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We propose a class of randomized quantum algorithms for the task of sampling from matrix functions,
without the use of quantum block encodings or any other coherent oracle access to the matrix elements.
As such, our use of qubits is purely algorithmic and no additional qubits are required for quantum data
structures. Our algorithms start from a classical data structure in which the matrix of interest is specified in
the Pauli basis. For N × N Hermitian matrices, the space cost is log(N )+ 1 qubits and, depending on the
structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quan-
tum data structures of up to size O(N 2), when considering equivalent end-to-end problems. Within our
framework, we present a quantum linear system solver that allows one to sample properties of the solution
vector, as well as algorithms for sampling properties of ground states and Gibbs states of Hamiltonians. As
a concrete application, we combine these subroutines to present a scheme for calculating Green’s functions
of quantum many-body systems.
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I. INTRODUCTION

A. Overview

As improvements in hardware increase the number and
quality of qubits, we seek quantum algorithms that are able
to showcase practical quantum advantage in the earliest
possible time frame. Looking beyond noisy intermediate-
scale quantum (NISQ) technologies [1–3], it is reason-
able to assume that, given continued progress in quantum
hardware, so-called fault-tolerant algorithms will have an
important place in the gamut of quantum computing appli-
cations. Thus, it is pertinent to ask how soon such algo-
rithms can be useful for real-life applications and how
much can we accelerate this time line by constructing algo-
rithms with lower and more flexible quantum resource
costs.

Quantum algorithms for manipulating matrices have
been proposed for many problems, including factoring, lin-
ear systems, ground-state energy estimation, simulation,
and beyond (see, e.g., Refs. [4–8] and references therein).
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These algorithms are often phrased in terms of a quan-
tum oracle model from which elements of the matrix
of interest can be coherently accessed. Since the semi-
nal proposals, there have been extensive improvements
and refinements to the asymptotic run time for each of
these algorithms, which is usually measured in the num-
ber of required queries to the oracle. For many prob-
lems, the state-of-the-art query complexities are opti-
mal or close to optimal according to known complexity
lower bounds. Moreover, many of these recent techniques
are unified under the so-called quantum singular-value
transformation (QSVT) framework [9,10], in which poly-
nomial approximations are applied to the singular val-
ues of the desired matrix. Here, the oracle embeds the
matrix in a larger unitary, commonly known as a block
encoding.

Despite this promise, when considering end-to-end
implementations of such quantum algorithms, two major
hurdles can arise [11]. First, the implementation of the
quantum oracles can require costly additional quantum
resources, both in the depth required for each call and
the number of qubits consumed. Second, the quantum
algorithm can come with certain conditions or caveats that
need to be satisfied for efficient applications [8].

As an example, consider the linear-systems problem,
for which the pioneering Harrow, Hassidim, and Lloyd
(HHL) algorithm has been proposed [12]. The current
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state-of-the-art quantum linear-systems solver (QLSS) pre-
sented in Ref. [13] uses O(log(N )) algorithmic qubits and
a block-encoding oracle to process N × N matrices. This
algorithm only needs to make a small number of calls
to the block encoding if the matrix is well conditioned,
compared to the run time of classical linear-systems algo-
rithms. However, for general matrices an implementation
of the block encoding using quantum random access mem-
ory (QRAM) [14] in depth O(log(N )) requires O(N 2)

qubits [15–18]. Thus, for general matrices, the exponen-
tial savings in space resources are nullified. In order to
circumvent this burden, one should search for specific
classes of matrices with structure for which access is less
costly. For instance, for matrices that are L-sparse in an
efficiently implementable unitary basis, block encodings
can be implemented with substantially less quantum cost
than in the general case [19–22]. However, this still leads
to an additional qubit overhead that we argue could be
minimized further when considering early implementa-
tions of fault-tolerant algorithms. For matrices sparse in
the computational basis, up to O(N ) qubit overhead is
still required [23], unless one seeks additional structure
such that the matrix entries can be efficiently coherently
computed. Second, it is important to consider the exact
problem that the quantum algorithm solves: the QLSS
returns a quantum state in which the solution vector is
encoded with some nonzero additive error, unlike text-
book classical solvers that provide the full classical vector
exactly. Thus, in order to assess the utility of quan-
tum linear-systems solvers, full end-to-end applications
including possible additional subroutines need to be care-
fully analyzed [24]. For instance, it may be more fair
to compare the quantum algorithm to randomized clas-
sical solvers that allow for some error [25] or so-called
“dequantized” approaches that operate with a classical
data structure analogous to QRAM [26,27]. We discuss

various approaches to linear systems in more detail in
Sec. III C.

1. Our contribution

In this work, we present a framework for constructing
algorithms that sample properties of matrix functions that
do not use quantum oracles to provide coherent access to
the matrix in question (see Fig. 1). Despite having no qubit
overhead to implement quantum oracles, the asymptotic
complexities of our algorithms can remain comparable
with those of other algorithms in the literature whenever
the considered matrices have an amenable structure in
the Pauli basis (and when considering equivalent end-to-
end problems). Hence, for physically motivated matrices,
potential quantum advantages originally requiring QRAM
could possibly be similarly obtained in our approach with-
out using a quantum data structure, making them more
applicable for the early fault-tolerant regime [28–33].
Specifically, given a Fourier-series approximation to a
function f and an N × N Hermitian matrix A with known
decomposition in the Pauli basis, we give algorithms to
sample properties of f (A) using a total of log(N )+ 1
qubits. These properties take the form Tr[f (A)ρf (A)†O]
and 〈ψ | f (A) |φ〉 for some quantum states ρ, |ψ〉 〈ψ |, and
|φ〉 〈φ| and some measurement observable O. Using this
framework, we present algorithms for sampling proper-
ties of the solution vector in the linear-systems problem,
as well as from ground states and Gibbs states of a
given Hamiltonian. We provide direct comparisons of the
complexities of our algorithms with other classical and
quantum algorithms for specific end-to-end tasks and we
present an application of our algorithms for computing
Green’s functions in many-body physics.

As our starting point, we take inspiration from algo-
rithms for quantum chemistry [29,30,34], where quantum
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FIG. 1. The motivation of our work. We reduce quantum hardware requirements for quantum algorithms on classical data by remov-
ing the need for quantum data structures or quantum oracles. This is achieved by replacing coherent access to the data with a classical
description of the data in the Pauli basis and utilizing a randomized algorithm that samples the outputs of many quantum circuits. These
circuits are chosen independently and thus in theory can also be parallelized, trading reduced total run time for additional space cost
in the form of many quantum processors. Our approach uses circuits with at most log N + 1 qubits when processing data from N × N
Hermitian matrices. This can be compared to other algorithms that utilize quantum data-access models that may have significantly
greater qubit overhead overall.
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data structures are often not needed. Instead of quantum
(coherent) access to the matrix A, we ask for classical
access to the coefficients a� ∈ R in its decomposition in
the Pauli basis,

A =
L∑

�=1

a�P�, (1)

where the P� are multiqubit Pauli operators. We refer to
this as the Pauli access model and note that it is a natu-
ral representation for data coming from physical problems,
e.g., when the matrix comes from a Hamiltonian. The
model also mathematically matches the physical intuition
that running quantum subroutines for “quantumly struc-
tured data” has possible potential for quantum speed-ups.
Indeed, our algorithms are faster for matrices with a small
vector �1-norm of the Pauli coefficients λ := ∑ |a�|, which
we refer to as the “Pauli weight.” Moreover, we remark
that there is no explicit dependence on the sparsity or the
number of Pauli terms L (which we will call the “Pauli
sparsity”) in the quantum run times—both of which can be
substantially larger than the Pauli weight and appear in the
run time of other algorithms.

B. Related work

Applications for the early fault-tolerant era of quan-
tum computing have recently begun to be explored, fol-
lowing the motivation to design algorithms that extract
practical value out of fault-tolerant quantum algorithms as
soon as possible [29–36]. In this spirit, algorithms have
been designed to consume fewer quantum resources for
Hamiltonian problems including phase estimation [29–
32,36], ground-state preparation [31], and the computation
of ground-state properties [33], by increasing the number
of circuit samples required. Until now, these algorithms
have predominantly aimed to reduce a proxy for the maxi-
mum circuit depth, in the form of the number of calls to
a time-evolution oracle for a prescribed Hamiltonian in
one coherent run of a circuit. It then remains to choose
an appropriate time-evolution oracle for the intended set-
ting, which can substantially affect the gate overhead or
the number of qubits required. This is in contrast to our
approach, where the first priority is to reduce qubit over-
head. In Sec. IV B, we discuss further the implications
for various choices of time-evolution oracle and how the
resulting implementations compare to our results for the
ground-state property-estimation problem. A key tool in
the aforementioned algorithms is the use of randomization.
Randomized approaches have also more generally found
use in Hamiltonian simulation [34,37] and in simplifying
quantum walk algorithms [38].

One distinctive approach is that of Ref. [30] for phase
estimation, which uses the Pauli access model rather than
a time-evolution oracle. In this work, an algorithm is

proposed that randomly compiles the Heaviside function
H(A) via a quantity of the form Tr[H(A)ρ] by sampling
from a Fourier-series approximation to the function. Ref-
erence [35] also presents an algorithm to perform random-
ized sampling of a given observable after a time evolution
of a given Hamiltonian. We extend these ideas in our work
to a more general class of properties corresponding to any
function for which we have a Fourier approximation. The
result of this approach is that an overhead of only one addi-
tional qubit is required to run the algorithm for Hermitian
matrices. Moreover, as with the approach in Ref. [30], we
sample from the outputs of many quantum circuits, rather
than running one long coherent evolution.

We remark that near-term approaches for the quan-
tum linear-systems problem have recently been proposed
that use similar data-access assumptions to our Pauli
access model [39–41]. Namely, these works assume that
the matrix of interest has a known decomposition A =∑

t ctUt, where the Ut are efficiently implementable uni-
taries (such as the Pauli-basis decomposition as in our
work). These approaches use parametrized circuits the
depth of which can be tuned to whatever a near-term
implementation allows. However, despite showing promis-
ing numerical performance for small problem sizes, they
lack generic run-time guarantees. On the other hand, our
algorithms give prescriptive circuits with run-time guaran-
tees.

C. Outline

The rest of the paper is structured as follows. In Sec.
II, we present our general framework, including: our main
result in Sec. II B; a note on the classical power of our
access model in Sec. II C; and a discussion on sampling
from other linear combinations of unitaries in Sec. II D.
We then demonstrate applications of our framework: we
present our algorithm for sampling properties of the solu-
tion vector in the linear-systems problem in Sec. III;
we describe our algorithm for sampling properties of the
ground state in Sec. IV; we discuss our algorithm for sam-
pling properties of Gibbs states in Sec. V; and we show
how these algorithms can be used together to estimate
single-particle Green’s functions in the context of many-
body physics in Sec. VI. Finally, in Sec. VII we present
our concluding discussions and outlook. In the appendixes,
we present detailed analytical statements and all proofs
thereof.

II. GENERAL APPROACH

A. Warm-up problem

We start by demonstrating how to extend the ideas from
Refs. [30] and [35] to sample properties of a Fourier series
of a given matrix. This gives intuition for the core routine
that we will use for the rest of our results. Readers who
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(a)

(b)

FIG. 2. The circuits used in our algorithms. We sample strings
of quantum gates, consisting of specified Pauli operators and
Pauli rotations, and perform quantum circuit runs with con-
trolled versions of these gates. (a) The Hadamard test circuit.
Measuring the expectation value of Z on the first register
returns Re(〈ψ |U|ψ〉) and Im(〈ψ |U|ψ〉 for choices of G = 1 and
G = S† := |0〉〈0 | − i|1〉〈1 |, respectively. (b) The generalized
Hadamard test circuit. Applying controlled-U and anticontrolled-
V, followed by measurement of the observable X ⊗ O yields
1
2

(〈ψ |U†OV|ψ〉 + 〈ψ |V†OU|ψ〉).

want a summary of the results may skip ahead to Sec. II B
and the outlines of our specific algorithms in Secs. III, IV,
V, and VI.

Our algorithms will make use of the Hadamard test cir-
cuit [see Fig. 2(a)], pioneered by Lin and Tong in Ref. [29]
for use in the ground-state energy-estimation problem in
the early fault-tolerant regime. We will also use the related
circuit in Fig. 2(b), introduced by Childs and Wiebe in
Ref. [42] to implement linear combinations of unitaries for
Hamiltonian simulation. Our circuits will ask for elemen-
tary controlled unitary operations in the form of controlled
Pauli gates and Pauli rotations.

Proposition 1 (Sampling from Fourier series). Suppose
that we have a Fourier series

s(A) =
∑

k∈F

αk exp (itkA), (2)

with �1-norm of coefficients α :=
∑

k∈F

|αk|, (3)

for an N × N Hermitian matrix A with known Pauli
decomposition A = ∑

� a�P� and Pauli weight λ =∑
� |a�|. Then, we find:

(a) Given a procedure to prepare the pure states |ψ〉,
|φ〉 with respective unitaries Uψ , Uφ and respective
gate depths dψ , dφ , we have a randomized quantum
algorithm that uses log(N )+ 1 qubits to

approximate 〈φ|s(A)|ψ〉 up to additive error ε,
(4)

with arbitrary constant success probability, using

Cφsample = O(
α2/ε2) circuit samples, (5)

where each circuit takes the form in Fig. 2(a) with

Cφgate = O(
λ2t2max + dψ + dφ

)
gate depth, (6)

where we denote tmax := maxk∈F tk.
(b) Given a procedure to prepare the quantum state ρ in

depth dρ and perform measurements with measure-
ment operator O, we have a randomized quantum
algorithm that uses log(N )+ 1 qubits to

approximate Tr[s(A)ρs(A)O] up to additive error ε,
(7)

with arbitrary constant success probability, using

CO
sample = O(‖O‖2α4/ε2) circuit samples, (8)

where each circuit takes the form in Fig. 2(b) with

CO
gate = O(

λ2t2max + dρ
)

gate depth. (9)

We see that various properties of the Fourier series
determine the complexity of the quantum algorithm.
Namely, the weight of the Fourier series α determines
the sample complexity, while the time parameter tmax
determines the gate complexity. The gate complexity also
depends on the Pauli weight λ of the matrix A. In certain
cases, the Pauli weight of a matrix can be much smaller
than its dimension, despite there being many nonzero Pauli
terms. In these cases, we expect the above algorithms to
be efficient. Note that, similar to the linear combinations
of unitaries (LCU) [42–45] and QSVT [9,10] frameworks
for quantum algorithms, our framework enacts a gen-
eral class of functions, which we will apply to different
approximation problems in the rest of this paper. Unlike
the aforementioned approaches, our framework does not
need access to quantum oracles or any additional coherent
resources.

We provide the proof of Proposition 1 in Appendix B 1.
A key technical tool that we use is the random compiler
lemma of Ref. [30, Lemma 2], which decomposes frac-
tional time-evolution operators into a probabilistic mixture
of Pauli matrices and Pauli rotations. This leads to a
decomposition of the full time-evolution operator simply
by taking the product of such fractional operators. Namely,
for some time parameter t ∈ R, for any choice r ∈ N and
for Hermitian matrix A with known Pauli decomposition
as in Eq. (1), Ref. [30] shows how one can obtain the
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decomposition

eiAt/r = γ
∑

�∈T′
p� · u�P� exp

(
iθ�P′

�

)
, (10)

for some index set T′, where p� are probabilities, u� ∈
{±1, ±i} are phases, and P�, P′

� are (�log N	-qubit) Pauli
operators, all of which implicitly depend on t/r. More-
over, the weight of the mixture can be shown to satisfy
γ � exp(λ2t2/r2). This implies that one can express a full
time-evolution operator as a linear combination

eiAt = (
eiAt/r)r =

∑

m∈T

β(r)m U(r)
m , (11)

where the weights of the coefficients satisfy
∑

m∈T |β(r)m | =
O(1) for r = �(λ2t2), meaning that one can sample from
the distribution with bounded variance. Each U(r)

m is a
string of gates consisting of r pairs of controlled (multi-
qubit) Pauli rotations and a series of controlled Pauli gates.
Thus, r can be considered to control the quantum run time
of the algorithm. Our algorithms sample from the strings
of gates according to the linear combination in Eq. (11).

We make two brief remarks on compilation. First, we
note that n-qubit Pauli-rotation gates can be compiled into
a single single-qubit Pauli-rotation gate and O(n) Clifford
gates. Thus, in our algorithmic framework, compilation of
each layer of gates results in a single non-Clifford gate, i.e.,
the number of non-Clifford gates and the total gate depth
go hand in hand. Second, any series of n-qubit Pauli gates
can be classically compiled into a single n-qubit Pauli gate
up to a phase in O(n) classical time. From hereon, we will
generally refer to quantum gate depth while stressing that
this is equivalent to the number of non-Clifford gates up to
a logarithmic factor.

We provide pseudocode for the algorithm presented in
Proposition 1 to prepare 〈φ|s(A)|ψ〉 in Algorithm 1. The
algorithm for Tr

[
s(A)ρs(A)†O

]
is very similar and we

present the pseudocode for this in full in Algorithm 2 in
Appendix B 1. These two algorithms will form the core
quantum routine for the rest of our results.

We remark that in the pseudocode in Algorithm 1, we
have left the run-time vector 
r as a freely chosen algorithm
parameter. In practice, one would likely choose each ele-
ment of the run-time vector to be rk ∝ λ2t2k for all k, which
leads to the run-time guarantees specified in Proposition 1.
However, we note that one can still freely choose a pro-
portionality constant, which will trade a constant-factor
improvement in the sample complexity for increased gate
depth, or vice versa.

Finally, in Appendix B 2, we detail the classical over-
heads required to run our core algorithm in Algorithms
1 and 2. These amount to essentially linear prepossessing
overhead in the number of Pauli terms L and the number
of Fourier terms |F|. Each quantum sample comes with
logarithmic classical overhead in problem parameters.

ALGORITHM 1. Fourier sampling of 〈φ|s(A)|ψ〉.

B. Main result

Using the results of Sec. II A, we can now demonstrate
how to sample properties of matrix functions, starting from
a sufficiently good Fourier-series approximation to the
function, and a decomposition of the matrix in the Pauli
basis.

Given a real-valued function f : R → R, we consider a
scenario in which we have a Fourier-series approximation
s(ε, DA) : R → R that is ε-close to f on the domain DA.
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More precisely, we suppose that

|f (x)− s(ε, DA, x)| � ε , ∀x ∈ DA. (12)

We note that the condition in Eq. (12) is dependent on
the maximum deviation of the Fourier approximation over
the entire domain of interest—this is the property that
will determine the rigorous worst-case complexity of our
algorithms—thus, it is important to find Fourier-series
approximations that are accurate even on the extremities
of a domain, not just on average. The Fourier series can
always be expressed as

s(ε, DA, x) =
∑

k∈Fε,DA

αk(ε, DA) exp
(
itk(ε, DA)x

)
, (13)

over some index set Fε,DA , where {αk(ε, DA)}k and
{tk(ε, DA)}k are Fourier parameters that, in general, have
a dependence on the approximation error ε and the domain
of approximation DA. This setting can be simply translated
to matrix functions, if one considers a Hermitian matrix
A the spectrum of which lies in DA. In this case, ε then
corresponds to closeness of matrix functions in operator
norm.

Theorem 1 (Generalized sampling from Fourier approx-
imations). Suppose that we have a matrix function f (A)
of an N × N Hermitian matrix A that is approximated by
a Fourier series s(ε̃, A) with tunable error parameter ε̃ and
has a known Pauli decomposition of A with Pauli weight λ.
Suppose further that we have unitary oracles Uψ , Uφ , and
Uρ to prepare |ψ〉, |φ〉, and ρ, respectively. Then, we give
explicit randomized algorithms to

approximate
〈φ|f (A)|ψ〉

q
and

Tr
[
f (A)ρf (A)†O

]

q2 (14)

to a given small enough additive error ε, using Algorithms
1 and 2, respectively, on log(N )+ 1 qubits, where q is
some arbitrary normalization factor.

We provide a more precise statement with exact
complexities, and accompanying proofs accounting for
constant-factor terms, in Appendix B 3. Theorem 1 pro-
vides a general recipe for sampling from functions of
N × N Hermitian matrices by using log(N )+ 1 qubits,
given a Fourier-series approximation and a Pauli decompo-
sition of the matrix. In particular, it specifies how to tune
the Fourier-approximation parameter ε̃ such that we can
directly use Algorithms 1 and 2. We stress that as with the
warm-up problem, we do not use any hidden quantum ora-
cles and specify circuits explicitly in terms of controlled
Pauli gates and controlled Pauli rotations.

We note that a property of our algorithms in Theorem
1 is that the output is a number, rather than a quantum

state. We envision in the majority of potential applica-
tions for quantum algorithms that the goal is to extract
classical information out of a quantum state [8]. In many
cases, this would be captured by the quantities in Eq. (14).
If the application of a matrix function is to be used as a
subroutine as part of a larger quantum computation, our
framework allows further quantum processing by append-
ing fixed controlled unitaries in the case of Algorithm 1
or simply appending fixed unitaries on the second regis-
ter in Algorithm 2. Finally, some algorithmic frameworks
ask instead to sample from a quantum state in the compu-
tational basis [46]. We highlight in the following remark
that we can similarly statistically recover the output vector
in the computational basis. A full exposition is provided in
Appendix B 6.

