and rig-
orously proves that the equivariance constraints lead to an
architecture that avoids barren plateaus, can be efficiently
overparametrized, and generalizes well with only polyno-
mially many training points. Thus, the results in Ref. [96]
showcase the extreme power of EQNNs and GQML.

B. Implications of our work and future directions

Many concepts and results in our work can be thought
of as quantum analogues of existing classical techniques
that have enjoyed tremendous success [14]. We envision
that GQML will soon be a thriving field, as it provides
blueprints to create arbitrary architectures and inductive
biases suitable for a given problem. As such, the first direct
application of our work is building appropriate schemes
to embed classical data into quantum states. Currently,
most proposals dealing with classical data use problem-
agnostic embedding architectures that completely obviate
and destroy the symmetries in the input data [38,113,162].
As such, it is crucial to create embedding schemes that
will preserve said symmetries and promote them from the
classical to the quantum realm.

As the main challenge of near-term quantum hardware
is noise, a most important future research direction is
to study the interaction of noise and equivariance. Here,
there are two possible paths. On one hand, one can accept
that noise will break equivariance and study the effects
of such approximate equivariance. Interestingly, it has
been observed in the ML literature that mildly breaking
equivariance can improve the performance over strictly
equivariant models in certain tasks [163]. On the other
hand, one can attempt to equivariantize the noise. Being
framed in the general superoperator formalism, the present
work contains all the necessary tools to study and develop
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symmetrization strategies to project noise into the sym-
metric subspace of a given group representation. Finally,
near-term computation will also be limited in resources
(e.g., circuit depth, hardware connectivity, etc.), which
could prohibit exact equivariance enforcement. Can we
derive “cheaper” EQNNs at the cost of only approximate
equivariance enforcing? How well do EQNNs perform as
a function of the symmetry breaking?

Note added.—There have recently been a number of
follow-up works exploring the methods and open ques-
tions discussed in our work to develop EQNNs and GQML
applications in various contexts. For example, Refs. [164–
167] use the twirling method to construct QNNs equivari-
ant to finite groups, with applications ranging from calcu-
lating molecular force fields and quantum phase detection
to image classification. These works all provide numer-
ical results demonstrating improved performance using
EQNNs. In Ref. [168], a method is proposed based on spin
networks that is shown to be equivalent to the Choi method
and it is applied to several lattice Hamiltonian models. In
Ref. [169], the authors study the role of choosing represen-
tations in EQNN performance. In Ref. [170], the authors
study the behavior of EQNNs in the presence of noise and
derive strategies to protect equivariance.
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APPENDIX A: EQUIVARIANCE IN EXISTING
QUANTUM ALGORITHMS

In this appendix, we discuss some notable (nonvaria-
tional) quantum algorithms from the perspective of group

equivariance. While not explicitly mentioned in the origi-
nal works, these algorithms rely on equivariant operations.
This shows the significance of equivariance in designing
quantum algorithms beyond variational QML.

1. Quantum state purity

Computing the purity Tr[ρ2] is a canonical task in
quantum information theory. Since the purity is unitary
invariant, it should be expected that algorithms aiming at
measuring it must use unitary-equivariant transformations.
We consider two algorithms in Refs. [98,99] and show that,
indeed, these use equivariant operations as defined in this
work.

The Bell-basis algorithm described in Ref. [98, Fig. 6]
starts from two copies of ρ and performs a change of basis
to the Bell basis before measuring the observable CZ⊗n

(controlled-phase). This is equivalent to simply measur-
ing the equivariant observable SWAP⊗n, which belongs to
the commutant of the representation R(U) = U⊗2 of U(2n),
such that Tr[ρ⊗2 SWAP⊗n] = Tr[U⊗2ρ⊗2U†⊗2 SWAP⊗n] for
any U ∈ U(2n).

In contrast, the algorithm in Ref. [99] only uses one
copy of ρ and is based off tools from random matrix
theory. It starts by appending m− n (where 2n � 2m)
zero-initialized qubits to the n-qubit state ρ. Then, a ran-
dom m-qubit unitary is applied on the composite system.
Finally, a 2n-dimensional projective measurement is per-
formed, where one estimates the probability of obtaining
some (fixed) outcome |k〉, Pr(k). This procedure is repeated
many times to estimate 〈Pr(k)2〉 (with the average taken
over the random distribution of m-qubit unitaries), from
which one infers the purity as Tr[ρ2] = 2m〈Pr(k)2〉 − 1.
Here, we show that this algorithm is effectively composed
of equivariant transformations. Observe that

〈Pr(k)2〉 =
∫

U∈U(2m)
dμ(U)

× Tr[(ρ ⊗ |0〉 〈0|m−n)U
† |k〉 〈k|U]2

=
∫

U∈U(2m)
dμ(U)

× Tr[(ρ ⊗ |0〉 〈0|m−n)
⊗2U†⊗2 |kk〉 〈kk|U⊗2]

= Tr
[
(ρ ⊗ |0〉 〈0|m−n)

⊗2

×
∫

U∈U(2m)
dμ(U)U†⊗2 |kk〉 〈kk|U⊗2

]
. (A1)

We can interpret Eq. (A1) as follows. The first step
is ρ → (ρ ⊗ |0〉 〈0|)⊗2, which is a (U(2n), Rin, Rout)-
equivariant nonlinear embedding (Definition 9), where we
define Rin(U) = U and Rout(U) = (U⊗ 1m−n)

⊗2 for U ∈
U(2n). The second step is measuring the observable Õ =∫

U∈U(2m) U†⊗2 |kk〉 〈kk|U⊗2, which commutes with Rout due
to the invariance of the Haar measure of U(2m).
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2. Quantum convolutional neural networks (QCNNs)

Quantum convolutional neural networks (QCNNs) have
been proposed in Ref. [23]. The architecture presented
takes inspiration from classical CNNs [1] and relies on
local gates with (potentially) shared parameters in between
the gates belonging to the same layer. As an example
of application, a QCNN is used to classify phases of
the ground states of a Haldane chain [146]. Of particu-
lar relevance, the Hamiltonian Hhal of the Haldane chain
can be verified to commute with the group of symmetry
Z2 × Z2 ≡ {1, r, s, rs}, with unitary representation of the
generators r and s given by R(r) = Xeven ≡

∏
i even Xi and

R(s) = Xodd ≡
∏

i odd Xi. Since the nature of the ground
state of Hhal does not change under the action of these uni-
taries, we identify G = Z2 × Z2 as the symmetry group of
the task.

