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The vacuum of the lattice Schwinger model is prepared on up to 100 qubits of IBM’s Eagle-processor
quantum computers. A new algorithm to prepare the ground state of a gapped translationally invariant
system on a quantum computer is presented, which we call “scalable circuits ADAPT-VQE” (SC-ADAPT-
VQE). This algorithm uses the exponential decay of correlations between distant regions of the ground
state, together with ADAPT-VQE, to construct quantum circuits for state preparation that can be scaled
to arbitrarily large systems. These scalable circuits can be determined with use of classical computers,
avoiding the challenging task of optimizing parameterized circuits on a quantum computer. SC-ADAPT-
VQE is applied to the Schwinger model, and is shown to be systematically improvable, with an accuracy
that converges exponentially with circuit depth. Both the structure of the circuits and the deviations of
prepared wave functions are found to become independent of the number of spatial sites, L. This allows a
controlled extrapolation of the circuits, determined with use of small or modest-sized systems, to arbitrarily
large L. The circuits for the Schwinger model are determined on lattices up to L = 14 (28 qubits) with the
Qiskit classical simulator, and are subsequently scaled up to prepare the L = 50 (100 qubits) vacuum on
IBM’s 127-superconducting-qubit quantum computers ibm_brisbane and ibm_cusco. After introduction
of an improved error-mitigation technique, which we call “operator decoherence renormalization”, the
chiral condensate and charge-charge correlators obtained from the quantum computers are found to be in
good agreement with classical matrix product state simulations.
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I. INTRODUCTION

Quantum simulations of physical systems described by
the Standard Model [1–6], and descendant effective field
theories, are anticipated to provide qualitatively new pre-
dictions about matter under extreme conditions; from the
dynamics of matter in the early universe, to properties
of the exotic phases of quantum chromodynamics (QCD)
produced at the LHC and the Relativistic Heavy Ion Col-
lider (for overviews and reviews, see Refs. [7–15]). One of
the major challenges facing quantum simulations of phys-
ical systems is the preparation of initial states on quantum
computers that can be used to determine important quan-
tities that are inaccessible to classical high-performance
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computing, i.e., the problem of state preparation. While
simulating the dynamics of any given initial state is known
to be efficient for an ideal quantum computer [16], residing
in the bounded-error quantum polynomial time complexity
class, preparing an arbitrary state generally requires quan-
tum resources that asymptotically scale superpolynomially
with increasing system size [17], residing in the quantum
Merlin-Arthur complexity class [18]. However, states of
physical systems are not the general case, and are often
constrained by both local and global symmetries [19]. In
some instances, these symmetries allow observables to be
computed by perturbing around states that can be effi-
ciently initialized [9]. In the foreseeable future, quantum
simulations will be far from asymptotic in both system
size and evolution time, and the resources required for
both time evolution and state preparation will be estimated
by direct construction and extrapolations thereof. Further-
more, successful quantum simulations will require special-
ized quantum circuits and workflows that are optimized for
specific quantum hardware.

The development of algorithms for preparing nontriv-
ial initial states on quantum computers, including the
ground states of quantum field theories (QFTs), is an
active area of research. Even with many advances, the
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algorithms remain limited in capability, and generally do
not scale favorably to modest-scale or large-scale sim-
ulations of quantum many-body systems. Consequently,
quantum simulations of small model systems are cur-
rently being performed across an array of science domains,
generally studying dynamics starting from tensor prod-
uct initial states. While being the simplest gauge theory
based on a continuous group, the Schwinger model [23]
(quantum electrodynamics in 1 + 1 dimensions) possesses
many features of interest to the QCD and quantum infor-
mation science communities. These include the presence
of a mass gap, charge screening, a chiral condensate,
few-body bound states (“hadrons” and “nuclei”), and a
topological θ term. It has emerged as a popular test bed
for developing quantum simulation techniques for lattice
gauge theories, and has been explored with use of a variety
of platforms, including trapped ions [24–27], supercon-
ducting qubits [28–34], photonic systems [35], Rydberg
atoms [36], ultracold atoms [37–41], and classical electric
circuits [42], together with classical simulations [22,43–
61], calculations [62–69], and tensor networks [70–92]
(for reviews on this last topic, see, e.g., Refs. [7,93]).
There has also been pioneering work on quantum simula-
tions of low-dimensional non-Abelian gauge theories, both
with [94–99] and without [100–106] matter. While these
are important benchmarks, more sophisticated simulations
requiring the preparation of eigenstates or scattering states
have so far been too demanding for noisy intermediate-
scale quantum (NISQ) era quantum computers, and until
now have been limited to 20 qubits [25,32].

Many systems of physical interest, including QCD, have
translational symmetry and possess an energy (mass) gap
� between the unique ground state and first excited state.
The gap defines a characteristic length scale of the sys-
tem ξ = 1/�, and parameterizes the decay of the longest
distance correlations in the ground-state wave function,

falling as approximately e−r/ξ /rα for regions separated by
r � ξ , for some α. A natural way to encode a lattice QFT
onto a register of a digital quantum computer is by iden-
tifying subsets of qubits (or qudits) with spatial points of
the lattice that align with the connectivity of the quantum
computer. A realization of the ground state on the register
of a quantum computer should reflect the localized corre-
lations between these subsets of qubits separated by r � ξ

[107,108]. In the absence of topological order, one way to
establish the ground state is to initialize the quantum reg-
ister in a state without correlations between qubits, e.g., a
tensor product state, and then systematically introduce cor-
relations through the action of quantum circuits. A crucial
point is that the localized correlations imply that the state
preparation circuits need to have structure only for qubits
spatially separated by r � ξ [107,108]. This is sufficient to
obtain exponentially converged accuracy in the prepared
state. Because of translational invariance, the ground state
for an arbitrarily large lattice can be prepared by repetition
of these circuits across the entire register.

To study the dynamics of physically relevant systems in
a quantitative way, with a complete quantification of uncer-
tainties, simulations of large volumes of space-time are
typically required. Motivated by the discussion in the pre-
vious paragraph, we introduce scalable circuits ADAPT-
VQE (SC-ADAPT-VQE), a new method for quantum
state preparation that uses the hierarchies of length scales
present in physical systems; see Fig. 1 for an illustration. In
SC-ADAPT-VQE, quantum circuits that (efficiently) pre-
pare a given state to a specified level of precision are
determined on modest-sized lattices that are large enough
to contain the longest correlation lengths. As long as ξ is
not too large, these circuits can be determined with the use
of classical computers. This avoids the challenging task
of optimizing circuits on a quantum computer with both
statistical uncertainty and device noise [109,110]. Once

FIG. 1. Pictorial description of the SC-ADAPT-VQE algorithm. Once a pool of scalable operators {Ôi} has been identified, ADAPT-
VQE is performed with use of classical computers to determine a quantum circuit (parameterized by {θi}) that prepares the vacuum up
to a desired tolerance. ADAPT-VQE is repeated for multiple lattice sizes, {L1, L2, . . .}, and the circuit parameters are extrapolated to
the desired L, which can be arbitrarily large. The extrapolated circuits are executed on a quantum computer to prepare the vacuum on
a system of size L.

020315-2



SCALABLE CIRCUITS FOR PREPARING GROUND. . . PRX QUANTUM 5, 020315 (2024)

determined, (discrete) translation invariance is used to
scale these circuits up to the full lattice. Since the quality of
the prepared state becomes independent of the spatial lat-
tice length L, with O(e−ξ/L) corrections, this is a potential
path toward quantum simulations of lattice QFTs that are
beyond the capabilities of high-performance computing.

In this work, SC-ADAPT-VQE is applied to the
Schwinger model and is used to prepare the vacuum on up
to 100 qubits on IBM’s Eagle quantum processors. Under-
lying the development is the algorithm ADAPT-VQE
[111] for quantum state preparation, which is modified to
generate scalable circuits. After the necessary Trotterized
circuits have been built, SC-ADAPT-VQE is performed
with use of the Qiskit classical simulator on system sizes
up to L = 14 (28 qubits). It is found that both the energy
density and the chiral condensate converge exponentially
with circuit depth to the exact results. Importantly, both the
quality of the prepared state and the structure of the associ-
ated circuits are found to converge with system size. This
allows the state preparation circuits, determined on small
lattices with use of classical computing, to be extrapolated
to much larger lattices, with a quality that becomes inde-
pendent of L. The scaled circuits are used to prepare the
L ≤ 500 vacua with use of Qiskit’s matrix product state
(MPS) circuit simulator, and to prepare the L ≤ 50 (100
qubits) vacua on the registers of IBM’s superconducting-
qubit quantum computers ibm_brisbane and ibm_cusco.
An improved and unbiased error-mitigation technique,
operator decoherence renormalization (ODR), is devel-
oped and applied to the quantum simulations to estimate
error-free observables. The results obtained from both the
MPS circuit simulator and IBM’s quantum computers are
found to be in excellent agreement with density matrix
renormalization group (DMRG) calculations.

II. THE LATTICE SCHWINGER MODEL

The Schwinger model [23] has a long history of study
in the continuum and with use of numerical lattice tech-
niques. In the continuum, it is described by the Lagrange
density

L = ψ
(
iD/− mψ

)
ψ − 1

4
FμνFμν . (1)

Electrically charged fermions are described by the field
operator ψ with mass mψ , the electromagnetic gauge field
is described by Aμ with field tensor Fμν , and the covariant
derivative is defined as Dμ = ∂μ − ieAμ. It is the Hamil-
tonian lattice formulation, first developed and studied by
Banks, Kogut, and Susskind [112,113], that is relevant
for quantum simulations. One feature of gauge theories in
1 + 1 dimensions, which distinguishes them from theories
in higher dimensions, is that the gauge field is com-
pletely constrained by the distribution of fermion charges
through Gauss’s law. In axial gauge, the spatial gauge

field is absent, and the effects of the time component of
the gauge field are included by nonlocal (Coulomb) inter-
actions [83,97]. With open boundary conditions (OBCs),
use of the staggered fermion discretization [112] of the
electron field, and application of the Jordan-Wigner trans-
formation to map fermion field operators to spins, the
Schwinger model Hamiltonian is (for a derivation, see,
e.g., Ref. [25])

Ĥ = Ĥm + Ĥkin + Ĥel = m
2

2L−1∑

j =0

[
(−1)j Ẑj + Î

]

+ 1
2

2L−2∑

j =0

(
σ̂+

j σ̂
−
j +1 + H.c.

)
+ g2

2

2L−2∑

j =0

⎛

⎝
∑

k≤j

Q̂k

⎞

⎠

2

,

Q̂k = −1
2

[
Ẑk + (−1)kÎ

]
,

(2)

where L is the number of spatial lattice sites, correspond-
ing to 2L staggered (fermion) sites, m and g are the (bare)
electron mass and charge, respectively, and the staggered
lattice spacing a has been set to 1 [115]. “Physical” quan-
tities are derived from the corresponding dimensionless
quantities by restoring factors of the spatial lattice spac-
ing. Even (odd) sites correspond to electrons (positrons),
as reflected in the staggered mass term and charge oper-
ator [116]. A background electric field can be included
straightforwardly, equivalent to a θ term, but will be set
to zero in this work. In the sector with vanishing total elec-
tric charge, Ĥel in Eq. (2) can be rewritten in a way that
reduces the number of gates required in quantum circuits
for time evolution, and is less demanding on device con-
nectivity; see Appendix A. Because of confinement, the
low-energy excitations are hadrons and the mass gap is
given by � = mhadron. For our purposes, mhadron is defined
to be the energy difference in the Q = 0 sector between the
first excited state (single hadron at rest) and the vacuum.

