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The last few years have seen rapid development of applications of quantum computation to quantum
field theory. The first algorithms for quantum simulation of scattering have been proposed in the context
of scalar and fermionic theories, requiring thousands of logical qubits. These algorithms are not suitable
to simulate scattering of incoming bound states, as the initial-state preparation relies typically on adia-
batically transforming wavepackets of the free theory into wavepackets of the interacting theory. In this
paper we present a strategy to excite wavepackets of the interacting theory directly from the vacuum of the
interacting theory, allowing the preparation of states of composite particles. This is the first step towards
digital quantum simulation of scattering of bound states. The approach is based on the Haag-Ruelle scat-
tering theory, which provides a way to construct creation and annihilation operators of a theory in a full,
nonperturbative framework. We provide a quantum algorithm requiring a number of ancillary qubits that is
logarithmic in the size of the wavepackets, and with a success probability vanishing at most like a polyno-
mial in the lattice parameters and the energy of the wavepacket. The gate complexity for a single iteration
of the circuit is equivalent to that of a time evolution for a fixed time. Furthermore, we propose a complete
protocol for scattering simulation using this algorithm. We study its efficiency and find improvements with
respect to previous algorithms in the literature.
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I. INTRODUCTION

The successes of last few years towards the implemen-
tation of quantum algorithms on real platforms are creating
growing expectation regarding the opportunities that quan-
tum computation may open in different fields. One promi-
nent area that has been particularly fruitful in providing
examples of the potential advantage offered by quantum
computation is high-energy physics [1], especially in what
concerns data analysis [2–11] and simulations of lattice
quantum field theories [12–49]. Such theories have been
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used for many decades as a tool to numerically investi-
gate several aspects of quantum field theory through the
Euclidean path integral approach, which is a powerful tool
in its range of applicability but does not cover the whole
class of phenomena that require the study of real-time evo-
lution. For such problems the Hamiltonian formulation in
Minkowski space-time is the natural framework, but it is
hardly approachable with classical computation. For this
class of phenomena—and arguably in all the theory of
fundamental interactions—scattering events are of special
interest since they are essentially the only means we have
to access those regimes of physics where quantum field
theory is necessary. This work concerns state preparation
for digital quantum simulation of scattering.

The prospect of large-scale, fault-tolerant quantum com-
puters, however far they may be in the future, has already
started to change our approach to lattice field theory
through the seminal papers of Jordan, Lee, and Preskill
(JLP) [12,13]. To exploit the potential advantage offered
by quantum computers, it is better to formulate the theory
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on a space lattice with continuous time rather than on a
space-time lattice, as traditionally done. In Refs. [12,13],
an efficient quantum algorithm for simulation of scatter-
ing in the scalar theory φ4, requiring thousands of logical
qubits, is provided and analyzed. The present work aims
to contribute to this long-term perspective by making the
first step towards digital quantum simulation of scatter-
ing events with incoming composite particles. Preparation
of bound states is an essential task to ultimately perform
simulations of important, real-life collider events, such as
proton-proton scattering at the Large Hadron Collider (see
Ref. [50] for recent developments in the context of tensor
networks and Refs. [51–56] for recent developments in the
context of analog quantum simulation).

The same problem was treated in Refs. [57–59], with
use of different, albeit equivalent, formulations such as the
wavelet basis or the multiparticle decomposition of the
Hilbert space. A common feature of these studies is that
they all rely on excited states of the associated free theory
to prepare wavepackets of the interacting theory. An imme-
diate consequence is that these approaches can be used
only for states of the interacting theory that can be obtained
by smooth interpolation (typically by an adiabatic transfor-
mation) from states of the free theory. This excludes the
case of bound states.

Having in mind the framework in Refs. [12,13], we
provide in the present work a general strategy to prepare
single-particle wavepackets of elementary or composite
particles, with lower and upper mass gaps, on a quan-
tum computer. We assume that the preparation of the
vacuum state of the interacting theory is available and
that we have access to an interpolating operator between
the vacuum and the particle we want to create. Once the
incoming wavepackets are created, the time evolution and
measurements steps of the quantum simulation algorithm
proceed as in Refs. [12,13]. The key idea is to use the
Haag-Ruelle scattering theory, which is an alternative
and complementary approach to the Lehmann-Symanzik-
Zimmerman (LSZ) theory. The Haag-Ruelle formalism is
of great conceptual importance in the context of axiomatic
quantum field theory since it provides a link between
the LSZ framework and the Wightman axioms (see, for
instance, Ref. [60] for more details). From an operative
point of view, its success has been rather limited, on
one hand because it is outperformed by the LSZ for-
malism in the context of perturbation theory and on the
other hand because real-time evolution, essential to any
scattering theory, is unmanageable with traditional lattice
techniques. Quantum computers may offer a new boost to
the Haag-Ruelle formalism in terms of operativeness.