For this ground-state classification problem, two
QCNNs have been studied in Ref. [23]: one trainable
(see Ref. [23, Supplementary Fig. 2]) and one “exact”
(see Ref. [23, Fig. 2b]; reproduced in Fig. 13) that is
obtained based on the multi-scale entanglement renormal-
ization ansatz (MERA) representation of the ground states
of Hhal. Remarkably, close inspection of the exact QCNN
reveals that it is composed of equivariant layers and mea-
surement. That is, the exact model for this task follows the
framework of EQNNs laid down in this work. However,
one can see that the choice of trainable model adopted in
Ref. [23] does not comply with equivariance requirements,
such that we expect that it could be further improved by
imposing equivariance. In the following, we briefly discuss
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FIG. 13. The reproduction of the “exact” QCNN architectures
used in Ref. [23] for the classification of the ground states of
the Haldane model: C, convolution; P, pooling; FC, fully con-
nected. The blue three-qubit gates are Toffoli gates, with control
qubits taken in the X basis. The orange two-qubit gates apply a
Pauli Z onto the target qubit when an X measurement of the con-
trol qubit results in an outcome of −1 but leaves the target qubit
unchanged otherwise. The black two-qubit gates are CZ gates.
The green interleaved lines correspond to a SWAP of two qubits.
The C-P structure is repeated L times until the system is left with
only three qubits.

how one can identify equivariance of the different layers of
the exact QCNN.

First we consider the action of a convolution layer
(denoted “C” in Fig. 13 and excluding the SWAP opera-
tions) onto R(r). Using the identity

and noting that, due to the connectivity of the controlled-Z
(CZ) gates, the resulting Zs unitaries acting on any of the
qubits can only be created by pairs (yielding an identity),
one can verify that R(r) commutes with the action of all
the CZ gates. Additionally, given that both the controls and
target of the Toffoli gates act on the eigenbasis of X oper-
ators, one can see that R(r) commutes with the action of
the whole convolution layer. Similar reasoning shows that
such commutativity properties also hold true for R(s) and
thus for R(rs). Overall, we find the convolution layers to
be (G, R, R)-equivariant.

Second, we consider the action of the pooling layer
(denoted P in Fig. 13 and including the SWAP oper-
ations). One can verify that φpool ◦ AdR(g) = AdR′(g) ◦
φpool, where we have denoted as φpool the map realized by
the pooling from n to n/3 qubits and by R′(g) the repre-
sentation of g ∈ G on this reduced space. In particular, R′
is defined in equivalence to R but over a reduced number
n/3 of qubits. Overall, we find the pooling layers to be
(G, R, R′)-equivariant.

Finally, note that the measurement realized by the fully
connected layer (“FC” in Fig. 13) corresponds to a mea-
surement of the Pauli observable O = ZXZ on the three
remaining qubits. Notably, O ∈ comm(Rout), where Rout

is the representation of G on the remaining qubits and
is defined as Rout(r) = XIX and Rout(s) = IXI . That is,
we find the measurement to be (G, Rout)-equivariant, such
that the overall exact QCNN follows the requirements of
Proposition 1, ensuring invariance of the model.

3. Quantum enhanced experiments

The quantum enhanced experiment in Ref. [21] lever-
ages coherent access to multiple copies of a quantum
state obtained from physical experiments to learn its prop-
erties. In their “predicting observables” task (Ref. [21,
Theorem 1]), the goal is to predict the absolute value
of an n-qubit Pauli observable O on states of the form
ρ = (1+ 0.9sP)/2n, where P is also an n-qubit Pauli
string and s ∈ {0,±1}. Note that this task is Pauli invari-
ant, since for any Pauli string σ , we have that |Tr(ρO)| =
|Tr(σρσO)|. The first step in the authors’ algorithm is to
add a copy: ρ → ρ⊗2, which is a nonlinear equivariant
layer as defined in Definition 11. Then, a Bell measurement
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is performed, followed by classical postprocessing. Let G = {σ : n-qubit Pauli strings} and consider the following rep-
resentations of G: Rdef(σ ) = σ and R2(σ ) = σ⊗2. The authors have derived the following equation (see Sec. D.2 of the
Supplementary Materials of Ref. [21]):

|Tr[ρO]| = E

[
Tr

[
O⊗ O

n⊗
k=1

Sk

]]
, (A2)

where Sk is the Bell projector corresponding to the Bell-measurement result on qubit pair k. That is, Sk = |�k〉 〈�k| for a
Bell state |�k〉. Expanding Eq. (A2), we have

|Tr[ρO]| =
∑
|�1...�n〉

Tr
[
O⊗2 |�1 . . . �n〉 〈�1 . . . �n|

] 〈�1 . . . �n| ρ⊗2 |�1 . . . �n〉

= Tr

⎡
⎣ρ⊗2

∑
|�1...�n〉

|�1 . . . �n〉 〈�1 . . . �n|O⊗2 |�1 . . . �n〉 〈�1 . . . �n|
⎤
⎦

= Tr[ρ⊗2Õ]. (A3)

We can see that after adding another copy of ρ, the algorithm effectively performs a measurement of the observable Õ. It
is readily verified that Õ commutes with R2 using the fact that, for any single-qubit Pauli σ , the operator σ⊗2 admits the
Bell states |�k〉 as eigenvectors with eigenvalues ±1. Hence, the entire algorithm is Rdef-invariant.

4. Classical shadows

Classical shadows is an efficient protocol for predicting observables on quantum states using randomized measurements
[100]. In this protocol, one applies a random unitary U drawn from a unitary ensemble E on the state ρ, then performs a
computational basis measurement to obtain a bit string z. For example, in Ref. [100], the authors have considered Pauli
and Clifford ensembles. Repeating this process many times allows one to predict properties of ρ. We first consider E to be
the n-qubit Clifford group. The expected classical shadow (see Sec. 5.B of the Supplementary Information of Ref. [100])
can be rewritten as

Ez,U[(2n + 1)U† |z〉 〈z|U− 1] = (2n + 1)
∑

z

1
|E |

∑
U∈E

U† |z〉 〈z|U Tr[|z〉 〈z|UρU†]− 1

= (2n + 1)TrB

⎡
⎢⎢⎢⎢⎣
(

1
|E |

∑
U∈E

U†⊗2

(∑
z

|zz〉 〈zz|
)

U⊗2

)

︸ ︷︷ ︸
Õ

(1⊗ ρ)

⎤
⎥⎥⎥⎥⎦− 1, (A4)

where TrB denotes the partial trace over the second subsystem.
Note that the sum over E is equal to the Haar integral over U(2n), as the Clifford group forms a 3-design [171], i.e.,

Õ = ∫U∈U(2n) dμ(U)U†⊗2OU⊗2, where O :=∑z |zz〉 〈zz|. Thus, Õ commutes with the representation R2(U) := U⊗2 of
U(2n). We can therefore interpret Eq. (A4) as a composition of three equivariant layers in Definition 9:

ρ
Embedding−→ 1⊗ ρ Standard−→ Õρ

Pooling−→ TrB[Õ(1⊗ ρ)]. (A5)