A. Infinite-volume extrapolations of local observables

Central to the development of state preparation circuits
is the scaling of expectation values of local observables
in the ground state, with both the correlation length ξ =
1/mhadron and the volume L. Because of the exponential
suppression of correlations in the ground state between
regions separated by r > ξ , it is expected that, locally, the
wave function has converged to its infinite-volume form,
with corrections of O(e−ξ/L). As a result, expectation val-
ues of local observables will be exponentially converged to
their infinite-volume values. However, near the boundaries
of the lattice, the wave function is perturbed over a depth
proportional to ξ , causing local observables to deviate
from their infinite-volume values. Equivalently, bound-
ary effects cause deviations in volume averages of local
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FIG. 2. L extrapolations of the vacuum energy density ε (left) and the chiral condensate χ (right) for m = 0.5 and g = 0.3. The
results of exact diagonalization calculations for L ≥ 9 (blue circles) given in Table I and DMRG calculations (orange squares) given in
Table V are extrapolated to L → ∞, as shown by the darker points. The solid lines correspond to linear extrapolations and the dashed
lines correspond to quadratic extrapolations, and are found to overlap (see the insets). The difference between the L → ∞ values of
these two extrapolations defines the (fitting) uncertainties associated with the darker points.

observables that are O(ξ/L). This scaling of observables
is responsible for the SC-ADAPT-VQE prepared vacuum
converging exponentially in circuit depth, and enables the
circuits to be systematically extrapolated to larger system
sizes.

Two quantities associated with the ground-state wave
function (vacuum) that we focus on are the chiral con-
densate χ and the energy density ε. The chiral condensate
[117] is an order parameter of chiral symmetry breaking,
and in the Jordan-Wigner mapping is given by

χ = 1
2L

2L−1∑

j =0

〈
(−1)j Ẑj + Î

〉
≡ 1

2L

2L−1∑

j =0

χj . (3)

The energy density is defined as ε = 〈Ĥ 〉/L, and in axial
gauge is not a local observable because the contribu-
tion from the electric field term in the Hamiltonian, Ĥel,
involves all-to-all couplings. However, this is an artifact
of using axial gauge and enforcing Gauss’s law. In Weyl
gauge, with explicit (local) gauge degrees of freedom, the

Hamiltonian is manifestly local, and therefore the energy
density is a local observable. These quantities are com-
puted for m = 0.5 and g = 0.3 with use of exact diagonal-
ization for L ≤ 14 (Table I) and DMRG calculations for
L � 14 (Table V). As anticipated, a linear extrapolation in
1/L is found to be consistent with these results, as seen in
Fig. 2. Additional details, along with results for m = 0.1
with g = 0.3 and g = 0.8, can be found in Appendix B.

III. SC-ADAPT-VQE FOR THE LATTICE
SCHWINGER MODEL

Underlying SC-ADAPT-VQE is ADAPT-VQE [111],
a quantum algorithm for state preparation that has been
applied to spin models [118], systems in quantum chem-
istry [111,119–124], and nuclear structure [125,126]. It
builds upon the variational quantum eigensolver (VQE)
[127], in which parameterized quantum circuits are opti-
mized to minimize the expectation value of a Hamiltonian.
The parameterized circuits are constructed stepwise (or
equivalently in layers), where the incrementally improved

TABLE I. Energy density, chiral condensate, and wave function infidelity for the vacuum of the Schwinger model with m =
0.5 and g = 0.3. Both the results obtained from seven steps of the SC-ADAPT-VQE (aVQE) algorithm with use of Qiskit’s clas-
sical simulator and the exact values are given. The last column shows the number of CNOT gates per qubit in the state preparation
circuit.

L ε(aVQE) ε(exact) χ(aVQE) χ(exact) IL CNOT gates per qubit

6 −0.30772 −0.30791 0.32626 0.32720 0.00010 31.2
7 −0.31097 −0.31117 0.32847 0.32947 0.00011 33.6
8 −0.31348 −0.31363 0.33036 0.33118 0.00008 35.8
9 −0.31539 −0.31553 0.33171 0.33251 0.00008 37.1
10 −0.31691 −0.31706 0.33279 0.33358 0.00008 38.2
11 −0.31816 −0.31831 0.33367 0.33445 0.00008 39.1
12 −0.31920 −0.31935 0.33441 0.33517 0.00008 39.8
13 −0.32008 −0.32023 0.33504 0.33578 0.00008 40.5
14 −0.32084 −0.32098 0.33557 0.33631 0.00008 41.0
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ansatz states converge to the ground state with succes-
sive iterations. At each step, the unitary transformation
that maximally decreases the energy of the ansatz state
is identified from a predefined set (“pool”) of unitaries.
The quantum circuit corresponding to this unitary is then
appended to the state preparation circuit. The (initial) state
from which the algorithm starts will often be chosen to be
a tensor product or an entangled state that can be efficiently
prepared on a quantum computer, such as a Greenberger-
Horne-Zeilinger state. If the target state is the ground state
of a confining gauge theory, e.g., the Schwinger model, the
strong-coupling (trivial) vacuum,

|�0〉 = |↑↓↑↓ . . . ↑↓〉, (4)

can be a good choice for such an initial state as it has
the correct long-distance structure in the gauge fields. The
ADAPT-VQE algorithm can be summarized as follows:

(1) Define a pool of operators {Ô} that are constrained to
respect some or all of the symmetries of the system.

(2) Initialize the register of the quantum computer to a
strategically selected state, |ψansatz〉, with the desired
quantum numbers and symmetries of the target
wave function.

(3) Measure the expectation value of the commutator
of the Hamiltonian with each operator in the pool,
〈ψansatz|[Ĥ , Ôi]|ψansatz〉. These are estimators of the
associated decrease in energy from transforming the
ansatz wave function by |ψansatz〉 → eiθiÔi |ψansatz〉,
for an arbitrary parameter θi.

(4) Identify the operator, Ôn, with the largest magnitude
commutator with the Hamiltonian. If the absolute
value of this commutator is below some prede-
termined threshold, terminate the algorithm. If it
is above the threshold, update the ansatz with the
parameterized evolution of the operator |ψansatz〉 →
eiθnÔn |ψansatz〉.

(5) Use VQE to find the values of the variational param-
eters that minimize the energy, 〈ψansatz(θ1, θ2, . . . ,
θn)|Ĥ |ψansatz(θ1, θ2, . . . , θn)〉. The previously opti-
mized values for θ1,2,...,n−1 and θn = 0, are used
as initial conditions. If the optimal value of the
newest parameter, θn, is below some predetermined
threshold, terminate the algorithm.

(6) Return to step 3.

For a given pool of operators, it is a priori unknown if
this algorithm will furnish a wave function that satisfies
the predetermined threshold for the observable(s) of inter-
est, but it is expected that the pool can be expanded on
the fly to achieve the desired threshold. The systems that
have been explored with this algorithm show, for a fixed
pool, exponential convergence with increasing numbers of
iterations [111,119,122,124,125].

Generally, different terms contributing to operators in
the pool do not commute with each other. Constructing
quantum circuits that exactly implement the exponential of
a sum of noncommuting terms is challenging, and in prac-
tice approximations such as first-order Trotterization are
used. This introduces (higher-order) systematic deviations
from the target unitary operator in each case, and defines
the pool of unitary operators,

{Ûi} = {exp(iθiÔi)} →
{

∏

t

Û(t)
i

}

. (5)

These Trotterized unitary operators correspond to the
quantum circuits that are implemented in state preparation.
In optimization of the quality of the state prepared on a
given quantum computer, particularly a NISQ era device,
there are trade-offs between the gate depth of a particu-
lar circuit implementation, the coherence time, the errors
associated with gate operations, and the associated Trotter
errors. This is explored in Appendix C.

Typically, ADAPT-VQE is a hybrid classical-quantum
algorithm that evaluates matrix elements of the Hamilto-
nian in trial wave functions on a quantum computer, with
parameters that are optimized classically. One disadvan-
tage of this is that the evaluation of expectation values
of the Hamiltonian requires a large number of measure-
ments (shots) on quantum computers. A novel part of
SC-ADAPT-VQE is the use of a classical simulator to
determine the ADAPT-VQE state preparation circuits. As
shown in Sec. V, these circuits can be scaled and used to
prepare the vacuum on arbitrarily large lattices.

A. A scalable operator pool for the lattice Schwinger
model

A successful application of SC-ADAPT-VQE to the
preparation of the lattice Schwinger model vacuum
requires choosing an efficient and scalable pool of oper-
ators (first step in Fig. 1). These operators are used to
systematically improve the ansatz vacuum wave function,
and are (only) constrained to be charge neutral, symmetric
under charge conjugation and parity (CP), and, as a con-
sequence of the CPT theorem [128–130], invariant under
time reversal [131]. Ideally one wants to find the small-
est pool of operators that is expressive enough to converge
rapidly toward the vacuum. For a lattice with OBCs, the
system has translational symmetry in the volume that is
broken by the boundaries (surface). In the vacuum, the
effects of the boundaries are expected to be localized,
with penetration depths set by the mass gap. Therefore,
the pool of operators should contain translationally invari-
ant “volume” operators, and “surface” operators that have
support only near the boundaries. In addition, a hierar-
chy is anticipated in which one-body operators are more
important than two-body operators, two-body operators
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are more important than three-body operators, and so on
[132]. Note that because wave functions are evolved with
exp(iθiÔi), arbitrarily high-body correlations are built from
n-body operators (analogous to connected versus discon-
nected Feynman diagrams). For the Schwinger model, we
observe that one-body operators are sufficient.

With the above discussion as guidance, it is convenient
to define two classes of one-body operators, one contain-
ing volume operators and the other containing surface
operators:

̂V
m = 1

2

2L−1∑

n=0

(−1)nẐn,

̂V
h (d) = 1

4

2L−1−d∑

n=0

(
X̂nẐd−1X̂n+d + ŶnẐd−1Ŷn+d

)
,

̂S
m(d) = (−1)d

1
2

(
Ẑd − Ẑ2L−1−d

)
,

̂S
h(d) = 1

4

(
X̂1Ẑd−1X̂d+1 + Ŷ1Ẑd−1Ŷd+1

+ X̂2L−2−dẐd−1X̂2L−2 + Ŷ2L−2−dẐd−1Ŷ2L−2

)
.

(7)

Unlabeled Ẑ’s act on the qubits between the leftmost
and rightmost operators (e.g., X̂0Ẑ2X̂3 = X̂0Ẑ1Ẑ2X̂3). The
first two operators in Eq. (7) are translationally invari-
ant, ̂V

m is the mass term in the Hamiltonian, and ̂V
h (d)

is a generalized hopping term that spans an odd num-
ber of fermion sites, d, connecting electrons and positrons
at spatial sites separated by �L = (d − 1)/2. Only d-odd
operators are retained, as the d-even operators break CP
symmetry. The second two operators in Eq. (7) correspond
to surface terms, of the form of a mass density and of a
hopping density at and near the boundaries. For ̂V

h (d), d ∈
{1, 3, . . . 2L − 3}, and for ̂S

h(d), d ∈ {1, 3, . . . 2L − 5},
preventing hopping between boundaries (which is found
to improve convergence).