The method we propose requires a number of ancillary
qubits that is logarithmic in the size of the wavepacket.
We provide a quantum circuit with a gate complexity that
is equivalent to that of a time evolution for a fixed time,
and a certain probability of success. We argue that this

probability does not vanish faster than a polynomial in the
lattice parameters in the continuum limit. For definiteness,
we work here with a single scalar field, because it is an
illustrative case and is directly comparable with what is
available in the literature. However, the idea holds, mutatis
mutandis, with other theories as well.

State preparation is typically the most difficult step in
digital quantum simulation of scattering, both technically
and in terms of complexity. This work provides an inno-
vative approach to the topic and sets the route to the
preparation of composite particles. Here we consider the
problem of preparing the vacuum only briefly. It is an inter-
esting problem on its own and has already been addressed
in other papers [61–66]. For example, one may use the
free vacuum preparation and the adiabatic transformation
in Ref. [13], with the simplification that no backward
time evolution is needed to contain premature wavepacket
propagation. We consider this possibility and study its effi-
ciency, with the purpose of providing an estimation of
the total scaling of state preparation using our approach.
We also compare our approach with the approach of Jor-
dan, Lee, and Preskill, and find that our protocol has a
comparable or better scaling than theirs in some cases.
If one is interested in only scattering amplitudes, a sim-
pler approach not involving quantum simulation would be
the one used in Ref. [67]. However, that approach works
only for fixed final states and for processes with a small
total number n of ingoing and outgoing particles, as the
complexity scales exponentially with n.

We mentioned previously that we rely on the existence
of lower and upper mass gaps, but in general we can also
have bound states immersed in the continuum of multipar-
ticle states under the condition that they are protected by
some symmetry. In this case our strategy is still suitable,
with some extra caveats. Fermionic theories do not present
extra problems apart from the ones related to encoding
of anticommuting degrees of freedom on a qubit sys-
tem. Gauge theories, as usual, require special attention,
not only because of the the well-known issues related to
quantum simulation of these theories but also because of
the formulation of the Haag-Ruelle theory in the presence
of massless particles such as photons. Nevertheless, we
assume that with proper care these problems can be solved.
For ultrarelativistic particles, the gap closes, and corre-
spondingly the difficulty of creating a particle increases
with its momentum. This approach is not suited for the
creation of massless particles, for which there is no mass
gap.

The rest of this paper is divided into three main sec-
tions and an appendix. In Sec. II we very briefly introduce
the axiomatic approach to quantum field theory, where the
Haag-Ruelle scattering theory is developed. We list the
Wightman axioms and introduce basic concepts of the the-
ory. We discuss first a theory with a single elementary par-
ticle, and then proceed to a theory in one space dimension
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with both an elementary particle and a composite one. We
end Sec. II with some remarks on the applicability of our
work. In Sec. III we describe how the Haag-Ruelle scat-
tering theory can be used for state preparation in digital
quantum simulation. We provide a quantum algorithm for
particle creation from the interacting vacuum, and we ana-
lyze its complexity and probability of success. In Sec. IV
we consider a full protocol for initial-state preparation
based on adiabatically preparing the interacting vacuum
and then creating wavepackets from it. In the Appendix
we discuss the truncation of the field operator in a generic
site of the lattice.

II. THE HAAG-RUELLE SCATTERING THEORY

The Haag-Ruelle scattering theory is best developed in
the framework of axiomatic quantum field theory. The
axiomatic approach provides a rigorous framework to con-
struct a quantum field theory. It is based on a set of axioms
formulated by Wightman and incorporates at the same
time the principles of quantum mechanics and special rel-
ativity. An important feature of this approach is that free
and interacting theories are treated on equal terms. In par-
ticular, interacting theories are not seen as extensions of
free theories obtained by adding interaction terms to a
quadratic Hamiltonian. The difference between free the-
ories and interacting theories is mainly of a pragmatical
nature, because we can solve and construct explicitly free
theories, but for most of the interacting theories the same
is not true. For this reason it is quite uncommon to use this
approach operatively. In the next two sections we review
the Haag-Ruelle formalism, first in the context of a theory
with only an elementary particle and then in the context of
a theory with bound states.