Remark (Sampling from output vector). By modifying
the measurement in Algorithm 2 to computational-basis
measurements, we give an unbiased estimator for the vec-
tor the entries of which are (approximately) 〈
zn| f (A) |ψ〉
for each 
zn ∈ {0, 1}n.

Our randomized scheme allows for generic normaliza-
tion of the answer by some factor q, with all complexities
accounted for. So far, we have assumed that q is exactly
given. However, the desired q may in general not be
exactly known. One salient example is if we wish for
f (A)|ψ〉 to be a normalized quantum state for some input
state |ψ〉. In this case, the relevant normalization quantity
is ‖f (A)|ψ〉‖. In Appendix B 4, we present a randomized
subroutine to estimate quantities of this form, which can be
directly integrated with our core result in Theorem 1. We
summarize this with the following proposition.

Proposition 2 (Sampling normalization constant).
Under the conditions of Theorem 1, the quantities

〈φ|f (A)|ψ〉
‖f (A)|ψ〉‖ and

Tr
[
f (A)|ψ〉〈ψ |f (A)†O

]

‖f (A)|ψ〉‖2 (15)

can be approximated to a given desired additive error ε,
with the addition of a subroutine on log(N )+ 1 qubits to
approximate ‖f (A)|ψ〉‖.

Proposition 2 specifies how to approximate quantities
in Eq. (15) by first running a subroutine to approximate
‖f (A)|ψ〉‖ to a specified error, followed by the core
algorithm using Theorem 1.

C. Classically easy functions

We briefly remark on the implications of our techniques
for the power of randomized classical approaches using
the Pauli access model. Namely, we show in the follow-
ing proposition that sufficiently low-degree polynomials of
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matrices (such as for matrix multiplication) can be sampled
from, if these matrices have low Pauli weight.

Proposition 3 (Classical polynomial sampling). For sta-
bilizer states |s〉 and |t〉, Hermitian matrix A with known
Pauli decomposition and Pauli weight λ, and pd, a d-degree
polynomial with coefficients of magnitude O(1), we give
a classical randomized scheme to

approximate 〈t|pd(A)|s〉 up to additive error ε, (16)

using

Csample = Õ (
λ2d/ε2) (17)

independent classical subroutines each with time and space
complexity

Ctime = Õ (
d log2(N )

)
and Cbits = Õ (

log2(N )
)

,
(18)

respectively, where λ is the Pauli weight of A.

A more detailed statement, along with the proof thereof,
can be found in Appendix B 7. Proposition 3 works by
observing that the task in Eq. (16) can be obtained statis-
tically via measurement outcomes of depth-O(d) Clifford
circuits, which are efficiently simulable. We note that, as
with our previous specified algorithms, each sample can be
parallelized, thus moving Csample into the space complex-
ity. Proposition 3 also trivially extends to polynomials of
multiple matrices. Thus, our result implies that classically
sampling from certain primitives such as matrix multi-
plication can be efficient, if the matrices have low Pauli
weight.

Proposition 3 implies similar efficiency for quantum or
classical algorithms for functions with low-degree poly-
nomial approximations. However, in general we do not
expect such low-degree approximations to always exist.
For instance, we can investigate some implications for
the linear-systems problem and the ground-state property-
estimation problem. Reference [47] gives a polynomial
approximation to the inverse function with degree lin-
ear in the condition number. This implies a classical
algorithm to sample an element of the solution vector of
the linear-systems problem with exponential sample com-
plexity in the condition number. Likewise, one could use
the power-law method to approximately project to the
ground state for Hamiltonians with negative spectra. How-
ever, this results in a classical algorithm with sampling
complexity exponential in the inverse spectral gap (for
more details, see Appendix C 2 a). It thus remains to see if
there are problems of interest with low-degree polynomial
approximations.

Similar results have also been shown for matrix pow-
ers for the sparse-access model [48,49], where the base of

the exponential in Eq. (17) is different. Interestingly, the
problem of evaluating powers to additive error O(‖A‖dε)

(rather than O(λdε)) has been shown to be BQP-complete
[50] and classically hard [51], again in the sparse-access
model. The QSVT framework [9,10] can apply a more
general class of polynomial transformations with cost scal-
ing only linearly in the degree. We leave it as an open
question as to whether there are more efficient randomized
early fault-tolerant quantum algorithms for high-degree
polynomials.

D. Sampling from other linear combinations of
unitaries

In our main result, we present Monte Carlo sampling
algorithms for a specific decomposition of functions into
linear combinations of implementable unitaries—first, by
decomposing the function into time-evolution operators
via a Fourier decomposition and, second, by decomposing
those time-evolution operators into Pauli gates and Pauli
rotations. The resulting run-time complexities depend on
the properties of the Fourier approximation chosen for the
matrix function of interest, f (A). One pertinent question
is then: when searching for appropriate Fourier approxi-
mations, what sample complexity would we expect at best
with these techniques?

Our algorithms sample from a weighted probability
distribution of unitaries, with the weight directly factor-
ing into the complexity. Assuming that we require an
ε-close approximation on all states, this weight is lower
bounded by ‖f (A)‖, for any chosen Fourier decompo-
sition. Thus, under our presented sampling framework,
Hoeffding’s inequality gives sufficient conditions for to
approximate 〈φ|f (A)|ψ〉 and Tr[f (A)ρf (A)†O] using
O (‖f (A)‖2/ε2

)
and O (‖f (A)‖4/ε2

)
respective samples

at best. We remark that this argument holds when sampling
from any decomposition of f (A) into a linear combination
of unitaries, not just the one we consider specifically in
this work. As we shall see in the following applications
sections, we achieve this for the linear-systems prob-
lem (Sec. III) and the ground-state property-estimation
problem (Sec. IV) up to logarithmic factors.

We stress that this discussion does not constitute generic
sample-complexity lower bounds (e.g., one could in prac-
tice obtain the desired result using fewer samples than
Hoeffding’s inequality specifies). Additionally, we do not
rule out that better sample-complexity guarantees can be
obtained for other randomized schemes beyond Monte
Carlo here. Finally, one can achieve problem-dependent
improvements to the sample complexity by approximat-
ing f (A) on the relevant subspace for the problem at
hand. This is how a better sample-complexity guarantee
is achieved for our Gibbs-state algorithm in Sec. V.
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III. LINEAR SYSTEMS

A. Randomized quantum linear system solver

In this section, we show how to apply Theorem 1 to
sample from the inverse of a matrix, with applications
for linear-systems problems. We use the Fourier-series
approximation for the inverse function found in Ref. [47].
With this, we establish the following result [52].

Corollary 1 (Linear systems). Consider a Hermitian
matrix A with known Pauli decomposition as in Eq. (1)
with Pauli weight λ. Denote q as a freely chosen normal-
ization parameter. Finally, suppose that we have ability to
prepare state |
b〉 in O(d
b) depth. Then, we find:

(a) Given the ability to implement |ψ〉 via unitary Uψ

in gate depth dψ , we have a randomized quantum
algorithm to

approximate
〈ψ |A−1|
b〉

q
up to additive error ε,

(19)

with arbitrary constant success probability, utilizing
Cψsample quantum circuits of the form in Fig. 2(a),
each consisting of Cψgate layers of gates, where

Cψsample = Õ
(‖A−1‖2

ε2q2

)
,

Cψgate = Õ (‖A−1‖2λ2 + dψ + d
b
)

. (20)

(b) Given the ability to measure observable O ; ‖O‖ �
1, we have a randomized quantum algorithm to

approximate
〈
b|A−1OA−1|
b〉

q2 up to additive error ε,

(21)

with arbitrary constant probability, utilizing CO
sample

quantum circuits of the form in Fig. 2(b), each con-
sisting of CO

gate layers of gates and one measurement
of O, where

CO
sample = Õ

(‖A−1‖4

ε2q4

)
,

CO
gate = Õ (‖A−1‖2λ2 + d
b

)
. (22)

We detail a proof of this corollary in Appendix
C 1, where we specify polylogarithmic contributions and
account for constant factors. Corollary 1 provides an
oracle-free quantum linear-systems algorithm that only
uses one ancillary qubit for Hermitian matrices. We note
that we can consider non-Hermitian matrices for linear

systems by embedding them in a larger Hermitian matrix
via an additional qubit (details are provided in Appendix
C 1).

Remark (Non-Hermitian matrices). We can extend
Corollary 1 to include non-Hermitian matrices by embed-
ding the matrix in a larger Hermitian matrix with the
aid of a single additional qubit. The algorithm then uses
log(N )+ 2 qubits with a factor-of-2 increase in sample
complexity.

Further, we note that Proposition 2 allows the evaluation
of the norm of the output vector ‖A−1|
b〉‖ via a subroutine
with complexities equivalent to Eq. (22) up to logarithmic
terms.

B. Statistical encoding of input vector

So far, we have supposed that |
b〉 is provided via a quan-
tum oracle. With the following proposition, we demon-
strate an approach to statistically encode the vector at a
cost of classical preprocessing overhead and minimal gate
overhead.

Proposition 4 (Statistical encoding of input vectors).
Given a classical vector 
b with sparsity s, we give a scheme
to replace the quantum oracle for the input state |
b〉 in
Theorem 1 and Corollary 1. This has overhead:

(i) O(s) time for classical preprocessing.
(ii) sample-complexity-factor increase for problem

(a) of O(‖
b‖2
1/‖
b‖2

2) and for problem (b) of
O(‖
b‖4

1/‖
b‖4
2).

(iii) one or two single-qubit controlled �log N	-qubit
Pauli gates each circuit sample.

More details are provided in Appendix B 5. A key dis-
tinction is that this approach can return an encoding of 
b
that represents the true magnitude of the vector rather than
a normalized quantum state that a standard quantum oracle
would provide, simply by increasing the sample complex-
ity. Moreover, this is a general scheme for our randomized
approach that is applicable beyond the linear-systems set-
ting. We remark that our representation for the quantum
state |
b〉 is similar to the so-called classical combination
of variational quantum states considered in the near-term
quantum linear-systems approach of Ref. [41]. Finally, we
stress that in this scheme, we never explicitly prepare the
quantum state. A comparison with explicit state prepara-
tion schemes [53] shows that this avoids O(Ns) cost in
qubit overhead and trades it for classical preprocessing
overhead and sample overhead.
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C. Comparison

1. Quantum linear-systems solvers

The quantum linear-systems solver (QLSS) is an
algorithm that takes an encoding of a matrix A and vec-
tor 
b and returns the quantum state proportional to A−1|
b〉,
where |
b〉 := ∑

i bi|i〉/ ‖
b‖. Since the proposal of the orig-
inal QLSS, known as the Harrow, Hassidim, and Lloyd
(HHL) algorithm [12], many improved schemes have been
proposed [9,10,13,47,54–57] utilizing O(log(N )) algo-
rithmic qubits. Early algorithms made use of a time-
evolution oracle in the matrix of interest [47,54,57,58].
More recently, approaches that use a block encoding have
been proposed [9,10,13].

We remark that, in contrast to other fault-tolerant
approaches to the QLSS, our algorithms do not require
coherent access to the matrix of interest A and thus there
are no additional hidden dimension dependencies. Thus,
for a general N × N Hermitian matrix, only log(N )+ 1
logical qubits are required to carry out the full algorithm,
with a run time that does not explicitly depend on the
dimension. We further note that our algorithm has the
following additional distinctive features:

(i) In contrast to the QLSS, the error parameter ε in
Corollary 1 is specified in terms of measurement
errors in extracting information out of states of the
form A−1|
b〉. Thus, the QLSS is distinct from the
problem that our algorithm solves, as our algorithm
returns a number rather than a state. If one wishes
to extract out classical information from the QLSS,
one requires O(ε−2) circuit samples with incoherent
measurements or an additional factor of O(ε−1) run
time with coherent approaches [59,60].

(ii) Our complexities are determined by the operator
norm ‖A−1‖, instead of the condition numbers κ :=
‖A−1‖‖A‖ or κF := ‖A−1‖‖A‖F . Moreover, there
is no sparsity or explicit dimension dependence
in the run time. Instead, the run time depends
on the Pauli weight λ, which for certain prob-
lems can be much smaller than the sparsity or
dimension.

(iii) We allow for arbitrary normalization by any nor-
malization factor q, which rescales the asymptotic
complexities by ‖A−1‖ → 1/q‖A−1‖. We recall that
in the QLSS, the solution is given as a normalized
quantum state, which may be undesired. We discuss
the role of normalization further in Sec. III C 2.

2. Complexity comparison

In Table I, we compare the complexities of our linear-
systems algorithm with other classical and quantum algo-
rithms in the literature for a specific task [61]. The task that

we consider in Table I is to

approximate the element
1
c

·
(

A−1
b
)

i
to additive error ε

for some choice of i ∈ [N ] and normalization c ∈ R.
(23)

We assume that the normalization constant c is whatever
is natural to the algorithm at hand and that we are query-
ing the vector A−1
b in the computational basis. Thus,
c = 1 for in the usual classical setting, and c = ‖A−1
b‖ for
quantum solvers and quantum inspired classical solvers.
This is to allow a “middle-ground” comparison with the
other quantum and classical solvers, as relaxing these two
assumptions incurs additional overhead for other quantum
algorithms and classical algorithms, respectively.

We compare the space resources required to create
the data access to A and to perform the algorithm. We
also compare the maximum coherent quantum run time
required (if applicable) and the total run time. For our ran-
domized scheme, we assume no parallelization; thus the
total run time is simply the product of the gate depth and
the sample complexity. For all algorithms, we assume that
the data starts in the most amenable classical format for
that algorithm, such as in a sparse row representation, or
in our case the classical Pauli access model. From there,
we keep track of any additional classical or quantum over-
heads (both space and time) needed to provide any required
data structures, e.g., the resources required to provide a
block encoding.

Taking into account the aforementioned features, in
Table I we consider the following algorithms:

(i) The Gaussian elimination “textbook” classical
method, which returns the full exact solution vector.
This has a run time that is dependent on the matrix
multiplication exponent ω < 2.372.

(ii) A randomized classical Kaczmarz method [25],
which returns an ε-approximation to the full solu-
tion vector.

(iii) A “quantum inspired” approach [27]. This starts
from a classical data structure intended to mimic
QRAM, which allows sampling from probability
distributions with probabilities proportional to the
magnitude of elements in a given row of A. The
algorithm returns a classical data structure that
allows one to sample from individual elements of
an ε-approximation to the solution vector. In order
to estimate the norm, one needs to pay an extra 1/ε2

factor [27,63].
(iv) The HHL “textbook” quantum algorithm [12],

which requires a time-evolution oracle. In Table I,
we assume that this oracle is provided in a run-
time-efficient manner via a block encoding [62].
We assume a Frobenius-norm block encoding, with
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explicit construction via a QRAM in minimal depth
as detailed in Ref. [17]. We note there are also
other approaches that are more space efficient in
quantum resources but more costly in quantum run
time. Further, there is a choice of how to extract
the classical information from the output of the
HHL algorithm. We include two rows in Table I,
which quantifies resources required for perform-
ing coherent approaches for extracting expectation
values [59,60] (first row) and standard incoherent
measurements assuming no parallelization, which
have worse overall run time but use substantially
less gate depth (second row).

(v) A state-of-the-art quantum linear-systems solver
that achieves optimal query complexity [13], using
a block-encoding access model. As with HHL we
have assumed a Frobenius-norm block encoding
implemented in low depth via a QRAM and we
detail complexities both for incoherent measure-
ments (first row) and for coherent approaches [59,
60] (second row).

(vi) Our algorithm using Corollary 1, assuming no par-
allelization. We remark that a particular artifact of
the simplified task in Eq. (23) is that the run time of
our algorithm can be reduced by an arbitrary fac-
tor of q2 as in Theorem 1. However, we do not
include this additional freedom in Table I, as we
do not expect it to arise in more practical tasks. For
instance, if one wished to compare two elements of
A−1
b by estimating their ratio, q would not appear
in the complexity.

The goal of our work is to reduce the quantum resources
required for quantum approaches. This can be quantified
by the three columns highlighted in Table I: “Data-access
space,” “Algorithmic space,” and “Quantum gate depth.”
Our algorithm is clearly more efficient in space require-
ments compared to other quantum algorithms and, in
particular, it uses no qubits for data access. We further
note that if the Pauli weight λ is small, there is scope
that our algorithm has competitive gate depth with the
best alternative option, which is to use the adiabatic quan-
tum algorithm of Ref. [13] with incoherent measurements
(we remark that there exist matrices for which λ is much
smaller than L, which in general can grow with the dimen-
sion of the system). If a coherent approach is used to
extract the vector element, then our algorithm has expo-
nentially better gate depth in the error parameter but worse
overall run time.

The role of normalization. We note that in some prac-
tical tasks, one may care about the true magnitude of
vector elements. In this case, the dependence of other
quantum algorithms on ε−1 should be scaled up by
a factor ‖A−1|b〉‖ in order to match our randomized
algorithm or our dependence on ε−1 should be scaled

down by a factor of ‖A−1|b〉‖ in order to match other
quantum approaches. In addition, if the normalization
is not given, computing it may incur significant over-
head, which should be accounted for. When starting in
the block-encoding model, Chakraborty et al. demonstrate
how to obtain the state normalization to multiplicative
error in Õ(κμ polylog(N )/ε) queries to the block encod-
ing, where μ is the block-encoding subnormalization [64].
When searching for potential applications for quantum
algorithms, the desired normalization for the problem of
interest is an important consideration when benchmarking
different algorithms.

Criteria for quantum advantage. For our algorithm to
potentially be useful, it must also compete with classical
algorithms. We remark that all the classical run times stated
have at least linear-dimension dependence for generic
matrices, as κF � √

rk(A), where we denote rk(A) as the
rank of A. In theory, a block encoding with a subnor-
malization of ‖A‖ rather than ‖A‖F may be possible, but
at present an explicit construction for generic matrices
is not known to the best of the authors’ knowledge. For
any of the quantum algorithms to display superpolynomial
advantage for generic matrices, one requires at minimum
κ = ‖A−1‖‖A‖ = O(polylog(N )). Block encodings with
stronger subnormalizations also need to be found (for
generic matrices), as the scope for superpolynomial advan-
tage is constrained to high-rank matrices. Further, one must
consider a setting where the significant difference in error
dependence is also accounted for. While our algorithm
has significantly worse overall run time in ‖A−1‖, we
note that the requirement for advantage in our algorithm
is similar (‖A−1‖ = O(polylog(N ))), although for practi-
cal advantages the degree of this polynomial may need to
be kept small. Moreover, there is no rank condition yet
to be overcome here. Thus, we expect our algorithm to
potentially show quantum advantage if there is a setting
in which other quantum algorithms also show advantage,
given that the Pauli weight λ is small. We remark that
it is possible for matrices to have a small λ but large
computational-basis sparsity s, Pauli sparsity L, or rank
rk(A).

Two known domains in which block encodings with
subnormalizations that do not lead to rank dependence
are sparse matrices in the computational basis and the
Pauli basis. As discussed above, this is a require-
ment for any hope of superpolynomial quantum advan-
tage. Our algorithmic construction can be thought of
as extending the scope of the second category to also
include nonsparse matrices in the Pauli basis that have
a low Pauli weight λ. We now compare our algorithm
to other approaches in these two settings in further
detail.

Pauli-sparse matrices. So far, we have compared
our algorithm against other approaches presuming that
the Pauli sparsity L is large (note that L = O(N 2) in

020324-11



WANG, MCARDLE, and BERTA PRX QUANTUM 5, 020324 (2024)

general). If L is small and the Pauli decomposition is
known, then the SELECT + PREPARE oracles (previously
studied in algorithms for quantum chemistry [19–22])
can implement a more efficient block encoding than the
general construction with a QRAM considered in Table
I. We present the complexities for this block encod-
ing in Table II. The qualitative conclusions are simi-
lar; the block-encoded quantum algorithm requires more
qubits and our algorithm can have comparable gate depth
if the Pauli weight λ is small compared to the Pauli
sparsity L.

Matrices sparse in the computational basis. For the
quantum query-optimal algorithm, one can also consider
the quantum sparse-access model [65], which can be
efficiently converted into a block-encoding model using
O(polylog(N/ε)) qubits and O(polylog(N/ε)) elemen-
tary gates [9]. Thus, if this access model is naturally
available, a significant space and time saving can be made.
However, this access will typically arise because of inher-
ent structure in the matrix, which enables the computation
of entries, given their indices. If this structure is not present
and we just have a generic sparse matrix, we still require
QRAM for the most efficient block encoding of the matrix.
In this case, implementation of the quantum sparse-access
structure in minimal depth implementation uses Õ(Ns)
qubits and O(log N ) overhead [23], where s is the mini-
mization over the row sparsity and column sparsity. Thus,
the quantum space complexities could be up to quadrat-
ically better for sparse matrices than what is quoted in
Table I but it still is linear in N . The corresponding run time
is Õ(sκ log(N )/ε) using coherent approaches for expecta-
tion value estimation [59,60]. We remark that for specific
classes of matrices there may also be more efficient ways
to directly enact the sparse data-access model [66] but we
leave the comparison for such special cases to be beyond
the scope of this work.