Time-reversal symmetry implies that the vacuum wave
function can be made real up to an overall phase. The SC-
ADAPT-VQE ansatz is built from unitaries of the form
eiθiÔi , and furnishing a real wave function requires that the
operators in the pool are imaginary and antisymmetric. The
operators in Eq. (7) are real and are therefore disqualified
from being members of the pool. Instead, consider a pool
comprised of their commutators [133]:

{Ô} =
{

ÔV
mh(d) , ÔS

mh(0, d), ÔS
mh(1, d)

}
,

ÔV
mh(d) ≡ i

[
̂V

m, ̂V
h (d)

]

= 1
2

2L−1−d∑

n=0

(−1)n
(
X̂nẐd−1Ŷn+d − ŶnẐd−1X̂n+d

)
,

ÔS
mh(0, d) ≡ i

[
̂S

m(0), ̂
V
h (d)

]
= 1

4

(
X̂0Ẑd−1Ŷd − Ŷ0Ẑd−1X̂d

− Ŷ2L−1−dẐd−1X̂2L−1 + X̂2L−1−dẐd−1Ŷ2L−1

)
,

ÔS
mh(1, d) ≡ i

[
̂S

m(1), ̂
S
h(d)

]
= 1

4

(
Ŷ1Ẑd−1X̂d+1

− X̂1Ẑd−1Ŷd+1 + Ŷ2L−2−dẐd−1X̂2L−2

− X̂2L−2−dẐd−1Ŷ2L−2

)
. (8)

While the contributions to extensive quantities from the
volume operators, ÔV, typically scale as O(L), the sur-
face operators, ÔS, make O(1) contributions as they are
constrained to regions near the boundaries [134]. When
acting on the strong-coupling vacuum, the exponential
of an operator in the pool creates and annihilates e+e−
pairs separated by distance d. As the operators that are
being considered are one-body operators, the variational
algorithm is essentially building a coupled-cluster singles
state (see, e.g., Refs. [135,136]).

IV. SCALABLE QUANTUM CIRCUITS FROM
CLASSICAL COMPUTING

Integral to the application of SC-ADAPT-VQE is per-
forming ADAPT-VQE on a series of systems that are large
enough to enable a robust scaling of the parameterized
circuits. These scalable circuits can be determined either
with classical computing or by use of a smaller partition
of a larger quantum computer. In this section, application
of SC-ADAPT-VQE implemented with use of the Qiskit
noiseless classical simulator [137,138] is reported.

A. Trotterized quantum circuits for the scalable
operator pool

As discussed above, implementation of the unitary oper-
ators in the pool, i.e., Eq. (5), on classical simulators or
quantum computers requires their mapping to sequences of
quantum gates. For the individual terms in Eq. (8), we have
chosen to do this using Trotterization. The optimal gate
decomposition is less important for implementation using
a classical simulator, but is crucial for successful simula-
tions on a quantum computer. With the goal of using IBM’s
superconducting-qubit quantum computers [137,138], our
circuit designs aim to minimize two qubit gate count
and circuit depth and require only nearest-neighbor con-
nectivity.

As can be seen in Eq. (8), each term in a given oper-
ator in the pool is of the form (X̂ Ẑd−1Ŷ − ŶẐd−1X̂ ) for
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(a)

(b) (c)

FIG. 3. (a) Definition of the R±(θ) gate, which implements exp[−iθ/2(ŶX̂ ± X̂ Ŷ)]. The R±(θ) gate is used to implement (b)
exp[−iθ/2(X̂ Ẑ2Ŷ − ŶẐ2X̂ )] and (c) exp[iθ/2(X̂ Ẑ4Ŷ − ŶẐ4X̂ )] (note the change in sign).

some odd value of d. The construction of circuits imple-
menting the corresponding unitary operators follows the
strategy outlined in Ref. [139]. First, consider the Trot-
terization of terms with d = 1, i.e., constructing a circuit
corresponding to eiθ/2(X̂ Ŷ±ŶX̂ ) ≡ R±(θ). There is a known
two-controlled-NOT (CNOT) realization of this unitary oper-
ator [139], shown in Fig. 3(a). For terms with d > 1,
this circuit can be extended in an X pattern as shown
in Figs. 3(b) and 3(c) for d = 3 and d = 5, respectively
[140]. Terms with larger d are constructed by extension
of the legs of the X. Compared with the traditional CNOT-
staircase-based circuits, there is a reduction by two CNOT
gates, and a reduction by a factor of 2 in CNOT depth [141].

However, the primary advantage of these circuits is that
they allow an efficient arrangement of terms leading to can-
cellations among neighboring R+(±π

2 ) gates. As depicted
in Fig. 4, this is made possible by arranging the circuit ele-
ments so that sequential terms are offset by d − 1 qubits,
i.e., start on qubit {0, d − 1, 2(d − 1), . . .}. This allows the

outermost gates to cancel (using the identity in the upper
left of Fig. 4). Also, for d ≥ 5, the next layer should start
(d − 1)/2 qubits below the previous one, as the circuit
depth can be reduced by interleaving the legs of the X. Fur-
ther optimizations are possible by our noting that distinct
orderings of terms, while equivalent up to higher-order
Trotter errors, can have different convergence properties;
see Appendix C.

B. Building scalable state preparation quantum
circuits using SC-ADAPT-VQE with classical

computing

In this section, SC-ADAPT-VQE is used to prepare
approximations to the vacuum of the lattice Schwinger
model on up to L = 14 spatial sites (28 qubits) using clas-
sical simulations of the quantum circuits developed in the
previous section (second step in Fig. 1).

(a)

(c)

(b)

FIG. 4. Simplifications of quantum circuits for the Trotterized unitaries corresponding to (a) ÔV
mh(1), (b) ÔV

mh(3), and (c) ÔV
mh(5) for

L = 6, as explained in the main text. Cancellations between R+(±π
2 ) are highlighted with red-dash-outlined boxes.
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In addition to the energy density and chiral condensate
introduced in Sec. II A, the infidelity density,

IL = 1
L

(
1 − |〈ψansatz|ψexact〉|2

)
, (9)

is also studied, where |ψexact〉 is the exact vacuum wave
function on a lattice with L spatial sites. An infidelity den-
sity that is constant in L corresponds to constant deviations
in local observables evaluated in the prepared state.

To investigate the interplay between L and ξ =
1/mhadron, three sets of parameters are considered: m = 0.1
and g = 0.3 (ξL=14 = 2.6), m = 0.1 and g = 0.8 (ξL=14 =
1.3), and m = 0.5 and g = 0.3 (ξL=14 = 0.9). The ξ are
determined with exact diagonalization, and are found to
weakly depend on L. Note that increasing either m or g
decreases the correlation length. To make systematically

improvable predictions of observables from the QFT that
emerges from a given lattice model, extrapolations to the
continuum (lattice spacing to zero) and infinite-volume
(L → ∞) limits must be performed. This requires that the
relevant correlation length or lengths are all much greater
than the lattice spacing, ξ � 1 in lattice units, but are well
contained in the lattice volume, L � ξ . We primarily focus
on extrapolation to large lattices, and therefore require only
L � ξ . As a result, the parameter set m = 0.5 and g = 0.3
is used as the primary example throughout this work.

The values of ε, χ , and IL obtained at the seventh step
of SC-ADAPT-VQE with m = 0.5 and g = 0.3 are given
in Table I, while their deviations from the exact values are
shown in Fig. 5, as a function of increasing number of SC-
ADAPT-VQE steps. The corresponding numerical values
obtained from the other parameter sets are presented in
Appendix F [142]. As seen by their approximately linear

10−2δε

m = 0.1 , g = 0.3

10−3

10−2

m = 0.1 , g = 0.8

10−3

10−2

m = 0.5 , g = 0.3

10−1

δχ

10−2

10−1

10−3

10−2

10−1

1 2 3 4 5 6 7 8 9 10

Step

10−2

I L

1 2 3 4 5 6 7 8 9 10

Step

10−3

10−2

1 2 3 4 5 6 7 8 9 10

Step

10−4

10−3

L = 6 L = 7 L = 8 L = 9 L = 10 L = 11 L = 12 L = 13 L = 14

FIG. 5. Deviations from the exact values of the energy density δε, chiral condensate δχ , and wave function infidelity density IL
obtained with SC-ADAPT-VQE. The deviation in quantity “x” is defined as δx = |(x(aVQE) − x(exact))/x(exact)|, where x(exact) denotes
the exactly calculated value at the same L. Results are shown for L = 6 to L = 14 as a function of step number for m = 0.1 and g = 0.3
(left column), m = 0.1 and g = 0.8 (center column), and m = 0.5 and g = 0.3 (right column). The numerical values for m = 0.5 and
g = 0.3 for the seventh step (highlighted with the dashed box) are given in Table I, and the sequencing of the corresponding Trotterized
operators and the variational parameters are given in Table II. The corresponding results for m = 0.1 and g = 0.3 (seventh step) and
for m = 0.1 and g = 0.8 (sixth step) can be found in Appendix F.
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TABLE II. Structure of the ansatz wave function with m = 0.5 and g = 0.3 through seven steps of the SC-ADAPT-VQE algorithm
obtained from a classical simulation using Qiskit. For a given L, the order that the operators are added to the ansatz is displayed from
left to right, with the associated parameter, θi, given as the entry in the table. The operators, ÔV

mh(dh) and ÔS
mh(dm, dh), are defined in

Eq. (8). An entry of “–” means that the operator does not contribute. The bottom row corresponds to an extrapolation to L = ∞ as
detailed in Eq. (10).

θi

L ÔV
mh(1) ÔV

mh(3) ÔV
mh(5) ÔV

mh(1) ÔV
mh(7) ÔS

mh(0, 1) ÔV
mh(7) ÔV

mh(1) ÔS
mh(0, 3)

6 0.18426 −0.03540 0.00731 0.11866 – 0.06895 −0.00182 – −0.03145
7 0.18440 −0.03574 0.00729 0.11864 – 0.06867 −0.00177 – −0.03066
8 0.13931 −0.03727 0.00760 0.08870 – 0.06925 −0.00183 0.07457 –
9 0.13945 −0.03714 0.00755 0.08849 – 0.06904 −0.00180 0.07473 –
10 0.13956 −0.03703 0.00752 0.08832 −0.00178 0.06888 – 0.07485 –
11 0.13965 −0.03695 0.00749 0.08819 −0.00177 0.06875 – 0.07494 –
12 0.13972 −0.03688 0.00747 0.08808 −0.00176 0.06865 – 0.07502 –
13 0.13977 −0.03683 0.00745 0.08800 −0.00175 0.06856 – 0.07508 –
14 0.13982 −0.03678 0.00744 0.08793 -0.00174 0.06849 – 0.07513 –
∞ 0.1400 −0.0366 0.0074 0.0877 −0.0017 0.0682 – 0.0753 –

behavior in the log plots in Fig. 5, the error in each of
these quantities decreases exponentially with algorithm
step, indicating convergence to the target wave func-
tion. This exponential trend is demonstrated out to ten
steps, reaching a convergence comparable to the system-
atic errors introduced in the L extrapolations below. This
provides evidence that this choice of initial state and oper-
ator pool does not suffer from “barren plateaus” or local
minima. For a given step in the algorithm, the error is
seen to become independent of system size. This indi-
cates that extrapolations of the circuits to arbitrarily large
systems will have errors that are independent of L. As dis-
cussed above, it is expected that SC-ADAPT-VQE will
converge more rapidly for systems with smaller correlation
lengths. This is indeed seen in Fig. 5, where the correlation
length decreases from left to right, while the convergence
improves. Also included in Table I is the number of CNOT
gates per qubit in the SC-ADAPT-VQE circuit. It is seen
to scale as a constant plus a subleading O(1/L) term, lead-
ing to an asymptotic value of 48 CNOT gates per qubit. This
scaling is due to there being (2L − d) terms in each volume
operator.

