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A hallmark of integrable systems is the purely elastic scattering of their excitations. Such systems pos-
sess an extensive number of locally conserved charges, leading to the conservation of the number of
scattered excitations, as well as their set of individual momenta. In this work, we show that inelastic decay
can nevertheless be observed in circuit-QED realizations of integrable boundary models. We consider the
scattering of microwave photons off impurities in superconducting circuits implementing the boundary
sine-Gordon and Kondo models, which are both integrable. We show that not only is inelastic decay pos-
sible for the microwave photons, in spite of integrability, and due to a nonlinear relation between them
and the elastically scattered excitations, but also that integrability in fact provides powerful analytical
tools allowing us to obtain exact expressions for response functions describing the inelastic decay. Using
the framework of form factors, we calculate the total inelastic decay rate and elastic phase shift of the
microwave photons, extracted from a two-point response function. We then go beyond linear response and
obtain the exact energy-resolved inelastic decay spectrum, using a novel method to evaluate form-factor
expansions of three-point response functions, which could prove useful in other applications of inte-
grable quantum field theories. Our results could be relevant to several recent photon-splitting experiments
and, in particular, to recent experimental works that provide evidence for the elusive Schmid-Bulgadaev
dissipative quantum phase transition.
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I. INTRODUCTION

Integrability entails exceptional consequences. An
extensive number of local conservation laws, the defin-
ing feature of an integrable system, are at the heart of
the celebrated Bethe ansatz [1], which allows for rare
exact solutions of one-dimensional interacting many-body
quantum systems. Its fundamental ingredient is a set of
elementary excitations the scattering of which is purely
elastic—in any scattering process, the number of excita-
tions is conserved, as well as the set of their individual
energies and momenta. This striking feature has drawn
large theoretical interest ever since Bethe’s seminal work,
promoting extensions of the method that apply to a large
variety of discrete and continuous one-dimensional models
[2–11].

Remarkably, integrability is no longer just a theoretical
curiosity. Recent advances in the fabrication techniques of
quantum simulators have enabled the experimental realiza-
tion of integrable systems, leading to an interplay between
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experiment and theory. The past decade has seen several
theoretical breakthroughs concerning the equilibrium and
out-of-equilibrium dynamics of integrable systems [12–
15] that go hand in hand with surprising experimental
observations [16–19]. Essentially, integrability gives rise
to counterintuitive experimental measurements that push
the boundaries of well-established theoretical frameworks
and improve our understanding of the role of integrability
in an ever-growing list of mechanisms.

Experiments on the quantum simulation of many-body
quantum models, both integrable and nonintegrable, have
been mostly restricted to the realm of cold-atom sys-
tems. Another possible platform for quantum simulation
is that of superconducting circuits. The rapidly evolving
field of circuit quantum electrodynamics (cQED) deals
with the simulation of interacting models by means of
Josephson junctions or their flux-tunable counterparts, the
superconducting quantum interference devices (SQUIDs).
Yet experimental realizations have up to now been quite
limited and mostly dedicated the use of superconducting
circuits to the implementation of nonlinear bulk mod-
els exhibiting nonergodic behavior [20–27]. The field of
cQED reveals its true strength in the simulation of quantum
impurity models. The intrinsically large kinetic inductance
of Josephson junctions allows one to design transmis-
sion lines with impedances on the order of the resistance
quantum [28–30], providing an environment for photons
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with an effective fine-structure constant of order unity.
Furthermore, the nonlinearity of the junctions provides
the means to realize many types of quantum impurities
[31–34] that are strongly coupled to the photonic envi-
ronment. Single-photon spectroscopy then provides highly
sensitive tools to investigate the fine details of the bound-
ary models of interest, across a wide range of parameters,
and probe fundamental phenomena in those many-body
systems.

The starting point of this work is an experimentally
observed phenomenon that is seemingly at odds with
integrability. Recent experiments have demonstrated that
photons propagating in a high-impedance transmission
line, setting an environment with a large effective light-
matter coupling, scatter inelastically off a quantum impu-
rity with a very high probability [33,34]. These observa-
tions have been reproduced in Ref. [35]. It appears that
such photon splitting, depicted in Fig. 1, has nothing to
do with integrability; as stated above, scattering processes
in integrable systems are highly restricted by the exten-
sive number of local conservation laws, forbidding particle
production. The flexibility of the circuit elements pro-
vides us with tools to check this assumption, by tuning
the impurity parameters to those of integrable boundary
models. Strikingly, experiments show that inelastic decay
persists even when the impurity parameters are pushed
toward those of the boundary sine-Gordon (bsG) model
[36], which is known to be integrable [37]. This appears
to contradict the defining feature of integrability and
raises a fundamental question—how can inelastic decay
emerge in a system governed by purely elastic scattering
rules?

Previous theoretical treatments of such scattering exper-
iments have used different forms of weak- or strong-
coupling expansions [31,32,35,38–42] that, despite pro-
viding successful quantitative predictions, are intrinsically
limited in two ways. First and foremost, weak- or strong-
coupling expansions do not address the apparent discrep-
ancy between integrability and inelastic decay; in order to
settle it, we need to explicitly use the framework of inte-
grable systems and show how the purely elastic excitations
underlying the theory can give rise to the observed photon
splitting. We note that inelastic effects have also been con-
sidered both theoretically and experimentally in integrable
strongly correlated electronic quantum impurity systems
[43–45], yet a direct consideration of the elastically scat-
tered excitations from the integrability picture has been
lacking. Second, in the event that the impurity term in the
Hamiltonian is relevant, perturbation theory and strong-
coupling expansions are only applicable either above or
below a certain renormalization-group (RG) energy scale,
regardless of the strength of the impurity. Wilson’s numer-
ical RG (NRG) can, in principle, cover the entire frequency
range but is not easy to apply accurately for bosonic
baths [46]. This again calls for the use of the integrability

framework, as it provides powerful analytical tools allow-
ing for an exact solution at all frequencies, linking the
scaling laws above and below the RG scale. An exact low-
energy solution is especially desirable for the bsG model in
the context of the Schmid-Bulgadaev transition [47,48]—a
40-year-old predicted quantum phase transition, the lack
of clear experimental proof of which has sparked a recent
debate [49–56]. A low-energy theory of the scattering of
photons in the bsG model could supplement a recent exper-
imental study, which seeks signatures of the transition
in the inelastic and elastic scattering rates of microwave
photons [36].

In this work, we show how inelastic decay can be
described via the language of integrability. The principle
idea is summarized in Fig. 1(a), which depicts a generic
integrable quantum field theory realized in a cQED setup.
We rely on the nonlinear relation between the microwave
photons, which are observed to scatter inelastically, and
the elementary excitations of the integrable system, the
scattering of which is purely elastic. This nonlinear rela-
tion is encoded in the form factors of the models—the
matrix elements of the bosonic field operator in the basis of
the fundamental excitations of the integrable theory [57].
Building upon Refs. [58–60], we use the form factors to
obtain exact expressions for the reflection coefficient of
the microwave photons, which encodes the inelastic and
elastic decay rates. We then go beyond linear response
and calculate the exact energy-resolved inelastic decay
spectrum, by devising a method to evaluate a three-point
response function using form factors. This is a nonpertur-
bative and rapidly convergent diagrammatic approach with
clear physical intuition, analogous to Wick’s theorem in
free theories. Our technique yields more general results as
compared to existing methods for the calculation of form-
factor expansions of multipoint correlation functions [61–
63] and could prove useful in other contexts of integrable
quantum field theories.

We apply our methods for the bsG and Kondo models,
both of which qualify as special cases of Fig. 1(a), with
implementations depicted in Fig. 1(b). We illuminate the
fundamental physics governing each model through the
lens of the exact scattering rates and show how they act as
probes that discriminate between the two models, as well
as between the regimes of low and high energies. In par-
ticular, we analyze our nonperturbative results in light of
the Schmid-Bulgadaev transition and show how we may
observe signatures of the transition in the calculated rates,
which have been recently measured in an experiment [36].

The rest of the paper is organized as follows. We
begin by describing the bsG and Kondo models in Sec.
II, discussing their realizations in a cQED environment
and the observables commonly measured in experiments.
In Sec. III, we summarize the quintessential features
and tools used in the treatment of massless integrable
quantum field theories with a boundary and introduce

020323-2



INELASTIC DECAY FROM INTEGRABILITY PRX QUANTUM 5, 020323 (2024)

(a) (b)

FIG. 1. (a) An incoming photon with frequency ω, injected from the antenna on the left and propagating through the transmission
line in the center, may decay inelastically as it scatters off the impurity on the right, in spite of the purely elastic reflection of the
fundamental excitations of the integrable models. Each photon may be represented as a combination of eigenstates composed of
excitations |�λ〉ελ with types ελ and rapidities �λ, where the weights are determined by the form factors, fελ (�λ), and the total energy of the
excitations in each eigenstate, νλ ∼

∑
i eλi , is equal to the photon frequencyω (for notation and definitions, see Sec. III). The excitations

scatter elastically off the boundary (quantum impurity), picking up phases determined by the reflection matrix R
ε′λ
ελ (
�λ), such that the

outgoing combination no longer represents a single-photon state but, rather, a multiphoton state. The measured observables—the total
inelastic decay rate γ (ω) and the energy-resolved inelastic decay spectrum γ

(
ω′|ω)

, as well as the elastic phase shift δ (ω) (not
depicted here)—all shed light on the fundamental properties of the impurity models. (b) Implementation of Eq. (1) with the bsG and
Kondo impurities [Eqs. (3) and (5), respectively] in a cQED setup. The array of Josephson junctions and capacitors implements a
high-impedance transmission line, due to the kinetic inductance of the Josephson junctions.

some notation that is utilized in this work. Armed with
this analytical power, we calculate the exact reflection
coefficient of the microwave photons in Sec. IV, from
which we extract the total inelastic decay rate and elas-
tic phase shift. We show how inelastic decay can emerge
from the purely elastic scattering rules of the fundamen-
tal excitations, discuss the key features and asymptotic
behavior of our results, and relate them to recent experi-
ments. The exact energy-resolved inelastic decay spectrum
is obtained in Sec. V, where we introduce a method to cal-
culate a three-point response function using form factors.
The technical details of our method are discussed in Sec.
V B and the appendixes, the physical intuition underlying
our diagrammatic approach is emphasized in Sec. V C and
the advantage of the decay spectrum over the total inelastic
decay rate as a diagnostic tool is explained in Sec. V D. We
conclude in Sec. VI.

II. MODELS AND OBSERVABLES IN A cQED
SETUP

In this work, we consider two different yet related quan-
tum impurity models—the bsG and Kondo models. We
begin by showing how they can be derived from cQED
setups. The implementation of these models using super-
conducting circuits allows one to probe their fundamental
properties in experiments via spectroscopy, which mea-
sures the elastic and inelastic scattering rates of microwave
photons.

Consider a very long array of N + 1� 1 superconduct-
ing grains with lattice spacing a (total length � = Na),
linked to each other by Josephson junctions Eline

J and
capacitors Cline and to the ground by capacitors Cg . The

circuit Hamiltonian reads (setting � = e = 1)

H̃ =
N∑

n,m=0

2
[
C−1]

n,m Q̃nQ̃m −
N∑

n=1

Eline
J cos

(
φ̃n − φ̃n−1

)

+ H̃I , (1)

where φ̃n and Q̃n are the superconducting phases and
charges of the grains, respectively, H̃I is the Hamil-
tonian of the impurity at n = 0, and C−1 is the
inverse of the capacitance matrix C, which is given
by [C]n,m =

(
Cg + 2Cline

)
δn,m − Cline

(
δn,m+1 + δn,m−1

)
in

the bulk. The generic circuit implementing Eq. (1) is
depicted in Fig. 1. Choosing the line parameters such
that Eline

J /Eline
C � 1, where Eline

C = 1/
(
2Cline

)
, both phase

slips and anharmonic effects are strongly suppressed in
the intergrain Josephson junctions, leading to an approx-
imately quadratic transmission line. In the thermodynamic
and continuum limits, a→ 0 and N →∞ with � = Na
fixed, the Hamiltonian reads

H̃ = v

2π

∫ 0

−�
dx

[
1
2z

(
∂xφ̃ (x)

)2
+ 2z (πρ̃ (x))2

]
+ H̃I ,

(2)

where ρ̃ (x) = Q̃n=x/a/a is the charge-density field. The
array velocity is given by v = a/

√
LlineCg and Lline =

1/
(
4Eline

J

)
is the effective inductance of the array junc-

tions. The Luttinger parameter of the system is given
by the dimensionless line impedance, z = Z/RQ, where
Z = √

Lline/Cg and RQ = h/ (2e)2 = π/2 is the resistance
quantum. The kinetic inductance of the Josephson arrays,
Lline, enables the implementation of large impedances, z ∼
1, 2 orders of magnitude larger than typical impedances in
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classical LC resonator lines [28,64]. The impedance plays
the role of an effective fine-structure constant, determin-
ing the strength of light-matter interaction in such cQED
setups; thus, achieving z ∼ 1 is the key to high-probability
inelastic decay on the single-photon level [33,34].

A. The boundary sine-Gordon Hamiltonian

The bsG model can be implemented by connecting the
transmission line to a Cooper-pair box,

H̃I = 4ECa2ρ̃2 (x = 0)− EJ cos
(
φ̃ (x = 0)

)
, (3)

where the charging energy EC = 1/ (2C0) is significantly
larger than the Josephson energy, EC � EJ . The capaci-
tance C0 introduces a cutoff frequency, 0 = 1/ (ZC0) =
4EC/ (πz), which is the elastic line width of the impu-
rity, equal to one over the RC time defined by the line
impedance and impurity capacitance. Another high-energy
cutoff is imposed by the plasma frequency of the Joseph-
son array, ωp = 1/

√
LlineCline; the UV cutoff is then set by

the smaller of these two scales, � ∼ min
{
0,ωp

}
, and is

assumed to be much larger than any other energy scale in
the problem. We consider the scaling limit, EJ ,�→∞,
such that the ratio E�

J ≡ (EJ /�
z)1/(1−z) remains finite for

z < 1; at z > 1, E�
J = 0. E�

J is an emergent RG scale, mark-
ing the characteristic frequency below which the impurity
term cannot treated as a perturbation and the phase at the
boundary φ̃ (x = 0) is pinned to one of the minima of the
boundary cosine (note that this implies that perturbation
theory remains valid at all frequencies for z > 1). At zero
temperature, E�

J is the only remaining energy scale in the
problem. In this limit, the capacitive term is effectively
eliminated from the impurity Hamiltonian. Redefining the
fields as φ = φ̃/

√
2z, ρ = ρ̃

√
2z, we find that

HbsG = v

2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2]

− EJ cos
(√

2zφ (x = 0)
)

. (4)

Taking the limit �→∞, we arrive at the Hamiltonian of
the bsG model.

B. The Kondo Hamiltonian

There are several ways to arrive at the Kondo model
from cQED Hamiltonians. One is to connect the transmis-
sion line to a fluxonium [65] at external half flux quantum,
with the impurity Hamiltonian

H̃I =
2Q̃2

f

Cf
+ EJ cos

(
φ̃f

)
+

(
φ̃f − φ̃0

)2

8Lf
+ φ̃2

0

8L0
. (5)

This Hamiltonian realizes a double-well potential for the
flux φ̃f . In Appendix A, it is shown that the line and the

fluxonium give rise to the spin-boson Hamiltonian,

HSB = v

2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2]− JSx

−
√

2z′vπρ (x = 0, t)Sz, (6)

where Sz is a pseudospin operator the two eigenvalues of
which, ±1/2, correspond to the two potential wells. The
Sx term describes the tunneling between the wells, where
J is the tunneling matrix element, equal to the splitting
between the two lowest energy levels of the fluxonium.
The Sz term describes an effective capacitive coupling of
the fluxonium to the array. Note that the coupling coef-
ficient is written in terms of some parameter z′, which is
proportional but not identical to the normalized impedance
z (for details, see Appendix A); for brevity, from here on,
we revert to writing z instead of z′. The unitary trans-
formation H→ U−1HU with U = eiφ(x=0,t)Sz leads to the
Kondo Hamiltonian [66],

H′K =
v

2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2]

− J
2

(
S+eiφ(x=0) + S−e−iφ(x=0))

−
(√

2z − 1
)
vπρ (x = 0, t)Sz. (7)

A similar implementation, using a flux qubit instead of
a fluxonium, has been realized in Ref. [67]. The same
Hamiltonian can also be derived from the effective low-
energy description of two transmission lines coupled by
a Cooper-pair box, with Josephson junctions connecting
the capacitors to the lines [31], although this implemen-
tation could suffer from some drawbacks [68]. A slightly
different transformation, V = e

√
2ziφ(x=0,t)Sz , eliminates the

capacitive coupling term:

HK = v

2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2]

− J
2

(
S+e

√
2ziφ(x=0) + S−e−

√
2ziφ(x=0)

)
. (8)

This will be the form used in the following, again in the
limit of a semi-infinite lead, �→∞. Introducing a cutoff
frequency � to our model, the scaling limit reads again
J ,�→∞ with finite E�

J = (J/�z)1/(1−z).

C. Definition of the scattering rates

Both Hamiltonians may be written in the form

H = v

2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2]+HI . (9)

The bulk Hamiltonian is quadratic and diagonalized by
plane waves, with the dispersion relation ωq = vq and
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mode spacing � = πv/�, so that q = n� where n > 0 is
an integer. The mode expansion of the fields reads

φ (x) = i
∑

q

√
π

q�

(
bq − b†

q

)
cos (qx) ,

ρ (x) =
∑

q

√
q
π�

(
bq + b†

q

)
cos (qx) ,

(10)

where b†
q, bq are bosonic creation and annihilation opera-

tors.
The implementation of the Hamiltonians in Eqs. (4) and

(8) in cQED setups provides direct access to their prop-
erties in a controlled environment. In this work, we focus
on scattering experiments at zero temperature, where a sin-
gle microwave photon at frequency ω is injected from the
open end of the system (the antenna on the left in Fig. 1)
and propagates toward the impurity. We may then measure
response functions; the simplest one is the reflection coeffi-
cient r

(
x, x′;ω

)
of a photon with frequency ω, injected at x′

and measured at x. The dependence on x, x′ should amount
to a trivial phase term, r

(
x, x′;ω

) = e−iω(x+x′)/vr (ω), and
r (ω) defines the inelastic decay rate γ (ω) and elastic
phase shift δ (ω):

r (ω) = e−2iδ(ω)e−γ (ω)/2. (11)

There are several ways to calculate the reflection coef-
ficient. One is to solve a scattering problem for the
microwave photons and read off r (ω) from the scatter-
ing matrix of the theory [69]. Here, we adopt a different
approach and calculate r (ω) from the conductance in
the half-infinite line, by means of a Landauer-Buttiker-
like formula. The ac conductance is given by the Kubo
formula:

G
(
x, x′;ω

) = lim
η→0+

z
πω

∫ ∞

0
dtei(ω+iη)t

× 〈[
∂tφ (x, t) , ∂tφ

(
x′, 0

)]〉
. (12)

Introducing the right and left current operators,

R = ∂tφ − v∂xφ, L = ∂tφ + v∂xφ, (13)

we find that

G
(
x, x′;ω

) = 1
4

∑

A,B=R,L
GAB

(
x, x′;ω

)
,

GAB
(
x, x′;ω

) = lim
η→0+

z
πω

∫ ∞

0
dtei(ω+iη)t

× 〈[
A (x, t) ,B

(
x′, 0

)]〉
.

(14)

The terms GRR and GLL do not involve the boundary and
are therefore determined by the perfect conductance in a

Luttinger liquid with coupling parameter z [70],

GRR
(
x, x′;ω

) = G0e−iω(x+x′)/v�
(
x − x′

)
,

GLL
(
x, x′;ω

) = G0e−iω(x+x′)/v�
(
x′ − x

)
,

(15)

where G0 = 2z. The Heaviside step functions, �(± (
x − x′

))
, ensure that the responses are causal and

GRR
(
x, x′;ω

)+ GLL
(
x, x′;ω

) = G0e−iω(x+x′)/v. The term
GRL corresponds to a noncausal response function, as it
measures a right-moving current that results from a given
left-moving current and therefore vanishes for all x, x′, as
we verify explicitly in Sec. IV. We thus have

G
(
x, x′;ω

) = 1
4

(
G0e−iω(x+x′)/v + GLR

(
x, x′;ω

))
. (16)

We can now define the reflection coefficient. The con-
ductance G should be equal to z in the absence of an
impurity (E�

J → 0) and should vanish for an impenetra-
ble boundary (E�

J →∞), corresponding to r→ 1 and r→
−1, respectively. We therefore write

r
(
x, x′;ω

) = GLR
(
x, x′;ω

)

G0
. (17)

The Kubo formula relates the conductance, and hence the
elastic phase shift and inelastic decay rate, to a two-point
response function. Higher-order response functions yield
more refined rates; in this work, we focus on the energy-
resolved inelastic decay spectrum, γ

(
ω′|ω)

, which is the
rate of the decay process ω→ ω′ +∑

i ω
′′
i for any choice

of ω′′i such that ω = ω′ +∑
i ω
′′
i . The spectrum γ

(
ω′|ω)

,
which may be evaluated in an experiment by injecting a
photon ω and measuring the reflected power at frequency
ω′ (see Fig. 1), corresponds to a three-point response
function, as shown in Ref. [31] and discussed in Sec. V.