Finally, we remark that in Tables I and II we presume
that the relevant data structure for the input vector 
b is effi-
ciently provided. In general, providing the input state |
b〉
also requires a QRAM. We recall that with our randomized
scheme, we can circumvent this quantum resources cost by
providing additional classical preprocessing overhead (see
Proposition 4).

In this section, we have compared resource costs only
for one specific task. For other applications, various clas-
sical and quantum overheads need to be carefully consid-
ered, which can vastly change the complexities. One end-
to-end problem in which one does not expect to achieve
superpolynomial quantum advantage is where one needs
to read off the entire solution vector. In this case, the
additional �(N ) tomographic overhead can be compared
to the polynomial scaling of the classical run times in
κ̃(A) � √

rk(A). We remark that in this setting, one would
only hope to achieve approximately at most a quadratic
speed-up in total run time to the best randomized classical

solver in dimension dependence, ignoring dependencies on
the approximation error ε.

IV. GROUND-STATE SAMPLING

A. Randomized quantum algorithm

In this section, we consider the problem of sampling
properties of the ground state of a given Hamiltonian.
In order to approximately project to the ground state,
we use the Gaussian function e−(1/2)τ2x2

for Hamiltonians
with positive spectra, which has been proposed in pre-
vious works [67,68]. A Fourier-series representation has
been found for this function in Ref. [68], which we use
to establish the following corollary of our main result in
Theorem 1.

Corollary 2 (Ground-state property estimation). Con-
sider a Hamiltonian H = ∑

l El|El〉〈El | with all eigen-
values El � 0 and known Pauli decomposition H =∑L

�=1 a�P� ; λ = ∑
� |a�|. Assume that the spectral gap of

H is lower bounded by � � E1 − E0. Additionally, we
suppose that we have an initial trial state |ψ0〉〈ψ0 | with
overlap with the ground state γ := |〈ψ0 |E0〉|. Finally, we
assume that E0 � �/

√
2 log ‖O‖

εγ
for some error parameter

ε. Then, given the ability to measure observable O, we give
a randomized algorithm to

approximate 〈E0|O|E0〉 up to additive error ε, (24)

with arbitrary constant success probability, using

CO
sample = Õ

(‖O‖2

ε2γ 4

)
circuit runs, (25)

each of the form in Fig. 2(b), each using one instance of
|ψ0〉 with

CO
gate = Õ

(
λ2

�2

)
gate depth. (26)

Moreover, the assumption of the positivity of the spec-
trum can be dropped in place of a lower bound on the
ground-state energy, with no change to the computational
complexity of the algorithm.

We provide a proof of this corollary, including the exten-
sion to nonpositive spectra and accounting of polyloga-
rithmic or constant-factor contributions, in Appendix C 2.
Similar to our algorithms for linear systems, we empha-
size that we do not ask for any quantum oracle or quantum
subroutines encoding information about H . Additionally,
if the trial state |ψ0〉 is accessible as a classical descrip-
tion of vector amplitudes, or from a linear combination
of gates, then the trial state can be prepared statistically
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TABLE II. The end-to-end complexities for the task in Eq. (23) of querying one element of the solution vector in the linear-systems
problem to additive error ε. Here, for all algorithms, we have assumed that we start from a Pauli description of the matrix of interest
A, as in Eq. (1), where the number of terms L is small (e.g., a low-degree polynomial in log N ). In this case, it can be advantageous
to use a SELECT + PREPARE block encoding for the query-optimal quantum algorithm. We compare complexities where the quantity
in Eq. (23) is obtained using amplitude estimation- (AE) based approaches as well as incoherent sampling. In the final column, we
indicate the implicit normalization c of each approach [see Eq. (23)].

Algorithm Access Data-access Algorithmic AE? Quantum gate depth Run time Norm
model space space

Quantum
query-optimal

[13]

SELECT +
PREPARE
[19–22]

O(L) bits,
O(log L)

qubits

log N + 6 qubits Yes Õ(‖A−1‖λL/ε
) Õ (‖A−1‖λL/ε

) ‖A−1
b‖
No Õ(‖A−1‖λL log(1/ε)

) Õ (‖A−1‖λL/ε2
) ‖A−1
b‖

Randomized
quantum

(this work)

Pauli
coefficients

O(L) bits log N + 2 qubits No Õ (‖A−1‖2λ2 log2(1/ε)
) Õ (‖A−1‖4λ2/ε2

) ‖
b‖

as part of the randomized algorithm, with minimal depth
requirements (see Proposition 4 and Appendix B 5). Our
algorithm is particularly efficient when the Pauli weight
λ is small, which can be the case for certain physically
motivated problems. We discuss more detailed analysis
of the complexities in Sec. IV B. Finally, we remark that
if a trial state is instead provided with bounded posi-
tive overlap γ̄ := 〈ψ0 |E0〉, then quantities of the form
〈φ |E0〉 (given preparation of |φ〉〈φ |) can be approxi-
mated with a reduced γ̄−2 dependence in the sample
complexity.

B. Comparison

Different approaches to quantum algorithms for ground-
state preparation have previously been studied in Refs.
[31,33,67–72]. Recently, Ref. [33] has also established
an explicit algorithm for ground-state property estima-
tion. In Table III, we compare the complexities of various
algorithms for the task of estimating a given observable
with respect to the ground state. Namely, we compare the
following approaches:

(i) A linear combination of unitaries (LCU) ground-
state preparation algorithm [68], which requires a
time-evolution oracle. There are many approaches
to time evolution in the literature [19,34,37,44,45,
62,73,74]. In Table III, we detail the complexi-
ties for two schemes that are in some sense the
two ends of the spectrum: for first-order Trotter
time evolution, which has no additional quantum
space requirements, as well as the quantum run-
time-efficient block-encoding approach [62].

(ii) The block-encoding approaches of Ref. [69] to pre-
pare the ground state, which is query optimal in
γ ,�, ε up to logarithmic factors. We note that
Ref. [69] gives two approaches; one in which
there is an a priori bound for the ground-state

energy and spectral gap and one in which there
is no such assumption, which uses more ancillary
qubits and has equivalent run time up to dominant
order.

(iii) The early fault-tolerant approach of Ref. [33] to
sample properties of the ground state, which again
requires a time-evolution oracle. As a caveat, this
approach can only estimate expectation values of
unitary observables with respect to the desired state.
Nonunitary observables can be taken into account
with a block encoding, at the expense of more qubits
and complexities augmented by the block-encoding
factor. For the sake of easy comparison, in Table III
we assume that the observable is unitary.

(iv) Our approach using Corollary 2, assuming no paral-
lelization.

For the ground-state preparation algorithms considered
in Table III, we assume that the observable is measured
incoherently, in order to establish the most competitive
gate depth with regard to our approach. We note that
as in our discussion in Sec. III C, coherent estimation of
observables yields a faster overall run time (linear scal-
ing in O(ε−1)), at the expense of O(ε−1) scaling in the
gate depth, which can be exponentially worse [59,60]. For
all algorithms, we assume that the Hamiltonian is pro-
vided classically in the form of its Pauli coefficients [as
in Eq. (1)] and any subsequent resources required for data
access are noted. If the total number of Pauli terms L is
small, this allows for an efficient block encoding via the
SELECT and PREPARE oracles, which is what we consider
in Table III. We also consider Trotterized time evolu-
tion, which gives additional dependencies on commutators
between terms [73], which here we bound with the mag-
nitude of the largest Pauli coefficient � := max� a� for
simplicity. One can also opt for higher-order Trotterized
evolution, which gives improved scaling in ε−1 but worst
scaling in L and λt.

020324-13



WANG, MCARDLE, and BERTA PRX QUANTUM 5, 020324 (2024)

TABLE III. An end-to-end comparison of the complexities of approximating the expectation value of an observable with respect
to the ground state, up to ε-additive error. These algorithms presume access to a trial state approximating the ground state with
overlap γ , a spectral-gap lower bound �, and possible further assumptions on the ground state energy (GSE) and spectral gap: (B1)
given μ1 � E0 such that E0 − μ1 � �/

√
log 1

γ ε
; and (B2) given μ2 � E0 such that μ2 −�/2 � E0, μ2 +�/2 � E1. In all cases, we

assume that the Hamiltonian is given in terms of its Pauli decomposition (see Eq. (1)) with L Pauli terms, largest coefficient magnitude
�, and coefficient weight λ.

Quantum GSE and gap Data-access Ancillary Quantum gate Run time
oracle assumptions space algorithmic space depth

LCU [68] First-order Trotter (B1) O(L) bits O
(

log
( 1
�

log 1
γ ε2

)) Õ( L3�2

γ�2
1
ε

) Õ( L3�2

γ�2
1
ε3

)

time evolution qubits

Time evolution O(L) bits, Õ( Lλ
γ�2 log3/2 1

ε

) Õ( Lλ
γ�2

1
ε2

)

via qubitization [62] O(log L) qubits

Near query Block encoding H (B2) O(L) bits, 1 qubit Õ( Lλ
γ�

log 1
ε

) Õ( Lλ
γ�

1
ε2

)

optimal [69] None O(log L) qubits O(log( 1
γ
)) qubits

Early fault First-order Trotter None O(L) bits 1 qubit Õ( L3�2

�2
1
ε

log 1
γ

) Õ( L3�2

γ 4�2
1
ε3

)

tolerant [33] time evolution

Time evolution O(L) bits, Õ( Lλ
�

log 1
γ ε

) Õ( Lλ
γ 4�

1
ε2

)

via qubitization [62] O(log L) qubits

This work · · · (B1) O(L) bits 1 qubit O(
λ2

�2 log2 1
γ ε

) Õ(
λ2

γ 4�2
1
ε2

)

(randomized
quantum)

As with our linear-systems algorithm, we focus on the
quantum hardware requirements, which consist of the total
number of logical qubits required for data access and
to run the algorithm, as well as the gate depth. Similar
to the linear-systems task considered in Sec. III C, our
approach has the smallest space requirement and there is
scope for our algorithm to have competitive gate depth
if the Pauli weight λ is smaller than number of Pauli
terms L (see, e.g., the values given in Ref. [75, Tables IX
and X]).

Finally, we note that in Table III, we have not accounted
for the run time to prepare the trial state. Other coherent
approaches require coherent calls to the unitary that pre-
pares the trial state. Thus, if the run time of this subroutine
is significant, this would also cause discrepancies in the
total run times listed.

V. GIBBS-STATE SAMPLING

A. Randomized quantum algorithm

We can also consider randomizing prior approaches
to Gibbs-state preparation. Here, the task is usually to
recover an approximation to the Gibbs state e−βH/Z
(also known as the thermal state) given some informa-
tion about the Hamiltonian H , where Z := Tr[e−βH ] is
the partition function and β is a parameter physically
corresponding to the inverse temperature. In our setting,

we will recover observables with respect to the Gibbs
state.

Under standard complexity-theoretic assumptions, this
is expected to be hard in general [76]. However, one promi-
nent line of work has aimed to emulate the thermalization
process, following the intuition that there should exist effi-
cient algorithms for certain physical systems [77–80] (for
the current state-of-the-art approach, see Ref. [81]). This
leads to complexity dependent on the mixing time, which
while small for physical systems, may be difficult to esti-
mate or may require additional assumptions to bound.
Similar to classical Monte Carlo approaches for classi-
cal Hamiltonians, this nevertheless could be a promising
approach to achieve efficient practical performance for
interesting problems.

In this section, we follow a different line of work that
aims to approximate the exponential operator directly for
generic Hamiltonians [9,82–86]. When applied to one half
of the maximally entangled state (with the correct normal-
ization), this corresponds to the purification of the Gibbs
state. Reflecting the expected hardness of the general
problem, prior approaches have exponential run time in
the inverse temperature β and operator norm ‖H‖. A
perturbative approach has been proposed in Ref. [86], in
which one assumes access to the purification of the Gibbs
state of an intermediate Hamiltonian H0. In this case, the
dominant contribution to the complexity instead depends
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on the operator norm of the perturbation V := H − H0,
which could in principle be much smaller. Additionally,
this dependence can be further reduced with the action of
a so-called nonequilibrium unitary, though we omit this
discussion for simplicity here. We note that, in the trivial
case H0 = 0, this starting assumption reduces to starting
with the maximally entangled state, which is the same
as the other aforementioned approaches. Here, the rele-
vant function of interest is the exponential function of
the work operator, defined as W := H ⊗ 1 − 1 ⊗ H ∗

0 . In
this section, we import the insights of Ref. [86] into our
randomized framework, which allows us to state the fol-
lowing corollary.

Corollary 3 (Gibbs-state property estimation). Suppose
access to the Gibbs state of an intermediate Hamiltonian
H0 via its purification |�0〉 and the ability to measure
the observable O. Further, assume that the Pauli decom-
positions of H0 and H are known, as in Eq. (1), and
that [H0, H ] = 0. Then, we give a randomized quantum
algorithm to

approximate
Tr[e−βH O]

Z to additive error ε, (27)

with arbitrary constant success probability, utilizing

CO
sample = Õ

(
e2β‖V‖Z2

0

Z2

e
√

ln(‖O‖/ε)

ε2

)
circuit runs, (28)

where Z0 := Tr[e−βH0 ] and Z := Tr[e−βH ] are the parti-
tion functions of H0 and H , respectively, and where we
denote V = H − H0. Each circuit is of the form in Fig. 2(b)
and uses one instance of |�0〉 with at most

CO
gate = Õ (

β3λ2
W‖W‖) gate depth, (29)

where λW is the Pauli weight of the work operator W :=
H ⊗ 1 − 1 ⊗ H ∗

0 .

Similar to before, these complexities can be estab-
lished via Propositions 1 and 2, along with error bounds
established in Ref. [86] (for details, see Appendix C 3).

B. Comparison

In Table IV, we compare the complexities of our ran-
domized approach against other algorithms for the task
in Eq. (27) with an operator O with ‖O‖ � 1. The other
approaches that we consider are as follows:

(i) An LCU approach based on the Hubbard-
Stratonovich transform, in which one requires
access to time evolution of an operator H̃ which,

when squared, recovers the action of H condi-
tioned on an ancillary register. We detail resources
required to obtain a block encoding of H̃ and using
a qubitization approach for the time evolution [62].
Specifically, this will incur run-time overhead in the
number of Pauli terms LH and λH̃ := ∑LH

�=1
√

a�,
where a� are the Pauli coefficients of H .

(ii) A QSVT approach to implement polynomial
approximations of the Gaussian and exponential
function. We consider block encodings of H̃ and
H for these approaches, respectively, which again
incurs overhead in LH and λH̃ , or λH , which denote
as the Pauli weight of H .

(iii) The perturbative approach of Ref. [86], starting
from the purified Gibbs state of an intermediate
Hamiltonian H0. An LCU approximation of e−βW/2

is implemented. As with the above approaches, the
exponentially costly step comes from the number of
rounds of amplitude amplification required. As we
compare complexities with our randomized version
of this algorithm, we add a second row in Table IV
to demonstrate complexities using incoherent sam-
pling rather than amplitude amplification, in which
case the required gate depth is greatly reduced. Here,
the run times are dependent on the number of Pauli
terms constituting W and its Pauli weight, which we
denote as LW and λW, respectively.

(iv) Our approach, given in Corollary 3, based on the
insights of Ref. [86].

Similar to our ground-state property-estimation com-
parison, in all the above settings we have considered
incoherent sampling of the observable O in order to give
the most competitive gate depth. In all cases, we assume
classical access to the Pauli decomposition of H (and H0)
as a starting point. From then on, the classical and quantum
resources required to process these data are recorded in the
table. Specifically, all block encodings are presumed to be
constructed via SELECT and PREPARE oracles. The weight
of H̃ can be found to satisfy

√
λH � λH̃ � √

LHλH . We
also remark that ‖W‖ � ‖H‖ + ‖H0‖ and in the trivial
case H0 = 0, we have ‖W‖ = ‖V‖ = ‖H‖. Additionally,
the number of Pauli terms and the Pauli weight simply
follow as LW = LH0 + LH and λW = λH0 + λH .

In Table IV, we see that our randomized approach
offloads the exponential complexity in β‖V‖ from the
gate depth onto the sample overhead, compared to the
fully coherent approach. However, compared to replac-
ing amplitude amplification with incoherent sampling, our
approach does not incur any explicit dependence on LW
in the gate complexity or overall run time. In addition,
it uses fewer qubits than any other approach. Finally,
we recall that in our framework, our stated sample com-
plexities serve as sufficient conditions and, in practice,
an ε-approximation of the observable could be achieved
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TABLE IV. The end-to-end complexities of estimating the expectation value of an operator O ; ‖O‖ = O(1) to additive error ε
with respect to the Gibbs state of Hamiltonian H on a system of n qubits. In the cells, we have omitted subpolynomial factors to
simplify expressions. Certain approaches require access to a matrix H̃ that recovers the action of

√
H and has weight λH̃ , defined

in the text, which satisfies
√
λH � λH̃ � √

LHλH . The perturbative approach assumes access to a purification of the Gibbs state of
an intermediate Hamiltonian H0 with complexity dependent on the perturbation V := H − H0 and the work operator W defined in
the text, which satisfies ‖W‖ � ‖H0‖ + ‖H‖, LW = LH0 + LH , λW = λH0 + λH . For the algorithm of Ref. [86] we have included two
rows: first, the more run-time-efficient approach, which uses amplitude amplification, and the measure-until-success approach, which
uses exponentially less gate depth in β.

Algorithm Access Data-access Algorithmic Quantum gate Run time
model space space depth

LCU [82] Time evolution
H̃ via

qubitization
[62]

O(LH ) bits,
O(log LH )

qubits

2n +
O(logβ‖H‖
+ log log 1

ε
))

qubits

Õ
(

LHλH̃
√
β

√
2n

Z log 1
ε

)
Õ

(
LHλH̃

√
β

√
N
Z

1
ε2

)

QSVT [9] Block
encoding H̃

O(LH ) bits,
O(log LH )

qubits

2n + 2 qubits Õ
(

LHλH̃
√
β

√
2n

Z log 1
ε

)
Õ

(
LHλH̃

√
β

√
2n

Z
1
ε2

)

Block
encoding H

O(LH ) bits,
O(log LH )

qubits

2n + 2 qubits Õ
(

LHλH eβ/2
√

2n

Z log 1
ε

)
Õ

(
LHλH eβ/2

√
2n

Z
1
ε2

)

Work
operator

LCU [13]

Block
encoding W

O(LW) bits,
O(log LW)

qubits

2n + 3 qubits Õ
(

LWλW
√‖W‖

√
Z0
Z eβ‖V‖/2e

√
log 1/ε

)
Õ

(
LWλW

√‖W‖
√

Z0
Z eβ‖V‖/2 1

ε2

)

Õ (
LW

√‖W‖β3/2
(
λW + ‖W‖ log 1

ε

)) Õ
(

LWλW
√‖W‖Z0

Z eβ‖V‖ 1
ε2

)

Randomized
quantum

(this work)

Pauli
coefficients

of W

O(LW) bits 2n + 1 qubits Õ (
λ2

W‖W‖β3 + log 1
ε

) Õ
(
λ2

W‖W‖Z2
0

Z2 e2β‖V‖ 1
ε2

)

with a smaller circuit sample count. This could be espe-
cially relevant here, where our required gate depths are
only polynomially large, in contrast to other approaches
with exponentially large gate depth. Thus, given an effi-
cient verifier, in our setting one could potentially collect
samples from an efficient circuit and achieve convergence
much faster than the stated run-time bounds.

VI. APPLICATION: ESTIMATION OF GREEN’S
FUNCTIONS

So far, we have seen that our algorithms are naturally
suited to settings in which the matrix of interest is already
given in the Pauli basis. Thus, our algorithms are suited
to physically motivated problems. One natural applica-
tion is the evaluation of single-particle Green’s functions
in the context of many-body physics. Green’s functions
can be used to calculate single-particle expectation val-
ues such as the kinetic energy, as well as to determine
the many-body density of states. For a more detailed back-
ground, see Refs. [87,88]. Previous works have proposed
quantum approaches for preparing Green’s functions in
both the frequency and time domains [68,85,89–95]. One
particular idea has been to use a quantum algorithm

to evaluate Green’s functions for the computationally
expensive subroutine of the quantum impurity problem
in dynamical mean-field theory (DMFT) calculations, in
order to potentially extend their scope [89–92].

