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Harnessing the advantages of shared entanglement for sending quantum messages often requires the
implementation of complex two-particle entangled measurements. We investigate entanglement advan-
tages in protocols that use only the simplest two-particle measurements, namely, product measurements.
For experiments in which only the dimension of the message is known, we show that robust entanglement
advantages are possible but that they are fundamentally limited by Einstein-Podolsky-Rosen steering. Sub-
sequently, we propose a natural extension of the standard scenario for these experiments and show that
it circumvents this limitation. This leads us to prove entanglement advantages from every entangled two-
qubit Werner state, evidence its generalization to high-dimensional systems, and establish a connection
to quantum teleportation. Our results reveal the power of product measurements for generating quantum
correlations in entanglement-assisted communication and they pave the way for practical semi-device-
independent entanglement certification well beyond the constraints of Einstein-Podolsky-Rosen steering.
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I. INTRODUCTION

Shared entanglement between a sender and a receiver
that are connected over a quantum channel is the most
powerful communication resource in quantum theory. This
is famously showcased in the dense-coding protocol,
where entanglement doubles the classical capacity of a
noise-free qubit channel [1]. If the channel is used only
once, which is the most pertinent scenario for experimen-
tal considerations, this entanglement-assisted prepare-and-
measure (EAPM) scenario (see Fig. 1) can equally well
be viewed as setting for efficient quantum communication
and as a platform for semi-device-independent quantum
information protocols. The latter is because the state, the
sender, and the receiver are uncharacterized devices and
only knowledge of the dimension of the channel is required
to deduce the quantum nature of the correlations. In this
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sense, the EAPM scenario offers an appealing path to cer-
tify the advantages of entanglement in experiments with
limited characterization.

A central obstacle for harnessing entanglement advan-
tages in the EAPM scenario is that protocols commonly
need the receiver (Charlie) to measure both the particles,
namely, the one coming from the entanglement source
and the one arriving over the channel, in an entangled
basis. In, e.g., optical systems, such measurements are well
known to be impossible without extra photons or non-
linear effects [2–4], which can, e.g., limit experiments to
using only single-photon carriers of multiple qubits (see
e.g., Refs. [5,6]). In the EAPM scenario, for the simplest
case of qubit systems, a series of dense-coding experiments
have over time implemented increasingly sophisticated
Bell basis measurements and thereby approached the the-
oretical limit of the entanglement advantage [7–14]. For
systems of higher dimension than qubit, the situation is
extra challenging. Even resolving one element of a high-
dimensional entangled basis is impossible with ancilla-free
linear optics [15]. The most high-dimensional optical Bell
basis measurement hitherto realized is limited to three-
level systems and uses ancillary photons [16,17]. In the
EAPM scenario, this has led experiments based on high-
dimensional entanglement and quantum communication to
instead focus on simpler, suboptimal, measurements, com-
patible with standard linear optics [18]. The challenges
associated with entangled measurements are broadly
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FIG. 1. The EAPM scenario between a sender (Alice) and a
receiver (Charlie). The information, x, is encoded into one share
of the entangled state.

relevant in the different correlation tests accommodated by
the EAPM scenario [19–21].

However, while entangled measurements are provably
necessary for the specific task of dense coding [22], this
is not true in general. Interestingly, it has recently been
shown that there exist well-known communication tasks
that, in the EAPM scenario, admit their best implemen-
tation in protocols that rely only on the simplest joint
measurements [23]. These are mere product measure-
ments of the source and message particles; they therefore
constitute the classical postprocessing of two completely
separate single-particle measurements. In principle, this
can greatly simplify the experiments, as the particles do
not need to interfere with each other in the measure-
ment device and can even be measured at separate times.
Nevertheless, at present, little is known about how such
protocols can be constructed. Moreover, another important
aspect concerns the noise robustness of protocols based on
product measurements. While entangled measurements are
well known to reveal the correlation advantages of shared
entanglement even from very noisy states [24,25], no coun-
terpart is known for product measurements. That is, even
though product measurements can sometimes be optimal
under ideal conditions, their performance might deterio-
rate in the presence of significant amounts of noise in the
entanglement distribution, rendering them unable to cer-
tify entanglement that is well within the reach of schemes
that use entangled measurements. Indeed, certifying noisy
forms of entanglement is a central matter for correlation
experiments.

Here, we investigate entanglement advantages revealed
by product measurements in the EAPM scenario and show
that they are much more powerful than previously known.
In all our scenarios, the source is fully untrusted. The
operations of all the parties are also untrusted, up to the
bounded dimension of the quantum communication chan-
nels. The paper is structured as follows. In Sec. II, we
formalize the EAPM scenario. In Sec. III, we investigate
high-dimensional entanglement by introducing concrete

certification schemes in the EAPM scenario. We prove
that the paradigmatic isotropic state is certified at noise
rates well above the known thresholds for Bell nonlocality
and closely resembling the thresholds known for Einstein-
Podolsky-Rosen steering. In Sec. IV, we show that the
results from Sec. III are actually close to optimal. This fol-
lows from a no-go result, in which we show that steering is
a necessary condition for certifying entanglement advan-
tages in any EAPM scenario with product measurements.
In Sec. V, we set out to circumvent this fundamental lim-
itation. We do so by considering a natural extension of
the standard EAPM scenario, which we name the symmet-
ric EAPM scenario. In the symmetric scenario, classical
information is not only encoded in one share of the state
(Alice, in Fig. 1) but in both shares of the state (see Fig. 2).
For qubit systems, we prove that every entangled Werner
state implies an advantage. Finally, in Sec. VI, we intro-
duce a prime-dimensional generalization of the scheme in
Sec. V. We present evidence, on the basis of which we
argue that every state supporting fidelity-based quantum
teleportation can be certified. This notably includes every
entangled isotropic state.

II. THE EAPM SCENARIO

The EAPM scenario is illustrated in Fig. 1. Alice and
Charlie share a state ρAC, which can have an arbitrary local
dimension. Alice selects a classical input x and encodes it
on her share of the state via a completely positive trace-
preserving (CPTP) map, �A→R

x , the output system, R, of
which, here called the message, has a known dimension d.
The total state arriving at Charlie becomes

τRC
x = (�A→R

x ⊗ 1C)[ρAC]. (1)

Finally, Charlie selects a classical input z and performs
a joint quantum measurement {M RC

c|z } with outcome c.
The Born rule gives the quantum correlations, p(c|x, z) =
tr
(
τRC

x Mc|z
)
. Note that the set of states {τRC

x } realizable
via arbitrary CPTP maps for Alice and an arbitrary ini-
tial entangled state can be completely characterized as τRC

x
being a d × D dimensional bipartite state with trR(τ

RC
x ) =

τC, where τC is the reduced state, which is notably inde-
pendent of x. Note that D is the dimension of the source
particle, which can be arbitrary.

Our focus is on protocols where Charlie’s measurements
act separately on systems R and C. This can be a product
measurement followed by a classical postprocessing of the
respective outcomes, i.e.,

M RC
c|z =

∑

c1,c2

p(c|c1, c2)N R
c1|z ⊗ N C

c2|z, (2)

where {N R
c1|z} and {N C

c2|z} are single-system measurements
and p(c|c1, c2) is some (perhaps stochastic) rule for decid-
ing the final outcome c from the local outcomes (c1, c2).
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More generally, the measurements can also be adap-
tive [22], i.e., Charlie could use the outcome on sys-
tem R to inform his measurement on system C and vice
versa. These adaptive product measurements take the
form M RC

c|z = ∑
c1,c2

p(c|c1, c2)N R
c1|z ⊗ N C

c2|z,c1
and M RC

c|z =
∑

c1,c2
p(c|c1, c2)N R

c1|z,c2
⊗ N C

c2|z, respectively.