A. Scalar field without bound states

In this section we give a brief review of the axioms
following essentially chapter 9 in Ref. [60]. We consider
d = D− 1 space dimensions, and we consider here a the-
ory containing a single scalar field, whose dynamics give
rise to a single kind of particle of mass m. Examples of
such theories include the free scalar field theory and the
φ4 theory at weak coupling. The latter has been shown
to satisfy the axioms for d = 1 and d = 2. In the physical
case d = 3, it is believed to be trivial, i.e., equivalent to a
free theory, while for d ≥ 4, triviality has been proven [68–
73] (see also the discussion at the beginning of Sec. 2.1 in
Ref. [13]). The free theory is known to satisfy the axioms.
The framework can be adapted straightforwardly to the
case of a theory with fermionic fields. All that is required
is to change commutation relations into anticommutation
relations.

It is convenient to divide the whole set of axioms into
a few families according to their content. The first one

concerns the space of states and the spectral properties of
the theory:

(1) Axiom Ia. The state space H of the system is a
separable Hilbert space. It carries a unitary represen-
tation U(�, x) (� is an element of the homogeneous
Lorentz group and x is a space-time coordinate vec-
tor) of the proper inhomogeneous Lorentz group
(i.e., the Poincaré group). Thus, for all |α〉 ∈ H,
|α〉 → U(�, x) |α〉, with the U(�, x) satisfying the
Poincaré algebra

U(�1, x1)U(�2, x2) = U(�1�2, x1 +�1x2). (1)

(2) Axiom Ib. The infinitesimal generators Pμ of the
translation subgroup T(x) = U(1, x) of the Poincaré
group have a spectrum pμ restricted to the forward
light cone, p0 ≥ 0, p2 ≥ 0.

(3) Axiom Ic. There is a unique state |�〉, the vacuum,
with the isolated eigenvalue pμ = 0 of Pμ.

(4) Axiom Id. The theory has a mass gap: the squared-
mass operator

P2 = PμPμ (2)

has an isolated eigenvalue m2 > 0, and the spectrum
of P2 is empty between 0 and m2. The subspace
of H corresponding to the eigenvalue m2 carries
an irreducible spin-0 representation of the homoge-
neous Lorentz group. These are the single-particle
states of the theory. The remaining spectrum of P2

is continuous, and it begins at (2m)2.

Clearly the specific form of the generators Pμ depends on
the theory at hand, and the generator of translations in
time is the Hamiltonian, P0 = H . One-particle states can
be labeled according to their momentum and can be written
as wavepackets in momentum space

|α〉1 =
∫

ddk ψ̃(k) |k〉 (3)

with some wave function ψ̃ .
The next family of axioms concerns the operator con-

tent of the Hilbert space and establishes what kind of fields
appear in the theory:

(1) Axiom IIa. An operator-valued (tempered) distri-
bution φ̂(x) exists such that for any Schwartz test
function f (x) the smeared field

φf =
∫

dDx f (x)φ̂(x) (4)

is an unbounded operator defined on a dense
subset D ⊂ H. Moreover, φf D ⊂ D, allowing the

020311-3



TURCO, QUINTA, SEIXAS, and OMAR PRX QUANTUM 5, 020311 (2024)

definition of arbitrary (finite) products of smeared
fields.

We recall that a Schwartz function f (x) is infinitely differ-
entiable (i.e., is C∞) and, together with all its derivatives,
falls faster than any power of x as x goes to infinity.

(1) Axiom IIb. Under the unitary representation of the
Poincaré group U(�, x) introduced in Axiom Ia, the
smeared fields transform as

U(�, x)φf U†(�, x) =
∫

dDy f
[
�−1(y − x)

]
φ̂(y).