Measurements of the total inelastic decay rate and spec-
trum shed light on the fundamental properties of the
models. At large enough frequencies, we expect to find
Luttinger-liquid scaling laws, such as γ (ω) ∼ ω2z−2; the
exponents, which could be probed directly in such experi-
ments, indicate whether the boundary operators in Eqs. (4)
and (8) are relevant (z < 1) or irrelevant (z > 1). In the
bsG model, this is of particular importance in the context
of the elusive Schmid-Bulgadaev quantum phase transition
[47,48], where the relevant and irrelevant cases corre-
spond, respectively, to the superconducting and insulating
phases of the boundary Josephson junction. Measuring
r (ω) using single-photon spectroscopy thus offers a nonin-
vasive approach to probing the dynamics of the boundary
junction, avoiding the dc transport measurements that have
mostly been used in previous works [71–74], and poten-
tially settling a recent debate concerning the presence of
the transition [49–54]. The measurements must be supple-
mented by theory, notably in the low-energy sector, where
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a perturbative solution does not apply since the boundary
cosine in Eq. (4) is relevant for z < 1. Signatures of the
transition could also be found in the spectrum γ

(
ω′|ω)

[39]. A nonperturbative calculation of the total inelastic
decay rate γ (ω), the elastic phase shift δ (ω), and the
inelastic decay spectrum γ

(
ω′|ω)

, for both bsG and Kondo
models, is the objective of this work.

An exact solution for the above quantities is possible
due to the integrability of the models. As explained in
Sec. III, the Hamiltonians in Eqs. (4) and (8) are char-
acterized by underlying purely elastic dynamics and may
be solved using variations of the Bethe ansatz that apply
to field theories. As discussed above, this pure elasticity
seems to be at odds with the observed photon splitting.
To this end, it should be mentioned that realistic imple-
mentations of both models would inevitably suffer from
integrability-breaking perturbations. To name a few, stray
capacitances, array disorder, and finite lattice spacing, all
unavoidable in a cQED environment, would break the inte-
grability of the systems. In addition, the models in Eqs. (4)
and (8) lack a cutoff frequency, which would be present in
any physical realization. Therefore, one may be tempted to
attribute the inelastic decay of photons observed in cQED
experiments to the presence of integrability-breaking terms
in the Hamiltonian. However, it is clear in these experi-
ments that inelastic decay persists even when the circuit
parameters are pushed toward those of the integrable sys-
tems. In particular, the inelastic decay rates observed for
a transmon impurity [33] are of the same order of magni-
tude as those measured for a Cooper-pair box [36], where
the charging energy of the impurity Josephson junction is
pushed to larger and larger values and the Hamiltonian of
the system approaches Eq. (4). Furthermore, we stress that
while experimental systems are not exactly integrable, the
use of the integrability formalism is still justified within
reasonable assumptions. This is discussed in Appendix B.

Finally, we note that the integrability formalism can only
be applied for z < 1 (see explanation below). Fortunately,
for z > 1, the RG scale vanishes and perturbation theory
holds for z > 1 at all frequencies (assuming that the bound-
ary Josephson energy is much smaller than the UV cutoff),
so that an exact solution is unnecessary. From here on, we
restrict ourselves to the regime z < 1.

III. OVERVIEW OF MASSLESS INTEGRABLE
QUANTUM FIELD THEORIES WITH A

BOUNDARY

In this section, we briefly sketch the main ingredients
needed for the calculation of correlation functions in the
bsG and Kondo models. These ingredients are the S matri-
ces, reflection matrices, and form factors. Here, we only
outline the general structure of the calculation mechanism
and introduce some useful notation, relegating explicit

expressions to the appendixes. More details may be found
in several papers and reviews [37,57–59,75,76].

It is useful to think of the quadratic bulk Hamiltonian
of Eqs. (4) and (8) as the limiting case of a more general
Hamiltonian,

Hbulk = 1
2π

∫ 0

−�
dx

[
(∂xφ (x))2 + (πρ (x))2

− Ebulk
J cos

(√
8zφ (x)

)]
. (18)

For an infinite transmission line (as opposed to the half-
infinite line above), this would be the Hamiltonian of the
bulk sine-Gordon model, with a coupling parameter β =√

8πz, which can be implemented in a cQED environment
by connecting the superconducting grains to the ground via
Josephson junctions [26]. As mentioned above, we focus
on the regime z < 1 (β <

√
8π ).

The nonlinear equations of motion of the general-
ized bulk Hamiltonian are solved by solitons and anti-
solitons—wave packets that propagate in the nonlinear
medium without dispersion. In the attractive regime, z <
1/2 (β <

√
4π ), a pair of a soliton and an antisoliton may

form a bound state, called a breather, which also prop-
agates in the bulk without dispersion. The energy and
momentum of a soliton (ε = +), an antisoliton (ε = −),
or a breather (ε = m, where m is an integer satisfying
1 ≤ m ≤ �1/z − 2), can be parametrized by its rapid-
ity θ as E = Mε cosh θ and P = Mε sinh θ , where from
here on we set the velocity to unity, v = 1. The exci-
tation mass, Mε , scales with the bulk Josephson energy,
Mε ∼

(
Ebulk

J

)1/(2−2z) [77]. We therefore refer to Eqs. (4)
and (8) as massless Hamiltonians; writing θ = ± (A+ λ)

with A→∞ such that M+eA/2→ 1, the energy and
momentum become those of chiral wave packets, E =
μεeλ and P = ±μεeλ, where a plus (minus) sign corre-
sponds to a right (left) mover and με = Mε/M+ (μ± =
1,μm = 2 sin (mξ/2)) is the bulk mass ratio.

The presence of an extensive (infinite) number of locally
conserved charges in the integrable field theories leads
to purely elastic scatterings. Any two solutions to the
equations of motion with energies E1,2 and momenta P1,2
will maintain their individual energies and momenta when
they scatter off one another. The same holds for reflec-
tions off the boundary—the momentum and energy of
any reflected solution are equal to the incoming ones.
This property makes the solitons and breathers a natural
basis to diagonalize the Hamiltonians in Eqs. (4) and (8).
Quantizing these field theories, a classical field configu-
ration of type ε and rapidity θ is assigned a field excita-
tion, which can be added to a given state by a creation
operator Z†

ε (θ), or removed from a state by an annihila-
tion operator Zε (θ). These elementary excitations are a
defining feature of integrable quantum field theories and
form eigenstates of the Hamiltonian, |θn, . . . , θ1〉εn...ε1

=
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Z†
εn (θn) . . .Z

†
ε1 (θ1) |0〉, where |0〉 is the vacuum state,

Zε (θ) |0〉 = 0. The eigenstates are normalized such that
ε2 〈θ2|θ1〉ε1

= 2πδε2
ε1 δ (θ1 − θ2). The dynamics of the exci-

tations are strongly constrained by the extensive number of
local conservation laws present in the system, as captured
by the Zamolodchikov-Faddeev algebra [9,10]:

Z†
ε1
(θ1) Z†

ε2
(θ2) =

∑

ε′1,ε′2

S
ε′1ε
′
2

ε1ε2 (θ1 − θ2) Z†
ε′2
(θ2)Z†

ε′1
(θ1) ,

Zε1 (θ1)Zε2 (θ2) =
∑

ε′1,ε′2

Sε1ε2
ε′1ε
′
2
(θ1 − θ2) Zε′2 (θ2) Zε′1 (θ1) ,

Zε1 (θ1) Z†
ε2
(θ2) =

∑

ε′1,ε′2

S
ε′2ε1
ε2ε
′
1
(θ2 − θ1) Z†

ε′2
(θ2)Zε′1 (θ1)

+ 2πδε1
ε2
δ (θ1 − θ2) .

(19)

The S matrix, S
ε′1ε
′
2

ε1ε2 (θ1 − θ2), satisfies the Yang-Baxter
equation and several additional symmetry relations, which
are summarized in Appendix C. The relations in Eq. (19)
are a manifestation of the factorization of n-body interac-
tions to a product of two-body interactions in the integrable
system.

The eigenstates |θn, . . . , θ1〉εn...ε1
form a complete set

of states. In the massless limit and in the presence of a
boundary, the complete set is [59]

1 = |0〉 〈0| +
∞∑

n=1

∑

ε1...εn

∫ ∞

−∞

∏n
k=1 dλk

(2π)n n!

× ‖λn, . . . , λ1〉εn...ε1
ε1...εn〈λ1, . . . , λn‖, (20)

where the states take into account both right and left
movers:

‖λn, . . . , λ1〉εn...ε1
= |λr

n, . . . , λr
1〉εn...ε1

+
∑

ε′1

n∏

k=2

S̃
εkε
′
1

εkε
′
1
R
ε′1
ε1 (λ1) |λl

1, λr
n, . . . , λr

2〉ε′1εn...ε2

+ · · · +
∑

ε′1...ε
′
n

n−1∏

l=1

n∏

k=l+1

S̃
εkε
′
l

εkε
′
l

n∏

k=1

R
ε′k
εk (λk)

× |λl
1, . . . , λl

n〉ε′1...ε′n . (21)

The superscript a of a rapidity indicates the momentum
carried by the excitation—it is ςaμεeλ, where ςr = 1 and
ςl = −1. Here, Rε′

ε (λ) is the boundary reflection matrix,
which is nonzero only if με = με′ ; therefore, a soliton can
become an antisoliton (or vice versa) upon reflection of the
boundary but a reflected breather m remains a breather of

the same type. As shown in Ref. [58], Rε′
ε (λ) depends on

the difference λ− λB, where λB is the rapidity associated
with the energy scale of the boundary, TB ≡ eλB , which is
proportional to the RG scale, TB ∼ E�

J ∼ E1/(1−z)
J (or TB ∼

J 1/(1−z)) and is given explicitly by Ref. [78],

TB =


(
z

2(1−z)

)

√
π

(
1

2(1−z)

)
(

πε

 (z)�z

)1/(1−z)

, (22)

where  (x) is the gamma function [79] and ε is either
EJ or J for the bsG or Kondo Hamiltonians, respec-
tively (recall that � is the UV cutoff frequency). Note
that the reflection matrices are thus defined only for z < 1,
where TB is finite; hence, this formalism cannot be used
to treat devices with z > 1. The reflection matrices for
the bsG and Kondo models are given in Appendix D. In

Eq. (21), S̃ε1ε2
ε1ε2 ≡ limθ→∞ S

ε′1ε
′
2

ε1ε2 (θ) denotes the S matrix for
the exchange of a right mover and a left mover; note that it
is diagonal.

The complete set of states can be inserted between
any two operators in a correlation function. For example,
consider a two-point correlator:

〈O1 (x, t)O2 (0, 0)〉 = 〈O1〉 〈O2〉

+
∞∑

n=1

∑

ε1...εn

∫ ∏n
k=1 dλk

(2π)n n!
〈0|O1 (x, t) ‖λn, . . . , λ1〉εn...ε1

× ε1...εn〈λ1, . . . , λn‖O2 (0, 0) |0〉. (23)

In order to calculate 〈O1 (x, t)O2 (0, 0)〉, it is suffi-
cient to know the matrix elements of O1,2 in the basis
of the excitations. These matrix elements are called
form factors and are denoted by f O

ε1...εn

(
λa

1 , . . . , λa
n

) ≡
〈0|O (0, 0) |λa

n , . . . , λa
1〉εn...ε1

. The form factors satisfy a set
of axioms and symmetry properties [57], which are sum-
marized in Appendix E. In this work, we only consider
correlation functions of right and left current operators,
defined in Eq. (13). It is shown in Appendix E that the
form factors of R are nonzero only if all excitations are
right moving, i.e., the first term in Eq. (21), and similarly
for form factors of L, where only the last term in Eq. (21)
contributes; all other terms can be discarded. We therefore
denote |λn, . . . , λ1〉aεn...ε1

≡ |λa
n , . . . , λa

1〉εn...ε1
and omit the

superscripts a from the form factors, f A
ε1...εn

(λ1, . . . , λn) ≡
f A
ε1...εn

(
λa

1 , . . . , λa
n

)
(where a = r and A = R or a = l

and A = L), since these are understood to be the only
nonvanishing matrix elements. The crossing relations,
given in Appendix E, allow us to evaluate terms of
the form 〈λ1, . . . , λn|A (0, 0) |0〉ε1...εn

a and, more generally,
〈λ′1, . . . , λ′l|A (0, 0) |λn, . . . , λ1〉ε′1...ε
′
l a
a εn...ε1

, which appear in
the calculation of multipoint correlation functions. Note
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that it is sufficient to know the matrix elements of the
operators at the origin, since, in the massless limit,

〈λ′1, . . . , λ′l|A (x, t) |λn, . . . , λ1〉ε′1...ε
′
l a
a εn...ε1

= exp

{

i

(
n∑

k=1

μεk eλk −
l∑

k=1

με′k eλ
′
k

)

(ςax − t)

}

× 〈λ′1, . . . , λ′l|A (0, 0) |λn, . . . , λ1〉ε′1...ε
′
l a
a εn...ε1

. (24)

In the following, if the coordinates of the operator are
omitted, it should be understood that the matrix element
is evaluated at the origin.

Before we proceed, let us introduce a little addi-
tional notation that will simplify the equations to fol-
low. First, ket states formed by a set λ of nλ excitations

are written as |�λ〉aελ ≡ |λ1, . . . , λnλ〉aε1...εnλ
and |←λ 〉

a

ελ
≡

|λnλ , . . . , λ1〉aεnλ ...ε1
, with their dual bra states written corre-

spondingly. We also introduce the charge-conjugate state,
|�λ〉aε̄λ ≡ |λ1, . . . , λnλ〉aε̄1...ε̄nλ

, where ±̄ = ∓ and m̄ = m. The
complete set of states in Eqs. (20) and (21) is then com-
pactly written as

1 =
∫

λ

(
|←λ 〉

r

ελ
+ R

ε′λ
ελ

(
�λ
)
|�λ〉lε′λ

)

×
(
〈�λ|ελ

r +
(
Rελ
ε′λ

(
�λ
))∗

〈←λ |
ε′λ
l

)
, (25)

where
∫

λ

≡
∞∑

nλ=1

∑

ε1...εnλ

∫ ∞

−∞

∏nλ
k=1 dλk

(2π)nλ nλ!
, (26)

and the product of reflection matrices is abbreviated as

R
ε′λ
ελ

(
�λ
)
|�λ〉lε′λ ≡

∑

ε′1...ε
′
nλ

(nλ−1∏

l=1

nλ∏

k=l+1

S̃
εkε
′
l

εkε
′
l

)(
n∏

k=1

R
ε′k
εk (λk)

)

× |λ1, . . . , λnλ〉lε′1...ε′nλ . (27)

The form factors are appropriately abbreviated as

f A
ελ

(
�λ
)
≡ f A

ε1...εnλ
(λ1, . . . , λn) = 〈0|A|

←
λ 〉

a

ελ
.

In many of the following calculations, the rapidities
will be shifted according to their bulk mass ratios, με =
Mε/M+: λk → λk − logμεk . This will be denoted by a hat:

f̂ A
ελ

(
�λ
)
≡ f A

ε1...εnλ

(
λ1 − logμε1 , . . . , λnλ − logμεnλ

)
,

(28)

and similarly for scattering and reflection matrices. We
also define the total energy of the shifted set �λ, νλ ≡∑nλ

k=1 eλk .

Finally, it is customary to use a graphical representation
for the matrix elements 〈λ′1, . . . , λ′l|A|λn, . . . , λ1〉ε′1...ε

′
l a
a εn...ε1

:

(29)

and, using the abbreviated notation,

(30)

The boundary is depicted by

(31)

Note that the order of the excitations is reversed upon
reflection off the boundary. In the abbreviated notation,

(32)

The form factors in the massless sine-Gordon model are
given in Appendix E. The form factors, scattering matrices,
and reflection matrices are all of the ingredients we need to
calculate our desired response functions.

IV. THE TOTAL INELASTIC DECAY RATE AND
ELASTIC PHASE SHIFT

We are now equipped with all of the necessary tools
to calculate response functions. In this section, we calcu-
late the reflection coefficient r (ω), which defines the total
inelastic decay rate γ (ω) and the elastic phase shift δ (ω)
[Eq. (11)], using Eqs. (17) and (14).

A. The ac conductance

The conductance GLR
(
x, x′;ω

)
has been calculated in

Ref. [59] for the boundary sinh-Gordon and bsG models.
The conductance of the bsG model with z = 1/3 is of par-
ticular interest, as it describes the tunneling of fractionally
charged excitations in a fractional quantum Hall sample
at filling ν = 1/3. Closely related expressions have also
been obtained for the Kondo model. Here, we retrace the
steps of Ref. [59] and calculate GLR

(
x, x′;ω

)
for the bsG

and Kondo models with general coupling parameters. We
emphasize the key steps in the calculation of the two-point
response function, laying the groundwork for the deriva-
tion of the three-point response function in Sec. V. We also
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show that the noncausal response function GRL
(
x, x′;ω

)
,

measuring the response of a right-moving current to a
left-moving current perturbation, is manifestly zero in all
models, for any coupling parameter and impurity strength,
as it should be.

The Kubo formula relates the conductance GLR
(
x, x′;ω

)

to a two-point response function of the current operators.
Each of the two correlators in Eq. (14) can be evaluated
via a form-factor expansion, by inserting the complete
set of states in Eq. (25). As we will now show, it is
necessary to combine the two correlators to obtain a sin-
gle unified expansion for GLR

(
x, x′;ω

)
. Let us start with〈

L (x, t)R
(
x′, 0

)〉
; using Eqs. (25), (24), (E16), and (E19),

we find that

(33)

Shifting the rapidities according to the bulk mass ratios of
their corresponding excitations, λk → λk − logμεk , leads
to

〈
L (x, t)R

(
x′, 0

)〉 =
∫

λ

R̂
ε′λ
ελ

(
�λ
)

e−iνλ(x+x′+t) f̂ R
ε̄′λ

(
�λ
)

×
(

f̂ R
ελ

(
�λ
))∗

. (34)

We now introduce an auxiliary rapidity, κ:

〈
L (x, t)R

(
x′, 0

)〉 =
∫ ∞

−∞
dκeκδ (νλ − eκ)

∫

λ

R̂
ε′λ
ελ

(
�λ
)

× e−iνλ(x+x′+t) f̂ R
ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

.