We are interested in comparing the correlations,
p(c|x, z), obtained from shared entanglement and product
measurements, with those obtained without shared entan-
glement. The latter correspond to standard (entanglement-
unassisted) quantum prepare-and-measure scenarios, i.e.,
Alice can send any d-dimensional state αx to Charlie, who
can perform an arbitrary quantum measurement on it,

p(c|x, z) = tr
(
αxMc|z

)
. (3)

Shared classical randomness is additionally permitted
between the parties.

III. CERTIFYING HIGH-DIMENSIONAL
ENTANGLEMENT IN THE EAPM SCENARIO

We begin by identifying a scheme in the EAPM sce-
nario that enables us to certify entanglement under sub-
stantial and dimension-scalable noise rates. To this end,
consider the following scheme. Let Alice have an input
x ≡ (x0, x1) ∈ {0, . . . , d − 1}2 and let Charlie have an input
z ∈ {0, . . . , d}, where d is a prime number. The parties have
the objective of computing (via the output c), for each z, a
specific binary function of x. These functions are

z �= d : wz = x1 − 2zx0 mod d,
z = d : wd = x0. (4)

The average success probability of computing the func-
tions is therefore

Sd = 1
d2(d + 1)

∑

x,z

p(c = wz|x, z). (5)

Next, we will analyze Sd in a quantum setting with and
without entanglement and prove that it certifies entangle-
ment under product measurements.

A. Protocol with shared entanglement and product
measurements

Now consider a specific quantum protocol based on
shared entanglement and product measurements. Let the
shared state be ρAC = φ+

d , where φ+
d = |φ+

d 〉〈φ+
d | is

the maximally entangled state, |φ+
d 〉 = (1/

√
d)
∑d−1

i=0 |ii〉.
Next, define the clock and shift operators Z = ∑d−1

k=0
e(2π ik/d)|k〉〈k| and X = ∑d−1

k=0 |k + 1〉〈k|, where k + 1 is

computed modulo d. Choose Alice’s CPTP maps, �x, as
corresponding to the unitaries

Ux = X x0Zx1 . (6)

Note that for the special case of d = 2, X and Z are simply
two of the Pauli operators and Ux is effectively the four
Pauli rotations. Finally, we must select Charlie’s product
measurements. For the special case of d = 2, we choose
them as products of the three Pauli observables, namely,

E0 = X ⊗ X , E1 = Z ⊗ Z, and E2 = XZ ⊗ XZ,
(7)

with Mc|z = 1
2 (1 + (−1)cEz). Beyond dimension two, fol-

lowing Eq. (2), we define the measurements as the post-
processing of the outcomes obtained in two separate basis
measurements of systems R and C, respectively,

Mc|z =
d−1∑

c1,c2=0

|ec1,z〉〈ec1,z| ⊗ |e∗
c2,z〉〈e∗

c2,z|δc1−c2,c, (8)

where the asterisk (∗) denotes complex conjugation and
the addition in δc1−c2,c is taken modulo d. Notably, in
odd-prime dimensions, the local bases {|em,z〉} are mutu-
ally unbiased. These are known to admit the form |em,d〉 =
|m〉 and |em,z〉 = (1/

√
d)
∑d−1

l=0 ω
l(m+zl)|l〉 for z �= d, where

ω = e(2π i/d) [26]. The unbiasedness property is not de facto
necessary for the success of the protocol but is a convenient
choice.

In order to evaluate the average success probability in
Eq. (5), it is handy to first identify the following relations,
which can be straightforwardly verified:

X t|em,z〉 = ωzt2−tm|em−2zt,z〉,
Zt|em,z〉 = |em+t,z〉,
X t|e∗

m,z〉 = ω−zt2+tm|e∗
m−2zt,z〉,

Zt|e∗
m,z〉 = |e∗

m−t,z〉,

(9)

valid for z �= d and integer t. Using these, one straight-
forwardly finds that each of the functions is computed
deterministically: i.e., p(c|x, z) = δc,wz , leading to Sd = 1.

B. Bounding protocols without shared entanglement

Next, we must determine a useful bound Sd ≤ Ld valid
for any quantum strategy without shared entanglement.
Since this corresponds to bounding the expression in
Eq. (5) in a standard quantum prepare-and-measure sce-
nario, the correlations are given by Eq. (3). The relevant
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quantity becomes

max
{αx},{Mc|z}

1
d2(d + 1)

∑

x,z

tr
(
αxMwz |z

)
, (10)

where αx is a d-dimensional state. We restrict the analysis
to prime-number dimensions because in these cases, the
conditions in Eq. (4) are particularly hard to meet without
entanglement. The task at hand can be seen as an (unortho-
dox) variant of a quantum random access code [27,28]. The
proof ideas recently developed for quantum random access
codes in Ref. [29] can be immediately modified to obtain a
general bound, Ld, on Eq. (10), namely,

Ld = 1
d

(
1 + d − 1√

d + 1

)
, (11)

for prime d. The derivation is detailed in Appendix A
and is based on analyzing operator norms for sums of
the measurement operators. Regardless of the protocol
used, the observation of Sd > Ld implies the certifica-
tion of entanglement. The bound Ld is typically not tight
(except for d = 2), i.e., it does not equal the value defined
in Eq. (10). The reason for this becomes apparent in
Appendix A, where both operator-norm inequalities and
concavity inequalities are employed, the saturation of
which is not guaranteed in general. Nevertheless, to give an
indication of how close to optimal the bound is, we have
numerically optimized the argument in Eq. (10) over the
set of quantum states and measurements. For d = 3, 5, 7,
we obtain the lower bounds 0.6616, 0.5121, and 0.4233
respectively, which can be compared to the upper bounds
0.6667, 0.5266, and 0.4459 obtained, respectively, from
Eq. (11). We note that numerical techniques likely can be
used to improve the bound in Eq. (11) but only for specific
values of d [30].

Even though the bound in Eq. (11) is not generally
tight, it is good enough to reveal the qualitative abilities
of product measurements in a dimension-scalable manner.
To showcase that, we focus on the seminal isotropic state,

ρ iso
v = vφ+

d + 1 − v

d2 1, (12)

with visibility v ∈ [0, 1]. Thus, when running the strategy
from the previous section, we compute the smallest visibil-
ity for which the state produces a value of Sd that exceeds
the limit in Eq. (11). For comparison, the isotropic state is
known to be entangled if and only if v > (1/(d + 1)) [31].

Corollary 1. For every prime dimension d, entangle-
ment certification in the EAPM scenario with product
measurements is possible for the isotropic state when

v >
1√

d + 1
. (13)

This exhibits an inverse-square-root scaling in the
dimension parameter, thus showing that product measure-
ments become increasingly good at certifying the entan-
glement. In particular, for d = 2, it reduces to v > 1/

√
3,

which significantly improves on previous protocols [23]
and happens to equal the exact threshold for steerability
of ρ iso

v for the same number (three) of measurements [32].
Moreover, for prime d, Eq. (13) exactly matches the bound
for steerability of ρ iso

v under d + 1 mutually unbiased bases
obtained from the steering inequality of Ref. [33].

IV. NO ENTANGLEMENT ADVANTAGE
WITHOUT STEERING

It is not a coincidence that our above scheme hap-
pens to give critical visibilities that closely parallel results
known for steering. As we now show, the above results
are examples of saturation (or near saturation) of a more
fundamental limitation that applies to any protocol in the
EAPM scenario using adaptive product measurements.

Proposition 1. Let ρAC be any entangled state that is
not steerable from C to A. Then, any probability distribu-
tion in the EAPM scenario obtained from adaptive product
measurements can be simulated in a quantum model with
shared classical randomness.

