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The relations among a given set of observables on a quantum system are effectively captured by their
so-called joint numerical range, which is the set of tuples of jointly attainable expectation values. Here
we explore geometric properties of this construct for Pauli strings, whose pairwise commutation and anti-
commutation relations determine a graph G. We investigate the connection between the parameters of this
graph and the structure of minimal ellipsoids encompassing the joint numerical range, and we develop
this approach in different directions. As a consequence, we find counterexamples to a conjecture by de
Gois et al. [Phys. Rev. A 107, 062211 (2023)], and answer an open question raised by Hastings and
O’Donnell [STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 776–789], which implies a new graph parameter that we call “β(G).” Furthermore, we provide
new insights into the perennial problem of estimating the ground-state energy of a many-body Hamilto-
nian. Our methods give lower bounds on the ground-state energy, which are typically hard to come by,
and might therefore be useful in a variety of related fields.
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I. INTRODUCTION

Pauli strings, i.e., tensor products of families of Pauli
operators acting on multiple qubits, are undeniably among
the most essential and omnipresent objects in the field
of quantum information theory. In addition to their role
as unitary transformations, they commonly also serve as
fundamental building blocks for constructing observables.
Examples of such constructed observables are widespread,
ranging from virtually every Hamiltonian that is consid-
ered in the field of quantum computing [1–5] to typical
measurements in quantum communication protocols [6–9]
and to the rich theory of spin systems in condensed-matter
physics [10–16].
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A pivotal object of investigation in this context is the set
of jointly attainable expectation values. For a given set of n
Pauli strings S = {S1, . . . , Sn} acting on the Hilbert space
H, we will consider

J (S) = {(〈S1〉ρ , . . . , 〈Sn〉ρ
) |ρ ∈ D(H)} , (1)

which is a compact convex subset of R
n (see Fig. 1 for

examples); here and subsequently, D(H) denotes the set
of all states on the Hilbert space H, i.e., density matrices,
which are positive semidefinite and of unit trace.

For a general sequence S of observables, J (S) in Eq.
(1) is commonly referred to as the (convex) joint numer-
ical range [17–23], or convex support. For special sets
of observables, this set may, however, have more spe-
cific names, depending on the context. The most prominent
example of this surely is the well-known Bloch ball (aka
Bloch sphere), which can be understood as the joint numer-
ical range of the three Pauli operators acting on a single
qubit, i.e., S = {X , Y, Z}.

For a more complex set of strings, the geometry of J (S)
is no longer necessarily captured by a sphere. Neverthe-
less, one can still ask for the smallest radius of a sphere
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FIG. 1. Joint numerical ranges of three Pauli strings whose
commutation and anticommutation relations are represented by
the four possible graphs of three vertices. The real lines repre-
sent the anticommutation relations and the dashed lines stand for
commutation relations.

or more generally an ellipsoid encompassing it. From a
purely geometric perspective, this is the question tackled
in the present work.

The joint numerical range geometrically encodes much
relevant information about the interplay between observ-
ables and quantum states. Most strikingly, Hamiltonians
that can be written as linear combinations of elements in
S can be directly understood as linear functionals acting
on J (S). Correspondingly, the quest of finding ground-
state energies and properties of states attaining them can
be cast as the characterization of tangential hyperplanes on
J (S). Moreover, upper and lower bounds to ground-state
energies correspond to inner and outer approximations of
J (S).

This insight, however, directly reveals that the precise
characterization of the joint numerical range can, even for
simple objects such as Pauli strings, be an intrinsically hard
problem, i.e., at least as hard as solving ground-state prob-
lems on multiple qubits. This clearly justifies the demand
for practical approximation techniques.

For the ground-state energy problem itself, there is
a large toolbox of known methods. Most of them pro-
vide lower bounds (inner bounds on J (S)) by restricting
the optimization to a suitable variational class of states.
Prominent examples to be mentioned here include classi-
cal methods building on matrix product states [16,24,25],
as well as implementations on quantum computers where
algorithms such as the quantum approximate optimization
algorithm [26–28] or the variational quantum eigensolver
[29,30] are very popular.

Methods for outer approximations, on the other hand,
are rare. In contrast to variational methods, the handling of
global structures is needed, which is typically much harder
to achieve. Nevertheless, they can be of central impor-
tance. On one hand, outer bounds give complements for
inner approximations and, by this, an interval for the over-
all accuracy of an approximation attempt. On the other, the
existence of a bound that cannot be surpassed by any quan-
tum state, also including those that are not in a variational
class, can be critical in applications such as cryptography
or entanglement detection.

Notable examples of outer approximations can be found
in Refs. [31–33]. Here, the ansatz is to exploit the alge-
braic structure of the problem for setting up hierarchies
of noncommutative polynomial relaxations [34,35]. Even
though the scope of these methods is to solve a particular
ground-state problem, the feasible set of such a relaxation,
sometimes called the “relaxation of the quantum set,” can
be seen as an outer approximation to the joint numerical
range J (S). On the theoretical side, those methods usually
come with a convergence guarantee. In practice, however,
they tend to show a very bad scaling behavior and typically
saturate any practical limit of computational resources very
quickly.

In the present work, we move towards a (semi)analytical
understanding of J (S). For an m-dimensional ellipsoid
Er(w) with principal axes of length r/

√
wi, where w =

(w1, . . . , wm) is a positive weight vector, we ask for the
smallest r ≥ 0 such that

J (S) ⊆ Er(w) (2)

holds. Such a minimal ellipsoid, or at least an upper bound
on r, then allows us to compute bounds on ground-state
energies analytically. This is especially interesting when
we deal with high-dimensional objects, i.e., for long Pauli
strings where the Hilbert space dimension scales exponen-
tially. We have to clarify that the deployment of a new
numerical toolbox is, however, not within the scope of the
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present work, and we leave this for a future investigation.
Here our main interest is to develop the foundations for a
comprehensive understanding of the structures presented.

Finding a valid r, the optimal value of which we refer to
as the “(generalized) radius,” corresponds to the nonlinear
optimization

r2 ≥ sup
ρ

∑
wi〈Si〉2

ρ . (3)

Formally, this can be seen as an instance of so-called spec-
trahedral inclusion problems [36,37], for which there are
unfortunately no out-of-the-box solutions. Hence, much of
the particular structure of the present problem has to be
leveraged in the solution.

The structure of minimal ellipsoids, as well as the struc-
ture of J (S) itself (see Fig. 1), is closely related to a
graph G that encodes the commutation and anticommuta-
tion relations within the strings of a set S . This graph is
also known as a “frustration graph” [11,12], an “anticom-
mutation graph” [38], or an “anticompatibility graph” [39]
in the literature. It can be shown [31,40] (see Proposition
2) that the minimal radius of an ellipsoid is lower-bounded
by the weighted independence number of G and is upper-
bounded by its weighted Lovász number. While being
efficiently computable, the Lovász number as an upper
bound is known to be generally not tight [31,40]. The tight-
ness of the lower bound was, however, outstanding. For
the spheroidal case w = (1, 1, . . .), it was conjectured [40],
and extensively discussed during the coffee breaks at some
workshops, that the independence number of G describes
the minimal radius. We show by an explicit example that
this conjecture is false.

As a consequence, we introduce the minimal radius of
an ellipsoid as a new graph parameter β(G, w) and embark
on its exploration. We develop a number of equivalent
formulations of it, we show that it is monotonic nonin-
creasing when passing to an induced subgraph, we show
that it is multiplicative under the so-called lexicographic
product, and we show several other properties. We calcu-
late it for cyclic graphs Cn and develop numerical tools
to evaluate it for the complements of odd cycles C2n+1,
supporting our conjecture that β(C2n+1) > 2 for all n ≥ 3.
Lastly, we also elaborate on the connection of our results
to the quest for uncertainty relations between Pauli strings
as their structure also depends directly on the structure of
minimal ellipsoids [40,41].

Our results connect multiple topics in quantum theory,
graph theory, and algebra analysis, and so we believe that
they might provide new insights in those fields as well.

II. OPERATOR REPRESENTATIONS OF GRAPHS,
GRAPH PARAMETERS, AND MAIN RESULTS

To get a leverage on minimal ellipsoids we have to find
global structures of the problem that can be efficiently

used. Regarding a set S of Pauli strings as the represen-
tation of an algebra is along those lines. To this end, we
introduce the frustration graph and consider an example.

It is easy to see from the elementary properties of the
four Pauli matrices (from now on including the identity)
that each possible pair of Pauli strings either commutes
or anticommutes. For a set of strings, this information can
be encoded in a graph G, where each vertex represents a
string and an edge is drawn whenever two strings anticom-
mute. We refer to this graph as a “frustration graph.” Basic
examples include the graphs shown in Fig. 1. For exam-
ple, consider the third graph from the top in Fig. 1. This
example was built with Pauli strings

S1 = X ⊗ Y, S2 = Z ⊗ Z, and S3 = Z ⊗ Y. (4)

The strings S1 and S2 commute, whereas the string S3 anti-
commutes with both S1 and S2. The joint numerical range
is depicted next to it and arises from the intersection of
two cylinders. For completeness, it makes sense to regard a
cylinder as an asymptotic ellipsoid with one of its principal
axes approaching infinity.

Note that fixing a graph G does not uniquely fix the set
of strings representing it, and there are more than only uni-
tary degrees of freedom in them. In this sense, there are
more sets of strings than there are graphs. For example,
any triple of strings will by construction give one of the
graphs shown in Fig. 1.

For the questions considered in this work, we can, how-
ever, make a basic proposition, formulated in more detail
in Theorem 3. It states that the radius of a minimal ellip-
soid will be the same across all possible sets of strings
representing the same graph.