(35)

Shifting the rapidities by κ , λk → λk + κ , we obtain

〈
L (x, t)R

(
x′, 0

)〉 =
∫ ∞

−∞
dκe−ieκ(x+x′+t)e2κ

×
∫

λ

R̂
ε′λ
ελ

(
�λ+ κ

)
δ (νλ − 1) f̂ R

ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

,

(36)

where we have used Lorentz invariance [Eq. (E3)] and the
notation �λ+ κ = {

λ1 + κ , . . . , λnλ + κ
}
. For the second

correlator of the commutator,
〈
R

(
x′, 0

)
L (x, t)

〉
, following

the same steps, we find that

〈
R

(
x′, 0

)
L (x, t)

〉 =
∫ ∞

−∞
dκeieκ(x+x′+t)e2κ

×
∫

λ

(
R̂
ε′λ
ελ

(
�λ+ κ

))∗
δ (νλ − 1)

× f̂ R
ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

. (37)

Now, we shift κ → κ − iπ in Eq. (37). Using R̂
ε′λ
ελ

(
�λ+ iπ

)

=
(
R̂
ε′λ
ελ

(
�λ
))∗

(see Appendix D), we find that

〈
R

(
x′, 0

)
L (x, t)

〉 =
∫ ∞+iπ

−∞+iπ
dκe−ieκ(x+x′+t)e2κ

×
∫

λ

R̂
ε′λ
ελ

(
�λ+ κ

)
δ (νλ − 1) f̂ R

ε̄′λ

(
�λ
)

×
(

f̂ R
ελ

(
�λ
))∗

. (38)

Next, we plug Eqs. (36) and (38) into Eq. (14). Integrating
over time yields

GLR
(
x, x′;ω

) = lim
η→0+

1
8πω

(∫ ∞

−∞
dκ +

∫ −∞+iπ

∞+iπ
dκ

)

× e2κ ie−ieκ(x+x′)

ω − eκ + iη

∫

λ

R̂
ε′λ
ελ

(
�λ+ κ

)

× δ (νλ − 1) f̂ R
ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

. (39)

The integration contour of κ can be closed by adding
the edges at κ = σ + iχ , with σ →±∞ and 0 ≤ χ ≤ π ,
where the integrand decays rapidly (recall that x, x′ < 0).
In the presence of bound states, z < 1/2, there could
be poles of the reflection matrices enclosed by the con-
tour; however, the residue of the integrand at κ = κ0

gives rise to the exponential eeRe{κ0} sin(Im{κ0})(x+x′), where
sin (Im {κ0}) > 0; hence this term vanishes in the limit of
a half-infinite line for large enough

∣∣x + x′
∣∣. Therefore, the

only pole contributing to the integral is at κ = logω + iη:

GLR
(
x, x′;ω

) = 1
4

e−iω(x+x′)
∫

λ

R̂
ε′λ
ελ

(
�λ+ logω

)

× δ (νλ − 1) f̂ R
ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

. (40)

Before we proceed to the calculation of the reflection coef-
ficient, it is instructive to consider the noncausal conduc-
tance GRL

(
x, x′;ω

)
and show that it vanishes. An identical

020323-9



AMIR BURSHTEIN and MOSHE GOLDSTEIN PRX QUANTUM 5, 020323 (2024)

treatment would lead to

GRL
(
x, x′;ω

) = lim
η→0+

1
8πω

(∫ ∞

−∞
dκ +

∫ −∞−iπ

∞−iπ
dκ

)

× e2κ ieieκ(x+x′)

ω − eκ + iη

∫

λ

(
R̂
ε′λ
ελ

(
�λ+ κ

))∗

× δ (νλ − 1) f̂ R
ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

. (41)

Note the three crucial differences compared to Eq. (39):
the complex conjugation of the reflection matrices, the
sign in the space-dependent exponential, and the integral∫ −∞−iπ
∞−iπ dκ , which runs along the line Imκ = −iπ . This

time, the pole at κ = ω + iη is not enclosed by the contour,
leading to GRL

(
x, x′;ω

) = 0.

B. The reflection coefficient and the origin of inelastic
decay

We now return to Eq. (40) and extract the reflection
coefficient using Eq. (17). Reshifting the rapidities as
λk → λk − logω yields

r (ω) = 1
ω

∫

λ

R̂
ε′λ
ελ

(
�λ
)
δ (νλ − ω) f̂ R

ε̄′λ

(
�λ
) (

f̂ R
ελ

(
�λ
))∗

.

(42)

Recall that νλ =
∑nλ

k=1 eλk is the sum of energies of the
excitations in the set λ. The physical interpretation of
the above expression is clear—the reflection coefficient
of a photon with frequency ω is given by the sum over
all excitations with energies summing up to ω. Note
that this result is general and applies to any integrable
boundary model—the choice of model specifies the reflec-
tion matrices and form factors. The only energy scale,
TB, is encoded within the reflection matrices. While the
sum in Eq. (42) runs over all possible number of exci-
tations nλ, the terms decay very rapidly with nλ, and
in practice it is enough to calculate only a few terms
to obtain r (ω) with excellent accuracy. The accuracy of
the expansion can be evaluated using the high-frequency

behavior of r (ω); using R̂
ε′λ
ελ

(
�λ→∞

)
→ δ

ε′λ
ε̄λ

[Eq. (D8)],

we find that r (ω � TB)→
∑

ελ
r0
ελ
= 1 in all models,

where

r0
ελ
≡

∫ ∞

−∞

∏nλ
k=1 dλk

(2π)nλ nλ!
δ (νλ − 1)

∣∣∣f̂ R
ελ

(
�λ
)∣∣
∣
2

. (43)

Then, calculating the truncated sum
∑′

ελ
r0
ελ

provides
an estimation for the accuracy of the result and sets
an upper bound on the contribution of the remaining
terms (since r0

ελ
> 0 for all ελ). At low frequencies, we

have rK (ω � TB)→
∑

ελ
r0
ελ
= 1 and rbsG (ω � TB)→

−∑
ελ

r0
ελ
= −1 [using Eq. (D9)]. It is shown in Fig. 4

in Appendix E that, indeed, only a few terms are
needed to obtain 1−∑′

ελ
r0
ελ
< 10−2 for most values

of z.
The leading terms for the bsG and Kondo models are as

follows. First, a soliton-antisoliton pair contributes

r+− (ω) = 1
ω

∫ ∞

−∞

dλ1dλ2

(2π)2 δ
(
eλ1 + eλ2 − ω

)

×
[
e−

iπ
2z R−+ (λ1)R+− (λ2)− e

iπ
2z R++ (λ1)R++ (λ2)

]

× ∣∣f R
+− (λ1, λ2)

∣∣2 . (44)

This is the leading term for z ≥ 1/2. In the attractive
regime, z < 1/2, the dominant contribution comes from a
single breather:

rm (ω) =
∣∣f R

m (0)
∣∣2

2πμ2
m

Rm
m

(
log

(
ω

μm

))
, (45)

where 1 ≤ m ≤ �1/z − 2 is odd; the largest contribution
is of m = 1. Two other non-negligible contributions are

r+−1 (ω) = 1
ω

∫ ∞

−∞

dλ1dλ2dλ3

(2π)3 δ
(
eλ1 + eλ2 + eλ2 − ω

)

×
[
e−

iπ
2z R−+ (λ1)R+− (λ2) + e

iπ
2z R++ (λ1)R++ (λ2)

]

× R1
1 (λ3− logμ1)

∣∣f R
+−1 (λ1, λ2, λ3− logμ1)

∣∣2,
(46)

and

r12 (ω) = 1
ω

∫ ∞

−∞

dλ1dλ2

(2π)2 δ
(
eλ1 + eλ2 − ω

)

× R1
1 (λ1 − logμ1)R2

2 (λ2 − logμ2)

× ∣∣f R
12 (λ1 − logμ1, λ2 − logμ2)

∣∣2 . (47)

In the following, we evaluate the reflection coefficient at
integer p = 1/z as

r (ω) ≈
p−2∑

m=1

rm (ω)+ r+− (ω)+ r12 (ω)+ r+−1 (ω) .

(48)

The evaluation of r+−1 is significantly more complicated
for noninteger 1/z. However, Fig. 4 shows that r (ω) ≈∑

m rm (ω)+ r+− (ω)+ r12 (ω) is still a very good approx-
imation (1− r0

+− −
∑

m r0
m − r0

12 � 1) for z � 1/4 (where
the contribution of rR12 becomes larger than that of rR+−1)
and also for z > 1/2, as long as z is not too large (where
r+−+− is non-negligible). The inelastic decay rate and
elastic phase shift are then readily extracted following
Eq. (11).
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Equation (42) reveals the origin of the inelastic scatter-
ing. The inelastic decay rate of a photon ω is

γ (ω) = − log |r (ω)|2 ≈ 1− |r (ω)|2 , (49)

assuming 1− |r (ω)|2 � 1. We thus identify the coherent
sum in Eq. (42) as the source of the photon decay. A plane-
wave mode at frequency ω impinging on the boundary can

be formally written as a sum of eigenstates, |←λ 〉
r

ελ
, with

appropriate weights and phases. Note that this is a nonlin-
ear relation—plane waves cannot be expressed as a sum
of individual solitons and breathers and must be spanned
using all eigenstates with any number of excitations. While
each excitation in each of the eigenstates is reflected elas-
tically off the boundary, it picks up a phase, determined by
the reflection matrix, that depends on its type and energy.
These relative phases between the eigenstates alter the spe-
cific weights of the decomposition of the incoming photon.
Therefore, the reflected excitations no longer form a single
photon at frequency ω but, rather, a set of photons with
frequencies ωi, such that

∑
i ωi = ω.

The nonlinear relation between the photons and elemen-
tary excitations is generally implicit and is hidden within
the form factors of the theory, which are the matrix ele-
ments of the derivatives of the bosonic field φ in the basis
of solitons and breathers. An explicit relation can be found
at the free-fermion point, z = 1/2, using refermionization
[80], as discussed in Appendix G. Introducing a fermionic
field ψ (x) ∼ eiφ(x), we find a one-to-one correspondence
between ψ , ψ†, and solitons and antisolitons by expanding
the fermionic field as

ψ (x; t) = 1√
2�

∑

k

ψk (t) eikx = 1√
2�

∑

k

ψkeik(x−t),

(50)

where k = n� with n ∈ Z. The commutation relations of
ψk and ψ

†
k satisfy the Zamolodchikov-Faddeev algebra

[Eq. (19)] at z = 1/2, where the S matrix becomes triv-
ial, S+−+− = S++++ = −1. We therefore identify ψk>0 with
a soliton with energy k and ψ

†
−k<0 with an antisoliton

with energy k, establishing an explicit nonlinear rela-
tion between the solitons and the bosonic field φ. The
calculation of r (ω) simplifies considerably at the free-
fermion point, as the sole contribution to the reflec-
tion coefficient is Eq. (44) and the particularly compact
expressions for the reflection matrices [Eqs. (D3)–(D6)]
and form factors [Eq. (E32)] allow for closed analytical
expressions:

rbsG

(
ω; z = 1

2

)
= 1− 2iTB

ω
log

(
1− iω

TB

)
,

rK

(
ω; z = 1

2

)
= 1− 4iTB

ω + 2iTB
log

(
1− iω

TB

)
.

(51)

The same expressions are derived in Appendix G using
refermionization.

C. Results

The rates γ (ω) and δ (ω) in both models, for sev-
eral values of z, are displayed in Fig. 2. The inelastic
rate in both models follows a Luttinger-liquid power law
at high frequencies, γ (ω � TB) ∼ ω2z−2, which may be
obtained from the Hamiltonians in Eqs. (3) and (5) by
means of perturbation theory [31,35,36]. Note that Eq. (22)
restores the dependence of the rates on the UV cutoff
� (as long as ω � �), which is present in a perturba-
tive treatment and should be considered for quantitative
comparisons with experimental measurements, not only in
the high-frequency regime but also in the low-frequency
regime, ω � E�

J . Indeed, perturbation theory is invalid
for the Hamiltonians in Eqs. (3) and (5) for z < 1 and
ω � E�

J . The low-frequency power laws for the rates
are model dependent and could be predicted from the
expansions near the strong-coupling fixed points. In the
Kondo model, the dominant contribution stems from a
quartic density term, ρ4, leading to γK (ω � TB) ∼ ω6

for all z < 1 [31]. In bsG, the leading expansion terms
are the quartic phase term φ4, giving rise to the same
ω6 power law as the quartic density term, and the dual
cosine cos (πρ), which generates instantons between the
minima of the cosine potential and leads to a ω2/z−2

behavior [40]; hence, γbsG (ω � TB; z ≥ 1/4) ∼ ω2/z−2

and γbsG (ω � TB; z < 1/4) ∼ ω6.
The asymptotic behavior of the phase shift δ (ω) may be

obtained from Eq. (42), rewritten here as

r (ω) =
∫

λ

R̂
ε′λ
ελ

(
�λ+ logω

)
δ (νλ − 1) f̂ R

ε̄′λ

(
�λ
)

×
(

f̂ R
ελ

(
�λ
))∗

. (52)

As discussed in Ref. [59], we may expand the reflection
matrices as a power series in ω/TB or TB/ω, for low or
high frequencies, respectively. In the bsG model, the soli-
ton matrices R±/∓± (λ) expand as double power series in
eλ and e(1/z−1)λ and the soliton matrices Rm

m (λ) expand as
power series in eλ. We find that δbsG (ω � TB; z ≥ 1/2) ∼
ω2z−2 and δbsG (ω � TB; z < 1/2) ∼ ω−1 at high fre-
quencies (in agreement with perturbation theory) and
π/2− δbsG (ω � TB; z ≥ 2/3) ∼ ω2/z−2 and π/2− δbsG
(ω � TB; z < 2/3) ∼ ω at low frequencies, which are
again anticipated by the expansion near the strong-
coupling fixed point. The reflection matrices of the Kondo
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FIG. 2. The total inelastic rate γ (ω) and phase shift δ (ω) for
the bsG and Kondo models and several values of z. The power
laws at low and high frequencies are denoted on the plots. In
the phase-shift panels, we plot both δ (ω) and π/2− δ (ω) or
π − δ (ω) (for the bsG and Kondo models, respectively). We use
Eq. (48) to evaluate r (ω) at integer p = 1/z and r (ω) = r+− (ω)
at noninteger z > 1/2.

model are considerably simpler and all expand as power
series in eλ, leading to δK (ω � TB; z ≥ 1/2) ∼ ω2z−2,
δK (ω � TB; z < 1/2) ∼ ω−1, and π − δK (ω � TB) ∼ ω.
We note that all of the scaling laws of the scattering rates
γbsG (ω) and δbsG (ω) in the bsG model, at frequencies both
above and below the RG scale, are in agreement with a
recent theoretical study combining perturbation theory at
ω � TB and strong-coupling expansions at ω � TB [42];
our exact calculation provides the full crossover between
the two regimes.

To conclude this section, we relate the limiting cases
of the inelastic and elastic rates to the Schmid-Bulgadaev
transition. Approaching the transition, z→ 1, we find that
both the low- and high-frequency power laws, 2/z − 2 and
2z − 2, respectively, tend toward 0. In other words, the
rate γbsG (ω) and the phase shift δbsG (ω) become frequency
independent at the transition point, z = 1. Perturbation the-
ory at z > 1 shows that γbsG (ω) ∼ ω2z−2 for both low and
high frequencies (since the boundary cosine term of Eq. (3)
becomes irrelevant at z > 1) and δbsG (ω; 1 < z ≤ 3/2) ∼
ω2z−2 and δbsG (ω; z > 3/2) ∼ ω, also for all frequen-
cies [36]. Crucially, the phase shift at ω = 0 jumps
from π/2 to zero across the transition and changes sign
at finite frequencies. The sign change of δbsG (ω) and
the different trends of γbsG (ω) on the two sides of
the transition, both at finite frequencies, have recently
been observed using single-photon spectroscopy, provid-
ing evidence for the long-sought-after quantum phase
transition [36].

V. THE ENERGY-RESOLVED INELASTIC DECAY
SPECTRUM

A. The spectrum as a three-point response function

The inelastic decay spectrum, γ
(
ω′|ω)

, measures the
production rate of photons at frequency ω′ due to a
splitting of a photon with frequency ω > ω′. It is related
to the total inelastic decay rate, γ (ω), by means of an
energy-conservation sum rule:

∫ ω

0
ω′γ

(
ω′|ω)

dω′ = ωγ (ω) . (53)

It has been shown in Ref. [31] that, for the generic impurity
setup in Eq. (9), γ

(
ω′|ω)

can be found by calculating a
three-point response function:

γ
(
ω′|ω) = lim

η→0+
2η�
ω

Gcqq
ω′ (ω + iη,−ω + iη) , (54)

which is defined in the time domain as

Gcqq
ω′

(
t− t′, t− t′′

) = −� (
t− t′

)
�

(
t′ − t′′

)

× 〈[[
nq′ (t) , ρ

(
xin, t′

)]
, ρ

(
xin, t′′

)]〉+ {
t′ ↔ t′′

}
, (55)

where xin < 0 is an arbitrary point in the half-infinite lead
and nq′ = b†

q′bq′ is the occupation number of the mode q′,
with frequency ω′ = vq′ = q′. The Fourier transform is

Gcqq
ω′ (ω1,ω2) =

∫ ∞

−∞
dt′eiω1(t−t′)

∫ ∞

−∞
dt′′eiω2(t−t′′)

× Gcqq
ω′

(
t− t′, t− t′′

)
. (56)

Let us sketch the main steps leading to this expression.
The goal is to calculate the time-averaged rate of change

of nq′ in response to an incoming photon with frequency
ω, injected at xin < 0, impinging on the boundary. Note
that we are looking for a second-order response, since the
change in the photonic number nq′ is proportional to the
flux of the incoming energy. The photon at ω is injected
by applying an ac voltage, Hac = V (t) eηtρ (xin), where
V (t) = 2V0 cos (ωt) and η→ 0+. The time dependence of
Hac makes the Keldysh formalism natural for our purpose
[81,82]; the second-order Kubo formula for nq′ reads

〈
nq′ (t)

〉 = 1
2

∫ ∞

−∞
dt′dt′′Gcqq

ω′
(
t− t′, t− t′′

)
V

(
t′
)

V
(
t′′

)
.

(57)

The notation “c” and “q” corresponds to the “classical” and
“quantum” fields in the Keldysh formalism, i.e., the sum
and difference, respectively, of the fields on the forward
and backward time contours. We are concerned with the
so-called “fully retarded” multipoint correlator Gcqq

ω′ [83],
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which measures the causal response of nq′ to the perturb-
ing density ρ. To find the time-averaged photon production
rate, we take the derivative of Eq. (57) and discard the
oscillating exponentials:

d
dt

〈
nq′ (t)

〉 = 2η |V0|2 Gcqq
ω′ (ω + iη,−ω + iη) . (58)

Then, in order to obtain γ
(
ω′|ω)

, we multiply the above
by the density of modes, 1/� = �/π , and divide by the
average power of the source that propagates toward the
impurity, ω

∣∣V2
0

∣∣ /π . We thus arrive at Eq. (54). Using
time-translation invariance and applying simple algebraic
manipulations, we may write the three-point response
function as

Gcqq
ω′ (ω + iη,−ω + iη) = −2

∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′

× cos
(
ωt′′

) 〈[[
nq′ (0) , ρ

(
xin,−t′

)]
, ρ

(
xin,−t′ − t′′

)]〉
.

(59)

Note the η→ 0+ prefactor in Eq. (54), which implies that
we need to look for contributions to Gcqq

ω′ that are singular
in η.

In order to calculate Gcqq
ω′ using form factors, we need to

express nq′ , ρ in terms of the current operators R,L. From
Eqs. (10) and (13) and the quantization q = n�, we may
write bq = bR

q + bL
q , with

bA
q (t) = 1

2
√
πq�

∫ 0

−�
dxe−iςAqxA (x, t) , (60)

where ω = vq = q, ςR = 1, and ςL = −1. The operators
bR

q and bL
q annihilate right- and left-moving photons with

frequency q, respectively. The density ρ and occupation
number nq′ may then be decomposed into their chiral parts.
The density can be written as ρ = ρR + ρL, where

ρA (xin, t) = 1
2π

A (xin, t) , (61)

whereas the occupation number may be expressed as nq′ =∑
A,B=R,L nAB

q′ , with nAB
q′ = bA†

q′ bB
q′ :

nAB
q′ (t) = 1

4πω′�

∫ 0

−�
dx1dx2eiω′(ςAx1+ςBx2)

×A (x1, t)B (x2, t) . (62)

The decomposition of Gcqq
ω′ into its chiral parts is then

Gcqq
ω′ (ω + iη,−ω + iη) =

∑

A,B,C,D=R,L

Gcqq
ω′;ABCD (ω + iη,−ω + iη) , (63)

with

Gcqq
ω′;ABCD

(
t− t′, t− t′′

) = −� (
t− t′

)
�

(
t′ − t′′

)

×
〈[[

nAB
q′ (t) , ρC (

xin, t′
)]

, ρD (
xin, t′′

)]〉+ {
t′ ↔ t′′

}
.

(64)

Fortunately, there is no need to calculate all 16 terms
Gcqq
ω′;ABCD. First, in an experimental setup, the photon at

ω is injected such that it propagates toward the boundary;
we should therefore only consider terms with ρC , ρD =
ρR. This leaves us with the calculation of four terms,
Gcqq
ω′;ABRR. Furthermore, since the produced photon prop-

agates to the left, away from the impurity, we expect only
Gcqq
ω′;LLRR to contribute, measuring the response of the left-

moving occupation number to the right-moving source. In
the following, we calculate Gcqq

ω′;LLRR and show that the
other three terms indeed vanish.

B. Calculating the three-point response function using
form factors

The calculation of a three-point response function using
form factors is considerably more involved than that of
a two-point function. The three-point response function
Gcqq
ω′;LLRR comprises four correlators, each involving four

current operators. We therefore must insert three complete
sets of states in each correlator, giving rise to mixed matrix

elements of the form 〈�ϑ |A|←θ 〉
εϑ a

a εθ
. These mixed elements,

evaluated using the crossing relations in Eq. (E11), lead to
a series of terms with a different structure in each of the
four correlators.