Proof. Consider first product measurements that are
adaptive from system C to system R. The probability
distribution can then be written

p(c|x, z) =
∑

c1,c2

p(c|c1, c2)Tr
(
�x[ρc2|z]M R

c1|z,c2

)
, (14)

where ρc2|z = TrC

(
1 ⊗ M C

c2|zρAC

)
are the unnormalized

states remotely prepared on A by measuring C. If ρAC
is unsteerable from C to A, there exists a local hidden-
state decomposition ρc2|z = ∑

λ p(λ)p(c2|z, λ)τλ for some
arbitrary-dimensional quantum states {τλ}. Inserting this,
we obtain

p(c|x, z) =
∑

λ,c1,c2

p(λ)p(c|c1, c2)p(c2|z, λ)

× Tr
(
�x[τλ]M R

c1|z,c2

)
. (15)

This can be simulated without entanglement as follows.
Let Alice and Charlie share λ, with distribution p(λ). Alice
prepares τλ and applies�x to it, sending the d-dimensional
state �x[τλ] to Charlie. He draws c2 from the distribu-
tion p(c2|z, λ), then applies the measurement {M R

c1|z,c2
},

and lastly draws c from p(c|c1, c2). This reproduces the
distribution in Eq. (15).

The case of product measurements adaptive from system
R to system C is similarly treated. The probability
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distribution becomes

p(c|x, z) =
∑

c1,c2

p(c|c1, c2)Tr
(
�x[ρc2|z,c1]M R

c1|z
)

, (16)

where ρc2|z,c1 = TrC

(
1 ⊗ M C

c2|z,c1
ρAC

)
are the unnormal-

ized states remotely prepared on A. The existence of a local
hidden-state model implies

p(c|x, z) =
∑

λ,c1,c2

p(λ)p(c|c1, c2)p(c2|z, c1, λ)

× Tr
(
�x[τλ]M R

c1|z
)

. (17)

To simulate this distribution without entanglement, one
distributes λ and lets Alice prepare τλ and run it through
the map �x. Charlie first measures the message, then uses
the outcome c1 to draw c2 from p(c2|z, c1, λ), and finally
draws c from p(c|c1, c2). �

A noteworthy corollary of this argument is that for prod-
uct measurements adaptive from C to R, in an EAPM
scenario with N inputs for Charlie, one-way steerability
under just N measurements is necessary for an entangle-
ment advantage. This makes a significant difference, since
steerability under a limited number of measurements is
known to be considerably more constrained than steerabil-
ity under unboundedly many measurements [32]. In view
of this, the scheme from Sec. III, which has led to Corollary
1 via independent product measurements, is optimal for
d = 2, since it coincides with the steering bound of ρ iso

v

under three measurements. For larger d, it is unlikely that
our result from the previous section can be much improved,
because of the steering results for N = d + 1 bases in
[33,34]. However, by employing potentially unboundedly
many measurements (instead of d + 1 as in our case), it
may be possible to approach the ultimate steering limit [35]
on the parameter v.

Proposition 1 provides a fundamental limitation on the
abilities of product measurements in the EAPM scenario.
Although we have already found that significantly noise-
tolerant entanglement certification is possible, it is impos-
sible to certify any state that is entangled but not steerable.
Therefore, in what follows, we go beyond the EAPM sce-
nario to show that this obstacle can be overcome, allowing
for even stronger entanglement certification.

V. THE SYMMETRIC EAPM SCENARIO

In order to circumvent the limitation on product-
measurement schemes imposed by Proposition 1, we con-
sider an extended version [24,36] of the original EAPM
scenario, which we refer to as the symmetric EAPM sce-
nario. The extension is modest in terms of an implementa-
tion perspective and is conceptually natural. In the original

EAPM scenario, classical information is only encoded into
half the entangled state—namely, by Alice—into system A.
In the symmetric EAPM scenario, we also want to encode
classical information in the other half of the entangled
state. To make this possible, we add a third party, Bob, who
selects an input y and encodes it into the second source
particle before relaying it to Charlie (see Fig. 2).

Let us now write the state as ρAB, distributed to Alice
and Bob. They each select x and y and perform CPTP
maps �A→R1

x and �B→R2
y , with the output systems R1 and

R2 each being of dimension d. These are now separate, but
potentially entangled, messages. Charlie’s measurements,
{M R1R2

c|z }, are applied jointly to both messages, leading to
the quantum correlations

p(c|x, y, z) = tr
(
(�A→R1

x ⊗ �B→R2
y )[ρAB]M R1R2

c|z
)

. (18)

We remark that all parties can also share classical random-
ness, which can be included in the state ρAB.

Again, we are interested in how protocols using shared
entanglement and product measurements can outperform
protocols using no shared entanglement. The correlations
from the latter are described as

p(c|x, y, z) = tr
(
αx ⊗ βyMc|z

)
, (19)

where αx and βy are d-dimensional states sent from Alice
and Bob, respectively, to Charlie. Note that in contrast to
the original EAPM scenario, the measurement {Mc|z} can
now be entangled.

A direct inspection shows that the argument used to
arrive at Proposition 1 cannot be repeated for the sym-
metric EAPM scenario. Indeed, the argument relies on the
fact that Alice’s operations do not influence the other parti-
cle, making one-way steering relevant. The counterparts to
these states arriving to Charlie are now influenced by Bob.
We shall see that this is not a superficial observation; the
symmetric EAPM scenario can indeed certify unsteerable

FIG. 2. The symmetric EAPM scenario between the senders
(Alice and Bob) and the receiver (Charlie). The information,
(x,y), is encoded into the shares of the entangled state.
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entanglement. To show this, let us focus on qubit systems
and the following scheme.

Alice and Bob each select two bits, x ∈ (x0, x1) ∈ {0, 1}2

and y ∈ (y0, y1) ∈ {0, 1}2. Charlie selects one of three
inputs z ∈ {0, 1, 2}, each with binary outputs c ∈ {0, 1}.
The aim is for Charlie to compute a binary function for
each z; specifically, the functions

z = 0 : w0 = x0 + y0,
z = 1 : w1 = x1 + y1,
z = 2 : w2 = x0 + x1 + y0 + y1,

(20)

computed modulo 2. The average success probability
becomes

R2 = 1
48

∑

x,y,z

p(c = wz|x, y, z). (21)

In analogy with the discussion in Sec. III, this task can
be performed deterministically with shared entanglement
and product measurements. In complete analogy with the
protocol in Sec. III, we let ρAB = φ+

2 and we let Charlie
perform the separate Pauli observables in Eq. (7). Alice
and Bob both select among the same four Pauli unitaries,
namely, Ux and Uy , as given in Eq. (6). Evaluating Eq. (21)
then gives R2 = 1.

The key question is to determine the largest value of R2
achievable in a quantum model without shared entangle-
ment. Consider first a classical protocol, in which αx and
βy in Eq. (19) are all diagonal in the same basis. An opti-
mal strategy is for Alice and Bob to simply send x0 and y0,
respectively, leading to a deterministic output for z = 0 but
random outputs for z ∈ {1, 2} and thus a value of R2 = 2

3 .
We prove in Appendix B that this cannot be improved in
a generic quantum protocol without shared entanglement,
i.e., any model of the form Eq. (19) obeys R2 ≤ 2

3 . Con-
sequently, any quantum over classical advantage in the
scheme must be due to entanglement. Notably, the same is
not true for the scheme presented in Sec. III; there, the clas-
sical limit can be overcome using quantum communication
without entanglement and can then be further enhanced by
adding entanglement.