We define the advanced and retarded Green’s
function in the frequency domain (denoted as G(+)(ω) and
G(−)(ω), respectively) as the matrix-valued functions with
elements

G(+)
ij (ω) := 〈

E0
∣∣âi (�ω − (H − E0)+ iη)−1 â†

j

∣∣E0
〉
, (30)

G(−)
ij (ω) := 〈

E0
∣∣â†

i (�ω + (H − E0)− iη)−1 âj
∣∣E0

〉
, (31)

where E0 is the ground-state energy of H , η is a broaden-
ing parameter that determines the resolution of the Green’s
function, and â†

i , âi are fermionic single-particle creation
and annihilation operators. We note that these quantities
are expectation values of an operator that contains the
inverse of some matrix, where the expectation value is
taken with respect to the ground state. Thus, our earlier
results in Secs. III and IV can be readily applied. The cre-
ation and annihilation operators can be expressed using
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Pauli operators via the Jordan-Wigner transformation

âi = Z⊗(i−1) ⊗ 1
2
(X + iY)⊗ I⊗(N−i), (32)

â†
i = Z⊗(i−1) ⊗ 1

2
(X − iY)⊗ I⊗(N−i). (33)

We now present our result for Green’s-function estima-
tion. From hereon, we denote �(+) = �ω − (H − E0)+ iη
and �(−) = �ω + (H − E0)− iη. We remark that while it
is possible to use the algorithms of Secs. III and IV as
separate subroutines to evaluate the Green’s functions, it
is beneficial to compile the ground-state projection and
matrix inversion all at once. This is the scheme that we
present in the following proposition.

Proposition 5 (Green’s-function estimation). Consider
a Hamiltonian H = ∑

l El|El〉〈El | with all eigenval-
ues El � 0 and known Pauli decomposition H =∑

� a�P� ; λH := ∑
� |a�|. Assume that the spectral gap

is lower bounded as � � E1 − E0. Additionally, we sup-
pose that we can freely prepare an initial trial state |ψ0〉
with overlap with the ground state γ := |〈ψ0 |E0〉|. Given
parameters ω, η, and the ground-state energy E0, we give a
random compiler to

approximate G(+)
ij (ω) and G(−)

ij (ω) up to additive error ε,
(34)

and arbitrary constant success probability, each utilizing

Õ
(‖(�(±))−1‖2

γ 4ε2

)
circuit runs, (35)

respectively, each consisting of at most

Õ
(
λ2

H

�2 + (|�ω ± E0| + λH + η)2‖�(±)−1‖2
)

gate depth.

(36)

We provide a proof of this result in Appendix C 4. As
with our previous algorithms, the scheme that we use has
an advantage over other algorithms in that it does not
use any additional ancillary qubits and it does not have
any explicit dependence on the number of Pauli terms L.
We remark that in the algorithm of Proposition 10, the
ground-state energy is given exactly as an input. If this
is not available, the ground-state energy may be approx-
imated via the techniques of other early fault-tolerant
schemes [29–32,36]. Moreover, if the ground-state energy
is approximated to sufficiently small precision, the error
contribution to the Green’s functions can be constrained
(see Appendix C 4 for more details). Finally, we remark

that Green’s functions in the (real-)time domain consist
of expectation values of time-evolved creation and anni-
hilation operators. Thus, again using the Jordan-Wigner
transformation, this can be directly evaluated via Theorem
1 and the tools of our ground-state property-estimation
algorithm, with the same asymptotic complexities as stated
in Corollary 2.

VII. CONCLUSIONS AND OUTLOOK

We have presented a framework for sampling proper-
ties of general matrix Fourier series and applied this to
give explicit algorithms for the linear-systems problem and
the ground-state property-estimation problem. By starting
with a (classical) description of the matrix in the Pauli
basis, we circumvent the need for coherent data structures,
which adds to the hardware burden of other quantum algo-
rithms. Another distinct feature of our approach is that
there is no explicit dimension or sparsity dependence in our
complexities; instead, the run time depends on the norm of
the Pauli coefficients for the matrix, which in principle can
be much smaller than number of Pauli terms or the dimen-
sion of the system. As such, our framework is particularly
suited to physically motivated matrices, where the Pauli
description is readily available and of low weight.

There are immediate open questions that have yet to be
explored:

(i) Is it possible for certain special classes of matrices
to efficiently obtain the Pauli decomposition starting
from a description in the computational basis? If the
number of Pauli terms is known and small, up to a
quadratic saving in the dimension can be made com-
pared to the naive approach, though this would still
present a barrier to any possible superpolynomial
quantum run-time advantage compared to classi-
cal schemes directly working in the computational
basis. The question of obtaining the Pauli decompo-
sition also has implications for near-term schemes
for linear systems that start with similar assump-
tions [39–41]. More broadly, this also leads into the
question of what data structures or data sources are
amenable to possible quantum speed-ups.

(ii) We have considered worst-case performance in two
senses. First, bounds on sample complexities are
constructed essentially by bounding the variances of
estimators. Unlike some other approaches, we can
halt our algorithm at any time if the solution is good
enough with the obtained samples. It remains open
whether there exists an efficient verifier for which
solution quality can be checked, which could enable
faster time to solution heuristically. Second, we have
quoted maximum non-Clifford gate complexities,
whereas in reality in our algorithm with each sample
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we implement circuits with varying gate complexi-
ties. Thus, a more refined measure of unparallelized
total run time should instead use the expected gate
complexity, which can lead to significant savings in
asymptotic run-time bounds [96]. We leave it as an
open question as to how far this quantity can be opti-
mized for the problems of interest discussed in this
work.

(iii) A more precise numerical analysis of finite resource
costs for concrete problems (such as the calcula-
tion of Green’s functions for a particular problem
of interest) would be illuminating for the feasibil-
ity of our schemes in the early fault-tolerant regime.
One can also explore numerically obtained Fourier
approximations to functions.

(iv) Our linear-systems algorithm could possibly undergo
further refinements, inspired by classical algorithms.
For instance, it is general practice to use precon-
ditioners for linear-systems solvers to effectively
reduce the effect of the condition number on the
run time (see, e.g., Refs. [97–99]) and analogous
quantum preconditioners have been studied [85,100,
101]. We leave it as future work to investigate
whether such techniques and beyond can be effi-
ciently transported to the early fault-tolerant setting.

(v) We have discussed in Sec. II A various properties of
the Fourier series that influence the complexities of
our algorithms. In particular, in order to constrain
the sample complexity, the variance of the random-
ized schemes should be constrained. It remains to
be seen whether there are other functions of interest
beyond the inverse function and Gaussian or expo-
nential functions which have Fourier-series approx-
imations that can lead to algorithms with favorable
complexities.

Note added.—Chakraborty [102] has recently proposed a
randomized scheme where, starting from a Fourier decom-
position of a function, one constructs a sampling algorithm
that queries a controlled time-evolution oracle.
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APPENDIX A: OUTLINE OF APPENDICES

In these appendixes, we present detailed statements for
our theoretical results, as well as the proofs thereof.

In Appendix B, we introduce the main technical results
of the paper. Specifically, in Appendix B 1, we first show
how to prove the result in the warm-up problem (Proposi-
tion 1) for sampling properties of a given Fourier series,
before proving our main result (Theorem 1) for sam-
pling properties of matrix functions in Appendix B 3. In
Appendix B 4, we discuss the complexities of evaluating
normalized quantities that correspond to normalized quan-
tum states. Next, in Appendix B 5, we discuss how to
statistically encode classical vectors as part of our ran-
domized scheme (Proposition 4). We then discuss the
classical power of our randomized scheme for sampling
properties of low-degree polynomials in Appendix B 7
(Proposition 3).

In Appendix C, we demonstrate how our algorithms
for linear systems (Corollary 1), ground-state property
estimation (Corollary 2), and Gibbs-state property esti-
mation (Corrolary 3) follow from our main results. We
also show how combining the linear-systems algorithm
with the ground-state property-estimation algorithm allows
for a scheme to evaluate Green’s functions in many-body
physics (Proposition 5).

APPENDIX B: FOURIER SAMPLING

1. Sampling from a given Fourier series—proof of
Proposition 1

We start by introducing the random compiler lemma of
Ref. [30, Lemma 2], which demonstrates how to decom-
pose time-evolution operators into Pauli gates and Pauli
rotations.

Lemma 1 (Random compiler lemma—adapted from
Lemma 2 of Ref. [30])). Let A = ∑

� a�P� be a Hermitian
operator that is specified as a linear combination of Pauli
operators with Pauli weight λ := ∑

� |a�| and real coeffi-
cients a� ∈ R. For any t ∈ R and any choice of r ∈ N :=
{1, 2, . . .}, there exists a linear decomposition

eiAt =
∑

m∈T

β(r)m U(r)
m , (B1)

for some index set T, unitaries {U(r)
m }m, and real num-

bers {β(r)m }m such that
∑

m∈T β
(r)
m � exp(λ2t2/r). For all

m ∈ T, the non-Clifford cost of controlled-U(r)
m is that of

r controlled single-qubit Pauli rotations.

Proof. We note that Ref. [30] has provided an explicit
proof for operators with normalized Pauli weight and posi-
tive coefficients (i.e., the coefficients are probabilities). We
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leave the core proof to Ref. [30, Appendix C] and for com-
pleteness here we explicitly demonstrate how the proof
extends to the more general setting.

First, we consider the scenario in which λ = 1 but a�
may not necessarily be positive. Reference [30] expresses
an rth of the time-evolution operator as

eiAt/r =
∑

n even

γn(t/r)
∑

�1,...,�n,�′
a�1 . . . a�na�′ P�1 . . .P�n

× exp (iθnP�′) (B2)

=
∑

n even

γn(t/r)
∑

�1,...,�n,�′
|a|�1 . . . |a|�n |a|�′ · sgn

× (
a�1 . . . a�na�′

)
P�1 . . .P�n exp (iθnP�′) , (B3)

where γn(t/r) are coefficients satisfying
∑

(n even) γn(t/r) �
exp(t2/r2). In the second line, we see that we can pro-
ceed as if the coefficients were positive (probabilities), by
absorbing their sign into the string of unitaries to imple-
ment P�1 . . .P�n exp (iθnP�′). By considering the product
of such fractional time-evolution operators (eiAt/r)r, we
can then sample strings of Pauli operators and r Pauli
rotations (with an absorbed phase), with total weight
� (exp(t2/r2))r = exp(t2/r). This consists of r pairs of
controlled (multiqubit) Pauli rotations and a string of
controlled Pauli gates, the number of which is in the-
ory unbounded. We remark, however, that the number of
Pauli gates is with high probability zero, with exponen-
tially decaying probability for increasing gate number [30].
Further, these gates can be efficiently compiled together
classically into a single controlled (multiqubit) Pauli gate
using standard Pauli product rules.

We can now consider how to deal with nonunit Pauli
weight. For H with nonunit Pauli weight λ, we can sim-
ply consider the equality eiAt = eiÂλt, where Â = A/λ now
has unit Pauli weight. As Lemma 1 holds for all t ∈ R, the
steps of the original proof can follow, by considering an
extended time parameter t → λt. �

With the above lemma, we can now demonstrate how
to solve our warm-up problem of sampling properties of a
given Fourier series. In the following, we present a more
precise version of Proposition 1 from the main text.

Proposition 6 (Sampling from Fourier series—detailed
version). Suppose that we have a Fourier series

s(A) =
∑

k∈F

αk exp (itkA), (B4)

in some N × N Hermitian matrix A, and denote the �1-
norm of the coefficients as α := ∑

k∈F |αk|. Suppose fur-
ther that A has known Pauli decomposition A = ∑

� a�P�
with Pauli weight λ = ∑

� |a�|. Then:

(a) Given a procedure to prepare the pure states |ψ〉,
|φ〉 with respective unitaries Uψ , Uφ with respec-
tive gate depths dψ and dφ , we have a randomized
quantum algorithm that uses log(N )+ 1 qubits to
approximate 〈φ|s(A)|ψ〉 up to additive error ε with
probability at least 1 − δ, using Algorithm 1 with

Cφsample = O
(

log
(

2
δ

)
α2

ε2

)
, (B5)

circuit samples, where each circuit takes the form in
Fig. 2(a) and has depth

Cφgate = O (
λ2t2max + dψ + dφ

)
, (B6)

where we denote tmax = maxk∈F tk.
(b) Given a procedure to prepare the quantum state ρin

depth dρ and perform measurements with measure-
ment operator O, we give a randomized quantum
algorithm that uses log(N )+ 1 qubits to approxi-
mate Tr

[
s(A)ρs(A)†O

]
up to additive error ε with

probability at least 1 − δ using Algorithm 2 with

CO
sample = O

(
log

(
2
δ

) ‖O‖2α4

ε2

)
, (B7)

circuit samples, where each circuit takes the form in
Fig. 2(b) and has depth

Cφgate = O (
λ2t2max + dψ + dφ

)
. (B8)

Proof of Proposition 6. We note that from Lemma 1,
s(ε, A) can be decomposed via a linear combination as

s(A) =
∑

k∈F

αk exp (itkA) =
∑

(k,m)∈F×T

αkβ
(rk)
km U(rk)

km , (B9)

where
∑

m∈T β
(rk)
km � exp(λ2t2k/rk) and U(rk)

km consists of rk
non-Clifford operations. The above expression can further
be seen as a quantity that is proportional to a probability
distribution over unitaries

s(A) = R(
r)
∑

(k,m)∈F×T

|αkβ
(rk)
km |

R(
r) Ũ(rk)
km

= R(
r)
∑

(k,m)∈F×T

p (rk)
km Ũ(rk)

km , (B10)
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ALGORITHM 2. Fourier sampling of Tr
[
s(A)ρs(A)†O

]
.

where p (rk)
km = |αkβ

(rk)
km |/R(
r) are probabilities, Ũ(rk)

km =
U(rk)

km (αkβ
(rk)
km )/|αkβ

(rk)
km | are unitaries that absorb the phase

of the coefficients, and R(
r) is the weight of the linear
combination, which satisfies

R(
r) =
∑

(k,m)∈F×T

∣∣∣αkβ
(rk)
km

∣∣∣ (B11)

�
∑

k∈F

|αk| exp(λ2t2k/rk) (B12)

= α exp(λ2t2k/rk), (B13)

where in the last line we have denoted α := ∑
k∈F |αk|. We

note that one is free to tune 
r = (r1, . . . , r|F|), and in doing
so, change the gate depth of the circuit to apply each uni-
tary, while also changing R(
r), which will feed into the
sample complexity. One simple choice is to set rk = λ2t2k
for all k, which gives R(
r) � αe, where we recall that α is
the weight of the coefficients in the Fourier series. We now
consider our two settings separately.

(i) Preparation of Tr
[
s(ε, A)ρs(ε, A)†O

]
. Using

Eq. (B10) can now express this quantity as

Tr
[
s(A)ρs(A)†O

] = R(
r)2
∑

(k,m),(k′,m′)∈F×T

p (rk)
km p

(rk′ )
k′m′

× Tr
[

Ũ(rk)
km ρ

(
Ũ
(rk′ )
k′m′

)†
O
]

. (B14)

As described in Ref. [35], given controlled access to
Ũ(rk)

km and Ũ
(rk′ )
k′m′ , we can collect measurement shots cor-

responding to the quantity 1/2
(

Tr[Ũ(rk)
km ρ(Ũ

(rk′ )
k′m′ )†O] +

Tr[Ũ
(rk′ )
k′m′ ρ(Ũ

(rk)
km )

†O]
)

with the quantum circuit in
Fig. 2(b). This leads to an unbiased estimator for
1/(R(
r)2)Tr

[
s(A)ρs(A)†O

]
. Moreover, according to

Born’s rule, the individual measurement outcomes oj
take values in the interval [−‖O‖, ‖O‖]. We now pro-
pose the following (informal) algorithm. For some
choice of 
r: (1) sample according to probability dis-
tribution {p (rk)

km p
(rk′ )
k′m′ }kmk′m′ ; (2) prepare the circuit for

Tr[Ũ(rk)
km ρ(Ũ

(rk′ )
k′m′ )†O] and collect measurement result zj ;
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(3) multiply result by R(
r)2 to obtain zj ; (4) repeat the
procedure and average over M samples. We present the
full formal steps in Algorithm 2. As we are effectively
sampling numbers in the interval [−‖O‖R(
r)2, ‖O‖R(
r)2],
Hoeffding’s inequality specifies that z(M ) := 1/M

∑M
i=1 zj

satisfies

Prob
( ∣∣∣z(M ) − Tr

[
s(A)ρs(A)†O

] ∣∣∣ � ε

)

� 2 exp
(

− Mε2

2‖O‖2R(
r)4
)

. (B15)

This implies that, in order to guarantee
∣∣z(M )−

Tr
[
s(A)ρs(A)†O

]∣∣ � ε with probability at least 1 − δ, it
is sufficient to perform

M � log
(

2
δ

)
2‖O‖2R(
r)4

ε2 (B16)

circuit samples.
We now impose the choice rk = λ2t2k for all k, which sets

R = O(α). As specified by Lemma 1, this means that each
Ũ(rk)

km consists of layers of controlled Pauli gates in between
λ2t2k single-qubit controlled Pauli rotations. Thus, in order
to obtain an ε-close approximation with probability at least
1 − δ, it is sufficient to take a number of samples and non-
Clifford gates satisfying

CO
sample = 2e4 log

(
2
δ

) ‖O‖2α4

ε2 , CO
gate = 2λ2t2max + dρ ,

(B17)

respectively, where we have denoted tmax = maxk∈F tk.
(ii) Preparation of 〈φ|s(A)|ψ〉. We can express this

quantity as

〈φ|s(A)|ψ〉 = R(
r)
∑

(k,m)∈F×T

p (rk)
km 〈0|U†

φŨ(rk)
km Uψ |0〉.

(B18)

The real and imaginary parts of the quantity 〈0|U†
φŨ(rk)

km
Uψ |0〉 can be recovered separately by the circuit in
Fig. 2(a). In both cases, individual measurement outcomes
lie in the interval [−1, 1]. As before, Hoeffding’s inequality
tells us that

M � log
(

2
δ

)
4R(
r)2
ε2 (B19)

shots are required to recover both the imaginary and real
parts with probability at least 1 − δ, to additive error ε.

We can again choose rk = λ2t2k for all k, giving respective
sample and gate counts:

Cφsample = 4e2 log
(

2
δ

)
α2

ε2 , Cφgate = λ2t2max + dφ + dψ .

(B20)

�

a. Constant-factor trade-offs

In the above, we set the elements of the run-time vector
to the value rk = λ2t2k for all k. However, we remark that in
general, by tuning 
r slightly, one can make small constant-
factor trade-offs between the sample and gate complexity.
Namely, by instead setting rk = aλ2t2k for some constant a,
one can reduce the sample complexity by a factor e2−2/a

for problem (a) and a factor e4−4/a for problem (b), at a
cost of a increase in gate depth by a factor a.

2. Classical preprocessing cost

The focus of this work is to characterize the cumula-
tive quantum run time. This is motivated by the fact that
we expect quantum clock speeds to be significantly slower
than classical ones. However, it is still useful to quantify
any classical preprocessing costs in order to carry out full
end-to-end comparisons with classical algorithms, which
is what we do in this section.

To this end, we indicate the complexities for the clas-
sical preprocessing in Algorithm 1, which is equivalent to
those for Algorithm 2. As in the analysis above in Sec. B 1,
we assume that we set all elements of the run-time vec-
tor to be rk = λ2t2k . The two preprocessing overheads that
we need to characterize are, first, to evaluate the weight
R(
r) = ∑

(k,m)∈F×T

∣∣αkβ
(rk)
km

∣∣ of the sampling protocol (step
(2) of Algorithm 1) and, second, any further preprocess-
ing in order to construct sampling access to our desired
probability distribution [allowing step (4) of Algorithm 1].

a. Evaluating R(�r)
In Ref. [30, Appendix C], it is given that the weight of

the coefficients in Eq. (B1) explicitly satisfy

∑

m∈T

β(rk)
m =

∞∑

n=0

1
(2n)!

(
1
λtk

)2n
√

1 +
(
(1/λtk)
2n + 1

)2

.

(B21)

If there are K = |F| Fourier terms in the Fourier series in
Eq. (B4), then K such quantities need to be evaluated. If
there is no efficient way to evaluate the sum in Eq. (B21),
we remark that the sum has exponentially vanishing terms
and can also be truncated, which we discuss more below.
We denote the truncation degree to the sum in Eq. (B21),
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which leads to additive error εk as J (εk). In order to
keep the total additive error ε, for each Fourier term k it
is sufficient to pick εk = O(ε/αk) � O(ε/α). Thus, it is
sufficient to approximate R(
r) in time O(K · J (ε/α)).

b. Sample access preprocessing

In order to sample from a discrete probability distribu-
tion with S unique probabilities in O(1) time, it is sufficient
to spend O(S) memory and preprocessing time. This can
be achieved with, e.g., the alias method [103]. In step (4)
of Algorithm 1, we must sequentially sample the index
k ∈ F followed by m ∈ T. In order to sample the index
m, we sample from the probability distribution propor-
tional to the linear combination in Eq. (B1), which consists
of sampling a Taylor-series order n followed by sam-
pling a Pauli term n + 1 times. Setting up sampling access
to the Pauli coefficients of A costs O(L) classical over-
head. Setting up sampling overhead to the Taylor-series
order has linear overhead in the truncation order. Again
denoting the truncation order of Eq. (B21), which leads
to additive error ε/α, as J (ε/α), we can write the clas-
sical preprocessing overhead to construct sample access
as O(K + L + J (ε/α)). Additionally, each time the loop
in step (4) repeats (corresponding to one quantum sam-
ple), there is at most O(J (ε/α)) overhead corresponding
to sampling from the probability distribution according to
the Pauli coefficients of A O(n) times.