In order to make sense of these complicated expres-
sions, let us recall the key step in the derivation of the
two-point function GLR (t). It comprises only two correla-
tors, 〈L (t)R (0)〉 and 〈R (0)L (t)〉, which have both been
evaluated by inserting a single complete set of states. The
result, however, has not been obtained by considering each
correlator on its own but, rather, by combining the two
form-factor expansions; we have had to take the difference
of these two correlators, allowing us to close the integra-
tion contour in Eq. (39), in order to arrive at the anticipated
delta function in the result, given in Eq. (40). Similarly,
it has been necessary to combine the two correlators of
GRL to show that the noncasual conductance vanishes. It
is therefore crucial to find some convenient way to com-
bine and unify the four correlators of Gcqq

ω′;LLRR; given a
term in the form-factor expansion of one of the correla-
tors, we must find a way to identify its three counterparts
in the other correlators. In the following, we accomplish
this and show how to identify a quartet of terms from the
expansions of the four correlators that need to be summed
up together, by labeling the excitations according to their
“origins” and “destinations” in each correlator, leading to
a unified general expression for Gcqq

ω′;LLRR.
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We begin by denoting the four terms of the double commutator as

I =
∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′ cos

(
ωt′′

) ∫ 0

−�
dx1dx2e−iω′(x1−x2)

〈
L (x1, 0)L (x2, 0)R

(
xin,−t′

)
R

(
xin,−t′ − t′′

)〉
,

II =
∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′ cos

(
ωt′′

) ∫ 0

−�
dx1dx2e−iω′(x1−x2)

〈
R

(
xin,−t′ − t′′

)
R

(
xin,−t′

)
L (x1, 0)L (x2, 0)

〉
,

III =
∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′ cos

(
ωt′′

) ∫ 0

−�
dx1dx2e−iω′(x1−x2)

〈
R

(
xin,−t′

)
L (x1, 0)L (x2, 0)R

(
xin,−t′ − t′′

)〉
,

IV =
∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′ cos

(
ωt′′

) ∫ 0

−�
dx1dx2e−iω′(x1−x2)

〈
R

(
xin,−t′ − t′′

)
L (x1, 0)L (x2, 0)R

(
xin,−t′

)〉
, (65)

so that

Gcqq
ω′;LLRR (ω + iη,−ω + iη) = −1

8π3ω′�
(I+ II− III− IV) . (66)

Consider III above and insert complete sets of states between its operators:

III =
∫ ∞

0
dt′dt′′e−2ηt′e−ηt′′ cos

(
ωt′′

) ∫ 0

−�
dx1dx2e−iω′(x1−x2)

×
∫

λi

(
R
ε′λ1
ελ1

(
�λ1

))∗
R
ελ3
ε′λ3

(
�λ3

)
〈0|R (

xin,−t′
) |�λ1〉rε′λ1

〈�λ1|L (x1, 0) |�λ2〉ελ1 l

l ελ2

× 〈←λ 2|L (x2, 0) |←λ 3〉
ελ2 l

l ελ3
〈←λ 3|R

(
xin,−t′ − t′′

) |0〉
ε′λ3

r
. (67)

Using Eq. (24), we obtain complex exponentials from the coordinates of the current operators. We assume a half-infinite
line and extend the lower integration limits of x1,2 to −�→−∞, introducing an infinitesimal parameter η to ensure
convergence:

∫ 0

−∞
dx1e−i

(
ω′+νλ2−νλ1+iη

)
x1

∫ 0

−∞
dx2ei

(
ω′+νλ2−νλ3−iη

)
x2 = 1

ω′ + νλ2 − νλ1 + iη
1

ω′ + νλ2 − νλ3 − iη
. (68)

Integrating over x1,2 and t′ and shifting the rapidities according to the bulk mass ratios of their excitations, as has been
done in the calculation of the reflection coefficient, then yields

III =
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

λi

iei
(
νλ1−νλ3

)
xine−i

(
νλ3−iη

)
t′′

νλ1 − νλ3 + 2iη

×

(
R̂
ε′λ1
ελ1

(
�λ1

))∗
R̂
ελ3
ε′λ3

(
�λ3

)

(
ω′ + νλ2 − νλ1 + iη

) (
ω′ + νλ2 − νλ3 − iη

) 〈0|R̂|�λ1〉
r

ε′λ1
〈�λ1|L̂|�λ2〉

ελ1 l

l ελ2
〈←λ 2|L̂|

←
λ 3〉

ελ2 l

l ελ3
〈←λ 3|R̂|0〉

ε′λ3
r , (69)

where a hat over the operators R and L indicates that the rapidities in the matrix elements are λ− logμε . Now, consider
the mixed matrix elements, which need to be evaluated using the crossing relations in Eq. (E11). The idea is to partition
the sets λ1,2,3 into smaller subsets, αij (i, j = 1, 2), β, and γ , that label the excitations according to the operators to which
they are connected: the excitations in the set αij connect ρR

i (ρR
1 ≡ ρR (

xin,−t′
)
, ρR

2 ≡ ρR (
xin,−t′ − t′′

)
) to bL†

q′ (j = 1)
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or bL
q′ (j = 2), the set β connects the bL

q′ , bL†
q′ operators to each other, and the set γ connects the ρR operators. We find

III =
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ

iei(ν11+ν12−ν21−ν22)xine−i(ν21+ν22+νγ−iη)t′′
(
R̂
ε′11
ε11 (�α11) R̂

ε′12
ε12 (�α12)

)∗
R̂ε21
ε′21

(�α21) R̂ε22
ε′22

(�α22)

(ν11 + ν12 − ν21 − ν22 + 2iη)
(
ω′ + ν21 − ν11 + νβ + iη

) (
ω′ + ν12 − ν22 + νβ − iη

)

× 〈0|R̂| �γ , �α12, �α11〉
r

ε′γ ε′12ε
′
11
〈�α11 + iδ|L̂|←α 21, �β〉ε11 l

l ε21εβ
〈�α12 + iδ,

←
β − iδ|L̂|←α 22〉

ε12εβ l

l ε22

× 〈←α 21,
←
α 22,

←
γ |R̂|0〉

ε′21ε
′
22ε
′
γ

r . (70)

The derivation of Eq. (70) using the crossing relations is detailed in Appendix F. Here, we shorten the notation, εαij → εij
and ναij → νij . Counting the number of possibilities to partition the sets λi to αij ,β, γ , we see that the integration measure
becomes

∫

λi

=
∏

i=1,2,3

⎡

⎣
∑

nλi ,ελi

∫ ∞

−∞

∏nλi
k=1 d (λi)k

(2π)nλi nλi!

⎤

⎦

→
∫

αij ,β,γ
=

∏

i,j=1,2

⎡

⎣
∑

nij ,εij

∫ ∞

−∞

∏nij
k=1 d

(
αij

)
k

(2π)nij nij !

⎤

⎦
∑

nβ ,εβ

[∫ ∞

−∞

∏nβ
k=1 dβk

(2π)nβ nβ!

]
∑

nγ ,εγ

[∫ ∞

−∞

∏nγ
k=1 dγk

(2π)nγ nγ !

]

,

(71)

i.e., the factorials and 2π factors in the denominators translate naturally from the λ sets to the smaller subsets. The other
correlators, I, II, and IV, may be treated similarly, with appropriate labeling of the excitations. The four correlators, written
explicitly in Eqs. (F4)–(F5), are conveniently represented by the graphical notation:

I

(72)

II

(73)

III

(74)

IV

(75)

Labeling the excitations offers a natural way to sum up the correlators, following a procedure similar to that of the
two-point function. Consider I and III; we introduce two auxiliary rapidities, κ1,2, such that eκi = νi1 + νi2, and shift
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�αij → �αij + κi, leading to

I =
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ
CβCγ

2∏

i=1

δ (νi1 + νi2 − 1)
∫ ∞

−∞

2∏

i=1

dκi

× ie−i(eκ1+eκ2)xine−i(eκ2+νγ−iη)t′′

−eκ1 − eκ2 + 2iη

R̂
ε′11
ε11 (�α11 + κ1) R̂

ε′12
ε12 (�α12 + κ1) R̂ε21

ε′21
(�α21 + κ2) R̂ε22

ε′22
(�α22 + κ2)

(
ω′ + eκ2ν21 + eκ1ν11 + νβ + iη

) (
ω′ − eκ1ν12 − eκ2ν22 + νβ − iη

)

× f R
ε′11ε
′
12εγ

(←
α 11 + κ1 + iδ,

←
α 12 + κ1 + iδ,

←
γ + iπ

)
f R
ε21εβ ε̄11

(←
α 21 + κ2, �β, �α11 + κ1

)

× f R
ε̄β ε22 ε̄12

(←
β − iπ ,

←
α 22 + κ2 − iδ, �α12 + κ1 + iδ

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22 + κ2, �α21 + κ2) , (76)

III = −
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ
CβCγ

2∏

i=1

δ (νi1 + νi2 − 1)
∫ ∞

−∞

2∏

i=1

dκi

× iei(eκ1−eκ2)xine−i(eκ2+νγ−iη)t′′

eκ1 − eκ2 + 2iη

(
R̂
ε′11
ε11 (�α11 + κ1) R̂

ε′12
ε12 (�α12 + κ1)

)∗
R̂ε21
ε′21

(�α21 + κ2) R̂ε22
ε′22

(�α22 + κ2)
(
ω′ + eκ2ν21 − eκ1ν11 + νβ + iη

) (
ω′ + eκ1ν12 − eκ2ν22 + νβ − iη

)

× f R
ε′11ε
′
12εγ

(←
α 11 + κ1,

←
α 12 + κ1,

←
γ

)
f R
ε21εβ ε̄11

(←
α 21 + κ2, �β, �α11 + κ1 + iπ − iδ

)

× f R
ε̄β ε22 ε̄12

(←
β − iπ + iδ,

←
α 22 + κ2, �α12 + κ1 + iπ − iδ

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22 + κ2, �α21 + κ2) , (77)

where Cλ is a sign factor stemming from charge conjugation, defined in Eq. (E9). Shifting κ1 → κ1 + iπ − 3iδ in I yields

I–III =
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ
CβCγ

2∏

i=1

δ (νi1 + νi2 − 1)
(∫ ∞

−∞
dκ1 +

∫ −∞−iπ+3iδ

∞−iπ+3iδ
dκ1

)∫ ∞

−∞
dκ2

× iei(eκ1−eκ2)xine−i(eκ2+νγ−iη)t′′

eκ1 − eκ2 + 2iη

(
R̂
ε′11
ε11 (�α11 + κ1) R̂

ε′12
ε12 (�α12 + κ1)

)∗
R̂ε21
ε′21

(�α21 + κ2) R̂ε22
ε′22

(�α22 + κ2)
(
ω′ + eκ2ν21 − eκ1ν11 + νβ + iη

) (
ω′ + eκ2ν21 − eκ1ν11 + eκ1 − eκ2 + νβ − iη

)

× f R
ε′11ε
′
12εγ

(←
α 11 + κ1,

←
α 12 + κ1,

←
γ

)
f R
ε21εβ ε̄11

(←
α 21 + κ2, �β, �α11 + κ1 + iπ − iδ

)

× f R
ε̄β ε22 ε̄12

(←
β − iπ + iδ,

←
α 22 + κ2, �α12 + κ1 + iπ − iδ

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22 + κ2, �α21 + κ2) . (78)

Note that we have also rewritten the ω′ denominators using the delta functions. In order to close the κ1 contour, we add
the edges at κ1 = σ + iχ with σ →±∞ and −π ≤ χ ≤ 0—this is allowed, since the exponential ei(eκ1−eκ2)xin ensures
that the integrand decays fast enough at σ →∞, whereas the form factors vanish exponentially fast as σ →−∞. Now,
the pole at κ1 = κ2 − 2iη is enclosed by the contour; setting κ1 = κ2, the ω′ denominators become

1
ω′ + eκ2 (ν21 − ν11)+ νβ + iη

1
ω′ + eκ2 (ν21 − ν11)+ νβ − iη

→ π

η
δ
(
ω′ + eκ2 (ν21 − ν11)+ νβ

)
; (79)

i.e., the contribution of this pole is singular in η. In fact, the pole at κ1 = κ2 − 2iη is the sole singular contribution to
the contour integral. The annihilation poles of the form factors, occurring at θi − θj = iπ for some i > j [when the same
excitation appears on both bra and ket of a matrix element; see Eq. (E4)], are just above or below the upper and lower
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boundaries of the contour and while in the attractive regime (z < 1/2) the form factors and reflection matrices have bound
state poles that are enclosed by the contour, their residues are not singular in η.

We are now in a position to show why Gcqq
ω′;LLRR is the only nonvanishing contribution to the spectrum. First,

Gcqq
ω′;RRRR is a background term that does not involve the boundary and thus cannot account for inelastic scattering.

Next, consider Gcqq
ω′;RLRR, i.e., the response of nRL

q′ to a right-moving photon. Replacing 〈�λ1|L (x1, 0) |�λ2〉ελ1 l

l ελ2
with

〈�λ1|R (x1, 0) |�λ2〉ελ1 r

r ελ2
in Eq. (67), the sign in the x1 exponential in Eq. (68) is flipped:

∫ 0

−∞
dx1ei

(
ω′+νλ2−νλ1−iη

)
x1

∫ 0

−∞
dx2ei

(
ω′+νλ2−νλ3−iη

)
x2 = − 1

ω′ + νλ2 − νλ1 − iη
1

ω′ + νλ2 − νλ3 − iη
. (80)

The key difference with respect to Eq. (67) is the same relative sign of the iη terms in the denominators. There-
fore, Gcqq

ω′;RLRR (and, similarly, Gcqq
ω′;LRRR) is nonsingular in η and its contribution vanishes in the limit η→ 0. It is

also reassuring to verify that Gcqq
ω′;RRLL, the noncausal counterpart to Gcqq

ω′;LLRR, vanishes identically; this is shown in
Appendix F.

The treatment of II, IV is identical to the above. Plugging everything into Eq. (66) and back into Eq. (54), we find that

γ
(
ω′|ω) = − 2

πω′ω

∫

αij ,β,γ
CβCγ

∫ ∞

0
d�

2∏

i=1

δ
(
νi1 + νi2 + νγ −�

)
δ
(
ω′ + ν21 − ν11 + νβ

) ∫ ∞

0
dt′′e−ηt′′ cos

(
ωt′′

)

× Re
{

e−i�t′′
∏

F
∏

R
}

, (81)

where the products of the form factors and reflection matrices are (denoting π− ≡ π − δ)

∏
F ≡ f R

ε′11ε
′
12εγ

(←
α 11,

←
α 12,

←
γ

)
f R
ε21εβ ε̄11

(←
α 21, �β, �α11 + iπ−

)

× f R
ε̄β ε22 ε̄12

(←
β − iπ−,

←
α 22, �α12 + iπ−

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22, �α21) , (82)

∏
R ≡

(
R̂
ε′11
ε11 (�α11) R̂

ε′12
ε12 (�α12)

)∗
R̂ε21
ε′21

(�α21) R̂ε22
ε′22

(�α22)− δ
ε′11
ε̄11
δ
ε′12
ε̄12
δ
ε′21
ε̄21
δ
ε′22
ε̄22

. (83)

Note that we subtract the product of Kronecker deltas in
∏

R. This corresponds to subtracting the background term
Gcqq
ω′;LLLL, which does not involve the boundary and therefore does not contribute to inelastic scattering and ensures that

γ
(
ω′|ω)

vanishes as ω/TB →∞ [following Eq. (D8)] or ω/TB → 0 (following R
ε′λ
ελ

(
�λ→−∞

)
→ δ

ε′λ
ε̄λ

in the Kondo
model, or Eqs. (D9) and (E19) in the bsG model). The integral over t′′ yields

∫ ∞

0
dt′′e−ηt′′ cos

(
ωt′′

)
Re

{
e−i�t′′

∏
F

∏
R

}

= π

2
δ (ω −�)Re

{∏
F

∏
R

}
− 1

2

[
P 1
ω +�

− P 1
ω −�

]
Im

{∏
F

∏
R

}
, (84)

where P denotes the principal value. To get rid of the awkward principal-value terms, consider another equivalent way to
expand the correlators I, . . . , IV:

I

(85)
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II

(86)

III

(87)

IV

(88)

Note that the diagrams III and IV above are the mirror images of the ones in Eqs. (74) and (75), where bra states become
ket states and vice versa—this corresponds to complex conjugation of both form factors [see Eq. (E14)] and reflection
matrices. This time, we pair I with IV and II with III. The same steps lead to

γ
(
ω′|ω) = − 2

πω′ω

∫

αij ,β,γ
CβCγ

∫ ∞

0
d�

2∏

i=1

δ
(
νi1 + νi2 + νγ −�

)

× δ
(
ω′ + ν21 − ν11 + νβ

) ∫ ∞

0
dt′′e−ηt′′ cos

(
ωt′′

)
Re

{
ei�t′′

∏
F

∏
R

}
. (89)

The expressions in Eqs. (81) and (89) are equal; taking their average eliminates the term proportional to Im
{∏

F
∏

R
}
,

leaving us with the simple delta function δ (ω −�). Finally, we arrive at

γ
(
ω′|ω) = − 1

ω′ω

∫

αij ,β,γ
CβCγ

2∏

i=1

δ
(
νi1 + νi2 + νγ − ω

)

× δ
(
ω′ + ν21 − ν11 + νβ

)
Re

{∏
F

∏
R

}
. (90)

This is a general form-factor expansion for the inelastic spectrum. Similarly to Eq. (42), it involves some intuitive delta
functions: the two functions δ

(
νi1 + νi2 + νγ − ω

)
imply that the energies of the excitations connected to ρR

i must sum
up to the photon energy ω and δ

(
ω′ + ν21 − ν11 + νβ

)
ensures that the total energies connected to bL†

q′ and bL
q′ are both

equal to ω′ (note that ν21 − ν11 = ν12 − ν22).
Before we proceed, let us consider the disconnected case, ε12 = ε21 = εβ = εγ = {}, for which we find

γdisc
(
ω′|ω) = δ

(
ω′ − ω

) (|r (ω)|2 − 1
) = −γ (ω) δ (

ω′ − ω
)

. (91)

That is, the disconnected terms do not contribute to the spectrum at ω′ < ω and reproduce the total inelastic decay rate.
This is similar to the calculation in the Keldysh formalism, where the total rate is also obtained from the disconnected
diagrams (see Appendix G and Ref. [31]).

C. Leading diagrams

Equation (90) offers a nonperturbative and rapidly convergent diagrammatic approach for calculating the spectrum.
Each term in Eq. (90) may be represented by a diagram, from which one may read off the corresponding form factors and
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reflection matrices, as illustrated below. The physical intuition behind this approach is clear; one needs to sum over all
processes with excitations of the integrable theory connecting the bosonic operators, with energy conservation imposed
by the delta functions. Comparing to refermionization at the free fermion point z = 1/2, discussed in Appendix G, we
draw an analogy between our approach and Wick’s theorem, as explained below.

All that is left to be done is to draw the leading diagrams and evaluate their contributions. As in any form-factor
expansion, such as that of the reflection coefficient in Eq. (42), we expect the contributions to decay rapidly with the
number of excitations involved, allowing us to obtain the spectrum with good accuracy using only a few terms. Our figure
of merit is the sum rule in Eq. (53), which should hold for all ω; hence, it is essential that the asymptotic power laws of
γ (ω) at low and high frequencies will be recovered by the sum

∫ ω

0 (ω
′/ω)γ

(
ω′|ω)

dω′.
In the following, we focus on z = 1/3 and z = 1/2, list the leading terms in Eq. (90), and draw their corresponding

diagrams. The details behind the evaluation of these terms, as well as additional subleading terms, are given in Appendix F.
In particular, one must be careful to take into account all terms with comparable contributions, which could be misleading

in the presence of mixed matrix elements, 〈�ϑ |A|←θ 〉
εϑ

a
a
εθ

, due to the annihilation poles of the form factors [Eq. (E4)].
Appendix F presents a consistent method to identify and evaluate all such terms.

First, consider the diagram ε11 = {±} , ε12 = {∓} , ε21 = {±} , ε22 = {∓} , εβ = εγ = {}, depicted by

(92)

Its contribution to the spectrum reads

γ
(1)
1

(
ω′|ω) = 2

ω′ω

∫ ω−ω′

0

d�

(2π)4 ∏4
i=1 eλi

Re
{(

e−
iπ
2z R−+ (λ1)R−+ (λ2)− e

iπ
2z R++ (λ1)R++ (λ2)

)∗

×
(

e−
iπ
2z R−+ (λ3)R−+ (λ4)− e

iπ
2z R++ (λ3)R−− (λ4)

)
− 1

}

× Re
{
f R
+−

(
λ3, λ1 + iπ−

)
f R
+−

(
λ4, λ2 + iπ−

)
f R
+− (λ1, λ2) f R

+− (λ4, λ3)
}

, (93)

with eλ1 = ω −�, eλ2 = �, eλ3 = ω − ω′ −�, eλ4 = ω′ +�, as specified on the diagram lines. Note that we take the
real parts of

∏
F and

∏
R separately; this follows from Eq. (F16) (for details, see Appendix F). At the free-fermion

point, z = 1/2, all form factors other than f R
+− vanish (see Appendix E) and we find that this is the only contribution

to the spectrum, γ
(
ω′|ω) = γ

(1)
1

(
ω′|ω)

. As shown in Fig. 3, the sum rule is indeed perfectly obeyed in that case,
for both bsG and Kondo models. Furthermore, we show in Appendix G that the same results for either model can be
obtained by means of refermionization. There is a clear connection between Eq. (92), where each ρR leg is connected
to both bL†

q′ and bL
q′ , and the contractions in Eq. (G16) that lead to Eq. (G22). This agreement not only highlights the

one-to-one correspondence between the solitons and fermions at z = 1/2 but also draws an analogy between our dia-
grammatic approach and Wick’s theorem in free theories and serves as an essential sanity check for the general expression
in Eq. (90).