We remark that the proof presented in Appendix B
applies more generally. It can be used to bound the aver-
age success probability in any input-output scenario in
which Charlie has binary outputs and the winning condi-
tions are XOR between balanced functions of Alice’s input
and Bob’s input. Nevertheless, we focus on the specific
case in Eq. (20) because of its relevance for certifying the
entanglement of isotropic states [37]. Indeed, a simple cal-
culation now shows that every entangled isotropic state is
certified, i.e., R2 >

2
3 when v > 1

3 . In contrast, the state
is steerable under generic projective measurements only
when v > 1

2 [35]. Notably, this result completely solves
the main open problem raised in Ref. [23].

More generally, consider the so-called maximally entan-
gled fraction of ρAC,

EFd(ρ) = max
�1,�2

〈φ+
d |(�1 ⊗�2)[ρ]|φ+

d 〉, (22)

where �1 and �2 are CPTP maps with d-dimensional
output spaces. A nontrivial maximally entangled fraction
corresponds to EFd(ρ) >

1
d and is the key parameter for

quantifying fidelity-based quantum teleportation [38]. We
find that it gives a sufficient condition for whether a state
can be certified via product measurements in our scheme.

Proposition 2. Every state ρAB with a nontrivial qubit
maximally entangled fraction can be certified in the sym-
metric EAPM scenario using product measurements. In
particular, it can achieve the value

R2 = 1
3

+ 2
3

EF2(ρAB). (23)

Moreover, this value is optimal when ρAB is a pure two-
qubit state.

Proof. Here, we show only that Eq. (23) is attainable,
with remaining details given in Appendix C. Upon receiv-
ing the shares of ρAC, let Alice and Bob first apply some
arbitrary CPTP maps �1 and �2, respectively, the output
systems of which are d-dimensional. Subsequently, they
each implement the previously given protocol, i.e., they
perform unitaries Ux and Uy , respectively, and Charlie
measures the observables in Eq. (7). We can express the
average success probability as

R2 = 1
2

+ 1
96

tr

(

(�1 ⊗�2)[ρ]
∑

z

B(1)z ⊗ B(2)z

)

, (24)

where

B(1)0 =
∑

x

(−1)x0U†
xXUx = 4X ,

B(1)1 =
∑

x

(−1)x1U†
xZUx = 4Z,

B(1)2 =
∑

x

(−1)x0+x1U†
xXZUx = 4XZ.

(25)

The right-hand sides are obtained after some simplifica-
tions. Due to the symmetry of the protocol, we have B(1)z =
B(2)z . One then observes that

∑

z

B(1)z ⊗ B(2)z = 16(4φ+
2 − 1). (26)

Upon insertion into Eq. (24) and allowing for an optimiza-
tion over the channels �1 and �2, we obtain Eq. (23). �
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Thus, the usefulness of a state in teleportation is a suffi-
cient condition for certification in the symmetric EAPM
scenario. Notably, many states with a nontrivial maxi-
mally entangled fraction do not admit any steering. The
most immediate example is the isotropic state in the inter-
val 1

3 < v < 1
2 [35]. We remark that we have numerically

explored the trade-off between R2 and the set of (mixed)
two-qubit states with a bounded maximally entangled frac-
tion and we again find that Eq. (23) is the optimal value of
R2 for every such state.

VI. TOWARD HIGH-DIMENSIONAL SCHEMES

Having found that the symmetric EAPM scenario can
for some classes of states enable even optimal entangle-
ment advantages under product measurements, we proceed
with investigating whether the same is also possible for
high-dimensional systems. To this end, we draw inspi-
ration from the scheme in Sec. III and extend it to the
symmetric EAPM scenario.

Let d be an odd prime number. Let Alice and Bob
each select one of d2 inputs, x = (x0, x1) ∈ {0, . . . , d −
1}2 and y = (y0, y1) ∈ {0, . . . , d − 1}2. Charlie selects z ∈
{0, . . . , d} and outputs c ∈ {0, . . . , d − 1}. The winning
conditions correspond to computing the following func-
tions:

z �= d : wz = x1 + y1 − 2z(x0 − y0) mod d,
z = d : wd = x0 − y0 mod d.

(27)

The average success probability of computing these func-
tions is

Rd = 1
d4(d + 1)

∑

x,y,z

p(c = wz|x, y, z). (28)

Note that for d = 2, this reduces to the qubit scheme from
Sec. V.

A protocol based on product measurements, analogous
to that used in Sec. III, can deterministically compute
each of the winning functions. That is, choose ρAB = φ+

d ,
choose Alice’s and Bob’s unitaries as in Eq. (6), and
choose Charlie’s measurements as in Eq. (8), with the
d + 1 mutually unbiased bases {|em,z〉}. One then calculates
that Rd = 1.

Now consider a fully classical model. A simple protocol,
just like that forR2, is to send, e.g., x0 and y0 to Charlie and
thus let him output correctly (c = wz) when z = d but out-
put at random when z �= d. This leads to Rd = 2/(d + 1).
One may wonder whether there exist a quantum strategy
without entanglement that improves this bound. Nonethe-
less, in analogy with what has been proven for the qubit
case in Sec. V, we are unable to find any such protocol. In
particular, when employing the strategy mentioned above,

that was optimal for shared entanglement, but now to the
case without shared entanglement, we obtain the classi-
cal score Rd = 2/(d + 1) (for more details, see Appendix
D). While for d = 2 we have proved analytically that the
bound cannot be improved, in Appendix B, for the cases
of d = 3 and d = 5, we have used a numerical search
based on the see-saw method [39] to optimize Rd over
the operations of Alice, Bob, and Charlie without shared
entanglement. Specifically, we optimize Rd in Eq. (28) for
all possible correlations according to Eq. (19) for any set
of local quantum states αx and βy in Alice’s and Bob’s lab-
oratories, respectively, and measurements Mc|z in Charlie’s
laboratory. The optimization is rendered as a semidefinite
program with variables iterating in a see-saw manner [40].
That is, we begin sampling random quantum states αx and
βy with dimension d and optimize Rd for any of Charlie’s
measurements Mc|z. The optimal Mc|z are stored and Rd is
again optimized but now over all of Alice’s possible states
αx. Again, the optimal αx are stored and now the optimiza-
tion runs over all of Bob’s possible states βy . This routine
of three separate optimizations is then repeated until the
estimated value of Rd converges (within a precision fac-
tor of 10−4). In over 300 separate trials for each d, we
have without exception found that the obtained value of
Rd coincides with the classical bound. On this basis, we
make the following conjecture.

Conjecture 1. For every odd prime d, the largest aver-
age success probability achievable in a quantum model
without shared entanglement is

Rd = 2
d + 1

. (29)

Interestingly, if the conjecture is true, it implies that
the strong-entanglement advantages previously proven for
qubit systems can be extended to high-dimensional sys-
tems. In Appendix D, we prove that the connection
between the maximally entangled fraction and the average
success probability, seen in Proposition 2, generalizes to
larger d.

Proposition 3. For every odd prime d and state ρAB,
there exists a quantum model achieving the average suc-
cess probability

Rd = 1
d + 1

+ d
d + 1

EFd(ρ). (30)

Moreover, the numerics for d = 3 suggest that for pure
states the value in Eq. (30) is optimal but reveals that the
same is not always true for mixed states. If Conjecture 1
is true, Proposition 3 implies that every state with a non-
trivial maximally entangled fraction exceeds the limitation
of Eq. (29) and is therefore certified as entangled. In par-
ticular, every entangled isotropic state ρ iso

v has a nontrivial
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maximally entangled fraction and therefore this family of
states is optimally certified.