It is shown in Ref. [30, Theorem 4] that it is suffi-
cient to pick a truncation order J (εk) = O(log(λ2t2k/εk))

to approximate Eq. (B21) to a given error εk. Thus,
in order to preserve the complexity guarantees spec-
ified by Proposition 6 with error in solution ε,
it is sufficient to choose truncation order J (ε/α) =
O(log(αλ2t2k/ε)) for each Fourier term labeled by
k. Putting everything together, we have preprocess-
ing overhead O(K + L + J (ε/α)+ K log(αλ2t2max/ε)) =
O(L + K log(αλ2t2max/ε)). Additionally, each quantum
sample comes with a classical overhead.

We comment that in Fourier-approximation approaches
to quantum algorithms, a classical complexity depending
on K is generic, as at minimum one must store K values
and process them. For the algorithms we consider in the
rest of this paper, K is polynomial in all problem param-
eters. One thing that is beneficial with the randomized
framework is that K only appears in the classical prepro-
cessing overhead. In contrast, for instance, in the LCU
approach, K would appear logarithmically in the qubit
overhead and linearly in the gate overhead. Similarly, a
classical overhead of O(L) is generic for our Pauli access
model. In order to obtain a better complexity, one may
hope for additional structure in the Pauli basis, for instance,
if the Pauli coefficients only take a small number of unique
values. This can be thought of as analogous to the sparse-
access model, where in order to avoid O(N ) data-access

overhead, it is not sufficient with known techniques simply
to have a sparse matrix; the values must also be efficiently
computable.

3. Generalized Fourier sampling—proof of Theorem 1

We first establish a lemma relating the closeness of oper-
ators to the closeness of expectation values constructed
from them.

Lemma 2 (Tightness of expectation values, part 1).
Consider two operators Y and D that satisfy the closeness
relation ‖Y − D‖ � ε � 1, ‖Y‖ � 1. Then, we have

∣∣Tr[OYρY†] − Tr[ODρD†]
∣∣ � 3‖O‖‖Y‖ε. (B22)

Proof. We have

∣∣Tr[OYρY†] − Tr[ODρD†]
∣∣

= ∣∣Tr[O(Y − D)ρY†] + Tr[O(D − Y)ρ(Y† − D†)]

+ Tr[OYρ(Y† − D†)]
∣∣ (B23)

� ‖O‖ (‖Y − D‖‖Y†‖ + ‖Y − D‖2 + ‖Y‖‖Y − D‖)
(B24)

� ‖O‖ (2‖Y‖ε + ε2) (B25)

� 3‖O‖‖Y‖ε , (B26)

where in the first line we have added and subtracted
Tr[ODρY†] + Tr[OYρY†] + Tr[OYρD†]; the first inequal-
ity is due to the triangle inequality, Hölder’s tracial-matrix
inequality and the submultiplicativity of the operator norm;
and the second and third inequalities are due to our starting
assumptions. �

We can now proceed with the proof of the main theorem
(Theorem 1). We suppose that we have a matrix function
f (A) that is approximated by a Fourier series as

‖f (A)− s(ε, A)‖ � ε ;

s(ε, A) =
∑

k∈Fε,A

αk(ε, A) exp (itk(ε, A)A) , (B27)

for some set of Fourier parameters αk(ε, A) and tk(ε, A),
for any ε � 1. Denote the �1-norm of the coefficients as
α(ε) := ∑

k |αk(ε)|. Suppose further that A has known
Pauli decomposition A = ∑

� a�P� with Pauli weight
λ = ∑

� |a�| and that we are given some normalization
constant q.

Theorem 2 (Generalized sampling from Fourier approx-
imations—detailed version). Suppose that we have a
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matrix function f (A) that is approximated by a Fourier
series as

‖f (A)− s(ε̃, A)‖ � ε̃ ≤ 1 ;

s(ε̃, A) =
∑

k∈Fε̃,A

αk(ε̃, A) exp
(
itk(ε̃, A)A

)
, (B28)

where A is some N × N Hermitian matrix and for some
set of Fourier parameters αk(ε̃, A) and tk(ε̃, A) with tun-
able error parameter ε̃. Denote the �1-norm of the coeffi-
cients as α(ε̃, A) := ∑

k |αk(ε̃, A)|. Suppose further that A
has known Pauli decomposition A = ∑

� a�P� with Pauli
weight λ = ∑

� |a�|. Then:

(a) Given unitaries Uφ and Uψ to prepare |φ〉 and |ψ〉,
respectively, in depth dφ , dψ , we give a randomized
quantum algorithm that uses log(N )+ 1 qubits to
approximate the quantity 1/q〈φ|f (A)|ψ〉 up to addi-
tive error ε � 1/q with probability at least 1 − δ,
using

Cφsample = O
(

log
(

2
δ

)
[α(εq/2, A)]2

ε2q2

)
,

Cφgate = O (
λ2[tmax(εq/2, A)]2 + dφ + dψ

)
,

(B29)

circuit samples (each calling Uφ and Uψ one time)
and gate depth, respectively, where each circuit
takes the form in Fig. 2(a).

(b) Given a procedure to prepare the quantum state
ρ in gate depth dρ and perform measurements
with measurement operator O, and given normaliza-
tion constant q, there exists a randomized quantum
algorithm that uses log(N )+ 1 qubits to approxi-
mate (1/q2)Tr

[
f (A)ρf (A)†O

]
up to additive error

ε � ‖O‖‖f (A)‖/q2 with probability at least 1 − δ,
using

CO
sample = O

⎛

⎜⎝log
(

2
δ

) ‖O‖2
[
α
(

εq2

6‖O‖‖f (A)‖ , A
)]4

ε2q4

⎞

⎟⎠ ,

CO
gate = O

(
λ2
[
tmax

( εq2

6‖O‖‖f (A)‖ , A
)]2

+ dρ

)
,

(B30)

circuit samples and non-Clifford gates, respectively,
where we denote tmax(ε, A) = maxk∈Fε,A tk(ε, A) and
each circuit takes the form in Fig. 2(b).

Proof of Theorem 1 (Generalized sampling from
Fourier approximations). We consider the two cases sepa-
rately.

(i) Preparation of (1/q2)Tr
[
f (A)ρf (A)†O

]
. We will

use Proposition 6 to statistically approximate the quan-
tity (1/q2)Tr

[
s(ε̃, A)ρs(ε̃, A)†O

]
. Using Lemma 2, we will

then show that, for appropriately chosen ε̃, this leads to an
ε-close approximation of (1/q2)Tr

[
f (A)ρf (A)†O

]
.

Recall that we denote z(M ) as the statistical approxima-
tion to Tr

[
s(ε̃, A)ρs(ε̃, A)†O

]
using Algorithm 2 with M

shots. We would like to find parameters such that
∣∣∣∣

1
q2 z(M ) − 1

q2 Tr
[
f (A)ρf (A)†O

]∣∣∣∣ � ε. (B31)

We first note that due to the triangle inequality, we can
write

∣∣∣∣
1
q2 z(M ) − 1

q2 Tr
[
f (A)ρf (A)†O

]∣∣∣∣

�
∣∣∣∣

1
q2 z(M ) − 1

q2 Tr
[
s(ε̃, A)ρs(ε̃, A)†O

]∣∣∣∣+

+
∣∣∣∣

1
q2 Tr

[
s(ε̃, A)ρs(ε̃, A)†O

] − 1
q2

× Tr
[
f (A)ρf (A)†O

]∣∣ . (B32)

This separates the approximation error into two compo-
nents, the statistical contribution of sampling from the
Fourier series and the exact contribution from the quality
of the Fourier-series approximation. It is sufficient to sat-
isfy Eq. (B31) by requiring both terms on the right-hand
side of Eq. (B32) to each by bounded by 1/(2)ε.

From Lemma 2, we can see that the second
term in Eq. (B32) is bounded by 1/(2)ε by find-
ing Fourier parameters such that ‖f (A)− s(ε̃, A)‖ �
1/(6)ε q2

‖O‖‖f (A)‖ � 1. Thus, it is sufficient to pick
ε̃ = 1

6ε(q
2)/‖O‖‖f (A)‖. From Proposition 1, the first

term in Eq. (B32) is bounded by 1/(2)ε by choos-
ing M � 8e4 log (2/δ) (‖O‖2α(εq2/6‖O‖‖f (A)‖)4)/ε2q4,
Cgate = 2λ2t2max(εq

2/6‖O‖‖f (A)‖)+ dρ .
(ii) Preparation of 1/q〈φ|f (A)|ψ〉. Denote as T′(M ′) the

statistical approximation to 〈φ|f (A)|ψ〉 using Algorithm 2
with M ′ shots. Again, we can split up the approximation
error into respective statistical and exact contributions as
∣∣∣∣
1
q

T′(M ′) − 1
q
〈φ|f (A)|ψ〉

∣∣∣∣ �
∣∣∣∣
1
q

T′(M ′) − 1
q
〈φ|s(ε̃, A)|ψ〉

∣∣∣∣

+
∣∣∣∣
1
q
〈φ|s(ε̃, A)|ψ〉 − 1

q
〈φ|f (A)|ψ〉

∣∣∣∣ . (B33)

The second term in Eq. (B33) (exact contribution) is
simply bounded as
∣∣∣∣
1
q
〈φ|s(ε̃, A)|ψ〉 − 1

q
〈φ|f (A)|ψ〉

∣∣∣∣ � 1
q
‖s(ε̃, A)− f (A)‖.

(B34)
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Thus, in order to bound the exact contribution by 1/(2)ε,
using Lemma 2, is sufficient to find Fourier parame-
ters such that ‖s(ε̃, A)− f (A)‖ � εq/2 � 1 and we can
assign ε̃ = εq/2. The first term in Eq. (B33) (statisti-
cal contribution) is then bounded by 1/(2)ε by choos-
ing M ′ � 8e4 log (2/δ) (‖O‖2α(εq/2)4)/ε2q2, Cgate =
2λ2t2max(εq/2)+ dφ + dψ . �

We remark that in the above proof we have split the error
into statistical and exact contributions evenly. In many
cases, α(ε, A) can have a subpolynomial dependence on
1/ε, such as for all three of our example algorithms. In this
case, by distributing the error unevenly one can make a
constant-factor saving to the sample complexity.

4. Sampling normalization constant—proof of
Proposition 2

In this section, we investigate the complexity of sam-
pling q = ‖f (A)|φ〉‖ for use as a normalization constant,
where |φ〉 is some given preparable input state. In the
previous sections, we have found an estimator z(M ) :=
1/M

∑M
j =1 zj constructed from samples zj which is ε-close

to a desired property of a matrix function. We simi-
larly denote our statistical approximation to q2 as Q(Mq).
In the following lemma, we establish how well Q(Mq)

must approximate q2 such that normalized quantities are
additive ε-close.

Lemma 3 (Normalization precision). Suppose that we
have some z(M ) ∈ R, pure state |φ〉, and operators O and
f (A) that satisfy

∣∣∣∣
1
q2 z(M ) − 1

q2 〈φ|f (A)Of (A)†|φ〉
∣∣∣∣ � ε � 1, (B35)

with ‖O‖ � 1. Further, denote q = ‖f (A)|φ〉‖2. Then, if
Q(Mq) is the statistical approximation of q2, one can achieve

∣∣∣∣
1

Q(Mq)
z(M ) − 1

q2 〈φ|f (A)Of (A)†|φ〉
∣∣∣∣ � 3ε, (B36)

if Q(Mq) satisfies |Q(Mq) − q2| � 1
2
εq2

‖O‖ .

Proof. First, we note that due to the triangle inequality
and submultiplicativity, we have

∣∣∣∣
1

Q(Mq)
z(M ) − 1

q2 〈φ|f (A)Of (A)†|φ〉
∣∣∣∣

�
∣∣∣∣

1
Q(Mq)

z(M ) − 1
q2 z(M )

∣∣∣∣

+
∣∣∣∣

1
q2 z(M ) − 1

q2 〈φ|f (A)Of (A)†|φ〉
∣∣∣∣ (B37)

�
∣∣∣∣

1
Q(Mq)

− 1
q2

∣∣∣∣
∣∣z(M )

∣∣ + ε (B38)

�
∣∣∣∣

1
Q(Mq)

− 1
q2

∣∣∣∣ (q
2‖O‖ + q2ε)+ ε , (B39)

assuming ε � 1, where in the penultimate inequality we
have used the fact that

∣∣z(M )
∣∣ � 〈φ|f (A)Of (A)†|φ〉 + q2ε,

where 〈φ|f (A)Of (A)†|φ〉 � ‖O‖∞‖f (A) |b〉 〈b| f (A)†‖1
� ‖O‖∞‖f (A)|φ〉‖2

2. Denoting |Q(Mq) − q2| � ν, we can
observe

∣∣∣∣
1

Q(Mq)
− 1

q2

∣∣∣∣ � ν

Q(Mq)q2
(B40)

� ν

q2(q2 − ν)
(B41)

= ν

q4(1 − ν

q2 )
(B42)

� ν

q4

(
8
(
ν

q2

)2

− 4
ν

q2 + 2

)
. (B43)

Then, one can check that ν = 1/2(εq2)/‖O‖ gives∣∣1/Q(Mq) − 1/q2
∣∣ � ε2/q2‖O‖2(ε/‖O‖ − 1) + ε/q2‖O‖

� ε/q2‖O‖ and so, returning to Eq. (B39), under this con-
dition we have

∣∣1/Q(Mq)z(M ) − 1/q2〈φ|f (A)Of (A)†|φ〉∣∣ �
3ε for ε � 1, ‖O‖ � 1. �

By similar reasoning, we also have the following lemma
for quantities of the form of a state overlap, rather than
expectation values of general measurement observables.

Lemma 4 (Normalization precision, part 2). Suppose
that we have some z(M ) ∈ R, pure states |φ〉 |ψ〉, and an
operator f (A) that satisfy

∣∣∣∣
1
q

z(M ) − 1
q
〈φ|f (A)|ψ〉

∣∣∣∣ � ε � 1, (B44)

where we denote q = ‖f (A)|φ〉‖2. Then, if Q(Mq) is the
statistical approximation of q2, one can achieve

∣∣∣∣∣
1√

Q(Mq)
z(M ) − 1

q
〈φ|f (A)|ψ〉

∣∣∣∣∣ � 3ε, (B45)

if Q(Mq) satisfies |Q(Mq) − q2| � 1
2εq

2.

Proof. Similar to the proof of Lemma 3, we have
∣∣∣∣∣

1√
Q(Mq)

z(M ) − 1
q
〈φ|f (A)|ψ〉

∣∣∣∣∣

�
∣∣∣∣∣

1√
Q(Mq)

− 1
q

∣∣∣∣∣ q(1 + ε)+ ε. (B46)
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Moreover, if |Q(Mq) − q2| � ν, then

∣∣∣∣
√

Q(Mq) − q
∣∣∣∣ � ν√

Q(Mq) + q
� ν

q
. (B47)

Thus,

∣∣∣∣∣
1√

Q(Mq)
− 1

q

∣∣∣∣∣ �

∣∣∣
√

Q(Mq) − q
∣∣∣

√
Q(Mq)q

(B48)

� ν√
Q(Mq)q2

(B49)

� ν

q2(q − ν/q)
(B50)

� ν

q3

(
8
(
ν

q2

)2

− 4
ν

q2 + 2

)
, (B51)

and the choice ν = 1
2εq

2 gives

∣∣∣∣∣
1√

Q(Mq)
− 1

q

∣∣∣∣∣ � ε

q
, (B52)

which leads to the desired result, under the assumption
ε � 1. �

We will also need the following lemma, which gives a
tighter result than Lemma 2 for pure states.

Lemma 5 (Tightness of expectation values, part 2).
Given two operators C and D, where C is Hermitian, and
given a pure state |φ〉, we have

∣∣〈φ|D†OD|φ〉 − 〈φ|COC|φ〉∣∣
� 3 ‖C|φ〉‖2 ‖C − D‖∞‖O‖∞, (B53)

where we have assumed that ‖C − D‖∞ � ‖C|φ〉‖2.

Proof. We directly bound the difference in expectation
values as

∣∣〈φ|D†OD|φ〉 − 〈φ|COC|φ〉∣∣ =
∣∣∣〈φ|CO(D − C)|φ〉

+ 〈φ|(D† − C)OC|φ〉 + 〈φ|(D† − C)O(D − C)|φ〉
∣∣∣

(B54)

� ‖|φ〉 〈φ| C‖1 ‖O(D − C)‖∞

+ ‖C |φ〉 〈φ|‖1 ‖(D† − C)

× O‖∞ + ‖|φ〉 〈φ|‖1 ‖(D† − C)O(D − C)‖∞ (B55)

� ‖|φ〉 〈φ|‖2 ‖|φ〉 〈φ| C‖2 ‖O‖∞‖D − C‖∞

+ ‖C |φ〉 〈φ|‖2 ‖|φ〉 〈φ|‖2 ‖D†

− C‖∞‖O‖∞ + ‖D† − C‖∞‖O‖∞‖D − C‖∞ (B56)

= 2‖C|φ〉‖2‖C − D‖∞‖O‖∞ + ‖C − D‖2
∞‖O‖∞

(B57)

� 3‖C|φ〉‖2‖C − D‖∞‖O‖∞, (B58)

where in the first equality we have added and sub-
tracted 〈φ|COD|φ〉 + 〈φ|D†OC|φ〉 + 〈φ|COC|φ〉, in the
first inequality we have used the triangle inequality and
Hölder’s tracial-matrix inequality, in the second inequal-
ity we have used the Cauchy-Schwarz inequality and the
submultiplicativity of the operator norm, in the subsequent
equality we have used the definition of the vector 2-norm
and the fact that C is Hermitian, and in the final inequality
we have used our starting assumption that ‖C − D‖∞ �
‖C|φ〉‖2. �

Lemmas 3 and 4 demonstrate that if one has a normal-
ization factor that also needs to be statistically approxi-
mated, then one can simply modify the error parameter in
Theorem 2 by a factor of 3 and use a separate algorithm
to approximate the normalization factor. In the case of
the state-normalization factor q = ‖f (A)|ψ〉‖, we now
demonstrate the complexities required for a randomized
quantum algorithm that approximates it to sufficient error
as specified by Lemmas 3, 4 and 5 (see Proposition 2 of
the main text). Following previous sections, we denote our
matrix function of interest as f (A) given matrix A, and
denote its Fourier-series approximation as s(ε, A).

Proposition 7 (Sampling normalization constant—detai-
led version). If q = ‖f (A)|ψ〉‖ where |ψ〉 is a preparable
input state in depth dψ with unitary Uψ , then we give a
randomized algorithm to approximate q for the two algo-
rithms in Theorem 2 that has success probability at least
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(1 − δ) and complexity

Csample = O
(

log
(

2
δ

)
c2 [α( εq12c , A)]4

ε2q4

)
,

Cgate = O
(
λ2[tmax

( εq
12c

, A
)]2 + dψ

)
, (B59)

where c = 1 for the algorithm that prepares 1/q〈ψ |Uf (A)
V|ψ〉 and c = ‖O‖ for the algorithm that prepares
(1/q2)Tr

[
f (A) |ψ〉 〈ψ | f (A)†O

]
.

Proof of Proposition 7. Lemmas 3 and 4 specify that, in
order to statistically approximate the normalized expec-
tation value to additive error ε, one requires a statistical
approximation to q2 using Mq shots, which we denote as
Q(Mq), that satisfies |Q(Mq) − q2| � 1/(6)εq2 for problem
(a) and satisfies |Q(Mq) − q2| � 1/6(εq2)/‖O‖ for prob-
lem (b). From hereon, we thus deal with problem (b) and
note that the resources required for problem (a) can be
accounted for by setting ‖O‖ → 1.

We propose to construct Q(Mq) by sampling 〈φ|s(ε,
A)†s(ε, A)|φ〉 via Algorithm 1 and the Hadamard test
circuit in Fig. 2(a). We require
∣∣Q(Mq) − 〈φ|f (A)2|φ〉∣∣ �

∣∣Q(Mq) − 〈φ|s(ε, A)†s(ε, A)|φ〉∣∣
+ ∣∣〈φ|s(ε, A)†s(ε, A)|φ〉 − 〈φ|f (A)2|φ〉∣∣ (B60)

to be smaller than 1/6(εq2)/‖O‖. The second term on the
right-hand side is bounded by Lemma 5 as

∣∣〈φ|s(ε, A)†s(ε, A)|φ〉 − 〈φ|f (A)2|φ〉∣∣
≤ 3q ‖s(ε, A)− f (A)‖ . (B61)

Thus, evenly distributing error across statistical and exact
contributions, we require a Fourier-series approximation
that is tight up to ‖s(ε, A)− f (A)‖ � 1/36(εq)/‖O‖,
which sets the second term in Eq. (B60) to be smaller
than 1/12(εq2)/‖O‖. Using Proposition 1, we can bound
the first term in Eq. (B60) by the value 1/12(εq2)/‖O‖ by
using

Mq � 2e4 log
(

2
δ

)
α( 1

36
εq

‖O‖ )
2

(
1
12

εq2

‖O‖
)2

= 288e4 log
(

2
δ

) ‖O‖2α( 1
12

εq
‖O‖ )

2

ε2q4

shots and gate depth Cgate = 2λ2t2max(1/12(εq)/‖O‖). �

5. Statistical encoding of classical vectors

In this section, we show how to statistically “encode”
a classical vector 
b = (b1, . . . , bN ) to recover its prop-
erties when determining state overlaps and expectation

values using our randomized algorithms. We show that
with O(s) classical preprocessing steps, one can start from
classical access to a vector 
b and invoke it as part of a
larger randomized algorithm with a cost of increased cir-
cuit samples depending on ‖
b‖1 and minimal quantum gate
overhead. This can then replace the usual (quantum) state
oracle in linear algebra algorithms, such as in our statisti-
cal algorithm for linear systems as described in Proposition
4 in the main text. We note that, traditionally, quantum
algorithms that act on classical data assume that an encod-
ing is given via a normalized input vector of the form
|
b〉 := 1/‖
b‖2

∑
i bi|i〉. However, our compilation scheme

allows for arbitrary normalization; thus we can recover
the action of the true vector 
b and take its magnitude into
account.