The structure of the SC-ADAPT-VQE state preparation
circuit and the corresponding variational parameters for
m = 0.5 and g = 0.3 are given in Table II. Notice that ini-
tially localized operators are added to the wave function
(small d), followed by increasingly longer-range ones, as
well as surface operators. Systems with longer correlation
lengths require larger d operators (e.g., compare Tables II
and VI), in line with previous discussions on the expo-
nential decay of correlations for d > ξ . It is also seen that
the surface operators become less important (appear later
in the ansatz structure) for larger lattices. For example, as
shown in Table II, the fifth step of SC-ADAPT-VQE tran-
sitions from being a surface operator to a volume operator
at L = 10 (causing the jump in convergence at the fifth

step in the right column in Fig. 5). This is expected as they
contribute O(1/L) to the energy density, whereas volume
operators contribute O(1).

Importantly, Table II shows that the order of operators
and the corresponding variational parameters are converg-
ing with increasing system size (third step in Fig. 1). This is
due to exponentially decaying correlations for d � ξ , and
it is expected that the variational parameters will also con-
verge exponentially, once L is sufficiently large to contain
ξ , and we assume the following form:

θi = θL=∞
i + c1 e−c2 L. (10)

Table II shows that this convergence sets in for L > 7
[143], and the variational parameters extrapolated to L =
∞ are given in the last row of Table II. These are used
in the next section to initialize the vacuum on lattices up
to L = 500. An example of extrapolating the variational
parameters is shown in Fig. 6 for the parameter θ1, asso-
ciated with ÔV

mh(1). The exact results obtained for L ≤ 14
are well reproduced and extrapolated with the exponential
functional form in Eq. (10) [144]. A more comprehen-
sive discussion of the parameter extrapolations, along with
examples for m = 0.1 and g = 0.3 and for m = 0.1 and
g = 0.8, can be found in Appendix D.

V. PREPARING THE VACUUM OF THE
SCHWINGER MODEL ON LARGE LATTICES

The vacuum preparation circuits, determined for L ≤ 14
with SC-ADAPT-VQE using an exact (state vector) clas-
sical simulator, are scaled to prepare the vacuum on much
larger lattices. These scaled circuits are used to prepare
the vacuum on lattices of up to L = 500 (1000 qubits)
with use of a classical MPS circuit simulator and up to
L = 50 (100 qubits) with use of IBM’s Eagle-processor
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8 10 12 14
L

0.1390

0.1392

0.1394
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0.1398

0.1400

θ 1

m = 0.5, g = 0.3
SC-ADAPT-VQE
Exponential fit
Extrapolated fit
Effective θ
Effective-θ band

FIG. 6. Example of fitting the asymptotic L dependence of a parameter defining the SC-ADAPT-VQE state-preparation circuit. The
results for θ1, corresponding to evolving by ÔV

mh(1) (blue circles), determined from classical simulations, for m = 0.5 and g = 0.3
given in Table II, are extrapolated to L = ∞ by (i) use of a three-parameter fit given in Eq. (10), as shown by the blue line, with an
asymptotic value shown by the blue region, and by (ii) the forming of effective θ (orange diamonds) defined in Eq. (D3), with the
maximum and minimum values shown as the orange shaded region.

quantum computers (fourth step in Fig. 1). We emphasize
that this scaling requires no further optimization of the cir-
cuits. The chiral condensate and energy density determined
from the classical simulator are found to be consistent with
DMRG calculations. On the quantum computers, the chiral
condensate and charge-charge correlators are measured to
probe the quality of one-qubit and two-qubit observables.
The results are in agreement with those from the classical
MPS simulator, within statistical uncertainties.

A. Classical simulation

Very large quantum circuits that do not generate long-
range entanglement can be efficiently simulated with use of
the Qiskit matrix_product_state classical simulator. Here it
is used to simulate the preparation of the Schwinger model
vacuum on L � 14 lattices, applying the scalable circuits
determined in the previous section from seven steps of SC-
ADAPT-VQE on L ≤ 14 lattices. The values obtained for
the chiral condensate and energy density up to L = 500
are compared with DMRG results, and are presented in
Table III. The deviations in the energy density (approx-
imately 1 × 10−4) and chiral condensate (approximately
1 × 10−3) are in good agreement with what was found for
smaller L; see Table I. This demonstrates that the system-
atic errors in the vacuum wave functions prepared with
the scaled quantum circuits are (approximately) indepen-
dent of L over this range of lattice volumes [145]. The
scaled circuits corresponding to m = 0.1 and g = 0.3 and
for m = 0.1 and g = 0.8 were also used to successfully
prepare the vacuum. However, because of the longer cor-
relation lengths, MPS calculations with L � 100 required
excessive classical resources, and were not performed. See
Appendix F for more details.

It is worth summarizing what has been accomplished in
this work with classical simulations:

(1) In Sec. II, the vacuum energy density and chiral
condensate were determined exactly for L ≤ 14 (28
staggered lattice sites) with use of exact diagonal-
ization and for L ≤ 103 with use of DMRG calcu-
lations. The results for L ≥ 9 were (consistently)
extrapolated to L → ∞, with 1/L scaling.

(2) In Sec. IV, SC-ADAPT-VQE, based on the scalable
operator pool determined in Sec. III, was performed
on L ≤ 14 lattices. Intensive quantities were found
to converge exponentially with circuit depth, and
the errors in these quantities, as well as the struc-
ture of the state preparation circuits, were found to
become independent of L. This enabled the vari-
ational parameters defining the state preparation
circuits to be consistently extrapolated to arbitrarily
large L.

TABLE III. Results for large lattices with m = 0.5 and g = 0.3
through seven steps of SC-ADAPT-VQE using circuits scaled
from L ≤ 14. The superscript “SC-MPS” denotes the results
obtained from the scaled circuits using the Qiskit MPS classical
simulator, and the superscript “DMRG” denotes results obtained
from DMRG calculations.

L ε(SC-MPS) ε(DMRG) χ (SC-MPS) χ(DMRG)

50 −0.32790 −0.32805 0.34044 0.34123
100 −0.32928 −0.32942 0.34135 0.34219
200 −0.32996 −0.33011 0.34181 0.34267
300 −0.33019 −0.33034 0.34196 0.34282
400 −0.33031 −0.33045 0.34204 0.34291
500 −0.33038 −0.33052 0.34209 0.34296
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(3) In this section, the quantum circuits correspond-
ing to seven steps of SC-ADAPT-VQE were scaled
and applied to large lattices with use of the Qiskit
MPS circuit simulator. The deviations of the energy
density and chiral condensate computed from these
wave functions were found to be independent of L,
i.e., consistent with L ≤ 14.

These main points indicate that the quantum circuits deter-
mined classically with SC-ADAPT-VQE can be used to
prepare the vacuum of the Schwinger model on quantum
computers at scale with a precision that is independent of
system size.

B. Quantum simulations on 100 qubits using IBM’s
quantum computers

The quantum circuits determined via classical simula-
tion on L ≤ 14 lattices are now scaled to larger L to prepare
the vacuum of the Schwinger model on up to 100 qubits of
IBM’s 127-superconducting-qubit Eagle quantum comput-
ers with heavy-hexagonal communication fabric. Hamil-
tonian parameters m = 0.5 and g = 0.3 with L = 14, 20,
30, 40, and 50, and state preparation circuits scaled from
two steps of SC-ADAPT-VQE (compared with seven steps
in the previous section), are used. Fewer steps equates to
shallower circuits, and a preliminary study of the perfor-
mance of the computer with more steps can be found in
Appendix G. The variational parameters extrapolated to
the chosen range of L for two steps of SC-ADAPT-VQE
are given in Table XII in Appendix G.

The large number of qubits and two-qubit gates involved
in these simulations make error mitigation essential to
obtain reliable estimates of observables. Specifically, this
work uses readout-error mitigation (REM), dynamical

decoupling (DD), Pauli twirling (PT), and decoherence
renormalization. The Qiskit Runtime Sampler primitive is
used to obtain readout-corrected quasidistributions via the
matrix-free measurement mitigation (M3) from Ref. [147].
Also included in the primitive is DD, which is used to
suppress crosstalk and idling errors [148–150]. Crucial to
the error mitigation is decoherence renormalization [97,98,
106,151], modified in this work for simulations on a large
number of qubits, which we call “operator decoherence
renormalization.” Underpinning decoherence renormaliza-
tion is PT [152], which turns coherent two-qubit gate errors
into incoherent errors, which can be inverted to recover
error-free expectation values. Unlike previous applications
of decoherence renormalization, which assume a constant
decoherence across the device, ODR estimates the deco-
herence separately for each operator. This is done by
running a mitigation circuit, which has the same operator
structure as the one used to extract the observables, but
with the noise-free result being known a priori. We choose
the state preparation circuits with the variational parame-
ters set to zero for mitigation, and in the absence of noise
this prepares the strong-coupling vacuum, |�0〉 in Eq. (4).
Naively, it could be expected that postselecting results on
states with total charge Q = 0 would eliminate the lead-
ing bit-flip errors [100]. However, when postselection is
combined with ODR, which accommodates single-qubit
decoherence, undesirable correlations between qubits are
introduced. We find that performing both mitigation tech-
niques (postselection and ODR) degrades the quality of
two-qubit observables, and postselection is not used in this
work as it is found to be less effective. More details about
ODR and postselection can be found in Appendix E.

The local chiral condensate, χj in Eq. (3), obtained from
ibm_cusco for L = 50 is shown in Fig. 7, where the sub-
script “j ” denotes the qubit index [153]. Three different

0 20 40 60 80 99
Qubit j

0.00

0.25

0.50

0.75

1.00

1.25

χ
j

ibm_cusco

Qiskit MPS circuit simulator ibm_cusco DD ibm_cusco DD and PT ibm_cusco DD, PT, and ODR

FIG. 7. Local chiral condensate χj for L = 50, as obtained from IBM’s Eagle-processor quantum computer ibm_cusco after different
steps of error mitigation: DD (squares), PT (diamonds), and ODR (circles). This is compared with the expected results obtained from
the Qiskit MPS circuit simulator (black dashes). Averaging χj over all of the qubits (including at the boundaries) gives the chiral
condensate presented in Table IV. The layout of the qubits used on the processor is shown on the right. These results were obtained by
our performing 150 Pauli twirls, each involving 8 × 103 shots for the physics circuits and the corresponding mitigation circuits. The
blue icon in the upper right indicates that this calculation was done on a quantum device [154].
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TABLE IV. Chiral condensate in the Schwinger model vacuum obtained from ibm_brisbane (L ≤ 40) and ibm_cusco (L = 50) for
large lattices with m = 0.5 and g = 0.3 with use of the scaled circuits from two steps of SC-ADAPT-VQE. The values before and after
application of ODR are given in columns 4 and 5. Column 6 gives results obtained from our running the two-step SC-ADAPT-VQE
circuits on an MPS classical simulator (the noiseless result), while column 7 gives the results from DMRG calculations.