Proposition 1. Let S1 and S2 be sets of Pauli strings
with the same frustration graph. Then we have that for any
ellipsoid Er(w),

Er(w) ⊇ J (S1) if and only if Er(w) ⊇ J (S2). (5)

In other words, we can turn to investigating structures
on a graph G rather than on an explicit set of strings. This
can be done by our introducing an algebraic framework.
For a given graph G, we will consider operators with the
following abstract algebraic properties:

(i) Si = S∗
i .

(ii) S2
i = I.

(iii) S2
i ≤ I.

(iv) {Si, Sj } = 0 if i ∼ j .
(v) [Si, Sj ] = 0 if i � j .

where i ∼ j denotes vertices that are connected by an edge
in a given graph G, i.e., i and j are adjacent.

It is clear that Pauli strings will obey all these properties.
To investigate bounds on the radius of a minimal ellipsoid,
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we can, however, turn things around and consider all sets
of operators fulfilling these conditions, or at least some of
them. By this, we get a constructive tool for setting up
relaxations of the joint numerical range. The detailed dis-
cussion of such operator representations of a graph is the
mathematical core of this work.

Definition 1. For a given graph G, a set {Si} of operators
in some Hilbert space H will be called

(a) a “self-adjoint unitary representation for anticom-
mutativity” (SAURA) if (i), (ii), and (iv) hold. The
set of all SAURAs will be denoted by Sa(G).

(b) a “self-adjoint unitary representation” (SAUR) if (i),
(ii), (iv), and (v) hold. The set of all SAURs will be
denoted by Sac(G).

(c) a “self-adjoint representation for anticommutativ-
ity” (SARA) if (i), (iii), and (iv) hold. The set of
all SARAs will be denoted by S≤

a (G).
(d) a “self-adjoint representation” (SAR) if (i), (iii),

(iv), and (v) hold. The set of all SARs will be
denoted by S≤

ac(G).

It is clear from the definition above that the different
sets of graph representations include each other, i.e., every
SAUR is a SAR and a SAURA, and they are all a SARA.
This can be captured in the diagram

One can also consider the C∗ algebras generated by the
different sets of relations. Each of these algebras naturally
comes with a state space too, and hence also with a joint
numerical range. These joint numerical ranges are by con-
struction outer approximations to the joint numerical range
of an explicit set of Pauli strings. The algebra generated by
all SAURs is known as quasi Clifford algebra [42]. It is
a finite-dimensional algebra and can be seen as a general-
ization of the Clifford algebra in the sense that we obtain
the Clifford algebras as the subcases with a fully connected
graph. The representation theory of this object was worked
out in Refs. [42,43], and a brief summary can be found
in Ref. [31]. In a nutshell, we have that the Pauli strings
with which we started are exactly generators of representa-
tions of this algebra. Bounds on minimal ellipsoids derived
for this algebra are optimal. Bounds arising from consid-
eration of the other algebras give relaxations, i.e., upper
bounds on the radius.

The algebra corresponding to all SAURAs can gener-
ally be infinite dimensional, yet still separable. As we
show later (Lemma 4), the algebra corresponding to a
SAR can be understood as the tensor product of the quasi

Clifford algebra of the SAURs with a classical (i.e., com-
muting) algebra. A corresponding result for the algebra
corresponding to a SAURA does not hold however.

For a set� of operator representations of a graph, where
each representation S acts on a Hilbert space HS , we can
extend the notion of a joint numerical range by considering

J (�) := {(〈Si〉ρ
) | S = {Si} ∈ �, ρ ∈ D(HS)

}
, (6)

which is still a subset of R
n, but now containing all possi-

ble tuples of expectations attainable by the set of operators
corresponding to a particular operator representation. To
analyze ellipsoids, it makes sense to also consider the set
of squared expectations

Q (�) := {(〈Si〉2
ρ

) | S = {Si} ∈ �, ρ ∈ D(HS)
}

. (7)

Given this set, the minimal radius of an ellipsoid [recall
Eq. (3)] corresponding to some w is the square root of the
maximal value of a linear functional

q (�, w) := sup
(vi)∈Q(�)

∑

i

wivi. (8)

In the spheroidal case, when all elements of w are just 1,
we omit w in the notation and write q (�). Furthermore,
we denote by Q (�) the convex hull of Q (�). If � con-
tains only one element, say, � = {x}, we abuse notation
and write q(x) instead of q({x}).

For � a Sac(G), S≤
ac(G), Sa(G), or S≤

a (G), it holds that

J (�) = {(±√
qi)|(qi) ∈ Q (�)}, (9)

since {±Si} ∈ � if {Si} ∈ �. In this case, the characteri-
zation of J (�) is equivalent to the characterization of
Q (�). J (�) is always convex and contains what is called
the “stable set polytope” STAB(G), which, in those four
cases, is given by the convex hull of the set

{(vi) | vivj = 0 if i ∼ j , vi, vj ∈ {0, 1}}.

Equation (8) basically states that the full structure of ellip-
soids encompassing the different J (�), and by this also
any J (S) of interest, is encoded in the convex hulls of the
different Q (�).

Now we state our main results and explain the structure
of the paper.

Proposition 2. (Main results) Let G be a graph. Let
STAB(G) be its stable set polytope and let TH(G) be its
Lovász theta body. For Q evaluated on different represen-
tations of G, as introduced above, we have the following
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ordering relations:

STAB(G)
(a)⊆

Q (Sac(G))
‖(b)

Q (S≤
ac(G)

)
(c)⊆

Q (Sa(G))
‖(d)

Q (S≤
a (G)

)
(e)= TH(G),

(10)

with the Lovász theta body defined as

TH(G) = {|〈φ0|vi〉|2 | 〈vi|vi〉 = 1, 〈vi|vj 〉 = 0 if i ∼ j },

where |φ0〉 is an arbitrary but fixed normalized vector in
Rn.

Consequently, for any non-negative weight vector w,

α(G, w)≤
q (Sac(G), w)

‖
q
(S≤

ac(G), w
)≤

q (Sa(G), w)
‖

q
(S≤

a (G), w
) = ϑ(G, w),

(11)

where α(G, w) = q(STAB(G), w) and ϑ(G, w) = q(TH
(G), w) are the weighted independence number and Lovász
number of G, and q (Sac(G), w) is denoted as β(G, w) later.

The equality of Q (Sac(G)) and Q (S≤
ac(G)

)
[(b) in Eq.

(10)] and that of Q (Sa(G)) and Q (S≤
a (G)

)
[(d) in Eq.

(10)] are outlined in Sec. VI as Theorems 11 and 10,
respectively. Hence, we can focus the main part of our
investigations on SAURAs (Sec. III) and SAURs (Sec.
IV).

A relation between q (Sac(G), w) and ϑ(G, w) was
described in Refs. [31,40]. From the algebraic perspective
of this work, this relation is directly captured by the fact
that Q (Sac(G)) is contained in TH(G), and their equiva-
lence [(b) in Eq. (10)] is summarized as Theorem 1 in Sec.
III. In Sec. V, we prove that the inclusion of STAB(G) in
Q (Sac(G)) can be strict for some graphs, which implies
that β(G, w) is a new graph parameter. For this, we have
to firstly show in Theorem 3 in Sec. IV that Q (Sac(G)) =
Q ({Si}) for {Si} to be any SAUR of G. We then continue
to study the properties of the β number under graph oper-
ations in Sec. V; more explicitly, the properties for graph
additions as in Theorems 4 and 5, for graph products in
Theorems 6 and 7, for edge removal in Theorem 8, and for
cycle graphs in Theorem 9. Finally, we apply those results
to obtain better bounds than previous ones for uncertainty
relations as in Thereom 12, and for ground-state energy as
in Theorem 13.

Establishing a bridge to the Lovász theta body TH(G)
and the Lovász number, as described in Proposition 2, is
especially interesting from a numerical perspective since
ϑ(G, w) can be computed via semidefinite programming
(SDP). Using this as a tool for outer bounds is advanta-
geous since the size of this SDP scales with n, i.e., the
number of vertices of G, and by this ultimately with the

number of strings in a set S . This has to be contrasted
with the problem of computing ground-state energies, i.e.,
hyperplanes of J (S), whose size scales with the Hilbert
space dimension 2n, where n is the length of the strings.

Furthermore, for a given set of observables {Si}, there
is a complete hierarchy of SDP relaxations for q ({Si}) as
explained in Appendix B. Two practical see-saw methods
for the numerical estimation are also provided in Appendix
B. Finally, the estimation can be improved once we know
the purity of the state, as discussed in Appendix A.

III. SELF-ADJOINT UNITARY REPRESENTATION
FOR ANTICOMMUTATIVITY

As introduced in Sec. II, for a given graph G, a set
{Si} of self-adjoint unitaries is said to be a SAURA of G
if i ∼ j implies that {Si, Sj } = 0. An essential task is to
characterize q (Sa(G)) and Q (Sa(G)).

Lemma 1. (See Ref. [31]) For any graph G, it holds that

α(G) ≤ q (Sa(G)) ≤ ϑ(G). (12)

The relation q ({Si}) ≥ α(G) for any SAUR {Si} of a
graph G can be directly proven by choosing the state ρ
as a common eigenstate of a set of the commuting observ-
ables from Si, where i ranges over a maximal independent
set of G. For any graph G, it holds that α(G) ≤ ϑ(G). In
the case that G is a perfect graph, we have α(G) = ϑ(G)
[44]. Hence, the upper bound in Eq. (12) is tight for per-
fect graphs. Especially, in the case that G is a clique graph
with n vertices where any two vertices are connected, the
relation q (Sa(G)) = 1 holds. For a given set of observ-
ables, numerical estimation of q ({Si}) can, in principle,
provide a more precise bound. Different numerical meth-
ods to estimate q ({Si}) are presented in Appendix B. Here
we take the graph-theoretic approach, and provide an exact
characterization of q (Sa(G)) and Q (Sa(G)).