Varying z in the vicinity of z = 1/2, we expect γ (1)
1

(
ω′|ω)

to dominate; indeed, for z ∼ 1/2, the sum rule is obeyed
with good precision. The precision deteriorates as we drift away from the free-fermion point, where the contributions
of multisoliton (z > 1/2) or breather (z < 1/2) form factors become important and considerably expand the available
phase space beyond the diagram in Eq. (92). However, Fig. 3(b) shows that the z-dependent power laws of the sums∫ ω

0 (ω
′/ω)γ

(
ω′|ω)

dω′ are equal to those of γ (ω); a power-law mismatch would be reflected by a sharp increase or
decrease of the ratio at low or high frequencies.

Moving on, we concentrate on z = 1/3, where form factors involving the m = 1 breather should play a major role. We
find the leading term to be

(94)
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corresponding to α11 = {1} ,α12 = {} ,α21 = {±} ,α22 = {∓} ,β = {∓} , γ = {}. Its contribution to the spectrum is

γ
(1)
2

(
ω′|ω) = − 4

ω′ω

∫ ω−ω′

0

d�

(2π)4 ∏4
i=1 eλi

Re
{(

R1
1 (λ1 − logμ1)

)∗

×
(

e−
iπ
2z R−+ (λ3)R−+ (λ4)− e

iπ
2z R++ (λ3)R++ (λ4)

)
− 1

}

× Re
{
f R
1 (λ1 − logμ1) f R

+−1

(
λ3, λ2, λ1 + iπ− − logμ1

)
f R
+−

(
λ4, λ2 + iπ−

)
f R
+− (λ4, λ3)

}
, (95)

where eλ1 = ω, eλ2 = ω − ω′ −�, eλ3 = �, eλ4 = ω −�.
Again, we take the real parts of both

∏
F and

∏
R,

as detailed in Eq. (F12). In γ
(1)
2

(
ω′|ω)

, we take into
account all of the necessary combinatorial factors, as
well as the equal contribution of the mirror diagram

(a)

(b)

FIG. 3. (a) The energy-resolved inelastic decay spectrum as a
function of ω′, at several fixed values of ω/TB, for the bsG and
Kondo models and z = 1/3, 1/2. The diagrams used to evaluate
the spectrum are listed in Appendix F. (b) The ratio between the
left-hand side and right-hand side of Eq. (53) for both models
and several values of z. Note that the power laws of γ (ω) are
recovered by the sum rule for all z.

of Eq. (94), which corresponds to α11 = {∓} ,α12 =
{±} ,α21 = {} ,α22 = {1} ,β = {∓} , γ = {}.

In addition to the above two diagrams, we consider three
additional diagrams in the evaluation of the z = 1/3 spec-
trum, listed in Appendix F. We find that, for z = 1/3, the
resulting spectrum obeys the sum rule with good accuracy
for a wide range of frequencies ω, as shown in Fig. 3.
Furthermore, the contributions decay rapidly, as demon-
strated in Fig. 5 in Appendix F. It is important to note
that plugging each of the terms γi

(
ω′|ω)

into the sum rule
recovers the correct power laws of γ (ω), for both ω � TB
and ω � TB.

D. Results

The spectra for both models at z = 1/3, 1/2, as well
as the validation of Eq. (53) for several values of z, are
displayed in Fig. 3. We have seen in Sec. IV that the
bsG and Kondo models exhibit the same Luttinger-liquid
power laws at high frequencies, ω � TB, but differ below
the RG scale, ω � TB. The spectrum, determined from
a higher-order response function, gives us more refined
information. Indeed, the difference between the models
is emphasized by the spectrum; while the Kondo spec-
trum is suppressed at low produced frequencies ω′ �
TB, the bsG spectrum diverges, γbsG

(
ω′ � TB|ω

) ∼ ω′−1,
regardless of the incoming frequency ω [note that the
total rate, given by the sum rule in Eq. (53), is still
finite]. This asymptotic behavior results from the term
γ
(1)
1

(
ω′|ω)

in Eq. (93)—one may show that the prod-
uct of reflection matrices is different than 1 upon setting
ω′ = 0, and the ω′−1 behavior results from the prefac-
tor of the integral. In other words, the production of
low-frequency photons is favored in a splitting process
in the bsG model. The proliferation of low-frequency-
produced photons results from the inductive coupling of
the half-infinite line to the impurity Josephson junction
in Eq. (1), with H̃I = −EJ cos

(
φ̃0

)
. The sole source of

photon splitting is the boundary cosine term; fluctuations
of the flux φ̃0 in this nonlinear potential give rise to the
inelastic decay. The inductive coupling to the line trans-
lates fluctuations of φ̃0 into approximately uniform shifts
of φ̃n>0, which correspond to low-frequency modes. This
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behavior is opposed to the Kondo spectrum, which van-
ishes at ω′ = 0; expanding the product of reflection matri-
ces in Eq. (93) at ω′ � TB, we find γK

(
ω′ � TB|ω

) ∼ ω′.
This asymptotic behavior turns out to hold for all contribu-
tions to the spectrum and hence to all z, in agreement with
Ref. [31].

It is also interesting to consider decay processes with
ω′ � ω, where the total energy of the remaining photons is
small, ω − ω′ � TB. One may then apply strong-coupling
fixed-point expansions to extract the power-law depen-
dence of the spectrum as a function of ω − ω′. Analytical
expressions for the spectrum, and therefore for the ω − ω′
dependence, may be calculated at the free-fermion point,
z = 1/2 [see Eq. (G25), which has been obtained using
refermionization and is identical to the form-factor result].
For the Kondo spectrum, we find that γK

(
ω′ � ω|ω) ∼

(
ω − ω′

)3, in agreement with the contribution of the
strong-coupling fixed-point expansion of Ref. [31]. In the
bsG model, we find that γbsG

(
ω′ � ω|ω) ∼ ω − ω′ at z =

1/2; interestingly, this power-law dependence does not
stem from either the quartic term of the boundary cosine
operator or from the dual cosine term, which both induce a(
ω − ω′

)3 power law [40]. For z < 1/2, it appears difficult
to numerically evaluate the involved integral to sufficient
accuracy to determine the behavior with enough certainty,
since strong cancellation occurs between different dia-
grams. We stress that the spectrum at z = 1/2 has been
obtained, for both models, in two independent methods
(form factors and refermionization), which yield identi-
cal results. Furthermore, as is evident from Fig. 3, the
asymptotic power laws of the total decay rate are recov-
ered by the sum rule in Eq. (53) for all values of z. It could
be interesting to look further into this issue in a future
work.

VI. CONCLUSIONS

In this work, we have shown how inelastic decay
of microwave photons, measured in cQED experiments
implementing integrable systems, can emerge from the
purely elastic scattering of the excitations from the inte-
grability picture. Using the framework of form factors,
we have identified the origin of the photon splitting as
the nonlinear relation between the microwave photons and
the elementary excitations of the bsG and Kondo mod-
els. The form factors, encoding this nonlinear relation,
have allowed us to obtain exact results, going beyond pre-
vious perturbative calculations [35,36,39–42]. Crucially,
our results hold at low energies, even if the boundary
impurity terms of the Hamiltonians are relevant, render-
ing perturbation theory invalid, as well as when strong-
coupling expansion fails. The low-energy results for the
total inelastic decay rate and the elastic phase shift dis-
tinguish between the bsG and Kondo models, which both

exhibit Luttinger-liquid power laws above the RG scale.
This distinction is emphasized by the energy-resolved
inelastic decay spectrum, where γbsG

(
ω′ � TB|ω

) ∼ ω′−1

and γK
(
ω′ � TB|ω

) ∼ ω′ for all z; note that this result
could not be obtained using perturbation theory, even
for ω � TB. As discussed in Sec. IV, such exact low-
energy expressions are particularly useful in the con-
text of the Schmid-Bulgadaev quantum phase transition
and shed single-photon light on this intriguing phe-
nomenon.

In the calculation of the energy-resolved inelastic decay
spectrum, we have devised a general method to calculate
a three-point response function using form factors. While
previous works have dealt with the calculation of mul-
tipoint correlation functions in integrable quantum field
theories using form factors [61–63], they have focused on
theories with a single excitation type and only considered
specific contributions. Our method, in contrast, provides
a general expression for all orders and for any excitation
content of the theory. The physical intuition behind this
diagrammatic approach is clear—we have to sum over all
combinations of excitations connecting the bosonic opera-
tors, imposing appropriate energy conservation. As in any
form-factor expansion, it is sufficient to consider a few
terms to obtain a result with good precision, numerically
evaluating only single or double integrals. The general-
ization of our method to four-point response functions or
higher is straightforward.

Looking ahead, there are several possible extensions
to this work that could improve quantitative comparisons
with experimental measurements. The most pressing issue
is the incorporation of finite temperatures into our frame-
work; indeed, realistic temperatures in cQED experiments,
T ∼ 50 mK ∼ 1 GHz, are usually larger than the RG
scale defined by the impurity. In those cases, a perturba-
tive approach is valid at any frequency and diagrammatic
techniques have been shown to provide results that quan-
titatively agree with experiments [35,36]. Yet, the rapid
rate of technological advancements in the field of cQED
indicates that T � E�

J could soon become possible, thus
raising interest in exact finite-temperature results at all fre-
quencies. We derive such exact results for z = 1/2 using
refermionization in Appendix G (see also Ref. [36] for
explicit expressions); other values of z have to be treated
within the framework of form factors. In fact, the cal-
culation of finite-temperature correlators using form fac-
tors [84–90] involves mixed matrix elements of the form

〈�ϑ |A|←θ 〉
εϑ a

a εθ
, much like those appearing in the three-

point response function considered in this work; hence, the
methods applied here could also be useful for evaluating
finite-temperature response functions. Two other aspects
that should be addressed are the finite volume of the system
[91,92] and the presence of integrability-breaking terms
[93], both of which are inevitable in experimental setups.
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Furthermore, inelastic decay in cQED setups should
not necessarily emerge from reflection off impurities and
can also occur in nonlinear bulk models. Our framework
could then be extended to the massive bulk sine-Gordon
model, amenable to realization in superconducting circuits
[26], and applied to investigate bulk effects, such as the
superconductor to insulator phase transition in an array of
Josephson junctions [28,94–96], through the lens of elastic
and inelastic scattering.

Finally, our results should pave a path for tackling
other systems, beyond the scope of cQED experiments.
Our framework for calculating form-factor expansions of
multipoint response functions could be used in other con-
texts of integrable field theories; a particular example is
the calculation of four-point functions in tunneling exper-
iments between fractional quantum Hall leads at filling
ν = 1/3, the low-energy behavior of which is captured by
the bsG model with z = 1/3. Another likely application
is in the context of one-dimensional cold-atom systems
[97], which are often integrable. In particular, we could use
our developed formalism to evaluate multipoint response
functions that are measured in postquench evolutions and
indicate non-Gaussian correlations that are ubiquitous in
integrable systems [18,98,99]. Multipoint functions could
also be used to investigate the onset of chaos due to weak
integrability-breaking terms, which, when treated pertur-
batively within the form-factor formalism, necessitate the
use of higher-order correlation functions of the order of the
desired correlation functions [100–102]. Our method could
also be applied for the calculation of multipoint correlators
in high-energy contexts, such as the N = 4 supersymmet-
ric Yang-Mills theory in 3+ 1 dimensions [103], which is
suspected to be integrable.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
KONDO HAMILTONIAN

For completeness, we derive the Hamiltonian of the
spin-boson model in Eq. (6), which is equivalent to the

Kondo model via a unitary transformation and bosoniza-
tion [66], starting from the microscopic Hamiltonian of the
discrete transmission line terminated by a fluxonium qubit.

Consider the discrete version of Eq. (2):

H̃ =
N∑

n=1

(
φ̃n − φ̃n−1

)2

8Lline +
N∑

n=0

2Q̃2
n

Cg
+ H̃I , (A1)

with the impurity Hamiltonian

H̃I =
2Q̃2

f

Cf
+

(
φ̃f − φ̃0

)2

8Lf
+ φ̃2

0

8L0
− EJ cos

(
φ̃f − 2�ext

)
,

(A2)

where �ext is an external magnetic flux, which we take
from here on as half flux quantum, �ext = π�/ (2e) =
π/2. It is useful to rewrite H̃I as

H̃I =
2Q̃2

f

Cf
+ EJ cos

(
φ̃f

)
+ φ̃2

f

8
(
Lf + L0

)

+
(
φ̃0 − αφ̃f

)2

8L‖
, (A3)

where α = L0/
(
L0 + Lf

)
and L‖ = L0Lf /

(
L0 + Lf

)
. This

form allows us to decouple the inductive coupling between
the array and the fluxonium by applying a unitary trans-
formation, Uf = eiαφ̃f Q̃tot , with Q̃tot =

∑N
n=0 Q̃n, which

shifts the array phases, φ̃n → φ̃n + αφ̃f for all 0 ≤
n ≤ N , as well as the fluxonium charge, Q̃f → Q̃f −
αQ̃tot. The array-fluxonium coupling becomes capaci-
tive and the Hamiltonian reads H̃ = H̃f + H̃a + H̃c,
with

H̃f =
2Q̃2

f

Cf
+ EJ cos

(
φ̃f

)
+ φ̃2

f

8
(
Lf + L0

) ,

H̃a =
N∑

n=1

(
φ̃n − φ̃n−1

)2

8Lline +
N∑

n=0

2Q̃2
n

Cg
+ φ̃2

0

8L‖
+ 2α2Q̃2

tot

Cf
,

H̃c = −4αQ̃f Q̃tot

Cf
.

(A4)

We proceed by diagonalizing the array Hamiltonian H̃a.
Hamilton’s equations read

∂2
t φ̃n = φ̃n+1 + φ̃n−1 − 2φ̃n

CgLline − ω2
‖φ̃0, n > 0,

∂2
t φ̃0 = φ̃1 − φ̃0

CgLline −
(

1
CgL‖

+ ω2
‖

)
φ̃0,

(A5)
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whereω‖ = α/
√

Cf L‖. We look for an oscillatory solution,
φ̃n ∼

∑
k φ̃ke−iωkt. In order to decouple the φ̃0 term from

the n > 0 equations, we define new variables, ϕ̃n = φ̃n −
ω2
‖φ̃0/ω

2
k , leading to

ω2
k ϕ̃n = 2ϕ̃n − ϕ̃n+1 − ϕ̃n−1

CgLline , n > 0,

ω2
k ϕ̃0

1− ω2
‖

ω2
k

= ϕ̃0 − ϕ̃1

CgLline +
(

1
CgL‖

+ ω2
‖

)
ϕ̃0

1− ω2
‖

ω2
k

.
(A6)

In the following, we set the array spacing to unity,
a = 1. The equations are solved by ϕ̃n ∼ sin (kn− δk).
The bulk equations, n > 0, yield the dispersion rela-
tion, ωk = 2v sin (k/2) ≈ vk, where the velocity v =
1/

√
CgLline is assumed to be much larger than any

other energy scale. The n = 0 equation yields the phase
shift,

tan δk =
v

(
ω2
‖ − ω2

k

)

ωk

[
1

CgL‖ + ω2
‖ − ω2

k

] ≈ f

ωk

[

1−
(
ωk

ω‖

)2
]

,

(A7)

where f = α2/
(
Cf Z

)
with Z = √

Lline/Cg is the inverse
RC time of the fluxonium and the transmission line. The
above approximation holds provided that α2Cg/Cf �
1 and L‖ � Lline, so that 1/

√
L‖Cg is significantly

larger than all energy scales other than v. We impose
open boundary conditions at n = N , leading through
the Hamilton equation for n = N to sin (kN − δk) =
sin (k (N + 1)− δk), which yields a quantization condition
kN − δk = πm+ π/2 with m = 0, 1, . . . , N and therefore
a mode spacing � ≈ πv/N . In the following, we also need
the capacitance matrix [C]n,m, obtained by inverting the
capacitance energy matrix of H̃a:

[C]n,m = Cgδn,m + 1
N

⎡

⎣ 1
1

Cg
+ α2N

Cf

− Cg

⎤

⎦ . (A8)

Neglecting 1/N corrections, we find that the mode capac-
itances (i.e., the eigenmode expectation values of the
capacitance matrix) are given by Ck ≈ NCg/2.

The line Hamiltonian may now be quantized by intro-
ducing creation and annihilation operators. The diagonal-
ized phase and charge operators read

φn ≈
∑

k

−i
(

ak − a†
k

)

√
NCgωk

⎡

⎢
⎣sin (kn− δk)+ sin δk

1−
(
ωk
ω‖

)2

⎤

⎥
⎦ ,

Qn =
∑

m

[C]n,m ∂tφn

≈
∑

k

√
Cgωk

N
sin (kn− δk)

(
ak + a†

k

)
,

(A9)

and the diagonalized array Hamiltonian is given by Ha =∑
k ωka†

kak. Using the quantization condition, we find that

N∑

n=0

sin (kn− δk) =
cos

( k
2 + δk

)

2 sin
( k

2

) ≈ v

ωk
cos δk, (A10)

allowing us to express the coupling term Hc in terms of the
eigenmodes:

Hc ≈ −2zQf

α

∑

k

√
2πvωk

Nz
√[

1−
(
ωk
ω‖

)2
]2

+
(
ωk
f

)2

(
ak + a†

k

)
.

(A11)

The square root in the above denominator imposes a high-
frequency cutoff. To make contact with standard bosoniza-
tion expressions, we replace it by an exponential cutoff,
e−ωk/�, where � ∼ min

{
ω‖,f

}
.

Finally, we are in a position to derive the spin-boson
Hamiltonian. The fluxonium may be approximated as a
symmetric double-well potential for the flux φf (achieved
by tuning the external magnetic flux to half flux quantum
[65]). We label the two lowest eigenstates of the fluxo-
nium Hamiltonian as the eigenstates of the Sx operator,
so that Sz eigenstates correspond to wave functions with
a well-defined phase, localized near either of the minima
of the double well. The fluxonium Hamiltonian then reads
Hf = −JSx, where J is the tunneling matrix element
between the two wells, which can be calculated by the
WKB or instanton methods [104]. The fluxonium charge
Q̃f couples the two-level system to the array via a Sz term
[66],

Hc = −Sz
√

2zπv
2qf

α

∑

k

√
k
πN

e−ωk/�
(

ak + a†
k

)
,

(A12)
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where qf =
∣∣∣〈φ±f |Qf |φ±f 〉

∣∣∣ is the expectation value of the
fluxonium charge operator in the eigenfunctions of either
of the symmetric wells. The full Hamiltonian reads

H =
∑

k

ωka†
kak − JSx − Sz

√
2zπv

2qf

α

×
∑

k

√
k
πN

e−ωk/�
(

ak + a†
k

)
. (A13)

This k-space version of the spin-boson Hamiltonian can
now easily be mapped to the continuum real-space ver-
sion of Eq. (6). Note that the coupling coefficient is given
by
√

2z′πv, with z′ = z × (
2qf /α

)2; i.e., the Luttinger
parameter of the Kondo model is proportional, but not
equivalent, to the normalized impedance z.

APPENDIX B: CUTOFF SCALES AND
DEVIATIONS FROM INTEGRABILITY IN

REALISTIC SETUPS

In an experimental environment, IR and UV cutoff
scales are both present. The IR cutoff scale is determined
by the finite length of the array, � = πv/�, and corre-
sponds to a finite mode spacing that is manifested by
well-resolved modes at frequencies ωm = �(m− δ0/π),
where m = 0, 1, 2, . . . and δ0 is a phase shift set by the
boundary conditions at the far end of the line, away from
the impurity. Our analysis should hold as long as we are
concerned with modes at frequencies ω � �; note that in
realistic setups [33–36], the mode spacing is usually the
smallest energy scale, well below the relevant RG scale.
The system remains integrable for a finite-length � and one
could use finite-length form-factor techniques [91,92] to
investigate the effect of the finite � on modes at ω � �.