VII. DISCUSSION

We have shown that product measurements are suf-
ficient for revealing the advantages of noisy forms of
entanglement in prepare-and-measure scenarios and that
this can be achieved via simple communication tasks. In
the standard EAPM scenario, we have shown that visi-
bility requirements for white noise can decrease as the
inverse square root of the dimension. However, we have
also shown that this scalability is fundamentally limited
by a need for steerability for entanglement advantages. By
proposing the symmetric EAPM scenario, we have shown
how this limitation can be overcome, sometimes even in
an optimal way. This is exemplified by every entangled-
qubit Werner state being certified, as well as every state
useful for fidelity-based teleportation. Beyond qubits in
the symmetric EAPM scenario, we have also shown how
these results can be generalized to prime-dimensional sys-
tems but this ultimately requires a proof of Conjecture 1.
Extending our methods to arbitrary nonprime dimensions
is a natural next step.

Our results pave the way for theoretical exploration
and experimental implementation of strong forms of semi-
device-independent entanglement certification, which may
apply also to finer entanglement concepts such as Schmidt
numbers or fidelity estimation with a target state. It
is appropriate to label our scenarios as semi-device-
independent, because they require none of the quantum
devices to be perfectly characterized but only that the
number of degrees of freedom in the channel is bounded.
Therefore, this form of entanglement certification is far

stronger than standard entanglement witnessing, where the
devices are assumed to be flawless. For instance, the latter
is known to be vulnerable to false positives when devices
do not precisely correspond to the desired measurement
[41–43].

The main results of this work are summarized in the
first two rows of Table I and the rest of the table com-
pares our results with other relevant types of protocols.
The table focuses on the well-known isotropic state for
the sake of simplicity and to provide a concrete bench-
mark for the protocols. However, in general, our results
apply to arbitrary states, as no assumption on the entangle-
ment source is required. Using Table I, we now proceed to
discuss our results in this broader context of entanglement
certification.

First, in Table I it is shown that our protocol for the
EAPM scenario, which is based on measuring products
of complete sets of MUBs, has the same certification per-
formance as steering protocols based on complete sets of
MUBs [33,45]; at least, when one uses the best-known
closed expression for the performance of the two proto-
cols. However, the exact performance of both protocols is
underestimated, since a precise analytical solution is not
known in both cases. Notably, if one considers general
steering protocols, with infinitely many measurements, the
critical visibility can be further reduced [35]. It is an inter-
esting conceptual question whether there exist product-
measurement protocols in the EAPM scenario that, in the
limit of many measurements, can reach the critical visi-
bility for steering, which is v = (Hd − 1)/(d − 1), where
Hd = ∑d

k=1 1/k. However, our protocols in the symmet-
ric EAPM scenario, again using products of complete
sets of MUBs, significantly outperform the general steer-
ing bound. Due to our use of product measurements, we

TABLE I. A summary of the results and a comparison with other approaches. The “Qubit” and “Qudit” columns indicate bounds
on the critical visibility for certifying the isotropic state. In the case of the symmetric EAPM scenario (also dense coding and general
steering), the results are optimal. In the case of Qubit Bell nonlocality, the result is known to be nearly optimal [44] but for Qudit Bell
nonlocality, the optimal bound is largely an open problem. We have included a comparison with the best-known steering bound for
protocols based on complete sets of mutually unbiased bases, since our construction in the EAPM scenario also is based on these bases.
The colored box assumes Conjecture 1. Proposition 1 shows a fundamental limitation in the EAPM scenario. Whether a corresponding
limitation exists in the symmetric EAPM scenario is an open problem but it must be an entanglement concept that is weaker than
usefulness in fidelity-based quantum teleportation.

Qubit Qudit Fundamental limitation

EAPM v > (1/
√

3) v > (1/
√

d + 1) One-way steering

Symmetric EAPM v >
1
3

v > (1/(d + 1)) ?

Steering (via MUBs) v >
1
3

v > (1/
√

d + 1) [33,45] Number of MUBs

Steering (general) v >
1
2

v > [(Hd − 1)/(d − 1)] [35] Local hidden states

Dense coding v >
1
3

v > (1/(d + 1)) Bell-state measurement

Bell nonlocality v > 0.6961 [44] v > 0.6734 [46] for d → ∞ Local hidden variables
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achieve this while using similar experimental resources as
employed in steering experiments. Interestingly, from the
point of view of the assumptions made on the system, we
require only a dimension bound on the channel, which is
often less severe than the assumption that one measure-
ment device is flawlessly characterized, which is employed
in steering. Notably, a strict dimension assumption can also
be relaxed so that undesired small high-dimensional com-
ponents associated with the implementation can be taken
into account [47].

Second, it is well known that d-dimensional dense-
coding protocols can detect every isotropic entangled state,
namely, v > (1/(d + 1)) [24]. As we have proved for
qubits and conjectured for higher dimensions, the same
holds for our protocol in the symmetric EAPM scenario.
In this sense, we preserve the certification power for the
isotropic state while greatly reducing the experimental
requirements; from deterministic and complete Bell-state
measurements to product measurements of separate sys-
tems. It is relevant to note that we are not the first to
realize that product measurements can give rise to strong
quantum correlations in the EAPM scenario, as this has
been reported in Ref. [23]. However, the protocol pro-
posed there works only for qubits and while it is opti-
mally implemented with product measurements, it has a
very small noise tolerance. Specifically, it achieves v =
1/

√
2 ≈ 0.7071, compared to our v = 1/

√
3 ≈ 0.5774 in

the EAPM scenario and v = 1/3 in the symmetric EAPM
scenario. Note that the assumptions in these protocols
are always the same, namely, a dimension bound on the
channel.

Third, we can compare our certification results to those
obtained in Bell-inequality tests. Certification via nonlo-
cality is conceptually the strongest, since it requires no
assumptions beyond the validity of quantum theory but the
certification performance is more limited. Little is known
about the possibility of violating Bell inequalities with
isotropic states beyond dimension two. To our knowl-
edge, the best bound on v is that reported in Ref. [46];
it decreases monotonically with d but converges only to
v = 0.6734 in the limit of large d. A more certain compar-
ison is possible in the qubit case; here, the optimal known
visibility is v ≈ 0.6961 and is known that no Bell inequal-
ity can reduce it below v ≈ 0.6875 [44]. In contrast,
our protocols in both the symmetric and standard EAPM
scenarios achieve certification at significantly smaller
visibilities.

Moreover, as noted in Table I, it is possible that product-
measurement protocols in the symmetric EAPM scenario
are fundamentally limited by some operational notion of
nonclassicality that is weaker than one-way steering but
stronger than entanglement. Given our results, one may
be inclined to suggest that the relevant concept is useful-
ness in fidelity-based teleportation. However, this is not
accurate because we can numerically find entanglement

advantages from states with a trivial maximally entangled
fraction.

Furthermore, in our protocols, Charlie always performs
the product measurements. However, in practice, some-
times it can be costly to communicate the quantum mes-
sages from Alice and Bob to Charlie. We note that this
can be circumvented by “splitting” Charlie into two sep-
arate parties, one neighboring Alice and one neighboring
Bob, with independent inputs z and z′. By associating these
inputs with the respective single-particle measurements
entering Charlie’s product measurement, we can recover
the same statistics as in our protocols by imposing the
postselection condition z = z′.