The graph-theoretic approach has been explored exten-
sively in quantum contextuality [45], where the orthogo-
nality representation (OR) of a graph is used [46]. For a
given graph with n vertices, a set of unit vectors {|vi〉}n

i=1 is
said to be an OR of the graph G if 〈vi|vj 〉 = 0 when i ∼ j .
An OR of a given graph implies a SAURA of the same
graph.

Lemma 2. For a given set of d-dimensional vectors
{〈vi| = (vi1, . . . , vid)}, if we denote Si =∑k vikAk, where
{Ak}d

k=1 is a set of anticommuting self-adjoint unitaries, it
holds that {Si, S†

j }/2 = 〈vi|vj 〉I.

There are indeed self-adjoint unitary representations for
anticommutativity of a graph that cannot be constructed
from an OR—for example, the operators {X I, YI, ZI, ZZ}
and their anticommutativity graph. Indeed, those four oper-
ators are linearly independent, but there is no operator that
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anticommutes with all of them at the same time; hence,
there is no anticommuting basis for those four operators.
In this sense, there are more SAURAs than ORs of a given
graph. Nevertheless, such a construction of SAURAs from
ORs is the key step in the following proof.

Theorem 1. Q (Sa(G)) = TH(G) for any graph G.

The proof is provided in Appendix C, as are the proofs
for the other results given in the main text. Thus, we have
a new physical explanation of the graph parameter ϑ(G).

Example 1. For the pentagon graph, its Lovász num-
ber can be achieved with the state 〈u| = (1, 0, 0) and the
following orthogonal representation {|vi〉}5

i=1, where

〈vi| = (τ , τ ′ cos(2π i/5), τ ′ sin(2π i/5)
)

, (13)

where τ = (1/5)1/4 and τ ′ = √
1 − τ 2.

Hence, by choosing

Si =
∑

k

vikσk for all i = 1, . . . , 5, (14)

ρ = (I + σ1)/2, (15)

where σ1 = X , σ2 = Y, and σ3 = Z are Pauli matrices, we
have

∑
i 〈Si〉2

ρ = √
5.

There is another concise proof of Theorem 1. 〈Si〉ρ =
x〈vi|u〉 if we take ρ = (I + x

∑
k ukAk)/d, where |x| ≤ 1.

We note that ρ � 0 is a legal state since the maximal eigen-
value of

∑
k ukAk is no more than 1. Thus,

∑
i wi 〈Si〉2

ρ =
x2∑

i wi(〈vi|u〉)2 = x2ϑ(G, w) by definition. By taking
x = ±1, we complete the proof.

Further results along the same line are provided in
Appendix A.

IV. SELF-ADJOINT UNITARY
REPRESENTATIONS

The set of operators, where any pair either commutes or
anticommutes, plays an important role as exemplified by
the Pauli strings. The commutation and anticommutation
relations of such a set {Si} can be encoded into a so-called
frustration graph G [11,12], where i ∼ j if {Si, Sj } = 0
and i �∼ j if [Si, Sj ] = 0. By the checking of extensive
examples, it is conjectured in Ref. [40] that

q ({Si}) = α(G). (16)

Whether Eq. (16) can be violated is also an open ques-
tion in Ref. [31]. Conversely, for a given graph G, we can
consider its representation by a set {Si} of self-adjoint uni-
taries, in the sense that {Si, Sj } = 0 if i ∼ j and [Si, Sj ] = 0

if i �∼ j . This representation is called a “self-adjoint uni-
tary representation” [47]. By taking the graph-theoretic
approach instead of starting from a special set, we denote
β(G, w) = q (Sac(G), w), where Sac(G) is the set of all
SAURs of G. The conjecture in Eq. (16) is equivalent to
β(G) = α(G). In Ref. [31], no such example is known
where β(G) > α(G). To continue, we first introduce the
standard SAUR of a given graph, which is defined deduc-
tively. The standard SAUR can help us to reduce the
complexity of considerations, since we need to focus only
on the standard SAUR to obtain β(G), as we see later.

Definition 2. For a given graph G and one of its edges
(i0, j0), other vertices except for i0 and j0 can be divided
into four groups V0, V1, V2, and V3, such that

(a) i �∼ i0 and i �∼ j0 for any i ∈ V0.
(b) i �∼ i0 and i ∼ j0 for any i ∈ V1.
(c) i ∼ i0 and i ∼ j0 for any i ∈ V2.
(d) i ∼ i0 and i �∼ j0 for any i ∈ V3.

The subgraph G′ of G with vertices in ∪4
i=0Vi is said to be

a Pauli-(i0, j0)-induced subgraph of G

(a) if i ∈ Vk1 and j ∈ Vk2 , where k1 �= k2 ∈ {1, 2, 3}, we
have i ∼ j (or i �∼ j ) in G′ if and only if i �∼ j (or
i ∼ j ) in G;

(b) otherwise i ∼ j in G′ if and only if i ∼ j in G.

Definition 3. For a given graph G and one of its edges
(i0, j0), if we denote by G′ the Pauli-(i0, j0)-induced sub-
graph of G, from a standard SAUR {S′

i} of G′, we call the
following SAUR a standard SAUR of G:

(
3⋃

k=0

{σk ⊗ S′
i}i∈Vk

)

∪ {Xi0 ⊗ I, Zj0 ⊗ I}. (17)

If G has no edge, we assign I or 1 to all its vertices.

If we take the pentagon C5 in Fig. 2 as the original graph,
and (1, 3) as the edge, then the Pauli-(1, 3)-induced sub-
graph G′ is a triangle. Continually, the Pauli-(4, 5)-induced
subgraph G′′ of G′ is just the vertex 2. Hence, the standard
SAURs {S′′

i }, {S′
i}, and {Si} of G′′, G′, and G, respectively,

are

S′′
2 = 1, S′

2 = Y, S′
4 = X , S′

5 = Z, (18)

S1 = X I, S2 = IY, S3 = ZI, S4 = ZX , S5 = XZ,
(19)

where we have omitted the symbol of the tensor product,
and X I means X ⊗ I, etc.
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1

23

4

5

FIG. 2. Pentagon graph C5.

Theorem 2 (See Ref. [47]). For a given graph G, one
SAUR {Si}, and one standard SAUR {S̄i} of G, there is a
unitary U such that USiU† = S̄i ⊗ Di, where {Di} is a set
of commuting self-adjoint unitaries.

Though different sequences of edges lead to different
standard SAURs, Theorem 2 implies that they are in the
same dimension and connected by unitaries. The standard
SAUR is succinct; however, it loses the information of the
symmetry in the graph. To reflect the structure of the graph,
we introduce the edge SAUR.

Definition 4. For a given directed graph Ĝ with n ver-
tices and the edge set E, the set of self-adjoint operators
{Ai}n

i=1, with Ai = ⊗e∈EOe,i, is called the “edge SAUR of
Ĝ,” where Oe,i = X if i is the start of e and Oe,i = Z if i is
the end of e, otherwise Oe,i = I.

For an undirected G, we can lift the concept of an edge
SAUR by simply choosing directions. The resulting rep-
resentation is indeed unique. Switching between different
choices of directions results in permutation of X ’s and Z’s.
Since every edge corresponds to a single qubit in a edge
SAUR, this operation corresponds to a unitary transforma-
tion. For different SAURs of the same graph G, their joint
expectation values are related.

Theorem 3. For a given graph G, q ({Si}) = q
({S̄i}

)
,

where {Si} is a SAUR of G and {S̄i} is a standard SAUR.

Hence, we have β(G) = q
({S̄i}

)
, where {S̄i} is any stan-

dard SAUR of G. A similar result of Theorem 3 for
the weighted version can be proven in the same way.
Consequently, Q (Sac(G)) = Q ({Si}), where {Si} is any
SAUR of G. However, J (Sac(G)) might be strictly larger
than J ({Si}) due to the sign of each expectation value.
To recover the whole set of J (Sac(G)), it is enough to
consider the complete SAUR as defined below.

Definition 5. For a given graph G with n vertices and its
standard SAUR {S̄i}, the set {Si} consisting of

Si = S̄i ⊗
( n⊗

k=1

Zδik
)

(20)

XI

ZIXX

IY

ZZ YZ

YI

YX

XZ

ZX

FIG. 3. A graph G10 with ten vertices and one of its stan-
dard realizations, which contains a pentagon C5 as an induced
subgraph (thick green lines).

is said to be a complete SAUR, where δik = 1 if i = k,
otherwise δik = 0.

As we can see, the auxiliary part {⊗n
k=1Zδik } can recover

all signs in {−1, 1}⊗n. Effectively, this provides a cover
of J (Sac(G)) with multiple copies of J ({S̄i}

)
. Gener-

ally, J ({S̄i}
)

can be neither point symmetric nor reflection
symmetric, but J (Sac(G)) has both point and reflection
symmetries.

V. THE β PARAMETER

For the characterization of the graph parameter β(G),
we consider some properties of it in this section. First, we
show that β(G) is indeed different from α(G), although it
can occur that α(G) = β(G) for certain graphs.