Definition 1 (Classical sparse-access model). We say
that a classical vector 
b = (b1, . . . , bN ) is stored with
sparse access if the following set of tuples is stored and
accessible in classical memory:

B = {(bi, i) | bi �= 0}. (B62)

We suppose that we wish to randomly compile prop-
erties of a matrix G decomposed into a linear com-
bination of implementable unitaries G = ∑

j gj Vj with
weight of coefficients g := ∑

j |gj |. Using our random-
ized sampling scheme with the circuits in Figs. 2(a) and
2(b), we can prepare quantities of the form 〈ψ |G|
b〉
and 〈
b|G†OG|
b〉, with respective sample complexities
O(g2/ε2) and O(g4‖O‖2/ε2) and a gate depth scaling with
the largest gate depth in {Vj }j . This presumes that there is
a procedure to prepare the states |ψ〉, |
b〉. If |
b〉 is not pro-
vided via an oracle, the following proposition shows how
to statistically recover the encoding and how the sample
complexities change.

Proposition 8 (Random compiling classical input
vector—detailed version). Suppose that a vector 
b =
(b1, . . . , bN )with sparsity s is stored classically with sparse
access as defined in Definition 1. Suppose further that
we have access to some measurement observable O and
a unitary Uψ to prepare state |ψ〉. Then, by providing
classical preprocessing in O(s) time, there exists a ran-
domized quantum algorithm that returns an approximation
of (a) 〈ψ |G|
b〉, and (b) 〈
b|G†OG|
b〉 to additive error ε and
constant arbitrary probability, using

Cψsample = O
(

g2

ε2

‖
b‖2
1

‖
b‖2
2

)
, CO

sample = O
(

g4‖O‖2

ε2

‖
b‖4
1

‖
b‖4
2

)
,

(B63)

for scenarios (a) and (b), respectively, where each circuit
uses one application of Uφ . The additional gate overhead
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for randomly compiling the input vector is one or two
controlled multiqubit NOT gates.

Proof of Proposition 8. We first give an overview of
the main steps of our idea, before giving more precise
analysis of quantum and classical resources required. We
express |
b〉 = ∑N

i=1 bi|i〉/‖
b‖2 as a weighted probabilistic
sum over states

|
b〉 = ‖
b‖1

‖
b‖2

N∑

i=1

p (

b)

i · sgn(bi)|i〉

= ‖
b‖1

‖
b‖2

N∑

i=1

pi · sgn(bi)Xi|0〉, (B64)

where we denote the probabilities p (

b)

i = |bi|/‖
b‖1, we
denote sgn(bi) = bi/|bi|, and Xi is the �log N	-qubit Pauli
operator in {1, X }⊗�log N	 that corresponds to the binary
representation of i. If the description in Eq. (B64) is clas-
sically accessible, then |
b〉 can be statistically encoded by
sampling from this distribution as follows.

(a) Recovering 〈ψ |G|
b〉. We can express 〈ψ |G|
b〉 as the
probabilistic sum

〈ψ |G|
b〉 = ‖
b‖1

‖
b‖2

N∑

i=1

p (

b)

i · sgn(bi)〈0|U†
ψGXi|0〉

= ‖
b‖1

‖
b‖2
g

N∑

i=1

p (

b)

i p (G)j · sgn(bigj )〈0|U†
ψVj Xi|0〉,

(B65)

where in the first equality we have used the fact that
|ψ〉 = Uψ |0〉 and Eq. (B64), and in the second equal-
ity we have decomposed G into its constituent uni-
taries as G = ∑

j gj Vj with weight of coefficients g :=
∑

j |gj |. The quantity 〈ψ |G|
b〉 can then be statisti-
cally recovered as follows. (1) Sample indices i′ and
j ′ from the probability distribution {p (
b)i p (G)i }i,j . (2) Run
two Hadamard test circuits [see Fig. 2(a)] to obtain
one measurement sample each of Re(〈0|U†

ψVj ′Xi′ |0〉) and
Im(〈0|U†

ψVj ′Xi′ |0〉), respectively. (3) Classically multiply
the result by ‖
b‖1g sgn(bi′gj ′)/‖
b‖2 and store the result. (4)
Repeat the process Cφsample times and average over results.
Due to Hoeffding’s inequality, it is sufficient to take

Cφsample = 8 log
(

2
δ

)
g2

ε2

‖
b‖1

‖
b‖2
(B66)

samples to attain an answer within additive error ε

and probability at least (1 − δ). (The additional factor

of 4 comes from approximating Re(〈0|U†
ψVj Xi|0〉) and

Im(〈0|U†
ψVj Xi|0〉) each to additive error ε/

√
2 separately.)

(b) Recovering 〈
b|G†OG|
b〉. Similar to the above, we
can write

〈
b|G†OG|
b〉 = ‖
b‖2
1

‖
b‖2
2

∑

i,�

p (

b)

i p (

b)
�

· sgn(bib�)〈0|XiG†OGX�|0〉. (B67)

= ‖
b‖2
1

‖
b‖2
2

g2
∑

i,j ,k,�

p (

b)

i p (G)j p (G)k p (

b)
�

· sgn(bigj gkb�)〈0|XiV
†
j OVkX�|0〉. (B68)

We consider a very similar protocol to before. (1) Sam-
ple indices i′, j ′, k′, �′ from the probability distribution
{p (
b)i p (G)j p (G)k p (


b)
� }ijk�. (2) Run the circuit in Fig. 2 to obtain

one measurement sample of 〈0|XiV
†
j OVkX�|0〉. (3) Clas-

sically multiply the result by ‖
b‖2
1g2 sgn(bigj gkb�))/‖
b‖2

2
and store the result. (4) Repeat the process CO

sample times
and average over results. Due to Hoeffding’s inequality, it
is sufficient to take

CO
sample = 2 log

(
2
δ

)
g4‖O‖2

ε2

‖
b‖4
1

‖
b‖4
2

(B69)

shots to attain an answer within additive error ε and
probability at least (1 − δ).

We now consider the classical resources required to
determine ‖
b‖1, ‖
b‖2, {pi}, and {sgn(bi)} given B. As one
can obtain the set of tuples B = {(|bi|, i

) | bi �= 0
}

in O(s)
steps from B, it then follows that all four sets of quantities
can be obtained in O(s) additional steps by first obtaining
B and then combining quantities in B and B. �

Remark (Arbitrary normalization). We can additionally
consider arbitrarily normalized states with normalization
constant m as 1/m|
b〉 by changing the sample complexity
by factor ‖
b‖1 → 1/m‖
b‖1.

6. Sampling from output vector

In this section, we demonstrate a modification of
Theorem 2 that allows sampling from the vector corre-
sponding to sampling G |ψ〉 in the computational basis for
some state |ψ〉 and operator G of interest, which is a gener-
alization of our algorithmic framework. As in the previous
section, we suppose that there is a known decomposition
G = ∑

i giVi into implementable unitaries with gi ∈ C. For
further simplicity, we denote

∑
i giVi = g

∑
i piUi, where

g := ∑
j |gj |, pi := |gi|/g and Ui := (gi/|gi|)Vi is a unitary

that absorbs the phase of gi. Our discussion will remain
general to any randomized algorithm that samples from
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FIG. 3. The generalized Hadamard test. We use this circuit
along with a modified measurement in Algorithm 2 to sample
from the solution vector. Rather than measuring the observable
Z ⊗ O, we measure all qubits in the computational basis.

such a collection of unitaries. In what follows, we show
that an unbiased estimator can be constructed for the vec-
tor the entries of which take the values | 〈
zn| G |ψ〉 |2 for
each 
zn ∈ {0, 1}n. This mimics the more common approach
in quantum algorithms where one prepares the quantum
state G |ψ〉 /‖G |ψ〉 ‖ and collects measurement samples in
the computational basis. As with Theorem 2, our scheme
moves part of the (coherent) quantum complexity into
sample complexity, as now the operator G does not need
to be materialized quantumly.

In order to produce our desired estimator, we will sim-
ply implement the gates in the circuit corresponding to
the generalized Hadamard test of Fig. 2(b) and measure
all qubits in the computational basis, with minor classi-
cal postprocessing. Consider the circuit in Fig. 3, which
explicitly shows the gates in the circuit in Fig. 2(b) before
computational-basis measurement.

The state before measurement is 1/2
( |0〉 (Ui + Uj ) |ψ〉

+ |1〉 (Ui − Uj ) |ψ〉 ). Measurement in the computational
basis yields

(0, 
zn) with probability
1
4

∣∣〈
zn| (Ui + Uj ) |ψ〉∣∣2 ,

(B70)

(1, 
zn) with probability
1
4

∣∣〈
zn| (Ui − Uj ) |ψ〉∣∣2 ,

(B71)

for all 
zn ∈ {0, 1}n.
Our procedure is as follows. As in Algorithm 2, we sam-

ple two unitaries (Ui, Uj ) independently at a time with
probability pipj . We run the circuit in Fig. 3, concluding
with computational-basis measurement on all qubits, and
assign vector element g2(−1)z |
zn〉 upon receiving string
(z, 
zn). One can check that this gives an unbiased estimator
for the vector

∑

ij

pipj

∑


zn∈(0,1)n

∑

z∈{0,1}
Prob

(
(z, 
zn)

∣∣Ui, Uj
) · g2(−1)z |
zn〉 =

(B72)

=
∑

ij

pipj

∑


zn∈(0,1)n

(
1
4

∣∣〈
zn| (Ui + Uj ) |ψ〉∣∣2 · (g2 |
zn〉)

+ 1
4

∣∣〈
zn| (Ui − Uj ) |ψ〉∣∣2 · (−1g2 |
zn〉)
)

(B73)

=
∑


zn∈(0,1)n

∑

ij

g2 pipj

(
1
2

〈ψ | U†
i |
zn〉 〈
zn| Uj |ψ〉 · |
zn〉

+ 1
2

〈ψ | U†
j |
zn〉 〈
zn| Ui |ψ〉 · |
zn〉

)
(B74)

=
∑


zn∈(0,1)n

∣∣ 〈
zn| G |ψ〉 ∣∣2 · |
zn〉 , (B75)

which indeed is the vector with entries
∑


zn∈(0,1)n∣∣ 〈
zn| G |ψ〉 ∣∣2 as desired, which, from hereon, we denote
as 
G.

How many shots do we need to take in order to obtain
good convergence? We appeal to vector Bernstein inequal-
ities. Reference [104] essentially gives a vector Bernstein
inequality (adapted from Refs. [105,106]) for the sample
mean 
YM = ∑M

i=1

Xi of M i.d.d. random variables 
Xi ∈ R

N

of

Prob
(∥∥
YM − E[
YM ]

∥∥ � ε
)
� exp

(
−Mε2

8σ 2

)
, (B76)

where σ 2 is an upper bound on the second moment satisfy-
ing σ 2 � E

[‖ 
Xi − E[ 
Xi]‖2
2

]
for all i ∈ [N ], and E[
YM ] =


G. Due to the linearity of the trace, we have E
[‖ 
Xi −

E[ 
Xi]‖2
2

]
� E

[‖ 
Xi‖2
2

]
and thus we can set σ 2 = g4. This

implies that we obtain an estimator 
YCsample satisfying

∥∥∥
YCsample − 
G
∥∥∥ � ε, (B77)

with probability (1 − δ), using a number of shots satisfying

Csample = O
(

g4

ε2 log
(

1
δ

))
, (B78)

which is the same sample complexity as specified in
Theorem 2 to recover a general observable. Thus, here
we have shown that instead of measuring an observable,
one can use the same number of shots (asymptotically)
to recover an approximation of the classical vector cor-
responding to output probabilities in the computational
basis.
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7. Classical algorithm for matrix polynomials

In this section, we show that, given a bounded degree
polynomial series h(A) = ∑

k∈Fd
αkAk in matrix A where

A has known Pauli decomposition with bounded Pauli
weight, one can then approximate quantities of the form
〈t|h(A)|s〉 efficiently classically by means of a random-
ized algorithm. This is a more detailed restatement of
Proposition 3 in the main text.

Proposition 9 (Sampling from polynomial series—detai-
led version). Suppose that we have a polynomial series of
degree d

h(A) =
∑

k∈Fd

αkAk, (B79)

in some N × N Hermitian matrix A, where Fd ⊆ [d], and
denote the �1-norm of the coefficients as α := ∑

k∈Fd
|αk|.

Suppose further that A has known Pauli decomposition
A = ∑

� a�P� with Pauli weight λ = ∑
� |a�|. Then, given

pure states |t〉 and |s〉 that are implementable by initializ-
ing in the |0〉 state and performing O(m) Clifford gates,
one can classically approximate 〈t|h(A)|s〉 up to additive
error ε with probability at least 1 − δ, using

Csample = O
(

log
(

2
δ

)
(αλd)2

ε2

)
(B80)

calls to independent classical subroutines, each requir-
ing O(log2(N )) bits and at most O(d log2(N )+ m log(N ))
time.

Proof of Proposition 9. We first note that we can write

A = λ
∑

�

p� · sgn(a�)P�, (B81)

where λ = ∑
� |a�| is the Pauli weight and we denote p� =

|a�|/λ and sgn(a�) = a�/|a�|. We can then write

h(A) =
∑

k∈Fd

αkλ
k

∑

�1,...,�k

p�1 · · · p�k sgn(a�1) · · · sgn(a�k )

× P�1 · · · P�k (B82)

= Rh(A)

∑

k∈Fd

∑

�1,...,�k

qk p�1 . . . p�k φ(αk)

× sgn(a�1) · · · sgn(a�k )P�1 · · · P�k , (B83)

where we denote Rh(A) = ∑
k∈Fd

|αkλ
k| � αλd, qk = |αk|

λk/Rh(A), and φ(αk) = αk/|αk|. We note that p�1 , . . . , p�k
and qk are probabilities. This then allows us to statistically

recover h(A)with weight Rh(A). For simplicity, we subsume
all indices and write

h(A) = G
∑

i∈S

p̃iφ̃iP̃i , (B84)

where p̃i = qk p�1 . . . p�k subsumes all probabilities, φ̃i =
φ(αk) sgn(a�1) · · · sgn(a�k ) subsumes all phases, and P̃i =
P�1 · · · P�k is a product of k Paulis.

Preparation of 〈t|h(A)|s〉. Denote the collection of Clif-
fords to prepare |t〉 and |s〉 as Ut and Us, respectively. Using
Eq. (B84), we can simply write

〈t|h(A)|s〉 = Rh(A)

∑

i∈S

p̃iφ̃i〈0|U†
t P̃iUs|0〉. (B85)

Inspecting this, we can consider the following protocol: (1)
sample from the above probability distribution, obtaining
index i with probability p̃i; (2) sample one measurement
result corresponding to 〈0|U†

t P̃iUs|0〉 by running the circuit
in Fig. 2(a); (3) multiply the result by Rh(A)φ̃i; (4) repeat M
times and take the mean over the results.

We note that in step (2), one requires sampling one mea-
surement result from a circuit that contains at most 2d con-
trolled n-qubit Pauli operations plus O(m) other Clifford
operations. The former part can simply be decomposed
into at most 2dn controlled single-qubit Pauli operations.
In order to simulate the circuit overall, one requires O(n2)

bits and O(dn2 + mn) time [107,108]. Due to Hoeffding’s
inequality, in order to recover 〈t|h(A)|s〉 to additive error
ε with probability at least (1 − δ), it is sufficient to use M
shots for any

M � 2 log
(

2
δ

) R2
h(A)

ε2 . (B86)

Using the upper bound Rh(A) � αλd we observe that it is
sufficient to perform

Csample = 2 log
(

2
δ

)
(αλd)2

ε2 (B87)

shots.
Note that quantities of the form Tr

[
h(A)ρ h(A)†O

]

(where ρ and O are implementable by Cliffords) can be
obtained by taking the modulus squared of quantities of the
form 〈t|h(A)|s〉. Alternatively, they can also be prepared by
simulating the circuit in Fig. 2(b). �

The above proposition can be trivially extended to con-
sider polynomials of multiple matrices. This implies that
subroutines such as matrix multiplication can be efficiently
sampled from, given the matrices have bounded Pauli
weights.
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APPENDIX C: APPLICATION-SPECIFIC
RESULTS

1. Linear systems

In this appendix, we detail our results for linear systems.
We first summarize a result from Ref. [47]. In this work,
the authors find an approximation of A−1 as a linear combi-
nation of unitaries

∑
i αi exp(−iAzj ). More precisely, they

find a Fourier representation of the inverse function as

1
x

= i√
2π

∫ ∞

0
dy

∫ ∞

−∞
dz ze−z2/2e−ixyz. (C1)

Further, they show that when truncating the integration
range as

g(x) := i√
2π

∫ yJ

0
dy

∫ zK

−zK

dz ze−z2/2e−ixyz , (C2)

we have

∣∣∣∣g(x)− 1
x

∣∣∣∣ � 1
|x|e−(xyJ )

2/2 + 2
|x|e−z2

K /2 � ε, (C3)

on the domain Db := [−1, −1/b] ∪ [1/b, 1] for some
yJ (ε, b) = �(b

√
log(b/ε)) and zK(ε, b) = �(

√
log(b/ε))

(Ref. [47, Lemma 12]). An important point is that this
choice is totally independent of the upper limit of the
domain and is wholly dependent on b, i.e., the same
statement holds over the domain [−a, −1/b] ∪ [1/b, a]
with arbitrary a � 1/b. This is due to the fact that the
upper bound on the approximation error in Eq. (C3) is a
decreasing function in |x|. The integral in Eq. (C2) can be
discretized as

h(x) := i√
2π

J−1∑

j =0

�y

K∑

k=−K

�zzke−z2
k /2e−ixyj zk , (C4)

where the integration range has been discretized into J
and 2K + 1 steps of size �y and �z, respectively. More-
over, taking step sizes �y = �(ε/

√
log(b/ε)) and �z =

�((b
√

log(b/ε))−1) guarantees that h(x) is ε-close to 1/x
on the domain Db. Note, however, as we will only sample
from this distribution, for our purposes the resolution of
this discretization can be taken to be arbitrarily small. By
inspecting Eq. (C4), one can observe that this corresponds
to a Fourier series with maximum time parameter

tmax = �(yJ (ε, b)zK(ε, b)) = �(b log(b/ε)) (C5)

and coefficients with weight

1√
2π

J−1∑

j =0

�y

K∑

k=−K

�z |zk| e−z2
k /2 = �(yJ (ε, b))

= �
(

b
√

log(b/ε)
)

.

(C6)

By mapping the domain Db to the spectrum of some matrix
A, this allows us to establish the following lemma.

Lemma 6 (Fourier-series approximation of inverse
operator, adapted from Ref. [47]). Given some matrix A
with finite ‖A−1‖, we have

∥∥∥A−1 −
∑

i∈Sε,A

αi(ε, A) exp(−iAzj (ε, A))
∥∥∥ � ε, (C7)

where Sε,A is some index set, with maximum time parame-
ter tmax := maxi∈Sε,A(zj ) satisfying

tmax(ε, A) = �

(
‖A−1‖ log

(‖A−1‖
ε

))
, (C8)

and Fourier coefficients αi(ε, A) with �1-norm satisfying

α(ε, A) :=
∑

i

|αi(ε, A)| = �

(
‖A−1‖

√

log
(‖A−1‖

ε

))
.

(C9)

Our result for linear systems (Corollary 1 in the main
text) then follows directly from Theorem 2 and Proposition
7 as follows.

Corollary 4 (Linear systems—detailed version). Con-
sider a Hermitian matrix A with known Pauli decompo-
sition A = ∑

� a�P� ; λ := ∑
� |a�|. Denote q as a freely

chosen normalization parameter. Finally, suppose that we
have the ability to prepare state |
b〉 in O(d
b) depth:

(i) Given the ability to implement Uψ |0〉 = |ψ〉 in
gate depth dψ , there exists a randomized quantum
algorithm that returns 1/q〈ψ |A−1|
b〉 up to addi-
tive error ε with probability at least 1 − δ, utilizing
O

(
log (2/δ) ‖A−1‖2

ε2q2 log
(‖A−1‖2/εq2

))
circuit runs

each with gate depthO (‖A−1‖2λ2 log2 (‖A−1‖2/εq2
)

+dψ + d
b
)
.