The corresponding representations transform as

Rdef
(G,Rdef,R2)-equivariant−→ R2

(G,R2,R2)-equivariant−→ R2
(G,R2,Rdef)-equivariant−→ Rdef. (A6)
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Next, we consider E to be the Pauli ensemble. The expected classical shadow is

Ez,U

⎡
⎣ n⊗

j=1

(3U†
j

∣∣zj
〉 〈

zj
∣∣Uj − 1)

⎤
⎦

=
∑

z

1
|E |

∑
U∈E

n⊗
j=1

(3U†
j

∣∣zj
〉 〈

zj
∣∣Uj − 1)Tr[|z〉 〈z|UρU†]

= TrB

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1
|E |

∑
U∈E

n⊗
j=1

U†⊗2
j

⎛
⎝∑

zj

3
∣∣zj zj

〉 〈
zj zj

∣∣− 1⊗ ∣∣zj
〉 〈

zj
∣∣
⎞
⎠

︸ ︷︷ ︸
Mj

U⊗2
j

⎞
⎟⎟⎟⎟⎟⎠
(1⊗ ρ)

⎤
⎥⎥⎥⎥⎥⎦

= TrB

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

n⊗
j=1

∫
Uj ∈U(2)

U†⊗2
j Mj U⊗2

j

︸ ︷︷ ︸
M̃j

⎞
⎟⎟⎟⎟⎠ (1⊗ ρ)

⎤
⎥⎥⎥⎥⎦

= TrB
[
M̃ (1⊗ ρ)] , (A7)

where in the last equality we have used the fact that the
one-qubit Pauli group forms a 3-design of U(2). By explic-
itly evaluating the integral, we find that M̃j = SWAP, thus
M̃ = SWAP⊗n, which commutes with the representation
R2. A similar composition of equivariant layers to Eq. (A5)
thus follows.

APPENDIX B: EQUIVARIANT MAPS AS
GENERALIZED GROUP CONVOLUTIONS IN

FOURIER SPACE

In this appendix, we provide further details on the
interpretation of classical equivariant maps as generalized
group convolutions, given in Sec. IV A. More specifi-
cally, by looking at the Fourier space, we find that group
convolution is a special case of equivariant maps when
the representation is the regular representation. We first
consider a finite group G and later the Lie group.

Recall that the group convolution of two vectors a, b ∈
C|G| (also known as functions mapping group elements to
scalars) is defined as

(a � b)(u) =
∑
v∈G

a(uv−1)b(v). (B1)

Note that the above expression can be rewritten as a matrix
vector multiplication as follows:

a � b = Ab, where A =
∑
u∈G

a(u)Rleft(u). (B2)

Here, Rleft denotes the left regular representation of the
group G, which maps each group element u to a per-
mutation matrix Rleft(u) that performs Rleft(u) |v〉 = |uv〉.
For example, in CNNs [1], the convolution matrix A is a
circulant matrix, since the group Zn × Zn is Abelian.

The key property here is that the group Fourier trans-
form, FG :=∑v∈G

∑
ρ∈Ĝ

√
dρ/|G|

∑dρ
i,j=1 ρ(v)j ,k |ρ, j , k〉

〈v|, block diagonalizes the left regular representations into
irreps as [91]

Rleft(u) = F†
G

⎛
⎝⊕
ξ∈Ĝ

ξ(u)⊗ 1dξ

⎞
⎠FG, (B3)

where Ĝ denotes the set of inequivalent irreps of G and dξ
is the dimension of the irrep ξ .

Thus, under FG, the convolution matrix A is block
diagonalized as

A ∼=
⊕
ξ∈Ĝ

â(ξ)⊗ 1dξ , (B4)

where â(ξ) :=∑u∈G a(u)ξ(u) is the Fourier transform of
the kernel c and Ĝ is the set of inequivalent irreps.

Comparing Eqs. (13) and (29) to Eq. (B4), we see that
equivariant channels generalize group convolution. Group
convolutions are then equivariant maps to the regular rep-
resentation, where the multiplicities mξ are equal to the
irrep dimensions dξ and the basis is the regular Fourier
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basis. This is why most of he classical homogeneous ENN
architectures [11,12] (ENNs on regular representations)
implement equivariant layers via group convolutions.

We complete this appendix with a similar analysis on
compact Lie groups. For these groups, an irrep decompo-
sition of the regular representation similar to Eq. (B4) also
exists due to the Peter-Weyl theorem [115]. Let U(L2(G))
denote the group of unitary operators on the Hilbert space
of L2-integrable functions on the group G. Then, the left
regular representation, Rleft : G→ U(L2(G)), is defined as
Rleft(u)f (x) = f (u−1x), for u ∈ G and f ∈ L2(G).

Theorem 6 (Peter-Weyl theorem). Let G be a com-
pact group. Then, the regular representation Rleft : G→
U(L2(G)) is isomorphic to a direct sum of the irreducible
representations of G:

Rleft ∼=
⊕
ξ∈Ĝ

ξ ⊗ 1dξ . (B5)

Above, the isomorphism is the group Fourier trans-
form, which maps functions f ∈ L2(G) to operator-
valued functions, f̂ (ξ) = ∫G dμ(u)f (u)ξ(u). The Lie
group convolution is similarly defined as (f � k)(u) :=∫

G dμ(v)f (uv−1)k(v) for f , k ∈ L2(G). One can verify
that it is possible to derive a block diagonalization of f
in the Fourier basis similar to that in Eq. (B4). Note that
the sum over inequivalent irreps in Eq. (B5) is infinite,
as Lie groups have infinitely many inequivalent irreps. In
contrast, for Lie-group representations on finite qubit sys-
tems (as we consider in this work), the EQNN equivariant
layers only process irreps up to some truncated irreps.

APPENDIX C: DEFERRED PROOFS

In this appendix, we present proofs for some of the
results in the main text. For the convenience of the reader,
we recall the statement of the theorems and propositions
prior to their proofs.

1. Deferred proofs from Sec. IV

Theorem 7 (Free parameters in equivariant chan-
nels). Let the irrep decomposition of R := Rin∗ ⊗ Rout

be R(g) ∼=⊕q Rq(g)⊗ 1mq . Then, any (G, Rin, Rout)-
equivariant CPTP channels can be fully parametrized via∑

q m2
q − C(Rin, Rout) real scalars, where C(Rin, Rout) is a

positive constant that depends on the considered represen-
tations.

Proof of Theorem 3. Let φ be a (G, Rin, Rout)-equivariant
channel. By Theorem 1 and Lemma 1, the Choi oper-
ator J φ is decomposed as J φ ∼=⊕Q

q=1 1dq ⊗ J φq , where
each J φq is an operator in an mq-dimensional subspace cor-
responding to the irrep decomposition R := Rin∗ ⊗ Rout.