Corollary 1. For the graph G10 and C5 in Fig. 3,

β(G10) = α(G10) = β(C5) = α(C5) = 2. (21)

However, the conjecture in Eq. (16) is not true gener-
ally. A simple counterexample is the antiheptagon and its
standard SAUR as shown in Fig. 4. To be more explicit,
the seven operators are

S1 = ZZI, S2 = ZII, S3 = IX I, S4 = X II,

S5 = XZX , S6 = YZZ, S7 = YYY. (22)

It can be checked by hand that these operators form one
standard SAUR of C̄7, and α(C̄7) = 2.

Let ρ = |v〉〈v| be the state that corresponds to the largest
eigenvector of

∑
i Si. With a little bit more handwork, or by

using a computer algebra system, one can check that
∑

〈Si〉2
ρ = (9 + 4

√
2)/7 ≈ 2.09384 > 2 = α(C̄7), (23)

which disproves the conjecture in Eq. (16). Besides,
ϑ(C̄7) = 1 + 1/ cos(π/7) ≈ 2.10992. Thus, in general,
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ZII

IXI

XII

XZX

YZZ YYY

ZZI

FIG. 4. Graph of the counterexample and its SAUR. A pair
of observables anticommute when the corresponding vertices are
connected by an edge in the graph of an antiheptagon C̄7 (all blue
lines) and commute when they are connected by an edge in the
graph of a heptagon C7 (thin green lines). The subgraph of C̄7
(solid blue lines) is named as “G7.”

α(G), β(G), and ϑ(G) (α(G) ≤ β(G) ≤ ϑ(G)) are indeed
three different graph parameters.

Then we consider properties of the β number under
graph operations, e.g., the addition, graph products such
as the lexicographic product, and the XOR product. Those
properties are helpful for the estimation of the β num-
ber for large graphs, which might be impossible with the
numerical methods.

A. Additions and products of graphs

Theorem 4. For a given graph G that can be divided
into two subgraphs G1 and G2 where all vertices in
G1 are connected with all vertices in G2, then β(G) =
max{β(G1),β(G2)}.

Corollary 2. If we add one new vertex to a graph G
and obtain a graph G′ in the way that the new vertex is
connected to all vertices in G, then β(G′) = β(G).

Theorem 5. For a given graph G that can be divided
into two subgraphs G1 and G2 where any vertex in G1
is disconnected from any vertex in G2, β(G) = β(G1)+
β(G2).

For two given graphs G1 and G2, we denote by G1[G2]
their lexicographic product, whose vertex set is the Carte-
sian product of the graphs’ vertex sets and then (i1, j1) ∼
(i2, j2) if i1 ∼ i2, or j1 ∼ j2 when i1 = i2.

Theorem 6. For two given graphs G1 and G2,
β(G) is multiplicative under the lexicographic product:
β(G1[G2]) = β(G1)β(G2).

For any large graph with decomposition into small
graphs with known β numbers through the two addition
operations and lexicographic product, its exact β number

can be obtained. For example, if we take the lexico-
graphic product of five C̄7’s, i.e., G = C̄[ ]5

7 , then β(G) =
β(C̄7)

5 ≈ 40.2452. However, α(G) = α(C̄7)
5 = 32 and

ϑ(G) = ϑ(C̄7)
5 ≈ 41.8144 since the latter two parame-

ters are multiplicative under the lexicographic product, too
[48–50]. Hence, the integer parts of β(G), α(G), and ϑ(G)
can be all different. This answers an open question in Ref.
[31] in the negative: there are indeed graphs with β num-
ber strictly larger than the independence number, and the
gap between them can be arbitrarily large.

The tensor product of systems is often relevant in quan-
tum mechanics. We denote by G the anticommutativity and
commutativity graph corresponding to the tensor product
of the SAURs of G1 and G2. We can directly verify that
G is the XOR product of G1 and G2, i.e., (i1, j1) ∼ (i2, j2)
if and only if only one of i1 ∼ i2 and j1 ∼ j2 holds. In this
case, we denote G = G1 × G2.

Theorem 7. For any pair of graphs G1 and G2,
β(G1 × G2) ≥ β(G1)β(G2).

B. Removal of edges

The removal of one edge is also one basic graph opera-
tion, which can relate different graph products. One impor-
tant property shared by the independence number and the
Lovász number is that they do not decrease under edge
removal. However, this does not hold for the β number.
Here we take C̄7 and its subgraph G7 (see Fig. 4) as an
example, where the aforementioned properties of the β
number play a role.

Theorem 8. β(G7) = 2 < β(C̄7).

Proof. Note that G7 is isomorphic to an induced sub-
graph of C5[K2], where K2 is just one edge. Thus,

β(G7) ≤ β(C5)β(K2) = 2. (24)

On the other hand, β(G7) ≥ α(G7) = 2, which completes
the proof. �

Although the β number is between the independence
number and the Lovász number, its behavior under edge
removal is rather strange. Nevertheless, the β number does
not increase under vertex removal, the same property as for
the independence number and the Lovász number. More
explicitly, β(G′) ≤ β(G) if G′ is an induced subgraph
of G.

C. Cycles and anticycles

For a perfect graph G, we know that α(G) = ϑ(G) =
α�(G), which implies that α(G) = β(G) = ϑ(G) = α�(G).
For imperfect graphs, odd cycles and odd anticycles are
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FIG. 5. The estimation β̃(C̄2n+1) of β(C̄2n+1) in comparison
with ϑ(C̄2n+1). For each estimation, we used the second see-saw
method with 500 rounds of iteration.

basic building blocks. It turns out that the following
theorem holds.

Theorem 9. β(Cm) = α(Cm), which consequently
implies that Q (Sac(Cm)) = STAB(Cm).

Numerically, we have ϑ(C̄2n+1) > β(C̄2n+1) > α

(C̄2n+1) = 2 for n ≤ 10 (see Fig. 5 for more details); for
any graph G with no more than nine vertices, if β(G) >
α(G), then G has either C̄7 or C̄9 as an induced subgraph.

Although these observations might suggest the conjec-
ture that Q (Sac(G)) � STAB(G) if and only if G has
some C̄2n+1 as an induced subgraph, where n ≥ 3, it is
refuted by a very recent counterexample [51].

VI. SELF-ADJOINT REPRESENTATIONS AND
RETURN TO JOINT NUMERICAL RANGE
BEYOND NONUNITARY OBSERVABLES

Whether in a SAURA or in a SAUR, we have consid-
ered only self-adjoint unitaries, which can limit the range
of applications. We generalize our setting to nonunitary
operators in this section.

Definition 6. For a given graph G, a set of operators
{Ai} is said to be a SARA of G if each Ai is self-adjoint,
A2

i ≤ I, {Ai, Aj } = 0 when i ∼ j . Furthermore, if [Ai, Aj ] =
0 whenever i �∼ j , {Ai} is said to be a SAR of G.

For a given graph G, denote by S≤
a (G) the set of all its

SARAs and denote by S≤
ac(G) the set of all its SARs. By

definition, Sa(G) ⊆ S≤
a (G) and Sac(G) ⊆ S≤

ac(G). Surpris-
ingly, maximizing the function q in Eq. (8) over S≤

a (G)
instead of Sa(G) does not result in a larger value, and the
same is true for S≤

ac(G) and Sac(G). This is expressed more
explicitly in the following theorems.

Theorem 10. Q (S≤
a (G)

) = Q (SaG) = TH(G).

Theorem 11. Q (S≤
ac(G)

) = Q (SacG).

A set is said to be star-convex if all the points, that are
on the line segment between the origin and any point in the
set are in the set too. It turns out that Q (Sac(G)) is indeed
star-convex. More details are provided in Appendix C.

VII. APPLICATIONS

As an application, we provide bounds for sum uncer-
tainty relations among sets of observables with certain
anticommutation or commutation relations.

Theorem 12. For a given set of observables {Ai}n
i=1 that

is a SARA of G, we have

∑

i


2(Ai) ≥ λmin − ϑ(G, λ), (25)

where λmin is the minimal singular value of
∑

i A2
i , and

λ = (a2
1, . . . , a2

n), with ai the maximal eigenvalue of Ai.
Besides, if {Ai} is a SAR of G, then

∑

i


2(Ai) ≥ λmin − β(G, λ). (26)

For a given set of observables {Ai}n
i=1, the estimation

of λmin is a relatively easy problem. If each Ai has only
two outcomes ±ai, then λmin =∑i a2

i . In comparison with
the similar application on uncertainty relations in Ref.
[40], our results are not limited to dichotomic observables.
Besides, the inequality (26) is tighter in general.

Our results can also be used to estimate the ground-state
energy, which is of great interest in quantum many-body
systems [10,29]. For a given frustration graph G with n
vertices, the dimension of the system to realize it is expo-
nential in n [42]. This can make the problem notoriously
challenging to solve.

Theorem 13. For a given set of Pauli strings {Ai}n
i=1

whose frustration graph is G,

(∑

i

ai 〈Ai〉ρ
)2

≤ min
w

(∑

i

a2
i /wi

)
β(G, w) (27)

≤ min
w

(∑

i

a2
i /wi

)
ϑ(G, w) (28)

for any state ρ and any real coefficients ai.
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Proof. By using the Cauchy-Schwarz inequality, we
have

(∑

i

ai 〈Ai〉
)2

≤
(∑

i

a2
i /wi

)(∑

i

wi 〈Ai〉2
)

(29)

≤
(∑

i

a2
i /wi

)
β(G, w), (30)

where wi’s are positive. Thus, the inequality still holds
when we take the minimization over possible w. �

Especially, we can set wi = |ai|t for t = 0, 1, 2. For t =
0, we recover the result in Ref. [31] with Eq. (28) for Pauli
strings, which is less tight than the one in Eq. (27) in gen-
eral. However, when some ai’s are much larger than others,
much better performance can be obtained by taking t = 1
or t = 2. For example, a1 = 1 and all the ai’s are 0, and
then the results for t = 0 and t = 1 are ϑ(G) and 1, respec-
tively. And ϑ(G) can be much larger than 1 for a big graph
G. In general, a tighter bound can be obtained from Eq.
(29) than the case where wi = |ai|t for t = 0, 1, 2. More
precisely, the bound reads

min
w

max
v∈Q

(∑

i

a2
i /wi

)(∑

i

wivi

)
, (31)

where Q = TH(G) or Q = Q (Sac(G)). If G is either a per-
fect graph or a cycle, Q = Q (Sac(G)) = STAB(G). This
becomes a min-max problem of size n, which is relatively
much easier than the original problem.