(ii) Given the ability to measure observable O ; ‖O‖ �
1, there exists a randomized quantum algorithm
that returns 1/q2〈
b|A−1OA−1|
b〉 up to additive
error ε with probability at least 1 − δ, utilizing
O

(
log (2/δ) ‖A−1‖4

ε2q4 log2 (‖A−1‖2/εq2
))

circuit runs
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each of gate depth O (‖A−1‖2λ2 log2 (‖A−1‖2/εq2
)

+d
b
)
.

(iii) In the case q = ‖A−1|
b〉‖, the value of which
is not given, there exists an auxiliary algorithm that
approximates the value of q for the above algorithms
with the sample complexity O

(
log (2/δ) ‖A−1‖4

ε2q4

log2 (‖A−1‖/εq)) and gate depth O (‖A−1‖2λ2 log2
(‖A−1‖/εq) + d
b

)
.

Proof of Corollary 1 (Linear systems). In order to quan-
tify the complexity of preparing 1/q〈ψ |Uf (A)V|ψ〉, we
now require α(εq, A) and tmax(εq, A), as specified by
Eq. (B29) of Theorem 1. Again inspecting Eqs. (C8) and
(C9) of Lemma 6, these quantities scale as

tmax(εq, A) = �

(
‖A−1‖ log

(‖A−1‖
εq

))
, (C10)

and

α(εq, A) = �

(
‖A−1‖

√

log
(‖A−1‖

εq

))
. (C11)

Now, substituting the above into Eq. (B29) of Theorem 1,
we obtain the desired result.

Similarly, in order to quantify the complexity of prepar-
ing (1/q2)Tr

[
f (A)ρf (A)†O

]
, we need to evaluate the

quantities α
(
εq2/‖f (A)‖, A

)
and tmax

(
εq2/‖f (A)‖, A

)
, as

specified by Eq. (B30) of Theorem 1. Inspecting Eqs. (C8)
and (C9) of Lemma 6, we see that these quantities satisfy

tmax

( εq2

‖f (A)‖ , A
)

= �

(
‖A−1‖ log

(‖A−1‖2

εq2

))
, (C12)

and

α
( εq2

‖f (A)‖ , A
)

= �

(
‖A−1‖

√

log
(‖A−1‖2

εq2

))
. (C13)

Substituting these two expressions into Eq. (B30) of
Theorem 1, we obtain the desired result.

Finally, we can use Proposition 2 to characterize the
complexity of approximating ‖A−1|
b〉‖. Equation (B59)
of Proposition 2 is written in terms of α(εq, A) and
tmax(εq, A), the scalings of which we have already quoted
above. Substituting this into Eq. (B59), we obtain the result
in Corollary 1. �

Remark (Non-Hermitian matrices). Any non-Hermitian
matrix B can be embedded in a larger Hermitian matrix A

with the aid of a single qubit as

A =
[

0 B
B† 0

]
. (C14)

Then, one can verify that A−1
(
b

0

)
= B−1
b, ‖A‖ = ‖B‖

and ‖A−1‖ = ‖B−1‖. In Pauli representation, given respec-
tive Hermitian and anti-Hermitian components H(B) and
iH2(B) of B such that B = H1(B)+ iH2(B), this embed-
ding can be explicitly written as

A = X ⊗ H1(B)− Y ⊗ H2(B)

= 1
2

X ⊗ (B + B†)− 1
2

Y ⊗ (B − B†). (C15)

From this, it is clear that the Pauli weight of A is bounded
as λ � 2λB.

Using the above remark, we see that the asymptotic
complexities for the linear-systems problem as stated in
A can be simply be translated to B via the substitution
λ → λB and ‖A−1‖ → ‖B−1‖.

2. Ground-state sampling

In this section, we study the task of sampling proper-
ties of the ground state of a given Hamiltonian. In order
to establish our result, the relevant function that we con-
sider is the Gaussian function e−(1/2)τ2x2

. We refer to
the following lemmas, which show how this can obtain
approximations of ground-state observables.

Lemma 7 (Ground-state projection—adapted from Keen
et al. [68]). Suppose that we have Hamiltonian H =∑

l El |El〉 〈El| with all eigenvalues El � 0. Assume that
the spectral gap is lower bounded by � � E1 − E0. Addi-
tionally, we suppose that we have an initial trial state |ψ0〉
with overlap with the ground state γ := |〈ψ0 |E0〉|. Then,
the state |ψ〉 = |ψ̃〉/‖|ψ̃〉‖, where |ψ̃〉 = e− 1

2 τ
2H2 |ψ0〉, sat-

isfies

1 − |〈ψ |E0〉| � 1
2
ε2, (C16)

for any τ � τε where τε satisfies

τε = 1
�

√

2 log
1
εγ

. (C17)

With the following lemma, we can see how this affects
the closeness of expectation values.
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Lemma 8 (Tightness of expectation values, part 3). For
some operator O and pure states |ψ〉 and E0, we have

∣∣Tr
[ |ψ〉 〈ψ | O

] − Tr
[ |E0〉 〈E0| O

]∣∣

� 2
√

2‖O‖
√

1 − |〈ψ |E0〉|. (C18)

Proof. We have

∣∣Tr
[ |ψ〉 〈ψ | O

] − Tr
[ |E0〉 〈E0| O

]∣∣

� ‖O‖∞ ‖|ψ〉 〈ψ | |E0〉 〈E0|‖1 (C19)

� 2‖O‖∞
√

1 − |〈ψ |E0〉|2 (C20)

= 2‖O‖∞
√
(1 − |〈ψ |E0〉|) (1 + |〈ψ |E0〉|) (C21)

� 2
√

2‖O‖∞
√

1 − |〈ψ |E0〉|, (C22)

where in the first line we use Hölder’s tracial-matrix
inequality, in the second line we use the relation between
the trace distance and the fidelity for pure states, in the
third line we complete the square, and in the final line we
use the fact that |〈ψ |E0〉| � 1. �

Lemma 9 (Ground-state observable projection). Under
the conditions specified in Lemma 7 with τ � τε, the
normalized state |ψ〉 = e−(1/2)τ2H2 |ψ0〉/‖e−(1/2)τ2H2 |ψ0〉‖
satisfies

Tr
[ |ψ〉 〈ψ | O

] − Tr
[ |E0〉 〈E0| O

]
� 2‖O‖ε, (C23)

for any measurement operator O.

Proof. This follows as a direct implication of Lemmas
7 and 8. �

We now introduce the Hubbard-Stratonovich transfor-
mation [109,110]. This gives us a way to decompose the
operator e−(1/2)τ2H2

into a linear combination of imple-
mentable unitaries. It states that, for Hermitian H , we
have

e− 1
2 τ

2H2 = 1√
2π

∫ ∞

−∞
dze− 1

2 z2
e−izτH . (C24)

The following lemma, adapted from Ref. [68], shows that
the integral in the Hubbard-Stratonovich transformation
can be discretized and truncated to give an approximate
(discrete) Fourier series for the operator e−(1/2)τ2H2

.

Lemma 10 (Approximate Hubbard-Stratonovich trans-
formation—adapted from Appendix A2 of Ref. [68]).

Truncating and discretizing the integral, and assuming
‖H‖ � 1, we have a Fourier-series approximation

∥∥∥∥∥∥
1√
2π

Nz∑

k=−Nz

�ze− 1
2 z2

k e−izkτH − e− 1
2 τ

2H2

∥∥∥∥∥∥
� ε, (C25)

for choice of �z = O (
τ−1

)
and �zNz = √

2 log(2/ε),
where we have denoted zk = k�z. This has maximum
time-evolution parameter

tmax(ε) := max
k
(zkτ) = �zNzτ = τ

√

2 log
(

2
ε

)
. (C26)

Further, the coefficients {αk(ε)}k = {1/(√2π)�ze−(1/2)z2
k }k

have weight

α(ε) :=
∑

k

|αk(ε)| � 1 + 1√
2π
�z. (C27)

Proof. The bound on α(ε) can be seen by noting that

∑

k

|αk(ε)| = 1√
2π

Nz∑

k=−Nz

�ze− 1
2 z2

k � 1√
2π

∞∑

k=−∞
�ze− 1

2 z2
k

(C28)

is simply a discretized Gaussian integral, where the dis-
cretization error can be bounded by the step size �z
multiplied by the maximum value of the function 1/

√
2π .

For the rest of the proof of the claim on tmax(ε), see Ref.
[68, Appendix A2]. �

From hereon, we will make the soft imposition that we
choose�z � 1. This gives an error-independent bound for
Lemma 10 of α(ε) � 1 + 1/

√
2π < 1.4.

Remark (Hamiltonians with nonpositive spectra). For
Hamiltonians with nonpositive spectra and where we have
upper bound on magnitude of ground-state energy λ0 �
|E0|, we can shift the spectrum H ′ = H + E01 without
changing the weight of the coefficients or the Hamiltonian-
simulation problem. This is because in the Hubbard-
Stratonovich transformation, the Hamiltonian appears in
the term e−izkτH ′ = e−izkτH e−izkτE01 = e−izkτE0e−izkτH and
the phase factor e−izkτE0 can be absorbed into the coef-
ficients αk without changing the weight α. Further, the
eigenstates of H ′ are clearly eigenstates of H , with shifted
eigenenergies.

We can now present our result for ground-state property
estimation (Corollary 2 in the main text).

Corollary 5 (Ground-state property estimation—detailed
version). Consider a Hamiltonian H = ∑

l El |El〉 〈El|
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with all eigenvalues El � 0 and known Pauli decompo-
sition H = ∑

� a�P� with λ := ∑
� |a�|. Assume that the

spectral gap is lower bounded by � � E1 − E0. Addition-
ally, we suppose that we have an initial trial state |ψ0〉
with overlap with the ground state γ := |〈ψ0 |E0〉|. Finally,
we assume that E0 � �/

√
2 log(‖O‖)/εγ . Then, given the

ability to measure observable O, there exists a random
algorithm that returns 〈E0|O|E0〉 up to additive error ε with
probability at least (1 − δ)2, which consists of:

(i) a core routine that requiresO (
log (2/δ) ‖O‖2/ε2γ 4

)

circuit runs of the form in Fig. 2(a) each of non-
Clifford depth at most O

(
λ2

�2 log2 (‖O‖/εγ 2
))

(ii) a subroutine that approximates the normalization
constant, using asmyptotically equivalent resources
to the core routine

Proof of Corollary 2. We first presume that the state-
normalization constant q = ‖e−(1/2)τ2H2 |ψ0〉‖ is given
to us exactly and use Lemma 9 to show how
to obtain an ε/6-additive statistical approximation to
1/q2〈ψ0|e−(1/2)τ2H2

Oe−(1/2)τ2H2 |ψ0〉. We then use Propo-
sition 7 to consider the overhead of approximating q,
which will relax the approximation error to ε/2. This
gives the desired ε-approximation to 〈E0|O|E0〉 for an
appropriate choice of τ as specified by Lemma 7.

In order to quantify the complexity of approxi-
mating 1/q2〈ψ0|e−(1/2)τ2H2

Oe−(1/2)τ2H2 |ψ0〉, we need to
evaluate the quantities α

(
εq2/‖O‖‖e−(1/2)τ2H2‖, H

)
and

tmax

(
εq2/‖O‖‖e−(1/2)τ2H2‖, H

)
, as specified by Eq. (B30)

of Theorem 1 and upper bound 1/q. We recall that from
the above discussion, by choosing that the step size �z in
the Fourier series in Lemma 10 to be less than 1, we fix
α
(
εq2/‖O‖‖e−(1/2)τ2H2‖, H

) = O(1). Moreover, we have

1/q � 1
γ

e(1/2)τ
2E0

2 � 2/γ for E0τ � 1 as e− 1
2 τ

2E0
2 � 1 −

(1/2)τ 2E0
2 � 1/2. Therefore, the sample complexity can

be evaluated simply as

CO
sample = O

(
log

(
2
δ

) ‖O‖2

ε2q4

)
= O

(
log

(
2
δ

) ‖O‖2

ε2γ 4

)
.

(C29)

For the gate complexity, using Eq. (C26) of Lemma (10),
we have

tmax

(
εq2

‖O‖‖e− 1
2 τ

2H2‖
, H

)
= τ

√√√√log

(
‖O‖‖e− 1

2 τ
2H2‖

εq2

)

(C30)

� τ

√

log
(‖O‖
εγ 2

)
, (C31)

where in the second line we have again used the
fact that 1/q � 1

γ
e(1/2)τ

2E0
2
. Suppose that we would

like the exact approximation error to be ε/2, i.e.,∣∣(1/q2) 〈ψ0|e−(1/2) τ2H2
Oe−(1/2)τ2H2 |ψ0〉 − 〈E0|O|E0〉

∣∣ �
ε/2. Lemma 9 specifies that, in order to satisfy this, it
is sufficient to have τ = τε/2‖O‖ = 1/�

√
2 log(2‖O‖/εγ ).

Thus, overall, we have

tmax

(
εq2

‖O‖‖e− 1
2 τ

2H2‖
, H

)
� 1
�

√

2 log
(

2‖O‖
εγ

)

√

log
(‖O‖
εγ 2

)
= O

(
1
�

log
(‖O‖
εγ 2

))
, (C32)

where we have used the fact that γ � 1. Substituting this
into Eq. (B30) of Theorem 2, we obtain the stated result
for non-Clifford gate complexity.

Finally, we consider the complexity of approximat-
ing the state norm q = ‖e−(1/2)τ2

ε/‖O‖H2 |ψ0〉‖ by following
Proposition 7. Equation (B59) of Proposition 7 expresses
complexities in terms of α(εq, H) and tmax(εq, H). From
the above discussion, we have that α(εq, H) = O(1).
Using Eq. (C26) and Corollary 2, we can assign

tmax(εq, H) = τ

√

2 log
(

2
εq

)
(C33)

= 1
�

√

2 log
(‖O‖
εγ

)√

2 log
(

2
εq

)
(C34)

= O
(

1
�

√

log
(‖O‖
εγ

)
log

(
4
εγ

))
, (C35)

where in the final line we have used the fact that 1/q �
2/γ . This leads to the stated complexities for the normal-
ization subroutine of

Cnorm
gate = O

(
log

(
2
δ

)
1

γ 4ε2

)
,

Cnorm
sample = O

(
λ2

�2 log
(‖O‖
εγ

)
log

(
4
εγ

))
. (C36)

�

a. Power method

In this section, we will explore the feasibility of using
a randomized scheme based on the power method to find
dominant eigenvalues. Quantum algorithms for estimat-
ing eigenvalues via the power method have previously
been studied [111,112], though not in a randomized set-
ting starting from Pauli access. Given an observable of
interest, the aim will be to approximate 〈E0|O |E0〉 with
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〈ψ0|H kOH k |ψ0〉 /‖H k |ψ0〉 ‖2, where |E0〉 is the ground
state of Hamiltonian H , |ψ0〉 is a given trial state with over-
lap γ := |〈E0 |ψ0〉|, and ‖H k |ψ0〉 ‖2. With this, we have
the following proposition.

Supplementary Proposition 1 (Power method). For
Hamiltonians H with negative spectra and first excited
energy E1 < 0, we have

∣∣∣∣
〈ψ0|H kOH k |ψ0〉

‖H k |ψ0〉 ‖2 − 〈E0|O |E0〉
∣∣∣∣ � ε, (C37)

for a given error parameter ε � (4‖O‖
√

1 − γ 2)/γ if k
satisfies

k = �

⎛

⎜⎝
log

(
γ ε

‖O‖
√

1−γ 2

)

log
(

1 − �
|E0|

)

⎞

⎟⎠

= �

( |E0|
�

log
(‖O‖

√
1 − γ 2

γ ε

))
. (C38)

Proof. Consider the decomposition of the trial state |ψ0〉
in the energy eigenbasis of H as

|ψ0〉 = c0|E0〉 +
∑

j>0

cj |Ej 〉, (C39)

where {ck}k are coefficients. Using this, we can express
H k|ψ0〉 as

H k|ψ0〉 = c0Ek
0|E0〉 +

∑

j>0

cj Ek
j |Ej 〉 (C40)

and thus the overlap of the normalized power-method
approximation with the true ground state

1 −
∣∣∣∣
〈E0|H k|ψ0〉
‖H k |ψ0〉 ‖

∣∣∣∣ = 1 − |c0Ek
0|√

c2
0E2k + ∑

j>0 c2
j E2k

j

(C41)

= 1 −
[

1 +
∑

j>0

c2
j

c2
0

(
Ej

E0

)2k ]−1/2

(C42)

� 1 −
[

1 + 1 − γ 2

γ 2

(
E1

E0

)2k ]−1/2

(C43)

� 1 −
[

1 − 1
2

1 − γ 2

γ 2

(
E1

E0

)2k ]

(C44)

= 1 − γ 2

2γ 2

(
E1

E0

)2k

, (C45)

where in the first inequality we have used the fact that γ =
E2

0 and
∑

j>0 c2
j = 1 − γ 2 and the second is due to the fact

that (1 + x)1/2 � 1 + x/2 for x � −1. Thus, in order to
constrain the state overlap 1 − ∣∣〈E0|H k|ψ0〉/‖H k |ψ0〉 ‖∣∣ =
ε′, each of the following conditions are sufficient:

1 − |c0Ek
0|√

c2
0E2k + ∑

j>0 c2
j E2k

j

� ε′, (C46)

⇒
(

1 − �

|E0|
)2k

� 2γ 2ε′

1 − γ 2 , (C47)

⇒ k � 1
2

log
(

2γ 2ε′
1−γ 2

)

log
(

1 − �
|E0|

) . (C48)

We recall that Lemma 8 relates the overlap of pure-state
expectation values to the overlap of states, which specifies
that the state overlap ε′ must be at most ε2/8‖O‖2 in order
to constrain the expectation value within additive error ε.
Using this, we obtain the first equality of Eq. (C38), where
starting our assumption on ε ensures that the bound on k is
positive and thus meaningful. The second equality can be
established by noting that

1 − |E0|
�

� 1
log

(
1 − �

|E0|
) � −|E0|

�
, (C49)

for E1 < 0. �

We now suppose that we are given a recipe to prepare the
trial state by a series of Clifford gates or we have access
to the amplitudes (for which Proposition 8 can be used).
The above lemma along with Proposition 9 implies that, in
this setting, there is a classical algorithm that solves the
ground-state property-estimation problem with an expo-
nential number of samples in �−1 and polynomial in all
other parameters.

3. Gibbs-state property estimation

In this section, we demonstrate how the Fourier decom-
position of the exponential function found in Ref. [86]
leads to a randomized quantum algorithm to sample prop-
erties of the Gibbs state in our scheme. In Ref. [86], the
authors assume that one has access to the purification of
the Gibbs state of some intermediate Hamiltonian H0 and
aims to construct an approximation of the Gibbs state of
some other Hamiltonian H . More precisely, we start with
the state

|�0〉 = 1√Z0

∑

i

e−βE0,i/2 |E0,i〉 |E∗
0,i〉 ∈ HA ⊗ HB ,

(C50)

where Z0 := Tr[e−βH0] is the partition function for H0,
and {|E0,i〉}i are the eigenstates of H0 with corresponding
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eigenvalues {E0,i}i ({|E∗
0,i〉}i are the eigenstates of H ∗

0 , the
complex conjugate of H0 in the computational basis). This
state satisfies

TrA[|�0〉〈�0 |] = TrB[|�0〉〈�0 |] = e−βH0

Z0
, (C51)

i.e., it is the purification of the Gibbs state of H0. The goal
of Ref. [86] is then to prepare the Gibbs state of H ,

TrA[|�〉〈� |] = TrB[|�〉〈� |] = e−βH

Z =: γβ , (C52)

where Z := Tr[e−βH ]. As our algorithmic framework only
allows the estimation of observable and state overlaps, our
randomized algorithm will approximate the expectation
value Tr[γβO] for a given measurement operator O.

It is observed that the so-called “work operator” W :=
H ⊗ 1 + 1 ⊗ H ∗

0 enables the transformation

√
Z0

Z e−βW/2 |�0〉 = |�〉 , (C53)

where
√Z0/Z = 1/‖e−βW/2 |�0〉 ‖ is the normalization

factor. Thus, the relevant function of interest for us here is
e−βW/2. Reference [86] presents a Fourier decomposition
of e−βW/2 as follows.

Lemma 11 (Exponential operator—adapted from Lem-
mas 3.1, 3.2, and 3.4 of Ref. [86]). There exists an LCU
Fourier decomposition X = ∑2J

j =0 αj eiτj W that satisfies

∥∥∥∥
TrA[X |�0〉〈�0 |X †]

‖X |�0〉 ‖2 − γβ

∥∥∥∥
1
� 2ε, (C54)

where if [H0, H ] = 0, the parameters in the decomposition
satisfy

α :=
2J∑

j =0

|αj | � 2emax{4,
√

ln 6/ε}eβ‖V‖/2 , (C55)

‖X |�0〉 ‖ � 1
2
‖e−βW/2 |�0〉 ‖ = 1

2

√
Z
Z0

, (C56)

τmax := max
j

|τj | = πβ

z

(
�1

3
z3/2	 − 1

)
, (C57)

where z � β(‖W‖ + ‖V‖)+ 2(max{4,
√

ln 6/ε})2 and we
denote V := H − H0.