For convenience of notation, we will denote as HB ⊗HA
the Hilbert space over which J φ acts. Imposing J φ � 0
(CP) is equivalent to imposing J φq � 0 for each irrep q.
An mq-dimensional complex positive semidefinite opera-
tor is parametrized by m2

q real scalars, for a total of
∑

q m2
q

parameters. Next, we impose TP via TrB[J φ] = 1A, where
1A denotes the identity over HA.

Let the change of basis in the irrep decomposition be W,
i.e., J φ = W†(

⊕Q
q=1 1dq ⊗ J φq )W, where we have dropped

the superscript φ for brevity. The TP condition reads

TrB[J φ] = 1A

=
∑

j

(〈j |B ⊗ 1A)W†

⎛
⎝

Q⊕
q=1

1dq ⊗ J φq

⎞
⎠W(|j 〉B ⊗ 1A)

=
∑

j

T†
j

⎛
⎝

Q⊕
q=1

1dq ⊗ J φq

⎞
⎠ Tj , (C1)

where Tj = W(|j 〉B ⊗ 1A). Vectorizing the above equation,
we can use the property vec(M1M2M3) = (M
3 ⊗M1)

vec(M2) to obtain

D · vec

⎛
⎝

Q⊕
q=1

1dq ⊗ J φq

⎞
⎠ = vec(1A), where

D :=
∑

j∈dim(HB)

T
j ⊗ T†
j ∈ C

dim(HA)
2×(dim(HA)dim(HB))

2
.

(C2)

Let D̃ be the dim(HA)
2 ×∑q m2

q matrix the columns of

which correspond to the nonzero entries in vec
(⊕Q

q=1

1dq ⊗ J φq
)

. Then rank(D̃) = C(Rin, Rout).
It is readily verified that in the nonequivariant case,

i.e., W = 1 and J φ , is fully parametrized, the matrix D̃ =
D is full row rank, in which case imposing TP reduces
dim(HA)

2 free parameters as expected. �

Proposition 3 (Insensitivity to equivalent representa-
tions). Consider an EQNN as defined in Definition 8.
Then, changing an intermediate representation, Rl, to
another representation equivalent to it, VRlV†, where V is a
unitary, does not change the expressibility of the EQNN.

Proof of Proposition 2. Here, we show that changing a
representation to another equivalent representation does
not change the expressibility of the EQNN. In par-
ticular, consider two EQNNs that undergo the same
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representations except at one place,

N : Rin −→ . . . −→ R1 N 1−→ R
N 2−→ R2 −→ . . .

−→ Rout. (C3)

N ′ : Rin −→ . . . −→ R1 N 1′−→ R′
N 2′−→ R2 −→ . . .

−→ Rout, (C4)

where R′ = VRV† for some unitary V.
Observe that the set of (G, R1, R)-equivariant channels

is in one-to-one correspondence to the set of (G, R1, R′)-
equivariant channels. Indeed, for any (G, R1, R)-
equivariant N1, the channel N ′1 = AdV ◦N1 is (G, R1, R′)-
equivariant, as we have that

N 1 = AdR ◦N 1 ◦ Ad
R†

1

= AdR ◦ (AdV† ◦ (N 1′) ◦ Ad
R†

1
⇔ N 1′

= AdVRV† ◦N 1′ ◦ Ad
R†

1
. (C5)

Similarly, we obtain N 2′ = N 2 ◦ AdV† . Thus, N 2′ ◦
N 1′ = N 2 ◦N 1. A similar argument can be made for
changing between equivalent output representations, in
which case there is a bijection between the observables that
commute with Rout and those that commute with Rout′. �

2. Deferred proofs from Sec. V

Theorem 8 (Finite group equivariance). Given a finite
group G with generating set S, a linear map φ is
(G, Rin, Rout)-equivariant if and only if

φ ◦ AdRin(g) − AdRout(g) ◦ φ = 0, ∀g ∈ S. (C6)

Proof of Theorem 4. Given a finite group G and a gen-
erating set S = {h1, . . . , h|S|} ⊂ G, we can identify any
group element g with a sequence κ = (κ1, κ2, . . . , κN )

where κi ∈ {1, . . . , |S|}, such that g =∏N
i=1 hκi [60].

Assuming that the equivariance condition is satisfied for
the generating set, i.e., for any h ∈ S,

AdRout(h) ◦ φ ◦ Ad†
Rin(h)
= φ. (C7)

Then, we can readily show that it is also satisfied for any
g ∈ G:

(
AdRout(hκ1 )

◦ · · · ◦ AdRout(hκ1 )

)

× ◦φ ◦
(

AdRin(hκ1 )
◦ · · · ◦ AdRin(hκ1 )

)†
= φ, (C8)

where we have applied Eq. (C7) N times. �

Theorem 9 (Lie-group equivariance). Given a com-
pact Lie group G with a Lie algebra g generated by s
such that exponentiation is surjective, a linear map φ is
(G, Rin, Rout)-equivariant if and only if

adrout(a) ◦ φ − φ ◦ adrin(a) = 0, ∀a ∈ s, (C9)

where rin and rout are the representations of G induced by
Rin and Rout.

Proof of Theorem 5. Let us start by recalling that for
any element a ∈ g, there is a corresponding ea ∈ G. If
φ is (G, Rin, Rout)-equivariant, then AdRout(g) ◦ φ = φ ◦
AdRin(g), ∀g ∈ G. Differentiating this expression yields
that adrout(a) ◦ φ = φ ◦ adrin(a), where g = ea. Since this
holds for any element a in g, it must hold for the generating
set of g.

We now prove the other direction by first showing that
adrout(a) ◦ φ = φ ◦ adrin(a), ∀a ∈ g assuming that this rela-
tion holds for the generating set s = {a1, . . . , a|s|} of g.
First, we consider the element [ai, aj ] in g as follows:

adrout([ai,aj ]) ◦ φ
= adrout(ai) ◦ adrout(aj ) ◦ φ − adrout(aj ) ◦ adrout(ai) ◦ φ
= φ ◦ adrin(ai)

◦ adrin(aj )
− φ ◦ adrin(aj )

◦ adrin(ai)

= φ ◦ adrin([ai,aj ]).