We take the Hamiltonian H =∑7
i=1 Ai on 14 qubits as

the first example, where

A1 = Z1Z2Z3Z4, A2 = Z5Z6Z7Z8,

A3 = X1Z9Z10Z11, A4 = X2X5Z12Z13,

A5 = X3X6X9Z14, A6 = X4X7X10X12,

A7 = X8X11X13X14.

(32)

This set {Ai}7
i=1 is the edge SAUR of C̄7 as in Fig. 4. Direct

calculation shows that the minimal and maximal eigenval-
ues of H are −3.828427 and 3.828427, respectively. This
agrees with the upper bound in Eq. (30) by setting the wi’s
equal to 1, i.e.,

√
7β(C̄7) = 1 + 2

√
2.

We take the Hamiltonian H =∑9
i=1 Ai on 27 qubits as

the second example, where

A1 = Z1Z2Z3Z4Z5Z6, A2 = Z7Z8Z9Z10Z11Z12,

A3 = X1Z13Z14Z15Z16Z17, A4 = X2X7Z18Z19Z20Z21,

A5 = X3X8X13Z22Z23Z24, A6 = X4X9X14X18Z25Z26,

A7 = X5X10X15X19X22Z27, A8 = X6X11X16X20X23X25,

A9 = X12X17X21X24X26X27.
(33)

This set {Ai}9
i=1 is the edge SAUR of C̄9. Direct calculation

of the minimal and maximal eigenvalues of H is hard since
its dimension is 227. An easy numerical calculation shows
that β(C̄9) = 2.057505, which implies that the maximal
singular value of H is bounded by

√
9β(C̄9) = 4.303201,

where we have used Eq. (30) by setting the wi’s equal to 1.
This bound is tight, as we can verify by converting {Ai}
into the standard SAUR with an auxiliary system as in
Theorem 2.

For a general frustration graph with n vertices, the
dimension of the edge SAUR is 2|E|, where |E| is the
number of edges in the frustration graph, and typically
|E| = O(n2). Hence, the direct evaluation of the ground-
state energy is in dimension 2O(n2). The estimation as in
Eq. (30) deals only with a graph with n vertices, which
could be much simpler.

VIII. CONCLUSION AND DISCUSSION

The deep connection between sums of squares of expec-
tations of Pauli strings, on the one hand, and parameters
of the corresponding frustration graph, on the other, was
observed and successfully used in Refs. [31,40]. In Ref.
[40] it was used to derive upper and lower bounds on
uncertainty relations in terms of the independence number
and in terms of the Lovász number, respectively. Concep-
tually similar results were used by Hastings and O’Donnell
[31] in the context of many-body Hamiltonians. Those ini-
tial findings opened up a broader perspective with many
new questions to answer, setting one of the starting points
for the present work.

We investigate the joint numerical range of a set of Pauli
strings, as the general object that encodes the answers to a
whole cornucopia of interesting questions, and of which
we have here only scratched the surface. In our setting,
the previously discussed bounds on sums of squares can
be cast in the nice geometrical picture of ellipsoids encom-
passing J (S). A central finding here, and another starting
point for our study, is the insight that the structure of these
ellipsoids is determined solely by the frustration graph
and not by a particular realization of Pauli strings itself.
Because of this, we introduce and investigate the invari-
ant β(G) as a new graph parameter. This shift of attention
towards the graph then brought us directly to using an alge-
braic description that takes a particular graph as the input
and provides an axiomatically defined algebra as the out-
put. These algebras are known as quasi Clifford algebras,
and their investigation goes back to the work of Gastineau-
Hills [42,43] in the 1980s, which gave a solid foundation
of results on which we could build. Furthermore, dropping
parts of these axioms then naturally leads to relaxations
and hence ultimately to outer bounds on the joint numeri-
cal range. This approach gives rise to what we call here a
SARA, a SAURA, and a SAR. In conclusion, we find that
taking a graph-theoretic approach instead of focusing on a
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set of exact operators opened up an unexpectedly rich new
perspective leading in many directions.

First, the comparison with the graph-theoretic approach
in other fields builds up a channel through which we
can convert known results into the research field of joint
numerical range. In the current work, the graph-theoretic
approach in contextuality leads to the proof of the tight
bound for the SAURA case, and the generalization of
the SAURA case. Second, the graph-theoretic approach
can pick up the most relevant representations and dis-
cover new crucial gradients such as purity. In the SAUR
case, only after it has been proven that the upper bound
is always achievable by the standard representation does
it become possible to enumerate graphs to compare the
upper bound with other graph parameters. It turned out that
the upper-bound β number in the SAUR case is indeed
a new graph parameter, which is different from both the
independence number and the Lovász number. Accord-
ing to the known evidence, the β number can be used as
a quite good approximation of the independence number.
Third, the graph-theoretic approach provides another level,
i.e., the graph level, to study the joint numerical range.
By considering graph operations and special graphs, we
can characterize the β number and get the β number for
large graphs, or large sets of operators, which might be
impossible for direct numerical calculations. Hence, the
graph-theoretic approach not only deepens and expands
the joint numerical range field but it also connects to other
fields such as quantum contextuality and graph theory. In
our current work, we have also developed numerical meth-
ods for the estimation of the upper bound from below
and from above. Finally, we generalized this approach
to general self-adjoint operators that do not need to be
unitaries.

However, there are still many open problems remaining,
some of which we highlight here:

(a) How can we calculate the β number, especially
approximate it from above, more efficiently?

(b) The β number is closely related to the algebra gener-
ated by the standard SAUR. How can we character-
ize the β number from the algebraic graph theory?
If the graph has the whole algebra as its SAUR, Ref.
[52] already has a complete characterization.

(c) With ⊗ denoting the OR product of graphs, does
β(G1 ⊗ G2) = β(G1)β(G2) hold? If it does, then
the β number could be closely related to the Shan-
non capacity of the graph [53].

(d) Could the graph-theoretic approach be applied to
the variance-based criteria for quantum correlations,
such as the criterion for entanglement [54]?

(e) How could we develop the graph-theoretic approach
for other kinds of uncertainty relation? The frac-
tional packing number α�(G) might play an impor-
tant role, which is defined as the maximum of

∑n
i=1 xi, where xi ≥ 0 and

∑
i∈C xi ≤ 1 for any

clique C in graph G. For example, for the quantum
entropic uncertainty relation of a set of anticom-
muting self-adjoint unitaries, it is known [55] that∑

i∈C[1 − H(Si|ρ)] ≤ 1 holds and 0 ≤ H(Si|ρ) ≤
1, where H(S|ρ) is the Shannon entropy of the
statistics from the two-outcome measurement S
with the state ρ. This leads to

∑n
i=1 H(Si|ρ) ≥ n −

α�(G), where G is the anticommutativity graph of
{Si}.
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APPENDIX A: FURTHER RESULTS
CONCERNING SAURA

1. Tighter bound based on purity

Note that the purity can be written as Tr ρ2 = (1 +
x2)/d, which provides the intuition that the purity of the
state could affect the joint expectation values. A direct
observation is that

∑
i 〈Si〉2 = 0 always holds for the max-

imally mixed state. By making use of the information of
purity, we can improve the estimation of joint expectation
values.
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Theorem 14. For a given set of d-dimensional observ-
ables {Si} ∈ Sa(G), and a state ρ, we have

∑

i

〈Si〉2
ρ ≤ min{[d(Tr ρ2)− 1]ϑ(G),ϑ(G)}. (A1)

Furthermore, for any given graph G and the purity of the
state, the upper bound in Eq. (A1) is always tight.

The discussion at the beginning of this section works
as a constructive proof. We remark that [d(Tr ρ2)−
1]ϑ(G) ≤ ϑ(G) always hold when the dimension is 2, as
in the case in Example 1. Note that Tr ρ2 is related to the
linear entropy of the state, and the inequality shows how
the entropy of the state affects the joint expectation values.
It is interesting to see that the linear entropy of the state
affects the joint expectation values only when the linear
entropy is large enough, i.e., when Tr ρ2 ≤ 2/d. This hap-
pens when the temperature of the thermal state is high or
when the system is highly entangled with the environment.

2. Relaxation of anticommutation relation

The anticommutation relation of operators leads to their
orthogonality in the sense of the trace product. That is,
if {Si, Sj } = 0, then Tr SiSj = 0. However, the converse
is not necessarily true, e.g., S1 = XX and S2 = ZZ. For
convenience, denote by |S〉 the vector obtained by flat-
tening the operator S row by row. With this notation,
Tr SiSj = 〈Si|Sj 〉. As we see later, {Si, Sj } = 0 also implies
that Tr Si = Tr Sj = 0. Hence, 〈Si〉ρ = 〈Si|ρ̃〉, where ρ̃ =
ρ − I/d and d is the dimension. Note that 〈ρ̃|ρ̃〉 = Tr ρ2 −
1/d, 〈Si|Si〉 = d. By comparison with the definition of the
Lovász number, we have a generalization of Theorem 1.