As mentioned in Sec. II, the UV cutoff � is set by
the smaller of the inverse RC time of the impurity and
the transmission line, and the plasma frequency of the
line. A finite � does break integrability; however, usually,
�� TB, such that many modes, both below and above the
RG scale, lie well below �; hence our analysis remains
valid. The effect of a finite � could be explored by treating
the cutoff terms in the Hamiltonian perturbatively, within
the form-factor formalism. This would require the calcu-
lation of higher-order response functions—e.g., the total
inelastic decay rate γ (ω) and the phase shift δ (ω) would
be given by a three- or four-point response function (as
opposed to the two-point function considered in Sec. IV),
which could be calculated using the formalism developed
in this work.

Finally, note that while the discrete system introduced
in Eq. (1) is not integrable due to the finite lattice spacing
a, the associated scale v/a is much larger than any other
scale (including �) and its effect on the results should be
negligible.

APPENDIX C: S MATRIX OF THE BULK
SINE-GORDON MODEL

The S matrix in an integrable quantum field theory is
the key ingredient in the Zamolodchikov-Faddeev algebra
and reflects the purely elastic nature of the scattering in the
theory. It satisfies several properties; the first is the Yang-
Baxter equation,

∑

ε′′1 ,ε′′2 ,ε′′3

S
ε′′1 ε
′′
2

ε1ε2 (θ1 − θ2) S
ε′1ε
′′
3

ε′′1 ε3
(θ1 − θ3) S

ε′2ε
′
3

ε′′2 ε
′′
3
(θ2 − θ3)

=
∑

ε′′1 ,ε′′2 ,ε′′3

S
ε′′2 ε
′′
3

ε2ε3 (θ2 − θ3) S
ε′′1 ε
′
3

ε1ε
′′
3
(θ1 − θ3) S

ε′1ε
′
2

ε′′1 ε
′′
2
(θ1 − θ2) ,

(C1)

which ensures the equivalence of the factorization of
n-body scattering to a product of two-body scatterings.
Unitarity and crossing symmetry imply

∑

ε′′1 ,ε′′2

S
ε′′1 ε
′′
2

ε1ε2 (θ) S
ε′1ε
′
2

ε′′1 ε
′′
2
(−θ) = δ

ε′1
ε1 δ

ε′2
ε2 , (C2)

S
ε′1ε
′
2

ε1ε2 (iπ − θ) = S
ε̄2ε
′
1

ε̄′2ε1
(θ) . (C3)

Recall that a bar denotes charge conjugation, ±̄ = ∓ and
m̄ = m. The S matrix of the bulk sine-Gordon model is
well known. First, for the exchange of two (anti)solitons,

S++++ (θ) = S−−−− (θ) = S0 (θ) , (C4)

S+−+− (θ) = S−+−+ (θ) =
S0 (θ) sin

(
−π

ξ
iθ

)

sin
(
π
ξ
(π + iθ)

) , (C5)

S−++− (θ) = S+−−+ (θ) =
S0 (θ) sin

(
π2

ξ

)

sin
(
π
ξ
(π + iθ)

) , (C6)

where ξ = π/(1/z − 1) and

S0 (θ) = − exp

{

−i
∫ ∞

0

dx
x

sin (xθ) sinh
(
π−ξ

2 x
)

sinh
(
ξx
2

)
cosh

(
πx
2

)

}

.

(C7)

For integer p = 1/z, this sector of the S matrix
becomes diagonal, since S−++− (θ) = S+−−+ (θ) = 0, and also
S+−+− (θ) = S−+−+ (θ) = (−1)p S0 (θ). Note that S0 (θ) =
−1 for the free-fermionic case z = 1/2. Next, the
exchange
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matrix for a breather and a soliton or an antisoliton is

S±m
±m (θ) = Sm±

m± (θ) = −
m∏

j=1

i cos
(
ξ

2

)+ sinh
(
θ − iξ

2 (m+ 1− 2j )
)

i cos
(
ξ

2

)− sinh
(
θ − iξ

2 (m+ 1− 2j )
) . (C8)

Finally, the S matrix for two breathers is

Sm1m2
m1m2

(θ) =
min(m1,m2)−1∏

j=1

coth
(
θ
2 − iξ

4 (|m1 − m2| + 2j )
)

tanh
(
θ
2 + iξ

4 (|m1 − m2| + 2j )
)

coth
(
θ
2 − iξ

4 |m1 − m2|
)

coth
(
θ
2 − iξ

4 (m1 + m2)
)

tanh
(
θ
2 + iξ

4 |m1 − m2|
)

tanh
(
θ
2 + iξ

4 (m1 + m2)
) . (C9)

All other terms of the S matrix are zero.
It is also useful to obtain expressions for the exchange

of a right mover with a left mover in the massless limit,

S̃
ε′1ε
′
2

ε1ε2 = limθ→∞ S
ε′1ε
′
2

ε1ε2 (θ), as such limits of the S matrix
appear in the complete set of states in Eq. (21). The S

matrix is diagonal in this limit, S̃
ε′1ε
′
2

ε1ε2 ∝ δ
ε′1
ε1 δ

ε′2
ε2 , with

S̃++++ = S̃−−−− =
(

S̃+−+−
)∗
=

(
S̃−+−+

)∗
= e−

iπ
2z ,

S̃±m
±m (θ) = S̃m±

m± (θ) = S̃m1m2
m1m2

(θ) = 1.
(C10)

Also note that, in the massless limit, the S matrix of two
left movers is the complex conjugate of the S matrix of
two right movers,

S
(
λl

1 − λl
2

) = S∗
(
λr

1 − λr
2

)
. (C11)

APPENDIX D: BOUNDARY REFLECTION
MATRICES IN THE KONDO AND BOUNDARY

SINE-GORDON MODELS

The presence of the boundary introduces another com-
ponent to an integrable field theory—the boundary reflec-
tion matrix, Rε′

ε (θ), which relates an incoming state |θ〉ε to
an outgoing state |−θ〉ε′ : |θ〉ε = Rε′

ε (θ) |−θ〉ε . First stud-
ied for solitons in Ref. [37] and later for bound states in
Ref. [105], the reflection matrix can be derived from a set
of axioms and properties, similar to those of the S matrix,
such as boundary unitarity:

∑

ε′
Rε′
ε (θ)Rε′′

ε′ (−θ) = δε
′′
ε . (D1)

The massless limit of the reflection matrices of the bsG
model has later been derived in Ref. [58], where it has
been shown that Rε′

ε (λ) depends only on the difference
λ− λB, where TB = eλB is the energy scale associated with
the boundary, proportional to the RG scale E�

J ∼ E1/(1−z)
J .

The soliton reflection matrices in the bsG model are

R∓± (λ) = ie
(

1
z−1

)
(λ−λB)/2Rs (λ− λB) ,

R±± (λ) = e−
(

1
z−1

)
(λ−λB)/2Rs (λ− λB) ,

Rs (λ) = e−
iπ
4

2 cosh
(( 1

z − 1
)
λ
2 − iπ

4

)

× exp
{

i
∫ ∞

0

dx
x

sin (2λx) sinh ((π − ξ) x)
sinh (2ξx) cosh (πx)

}
.

(D2)

These matrices simplify considerably at z = 1/2; since
Rs (λ) = eλ/2/

(
eλ + i

)
, we find that

R∓± (λ) =
ieλ−λB

eλ−λB + i
, R±± (λ) =

1
eλ−λB + i

. (D3)

For breathers (z < 1/2), we have

R2m−1
2m−1 (λ) = tanh

(
λ− λB

2
− iπ

4

)

×
m−1∏

j=1

tanh
(
λ−λB

2 − iπ
4 − iξ j

2

)

tanh
(
λ−λB

2 − iπ
4 + iξ j

2

) , (D4)

R2m
2m (λ) =

m∏

j=1

tanh
(
λ−λB

2 − iπ
4 − iξ

2

(
j − 1

2

))

tanh
(
λ−λB

2 − iπ
4 + iξ

2

(
j − 1

2

)) . (D5)

The reflection matrices of the Kondo model are simpler:

R∓± (λ) = e
iπ
4z

eλ−λB − i
eλ−λB + i

, R±± (λ) = 0, (D6)

and

Rm
m (λ) =

tanh
(
λ−λB

2 − iξm
4

)

tanh
(
λ−λB

2 + iξm
4

) . (D7)
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It is important to note that, in the limit λ� λB, the reflec-
tion matrices become trivial in both models: for a set of
excitations λ,

R
ε′λ
ελ

(
�λ→∞

)
→ δ

ε′λ
ε̄λ
=

nλ∏

k=1

δ
ε′k
ε̄k

. (D8)

Recall that R
ε′λ
ελ , defined in Eq. (27), involves the product

of scattering matrices of right and left movers given in
Eq. (C10), which ensures that the phase of the product of
reflection matrices in that limit is zero. In the low-energy
limit, λ� λB, Eq. (D8) still holds for the Kondo model,
while in the bsG model, we have

R
ε′λ
ελ

(
�λ→−∞

)
→ δ

ε′λ
ελCλ =

nλ∏

k=1

δ
ε′k
εk

∏

{k|εk=m}
(−1)εk ,

(D9)

where the sign factor Cλ is defined in Eq. (E9). Also note
that, in both models,

R
ε′λ
ελ (λ+ iπ) =

(
R
ε′λ
ελ (λ)

)∗
. (D10)

APPENDIX E: FORM FACTORS IN THE
MASSLESS SINE-GORDON MODEL

1. General properties

The form factors in an integrable quantum field theory
can be derived from a set of axioms and conditions deter-
mined by the local conservation laws of the model, as well
as the additional symmetries of the specific model. First,
two excitations can be exchanged via the S matrix:

∑

εi,εi+1

Sεiεi+1
ε′iε′i+1

(θi − θi+1) f O
...εiεi+1...

(. . . , θi, θi+1, . . .)

= f O
...ε′i+1ε

′
i ...
(. . . , θi+1, θi, . . .) . (E1)

We also have the following periodicity property:

f O
ε1...εn

(θ1, . . . , θn + 2π i) = f O
εnε1...εn−1

(θn, θ1, . . . , θn−1) .
(E2)

Lorentz invariance implies that

f O
ε1...εn

(θ1 + α, . . . , θn + α) = esOαf O
ε1...εn

(θ1, . . . , θn) ,
(E3)

where sO is the spin of the operator O. Specifically, the
spin of the current operators is sR = sL = 1.

The form factors are analytical functions of the rapidi-
ties in the strip 0 ≤ Imθ ≤ π , where the only singularities
are two kinds of simple poles. The first are the annihilation

poles, at θi = θj + iπ . The residue of the pole at θn =
θn−1 + iπ is given by

Res
θn=θn−1+iπ

f O
ε1...εn

(θ1, . . . , θn)

=
∑

{ε′},{τ }
f O
ε′1...ε

′
n−2

(θ1, . . . , θn−2)Cεnε′n−1

×
[

n−1∏

k=1

δ
ε′k
εk − δ

εn−1
τn−2 δ

τ0
ε′n−1

n−2∏

k=1

S
τk−1ε

′
k

τkεk (λn−1 − λk)

]

.

(E4)

Here, Cε1ε2 is the charge-conjugation matrix:

CZ†
ε (θ)C

−1 = Z†
ε̄ (θ)Cεε̄ , (E5)

where C is the charge-conjugation operator. In the sine-
Gordon model, C+− = C−+ = 1, Cmm = (−1)m, and zero
otherwise. The other residues at θi = θj + iπ can be found
using Eq. (E1). Poles of the second kind indicate the bound
states in the theory. For example, consider a form fac-
tor f O

ε1...εn−1εn
(θ1, . . . , θn−1, θn) in the sine-Gordon model,

with εn−1 = + and εn = −; this form factor has a pole
at θn = θn−1 + iθ(m), with θ(m) = π − ξm, corresponding
to a breather of type m. Its residue is proportional to the
form factor f O

ε1...εn−2m (θ1, . . . , θn−1, θn); this is known as the
bootstrap axiom, which allows us to obtain form factors of
breathers from those of solitons or higher-order breathers
from lower-order ones.

The crossing relations are needed to evaluate matrix ele-
ments of the form εϑ1 ...εϑl 〈ϑ1, . . . ,ϑl|O|θn, . . . , θ1〉εθn ...εθ1,
which appear in the calculation of multipoint correlation
functions. Following the notation of Ref. [57], we write

|←θ 〉εθ = |
←
θ a,
←
θ b〉ε′θ S

(←
θ a|
←
θ

)ε′θ
εθ

, where θa,b are disjoint sets

such that θa ∪ θb = θ , and S
(←
θ a|
←
θ

)ε′θ
εθ

is the product of S

matrices needed to reorder
←
θ as

←
θ a,
←
θ b; namely,

|θn, . . . , θ1〉εθn ...εθ1 = S
(←
θ a|
←
θ

)ε′θ
εθ

|(θa)na , . . . , (θa)1 , (θb)nb
, . . . , (θb)1〉ε′θn ...ε′θ1 . (E6)

Similarly, 〈�ϑ |εϑ = 〈�ϑb, �ϑa|ε′ϑ S
(
�ϑ | �ϑa

)εϑ
ε′ϑ

. We also define

δ
εϑ
εθ

(
�θ | �ϑ

)
= δln

∏n
k=1 2πδ (θk − ϑk) δ

εϑk
εθk

. The crossing rela-
tions read

εϑ 〈�ϑ |O|←θ 〉εθ =
∑

θa∪θb=θ
ϑa∪ϑb=ϑ

S
(
�ϑ | �ϑa

)εϑ
ε′ϑ

S
(←
θ a|
←
θ

)ε′θ
εθ

× δ
εϑb
εθb

(
�ϑb|
←
θ b

)
× εϑa 〈�ϑa + iδ|O|←θ a〉εθa . (E7)
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The rapidities in the bra state of εϑa 〈�ϑa + iδ|O|←θ a〉εθa are
analytically continued, so there is no overlap between the
bra and the ket rapidities and

εϑa 〈�ϑa + iδ|O|←θ a〉εθa = 〈0|O| �ϑa + iπ + iδ,
←
θ a〉ε̄ϑa εθa

Cεϑa

= 〈0|O|←θ a, �ϑa − iπ + iδ〉εθa ε̄ϑa
Cεϑa

,
(E8)

where Cθ denotes the product of the elements of the
charge-conjugation matrix for the excitations in the set θ :

Cθ ≡
n∏

k=1

Cεθk ε̄θk
=

∏

{
k|εθk=m

}
(−1)εθk . (E9)

The infinitesimal imaginary part δ→ 0+ removes the
singularities from εϑa 〈�ϑa + iδ|O|←θ a〉εθa . An equivalent

expression for εϑ 〈�ϑ |O|←θ 〉εθ is

εϑ 〈�ϑ |O|←θ 〉εθ =
∑

θa∪θb=θ
ϑa∪ϑb=ϑ

S
(
�ϑ | �ϑb

)εϑ
ε′ϑ

S
(←
θ b|
←
θ

)ε′θ
εθ

δ
εϑb
εθb

×
(
�ϑb|
←
θ b

)
× εϑa 〈�ϑa − iδ|O|←θ a〉εθa .

(E10)

The equivalence of Eqs. (E7) and (E10) is guaranteed by
the axioms in Eqs. (E1) and (E4). It is also possible to use a
mixed version of the two forms, where some rapidities are
analytically continued with +iδ and the others with −iδ.
Choosing a specific partition ϑ = ϑA ∪ ϑB, we may write

εϑ 〈�ϑ |O|←θ 〉εθ =
∑

θa∪θb∪θc=θ

∑

ϑAa∪ϑAb=ϑA
ϑBa∪ϑBb=ϑB

S
(
�ϑ | �ϑAb, �ϑAa, �ϑBa, �ϑBb

)εϑ
ε′ϑ

S
(←
θ c,
←
θ b,
←
θ a|
←
θ

)ε′θ
εθ

× δ
εϑAb
εθa

(
�ϑAb|

←
θ a

)
δ
εϑBb
εθc

(
�ϑBb|

←
θ c

)
εϑAa εϑBa 〈�ϑAa + iδ, �ϑBa − iδ|O|←θ b〉εθb , (E11)

with the graphical representation

(E12)

where the sum runs over all partitions and permutations of
ϑA,B, θ .

The crossing relations are particularly simple for matrix
elements of the form εθ 〈�θ |O|0〉:

εθ 〈�θ |O|0〉 = 〈0|O|�θ + iπ〉ε̄θ Cθ = eiπsO f O
ε̄θ

(←
θ

)
Cθ .

(E13)

If O is Hermitian, then

(
f O
εθ

(
�θ
))∗
= εθ 〈�θ |O†|0〉 = eiπsO f O

ε̄θ

(←
θ

)
Cθ . (E14)

Specifying to the Hermitian current operators, A = R,L
(where sA = 1), and inserting the identity operator 1 =

C−1C between each pair of creation operators, we find

(
f A
εθ

(
�θ
))∗
= −f A

ε̄θ

(←
θ

)
Cθ

= −Cθ 〈0|C−1CAC−1CZ†
ε̄1
(θ1)C

−1 . . .

× CZ†
ε̄n
(θn)C

−1C|0〉
= C2

θ 〈0|AZ†
ε1
(θ1) . . .Z†

εn
(θn) |0〉 = f A

εθ

(←
θ

)
,

(E15)

where we have used Eqs. (E5) and (E9), C2
θ = 1, and

CAC−1 = −A. We thus have

εθ 〈�θ |A|0〉 =
(

f A
εθ

(
�θ
))∗

. (E16)

2. Form factors of the current operators in the
massless sine-Gordon model

The above properties hold for any integrable quantum
field theory. We now focus on form factors of the cur-
rent operators in the massless sine-Gordon model. These
are defined by R = J0 + J1,L = −J0 + J1, with Jμ =
−εμν∂νφ. The form factors of Jμ have been derived by
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FIG. 4. The contributions of f R
m , f R

+−, f R
12 , f R

+−1 (the latter
evaluated only for integer p = 1/z) to the reflection coefficient
of the free theory, r0 = 1, given in Eqs. (44)–(47) with ω→
∞. Here,

∑′
ελ

r0
ελ
=∑�1/z−2

m=1 r0
m + r0

+− + r0
12 + r0

+−1; the dips of
1−∑′

ελ
r0
ελ

are at integer p = 1/z, where r0
+−1 is evaluated.

Smirnov [57] and have the general structure

f μ
εθ

(
�θ
)
= M+

2

n∑

k=1

(
eθk − (−1)μ e−θk

)
gεθ

(
�θ
)

, (E17)

where gεθ
(
�θ
)

is a function which depends only on the
differences θj − θk. The form factors of R,L are then

f A
εθ

(
�θ
)
= M+

n∑

k=1

eςAθk gεθ
(
�θ
)

, (E18)

with ςR = −ςL = 1. The function gεθ
(
�θ
)

vanishes
when one of the rapidity differences approaches infinity,
lim|θj−θk|→∞ gεθ

(
�θ
)
= 0. Thus, setting θk = ± (A+ λk)

with A→∞ and M+eA/2→ 1 in the massless limit, we
see that f R

εθ

(
�θ
)

and f L
εθ

(
�θ
)

are nonzero only if all exci-
tations are right or left movers, respectively. This justifies
keeping only the first and last rows of Eq. (21), which cor-
respond to f R

ελ

(
�λ
)
= 〈0|R|�λ〉rελ and f L

ε′λ

(
�λ
)
= 〈0|R|�λ〉lε′λ .

The form factors of R and L are related by complex
conjugation and charge conjugation:

f L
ελ

(
�λ
)
=

(
f R
ε̄λ

(
�λ
))∗
= f R

ε̄λ

(←
λ

)
= −f R

ελ

(←
θ

)
Cλ.

(E19)

If the imaginary part of a rapidity is not zero, then we have
to take the complex conjugate of the rapidity as well:

f L
ελ
(. . . , λ+ iπ , . . .)→ f R

ελ
(. . . , λ− iπ , . . .) . (E20)

A complete list of the form factors in the massive sine-
Gordon model may be found in Ref. [57]. Here, we sum-
marize the form factors of the right current operator R
that are used in this work, taking the massless limit of the
sine-Gordon model. First, the form factor of two solitons
is given by

f R
+− (λ1, λ2) = 4πdξeλ1/2eλ2/2ζ (λ1 − λ2)√

2z cosh
( 1−z

2z (λ1 − λ2 + iπ)
) , (E21)

where d = 1/ (2cξ), ζ (λ) = c sinh (λ/2) eI(λ), and

eI(λ) = exp

{∫ ∞

0

dx
x

e−2Nπx (
1+ N − Ne−2πx) sin2 (

(λ+ iπ) x
2

)
sinh

(
(π − ξ) x

2

)

sinh
(
ξx
2

)
sinh (πx) cosh

(
πx
2

)

}

×
N∏

k=1

⎡

⎣


(
1+ π

ξ

(
2k + 1− iλ

π

))


(
π
ξ

(
2k + 1− iλ

π

))


(
π
ξ

(
2k − 1+ iλ

π

))


(
1+ π

ξ

(
2k − 1+ iλ

π

))


(

1+ π
ξ

(
2k − iλ

π

))


(
π
ξ

(
2k + 2− iλ

π

))


(
π
ξ

(
2k + iλ

π

))


(
1+ π

ξ

(
2k − 2+ iλ

π

))

×
⎛

⎝


(
π
ξ
(2k + 1)

)


(
1+ π

ξ
(2k − 1)

)


(

2kπ
ξ

)


(
1+ 2kπ

ξ

)

⎞

⎠

2⎤

⎥
⎦

k

, (E22)

c =
(

4− 4
z

)1/4

exp

{
1
4

∫ ∞

0

dx
x

sinh
(
πx
2

)
sinh

(( 1
z − 2

)
ξx
2

)

sinh
(
ξx
2

)
cosh2 (

πx
2

)

}

. (E23)
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Note that the expression for eI(λ), which is independent of the parameter N , is valid as long as the integral converges,
which depends on the imaginary part of λ (the integral expression for eI(λ) is derived from an infinite product of Gamma
functions [106]). The rate of convergence may be improved by increasing N . We also have f R

−+ (λ1, λ2) = −f R
+− (λ1, λ2).