L Qubits CNOT gates χ (SC-IBM) before ODR χ (SC-IBM) after ODR χ (SC-MPS) χ(DMRG)

14 28 212 0.491(4) 0.332(8) 0.32879 0.33631
20 40 308 0.504(3) 0.324(5) 0.33105 0.33836
30 60 468 0.513(2) 0.328(4) 0.33319 0.33996
40 80 628 0.532(2) 0.334(3) 0.33444 0.34075
50 100 788 0.721(2) 0.326(3) 0.33524 0.34123

sets of results (in different stages of error mitigation) are
shown: with only DD applied (squares), with DD and PT
applied (diamonds), and after ODR (circles). Looking at
the results with only DD (squares), it is seen that the
noise is not uniform across the device, signaling a signifi-
cant contribution of coherent noise. After PT (diamonds),
this coherent noise is averaged out, and is transformed
into incoherent (depolarizing) noise, seen by the almost-
constant shift of the results compared with the MPS sim-
ulation. Finally, ODR removes this shift by mitigating the
effects of depolarizing noise. More details on the interplay
between these methods can be found in Appendix G.

With the statistics and twirlings gathered, the 1σ uncer-
tainties in each point are approximately 15% of their mean,
and each χj is within 3σ of the MPS simulator result (the
individual values of χj can be CP averaged to reduce the
uncertainty, as shown in Fig. 14 in Appendix G). It is
expected that these uncertainties will reduce with increased
statistics and twirlings. Notice that the expected values
of χj deviate from the volume average for only a few
qubits near the boundaries. This is because the bound-
aries perturb the wave function only over a few correlation
lengths, leaving the rest of the volume unaffected. The chi-
ral condensates for L = 14, 20, 30, 40, and 50 are given in
Table IV. This is an average over the whole lattice, Eq. (3),
and therefore the uncertainty decreases with increasing L
due to increased sampling. Despite having smaller uncer-
tainties, the results remain within 3σ of the MPS simulator
result. Also given in Table IV is the number of two-qubit
CNOT gates. The number of CNOT gates is seen to grow lin-
early with L, without affecting the quality of the result, and
788 CNOT gates over 100 qubits is well within the capa-
bilities of the quantum computer. This is in line with other
quantum simulations that have been performed with large
numbers of qubits and CNOT gates using IBM’s quantum
computers [155–157].

This highlights the fact that it is not the total number
of CNOT gates in the quantum circuit that is limiting the
scale of simulations, but rather it is the number of CNOT
gates per qubit. This, of course, assumes that the CNOT
gates in a single layer of the circuit can be enacted in
parallel. Because of this, increasing L actually improves
volume-averaged quantities by approximately 1/

√
L due

to statistical averaging. In a similar vein, since scalable
circuits repeat structures of size ξ many times over the
whole lattice, the number of Pauli twirls being sampled is
effectively multiplied by L/ξ .

To further probe the quality of the prepared wave func-
tions, correlations between electric charges on the spa-
tial sites are considered. The charge on a spatial site is
defined to be the sum of charges on the two associated
staggered sites, Q̂k = Q̂2k + Q̂2k+1, where k is an integer
corresponding to the spatial site. Of particular interest are
connected correlation functions between spatial charges,
[158] defined as

〈Q̂j Q̂k〉c = 〈Q̂j Q̂k〉 − 〈Q̂j 〉〈Q̂k〉. (11)

These correlations decay exponentially for |j − k| � ξ

due to confinement and charge screening. Unlike the chi-
ral condensate, which is a sum of single-qubit observ-
ables, 〈Q̂j Q̂k〉c is sensitive to correlations between qubits,
i.e., requires measurement of 〈Ẑj Ẑk〉. The results from
ibm_cusco for L = 50 are shown in Fig. 8.

The correlations are symmetric under j ↔ k, and only
the lower triangle of the correlation matrix is shown.
Each measured value is within 3σ of the MPS simulator
result, consistent with statistical fluctuations. Also shown
in Fig. 8 are the spatial charge-charge correlations as a
function of distance, averaged over the lattice volume,

〈Q̂Q̂〉c(d) = 1
L − 4 − d

L−3−d∑

k=2

〈Q̂kQ̂k+d〉c. (12)

To reduce the effects of the boundaries, this sum omits the
first and last two spatial lattice sites. As anticipated, this
correlation function decays exponentially, with a charac-
teristic length scale proportional to ξ = 1/mhadron [159].
For d > 2, the correlations are consistent with zero within
2σ (note that the log scale distorts the error bars), and
increased numbers of shots and twirlings are needed to
distinguish additional points from zero. The local chiral
condensate and charge-charge correlations corresponding
to the other values of L are given in Appendix G.
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FIG. 8. Left: Connected contributions to the spatial charge-charge correlation functions, 〈Q̂j Q̂k〉c, for L = 50 (the inset shows the
number of standard deviations by which the results obtained from ibm_cusco deviate from the MPS simulator results). Right: Volume-

averaged correlation functions as a function of distance d, 〈Q̂Q̂〉c(d), with the points following the same color map as in the left main
panel (error bars show 1σ standard deviations).

VI. SUMMARY AND OUTLOOK

In this work, the vacuum of the lattice Schwinger
model was prepared on up to 100 qubits of IBM’s 127-
qubit Eagle-processor quantum computers, ibm_brisbane
and ibm_cusco. This was accomplished with SC-ADAPT-
VQE, an algorithm for identifying systematically improv-
able state preparation quantum circuits that can be robustly
scaled to operate on any number of qubits The utility of
scalable circuits relies on physically relevant systems often
having a (discrete) translational symmetry, and a finite cor-
relation length set by the mass gap. Together, these imply
that the state preparation circuits have unique structure
over approximately a correlation length [107,108], which
is replicated across the lattice. The lattice Schwinger model
with OBCs was chosen to explore these ideas as its vac-
uum has (approximate) translational invariance and, due to
confinement, has a mass gap. By performing SC-ADAPT-
VQE on a classical simulator, we built state preparation
circuits for lattices of L ≤ 14 (28 qubits) from an oper-
ator pool containing both translationally invariant terms
and ones localized to the boundaries. Exponential conver-
gence in the quality of the prepared state with both system
size and circuit depth enabled the extrapolation of circuits
that can be scaled to arbitrarily large lattices. This method-
ology was successfully demonstrated by our preparing
the Schwinger model vacuum on up to 100 supercon-
ducting qubits of IBM’s quantum computers. Both the
charge-charge correlators and the chiral condensate were
measured, and were found to agree with results from an
MPS simulator, within statistical uncertainty. Vital to the
success of these quantum simulations involving a large
number of qubits was the development of an improved
error-mitigation technique, which we have called “operator
decoherence renormalization.”

Because of its generality, we expect that the scalable
circuit framework embodied by SC-ADAPT-VQE can be
applied to other gapped theories with translationally invari-
ant ground states. Of particular importance is QCD, for
which the initialization of ground states for quantum simu-
lations continues to be a daunting prospect. It is likely that
many of the ideas used to construct efficient state prepa-
ration circuits for the Schwinger model can be applied to
the initialization of the ground state of QCD. Of course,
the operator pool that informs the state preparation cir-
cuits will be more diverse since the gauge field is no longer
completely constrained by Gauss’s law. Local quark-field
operators, extended quark operators with associated gauge
links, and closed loops of gauge links will need to be
included in the pool. It is also expected that the variational
parameters defining the ground-state preparation circuits
will converge exponentially, once the simulation volume
can completely contain the pion(s).

The utility of SC-ADAPT-VQE is that it provides
a straightforward prescription for determining low-depth
quantum circuits that prepare the ground state on systems
of arbitrary size with only classical computing overhead.
This not only allows the quantum simulation of ground
state properties, but will be important for future simula-
tions of dynamics, where preparing the initial state is a
crucial first step. Scalable circuits can likely be used to
prepare single-hadron and multihadron states, for exam-
ple, a vector meson in the Schwinger model or a baryon in
QCD. Once these states are initialized, they can be used
to simulate scattering and electroweak processes and to
probe properties of dense matter. As an example, localized
e+e− pairs on top of the Schwinger model vacuum could
be prepared and evolved forward in time. Such localized
distributions can have high-energy components, whose
propagation through the lattice leaves behind showers of
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particles. These processes probe the dynamics of fragmen-
tation, confinement, and hadron production, and lead to
long-range correlations that entangle distant regions of the
lattice (see, e.g., Refs. [68,92,160,161]). As simulations of
highly entangling dynamics at scale are beyond the capa-
bilities of classical computing, they are a candidate for an
early quantum advantage for scientific applications.
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APPENDIX A: THE SCHWINGER MODEL
HAMILTONIAN IN THE Q = 0 SECTOR

In the absence of background electric charges, the
lowest-energy sector of the Schwinger model has van-
ishing charge, Q = ∑

n Qn = 0. Restriction to this sector
permits a simplification of the Hamiltonian, reducing the

number of terms appearing in the electric contribution:

Ĥel
Q=0= g2

2

{
L−1∑

n=0

(L − n)
[
Q̂2

n + (1 − δn0)Q̂2
2L−n

]

+2
L−1∑

n=0

[
L−1∑

m=n+1

(L − m) Q̂mQ̂n

+
n−1∑

m=1

(L − n)Q̂2L−mQ̂2L−n

]}

. (A1)

This reduces the number of Q̂nQ̂m terms from 1 − 3L +
2L2 to 1 + L2 − 2L and the required connectivity from all-
to-all to half-to-half. Note that this can also be used to
simplify the (1 + 1)D SU(N ) Hamiltonian in the Q(a)

n = 0
(color singlet) sector, by replacing Q̂n → Q̂(a)

n with a ∈
{1, 2, . . . , N 2 − 1}.

Further simplifications to this Hamiltonian are likely
possible by taking advantage of the exponential decay
of correlations between spatial charges Q̂ separated by
distance d > ξ . This will allow the construction of a trun-
cated Ĥel that has only O(Lξ) terms. In addition, such a
Hamiltonian will require connectivity only between qubits
separated by d � ξ instead of d ≤ L.

APPENDIX B: VOLUME EXTRAPOLATION OF
THE ENERGY DENSITY AND CHIRAL

CONDENSATE

Here the vacuum energy density and chiral condensate
are extrapolated to L = ∞. The results of exact diagonal-
ization and DMRG calculations are considered indepen-
dently, providing consistent results within uncertainties.
For the DMRG calculations, 60 sweeps were performed
with a maximum allowed bond dimension of 150 and
a truncation of Schmidt coefficients below 10−10. This
showed a convergence of 10−10 in the energy of the
vacuum state. Discussions in Sec. II A about boundary
effects motivated an inverse-power, 1/L, dependence of
the exact vacuum energies as the infinite-volume limit
is approached. This scaling was argued when L is much
larger than the longest correlation length, and with OBCs.
Therefore, for masses and couplings that give rise to the
lowest-lying hadron being completely contained within the
lattice volume, we anticipate functional forms

ε(L) = ε(∞)+ e1

L
+ O

(
1
L2

)
,

χ(L) = χ(∞)+ d1

L
+ O

(
1
L2

)
(B1)

for ε and χ . This is due to the finite penetration depth of
boundary effects, and the exponential convergence of both
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FIG. 9. Charge on each spatial site, Q̂k, for m = 0.5, g = 0.3, and L = 14 obtained from exact diagonalization of the Hamiltonian.

the volume and the surface contributions to their infinite-
volume values. As a result, the surface terms makeO (1/L)
contributions to intensive quantities, e.g., densities. To
illustrate this, the expectation value of the charge on each
spatial site, Q̂k, for m = 0.5, g = 0.3, and L = 14 is shown
in Fig. 9. This converges exponentially with the distance
to the boundary to 〈Q̂k〉 = 0, the expected infinite-volume
value.