Theorem 15. For a given graph G and its d-dimensional
orthogonality representation with {Si} such that 〈Si|Si〉 = d
and 〈Si|Sj 〉 = 0, if i ∼ j , then

∑

i

〈Si〉2
ρ ≤ [d(Tr ρ2)− 1]ϑ(G). (A2)

We have two remarks: First, the constructive proof of
Theorem 1 implies that the bound in Theorem 15 is tight
whenever Tr ρ2 ≤ 2/d. Second, the results in Lemma 2,
Theorems 1 and 15, and the technique of vectorization of
matrices give hints to the similarity of the role of ϑ(G) in
quantum contextuality and joint expectation values.

APPENDIX B: NUMERICAL METHODS

The independence number α(G) is an important graph
parameter, and has application in the characterization of
channel capacity. The calculation of α(G) is nondeter-
ministic polynomial time hard [56], and the calculation
of ϑ(G) is just a semidefinite programming. Thus, ϑ(G)

can be used as an approximation of α(G). Since β(G) is
a tighter upper bound of α(G) than ϑ(G), efficient meth-
ods to estimate β(G) are necessary. As we have proven,
β(G) = q

({S̄i}
)
, where {S̄i} is any standard SAUR of G, a

more general problem is to estimate q ({Si}) for a given set
of {Si}. For example, there might be only some anticommu-
tation relations in {Si}. In this appendix, we provide two
efficient see-saw methods to give lower bounds of β(G),
and one complete hierarchy of semidefinite programming
to approximate β(G) from the upper bound.

1. Lower bounds

We note that

q ({Si}) = max
ρ

n∑

i=1

Tr [(ρ ⊗ ρ)(Si ⊗ Si)] (B1)

= max
ρ

Tr

[

(ρ ⊗ ρ)

n∑

i=1

(Si ⊗ Si)

]

. (B2)

On the one hand, we have

Tr

[

(ρ1 ⊗ ρ2)

n∑

i=1

(Si ⊗ Si)

]

≤
(

n∑

i=1

〈Si〉2
ρ1

n∑

i=1

〈Si〉2
ρ2

)1/2

≤ q ({Si}) . (B3)

On the other hand,

q ({Si}) ≤ max
ρ1,ρ2

Tr

[

(ρ1 ⊗ ρ2)

n∑

i=1

(Si ⊗ Si)

]

. (B4)

Consequently, we have

q ({Si}) = max
ρ1,ρ2

Tr

[

(ρ1 ⊗ ρ2)

n∑

i=1

(Si ⊗ Si)

]

. (B5)

For a given ρ1, the optimal ρ2 corresponds to the eigen-
state with the maximal singular value of

∑n
i=1(Tr ρ1Si)Si.

Similarly, for a given ρ2, the optimal ρ1 corresponds
to the eigenstate with the maximal singular value of∑n

i=1(Tr ρ2Si)Si. Hence, we can use a see-saw method to
estimate q ({Si}), where each step is only a singular value
decomposition. This see-saw method can be generalized
for any polynomial of mean value by consideration of
ρ1, . . . , ρk, where k is the order of the polynomial.

Another observation is that

q ({Si}) = max
ρ, c subject to ||c||2=1

(
∑

i

ci 〈Si〉ρ
)2

, (B6)

which leads to another see-saw method for the lower
bound. It turns out that for a given ρ, the optimal vector
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c is the normalized vector of (〈Si〉ρ)ni=1. For a given vec-
tor c, the optimal ρ corresponds to the eigenstate with the
maximal singular value of

∑n
i=1 ciSi.

Since it is unnecessary to require that S2
i = I in those

two methods, they can be naturally extended to the
weighted version, i.e., q({Si}, w).

2. Upper bounds

According to Eq. (B5) and the linearity on ρ1 ⊗ ρ2 as a
whole state, we have

q ({Si}) = max
γ∈Ssep

Tr

[

γ

n∑

i=1

(Si ⊗ Si)

]

, (B7)

where Ssep is the set of separable states.
Our first observation is that the maximum can always

be achieved in the case that γ is a pure state, and the
set of pure separable states can be fully characterized by
the positive partial transpose condition and the rank-1
constraint.

Thus, we can reformulate the optimization into a rank-
constrained problem:

q ({Si}) = max
γ

Tr

[

γ
∑

i

(Si ⊗ Si)

]

such that Tr γ = 1, γ � 0, γ T2 � 0, (B8)

F12γ = γ , (B9)

rank γ = 1, (B10)

where F12 is the swap operator
∑

ij |ij 〉〈ji| and T2 means
the partial transpose on the second party.

According to Eq. (B1), the condition in Eq. (B9) can be
added without the outcome being changed.

As proposed in Ref. [57], there is a complete hierar-
chy of relaxation with semidefinite programming for the
rank-constrained problem, which leads to such a complete
hierarchy for the problem we are considering. However,
this technique is not so practical here. If d denotes the
dimension of Si, then the dimension of γ is d2. The size
of the matrix on the kth level is then d2k. Even if d = 8
as in the standard SAUR of C̄7, by taking k = 2, we have
d2k = 4096, in which size a semidefinite programming
is quite hard for a desktop computer. For practical pur-
poses, we propose the following relaxation of the rank-1
constraints:

q ({Si}) = max
γ

Tr

[

γ
∑

i

(Si ⊗ Si)

]

such that Tr γ = 1, γ � 0, γ T2 � 0,

F12τ = F23τ = τ ,

Tr3 τ = γ ,

(B11)

which can be seen as the 3/2 level of the hierarchy. This
technique is special for our case since the state γ is already
two copies of the state in the system of {Si}.

Another approach to achieve relaxation of SEP is to add
more semidefinite conditions such as the positive partial
transpose condition and linear conditions such as an entan-
glement witness. We refer the reader to Appendix B in Ref.
[58] for detailed discussions. The conditions in Eq. (C24)
are such an example.

APPENDIX C: PROOFS OF MAIN RESULTS

Theorem 16. Q (Sa(G)) = TH(G) for any graph G.

Proof. To prove this theorem is equivalent to show
that q (Sa(G), w) = ϑ(G, w) for any non-negative weight
vector w. Equation (12) includes already the result that
q (Sa(G), w) ≤ ϑ(G, w)when all the elements of w are just
1. For the general non-negative weight vector w, we prove
qSa(G), w ≤ ϑ(G, w) in the proof of Theorem 41.

To show that q (Sa(G), w) ≥ ϑ(G, w), we construct an
exact {Si} ∈ Sa(G) such that q ({Si}, w) = ϑ(G, w).

Denote {|vi〉}n
i=1 and by |u〉 the OR of the graph G and

the state such that ϑ(G, w) =∑n
i=1 wi|〈vi|u〉|2, which can

be assumed to be real without loss of generality. Denote by
{Ai}r

i=1 a set of d-dimensional normalized traceless observ-
ables satisfying {Ai, Aj }/2 = δij I, where r is the dimension
of {|vi〉}n

i=1. By setting Si =∑r
k=1 vi,kAk, the Si’s are Her-

mitian and {Si, Sj }/2 = 〈vi|vj 〉I, which implies that {Si} is
a SAURA of G.

For a given state ρ, denote by Mρ the matrix whose
(i, j )th element is √wiwj

〈{Si, Sj }/2
〉
ρ
. In this special case,

〈{Si, Sj }/2
〉
ρ

= 〈vi|vj 〉 which is independent of the exact
state ρ. Then λmax(Mρ) = ϑ(G, w). If we denote by |a〉
the eigenvector of Mρ corresponding to the maximal
eigenvalue, we have 〈a|Mρ |a〉 = ϑ(G, w).

Denote by |s〉 the eigenstate of
∑

i ai
√

wiSi correspond-
ing to the maximal eigenvalue and σ = |s〉〈s|. Then

∑

i

wi 〈Si〉2
σ ≥

(
∑

i

ai
√

wi 〈Si〉σ
)2

=
(〈
∑

i

ai
√

wiSi

〉

σ

)2

=
〈(
∑

i

ai
√

wiSi

)2〉

σ

= ϑ(G, w), (C1)

where the first line is from the Cauchy-Schwarz inequality
since |a〉 is normalized, the third line is from the definition
of σ and the last line is from the definition of |a〉 and the
fact that Mρ is independent of the state ρ. Finally, we have
q (Sa(G), w) ≥ ϑ(G, w) and we complete the proof. �
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The construction in Lemma 2 is crucial for the proof, as
the last line in Eq. (C1) may not hold for a general SAURA.

Theorem 17. For a given graph G, q ({Si}) = q
({S̄i}

)
,

where {Si} is a SAUR of G and {S̄i} is a standard SAUR.

Proof. From the convexity of
∑

i 〈Si〉2, we know that
we need to prove the theorem only for the case that ρ is
a pure state |ψ〉〈ψ |. Since the Di’s commute with each
other, we can assume the Di’s are diagonal matrices. If we
denote by d2 the dimension of the Di’s, then we have the
decomposition

U|ψ〉 =
d2∑

i=1

√
pi|φi〉 ⊗ |i〉, (C2)

where pi ≥ 0 and
∑

i pi = 1.
Hence,

〈Si〉 =
∑

kl

√
pipj 〈φk|S̄i|φl〉〈k|Di|l〉

=
∑

k

pk〈φk|sikS̄i|φk〉, (C3)

where sik ∈ {−1, 1} is the kth diagonal element in Di.
Then we have

〈Si〉2 =
(
∑

k

pk〈φk|sikS̄i|φk〉
)2

≤
∑

k

pk〈φk|S̄i|φk〉2,

(C4)

which implies that

∑

i

〈Si〉2 ≤
∑

k

pk

(
∑

i

|〈φk|S̄i|φk〉|2
)

≤ max
k

∑

i

〈φk|S̄i|φk〉2. (C5)

Thus, q ({Si}) ≤ q
({S̄i}

)
.