Another relevant discussion is that of closing the detec-
tion loophole. Our protocols have not been designed with
the aim of minimizing detection requirements but they
nevertheless perform well in this regard. Deterministic
and complete entangled measurements on separate photons
are well known to be complicated and require additional
resources such as nonlinear optics or auxiliary qubits (see,
e.g., Refs. [13,14,48]). This is particularly well known for
the seminal Bell-state measurement [2] and it typically
means that it is significantly harder to reach high total
detection efficiencies with such measurements. Moreover,
even implementing such measurements in dimensions
larger than two is a formidable challenge. The use of proto-
cols based on product measurements offers a clear advan-
tage. For instance, in the symmetric EAPM scenario imple-
mented with qubits, we require a detection efficiency per
photon of roughly 57.7%. Recent Bell-inequality experi-
ments have shown single photon detection efficiencies far
above this value [49,50]. In contrast, we are not aware
of any relevant two-photon Bell-state measurement imple-
mented with an efficiency close to this value. Notably, the
theoretical efficiency per photon needed in entanglement
certification via dense coding is the same as in our proto-
col in the symmetric EAPM scenario. Furthermore, due to
the dimensional scalability of product measurements, both
Proposition 1 and Conjecture 1 suggest that the advantages
in detection efficiency are even more significant for larger
dimensions, as the efficiency threshold per photon will
decrease monotonically with d. For instance, recent experi-
ments on entangled four-dimensional photons have shown
detection efficiencies around 71.7% [51], well above the
regime needed for protocols of our type.
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APPENDIX A: PROOF OF Ld

We prove that for d-dimensional states αx and measure-
ments {Mc|z}, it holds that

max
{αx},{Mc|z}

1
d2(d + 1)

∑

x,z

tr
(
αxMwz |z

) ≤ 1
d

(
1 + d − 1√

d + 1

)

≡ Ld. (A1)

The proof closely parallels that used to arrive at Result 1
in Ref. [29].

Trivially reexpress the objective function on the left-
hand side of Eq. (A1) as

Sd = 1
d2(d + 1)

∑

x,z

1
d

tr
(
Mwz |z

)

+ 1
d2(d + 1)

∑

x

tr

(

αx

∑

z

(
Mwz |z − 1

d
tr(Mwz |z)

))

.

(A2)

Note that because of the winning conditions

z �= d : wz = x1 − 2zx0 mod d
z = d : wd = x0, (A3)

it follows that
∑

x Mwz |z = d1 for every z. Therefore,
the first term in Eq. (A2) simply becomes 1

d . For
the second term in Eq. (A2), the optimal αx corre-
sponds to the largest eigenvalue of the operator Ox =∑

z

(
Mwz |z − (1/d)tr(Mwz |z)

)
. Thus we have

Sd = 1
d

+ 1
d2(d + 1)

∑

x

‖Ox‖∞, (A4)

where ‖ · ‖∞ is the largest modulus eigenvalue. We then
use norm inequality from Ref. [29]: for any trace-zero
Hermitian O, it holds that

‖O‖∞ ≤
√

rank(O)− 1
rank(O)

‖O‖F , (A5)

where ‖O‖F =
√

tr(OO†) is the Frobenius norm. Applying
this to each Ox and then using the concavity of the square-
root function yields

Sd ≤ 1
d

+ 1
d(d + 1)

√
d − 1

d

√∑

x

tr(O2
x). (A6)

We proceed by examining I = ∑
x tr(O2

x). It becomes

I =
∑

x

d+1∑

z′,z=1

tr(Mwz′ |z′Mwz |z)

− 1
d

∑

x

d+1∑

z′,z=1

tr(Mwz′ |z′)tr(Mwz |z). (A7)

Label the first term I1 and the second term I2. We evaluate
them one by one:

I1 =
∑

x

∑

z

tr(M 2
wz |z)+

∑

x

∑

z′ �=z

tr(Mwz′ |z′Mwz |z). (A8)

Consider the second term. For a given pair (z′, z), we
can define the set Tc

z′,z as the set of all pairs (x0, x1)

such that wz′ = c. (i) When z′ = d, characterizing Tc
z′,z is

trivial, since its elements simply correspond to the pairs
{(c = x0, x1)}x1 . It is easily seen that {Tc

z′,z}d−1
c=0 is a parti-

tion of the set of all pairs (x0, x1). (ii) When z′ �= d and
z = d, we let Tc

z′,z correspond to all pairs (x0, x1), where
x0 = (2z′)−1(x1 − c). Note that the modular inverse always
exists and is unique when d is prime. {Tc

z′,z}d−1
c=0 is a par-

tition of the set of all pairs (x0, x1). (iii) When z′ �= d
and z �= d, the elements of Tc

z′,z correspond to choosing
x0 = (2z′)−1(x1 − c) for x1 ∈ {0, . . . , d − 1}. This gives
wz = x1

(
1 − 2z(2z′)−1

)+ 2z(2z′)−1c. Again, {Tc
z′,z}d−1

c=0 is
a partition of the set of all pairs (x0, x1).

Over all three cases, it holds that for every (z′, z, c),

∑

x∈Tc
z′ ,z

Mwz |z = 1. (A9)

Thus, we can write

∑

x

∑

z′ �=z

tr(Mwz′ |z′Mwz |z) =
∑

z′ �=z

d−1∑

c=0

∑

x∈Tc
z′ ,z

tr(Mwz′ |z′Mwz |z)

=
∑

z′ �=z

d−1∑

c=0

tr

⎛

⎜
⎝Mc|z′

∑

x∈Tc
z′ ,z

Mwz |z

⎞

⎟
⎠

=
∑

z′ �=z

d−1∑

c=0

tr(Mc|z′)

= d
∑

z′ �=z

= d2(d + 1). (A10)

In the first step, we have used that Tc
z′,z is a partition of the

set of x. In the second step, we use that wz′ = c for every
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x ∈ Tc
z′,z. In the third step, we use Eq. (A9) when (z′, z) �= d

and similarly when either z′ = d or z = d. Thus, we have

I1 =
∑

x

∑

z

tr(M 2
wz |z)+ d2(d + 1). (A11)

Similarly, for the term I2, we obtain the lower bound

I2 ≥ 1
d

∑

x

∑

z

tr(M 2
wz |z)+ 1

d

∑

x

∑

z′ �=z

tr(Mwz′ |z′)tr(Mwz |z).

(A12)

Again using the partition {Tc
z′,z}c for the set of x, the second

term reduces to becomes d2(d + 1).
Inserting the above back into Eq. (A7), we obtain

I ≤ d − 1
d

∑

x

∑

z

tr(M 2
wz |z) ≤ d − 1

d

∑

x

∑

z

tr(Mwz |z)

= d(d2 − 1). (A13)

Inserting this into Eq. (A6), we obtain the final result:

Sd ≤ 1
d

+ d − 1
d
√

d + 1
. (A14)

APPENDIX B: QUBIT BALANCED XOR SCHEMES

We consider the case of qubit communication (d = 2)
in the symmetric EAPM scenario. We allow Alice, Bob,
and Charlie to have arbitrary inputs, with alphabet sizes
NX , NY, and NZ inputs each. Charlie’s output is binary,
c ∈ {0, 1}. In general, for each z, Charlie is tasked with
outputting the value of some function of Alice’s and Bob’s
inputs, c = fz(x, y). Its average success rate is

W = 1
NX NYNZ

∑

x,y,z

p(c = fz(x, y)|x, y, z). (B1)

We focus on the broad class of schemes in which the win-
ning condition is an XOR game with balanced functions,
i.e., any choice of fz(x, y) such that

fz(x, y) = gz(x)+ hz(y) mod 2, (B2)

for some arbitrary functions gz and hz that are balanced.
Recall that a function u : {1, . . . , M } → {0, 1} is called bal-
anced if half the domain is mapped to 0 and the other half
is mapped to 1. This means that NX and NY must be even
numbers.