(5)

(2) Axiom IIc. Let f1 and f2 be Schwartz functions of
compact support: thus, if f1 vanishes outside a com-
pact space-time region v1 and f2 vanishes outside the
compact region v2, and if x1 − x2 is space-like for all
x1 ∈ v1, x2 ∈ v2, then

[
φf1 ,φf2

] = 0. (6)

(3) Axiom IId. The set of states obtained by applying
arbitrary polynomials in the smeared fields φf (with
all possible Schwartz functions f ) to the vacuum
state |�〉 is dense in the Hilbert space H.

In Axiom IIa we introduce an important difference with
respect to canonical quantization—namely, smeared oper-
ators. In a free theory we can identify the operator-valued
distribution φ̂(x) with the familiar field operator. This is
not a well-defined operator because the state φ̂(x) |�〉 has
an infinite norm. To avoid this problem, it is necessary to
introduce smearing and treat φ̂(x) as a distribution. In this
way the state φf |�〉 has a finite norm for any Schwartz
function f and φf is a well-defined (unbounded) operator.
Then, by Axiom IIb, we can define

φf (x) = eiP·xφf e−iP·x =
∫

dDy f (y − x)φ̂(y). (7)

There are two more axioms of great importance to develop
a satisfactory scattering theory:

(1) Axiom IIIa. For some one-particle state

|α〉1 =
∫

ddk ψ̃(k) |k〉 (8)

with discrete eigenvalue m2 of the squared-mass
operator, the smeared field φf (x) has a nonvanish-
ing matrix element from this single-particle state to
the vacuum,

〈
�
∣∣φf (x)|α

〉
1 �= 0. (9)

(2) Axiom IIIb (asymptotic completeness). The Hilbert
space Hin (or Hout) corresponding to multiparticle
states of far-separated, freely moving stable parti-
cles in the far past (or far future) are unitarily equiv-
alent, and may be identified with the full Hilbert
space H of the system.

It should be noted that Axiom IIIb plays a crucial role in
the derivation of the LSZ reduction formula, but here it is
somewhat superfluous.

The joint set of eigenvalues of Pμ, labeled by pμ, is com-
posed of three disconnected subsets (see Fig. 1). There
is the vacuum subset, containing only the origin pμ = 0,
the one-particle mass hyperboloid, containing all the pμ
points such that p2 = m2, and the multiparticle continuum
with all the points such that p2 ≥ 4m2. In the two-particle
subspace, for instance, the squared-mass operator gives
(p1 + p2)

2 = 2m2 + 2p1 · p2, with p1 · p2 ≥ m2.
With this in mind we define an operator φ1(x) exactly as

in Eq. (7) but with a smearing function f1(x) chosen as the
Fourier transform of a function f̃1(p) with support in the
region

am2 < p2 < bm2, 0 < a < 1 < b < 4, (10)

sandwiching the one-particle mass hyperboloid. This guar-
antees that the state φ1(x) |�〉 is a one-particle (and one-
particle-only) state, by Axiom IIIa.

Next consider a positive-energy solution of the Klein-
Gordon equation,

g(τ , y) =
∫

ddp
2E(p)

g̃(p)ei(p·y−E(p)τ ), (11)

E(p) =
√

m2 + |p|2, (12)

–2 –1 0 1 2
p1

0.5

1.0

1.5

2.0

2.5

3.0
p0

FIG. 1. Structure of the spectrum of Pμ with one space dimen-
sion. The blue line represents the one-particle mass hyperboloid,
the red region is the multiparticle continuum, and the green
region is the region defined by am2 < p2 < bm2.
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and we define the operator

φ1,g(τ ) = −i
∫

ddy

[
g(τ , y)

←→
∂

∂τ
φ1(τ , y)

]
, (13)

where the double derivative is defined as in

A(τ )
←→
∂

∂τ
B(τ ) = A(τ )Ḃ(τ )− Ȧ(τ )B(τ ). (14)

The state φ1,g(τ ) |�〉 can be shown to be independent of τ ,

d
dτ
φ1,g(τ ) |�〉 = 0. (15)

This is no longer true in general if we consider multi-
ple applications of such operators at the same time τ ,
φ1,g1(τ ) · · ·φ1,g2(τ ) |�〉, but in this case we can rely on
the following theorem (see chapter 9 in Ref. [60] for more
details).