If z < 1/2, f R
+− (λ1, λ2) has poles in the regime 0 ≤ Im {λ2 − λ1} ≤ π , corresponding to the breathers in the theory; using

the bootstrap principle, we obtain the form factors for single breathers,

f R
m (λ) =

4ξ (−1)(m−1)/2 sin
(
θ(m)

2

)
eI

(
−iθ(m)

)

eλ
√

2z ξ

π
sin

(
π2

ξ

)
S0

(
iθ(m)

)
, (E24)

where m is odd (f R
m = 0 for even m) and θ(m) = π − ξm. If p = 1/z is an integer, S0 has a pole at θ = iθ(m) and then the

argument of the square root has to be evaluated in the limit ξ → π/ (p − 1),

ξ

π
sin

(
π2

ξ

)
S0

(
iθ(m)

)→ Res
θ=iθ(m)

S0 (θ) = 2 cot
(
ξm
2

) m−1∏

j=1

cot2
(
ξ j
2

)
. (E25)

In fact, one may obtain f R
1 and also f R

111, f R
11111, . . . from the correspondence between the sole excitation of the sinh-Gordon

model and the m = 1 breather of the sine-Gordon model. Here, we only need f R
111,

f R
111 (λ1, λ2, λ3) = 8ξ√

2z
cos2

(
ξ

2

)[√

2 sin
(
ξ

2

)
exp

{
−

∫ ξ

0

xdx
2π sin (x)

}]3
(
eλ1 + eλ2 + eλ3

)
eλ1eλ2eλ3

∏

i<j

F
(
λi − λj

)

eλi + eλj
,

(E26)

where

F (λ) = exp
{

4
∫ ∞

0

dx
x

sinh (πx) sinh (ξx) sinh ((π + ξ) x)
sinh2 (2πx)

} N∏

k=1

⎡

⎢⎢⎢⎢
⎣

(

1+
(

i
2+ λ

2π

)2

(
k− 1

2

)2

)(

1+
(

i
2+ λ

2π

)2

(
k+ 1

2+
ξ

2π

)2

)(

1+
(

i
2+ λ

2π

)2

(
k− ξ

2π

)2

)

(

1+
(

i
2+ λ

2π

)2

(
k+ 1

2

)2

)(

1+
(

i
2+ λ

2π

)2

(
k− 1

2−
ξ

2π

)2

)(

1+
(

i
2+ λ

2π

)2

(
k+ ξ

2π

)2

)

⎤

⎥⎥⎥⎥
⎦

k

× exp
{∫ ∞

0

dx
x

sinh (πx) sinh (ξx) sinh ((π + ξ) x)
sinh2 (2πx)

e−4Nπx sin
(
(λ+ iπ)

πx
2

)}
. (E27)

Again, F (λ) does not depend on N , which is a useful parameter to increase the rate of convergence. The pole of f R
111 at

λ3 − λ2 = iξ yields the form factor f R
12 ,

f R
12 (λ1, λ2) =

2iξ cos
(
ξ

2

)√
tan (ξ)√

z

[√

2 sin
(
ξ

2

)
exp

{
−

∫ ξ

0

xdx
2π sin (x)

}]3

×
(
eλ1 + 2 cos

(
ξ

2

)
eλ2

)
eλ1eλ2

e2λ1 + e2λ2 + 2 cos
(
ξ

2

)
eλ1eλ2

F
(
λ2 − λ1 + iξ

2

)
F

(
λ2 − λ1 − iξ

2

)

F (i (π + ξ))
. (E28)

The above form factors hold for any value of the coupling constant z. We also need f R
+−+−, f R

+−m, which are significantly
more complicated for numerical evaluation. Luckily, their expressions simplify for integer p = 1/z,

f R
+−+− (λ1, λ2, λ3, λ4) = 8π2d2ξ√

2z
(−1)p−1 e(λ1+λ2+λ3+λ4)/2

∏
i<j ζ

(
λi − λj

)× H (λ1, λ2, λ3, λ4)

sinh ((p − 1) (λ4 − λ1)) sinh ((p − 1) (λ2 − λ3))

×
⎡

⎣ 1

cosh
(

p−1
2 (λ2 − λ1)

)
sinh

(
p−1

2 (λ4 − λ3)
) + 1

sinh
(

p−1
2 (λ2 − λ1)

)
cosh

(
p−1

2 (λ4 − λ3)
)

⎤

⎦,

(E29)
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f R
+−m (λ1, λ2, λ3) = 8π2d2ξ

√
2z Res

θ=iθ(m)
S0 (θ)

(−1)p e(λ1+λ2)/2eλ3

sinh ((p − 1) (λ2 − λ1))

×
ζ (λ1 − λ2)

∏2
j=1 ζ

(
λj − λ3 − iθ(m)

2

)
ζ

(
λj − λ3 + iθ(m)

2

)

sinh
(
(p − 1)

(
λ3 − λ1 + iθ(m)

2

))

×
ζ

(−iθ(m)
)

H
(
λ1, λ2, λ3 − iθ(m)

2 , λ3 + iθ(m)
2

)

sinh
(
(p − 1)

(
λ2 − λ3 + iθ(m)

2

)) , (E30)

where

H (λ1, λ2, λ3, λ4) = 1
2π i

∫ 0

−2π i
dαe−α

4∏

k=1

p−2∏

j=1

[
2 sinh

(
1
2

(
α − λk − iπ j

p − 1
+ iπ

4

))]
. (E31)

The form factors become particularly simple at the free-fermion point z = 1/2,

f R
+− (λ1, λ2) = 2π ieλ1/2eλ2/2, (E32)

and all other form factors are zero.
The contributions of the form factors decay rapidly with the number of excitations. This is demonstrated in Fig. 4, which

shows the contributions of f R
m , f R

+−, f R
12 , and f R

+−1 to the reflection coefficient in the free theory, r0
ελ

, defined in Eq. (43), as
a function of 1/z. Figure 4 shows that the full sum,

∑
ελ

r0
ελ
= 1, is well approximated by the above terms, particularly in

the attractive regime, z < 1/2, where the dominant contributions are those of the breathers. Also note the singularities of
r0
+− at z = 1/3, 1/5, . . ., where additional poles of f R

+− (λ1, λ2) enter the “physical strip” 0 ≤ Im {λ2 − λ1} ≤ π and odd
breathers join the spectrum (f R

+− (λ1, λ2) does not have a pole at λ2 − λ1 = iθ(2m), so f R
2m = 0).

APPENDIX F: DETAILS OF THE CALCULATION OF THE INELASTIC SPECTRUM

1. DERIVATION OF EQ. (70)

Consider Eq. (69). Our goal is to write the product of matrix elements, using the crossing relations in Eq. (E11), in a
way that will mark the excitations according to the operators they are connected to. First, we have

〈0|R̂|�λ1〉
r

ε′λ1
〈�λ1|L̂|�λ2〉

ελ1 l

l ελ2
=

∑

α11∪λ1b=λ1
λ2a∪λ2b=λ2

S
(
�λl

2a|�λl
2

)ε′λ2

ελ2

〈0|R̂|�λ1b, �α11〉
r

ε′λ1b
ε′11

× 〈�α11 + iδ|L̂|�λ2a〉
ε11 l

l ελ2a
δ
ελ2b
ελ1b

(
�λ1b|�λ2b

)
. (F1)

Here, α11 is the group of rapidities that is not passed on to the other operators and that connects the first operator (ρR
1 =

ρR (
xin,−t′

)
in III) to the second operator (bL†

q′ ). Note that S
(
�λ1|�α11

)ε′λ1

ελ1

does not appear in the above expression, since

we simultaneously order 〈�λ1|ελ1
l and |�λ1〉rε′λ1

[recall Eq. (C11)]. We now multiply the above by 〈←λ 2|L̂|
←
λ 3〉

ελ2 l

l ελ3
, and use

S
(
�λl

2a|�λl
2

)ε′λ2

ελ2

(which is the scattering matrix for left movers) and δ
ελ2b
ελ1b

(
�λ1b|�λ2b

)
to write

〈0|R̂|�λ1〉
r

ε′λ1
〈�λ1|L̂|�λ2〉

ελ1 l

l ελ2
〈←λ 2|L̂|

←
λ 3〉

ελ2 l

l ελ3

=
∑

α11∪λ1b=λ1
λ2a∪λ1b=λ2

〈0|R̂|�λ1b, �α11〉
r

ε′λ1b
ε′11

〈�α11 + iδ|L̂|�λ2a〉
ε11 l

l ελ2a
〈←λ 2a,

←
λ 1b|L̂|

←
λ 3〉

ελ2 l

l ελ3
. (F2)
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Finally, we evaluate 〈←λ 2a,
←
λ 1b|L̂|

←
λ 3〉

ελ2 l

l ελ3
using Eq. (E11) and the partition ϑA = λ2a, ϑB = λ1b:

〈←λ 2a,
←
λ 1b|L̂|

←
λ 3〉

ελ2 l

l ελ3
=

∑

αij ,β,γ

S
(
←
λ

l

3a,
←
α

l

22,
←
λ

l

3b|
←
λ

l

3

)ε′λ3

ελ3

S
(
←
λ

l

2a,
←
λ

l

1b| �γ l, �αl
12,
←
β

l

, �αl
21

)ελ2a ελ1b

ε′λ2a
ε′λ1b

× δε21
ελ3a

(
�α21|
←
λ 3a

)
δ
εγ
ελ3b

(
�γ |←λ 3b

)
〈�α12 + iδ,

←
β − iδ|L̂|←α 22〉

ε12εβ l

l ε22
. (F3)

Plugging everything back into Eq. (69) and using the delta functions and scattering matrices to reorder the other matrix
elements, we arrive at Eq. (70).

2. Explicit expressions for the diagrams in Eqs. (72)–(75)

The diagrams in Eqs. (72)–(75) correspond to the following terms:

I =
∫ ∞

0
dt′′

∫

αij ,β,γ

ie−i(ν11+ν12+ν21+ν22)xine−i(ν21+ν22+νγ−iη)t′′ cos
(
ωt′′

)∏2
i,j=1 R̂

ε′ij
εij

(�αij
)

CβCγ

(−ν11 − ν12 − ν21 − ν22 + 2iη)
(
ω′ + ν21 + ν11 + νβ + iη

) (
ω′ − ν12 − ν22 + νβ − iη

)

× f R
ε′11ε
′
12εγ

(←
α 11 + iδ,

←
α 12 + iδ,

←
γ + iπ

)

× f R
ε21εβ ε̄11

(←
α 21, �β, �α11

)
f R
ε̄β ε22 ε̄12

(←
β − iπ ,

←
α 22 − iδ, �α12 + iδ

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22, �α21) , (F4)

II =
∫ ∞

0
dt′′

∫

αij ,β,γ

iei(ν11+ν12+ν21+ν22)xinei(ν21+ν22+νγ+iη)t′′ cos
(
ωt′′

) (
∏2

i,j=1 R̂
ε′ij
εij

(�αij
))∗

CβCγ

(ν11 + ν12 + ν21 + ν22 + 2iη)
(
ω′ − ν12 − ν22 + νβ + iη

) (
ω′ + ν21 + ν11 + νβ − iη

)

× f R
εγ ε
′
12ε
′
11
( �γ − iπ + iδ, �α12, �α11)

× f R
ε̄11εβε21

(
←
α 11,

←
β , �α21

)
f R
ε̄β ε̄12ε22

(
�β − iπ ,

←
α 12 − iδ, �α22 + iδ

)
f R
ε̄′21 ε̄
′
22 ε̄γ

(←
α 21,

←
α 22,

←
γ

)
, (F5)

III = −
∫ ∞

0
dt′′

∫

αij ,β,γ

iei(ν11+ν12−ν21−ν22)xine−i(ν21+ν22+νγ−iη)t′′ cos
(
ωt′′

) (
∏2

j=1 R̂
ε′1j
ε1j

(�α1j
))∗∏2

j=1 R̂
ε′2j
ε2j

(�α2j
)

CβCγ

(ν11 + ν12 − ν21 − ν22 + 2iη)
(
ω′ + ν21 − ν11 + νβ + iη

) (
ω′ + ν12 − ν22 + νβ − iη

)

× f R
ε′11ε
′
12εγ

(←
α 11,

←
α 12,

←
γ

)

× f R
ε21εβ ε̄11

(←
α 21, �β, �α11 + iπ − iδ

)
f R
ε̄β ε22 ε̄12

(←
β − iπ + iδ,

←
α 22, �α12 + iπ − iδ

)
f R
ε̄γ ε̄
′
22 ε̄
′
21
( �γ , �α22, �α21) , (F6)

IV = −
∫ ∞

0
dt′′

∫

αij ,β,γ

iei(ν21+ν22−ν11−ν12)xinei(ν21+ν22+νγ+iη)t′′ cos
(
ωt′′

)∏2
j=1 R̂

ε′1j
ε1j

(�α1j
) (

∏2
j=1 R̂

ε′2j
ε2j

(�α2j
))∗

CβCγ

(ν21 + ν22 − ν11 − ν12 + 2iη)
(
ω′ + ν12 − ν22 + νβ + iη

) (
ω′ + ν21 − ν11 + νβ − iη

)

× f R
εγ ε
′
12ε
′
11
( �γ , �α12, �α11)

× f R
ε̄11εβε21

(
←
α 11 + iδ,

←
β + iπ , �α21 + iπ

)
f R
ε̄β ε̄12ε22

(
�β − iδ,

←
α 12 + iδ, �α22 + iπ

)
f R
ε̄′21 ε̄
′
22 ε̄γ

(←
α 21,

←
α 22,

←
γ

)
. (F7)

These terms follow from the crossing relations, as shown explicitly for III in Sec. F 1. It is crucial to keep track of the
infinitesimals±iδ, which determine the position of the annihilation poles of the form factors with respect to the integration
contour.
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3. The noncausal response function Gcqq
ω′;RRLL

The noncausal response function Gcqq
ω′;RRLL gives the response of a right-mode occupation nRR

q′ to an injected photon
moving away from the boundary. It is a crucial sanity check to verify that it vanishes. The analogues of Eqs. (76) and (77)
are, in this case,

I =
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ
CβCγ

2∏

i=1

δ (νi1 + νi2 − 1)
∫ ∞

−∞

2∏

i=1

dκi

× iei(eκ1+eκ2)xine−i(eκ2+νγ−iη)t′′

−eκ1 − eκ2 + 2iη

(
R̂
ε′11
ε11 (�α11 + κ1) R̂

ε′12
ε12 (�α12 + κ1) R̂ε21

ε′21
(�α21 + κ2) R̂ε22

ε′22
(�α22 + κ2)

)∗

(
ω′ + eκ2ν21 + eκ1ν11 + νβ − iη

) (
ω′ − eκ1ν12 − eκ2ν22 + νβ + iη

)

× f R
ε̄γ ε̄
′
12 ε̄
′
11
( �γ − iπ , �α12 + κ1 − iδ, �α11 + κ1 − iδ) f R

ε11 ε̄β ε̄21

(
←
α 11 + κ1,

←
β , �α21 + κ2

)

× f R
ε12 ε̄22εβ

(←
α 12 + κ1 − iδ, �α22 + κ2 + iδ, �β + iπ

)
f R
ε′21ε
′
22εγ

(←
α 21 + κ2,

←
α 22 + κ2,

←
γ

)
, (F8)

III = −
∫ ∞

0
dt′′ cos

(
ωt′′

) ∫

αij ,β,γ
CβCγ

2∏

i=1

δ (νi1 + νi2 − 1)
∫ ∞

−∞

2∏

i=1

dκi

× iei(eκ1−eκ2)xine−i(eκ2+νγ−iη)t′′

eκ1 − eκ2 + 2iη

R̂
ε′11
ε11 (�α11 + κ1) R̂

ε′12
ε12 (�α12 + κ1)

(
R̂ε21
ε′21

(�α21 + κ2) R̂ε22
ε′22

(�α22 + κ2)
)∗

(
ω′ + eκ2ν21 − eκ1ν11 + νβ − iη

) (
ω′ + eκ1ν12 − eκ2ν22 + νβ + iη

)

× f R
ε̄γ ε̄
′
12 ε̄
′
11
( �γ , �α12 + κ1, �α11 + κ1) f R

ε11 ε̄β ε̄21

(
←
α 11 + κ1 − iπ + iδ,

←
β , �α21 + κ2

)

× f R
ε12 ε̄22εβ

(←
α 12 + κ1 − iπ + iδ, �α22 + κ2, �β + iπ − iδ

)
f R
ε′21ε
′
22εγ

(←
α 21 + κ2,

←
α 22 + κ2,

←
γ

)
. (F9)

Shifting κ1 → κ1 − iπ + 3iδ in I allows us to close the contour. However, now the pole at κ1 = κ2 − 2iη is not enclosed
by the contour; hence, there are no singular contributions to the integral. This holds for II, IV as well, which means that
Gcqq
ω′;RRLL does not contribute to the spectrum, as expected. Note that the correlators comprising the response function

do not necessarily vanish on their own and we must consider their combined contribution to show that the response is
zero.

4. Identifying and evaluating the leading contributions

Equation (90) provides a general expression for the inelastic spectrum by means of a form-factor expansion. The pres-
ence of breathers in the attractive regime, z < 1/2, leads to many possible terms, the contributions of which are expected
to decay rapidly with the number of excitations. The diagrammatic representation serves as a convenient tool to identify
the leading terms. It is important to recognize that many of the form factors vanish due to the U (1) symmetry of the

bulk sine-Gordon model; namely, for a mixed matrix element of the form 〈�ϑ |A|←θ 〉
εϑ a

a εθ
, the total topological charge must

vanish,
∑
{k|θk=±} εθk −

∑
{k|ϑk=±} εϑk = 0. Furthermore, f R

2m = 0 for all m ≥ 1, and f R
m1,m2

= 0 for even m1 + m2, allow-
ing us to exclude many of the terms in the expansion. The delta functions in Eq. (90) are also useful in the exclusion of
several terms—e.g., a term with ε11 = εγ = {} and ε12 = {m} is forbidden, since the delta function δ

(
ω − ν11 − ν12 − νγ

)

implies ν12 = ω; hence the argument of the delta function δ
(
ω′ + ν12 − ν22 + νβ

) = δ
(
ω′ + ω − ν22 + νβ

)
can never be

equal to 0.
While one looks for terms with as few excitations as possible, one must be careful when mixed matrix elements of

the form 〈�ϑ + iδ|A|←θ 〉
εϑ a

a εθ
are involved, due to the presence of the annihilation poles; if ϑi gets close to θj for some i, j ,

the effective order of the form factor is reduced by 2 [see Eq. (E4)]. This means that, in the evaluation of mixed matrix
elements using Eq. (E11), it is not sufficient to consider only the terms that eliminate the maximal number of excitations
on both sides of the matrix element [i.e., terms in Eq. (E11) with the largest number of delta functions], since the other
terms in the sum are just as important. To be concrete, consider the following example:
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+
r 〈ϑ1|R|θ2, θ1〉r1+ = 2πδ (ϑ1 − θ1) f R

1 (θ2)+ f R
−+1

(
ϑ1 + iπ−, θ1, θ2

)

= 2πδ (ϑ1 − θ1) S1+
1+ (θ2 − θ1) f R

1 (θ2)+ f R
−+1

(
ϑ1 + iπ+, θ1, θ2

)
, (F10)

where π± = π ± δ, and S1+
1+ is the S matrix for a breather and a soliton, given in Eq. (C8). The contribution of both terms

in each of the rows to some correlation function is of the same order, since

f R
−+1

(
ϑ1 + iπ±, θ1, θ2

) =
Res
θ1=ϑ1

f R
−+1 (ϑ1 + iπ , θ1, θ2)

θ1 − ϑ1 ∓ iδ
+ subleading term = Res

θ1=ϑ1
f R
−+1 (ϑ1 + iπ , θ1, θ2)

×
(
P 1
θ1 − ϑ1

± iπδ (θ1 − ϑ1)

)
+ subleading term, (F11)

and the residue of f R
−+1 is proportional to f R

1 [see Eq. (E4)].
The delta function δ (θ1 − ϑ1) in Eq. (F9) can be elimi-
nated by taking the average of the two equivalent forms in
Eq. (F8):

+
r 〈ϑ1|R|θ2, θ1〉r1+
= πδ (ϑ1 − θ1)

(
1+ S1+

1+ (θ2 − θ1)
)

f R
1 (θ2)

+ P
Res
θ1=ϑ1

f R
−+1 (ϑ1 + iπ , θ1, θ2)

θ1 − ϑ1
+ subleading term.