Recursively applying the above calculation, we find that
adrout(a′) ◦ φ = φ ◦ adrin(a′) for any nested commutator a′ =
[ai1 , [ai2 , . . .]]. Hence, adrout(a) ◦ φ = φ ◦ adrin(a), ∀a ∈ g,
since s generates g. It follows that eadrout(a) ◦ φ = φ ◦
eadrin(a) . Since exponentiation is surjective, for all g ∈
G there is a corresponding a ∈ g such that g = ea and
accordingly eadr(a) = AdR(g). Therefore, AdRout(g) ◦ φ =
φ ◦ AdRin(g), ∀g ∈ G. �

3. Relaxing the assumption of surjectivity

In Theorem 5, we have assumed that the exponentia-
tion map e : g→ G between the Lie algebra and group is
surjective. This lets us work interchangeably at both alge-
bra or group level. However, even when the surjectivity
assumption is relaxed (i.e., when the exponential of the
algebra generates only some subset of the Lie group), there
may still be a finite set of generators such that equivariance
with respect to this set implies equivariance with the entire
group. This happens since the exponential map takes a Lie
algebra to a connected component of the Lie group (that
containing the identity) but Lie groups can have multiple
connected components. In cases in which there are finitely
many connected components and the quotient of the Lie
group with a finite subgroup H yields a connected Lie
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group G/H , the theory does not require much adjustment.
When this holds, one can write the group as

G = egH . (C10)

That is, for all g ∈ G, there exists a ∈ g and h ∈ H such
that g = eah. In Ref. [60], the authors achieve Lie-group
equivariance by imposing the constraint over a basis of g
and a generating set for H . Here, we leverage Theorem 5
to reduce the number of constraints by imposing them over
the connected component generated by g to a generating
set of it.

Theorem 10. Consider a Lie group G with a Lie algebra
g generated by s = {a1, . . . , a|s|} such that G = egH , where
H is a subgroup generated by S = {h1, . . . , h|S|}. Then, a
linear map φ is (G, Rin, Rout)-equivariant if and only if

adrout(ai) ◦ φ = φ ◦ adrin(ai)
∀ai ∈ s, (C11)

AdRout(hi) ◦ φ = φ ◦ AdRin(hi)
, ∀hi ∈ S. (C12)

Proof. As shown in the proof of Theorem 5, if φ is
equivariant, then it commutes with the representation on
the algebra level. Further, it also clearly commutes with the
elements of H . The other direction also follows similarly
from the proof of Theorem 5. From there, we have that
AdRout(g) ◦ φ = φ ◦ AdRin(g), ∀g ∈ eg. Then, by the assum-
ing that φ commutes on H and G = egH , we have that, for
any g = eah,

AdRout(g) ◦ φ = AdRout(eah) ◦ φ
= AdRout(ea) ◦ AdRout(h) ◦ φ
= φ ◦ AdRin(ea) ◦ AdRin(h)

= φ ◦ AdRin(g). �

As an example, consider SO(3) and O(3). Exponen-
tiation of so(3) is surjective on SO(3) and thus we can
take H = {13} (the trivial group). However, O(3) con-
sists of two connected components corresponding to ±1
determinant. Due to determinant being multilinear, one
can map between these components with the subgroup
H = {13, (−1)⊕ 12}.

APPENDIX D: ADVANCED TWIRLING METHODS

In the main text, we have discussed how to obtain
equivariant maps via twirling. Here, we discuss several
advanced techniques to implement the twirling operator.
First, we will show how the twirl of an operator or a map
can be obtained via the Weingarten calculus. Next, we will
showcase two methods for in-circuit twirling, and one for
approximate twirling.

1. Weingarten calculus

The Weingarten calculus [127,128,172] is an extremely
powerful tool that can be used to find the exact expres-
sion of the twirl of an operator over a group. At its core,
the Weingarten calculus leverages the key property that
twirling is equivalent to projecting into the commutant.
Hence, if the commutant of the representation is well
known (e.g., via the Schur-Weyl duality [79,145,173]),
then one can analytically find an expression for the twirled
operator in terms of its components over a basis of the
commutant. In what follows, we exemplify the Weingarten
calculus for twirling an operator when Rin = Rout = R. For
a channel, one can use the techniques presented here by
finding the components of the Choi operator in the com-
mutant of the Rin∗ ⊗ Rout, which can be identified using
the mixed Schur-Weyl duality [79,173].

Given an operator X , a group G, and a representation
R, we already know that the twirl is a projection over the
commutant; i.e.,

TG[X ] =
∫

G
dμ(g)R(g)XR(g)†

=
dim(comm(R))∑

i=1

cμ(X )Pi, with Pi ∈ basis(comm(R)).

(D1)

Hence, in order to solve Eq. (D1), one needs to determine
the dim(comm(R)) unknown coefficients {ci}dim(comm(R))

i=1 .
The foregoing can be achieved by finding dim(comm(R))
such equations and solving a linear system problem. In
particular, note that changing X → XPj for some Pj ∈
basis(comm(R)) leads to

TG[XPj ] =
∫

G
dμ(g)R(g)XPj R(g)†

=
∫

G
dμ(g)R(g)XR(g)†Pj

=
dim(comm(R))∑

i=1

ci(X )PiPj , (D2)

where we have used the fact that Pj commutes with all
R(g). Then, taking the trace on both sides leads to

Tr[XPi] = Tr[TG[XPi]] =
dim(comm(R))∑

i=1

ci(X )Tr[PiPj ].

(D3)

Repeating Eq. (D3) for all Pj ’s in basis(comm(R)) leads
to dim(comm(R)) equations. Thus, one can find the vector
of unknown coefficients c(X ) = (c1(X ), . . . , cdim(comm(R))
(X )) by solving A · c(X ) = b(X ), where b(X ) =
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(Tr[XP1], . . . , Tr[XPdim(comm(R))]). Here, A is a the so-
called Gram matrix, a dim(comm(R))× dim(comm(R))
symmetric matrix with entries [A]ij = Tr[PiPj ]. One can
then solve the linear-system problem by inverting the
Gram matrix, as c(X ) = A−1 · b(X ). The matrix A−1 is
known as the Weingarten matrix.

2. In-circuit twirling with ancillas or classical
randomness

While we usually find the set of equivariant channels
analytically, in the cases of small finite groups, we note
that one could perform the twirling directly on the quantum
circuit using the following unitaries:

Uin =
∑
g∈G

|g〉 〈g| ⊗ Rin(g)†,

Uout =
∑
g∈G

|g〉 〈g| ⊗ Rout(g),
(D4)

along with a = log2 |G| ancilla qubits initialized to the uni-
form superposition state H⊗a |0〉. That is, the in-circuit
twirling of a n-to-m-qubit channel φ can be realized via
the following circuit:

It can be readily verified that this circuit performs the
twirling formula in Eq. (25). With this, φ can be any
parametrized channel native to the circuit platform.

Alternatively, the ancilla qubits can be replaced by clas-
sical randomness. That is, we classically sample a group
element g and then apply Rin†

(g) and Rout(g) as follows:

The latter method can be favorable on near-term devices.
Furthermore, the Hoeffding’s bound implies that only

O(log |G|) classical samples are needed to achieve a good
approximation of the twirled channel.