Theorem 1 (Haag asymptotic). The time-dependent state
vector

|	, τ 〉 = φ1,g1(τ ) · · ·φ1,gn(τ ) |�〉 (16)

converges strongly in the limit τ →−∞ to the n-particle
in-state

|	〉in = |g1, g2, . . . , gn〉in
=
∫

ddp1 . . . ddpn ψ̃1,g1(p1) · · · ψ̃1,gn(pn)

× |p1 . . .pn〉in , (17)

with momentum wave functions

ψ̃1,gi(pi) = (2π)d/2 g̃(pi)f̃1(pi)√
2E(pi)

. (18)

The convergence rate of the limit |	, τ 〉 → |	〉in is
|τ |−d/2 in the general case, which includes the case where
some or all of the wavepackets g1, . . . , gn overlap with
each other and come from the same direction. In this
case, the convergence is guaranteed by spreading of the
wavepackets to the point where they are so broad that they
cease to interact. In practice we consider only wavepack-
ets coming from different directions, and in this case the
fast decrease of the Schwartz functions ensures that the
convergence rate is faster than any inverse power of |τ |.

The state |	〉in is a Heisenberg state, which implies that
it is not to be visualized in general as a state made of n
(spatially) well-separated wavepackets. Its form depends
on the reference time at which the Heisenberg state and
the Schrödinger state coincide. As the reference time, we

can choose a moment well before the collision between the
wavepackets occurs, in which case we indeed have well-
separated wavepackets, or a moment during the collision
or later, in which case we can expect to have a complicated
state more or less spread in space. The strong convergence
of the theorem is to be taken at the same reference time,
whether in the far past or not, for both |	, τ 〉 and |	〉in.
This reference time should not be confused with the param-
eter τ appearing in the theorem. But since we will work in
the Schrödinger picture, this subtlety is not relevant to us.

Let us see more explicitly what we have stated so far,
starting from the state

φ1,g(τ ) |�〉 =
∫

dDxψ(x; τ)φ̂(x) |�〉 , (19)

where

ψ(x; τ) = (2π)d
∫

dDp g̃(p)f̃1(p)
p0 + E(p)

2E(p)

× e−iτ [E(p)−p0]e−ip·x (20)

is obtained from Eq. (13) after some simple manipula-
tions. For our purposes it is convenient to move to the
Schrödinger picture by writing x = (t, x) and plugging

φ̂(x) = eitH φ̂(0, x)e−iHt = eitH φ̂(x)e−iHt (21)

into Eq. (19). Furthermore, shifting the integration variable
in Eq. (19) by t→ t+ τ , we get

φ1,g(τ ) |�〉 = eiHτa†
ψ(τ) |�〉 , (22)

a†
ψ(τ) =

∫
dDxψ(t+ τ , x; τ)eiHtφ̂(x)e−iHt. (23)

Let us have a closer look at ψ(t+ τ , x; τ). We can rewrite
it as

ψ(t+ τ , x; τ) = (2π)d
∫

ddp g̃(p)f̃ ′1 (p; t)ei[x·p−τE(p)],

(24)

f̃ ′1 (p; t) =
∫ +∞
−∞

dp0 f̃1(p)
p0 + E(p)

2E(p)
e−itp0 . (25)

If, without loss of generality, we assume f1(t, x) peaked at
around t = 0, so is f̃ ′1 (p; t). Roughly speaking, the effect
of f̃ ′1 (p; t) is to spread ψ(t+ τ , x; τ) without changing its
position. Therefore, by Eq. (24) we see that ψ(t+ τ , x; τ)
is essentially a solution of the Klein-Gordon equation
moving through space with time τ . When τ < 0, a†

ψ(τ)

creates a wavepacket at some point along the past trajec-
tory of ψ(t+ τ , x; τ). Then, the time evolution operator
in Eq. (22) moves it to where ψ(t+ τ , x; τ) lies at τ = 0.
This accounts for Eq. (15).
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Similarly, in the case of two incoming particles, we can
write

φ1,g1(τ )φ1,g2(τ ) |�〉 = eiHτa†
ψ1
(τ )a†

ψ2
(τ ) |�〉 . (26)

We can choose g1(τ , y1) and g2(τ , y2) such that their
wavepackets ψ1 and ψ2 are always well separated from
each other for τ ≤ 0, and are on a collision course for some
τ > 0. Then, from Eq. (26), the action of the operators
φ1,g1(τ )φ1,g2(τ ) on the vacuum is clear: as τ →−∞, the
two wave functions ψ1(t1 + τ , x1; τ) and ψ2(t2 + τ , x2; τ)
are sent far from each other where the two creation opera-
tors a†