The results of fits to the exact and DMRG results for
the energy density and chiral condensate for m = 0.5 and
g = 0.3 are shown in Fig. 2 and for m = 0.1 and g = 0.8
and for m = 0.1 and g = 0.3 are shown in Fig. 10. Using
polynomials that are linear and quadratic in 1/L, we per-
formed fits for L ≥ 9 and extrapolated to L = ∞. The
differences between extrapolations obtained from the two
fit forms are used to estimate the systematic fitting error,
corresponding to the black and gray points (and error bars).
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FIG. 10. L extrapolations of the vacuum energy density ε (top) and chiral condensate χ (bottom) for m = 0.1 and g = 0.3 (left) and
m = 0.1 and g = 0.8 (right). Each panel shows extrapolations of the exact values given in Tables VII and IX (blue circles) and of the
results from DMRG calculations (orange squares) given in Table V for L ≥ 9. The solid lines correspond to linear extrapolations and
the dashed lines correspond to quadratic extrapolations, and are found to overlap (see the insets). The darker points show the L = ∞
extrapolated value, with an uncertainty determined by the difference between the linear and quadratic extrapolations.
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TABLE V. Additional results for the energy density ε and chiral condensate χ obtained from DMRG calculations, and used in the
extrapolations in Figs. 2 and 10.

m = 0.1, g = 0.3 m = 0.1, g = 0.8 m = 0.5, g = 0.3

L ε(DMRG) χ(DMRG) ε(DMRG) χ(DMRG) ε(DMRG) χ(DMRG)

10 −0.51405 0.70979 −0.42685 0.52701 −0.31707 0.33358
12 −0.51694 0.71068 −0.42953 0.52838 −0.31936 0.33517
16 −0.52057 0.71190 −0.43288 0.53010 −0.32221 0.33716
20 −0.52275 0.71265 −0.43488 0.53114 −0.32393 0.33836
24 −0.52420 0.71315 −0.43622 0.53182 −0.32508 0.33916
28 −0.52523 0.71350 −0.43718 0.53232 −0.32589 0.33973
32 −0.52601 0.71377 −0.43790 0.53268 −0.32650 0.34016
36 −0.52661 0.71398 −0.43846 0.53297 −0.32698 0.34049
40 −0.52710 0.71414 −0.43890 0.53320 −0.32736 0.34075
44 −0.52749 0.71428 −0.43927 0.53339 −0.32768 0.34097
48 −0.52782 0.71439 −0.43957 0.53354 −0.32794 0.34115
52 −0.52810 0.71449 −0.43983 0.53368 −0.32816 0.34130
54 −0.52823 0.71453 −0.43994 0.53374 −0.32825 0.34137
60 −0.52855 0.71464 −0.44024 0.53389 −0.32851 0.34155
70 −0.52896 0.71479 −0.44062 0.53408 −0.32883 0.34178
80 −0.52927 0.71489 −0.44091 0.53423 −0.32908 0.34195
90 −0.52952 0.71498 −0.44113 0.53435 −0.32927 0.34208
100 −0.52971 0.71504 −0.44131 0.53444 −0.32942 0.34219
110 −0.52987 0.71510 −0.44146 0.53451 −0.32955 0.34228
120 −0.53000 0.71514 −0.44158 0.53458 −0.32965 0.34235
130 −0.53011 0.71518 −0.44168 0.53463 −0.32974 0.34241
140 −0.53021 0.71521 −0.44177 0.53467 −0.32981 0.34246
150 −0.53029 0.71524 −0.44185 0.53471 −0.32988 0.34251
200 −0.53058 0.71534 −0.44212 0.53485 −0.33011 0.34267
500 −0.53110 0.71552 −0.44260 0.53510 −0.33052 0.34295
1000 −0.53128 0.71558 −0.44276 0.53518 −0.33066 0.34305

The difference between linear and quadratic fits is negligi-
ble for the exact results, except for the chiral condensate
in the case of m = 0.1 and g = 0.3, which sees a small
quadratic dependence. When the fit interval is reduced to
L ≥ 10, this dependence once again becomes negligible.

APPENDIX C: OPTIMIZING TROTTERIZED
CIRCUITS FOR STATE PREPARATION

As discussed in the main text, even after the operator
pool has been chosen for SC-ADAPT-VQE, there remains
freedom in how the pool of unitary operators, Eq. (5), is
implemented as quantum circuits. For example, instead
of leading-order Trotterization, a higher-order Trotteriza-
tion could be used to suppress Trotter errors. Alternatively,
different orderings of the terms in the leading-order Trot-
terization can be considered. This freedom can be used to
optimize the convergence of SC-ADAPT-VQE with circuit
depth. Also, different Trotter orderings can break the CP
symmetry. The circuit orderings in Fig. 4 were chosen to
minimize the circuit depth, and for d = 1, 3, 5 this order-
ing preserves CP symmetry, while for d = 7, 9 it breaks
CP symmetry.

Consider the different arrangements of the terms in the
Trotterization of ÔV

mh(1), given in Eq. (8), as shown in
Fig. 11(a). The depth-2 ordering (left) was used to obtain
the results presented in the main text as it leads to the shal-
lowest circuits. All the orderings shown in Fig. 11(a) are
equivalent up to O[(θ1)

2] (where θ1 is the coefficient of
the operator in the corresponding unitary operator), but the
deeper circuits allow the generation of longer-range cor-
relations. Note that the deeper circuits can break the CP
symmetry; e.g., for L = 10 depths 2 and 4 preserve CP
symmetry while depths 3, 4, 5, and 7 break CP symme-
try. It is found that this added circuit depth improves the
convergence of SC-ADAPT-VQE, as shown in Fig. 11(b).
This demonstrates that to minimize circuit depth, for a
fixed error threshold, it is preferable to choose a deeper
Trotterization of ÔV

mh(1), instead of going to a greater num-
ber of SC-ADAPT-VQE steps. For example, it is more
efficient to perform two steps of SC-ADAPT-VQE with
a depth-3 Trotterization of ÔV

mh(1) than to perform three
steps of SC-ADAPT-VQE with a depth-2 Trotterization of
ÔV

mh(1). Also shown in Fig. 11(b) are results obtained from
our performing SC-ADAPT-VQE with exact unitary oper-
ators (no Trotterization). This is found to always perform
better than the Trotterized unitaries, except for a single
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(a) (b)

Step

FIG. 11. (a) Orderings of Trotterized terms for implementing ÔV
mh(1). Circuits of depth 2–7 are shown from left to right, with

the dumbbells representing the circuit in Fig. 3(a). (b) Deviations in the energy density of the SC-ADAPT-VQE prepared state for
m = 0.5, g = 0.3, and L = 10 with different depth implementations of the Trotterization of ÔV

mh(1).

step. Intriguingly, for a single step, the error is less with
a deep first-order Trotterization than with the exact uni-
tary. This suggests that the optimizer is finding a solution
in which the Trotter errors are tuned to improve the over-
lap with the vacuum. Note that the deeper Trotterizations
of ÔV

mh(1)move the recurrence of ÔV
mh(1) (e.g., at step 4 for

m = 0.5 and g = 0.3) to deeper in the SC-ADAPT-VQE
ansatz.

APPENDIX D: VOLUME EXTRAPOLATIONS OF
THE SC-ADAPT-VQE VARIATIONAL
PARAMETERS: AN “EFFECTIVE θ∞

i ”

To initialize large quantum registers, the variational
parameters defining the state preparation quantum circuits
need to be extrapolated with high precision. In volumes
large enough to contain the longest correlation length, the
variational parameters are expected to be exponentially

close to their infinite-volume values. Therefore, we assume
that the form of the volume dependence for practical
purposes is that given in Eq. (10),

θi(L) = θ∞
i + c1 e−c2 L, (D1)

and check the self-consistency of this form [169]. While
there could be a polynomial coefficient of the exponen-
tial, we find that this is not required. Fitting exponential
functions can be challenging; however, with results over
a sufficient range of L, algebraic techniques, such as effec-
tive masses, have proven useful in lattice QCD calculations
to eliminate “uninteresting” parameters, while at the same
time mitigating correlated fluctuations in measurements
[170–174]. With the goal of initializing large lattices, it is
the θ∞

i that are of particular interest.
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m = 0.1, g = 0.3
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Exponential fit
Extrapolated fit
Effective θ

Effective-θ band
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FIG. 12. Further examples of fitting the asymptotic L dependence of the variational parameters defining the state preparation quan-
tum circuit, determined from classical simulations using SC-ADAPT-VQE. The results for θ1 = ÔV

mh(1) (blue points) for m = 0.1 and
g = 0.3 (left panel) given in Table VI and for m = 0.1 and g = 0.8 (right panel) given in Table VIII are extrapolated to L = ∞ by (i)
use of a three-parameter fit given in Eq. (10), as shown by the blue line and shaded region, with an asymptotic value shown by the gray
region, and by (ii) the forming of effective θ (orange diamonds), with the maximum and minimum values shown as the orange shaded
region (where possible).
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Assuming the volume dependence given in Eq. (D1), it
is useful to form four relations:

yL = θi(L)− θ∞
i = c1 e−c2 L,

yL+1 = θi(L + 1)− θ∞
i = c1 e−c2e−c2 L

yL+2 = θi(L + 2)− θ∞
i = c1 e−2c2e−c2 L,

yL+3 = θi(L + 3)− θ∞
i = c1 e−3c2e−c2 L. (D2)

These relations can be combined to isolate θ∞
i , providing

an L-dependent “effective θ∞
i ”, denoted as θ∞

i,eff:

yL+1yL+2 = yLyL+3,

θ∞
i,eff(L) = θi(L)θi(L + 3)− θi(L + 1)θi(L + 2)

θi(L)+ θi(L + 3)− θi(L + 1)− θi(L + 2)
.

(D3)

For a sufficiently large set of results, θ∞
i,eff(L) will plateau

for large L if the functional form in Eq. (D1) correctly
describes the results. This plateau can be fit by a constant,
over some range of large L, to provide an estimate of θ∞

i .
This method is similar to using varpro (variable projection)
in a multiparameter χ2 minimization.

As an example, the results for θ∞
1 from a three-

parameter fit of θ1 to Eq. (D1) are compared with a deter-
mination using θ∞

1,eff(L) from Eq. (D3). Results obtained
with these two methods for m = 0.1 and g = 0.3 and for
m = 0.1 and g = 0.8 are shown in Fig. 12.

The result obtained from fitting a constant to θ∞
1,eff(L)

is consistent with the asymptotic result from the three-
parameter fit, but with somewhat larger uncertainty. The
current deficiency of this comparison is the small num-
ber of points in the plateau region, and results for larger L
are required for a more comprehensive comparison. Anal-
ysis of the other variational parameters shows a similar
behavior.