One disadvantage of in-circuit twirling, however, is
that albeit ensuring equivariance, we lose the parameter-
count reduction, as in the case in which we first compute
equivariant channels analytically before parametrization.

3. Recursive approximate twirling

For Lie groups with more intricate representation the-
ory, computing the twirling formula can quickly become
complex and difficult. Instead, In Ref. [129], the authors
have provided an algorithm for approximating twirling
operators that converges exponentially fast in the num-
ber of Haar-random samples of group elements. While the
authors have not mentioned this, their proofs do not rest
upon any assumptions beyond that the representations that
they consider are unitary representations of compact Lie
groups and the input of the twirling formula is self-adjoint.
Their algorithm can be applied to our case when one can
efficiently sample from the Haar measure and is summa-
rized in Algorithm 1. This approximate twirling algorithm
can also be implemented in circuit using classical random-
ness, similarly to what we saw earlier in the case of finite
groups.

APPENDIX E: IMPLEMENTING AND
OPTIMIZING EQUIVARIANT CHANNELS

1. Channel compiling

In the process of creating equivariant QNNs, we con-
sider not just equivariant unitaries but also more general
quantum channels. Via the Stinespring dilation theorem,
any channel φ : B(HA)→ B(HB) can be represented as a
unitary operation on a larger space:

φ(ρ) = TrE[U(ρ ⊗ |e〉 〈e|)U†], (E1)

where |e〉 is a fixed reference state on the environment E.
The size of this environment system is directly related to
the Kraus rank of φ. Recall that a quantum channel can be
written as

φ(ρ) =
∑

i

KiρK†
i , (E2)

where we say that {Ki} are the Kraus operators of the
channel. Note that the spectral decomposition of the Choi

ALGORITHM 1. Recursive approximate twirling [129].
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operator yields one possible set of Kraus operators. At
most dim(HA) dim(HB) Kraus operators are necessary to
represent any channel [116]. One can then define a unitary
with action,

Uφ =
∑

i

Ki ⊗ |i〉 〈e| + U′, (E3)

where U′ is some arbitrary operator that completes U to be
unitary. Thus, to represent a channel with k Kraus oper-
ators, an environment of dimension at least k suffices.
Working with qubit systems, if the input space is n qubits
and the output m, then the maximum Kraus rank is 2m+n,
which may require an environment of up to m+ n qubits.

We will not go into great detail on how to perform this
circuit compilation but, rather, refer the interested reader
to the considerable body of work on compilation. For
example, a software package for this decomposition with a
nearly optimal controlled-NOT (CNOT) count can be found
in Ref. [174], with corresponding theory in Refs. [175,
176]. For more general works on circuit compilation, we
direct the reader to [25,98,134–136,177,178].

2. Converting vectorized channels to Choi operators

In solving the null space for equivariant maps,
we work with vectorized channels; i.e., φ �→ φ =∑

i,j φi,j |Pi〉〉〈
〈
Pj
∣∣ ,, where Pj and Pi are Pauli strings. In

some references, this is referred to as a transfer matrix. The
canonical construction of transfer matrices is as follows.
Consider the Kraus-operator form of a channel, φ(ρ) =∑

i KiρK†
i . The vectorization map vec(X ) takes a matrix

X to a vector through the mapping

vec(|i〉 〈j |) = |i〉 ⊗ |j 〉 , (E4)

with linear extension. Then, using the identity vec(AXB) =
(BT ⊗ A)vec(X ), one can write a matrix representation of
φ as

φ =
∑

i

K∗i ⊗ Ki. (E5)

This is the transfer matrix. Further, the transfer matrix can
be directly mapped to the Choi operator via

τN = N� , (E6)

where � is an involution map such that

〈i, j |φ |k, l〉 = 〈l, j |φ� |k, i〉 . (E7)

For us to apply this identity, we need to convert from the
transfer matrix in terms of Pauli strings to that of the com-
putational basis. As any |i〉 〈j | can be written as a sum

over Pauli strings, there is some change of basis U from
Pauli strings to the computational operator basis. Explic-
itly, the columns of U will be vectors corresponding to the
expansion of Pauli strings in the computational basis. If we
obtain a matrix in the Pauli basis, X , we can then write it in
the computational basis via UAV−1, where U is the change
of basis on the output space and V is that on the input space.
Further, if we take Pauli strings to be normalized such that
Tr[PiPj ] = δi,j , then U and V can be assumed to be unitary
matrices. In this case,

J φ = (UφV†)� . (E8)

3. Optimizing equivariant channels

We now provide a strategy for optimizing n-to-m-qubit
equivariant channels. Assume that we have found a basis
{φi} for such channels via methods outlined in this work.
Equivariant channels in the span of this basis can then be
written as

φx[·] =
∑
i=1

xiφi[·]+ Tr[·]
2m 1. (E9)

The coefficients must be constrained so that φx is CPTP.
For convenience, we have fixed φ(ρ) = (Tr[ρ]/2m)1 as
one of the basis elements. Without loss of generality,
we can then take all φi to be trace annihilating, i.e.,
Tr[φi(ρ)] = 0. Note that depending on the methods used
to find these maps, we can bake in CP or TP or even
both. Given a valid set of parameters for this pooling layer,
we can classically solve the following circuit-compilation
problem as described before:

(E10)

The top 2n qubits are discarded. U(θ) is a general (2n+
m)-qubit unitary. Note that m+ n is an upper bound on
the number of ancilla qubits needed but depending on
the ranks of the basis channels, we could potentially
need fewer qubits. After solving this classical circuit-
compilation problem, one can then implement it on a real
quantum circuit.

Now that we have a way to implement and parametrize
equivariant channels, we can train them via two
approaches:

(i) projected gradient descent (GD) in the circuit
parameters θ space (parameter-shift rule works)

(ii) projected GD in the classical variables x space
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For more details on projected GD, we refer the reader to
Ref. [126]. Other constrained optimizers can be used as
well.

In the first approach, we treat xi as functions of θ and
train θ via the projected GD algorithm, i.e., perform the
following in each training step:

θ k+ 1
2 = θk − η∇θL (regular GD),

θ k+1 = min
θ ′
‖θ ′ − θ k+ 1

2 ‖ (projection),

subject to: φx(θ ′) is CPTP.

(E11)

In the second approach, we treat θ as functions of xi
and train xi. In this case, however, we cannot use finite-
difference methods to compute the derivatives with respect
to these parameters:

xk+ 1
2 = xk − η∇xL (regular GD),

xk+1 = min
x′
‖x′ − xk+ 1

2 ‖ (projection),

subject to: φx is CPTP.

(E12)

One might also want to recycle the ancilla qubits. This is
possible if we can replace the partial trace operation by a
measurement on the ancillas followed by a controlled uni-
tary (on the possible outcomes). This requires the channel
to be unital, which is the case if the output representation
is irreducible.