(F12)

Now we can expect the principal-value term to be sublead-
ing with respect to the first term.

The same averaging should be applied for the diagrams
drawn in Sec. V D. To illustrate this, consider the leading
contribution to the z = 1/3 spectrum, depicted in Eq. (94).
From the above, we understand that we need to consider
its “prior” diagram, from which it originates,

(F13)

The equivalence of the two forms is again a result of
the consistency of Eq. (E11) for any choice of ϑA,ϑB.
Now, there is a delta-function term in the second dia-
gram of each of the two forms, “hidden” within the
form factor associated with bL

q′ , the contribution of which
cannot be neglected. The solution is the same as in
Eq. (F10)—average the two forms to get rid of the delta-
function terms. The two forms are related by flipping the
order of excitations in each bra and ket states, which corre-
sponds to taking the complex conjugate of the form factors
(but not of the reflection matrices). Hence, we may get
rid of the delta function by taking the real part of

∏
F in

Eq. (82):

(F14)

leading to Eq. (95), and

(F15)
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the contribution of which to the spectrum is

γ
(2)
2

(
ω′|ω) = − 2

ω′ω

∫ ω

0
d�1

∫ ω−ω′

0
d�2

1

(2π)5 ∏5
i=1 eλi

{(
R1

1 (λ1 − logμ1)
)∗

×
(

e−
iπ
2z R−+ (λ2)R−+ (λ3)− e

iπ
2z R++ (λ2)R++ (λ3)

)
− 1

}

× Re
{
f R
1 (λ1 − logμ1) f R

+−1

(
λ4, λ5, λ1 + iπ− − logμ1

)
f R
+−+−

(
λ5, λ4, λ2 + iπ−, λ3 + iπ−

)
f R
+− (λ3, λ2)

}
,

(F16)

with eλ1 = ω, eλ2 = �1, eλ3 = ω −�1, eλ4 = �2, eλ5 = ω − ω′ −�2. While the integration contour passes close to (but
not through) the poles of f R

+−+−, taking the real part of the product of form factors means that this term may be evaluated
numerically as a principal-value integral. Numerical inspection shows that this term is negligible compared to γ

(1)
2 in

Eq. (95).
It is not always possible to get rid of all of the hidden delta-function terms. For example, consider the “prior” diagrams

of Eq. (92):

(F17)

the equivalent forms of which can be drawn as before. We
then find that

(F18)

leading to Eq. (93). The second and third diagrams in
Eq. (F17) are mirror images of each other and their com-
bined contribution is

γ
(2)
1

(
ω′|ω) = − 4

ωω′

∫ ω−ω′

0
d�1

∫ ω

0
d�2

1

(2π)5 ∏5
i=1 eλi

× Re
{(

e−
iπ
2z R−+ (λ1)R−+ (λ2)

− e
iπ
2z R++ (λ1)R++ (λ2)

)

×
(

e−
iπ
2z R−+ (λ3)R−+ (λ4)

− e
iπ
2z R++ (λ3)R++ (λ4)

)
− 1

}

× Re
{
f R
+− (λ2, λ1) f R

+−
(
λ5, λ2 + iπ−

)

× f R
+−+−

(
λ4, λ3, λ1 + iπ−, λ5 + iπ+

)

× f R
+− (λ3, λ4)

}
, (F19)

where eλ1 = �1, eλ2 = ω −�1, eλ3 = �2, eλ4 = ω −�2,
and eλ5 = ω − ω′ −�1. Again, taking the real part elimi-
nates the delta-function terms from f R

+−+− and the integral

FIG. 5. The weight of the contributions to the z = 1/3 spec-
trum, evaluated using the sum rule.
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can be evaluated as a principal-value integral; this term
turns out to be negligible compared to γ

(1)
1 in Eq. (93).

However, the delta-function terms cannot be eliminated
from the fourth term in Eq. (F17) by taking its real part,
since there are annihilation poles in both form factors

related to bL†
q′ and bL

q′ . While this term involves six exci-
tations and thus requires the calculation of a triple integral,
it can be well approximated by considering only the delta
functions, which reduce the number of excitations by two
and therefore reduce the triple integral to a single integral:

γ
(3)
1

(
ω′|ω) ≈ 1

2ω′ω

∫ ω−ω′

0

d�

(2π)4 ∏4
i=1 eλi

Re
{(

e−
iπ
2z R−+ (λ1)R−+ (λ2)− e

iπ
2z R++ (λ1)R++ (λ2)

)∗

×
(

e−
iπ
2z R−+ (λ3)R−+ (λ4)− e

iπ
2z R++ (λ3)R−− (λ4)

)
− 1

}

× Re
{
f R
+−

(
λ1, λ3 + iπ−

)
f R
+−

(
λ4, λ2 + iπ−

)

× f R
+− (λ2, λ1) f R

+− (λ3, λ4) (S0 (λ4 − λ1)− S0 (λ2 − λ1)) (S0 (λ1 − λ4)− S0 (λ3 − λ4))
}

, (F20)

with eλ1 = �, eλ2 = ω −�, eλ3 = ω′ +�, and eλ4 = ω

− ω′ −�. The above expression for γ (3)
1

(
ω′|ω)

holds only
for integer p = 1/z.

5. Terms used to evaluate the spectrum

We list here all of the diagrams used in Eq. (90) to eval-
uate the spectrum. As detailed above, we take the real
part of each of the diagrams and discard all diagrams
that correspond to principal-value integrals, since those
are subleading. The contributions indeed decay rapidly, as
illustrated in Fig. 5 for the z = 1/3 spectrum.

a. γ1

(F21)

(F22)

The two diagrams correspond to Eqs. (93) and (F20),
respectively. The first diagram is the only nonvanishing
term for z = 1/2 and is the only diagram used to evaluate
the spectrum for z ≥ 1/2 and z = 0.47 in Fig. 3.

b. γ2

(F23)

This diagram corresponds to Eq. (95).

c. γ3

(F24)

(F25)

d. γ4

(F26)
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(F27)

e. γ5

(F28)

(F29)

APPENDIX G: REFERMIONIZATION AT z = 1
2

The bosonic Hamiltonians in Eqs. (4) and (8) may be
mapped into Hamiltonians of free fermions at the special
point z = 1/2 (known as the Toulouse point in the con-
text of the Kondo model [107]). Solving both by means of
refermionization is an important consistency check for the
results of Secs. IV and V. We introduce a fermionic field
ψ :

ψ (x) = 1√
2πa0

eiπ f †f eiφ(x), (G1)

where a0 is a short-distance cutoff scale and f † is a
fermionic creation operator that anticommutes with ψ ,
necessary to ensure proper anticommutation relations ofψ .
It is convenient to unfold the lead of length � to a lead of
length 2�, with the impurity placed at x = 0. This allows us
to expand ψ to its eigenmodes, ψ (x) = 1/

√
2�

∑
k ψkeikx,

as written in Eq. (50).
The Hamiltonians in Eqs. (4) and (8) become quadratic

under this mapping. The Kondo Hamiltonian is simpler;
identifying the pseudospin operator in Eq. (8) with f ,
S− = f , we find that

HK =
∑

k

kψ†
kψk − α

∑

k

(
f †ψk + ψ

†
k f

)
, (G2)

where α = J/2
√
πa0/�. The bsG Hamiltonian is slightly

more complicated, as straightforward refermionization of
the cosine term in Eq. (4) would lead to terms that are
linear inψ (x = 0) andψ† (x = 0). To overcome this prob-
lem, one may introduce a spin operator in front of the
cosine term, EJ cos (φ (x = 0))→ SxEJ cos (φ (x = 0)),

with Sx = f † + f , so that the new Hamiltonian commutes
with Sx and is therefore equivalent to the original Hamil-
tonian for either Sx = 1 or Sx = −1 (in the latter case, up
to a shift of φ) [80]. We then find that

HbsG =
∑

k

kψ†
kψk − α

(
f † − f

)∑

k

(
ψk + ψ

†
k

)
, (G3)

where now α = EJ /2
√
πa0/� (we relate to the prefactors

in both models as α for brevity). The mapping in Eq. (G1)
allows us to calculate exact bosonic correlation functions
using the fermionic propagators. Working in the Keldysh
formalism, we define the matrices Dab

(
k, k′;ω

)
, which are

the temporal Fourier transform of

Dab (
k, k′; t

) = −i

〈

TK

(
ψa

k (t) ψ
b†
k′ (0) ψa

k (t) ψ
b
k′ (0)

ψ
a†
k (t) ψb†

k′ (0) ψ
a†
k (t) ψb

k′ (0)

)〉

,

(G4)

where a,b=c,q denote the classical and quantum compo-
nents of the fields and TK stands for time ordering along
the Keldysh contour. The retarded, advanced, and Keldysh
propagators correspond to ab=cq,qc,cc, respectively, and
Dqq = 0. The quadratic fermionic Hamiltonians admit the
following exact propagators:

Dcq/qc
bsG

(
k, k′;ω

) = δkk′

( 1
ω−k±iη 0

0 1
ω+k±iη

)

+

⎛

⎜
⎝

Tcq/qc
bsG (ω)

(ω−k±iη)(ω−k′±iη)
Tcq/qc

bsG (ω)

(ω−k±iη)(ω+k′±iη)

Tcq/qc
bsG (ω)

(ω+k±iη)(ω−k′±iη)
Tcq/qc

bsG (ω)

(ω+k±iη)(ω+k′±iη)

⎞

⎟
⎠ (G5)

and

Dcq/qc
K

(
k, k′;ω

) = δkk′

( 1
ω−k±iη 0

0 1
ω+k±iη

)

+

⎛

⎜
⎝

Tcq/qc
K (ω)

(ω−k±iη)(ω−k′±iη)
0

0 Tcq/qc
K (ω)

(ω+k±iη)(ω+k′±iη)

⎞

⎟
⎠ , (G6)

where Tcq/qc
bsG (ω) = 2α2/ω ± 2i� and Tcq/qc

K (ω) = α2/ω ±
i�/2, the plus (minus) signs correspond to cq (qc), and
� = 2πα2/�. The fluctuation-dissipation theorem states
that

Dcc (
k, k′;ω

) = tanh
(ω
2T

) (
Dcq (

k, k′;ω
)− Dqc (

k, k′;ω
))

,

(G7)

where T is the temperature.
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1. The total inelastic decay rate

As before, we extract the reflection coefficient from the conductance. Working in the chiral version, there is only a
right-moving current and the conductance has to be calculated between x′ < 0 and x > 0. In the Keldysh formalism, the
retarded correlator is given by

G
(
x > 0, x′ < 0; t

) = − 1
8πω

〈
TKRc (x, t)Rq (

x′, 0
)〉

. (G8)

Note the difference of a minus sign compared to Eq. (14), due to the unfolding of the half-infinite line. The current
operator may be written in terms of the fermionic modes ψk by inverting Eq. (60) and using the refermionization relation
bq =

√
π/�q

∑
k ψ

†
kψk+q:

R (x) = π

�

∑

k1,k2

ei(k2−k1)xψ
†
k1
ψk2 . (G9)

Using Wick’s theorem, we find

G
(
x > 0, x′ < 0;ω

) = − π

16ω�2

∑

k1,...,k4

ei(k2−k1)xei(k4−k3)x′
∑

a=c,q

∫ ∞

−∞

d�
2π

[
Dca

22 (k1, k4;�)Dcā
11 (k2, k3;ω −�)

−Dca
21 (k1, k3;�)Dcā

12 (k2, k4;ω −�)
]

, (G10)

where c̄ = q and vice versa. The sums over k may be replaced by integrals,
∑

k → �/π
∫∞
−∞ dk, and evaluated by closing

the contours in the lower (k1, k4) or upper (k2, k3) half planes, according to the signs of the corresponding exponentials.
Using Eqs. (G5)–(G7), we readily find that

GbsG
(
x > 0, x′ < 0;ω

) = eiω(x−x′)

8ω

∫ ∞

−∞
d�

[
tanh

(
�

2T

)
+ tanh

(
ω −�

2T

)](
1− 2i�

�+ 2i�
− 2i�
ω −�+ 2i�

)
,

GK
(
x > 0, x′ < 0;ω

) = eiω(x−x′)

8ω

∫ ∞

−∞
d�

[
tanh

(
�

2T

)
+ tanh

(
ω −�

2T

)]

×
(

1− i�
�+ i�/2

)(
1− i�

ω −�+ i�/2

)
.

(G11)

This result generalizes the conductance (and hence the inelastic and elastic scattering rates) at z = 1/2 for finite
temperature. At T = 0, the tanh factors become step functions, leading to

rbsG

(
ω; z = 1

2

)
= 1− 4i�

ω
log

(
1− iω

2�

)
,

rK

(
ω; z = 1

2

)
= 1− 2i�

ω + i�
log

(
1− iω

�/2

)
.

(G12)

This result recovers Eq. (51), as we identify � = TB/2 and � = 2TB for the bsG and Kondo models, respectively. The
inelastic rate is again given by γ (ω) = 1− |r (ω)|2, and its origin can be understood as before, this time using the
language of bosonization: at z = 1/2, a photon is comprised of a fermionic particle-hole pair, both members of which
scatter elastically off the boundary, but pick up different phases while doing so, leading to the splitting of the incoming
photon.
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2. The energy-resolved inelastic decay spectrum

Consider the three-point fully retarded correlator,

Gcqq
ω′

(
t− t′, t− t′′

) = −
〈
TK nc

q′ (t) ρ
q (

xin, t′
)
ρq (

xin, t′′
)〉

, (G13)

where xin < 0. Note that in the chiral representation of the fermionic field, the density is defined to be right-moving:

ρq (xin) = 1
�

∑

a=c,q

∑

k1,k2

ei(k2−k1)xinψ
a†
k1
ψ ā

k2
. (G14)

The bosonic occupation number nq′ is written in terms of the fermionic operators as

nc
q′ = bq†

q′ b
q
q′ + bc†

q′ b
c
q′ = bq†

q′ b
q
q′ +

π

ω′�

∑

k1,k2

∑

a1,a2=c,q

ψ
a1†
k1+q′ψ

a1
k1
ψ

a2†
k2

ψ
a2
k2+q′ . (G15)

Note that, plugging the above into Eq. (G13), the bq†
q′ b

q
q′ term leads to an all-quantum Keldysh correlator, which vanishes

identically. We thus have

Gcqq
ω′

(
t− t′, t− t′′

) = − π

ω′�3

∑

k1,...,k6

∑

a1,a2,a3,a4=c,q

ei(k4+k6−k3−k5)xin
〈
TKψ

a1†
k1+q′ (t) ψ

a1
k1
(t) ψa2†

k2
(t) ψa2

k2+q′ (t)

× ψ
a3†
k3

(
t′
)
ψ

ā3
k4

(
t′
)
ψ

a4†
k5

(
t′′

)
ψ

ā4
k6

(
t′′

)〉
. (G16)

Again, we use Wick’s theorem to calculate the correlator. The sums over the ki values belonging to the ρ legs are easy to
compute, since they appear once in the correlator. We define the matrices

Dab (k;ω) =
∑

k′
Dab (

k, k′;ω
) (

e−ik′xin 0
0 eik′xin

)
, (G17)

which evaluate as

Dcq
bsG (k;ω) = Dcq

0 (k;ω)− e−iωxin

⎛

⎜⎜
⎝

T̃cq
bsG (ω)

ω − k + iη
T̃cq

bsG (ω)

ω − k + iη
T̃cq

bsG (ω)

ω + k + iη
T̃cq

bsG (ω)

ω + k + iη

⎞

⎟⎟
⎠ , (G18)

Dcq
K (k;ω) = Dcq

0 (k;ω)− e−iωxin

⎛

⎜⎜
⎝

T̃cq
K (ω)

ω − k + iη
0

0
T̃cq

K (ω)

ω + k + iη

⎞

⎟⎟
⎠ , (G19)

Dcq
0 (k;ω) =

⎛

⎜
⎜
⎝

e−ikxin

ω − k + iη
0

0
eikxin

ω + k + iη

⎞

⎟⎟
⎠ , (G20)

where T̃cq (ω) = (2π i/�)Tcq (ω), and Dqc
bsG (k;ω) = Dqc

K (k;ω) = 0. The contractions in Eq. (G16) can be expressed in
terms of Dab (k;ω). Introducing the definitions

(r1, r2, r3, r4) = (a3, ā3, a4, ā4) ,

(t1, t2, t3, t4) =
(
t′, t′, t′′, t′′

)
,

(d1, d2, d3, d4) = (1, 2, 1, 2) ,

(ν1, ν2, ν3, ν4) = (�1,ω −�1,�2,−ω −�2) ,

(G21)
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we find that

Gcqq
ω′ (ω + iη,−ω + iη) = − π

ω′�3

∑

k1,k2

∑

a3,a4=c,q

∑

P

ζP

∫ ∞

−∞

d�1

2π

∫ ∞

−∞

d�2

2π

4∏

i=1

[
tanh

(νPi

2T

)]δrPic

×
[
Dcq

2dP1

(
k1 + q′; νP1

)
Dcq

1dP2
(k1; νP2)Dcq

2dP3
(k2; νP3)Dcq

1dP4

(
k2 + q′; νP4

)

− δdP12δdP21δdP32δdP41Dcq
0;22

(
k1 + q′; νP1

)

× Dcq
0;11 (k1; νP2)Dcq

0;22 (k2; νP3)Dcq
0;11

(
k2 + q′; νP4

)]
, (G22)

where we sum over all permutations P of {1, 2, 3, 4} (Pi denotes the permutation value for the index i) and ζP = 1 (−1)
for an even (odd) permutation. Here, we only consider connected terms, where each ρ leg is connected to both b†

q′ and bq′

legs—namely, |P1− P2| > 1 or |P3− P4| > 1 [one may show that the disconnected terms are proportional to δ
(
ω − ω′

)

and therefore correspond to elastic scattering, similarly to Eq. (91)]. Note the subtraction of the background term in
Eq. (G22), similarly to the subtraction of the Kronecker deltas in Eq. (83). Evaluating the sums over k1,2, taking care to
close the integration contours in the half planes allowed by the xin exponentials, and keeping only contributions that are
singular in η, we find that

Gcqq
ω′ (ω + iη,−ω + iη) = − 1

ω′η�

∑

a3,a4=c,q

∑

P

ζP

∫ ∞

−∞
d�1

∫ ∞

−∞
d�2δ

(
�1 +�2 + ω′

) 4∏

i=1

[
tanh

(νPi

2T

)]δrPic

× [
Ecq (νP1, νP2; dP1, dP2)Ecq (νP3, νP4; dP3, dP4)− δdP12δdP21δdP32δdP41

]
, (G23)

where

Ecq
bsG (ν1, ν2; d1, d2) =

(
δd12 − T̃cq

bsG (ν1)
) (
δd21 − T̃cq

bsG (ν2)
)

,

Ecq
K (ν1, ν2; d1, d2) = δd12δd21

(
1− T̃cq

K (ν1)
) (

1− T̃cq
K (ν2)

)
.

(G24)

We can now plug Gcqq
ω′ into Eq. (54), thus obtaining the spectrum at z = 1/2 at finite temperatures. At T = 0, the tanh

functions become step functions; direct inspection of the sums over the permutations shows that

γbsG
(
ω′|ω) = −2

ωω′

∫ ω−ω′

0
d�

[(
1− T̃cq

bsG (�)− T̃cq
bsG (ω −�)

)

× (
1− T̃cq

bsG

(
�+ ω′ − ω

)− T̃cq
bsG

(−�− ω′
))− 1

]
,

γK
(
ω′|ω) = −2

ωω′

∫ ω−ω′

0
d�

[(
1− T̃cq

K (�)
) (

1− T̃cq
K (ω −�)

)

× (
1− T̃cq

K

(
�+ ω′ − ω

)) (
1− T̃cq

K

(−�− ω′
))− 1

]
,

(G25)

which are both identical to the form-factor results and are simple enough to lead to closed analytical expressions. Indeed,
one may consider Eq. (93) and use the form factor in Eq. (E32) and the reflection matrices in Eqs. (D3) or (D6) to recover
the above expressions.
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