The consistency between the two extraction methods
is encouraging, and suggests that the selected exponen-
tial form may indeed well describe the results. The fit-
ting method is likely insensitive to polynomial correc-
tions (coefficients), and requires further exploration to
fully quantify uncertainties in these asymptotic values of
the variational parameters. However, as the MPS simula-
tions with these extrapolated angles reproduce the results
obtained with DMRG calculations, it appears that, for the
systems and parameters we have selected in our analysis,
systematic errors introduced by selecting this functional
form are small.

APPENDIX E: OPERATOR DECOHERENCE
RENORMALIZATION

To mitigate the effects of noise, the decoherence renor-
malization technique [97,98,106,151] is modified for use
with larger systems. In its original form, decoherence
renormalization assumes that each qubit decoheres at the
same rate under a depolarizing noise channel. When one is
working with a small number of qubits, this is a reasonable
approximation, but for larger systems, it is necessary to
consider the rate of decoherence of each qubit individually.
After Pauli twirling, the qubit errors are well described by a
Pauli error channel [175], which maps the N -qubit density
matrix to

ρ →
4N∑

i=1

ηiP̂iρP̂i, (E1)

where P̂i is a tensor product of Pauli operators (Î , X̂ , Ŷ,
or Ẑ) acting on N qubits, and the set of ηi characterizes the
error channel. It is important to understand the effect of this
error channel on observables. Generic observables can be
written as a sum over tensor products of Pauli operators,
so it suffices to consider an observable, Ô, that is a tensor
product of Pauli operators. Under a Pauli error channel, the

TABLE VI. Same as Table II except for m = 0.1 and g = 0.3.

θi

L ÔV
mh(1) ÔV

mh(3) ÔV
mh(5) ÔV

mh(1) ÔV
mh(7) ÔV

mh(9) ÔS
mh(0, 1) ÔV

mh(9) ÔV
mh(1)

6 0.25704 −0.11697 0.04896 0.18116 −0.02664 – 0.19193 0.01539 –
7 0.25796 −0.11580 0.04776 0.18099 −0.02471 0.01250 0.18971 – –
8 0.25862 −0.11507 0.04711 0.18087 −0.02380 0.01155 0.18832 – –
9 0.21152 −0.11560 0.04859 0.12687 −0.02419 0.01162 – – 0.11093
10 0.20923 −0.11491 0.04809 0.12749 −0.02368 0.01122 – – 0.11182
11 0.20755 −0.11437 0.04771 0.12792 −0.02331 0.01093 – – 0.11244
12 0.20628 −0.11393 0.04741 0.12823 −0.02303 0.01072 – – 0.11289
13 0.20526 −0.11357 0.04716 0.12846 −0.02280 0.01056 – – 0.11324
14 0.20445 −0.11328 0.04696 0.12863 −0.02262 0.01044 – – 0.11352
∞ 0.202 −0.112 0.046 0.129 −0.022 0.010 – – 0.114
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TABLE VII. Same as Table I except for m = 0.1 and g = 0.3.

L ε(aVQE) ε(exact) χ(aVQE) χ(exact) IL CNOT gates per qubit

6 −0.49927 −0.50256 0.68192 0.70834 0.00377 38
7 −0.50350 −0.50663 0.68442 0.70837 0.00337 44.3
8 −0.50670 −0.50971 0.68653 0.70877 0.00309 48.8
9 −0.50838 −0.51212 0.68694 0.70928 0.00449 53.7
10 −0.51057 −0.51405 0.68902 0.70979 0.00412 56.1
11 −0.51236 −0.51563 0.69073 0.71026 0.00382 58.1
12 −0.51385 −0.51694 0.69217 0.71068 0.00358 59.8
13 −0.51512 −0.51806 0.69340 0.71105 0.00337 61.2
14 −0.51620 −0.51902 0.69445 0.71137 0.00319 62.4

measured (noisy) expectation value, 〈Ô〉meas, is given by

〈Ô〉meas =
4N∑

i=1

ηiTr(P̂iÔP̂iρ). (E2)

Note that P̂iÔP̂i = ±Ô, depending on whether or not Ô
and P̂i commute or anticommute. On this basis, the mea-
sured (noisy) expectation value, 〈Ô〉meas, can be seen to be
directly proportional to the predicted (noiseless) expecta-
tion value, 〈Ô〉pred = Tr(Ôρ), i.e.,

〈Ô〉meas = (1 − ηO) 〈Ô〉pred. (E3)

The ODR factor ηO is, in general, distinct for each oper-
ator, and can be estimated by running a mitigation circuit
that has the same structure as the physics circuit, but where
〈Ô〉pred is already known. In this work, the mitigation cir-
cuit was taken to be the state preparation circuit with
variational parameters set to zero, which is the identity
in the absence of noise. This mitigation circuit will have
the same noise channel as the physics circuit provided that
the noise is dominated by errors in the two-qubit gates
and is independent of the single-qubit rotation angles in
the circuit. Without noise, the mitigation circuit prepares

the strong-coupling vacuum, where 〈Ô〉pred is known, and
therefore ηO can be computed. Once ηO is determined,
Eq. (E3) is used to estimate the value of the noiseless
observable from the results of the physics circuits.

An added benefit of ODR is that it reduces the need
for other error-mitigation techniques. For example, readout
errors are partially mitigated since the measured observ-
ables are affected by both gate and measurement errors.
This is convenient as current measurement mitigation tech-
niques require a large classical computing overhead. It
also reduces the need for postselection, which in our work
could have been performed on states with total charge
Q = 0. This postselection removes single-qubit errors, but
introduces further correlations between qubits. These cor-
relations effectively increase the size of the single-qubit
errors (making observables sensitive to errors anywhere
on the register). This reduces the efficacy of the Pauli
error model, making postselection incompatible with ODR
[176]. Another desirable feature of ODR is that it allows
simulations to retain the results of a much larger fraction
of the ensemble. This is because the probability of a single-
qubit error increases with system size, and therefore much
of the ensemble is lost with naive postselection. Further,
such errors have little effect on local observables that are
summed across the entire qubit register.

TABLE VIII. Same as Table II except with m = 0.1 and g = 0.8 and through six steps of the SC-ADAPT-VQE algorithm.

θi

L ÔV
mh(1) ÔV

mh(3) ÔV
mh(5) ÔV

mh(1) ÔV
mh(7) ÔS

mh(0, 1) ÔV
mh(1)

6 0.22698 −0.06357 0.01441 0.15594 −0.00418 0.14247 –
7 0.22784 −0.06303 0.01416 0.15559 −0.00395 0.14111 –
8 0.22843 −0.06267 0.01401 0.15535 −0.00382 0.14018 –
9 0.22885 −0.06240 0.01390 0.15518 −0.00374 0.13951 –
10 0.22918 −0.06219 0.01382 0.15505 −0.00368 0.13900 –
11 0.18110 −0.06192 0.01431 0.11095 −0.00377 – 0.09796
12 0.18044 −0.06169 0.01423 0.11108 −0.00372 – 0.09809
13 0.17992 −0.06151 0.01416 0.11116 −0.00369 – 0.09819
14 0.17949 −0.06135 0.01410 0.11124 −0.00366 – 0.09825
∞ 0.178 −0.061 0.014 0.112 −0.004 – 0.098
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TABLE IX. Same as Table I except with m = 0.1 and g = 0.8 and through six steps of the SC-ADAPT-VQE algorithm.

L ε(aVQE) ε(exact) χ(aVQE) χ(exact) IL CNOT gates per qubit

6 −0.41488 −0.41614 0.51372 0.52154 0.00072 29.5
7 −0.41869 −0.41996 0.51579 0.52348 0.00071 32.1
8 −0.42156 −0.42283 0.51736 0.52495 0.00071 33.9
9 −0.42379 −0.42506 0.51859 0.52609 0.00071 35.2
10 −0.42557 −0.42685 0.51958 0.52701 0.00071 36.3
11 −0.42669 −0.42831 0.51945 0.52776 0.00129 38.9
12 −0.42799 −0.42953 0.52047 0.52838 0.00121 39.7
13 −0.42909 −0.43056 0.52134 0.52891 0.00115 40.3
14 −0.43003 −0.43144 0.52209 0.52937 0.00109 40.9

APPENDIX F: ADDITIONAL RESULTS FROM
CLASSICAL SIMULATIONS

The results corresponding to Fig. 5 for m = 0.1 and
g = 0.3 are given in Tables VI and VII and for m = 0.1
and g = 0.8 are given in Tables VIII and IX. The sixth
step of the algorithm is chosen for m = 0.1 and g = 0.8
because the operator structure through L = 14 has con-
verged, allowing a consistent extrapolation of the circuits
to large L. This can be seen by comparing the operator
structure in Table VIII (six steps) and the operator struc-
ture in Table X (seven steps). An interesting observation
is that the sum of parameters for a particular operator
in the ansatz remains approximately unchanged when an
additional insertion of the operator is added. For exam-
ple, compare the sum of parameters for ÔV

mh(1) between
L = 8 and L = 9 in Table VI. Using the same method as for
m = 0.5 and g = 0.3 in Sec. IV, we also determined scal-
able circuits for m = 0.1 and g = 0.3 and for m = 0.1 and
g = 0.8. The results of running these circuits on Qiskit’s
MPS simulator for m = 0.1 and g = 0.3 and for m = 0.1
and g = 0.8 are given in Table XI. Because of the longer
correlation lengths for these parameters, it was not possible
to go to L = 500 with the available computing resources.
In these MPS simulations, Qiskit’s default settings were
used, where the bond dimension increases until machine
precision is achieved. The details of the Qiskit MPS sim-
ulator can be found on the Qiskit website [177]. Again,

the energy density and chiral condensate are found to have
precision comparable to that found on smaller systems.
This shows that, despite the longer correlation lengths for
m = 0.1 and g = 0.3 and for m = 0.1 and g = 0.8, it is
still possible to accurately extrapolate the state preparation
circuits to large lattices. Note that stabilization of operator
ordering for the different m and g (see Tables II, VI, and X)
does not follow the hierarchy in correlation lengths. This is
because larger ξ increases the contribution of the volume
(approximately e−d/ξ ) and the surface (approximately ξ/L)
terms to the energy density.

To emphasize the advantage of performing SC-ADAPT-
VQE using a classical simulator, we give an estimate of the
number of shots required to perform SC-ADAPT-VQE on
a quantum computer. For m = 0.5, g = 0.3, and L = 14,
our performing ten steps of SC-ADAPT-VQE required
approximately 6000 calls to the optimizer, in addition to
about 500 evaluations of 〈[Ĥ , Ôi]〉 for pool operators Ôi.
Each one of these calls required roughly 10−3 precision
in the measured observable, corresponding to about 106

shots on a noiseless device. Therefore, SC-ADAPT-VQE
for L = 14 would require approximately 1010 shots on a
noiseless device. If the effects of device noise are factored
in, this estimate would increase by at least a factor of 10,
and probably close to a 1 × 1012 shots would be required to
perform SC-ADAPT-VQE on a quantum computer. This is
infeasible on current hardware.

TABLE X. Same as Table I except with m = 0.1 and g = 0.8 and through seven steps of the SC-ADAPT-VQE algorithm.