On the other hand, if we denote by |φ〉 the optimal state
for q

({S̄i}
)

and by |ψ0〉 the common eigenstate for the Di’s,
then

∑

i

〈Si〉2
ρ =

∑

i

〈φ|S̄i|φ〉2, (C6)

where ρ = |ψ〉〈ψ | and |ψ〉 = U†[|φ〉 ⊗ |ψ0〉]. Thus, we
have q ({Si}) ≥ q

({S̄i}
)
. This finishes the proof. �

Corollary 3. For the graph G10 and C5 in Fig. 3,

β(G10) = α(G10) = β(C5) = α(C5) = 2. (C7)

Proof. Note that β(G) ≥ α(G), β(G10) ≥ β(C5), and
α(G10) = α(C5) = 2. We need to prove only that
β(G10) = 2. According to Theorem 3, it is sufficient to
consider the standard SAUR of G10 as the one in Fig. 3,
and we denote it by {Si}10

i=1.
Because of the convexity of

∑
i 〈Si〉2

ρ in terms of state
ρ, we only need to consider the state to be a pure four-
dimensional state:

|ψ〉 = {cos θ1, eit1 sin θ1 cos θ2, eit2 sin θ1 sin θ2 cos θ3,

eit3 sin θ1 sin θ2 sin θ3}. (C8)

A direct calculation shows that

10∑

i=1

〈Si〉2 = 2. (C9)

�

The fact that β(C5) = 2 was proved in Ref. [31] by
another approach. We have two remarks: First, for any
four-dimensional pure state, Eq. (C9) is equivalent to

〈IX 〉2 + 〈IZ〉2 + 〈XY〉2 + 〈YY〉2 + 〈ZY〉2 = 1. (C10)

By permuting X , Y, Z, and the parties, we can obtain other
equalities. Second, the standard SAUR of G10 cannot be
generated by the construction in Lemma 2, since there is
no operator anticommuting with X I, YI, ZI at the same
time; meanwhile, the dimension of the linear span of all
the operators in this standard SAUR is 10.

Theorem 18. For a given graph G that can be divided
into two subgraphs G1 and G2 where all vertices in
G1 are connected with all vertices in G2, then β(G) =
max{β(G1),β(G2)}.

Proof. For a given SAUR of G, we label the operators
for G1 as {Ai} and the operators for G2 as {Bj }.

On the one hand, for any state ρ (for convenience, we
omit the state ρ in the mean value), we have

∑

i

〈Ai〉2 +
∑

j

〈
Bj
〉2 = max

x,y

⎡

⎣
〈
∑

i

xiAi

〉2

+
〈
∑

j

yj Bj

〉2
⎤

⎦

= max
x,y,t

⎡

⎣
〈

t1
∑

i

xiAi + t2
∑

j

yj Bj

〉2
⎤

⎦

≤ max
x,y,t

〈⎛

⎝t1
∑

i

xiAi + t2
∑

j

yj Bj

⎞

⎠

2〉

,

(C11)

where x, y, and t are unit real vectors.
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By the definition of {Ai} and {Bj }, we have

max
x,y,t

〈⎛

⎝t1
∑

i

xiAi + t2
∑

j

yj Bj

⎞

⎠

2〉

= max
x,y,t

⎡

⎢
⎣t21

〈(
∑

i

xiAi

)2〉

+ t22

〈⎛

⎝
∑

j

yj Bj

⎞

⎠

2〉⎤

⎥
⎦

= max
x,y,t

max

⎧
⎪⎨

⎪⎩

〈(
∑

i

xiAi

)2〉

,

〈⎛

⎝
∑

j

yj Bj

⎞

⎠

2〉
⎫
⎪⎬

⎪⎭

≤ max
x,y,t

max{β(G1),β(G2)}

= max{β(G1),β(G2)}. (C12)

By definition,

β(G) = max
ρ,{Ai},{Bj }

⎡

⎣
∑

i

〈Ai〉2
ρ +

∑

j

〈
Bj
〉2
ρ

⎤

⎦ , (C13)

which implies that β(G) ≤ max{β(G1),β(G2)}.
On the other hand, β(G) ≥ max{β(G1),β(G2)}, which

completes the proof. �

Corollary 4. If we add one new vertex to a graph G and
this results in a graph G′ where the new vertex is connected
to all vertices in G, then β(G′) = β(G).

Theorem 19. For a given graph G that can be divided
into two subgraphs G1 and G2 where any vertex in G1
is disconnected from any vertex in G2, β(G) = β(G1)+
β(G2).

Proof. Without loss of generality, we assume that the
state ρ and the SAUR {Ai} result in β(G1), and that the
state σ and the SAUR {Bj } result in β(G2). Then {Ai ⊗
IB} ∪ {IA ⊗ Bj } is a SAUR of G. Direct calculation shows
that
∑

i

〈Ai ⊗ I〉2
ρ⊗σ +

∑

j

〈
I ⊗ Bj

〉2
ρ⊗σ = β(G1)+ β(G2).

(C14)

Besides, for any SAUR {Ãi} ∪ {B̃j } of G and any state τ ,
we have
∑

i

〈
Ãi

〉2

τ
+
∑

j

〈
B̃j
〉2
τ

≤ max
ρ,{Ai}

∑

i

〈Ai〉2
ρ + max

σ ,{Bj }

∑

j

〈
Bj
〉2
σ

= β(G1)+ β(G2). (C15)

In total, we have β(G) = β(G1)+ β(G2) by definition.
�

For two given graphs G1 and G2, we denote by G1[G2]
their lexicographic product, whose vertex set is the Carte-
sian product of the graphs’ vertex sets and then (i1, j1) ∼
(i2, j2) if i1 ∼ i2, or j1 ∼ j2 when i1 = i2.

Theorem 20. For two given graphs G1 and G2,
β(G) is multiplicative under the lexicographic product:
β(G1[G2]) = β(G1)β(G2).

Proof. Denote by {Aij } any SAUR of G = G1[G2],
where Aij represents the vertex in G that corresponds to
i in G1 and j in G2. Denote Āi =∑j xij Aij /λi, where {xij }j

is the normalized vector of {〈Aij
〉}j and λi is the maximal

eigenvalue of
∑

j xij Aij . We remark that {Āi} ∈ S≤
ac(G1)

and that {Aij }j ∈ Sac(G2) for all i.
By definition,

β(G) = max
ρ,{Aij }∈Sac(G)

∑

i

∑

j

〈
Aij
〉2
ρ

= max
ρ,{Aij }∈Sac(G)

∑

i

〈
∑

j

xij Aij

〉2

ρ

= max
ρ,{Aij }∈Sac(G)

∑

i

λ2
i

〈
Āi
〉2
ρ

≤ β(G2) max
ρ,{Ai}∈S≤

ac(G1)

∑

i

〈Ai〉2
ρ

= β(G2)β(G1), (C16)

where the inequality in the fourth line is from

λ2
i = max

ρ

〈
∑

j

xij Aij

〉2

ρ

≤ β(G2) (C17)

and the last equality is proven in Sec. VI.
On the other hand, without loss of generality, we assume

that the state ρ and the SAUR {Ai} result in β(G1) and that
the state σ and the SAUR {Bj } result in β(G2). Denote

Aij = Ai ⊗
⎡

⎣
⊗

k∈G1

Bδikj

⎤

⎦ , (C18)

where δik = 1 if k = i, otherwise δik = 0. By construction,
{Aij } ∈ S(G). Let τ := ρ ⊗ σ⊗n1 , where n1 is the number
of vertices in G1. Then we have

∑

ij

〈
Aij
〉2
τ

=
∑

ij

〈Ai〉2
ρ

〈
Bj
〉2
σ

= β(G1)β(G2), (C19)

concluding the proof. �

020318-15



XU, SCHWONNEK, and WINTER PRX QUANTUM 5, 020318 (2024)

For any large graph with decomposition into small
graphs with known β numbers through the two addi-
tion operations and the lexicographic product, its exact
β number can be obtained. For example, if we take the
lexicographic product of five C̄7’s, i.e., G = C̄[ ]5

7 , then
β(G) = β(C̄7)

5 ≈ 40.2452. However, α(G) = α(C̄7)
5 =

32 and ϑ(G) = ϑ(C̄7)
5 ≈ 41.8144 since those two param-

eters are also multiplicative under the lexicographic prod-
uct [48–50]. Hence, the integer parts of β(G), α(G), and
ϑ(G) can be all different. This closes the open question in
Ref. [31] with the answer that there are indeed graphs with
a β number strictly larger than the independence number,
and the gap between them can even be large.

The removal of one edge is also one basic graph opera-
tion, which can relate different graph products. One impor-
tant property shared by the independence number and the
Lovász number is that they do not decrease under edge
removal. However, this does not hold for the β number.
Here we take C̄7 and its subgraph G7 (see Fig. 4) as an
example.

Theorem 21. β(G7) = 2 < β(C̄7).

Proof. Note that G7 is isomorphic to an induced sub-
graph of C5[K2], where K2 is just one edge. Thus,

β(G7) ≤ β(C5)β(K2) = 2. (C20)

On the other hand, β(G7) ≥ α(G7) = 2, which completes
the proof. �

Although the β number is between the independence
number and the Lovász number, its behavior under edge
removal is rather strange. Nevertheless, the β number does
not increase under vertex removal, and the same is true for
the independence number and the Lovász number. More
explicitly, β(G′) ≤ β(G) if G′ is an induced subgraph
of G.