We remark that due to Hölder’s tracial-matrix inequal-
ity, Eq. (C54) implies that the expectation value with
respect to any observable O is close up to additive
error 2‖O‖ε. Lemma 11 already specifies the conditions

required to approximate observables with respect to the
Gibbs state. Thus, we will not need to make use of
Theorem 1 here and we can directly use Proposition 1.
Equation (C54) can also be satisfied for noncommuting
Hamiltonians and such a setting can also be transported
to our framework. For simplicity, we only detail the com-
muting case here.

Corollary 6 (Gibbs-state property estimation—detailed
version). Suppose access to the quantum state |�0〉
defined in Eq. (C50) and the ability to measure the observ-
able O. Further, suppose that the Pauli decompositions of
H0 and H are known and [H0, H ] = 0. Then, we give a
randomized quantum algorithm to approximate Tr[γβO] to
additive error ε and success probability at least (1 − δ)2,
utilizing:

(i) a core routine usingO(log(1/δ)(e
√

ln ‖O‖/ε)/(ε2)Z2
0/

(Z2)e2β‖V‖) circuit runs each of non-Clifford depth
at most O(

λ2
Wβ

3
(‖W‖ + ‖V‖ + log

(‖O‖/ε)))
(ii) a subroutine to give the appropriate normalization,

using asymptotically equivalent resources to the
core routine

Proof. Being explicit, we first note that Lemma 11
straightforwardly implies that there exists an LCU Fourier
decomposition X = ∑2J

j =0 αj eiτj W for which the state

ρ = TrA[X |�0〉〈�0 |X †]
‖X |�0〉 ‖2 (C58)

satisfies

∣∣Tr[ρO] − Tr[γβO]
∣∣ � ε/2 , (C59)

where the parameters in the decomposition satisfy

α :=
2J∑

j =0

|αj | � 2emax{4,
√

ln 24‖O‖/ε}eβ‖V‖/2,

(C60)

‖X |�0〉 ‖ � 1
2
‖e−βW/2 |�0〉 ‖ = 1

2

√
Z
Z0

, (C61)

τmax := max
j

|τj | = πβ

z

(
�1

3
z3/2	 − 1

)
, (C62)

where z � β(‖W‖ + ‖V‖)+ 2(max{4,
√

ln 24‖O‖/ε})2.
Proposition 6 and Lemma 3 then give the resources
required to statistically approximate Tr[ρO] to additive
error ε/2. By the triangle inequality, this implies a statisti-
cal approximation of the exact answer Tr[γβO] to additive
error ε. We detail this below.
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We start by presuming that ‖X |�0〉 ‖ is known exactly.
Then, with this exact quantity, Proposition 6 gives a ran-
domized algorithm to statistically approximate Tr[ρ1O] to
additive error ε/6 using

Csample

= 2e4 log
(

2
δ

)
36‖O‖2α4

‖X |�0〉 ‖4ε2

� 18432e4 log
(

2
δ

) ‖O‖2

ε2

Z2
0

Z2 e4 max{4,
√

ln 24‖O‖/ε}e2β‖V‖

(C63)

circuits, each of non-Clifford depth at most

Cgate = 2λ2
Wτ

2
max � 2λ2

W
π2β2

z2

(
�1

3
z3/2	 − 1

)2

, (C64)

and thus our stated result follows.
We now check the complexity of approximating

‖X |�0〉 ‖2. We recall that Lemma 3 specifies that in order
to statistically approximate Tr[ρO] to additive error ε/2,
one requires the above-stated conditions (an approxima-
tion of Tr[ρO] to additive error ε/6) and an approximation
to ‖X |�0〉 ‖2 with additive error 1/12(ε‖X |�0〉 ‖2)/‖O‖.
Thus (once again using Proposition 6), we see that it is
sufficient to use

Cnorm
sample = 2e4 log

(
2
δ

)
144‖O‖2α4

‖X |�0〉 ‖4ε2

� 73728e4 log
(

2
δ

) ‖O‖2

ε2

Z2
0

Z2

× e4 max{4,
√

ln 24‖O‖/ε}e2β‖V‖ (C65)

circuits, each of non-Clifford depth at most

Cnorm
gate = 2λ2

Wτ
2
max � 2λ2

W
π2β2

z2

(
�1

3
z3/2	 − 1

)2

. (C66)

We see that this equivalent to the complexity of the core
routine, up to a constant factor. �

We remark that, as with all our algorithms, the con-
stant factor appearing in the sample complexity can be
refined slightly by dividing the statistical and exact con-
tributions to error unevenly. For instance, by choosing the
statistical contribution to be 90% of the total error (rather
than 50%), the sample complexity for the normalization
constant becomes

Cnorm
sample � 22756e4 log

(
2
δ

) ‖O‖2

ε2

Z2
0

Z2

× e4 max{4,
√

ln 120‖O‖/ε}e2β‖V‖.

4. Evaluating Green’s functions

In this section, we present the detailed statement of our
result for evaluating Green’s functions as defined in Eqs.
(30) and (31) (Proposition 5 in the main text).

Proposition 10 (Green’s-function estimation—detailed
version). Consider a Hamiltonian H = ∑

l El |El〉 〈El|
with all eigenvalues El � 0 and known Pauli decomposi-
tion H = ∑

� a�P� ; λ := ∑
� |a�|. Assume that the spec-

tral gap is lower bounded by � � E1 − E0. Additionally,
we suppose that we can freely prepare an initial trial state
|ψ0〉 with overlap with the ground state γ := |〈ψ0 |E0〉|.
Given parameters ω, η, and the ground-state energy E0,
there exists a random compiler that returns Eqs. (30) and
(31) up to additive error ε with probability at least (1 − δ)2,
utilizing

O
(

log
(

2
δ

) ‖(�(±))−1‖2

γ 4ε2 log
(‖(�(±))−1‖

ε

))

circuit runs, respectively, each of non-Clifford depth at
most

O
(
λ2

H

�2 log2
(

2‖(�(±))−1‖
εγ 2

)

+ (|�ω ± E0| + η + λH )
2‖�(±)−1‖2 log2

(‖�(±)−1‖
ε

))
,

with a normalization subroutine that has smaller complex-
ities than the main algorithm.

Proof of Proposition 5. We recall that, from Secs. III
and IV, we have decompositions of the matrix inverse
function and the Gaussian function in terms of Pauli gates
and Pauli rotations, given that we have prior knowledge of
the Pauli decomposition of the matrix.

Namely, by combining Lemmas 2 and 10, we have, for
some Hamiltonian,

∥∥∥e− 1
2 τ

2H2 − fGS(ε, H)
∥∥∥ � ε, (C67)

where fGS(ε, H) = ∑
i∈Sε,H hi(ε, H)Vi(ε, H) is a linear

combination of gates with weight RGS := ∑
i∈Sε,H |hi(ε, H)|.

The weight of this linear combination satisfies RGS =
�(1) and each Vi has non-Clifford gate depth at most
�

(
λ2

Hτ
2 log (2/ε)

)
, where λH := ∑

� |a�| is the Pauli
weight of H . Moreover, we recount that Corollary 9 states
that applying the operator e−(1/2)τ2H2

(after normalization)
with τ = 1/�

√
2 log(1/εγ ) approximately projects to the

ground state with 2‖O‖ε additive error when considering
an expectation value of O.
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Likewise, by combining Lemma 1 and Eq. (C7) in
Lemma 6, given some operator � = ∑

l alPl, we have

∥∥∥�−1 − finv(ε,�)
∥∥∥ � ε, (C68)

where finv(ε,�) = ∑
i∈Sε,� γi(ε,�)Ui(ε,�) is a linear

combination of gates with weight Rinv := ∑
i∈Sε,� |γi(ε,�)|

satisfying

Rinv = �

(
‖�−1‖

√

log
(‖�−1‖

ε

))
, (C69)

and each Ui has non-Clifford gate depth at most
�

(
λ2
�‖�−1‖2 log2 (‖�−1‖/ε)), where λ� is the Pauli

weight of �.
We now specifically consider the Green’s-function

problem. We wish to find the inverse of the (non-

Hermitian) operator �(±) = (�ω ± E0)1 ∓ H + iη1. Fol-
lowing the remark in Sec. III, this can be embedded
in a Hermitian operator by dilating the space and con-
sidering Y(±) = X ⊗ ((�ω ± E0)1 ∓ H)+ Y ⊗ η1. These
operators have Pauli weight λY(±) � |�ω ± E0| + λH + η

and satisfy ‖Y(±)‖ = ‖�(±)−1‖. We can then write the
quantity that we wish to prepare as

G(±) = 〈1, E0|âi
(
Y(±)

)−1
â†

j |0, E0〉 . (C70)

In order to sample from the ground state, we will
need to approximate the normalization constant q2 :=
‖e−(1/2)τ2H2 |ψ0〉‖2, where |ψ0〉 is the trial ground state. We
denote the statistical approximation of this quantity with
Mq shots as Q(Mq). We denote the statistical approximation
of 〈1,ψ0|e−(1/2)τ2H2

âi(Y(±))−1â†
j e−(1/2)τ2H2 |0,ψ0〉 as EM .

We can then express the full approximation error as

∣∣∣∣
1

Q(Mq)
EM − 〈1, E0|âi

(
Y(±)

)−1
â†

j |0, E0〉
∣∣∣∣ � (C71)

�
∣∣∣∣〈1, E0|âi

(
Y(±)

)−1
â†

j |0, E0〉 − 1
q2 〈1,ψ0|e− 1

2 τ
2H2

âi(Y(±))−1â†
j e− 1

2 τ
2H2 |0,ψ0〉

∣∣∣∣ (C72)

+ 1
q2

∣∣∣〈1,ψ0|e− 1
2 τ

2H2
âi(Y(±))−1â†

j e− 1
2 τ

2H2 |0,ψ0〉 − 〈1,ψ0|fGS(ε̃1, H)†âi(Y(±))−1â†
j fGS(ε̃1, H)|0,ψ0〉

∣∣∣ (C73)

+ 1
q2

∣∣∣〈1,ψ0|fGS(ε̃1, H)†âi(Y(±))−1â†
j fGS(ε̃1, H)|0,ψ0〉 − 〈1,ψ0|fGS(ε̃1, H)†âifinv(ε̃2, Y(±))â†

j fGS(ε̃1, H)|0,ψ0〉
∣∣∣

(C74)

+ 1
q2

∣∣∣〈1,ψ0|fGS(ε̃1, H)†âifinv(ε̃2, Y(±))â†
j fGS(ε̃1, H)|0,ψ0〉 − z(M )

∣∣∣ (C75)

+
∣∣∣∣

1
q2 − 1

Q(Mq)

∣∣∣∣ · ∣∣z(M )
∣∣ , (C76)

where in the above we have used a chain of triangle inequalities. We now specify conditions so that the right-hand
side of the above is O(ε). Corollary 9 bounds (C72) by 2ε with the choice

τ = 1
�

√

2 log
‖âiY(±)−1â†

j ‖
εγ

� 1
�

√

2 log
‖Y(±)−1‖
εγ

= 1
�

√

2 log
‖�(±)−1‖
εγ

.

The term in Eq. (C73) is bounded by 24ε by Eq. (C67) and Lemma 2 under the condition that each
Vi appearing in fGS(ε̃1, H) has non-Clifford gate depth at most 2λ2

Hτ
2 log

(
2‖�(±)−1‖/εq2

)
, which ensures

that
∥∥∥e−(1/2)τ2H2 − fGS(ε̃1, H)

∥∥∥ � εq2/(‖�(±)−1‖). The term in Eq. (C74) can be bounded with Hölder’s
inequality as
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(C74) �
∥∥Y(±) − finv(ε̃2, Y(±))

∥∥
∞ · 1

q2

∥∥∥â†
j fGS(ε̃1, H) |1,ψ0〉〈0,ψ0| fGS(ε̃1, H)†âi

∥∥∥
1

(C77)

= ∥∥Y(±) − finv(ε̃2, Y(±))
∥∥

∞ · 1
q2

∥∥fGS(ε̃1, H) |1,ψ0〉〈0,ψ0| fGS(ε̃1, H)†
∥∥

1 (C78)

�
∥∥Y(±) − finv(ε̃2, Y(±))

∥∥
∞ · 1

q2
‖fGS(ε̃, H) |ψ0〉 〈ψ0|‖2

2 (C79)

�
∥∥Y(±) − finv(ε̃2, Y(±))

∥∥
∞ · 1

q2

(∥∥∥e− 1
2 τ

2H2 |ψ0〉 〈ψ0|
∥∥∥

2
+

∥∥∥
(

e− 1
2 τ

2H2 − fGS(ε̃1, H)
)

|ψ0〉 〈ψ0|
∥∥∥

2

)2
(C80)

�
∥∥Y(±) − finv(ε̃2, Y(±))

∥∥
∞ · 1

q2

(∥∥∥e− 1
2 τ

2H2 |ψ0〉
∥∥∥

2
+

∥∥∥
(

e− 1
2 τ

2H2 − fGS(ε̃1, H)
)∥∥∥

∞

)2
(C81)

�
∥∥Y(±) − finv(ε̃2, Y(±))

∥∥
∞

(
1 + 2

εq
‖�(±)−1‖ + ε2q2

‖�(±)−1‖2

)
, (C82)

where in the equality we have used the unitary invari-
ance of the Schatten norm, noting that â†

j and âi can be
expressed as probabilistic combinations of two unitaries.
In the second inequality, we have again used Hölder’s
inequality and the third inequality is due to the triangle
inequality. Thus, assuming ε � (‖�(±)−1‖)/q (of which
we expect the right-hand-side to be much larger than 1),
the term in Eq. (C74) can be bounded by 4ε by setting ε̃2 =
ε, which sets Rinv = �

(
‖�(±)−1‖

√
log

(‖�(±)−1‖/ε)
)

and
the non-Clifford gate depth of each Ui as being at
most �

(
λ2

Y(±)‖�(±)−1‖2 log2 (‖�(±)−1‖/ε)
)

. The term in
Eq. (C75) can be bounded by ε with probability (1 − δ) by
asking for number of shots

M � 2 log
(

2
δ

)
R2

invR
4
GS

εq4

= O
(

log
(

2
δ

) ‖�(±)−1‖2

ε2γ 4 log
(‖�(±)−1‖

ε

))
, (C83)

where we have used the fact that 1/q � 2/γ . Finally, the
term in Eq. (C76) can be bounded by ε with probability at
least (1 − δ) by using number of shots

Mq � 2 log
(

2
δ

) ‖Y(±)−1‖2R4
GS

εq4

= O
(

log
(

2
δ

) ‖�(±)−1‖2

ε2γ 4

)
, (C84)

for the normalization subroutine.
Finally, we note the total gate complexity con-

sists of the sum of the gate complexities for Ui
and Vi, respectively. From the above discussion, we
see that the non-Clifford gate complexity of Vi is

O
(
λ2

H
�2 log

(
2‖�(±)−1‖/εγ 2

))
and the non-Clifford gate

complexity of Ui is O (
(|�ω ± E0| + η + λH )

2‖�(±)−1‖2

log2 (‖�(±)−1‖/ε)). The non-Clifford gate complexity for
the normalization subroutine as given by Proposition 2 is

O
(
λ2

H
�2 log

(‖�(±)−1‖/εγ ) log (1/εγ )
)

. �

We now briefly remark on the scenario if we would like
to evaluate the Green’s function but the exact ground-state
energy is not given. In this case, an ε-additive approxima-
tion to E0 would yield an amplification of the additive error
of the evaluation of the Green’s functions by an additive
term O(ε‖�(±)−1‖‖(�(±) ± ε1)−1‖). This can be seen by
noting that

∥∥∥
(
�(±) ± ε1

)−1 − �(±)−1
∥∥∥

=
∥∥∥
(
1 − �(±)−1 (�(±) ± ε1

)) (
�(±) ± ε1

)−1
∥∥∥ (C85)

= ε

∥∥∥�(±)−1 (�(±) ± ε1
)−1

∥∥∥ . (C86)

5. Additional information for complexity comparison

In this section, we provide some additional information
on state-of-the-art quantum algorithms in the literature, to
aid exposition of Tables I, II, III, and IV.

a. Data access

In our tables, we quote two generic block-encoding
strategies. First, we use the result of Ref. [17], which
gives an explicit block encoding of A/‖A‖F , starting from
a description of A ∈ C

N×N in the computational basis.
Throughout the paper, we quote the minimal gate depth
implementation of this construction, which is achieved
using O(N 2) qubits and O(log N ) gate depth each call
to the block encoding. Reference [17] gives an alterna-
tive construction using O(N ) qubits but O(N ) gate depth
each call. A second block-encoding strategy that we quote
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is to use SELECT and PREPARE oracles when A is given
in the Pauli basis A = ∑L

�=1 a�P� with Pauli weight λ :=∑L
�=1 |a�|. In general, this strategy works for any unitary

decomposition where one presumes that controlled ver-
sions of the unitary can be implemented in O(1) gate
depth. This strategy generically uses O(log L) qubits and
O(L) gate depth each call to the block encoding. The block
encoding has subnormalization λ.

We also conceptualize the ability to perform Hamilto-
nian simulation as a type of data access. In Tables III
and IV, we quote two Hamiltonian-simulation strategies;
one that uses no additional ancillary qubits and a sec-
ond that is optimal in gate complexity. First, we quote
first-order Trotter time evolution. For our purposes, we
again work in the Pauli access model and the goal is to
return an approximation of exp(iAt) for some real time t.
First-order Trotter uses (in the worst case) O (

L3(�t)2/ε
)

gates, where we have defined � := max� a�. As we state
in the main text, one can replace � with a smaller quan-
tity by exploiting commutator structure between terms
[73]. The second Hamiltonian-simulation strategy that
we quote is the so-called qubitization approach of Ref.
[62]. Here, one again constructs a block encoding using
SELECT and PREPARE and makes calls to this block encod-
ing. The algorithm uses O(log L) ancillary qubits and has
query complexity O(λt + log(1/ε)/log log(1/ε)), where
each query uses O(L) gates as stated above. Thus, each
call to this time evolution as an oracle requires O(λLt +
log(1/ε)/log log(1/ε)) gates.

Finally, in Table I for the HHL algorithm [12], we also
require a Hamiltonian-simulation subroutine when starting
from a Frobenius-norm block encoding. Again using Ref.
[62], an approximation of exp(iAt) can be obtained with
O(μt + log(1/ε)/log log(1/ε)) calls to the block encod-
ing, where μ is the block-encoding subnormalization.

b. Linear systems

The HHL algorithm [12] consists of three key steps.
First, conditional Hamiltonian simulation of maximum
time O(‖A−1‖/ε) is required to perform phase estima-
tion to estimate each inverse eigenvalue λ−1

j to additive
error O(1/(λj )ε/(‖A−1‖)) = O(ε). Second, after rotat-
ing by angle arcsin(1/λj ‖A−1‖) conditioned on λj and
undoing phase estimation, we have the state |λj 〉 |0〉 →
|λj 〉

(
1

λj ‖A−1‖ |0〉 +
√

1 − 1
λ2

j ‖A−1‖2

)
. Finally, the desired

state can thus be obtained with O(κ) amplitude-
amplification steps. Putting this all together, starting with a
Frobenius-norm block encoding (which requires O(log N )
gates per call), approximately preparing the state |A−1b〉
requires O(‖A‖F‖A−1‖κ log N/ε) = O(κFκ log N/ε) gate
depth to implement.

In the quantum linear-systems algorithm of Ref. [13],
the dominant part is a filtering step with complexity
O(1/(�) log(1/ε)), where � is a lower bound on the gap
of the adiabatic Hamiltonian which interpolates between
Hamiltonians

H0 :=
(

0 Qb
Qb 0

)
, H1 :=

(
0 ÂQb

QbÂ 0

)
,

(C87)

for some encodable matrix Â and where Qb = 1 − |b〉 〈b|.
It is shown in Ref. [57, Appendix A] that this has a
gap lower bounded by ‖Â−1‖. In Ref. [13], the authors
call for a block-encoding construction; thus we block
encode an adiabatic Hamiltonian with Â = A/μ, leading
to algorithm complexity μ‖A−1‖ log(1/ε), where μ is the
block-encoding subnormalization.

c. Ground states and Gibbs states

In Tables III and IV, all the algorithms with which
we compare use either Hamiltonian simulation or block-
encoding oracles. Thus, the quoted gate complexities in
our tables can be extracted by inspecting the query com-
plexity listed in each relevant work and multiplying by the
corresponding gate complexity for oracle access detailed
in Sec. C 5 a.
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Õ(·) notation, we drop any terms that contribute polylog-
arithmically to the total (unparallelized) run time.

[53] X.-M. Zhang, T. Li, and X. Yuan, Quantum state prepa-
ration with optimal circuit depth: Implementations and
applications, Phys. Rev. Lett. 129, 230504 (2022).

[54] A. Ambainis, Variable time amplitude amplification
and quantum algorithms for linear algebra problems,
STACS’12 (29th Symposium on Theoretical Aspects of
Computer Science) 14, 636 (2012).
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