We now derive an upper bound on W for any quantum
model without shared entanglement. In such models, the

average success rate reads

W = 1
NX NYNZ

∑

c,x,y,z

tr
(
αx ⊗ βyMc|z

)
δc,fz(x,y). (B3)

Using the normalization M0|z + M1|z = 1, we can express
this as

W = 1
2

+ 1
NX NYNZ

∑

x,y,z

(−1)fz(x,y)tr
(
αx ⊗ βyM0|z

)
.

(B4)

Using that fz(x, y) = gz(x)+ hz(y), we rearrange this as

W = 1
2

+ 1
NX NYNZ

∑

z

tr
(

M0|zOA
z ⊗ OB

z

)
, (B5)

where

OA
z =

∑

x

(−1)gz(x)αx, (B6)

OB
z =

∑

y

(−1)hz(y)βy . (B7)

The optimal choice of M0|z is the projector onto the
positive eigenspace of the operator OA

z ⊗ OB
z . Thus, the

optimal value of the above trace is the sum of the pos-
itive eigenvalues of OA

z ⊗ OB
z . Note that since gz and hz

are balanced, tr(OA
z ) = tr

(
OB

z

) = 0. Together with the fact
that OA

z and OB
z are 2 × 2 Hermitian operators, it fol-

lows that their two respective eigenvalues have the same
magnitude and opposite sign, i.e., λ1(OA

z ) = −λ2(OA
z )

and λ1(OB
z ) = −λ2(OB

z ), where λ1 denotes the posi-
tive eigenvalue. Hence, the sum of positive eigenvalues
of OA

z ⊗ OB
z becomes λ1(OA

z )λ1(OB
z )+ λ2(OA

z )λ2(OB
z ) =

2λ1(OA
z )λ1(OB

z ). Hence,

W ≤ 1
2

+ 2
NX NYNZ

∑

z

λ1(OA
z )λ1(OB

z ).

We can now use the Bloch-vector formalism to write
αx = (1 + �αx · �σ)/2 and βy = (1 + �βy · �σ)/2, where �σ =
(σX , σY, σZ), for some unit vectors {�αx} and { �βy} in
R

3. We can now write OA
z = 1

2 �az · �σ and OB
z = 1

2
�bz · �σ ,

where we have defined the unnormalized vectors �az =∑
x(−1)gz(x)�αx and �bz = ∑

y(−1)hz(x) �βy . It is easily shown
that the eigenvalues of an operator �n · �σ are ±|�n|. Thus, we
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arrive at

W ≤ 1
2

+ 1
2NX NYNZ

∑

z

|�az||�bz|

≤ 1
2

+ 1
2NX NYNZ

√∑

z

|�az|2
√∑

z

|�bz|2, (B8)

where in the second line we have used the Cauchy-
Schwarz inequality. This has the advantage that we can
now consider the optimization problem separately for
each square-root factor. The expressions under the square
roots can be expanded to

∑
z |�az|2 = NX NZ + 2η and∑

z |�bz|2 = NYNZ + 2ξ , where

η ≡
∑

x<x′
�αx · �αx′

∑

z

(−1)gz(x)+gz(x′) (B9)

ξ ≡
∑

y<y ′
�βy · �βy ′

∑

z

(−1)hz(y)+hz(y ′). (B10)

Thus, one is left with optimizing these two expressions
independently. One possible way of doing this is to define
the Gram matrix Gx,x′ = αx · αx′ . Note that this matrix is,
by construction, both symmetric (G = GT) and positive
semidefinite (G � 0). In addition, its diagonal elements are
unit (Gx,x = 1). Hence, we can relax our optimization of η
to the semidefinite program

η̃ = max
G

∑

x<x′
Gx,x′

(
∑

z

(−1)gz(x)+gz(x′)
)

such that G � 0, G = GT, Gxx = 1 ∀ x

.

(B11)

Similarly, we can define a Gram matrix over the Bloch
vectors { �βy} and bound ξ by the analogous semidefinite
program

ξ̃ = max
G

∑

y<y ′
Gy,y ′

(
∑

z

(−1)hz(y)+hz(y ′)
)

such that G � 0, G = GT, Gyy = 1 ∀ y.
(B12)

Thus, we can systematically compute bounds of the form

W ≤ 1
2

+ 1
2NX NYNZ

√
NX NZ + 2η̃

√
NYNZ + 2ξ̃ . (B13)

We now apply this to the specific scheme considered in
the main text, i.e., the quantity R2. Clearly, the symmetry
between Alice and Bob means η̃ = ξ̃ . Moreover, for the
above semidefinite program, all coefficients appearing in

front of the Gram matrix in the objective function are −1.
Therefore, the program is invariant under permutations of
the label x. Therefore, the semidefinite program simplifies
to

η̃ = max −6u

such that

⎛

⎜
⎝

1 u u u
u 1 u u
u u 1 u
u u u 1

⎞

⎟
⎠ � 0.

(B14)

As the distinct eigenvalues of the matrix are 1 − u and 1 +
3u, it follows that the optimal choice is u = − 1

3 and thus
η̃ = 2. Inserting this into Eq. (B13), we obtain R2 ≤ 2

3 .

APPENDIX C: CONNECTION WITH QUBIT
MAXIMALLY ENTANGLED FRACTION

Here, we would like to prove that Proposition 2 in Sec. V
is tight for shared arbitrary pure states. To this end, we find
an upper bound that is equal to Eq. (23).

First, note that any two-qubit pure state can be written
in its Schmidt decomposition as

|�AB(θ)〉 = cos θ |ψA,ψB〉 + sin θ |ψ⊥
A ,ψ⊥

B 〉
= VA ⊗ VB (cos θ |0A, 0B〉 + sin θ |1A, 1B〉)
= VA ⊗ VB |�AB(θ)〉, (C1)

where {ψγ , ψ⊥
γ } represent an arbitrary orthogonal bases

for the party γ ∈ {A, B}, Vγ is a local unitary acting on
the same Hilbert space, and θ ∈ [0,π/4]. One can show
that the maximally entangled fraction of such a state is
independent of the local unitaries and only determined by
θ :

EF2 := EF2(�AB(θ)) = 1
2
(1 + sin 2θ). (C2)

Second, take the same arbitrary state �AB(θ) given in Eq.
(C1). Upon the application of local channels �A

x (�B
y ) by

Alice (Bob) and the measurement Mc|z by Charlie—not
necessarily separable—the winning score reads

R2 = 1
48

∑

x,y,z

tr
(
(�̃A

x ⊗ �̃B
y ) [�AB(θ)] Mfz(x,y)|z

)
. (C3)

where we have also absorbed the local unitaries Vγ into the
local channels such that �̃γ

α [•] = �
γ
α [Vγ • Vγ †]—since

Alice and Bob have the chance to optimize their local
operations anyway. The average score rates can be further
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simplified to

R2 = 1
2

+ 1
48

∑

x,y,z

tr
(
(−1)fz(x,y)(�̃A

x ⊗ �̃B
y ) [�AB(θ)] M0|z

)
.

(C4)

Next, note that the shared state�AB(θ) can be expressed in
terms of Pauli matrices:

�AB(θ) = cos2 θ

4
(1 + σ3)⊗ (1 + σ3)

+ sin2 θ

4
(1 − σ3)⊗ (1 − σ3)

+ sin 2θ
4

(σ1 ⊗ σ1 − σ2 ⊗ σ2). (C5)

Furthermore, since �̃α is a quantum channel, for any
arbitrary Bloch vector �m with | �m| ≤ 1, we should have

�̃α

[
1
2
(1 + �m · �σ)

]
= 1

2
(1 + �rα · �σ), (C6)

�̃α[�m · �σ ] = �sα · �σ , (C7)

where |�rα| ≤ 1—since the right-hand side of Eq. (C6) is a
normalized state. Moreover, we should also have |�sα| ≤ 1.
To see this, first applying the channel to the maximally
mixed state yields �̃α[(1/2)] = 1

2 (1 + �r0
α · �σ) for some

|�r0
α| ≤ 1. Next, take two density matrices �± = 1

2 (1 ± �m ·
�σ) and apply the channel to them. The linearity of the
channel dictates that

�̃α[�±] = �̃α

[
1

2

]
± 1

2
�̃α[�m · �σ ] = 1

2
+ 1

2
(�r0
α ± �sα) · �σ .