The tensor product of systems is often used in quantum
mechanics. Denote by G the anticommutativity and com-
mutativity graph corresponding to the tensor product of the
SAURs of G1 and G2. We can directly verify that G is the
XOR product of G1 and G2, i.e., (i1, j1) ∼ (i2, j2) if and only
if only one of i1 ∼ i2 and j1 ∼ j2 holds. In this case, denote
G = G1 × G2.

Theorem 22. For two given graphs G1 and G2, β(G1 ×
G2) ≥ β(G1)β(G2).

Proof. Denote by {Ai} and {Bj } the standard SAUR of
G1 and the standard SAUR of G2, respectively. Then we

know that

q ({Ai}) = β(G1), q
({Bj }

) = β(G2). (C21)

Hence,

β(G1 × G2) ≥ q
({Ai ⊗ Bj }

)

≥ max
ρ1⊗ρ2

∑

ij

〈
Ai ⊗ Bj

〉2
ρ1⊗ρ2

= β(G1)β(G2), (C22)

since {Ai ⊗ Bj }ij is a SAUR of G1 × G2. �

For a perfect graph G, we know that α(G) = ϑ(G) =
α�(G), which implies that α(G) = β(G) = ϑ(G) = α�(G).
For imperfect graphs, odd cycles and odd anticycles are
basic building blocks. To continue, we make the following
claim.

Theorem 23.

max
ρ

[
〈IY〉2

ρ + 〈XX 〉2
ρ + 〈ZZ〉2

ρ − 〈YY〉2
ρ

]
= 1. (C23)

Proof. It is enough to show that the maximum of the
following SDP is 1, as a relaxation of the original theorem:

l = max
γ

Tr γW

such that Tr A0γ = 1, γ � 0,

Tr Aiγ ≥ 0, i = 1, 2, 3,

(C24)

where W = IYIY + XXXX + ZZZZ − YYYY, A0 = IIII,
A1 = XZXZ, A2 = YIYI, and A3 = ZXZX .

Then the dual SDP is

l′ = min y0

such that
3∑

i=0

yiAi − W � 0,

yi ≤ 0, i = 1, 2, 3.

(C25)

Since the case that y0 = 1 and yi = −1 for i = 1, 2, 3 is
a feasible solution, we know that l ≤ l′ ≤ 1. However, by
taking ρ = |�+〉〈�+| with |�+〉 = (|00〉 + |11〉)/√2 in
Eq. (C23), we have l ≥ 1. Consequently, l = 1. �

It is known that l = 1 if we consider only the state in the
form ρ = (I + xXX + yYY + zZZ)/4, for which 〈IY〉ρ = 0
[59]. Hence, our result generalizes the known result, which
is often considered in quantum correlations such as discord
[59].

By considering the relation between the standard SAUR
of different odd cycles, we have the following lemma.
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Lemma 3. β(C2n+3)− β(C2n+1) ≤ 1.

Proof. For convenience, we label the vertices of C2k+1
in such a way that

1 ∼ 3 ∼ · · · ∼ 2k + 1 ∼ 2(k − 1) ∼ · · · ∼ 2, (C26)

where k = n, n + 1.
The proof is based on the observation that the standard

SAUR {S′
i}2n+3

i=1 of C2n+3 can be constructed as follows:

S′
i = SiI2 for all i = 1, . . . , 2n,

S′
2n+1 = I2n−1XX , S′

2n+2 = I2n−1ZZ,

S′
2n+3 = I2nY,

(C27)

where {Si}2n
i=1 ∪ {I2n−1Y} is the standard SAUR of C2n+1.

If we denote S′′
2n+1 = I2n−1YY, we have

β(C2n+3) = max
σ ′

[
2n∑

i=1

〈
S′

i

〉2
σ ′ +

2n+3∑

i=2n+1

〈
S′

i

〉2
σ ′

]

= max
σ ′

[(
2n∑

i=1

〈
S′

i

〉2
σ ′ + 〈S′′

2n+1

〉2
σ ′

)

+
(

2n+3∑

i=2n+1

〈
S′

i

〉2
σ ′ − 〈S′′

2n+1

〉2
σ ′

)]

≤ β(C2n+1)+ 1, (C28)

where the last inequality is from the fact that {S′
i}2n

i=1 ∪
{S′′

2n+1} is one SAUR of C2n+1 and Theorem 23. �

Since α(C2n+1) = n and β(C5) = α(C5) = 2, Theorem
23 and Lemma 3 lead to the following theorem.

Theorem 24. Q (Sac(Cm)) = STAB(Cm).

Proof. Since Cm is a perfect graph when m is an even
number, the fact that STAB(Cm) = TH(Cm) implies that
Q (Sac(Cm)) = STAB(Cm).

When m = 2n + 1 is an odd number, Theorem 23 and
Lemma 3 result in the fact that β(C2n+1) = α(C2n+1).
Consequently, this implies that Q (Sac(C2n+1)) = STAB
(C2n+1), since the only nontrivial facet of STAB(C2n+1)

has the norm vector (1, . . . , 1) [60]. �

Theorem 25. Q (S≤
a (G)

) = Q (SaG) = TH(G).

Proof. Note that TH(G) ⊆ Q (Sa(G)) ⊆ Q (S≤
a G
)
.

Hence, it is sufficient to prove Q (S≤
a G
) ⊆ TH(G)

or, equivalently, q
(S≤

a (G), w
) ≤ ϑ(G, w) for any non-

negative weight vector w.

For a given SARA {Ai} and a state ρ, denote ωi =
Tr A2

i ρ. The fact that A2
i ≤ I leads to ωi ≤ 1. Then [61]

∑

i

wi 〈Ai〉2
ρ ≤ λ(A), (C29)

where A is a matrix with (i, j )th element √wiwj
〈{Ai, Aj }

〉

/2. Thus, the ith diagonal term of A is wiωi, and the (i, j )th
element is 0 if i ∼ j . Denote w′ = (wiωi). Note that [44]

ϑ(G, w′) = max
B
λ(B),

subject to Bij = 0 if i ∼ j , (C30)

Bii = w′
i, (C31)

B ≥ 0. (C32)

Thus, by definition, we have λ(A) ≤ ϑ(G, w′). Mean-
while, ϑ(G, w′) ≤ ϑ(G, w) since w′

i ≤ wi for each i. �

Lemma 4. For a given graph G and one SAR {Ai} of it,
there is a unitary U such that

UAiU†= ⊕T
t=1 A(t)i , [A(t)i ]2 = [λ(t)i ]2

Idt , (C33)

where {λ(t)i } are singular values of Ai. Besides, {A(t)i } is a
SAR of G for any t = 1, . . . , T.

Proof. We note that [A2
i , Aj ] = 0 and [A2

i , A2
j ] = 0 for

any pair (i, j ). Hence, there is a unitary U to diagonalize
all the A2

i ’s simultaneously. By ordering the diagonal terms
properly, we have the decomposition

UA2
i U†= ⊕T

t=1 [λ(t)i ]2
Idt . (C34)

Denote by {〈u|} the rows of U. Then by choosing |u〉, |v〉
such that A2

i |u〉 = [λ(t)i ]2|u〉 and A2
i |v〉 = [λ(l)i ]2|v〉, we have

〈u|A2
i Aj |v〉 = [λt

i]
2〈u|Aj |v〉 = 〈u|Aj A2

i |v〉 = [λl
i]

2〈u|Aj |v〉.
(C35)

Hence, 〈u|Aj |v〉 = 0 whenever λ(t)i �= λ
(l)
i . This leads to the

desired decomposition as in Eq. (C33). �

Lemma 5. For any given {Si} ∈ Sac(G), state ρ, and
weight vector w where |wi| ≤ 1, there exists {Pi} ∈ Sac(G)
and state τ such that 〈Pi〉τ = wi 〈Si〉ρ .

Proof. Denote

Pi = Si ⊗ (⊗j Z(wi)
δij ), τ = ρ ⊗ (|+〉〈+|)⊗n, (C36)

where Z(w) = wX + √
1 − w2Z for t ∈ [−1, 1], δij = 1 if

i = j and otherwise δij = 0, and n is the number of vertices
in G. Direct calculation concludes the proof. �
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Lemma 5 also implies that Q (Sac(G)) is star-convex.

Theorem 26. Q (S≤
ac(G)

) = Q (SacG).

Proof. To prove this theorem is equivalent to prove that
for any given {Si} ∈ S≤

ac(G) and state ρ, there is a {Pi} ∈
Sac(G) and state τ such that 〈Si〉ρ = 〈Pi〉τ . Without loss of
generality, we assume that Si = ⊕T

t=1S(t)i , where S(t)i acts on
H(t). A direct calculation shows that

〈Si〉ρ =
∑

t

pt

〈
S(t)i

〉

ρt
, (C37)

where ρt is the block of ρ in H(t) up to the normalization
coefficient pt.

From Lemma 5, we know that there exists {P(t)i } ∈
Sac(G) and state τt such that

〈
S(t)i

〉

ρt
=
〈
P(t)i

〉

τt
. Conse-

quently,

〈Si〉ρ =
∑

t

pt

〈
P(t)i

〉

τt
. (C38)

If we denote Pi = ⊕tP
(t)
i and τ = ⊕tptτt, we have {Pi} ∈

Sac(G) and τ is a quantum state. Equation (C38) implies
that 〈Si〉ρ = 〈Pi〉τ . �
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