Lemma 3. Equivariant channels the output representa-
tion of which is irreducible are unital.

Proof. We require that ϕ(Rin(g)ρRin(g)†) = Rout(g)
ϕ(ρ)Rout(g)† for any g ∈ G. Substituting ρ = 1⊗n and
applying Schur’s lemma, we find that ϕ(1⊗n) = 1⊗m. �

APPENDIX F: SU(2)-EQUIVARIANT
2-TO-1-QUBIT AND 1-TO-2-QUBIT CHANNELS

1. From equivariant maps to channels

Let us first define the five (SU(2), U⊗2, U)-equivariant
linear maps, which we denote as

φ1(ρ) = Tr[ρ]
1

2
, φ2(ρ) = Tr[ρ SWAP]

1

2
,

φ3(ρ) = TrA[ρ],

φ4(ρ) = TrB[ρ], φ5(ρ) =
3∑

ijk=1

Tr[ρσiσj ]εijkσk. (F1)

We will refer to φ5 as the cross-product channel. Here, we
will give slightly more detail on how we find the feasible
region for channels. To see that φ2 may act nontrivially

on the trace of an input, we consider its vectorization in
the Pauli basis. The row corresponding to |1out〉〉〈〈P| con-
tains all information about Tr[φ2(ρ)], as 1 is the only Pauli
string of nonzero trace. One can show that Tr[ SWAP(σi ⊗
σj )] = 2δij and thus φ2(σi ⊗ σi) = 1/2. But this is prob-
lematic, as Tr[φj (σi ⊗ σi)] = 0 for j ∈ {1, 3, 4, 5}. Thus,
φ2 increases the trace of a state such as 1

2 (I + XX ) but none
of the other maps could cancel out this increase. Thus, we
drop φ2 from our set of maps.

To finish finding the feasible region, we will make some
modifications to our basis elements. That is, we want to
modify the basis set such that all elements except for φ1 are
trace annihilating. Then we can, without loss of generality,
fix the coefficient for the trace-preserving channel to be
1. As the cross-product channel is traceless, we need only
modify the partial trace channels. This is easy in the Pauli
string basis: simply remove the entry in the upper left-hand
corner corresponding to 1⊗ 1 �→ 1. For example, the TrA
channel becomes

⎛
⎜⎝

0 0 0 0 0 · · ·
0 2 0 0 0 · · ·
0 0 2 0 0 · · ·
0 0 0 2 0 · · ·

⎞
⎟⎠ . (F2)

With these modified channels, we know that the set of
equivariant channel can be characterized as

{x, y, z ∈ R
3 : J φ1 + xJ φ5 + yJ φ

′
3 + zJ φ

′
4 � 0}. (F3)

Requiring the eigenvalues of this linear combination to be
non-negative yields the feasible region,

{x, y, z : y + z � 1 and y + z

�
√

3x2 + 4(y2 − yz + z2)− 1}. (F4)

2. Action of SU (2)-equivariant maps

Here, we further analyze the action of the 2-to-1-qubit
maps. This analysis will show that different channels can
“see” different parts of the input state and hence that they
are complimentary. First, define the Bell-basis states as

|β00〉 = 1√
2
(|00〉 + |11〉), |β01〉 = 1√

2
(|00〉 − |11〉),

|β10〉 = 1√
2
(|01〉 + |10〉), |β11〉 = 1√

2
(|01〉 − |10〉).

(F5)

Then, consider a two-qubit quantum state in the Bell basis:

ρ =

⎛
⎜⎝

a11 a12 a13 a14
a∗12 a22 a23 a24
a∗13 a∗23 a33 a34
a∗14 a∗24 a∗34 a44

⎞
⎟⎠ , (F6)

where a11 + a22 + a33 + a44 = 1.
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One can readily find that

φ1(ρ) = 1
2

(
a11 + a22 + a33 + a44 0

0 a11 + a22 + a33 + a44

)
, (F7)

φ2(ρ) = 1
2

(
a11 + a22 + a33 − a44 0

0 a11 + a22 + a33 − a44

)
, (F8)

φ3(ρ) =

⎛
⎜⎝

1
2
+ Re[a12 − a34] Re[a13 + a24]+ iIm[a23 + a14]

Re[a13 + a24]− iIm[a23 + a14]
1
2
− Re[a12 − a34]

⎞
⎟⎠ , (F9)

φ4(ρ) =

⎛
⎜⎝

1
2
+ Re[a12 + a34] Re[a13 − a24]+ iIm[a23 − a14]

Re[a13 − a24]− iIm[a23 − a14]
1
2
− Re[a12 + a34]

⎞
⎟⎠ , (F10)

φ5(ρ) = 4
( −Im[a34] Im[a24]− iRe[a14]

Im[a24]+ iRe[a14] Im[a34]

)
. (F11)

These equations show how different channels combine
different pieces of the information of ρ.

3. Cross-product channel

We now take a closer look at φ5, which we call the
cross-product channel CP : H⊗2 → H, where H is the
single-qubit Hilbert space. The action of the CP (not to be
confused with complete positivity) channel is as follows:

CP(ρ) =
3∑

ijk=1

Tr[ρσiσj ]εijkσk

= Tr[ρ(YZ − ZY)]X + Tr[ρ(ZX − XZ)]Y

+ Tr[ρ(XY − YX )]Z, (F12)

where σμ ∈ {X , Y, Z} for μ = i, j , k.
First, note that in the above form, the CP channel is not

truly a channel, as it is neither trace preserving nor com-
pletely positive. Rather, Tr[CP(ρ)] = 0. To be a channel,
we must consider superoperators of the form φ + αCP ,
where φ is some trace-preserving map. For simplicity, we
consider φ(ρ) = (Tr[ρ]/2)1. By solving for the eigenval-
ues of the Choi operator of φ + αCP , one can show that
this is a channel for α ∈ [− 1√

3
, 1√

3
].

Now that we know when this can actually be physical,
we would like to better understand the action of the CP
channel. As before, we recall the four Bell-basis states:

|β00〉 = 1√
2
(|00〉 + |11〉), |β01〉 = 1√

2
(|00〉 − |11〉),

|β10〉 = 1√
2
(|01〉 + |10〉), |β11〉 = 1√

2
(|01〉 − |10〉),

(F13)

where |β00〉, |β01〉, and |β10〉 are eigenstates of the SWAP
operator with eigenvalue +1, while |β11〉 is an eigenvalue
of the SWAP operator with eigenvalue −1. Then, we note
the following operator expansion in the Bell basis:

YZ − ZY = 2i(|β01〉 〈β11| − |β11〉 〈β01|), (F14)

ZX − XZ = 2(|β00〉 〈β11| + |β11〉 〈β00|), (F15)

XY − YX = −2i(|β10〉 〈β11| − |β11〉 〈β10|). (F16)

We can then express the density matrix in the Bell basis
(ordered as {|β00〉 , |β01〉 , |β10〉 , |β11〉}),

(F17)

where the 3× 3 and 1× 1 diagonal blocks correspond to
the symmetric and antisymmetric subspaces, respectively.
Then, the matrix elements a14, a24, and a34 determine if the
state is in a superposition of symmetric and antisymmetric
Bell-basis states.