Now, if |�sα| > 1, at least one of the two vectors �r0
α ± �sα has

a norm above one, which contradicts the physicality of the
channel. Thus we should always have |�sα| ≤ 1.

Applying the local channels to �AB(θ) gives

(�̃A
x ⊗ �̃B

y )[�AB(θ)]

= cos2 θ

4
(1 + �m1

x · �σ)⊗ (1 + �n1
y · �σ)

+ sin2 θ

4
(1 + �m2

x · �σ)⊗ (1 + �n2
y · �σ)

+ sin 2θ
4

( �m3
x · �σ ⊗ �n3

y · �σ + �m4
x · �σ ⊗ �n4

y · �σ), (C8)

for some vectors { �mk
x, �nk

y}4
k=1 that satisfy | �mk

x| ≤ 1 and
|�nk

y | ≤ 1—note that we have absorbed a minus sign in
the vector �m4

x . By plugging into Eq. (C4) and noting that

fz(x, y) = gz(x)+ hz(y) mod 2, with balanced functions
gz(x) and hz(y), we have

R2 = 1
2

+ 1
48

×
∑

x,y,z

4∑

i=1

τi tr
(
(−1)gz(x)+hz(y) �mi

x · �σ ⊗ �ni
y · �σ M0|z

)
,

(C9)

where τ = 1
4 (cos2(θ), sin2(θ), sin 2θ , sin 2θ) ≥ 0 within

the domain of θ . We have also made use of the fact that
for any balanced function f (x),

∑
x(−1)f (x) = 0.

We can bring R2 to a similar form as Eq. (B5),

R2 = 1
2

+ 1
12

4∑

i=1

τi

∑

z

tr
(

M0|zOA
z,i ⊗ OB

z,i

)
, (C10)

where

OA
z,i = 1

2

∑

x

(−1)gz(x) �mi
x · �σ , (C11)

OB
z,i = 1

2

∑

y

(−1)hz(y)�ni
y · �σ . (C12)

One can separately bound each of the four terms by using
the result obtained in Appendix B—see Eqs. (B13) and
(B14)—to obtain

∑

z

tr
(
M0|zOA

z,i ⊗ OB
z,i

) ≤ 8, (C13)

which is independent of “i.” Therefore,

R2 ≤ 1
2

+ 2
3

4∑

i=1

τi = 1
3

+ 2
3

EF2(θ). (C14)

where we have used Eq. (C2) to evaluate
∑4

i=1 τi =
EF2(θ)− 1

4 .

APPENDIX D: CONNECTION WITH MAXIMALLY
ENTANGLED FRACTION FOR ARBITRARY d

First, we prove that Rd = 1. For simplicity, we define
the projector Em|z = |em,z〉〈em,z|. We measure one particle
in the basis {Ec1|z}, with outcome c1, and the other particle
in the conjugated basis {E∗

c2|z}, with outcome c2. The final
output is defined as c = c1 − c2 mod d. Thus, the posi-
tive operator-valued measure describing this measurement
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becomes

Mc|z =
∑

c1,c2

Ec1|z ⊗ E∗
c2|zδc,c1−c2 . (D1)

Next, via a direct calculation, it is possible to show these
relations (given in the main text) for any z = 0, . . . , d − 1:

X t|em,z〉 = ωzt2−tm|em−2zt,z〉,
X t|e∗

m,z〉 = ω−zt2+tm|e∗
m−2zt,z〉,

Zt|em,z〉 = |em+t,z〉,
Zt|e∗

m,z〉 = |e∗
m−t,z〉.

(D2)

That is, applying any unitary of the form X t1Zt2 to any of
the eigenstates associated with the first d bases are mapped
into other eigenstates of the same basis. In other words, the
basis {|em,z〉}d

m=1 is closed under the operation of X t1Zt2 for
z = 0, . . . , d − 1.

Now consider the probability of outputting the right
answer, c = wz, for z = 0, . . . , d − 1. It reads

p(c = wz|x, y, z)

=
∑

c1

〈φ+
d | (|νc1xz〉〈νc1xz| ⊗ |μc1xyz〉〈μc1xyz|

) |φ+
d 〉,

(D3)

where

|νc1xz〉 = Z−x1X −x0 |ec1,z〉, (D4)

|μc1xyz〉 = Z−y1X −y0 |e∗
c1−wz ,z〉. (D5)

Successively applying the relations in Eq. (D2), one finds
that

|νc1xz〉〈νc1xz| = Ec1+2zx0−x1|z
|μc1xyz〉〈μc1xyz| = E∗

c1+2zx0−x1|z.
(D6)

Note that the second vector now has no dependence on y.
From the relation, 1 ⊗ O|φ+

d 〉 = OT ⊗ 1|φ+
d 〉 and the fact

that {Em|z} forms a orthonormal basis, it follows that

p(wz|x, y, z) = 1
d

∑

c1

Tr
(
Ec1+2zx0−x1|zEc1+2zx0−x1|z

) = 1.

(D7)

Performing the same calculation for the computational
basis, z = d, gives an analogous result. Hence, we have
perfect correlations for every z and hence we achieve the
algebraically optimal value Rd = 1.

The maximally entangled fraction is defined as

EFd(ρ) = max
�1,�2

〈φ+|(�1 ⊗�2)[ρ]|φ+
d 〉, (D8)

where �1 and �2 are CPTP maps with d-dimensional out-
put spaces. If it exceeds 1/d, the state is entangled. To
show that this quantity is relevant for the value of Rd, let
Alice and Bob first apply local CPTP maps �1 and �2,
respectively, before applying the protocol used above to
arrive at Rd = 1 for the maximally entangled state.

We can write the figure of merit as

Rd = 1
d + 1

tr

(

(�1 ⊗�2)[ρ]
d∑

z=0

R(z)
d

)

, (D9)

where we have defined

R(z)
d = 1

d4

∑

x,y,c1

|νc1xz〉〈νc1xz| ⊗ |μc1xyz〉〈μc1xyz| (D10)

for z = 0, . . . , d − 1. Using Eq. (D6) and taking the sums
over (x, y, c1), we obtain

R(z)
d =

d−1∑

c=0

Ec|z ⊗ E∗
c|z. (D11)

This can be thought of as an unnormalized correlated-coin
state in the zth MUB. Indeed, a direct calculation for the
computational basis—namely, z = d—analogously leads
to R(d)

d = ∑d−1
c=0 |cc〉 〈cc|. Now, we can use the key fact

that for any complete set of mutually unbiased bases, it
holds that [42]

T ≡
d∑

z=0

d−1∑

c=0

Ec|z ⊗ E∗
c|z = 1 + dφ+

d . (D12)

Hence, we have

Rd = 1
d + 1

tr ((�1 ⊗�2)[ρ]T )

= 1
d + 1

+ d
d + 1

tr
(
(�1 ⊗�2)[ρ]φ+

d

)
. (D13)

Since we can allow any channels for Alice and Bob, we can
choose those that correspond to the maximally entangled
fraction of ρ. Hence, we have obtained

Rd = 1
d + 1

+ d
d + 1

EFd(ρ). (D14)
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