θi

L ÔV
mh(1) ÔV

mh(3) ÔV
mh(5) ÔV

mh(1) ÔV
mh(7) ÔS

mh(0, 1) ÔV
mh(1) ÔS

mh(0, 1) ÔV
mh(9)

6 0.17222 −0.06236 0.01456 0.11495 −0.00409 0.07017 0.09561 – –
7 0.17278 −0.06184 0.01433 0.11431 −0.00389 0.06947 0.09620 – –
8 0.17316 −0.06147 0.01417 0.11388 −0.00378 0.06900 0.09659 – –
9 0.17344 −0.06121 0.01407 0.11357 −0.00371 0.06866 0.09688 – –
10 0.17365 −0.06101 0.01399 0.11333 −0.00366 0.06840 0.09710 – –
11 0.17300 −0.06058 0.01385 0.11216 −0.00359 – 0.09885 0.07047 –
12 0.17321 −0.06048 0.01381 0.11210 −0.00357 – 0.09883 0.07028 –
13 0.17338 −0.06039 0.01378 0.11205 −0.00355 – 0.09883 0.07012 –
14 0.17950 −0.06139 0.01417 0.11124 −0.00382 – 0.09825 – 0.00107
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TABLE XI. Same as Table III except with m = 0.1 and g = 0.3
and with m = 0.1 and g = 0.8.

L ε(SC-MPS) ε(DMRG) χ (SC-MPS) χ(DMRG)

m = 0.1, g = 0.3
50 −0.52640 −0.52797 0.70967 0.71444
100 −0.52838 −0.52971 0.71359 0.71504
m = 0.1, g = 0.8
50 −0.43886 −0.43971 0.53339 0.53361
100 −0.44058 −0.44131 0.53604 0.53444
200 −0.44144 −0.44212 0.53737 0.53485
300 −0.44173 −0.442384 0.53781 0.53499
400 −0.44187 −0.44252 0.53803 0.53506

APPENDIX G: ADDITIONAL DETAILS AND
RESULTS FROM SIMULATIONS USING IBM’S

QUANTUM COMPUTERS

In this appendix, we provide additional details about
how our results are obtained from IBM’s quantum
computers, together with the additional figures not
shown in Sec. V B. All measurements are performed on
ibm_brisbane (L ≤ 40) and ibm_cusco (L = 50) by our
sending the state preparation circuits, with measurements
in the computational (z) basis, via the Qiskit Runtime Sam-
pler primitive. The values of the variational parameters
obtained from fitting to the exponential form in Eq. (10) for
two steps of SC-ADAPT-VQE are given in Table XII. The
different qubits used for each lattice size can be seen in the
insets in Figs. 7 and 13. χj , obtained from ibm_brisbane
for L = 14, 20, 30, and 40, is shown in Fig. 13, and the
charge-charge correlation functions are shown in Fig. 15.
In Fig. 14, the CP symmetry relating χj = χ2L−1−j is used
to effectively double the number of shots, resulting in
statistical error bars that are smaller by a factor of

√
2.

In an effort to explore the limitations of the quantum
computer, the three-step SC-ADAPT-VQE state prepara-
tion circuits for L = 30 and L = 50 were implemented on
ibm_brisbane and ibm_cusco, respectively. The structure
of the ansatz wave function and corresponding variational
parameters can be found in Table XII. The local chiral
condensate and charge-charge correlators obtained from
80 (L = 30) and 40 (L = 50) twirled instances, each with
8 × 103 shots, are shown in Figs. 16 and 17. Despite the
factor of 3 increase in the number of CNOT gates relative
to two layers (1254 versus 468 for L = 30, and 2134 ver-
sus 788 for L = 50), the results are consistent with those
obtained from the Qiskit MPS circuit simulator. Note that

TABLE XII. Extrapolation of the variational parameters cor-
responding to two and three steps of SC-ADAPT-VQE with
m = 0.5 and g = 0.3. These parameters were used in the circuits
run on ibm_brisbane (L ≤ 40) and ibm_cusco (L = 50).

Two steps Three steps

θi

L ÔV
mh(1) ÔV

mh(3) ÔV
mh(1) ÔV

mh(3) ÔV
mh(5)

14 0.30699 −0.04033
20 0.30638 −0.03994
30 0.30610 −0.03978 0.30630 −0.04092 0.00671
40 0.30605 −0.03975
50 0.30604 −0.03975 0.30624 −0.04089 0.00670

qubit 0 and 2 have decohered for both volumes, and in prin-
ciple could be removed from volume-averaged quantities,
such as the chiral condensate.

By our sending the circuits with the Sampler primitive,
several error-mitigation techniques are applied during run-
time, as mentioned in Sec. V B. Specifically, the readout
mitigation technique used (for L ≤ 40) is M3 [147]. This
method is based on correcting only the subspace of bit
strings observed in the noisy raw counts from the machine
(which usually include the ideal ones plus those with short
Hamming distance, introduced by the noise in the measure-
ment), and using Krylov subspace methods to avoid having
to compute (and store) the full assignment matrix.

Unlike other studies that used 100 or more supercon-
ducting qubits [155–157], which used zero-noise extrapo-
lation (ZNE) [178–180] in conjunction with probabilistic
error correction (PEC) [179,181] to remove incoherent
errors, we use ODR, as explained in Appendix E. Both
methods require first transforming coherent errors into
incoherent errors, which is done via Pauli twirling. How-
ever, the overhead in sampling using ZNE and PCE, com-
pared with ODR, is substantial. For ZNE, one has to add
two-qubit gates to increase the noise level, and then per-
form an extrapolation to estimate the noiseless result. In
the minimal case, this leads to running only another cir-
cuit, like in ODR, but with a circuit depth that is 3 times
as large as the original circuit (e.g., replacing each CNOT
gate with three CNOT gates). However, this leads to a large
uncertainty in the functional form of the extrapolation,
and ideally the circuit is run with multiple noise levels
to have multiple points from which to extrapolate. For
PEC, the overhead is even larger, as it involves learning
the noise model of the chip, by running multiple random
circuits with different depths (see Ref. [181]). For ODR,

TABLE XIII. Two-Pauli-gate set (G2, G′
2) used to generate the twirled ECR gates, G′

2 · ECR · G2 = ECR.

(Î ⊗ Î , Î ⊗ Î) (Î ⊗ X̂ , Î ⊗ X̂ ) (Î ⊗ Ŷ, Ẑ ⊗ Ẑ) (Î ⊗ Ẑ, Ẑ ⊗ Ŷ) (X̂ ⊗ Î , Ŷ ⊗ X̂ ) (X̂ ⊗ X̂ , Ŷ ⊗ Î) (X̂ ⊗ Ŷ, X̂ ⊗ Ŷ) (X̂ ⊗ Ẑ, X̂ ⊗ Ẑ)

(Ŷ ⊗ Î , X̂ ⊗ X̂ ) (Ŷ ⊗ X̂ , X̂ ⊗ Î) (Ŷ ⊗ Ŷ, Ŷ ⊗ Ŷ) (Ŷ ⊗ Ẑ, Ŷ ⊗ Ẑ) (Ẑ ⊗ Î , Ẑ ⊗ Î) (Ẑ ⊗ X̂ , Ẑ ⊗ X̂ ) (Ẑ ⊗ Ŷ, Î ⊗ Ẑ) (Ẑ ⊗ Ẑ, Î ⊗ Ŷ)
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FIG. 13. Expectation values of χj for L = 14, 20, 30, and 40 (from top to bottom) obtained from simulations using ibm_brisbane.
They are compared with the expected results obtained with use of Qiskit’s MPS circuit simulator (black dashes). Averaging χj over all
of the qubits provides the chiral condensates presented in Table IV. The layouts of the qubits used on the chip are shown in the insets.

as explained in Appendix E, only the same “physics” cir-
cuits are run, but with all rotations set to zero, meaning the
sampling overhead is only doubled.

To generate the different twirled circuits, the set of two-
qubit Pauli gates G2 and G′

2 that leave the (noisy) two-qubit
gate invariant (up to a global phase) must be identified. For
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FIG. 14. Expectation values of CP-averaged χj for L = 14, 20, 30, 40, and 50 (from top to bottom) obtained from simulations using
ibm_brisbane and ibm_cusco. They are compared with the expected results obtained with use of Qiskit’s MPS circuit simulator (black
dashes). The layouts of the qubits used on the chip are shown in the insets (with same-colored qubits being averaged).

the quantum processors used in this work, the native two-
qubit gate is the echoed cross-resonance (ECR) gate, which

is equivalent to the CNOT gate via single-qubit rotations.
Explicitly,

ECR =
1√
2
(X̂ ⊗ Î − Ŷ ⊗ X̂) , ECR =

Rz(−π
2 ) Ry(π)

Rx(π
2 )

.

(G1)
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FIG. 15. Connected contribution to the spatial charge-charge correlation functions, 〈Q̂j Q̂k〉c (left) and averaged correlation functions

as a function of distance d, 〈Q̂Q̂〉c(d) (right), with the points following the same color map as in the left main panel (error bars show
1σ standard deviations). Results obtained from ibm_brisbane are shown for L = 14, 20, 30, and 40 (from top to bottom).
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FIG. 16. Results for the L = 30 system obtained with use of three steps of SC-ADAPT-VQE, obtained from simulations using
ibm_brisbane with 80 twirled instances. The top panel shows χj , the middle panel shows the CP-averaged χj , and the bottom panels

show the connected contribution to the spatial charge-charge correlation functions, 〈Q̂j Q̂k〉c (the first two spatial sites are not shown

due to the errors on qubits 0 and 2), and the averaged correlation functions as a function of distance d, 〈Q̂Q̂〉c(d), with the points
following the same color map as in the left main panel (error bars show 1σ standard deviations).

Using the functions from the package qiskit_research
[182], together with the two-Pauli-gate set shown in
Table XIII, we generated a total of 40 (150) twirled cir-
cuits for both mitigation and physics for L ≤ 40 (L = 50),
each with 8 × 103 shots.

From Fig. 7, the effects of each error-mitigation method
can be seen. The first set of results shown are semiraw,
obtained directly from the quantum computer. They are not
raw since DD is integrated into the circuits that are run on
the machine (REM is also included for L ≤ 40). To check
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FIG. 17. Results for the L = 50 system obtained with use of three steps of SC-ADAPT-VQE, obtained from simulations using
ibm_cusco with 40 twirled instances. The top panel shows χj , the middle panel shows the CP-averaged χj , and the bottom panels

show the connected contribution to the spatial charge-charge correlation functions, 〈Q̂j Q̂k〉c (the first two spatial sites are not shown

due to the errors on qubits 0 and 2), and the averaged correlation functions as a function of distance d, 〈Q̂Q̂〉c(d), with the points
following the same color map as in the left main panel (error bars show 1σ standard deviations).

the effect that DD has, several runs were performed with-
out it, and a degradation of the signal was visible when
qubits were idle for long periods (the effects of not using
DD were more evident when the deeper three-step circuit
was run). Regarding REM, while the final fully mitigated
results for L = 50 (no REM applied) and L ≤ 40 (REM
applied) systems are similar in quality, a larger statistical
sample for L = 50 was required to achieve an equivalent
level of precision (2.4 × 106 shots versus 6.4 × 105 shots).
The second set shows the effects of applying PT (the results
for no Pauli twirling corresponded to one twirled instance).
It is seen that all the coherent noise on the different qubits
has been transformed into uniform incoherent noise. The
last set shown is after ODR has been used to remove the
incoherent noise.
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