With the foregoing, one can verify that

Tr[ρ(YZ − ZY)] = 4Im[a24],

Tr[ρ(ZX − XZ)] = 4Re[a14],

Tr[ρ(XY − YX )] = −4Im[a34].

Note that the action of the CP channel is to check if ρ
is in a superposition of states with different symmetries.

020328-34



THEORY FOR EQUIVARIANT QUANTUM NEURAL NETWORKS PRX QUANTUM 5, 020328 (2024)

As such, at the output of the map, the coefficients associ-
ated with the different Pauli operators correspond to the
entries of the matrix entries that account for superposi-
tion between the antisymmetric state and the three different
symmetric states. Hence, the CP channel outputs the zero
matrix for any state that is block diagonal in the symmet-
ric and antisymmetric subspaces (such as ρ = σ⊗2 for any
single-qubit state σ ).

Here, let us note an interesting fact, namely, that the CP
channel, in its vanilla version, has an asymmetry embed-
ded into it: it only accounts for either the real or imaginary
part of the matrix of ρ. This can be solved by defining the
following alternative version of the CP channel:

CP ′(ρ) = i
3∑

ijk=1

Tr[ρ SWAPσiσj ]εijkσk, (F18)

where we have multiplied by i to make the output matrix be
Hermitian. One can readily check that this new CP channel
is also equivariant; i.e.,

CP ′(U⊗2ρ(U†)⊗2) = UCP ′(ρ)U†. (F19)

Now, let us note that

SWAP(YZ − ZY) = 2i(|β01〉 〈β11| + |β11〉 〈β01|), (F20)

SWAP(ZX − XZ) = 2(|β00〉 〈β11| − |β11〉 〈β00|), (F21)

SWAP(XY − YX ) = −2i(|β10〉 〈β11| + |β11〉 〈β10|),
(F22)

which means

Tr[ρ SWAP(YZ − ZY)] = 4iRe[ρ24],

Tr[ρ SWAP(ZX − XZ)] = −4iIm[ρ14],

Tr[ρ SWAP(XY − YX )] = −4iRe[ρ34].

(F23)

Thus, we can now create combinations of the two versions
of the CP channels. For instance, the channel

1
4
(CP(ρ)+ CP ′(ρ)) = −(Re[a24]− Im[a24])X

+ (Re[ρ14]+ Im[a14])Y

+ (Re[ρ34]− Im[a34])Z

(F24)

and

1
4
(CP(ρ)− CP ′(ρ)) = (Re[a24]+ Im[a24])X

+ (Re[a14]− Im[a14])Y

− (Re[a34]+ Im[a34])Z.

(F25)

By applying these channels (with the appropriate amount
of completely depolarizing channel added such that the
operation is physical), one may then recover the off-
diagonal terms between the symmetric and antisymmetric
subspaces.

Just as a curiosity, we note that the following combina-
tion (although not physical) is still interesting:

1
4
(CP(ρ)− iCP ′(ρ)) = iρ∗24X + ρ∗14Y − iρ∗34Z. (F26)

In Fig. 14, we give a circuit for achieving the CP chan-
nel in expectation. The intuition behind this circuit is that,
without the Pauli rotations, this protocol changes the state
of the ancilla such that Tr[Zρout] = Tr[ZZρin], where ρout
is the state on the ancilla. Thus, by adding in Pauli rota-
tions, we permute the Pauli group to embed Tr[σiσj ρ] as
Tr[σkρout] on the ancilla. Note that a similar circuit does
not exist for CP ′, as SWAP⊗ σiσj is not Hermitian. One
could instead accomplish CP ′ in expectation through the
Hadamard test.

trash

trash

i j

ρ

Ri(π
2 )

Rj(π
2 )

|0〉 X
1−εijk

2 R†
k(π

2 ) CP(ρ)

i, j, k k

FIG. 14. The circuit for the cross-product channel.
Here, i, j , k ∈ {X , Y, Z}. These classical random vari-
ables are drawn from {X , Y, Z} uniformly and with-
out replacement. That is, {i, j , k} = {X , Y, Z} always
but with the individual rotations randomly chosen.
After performing this protocol, the reduced state on
the ancilla will be equal, in expectation, to CP(ρ).
Note that εijk is the Levi-Civita symbol.
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4. 1-to-2-qubit SU(2)-equivariant maps

If we solve for the null space of the set of equivariant 1-
to-2 maps, we see that all trace-preserving maps must have
the following action. Say that our input is ρ = 1

2 (1+ σ ·
r); then, the output state of the map will be

1
4
1⊗ 1+ a

2
(XX + YY + ZZ)+ b

2
1⊗ (σ · r)

+ c
2
(σ · r)⊗ 1+ d

2
r · (YZ−ZY, ZX −XZ, XY−YX ),

(F27)

where a, b, c, and d are arbitrary real numbers (to be CP,
there will be additional constraints). Note that this is effec-
tively a linear combination of adjoints of the 2→ 1 maps,
the first being Tr, the second SWAP, the third and fourth par-
tial traces, and the final one the CP channel. This follows
logically from representations of SU(2) being self-dual.
Recall that a linear map is equivariant if and only if its
Choi operator satisfies [(Rin(g))∗ ⊗ Rout(g), J φ] = 0; i.e.,
J φ lies in the commutant of the tensor product of the (dual)
input and output representations. An equivariant 1 �→ 2
map can then be associated with the commutant of

g∗ ⊗ g⊗2 ∼= g⊗3, (F28)

which is exactly the same as the representation that com-
mutes with the Choi operators of 2 �→ 1 SU(2)-equivariant
channels.
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On nonlinear transformations in quantum computation,
ArXiv:2112.12307.

[122] J. R. Glick, T. P. Gujarati, A. D. Corcoles, Y. Kim, A. Kan-
dala, J. M. Gambetta, and K. Temme, Covariant quantum
kernels for data with group structure, ArXiv:2105.03406.

[123] R. Zeier and T. Schulte-Herbrüggen, Symmetry principles
in quantum systems theory, J. Math. Phys. 52, 113510
(2011).

[124] C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor net-
works and graphical calculus for open quantum systems,
ArXiv:1111.6950.

[125] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis
(Cambridge University Press, Cambridge, UK, 1991).

[126] L. N. Trefethen and D. Bau III, Numerical Linear Algebra
(SIAM, Philadelphia, PA, USA, 1997), Vol. 50.
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