ψ1
(τ ) and a†

ψ2
(τ ) act undisturbed by each other. Then,

the time evolution operator eiHτ evolves the system for-
ward, making the two wavepackets approach and interact
with each other. Let us call r the distance between the
regions where ψ1(t1 + τ , x1; τ) and ψ2(t2 + τ , x2; τ) are
concentrated at τ = 0. Provided that interactions between
particles are short-ranged in the theory, as is the case for
gapped theories, we can ignore the interactions occurring
between the two wavepackets during the evolution from
τ = −∞ to τ = 0, with error vanishing faster than any
inverse power of r. Thus, at the cost of slightly increasing
r, we can take τ = 0 in Eq. (26) with excellent precision.

B. Scalar field with bound states

The theory with a single scalar field with interactions
λ(φ̂6 − φ̂4), in a single space dimension, is a simple exam-
ple of a quantum field theory displaying bound states. This
theory is known to satisfy the Wightman axioms [73],
and at weak coupling, it has a single composite particle
below the two-particle threshold 2m. Its mass mb can be
computed perturbatively [74–76] as

mb = 2m

[
1− 9

8

(
λ

m2

)2

+ O(λ3)

]
. (27)

The bare mass m0(λ) can be set such that m = m(m0(λ), λ)
is fixed. We notice at this point that Axiom Id should be
modified in an obvious way to accommodate the compos-
ite particle with mass mb. This is a well-controlled model
that is perfect to see in a simple and explicit way how to
treat bound states in the Haag-Ruelle formalism. The last
ingredient we need to know is that the field : φ̂2 : (x) inter-
polates between the vacuum and one-particle states of the
composite particle [76]. The Wick ordering : · : is neces-
sary in the continuum to avoid divergences of φ̂2(x), but
on the lattice it amounts to a constant, finite shift. This
is completely irrelevant to our purposes as can be easily
seen. Let �̂(x) denote either φ̂(x) or : φ̂2 : (x). Then, if we
shift it by a constant A and smear it with the function ψ in

Eq. (20), we obtain
∫

dDx �̂(x)ψ(x; τ) |�〉 + A
∫

dDxψ(x; τ) |�〉 . (28)

The second term is proportional to f̃1(0), which is zero by
construction.

The joint spectrum of P0 = H and P1 is depicted in
Fig. 2. Starting from this picture, we find that the Haag-
Ruelle theory discussed in the previous section holds
equally well to obtain wavepackets of the elementary parti-
cle with mass m, or wavepackets of the composite particle
with mass mb. If we want to have an elementary particle,
we use the interpolating field φ̂(x), a smearing function
f1(x), with Fourier transform f̃1(p) sandwiching the hyper-
boloid of mass m, and a solution g(x) of the Klein-Gordon
equation to build the operator φ1,g(τ ) of Eq. (13) as before.
If, on the other hand, we want to obtain a composite par-
ticle, we use the interpolating field : φ̂2 : (x), a smearing
function fb(x), with Fourier transform f̃b(p) sandwiching
the hyperboloid of mass mb, and a solution h(x) of the
Klein-Gordon equation to obtain the operator

φb,h(τ ) = −i
∫ +∞
−∞

dy

[
h(τ , y)

←→
∂

∂τ
φb(τ , y)

]
, (29)

where

φb(x) =
∫

d2y fb(y − x) : φ̂2 : (y). (30)

Then everything proceeds as before. A useful remark is
that the field φ̂(x) does not interpolate between the vac-
uum and one-particle states of the composite kind, and vice

–2 –1 0 1 2
p1

0.5

1.0

1.5

2.0

2.5

3.0
p0

FIG. 2. Structure of the spectrum of Pμ in the theory λ(φ̂6 −
φ̂4). The blue line represents the mass hyperboloid of elemen-
tary particles, the cyan line represents the mass hyperboloid of
two-particle bound states, and the red region is the multiparticle
continuum.
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versa, : φ̂2 : (x) does not interpolate between the vacuum
and one-particle states of the elementary kind. In the for-
mulae, if |α1〉 is an elementary one-particle state and |αb〉
is a composite one-particle state, we have

〈α1| : φ̂2 : (x) |�〉 = 0 = 〈αb| φ̂(x) |�〉 . (31)

The first equality holds because the one-particle sector of
the elementary kind is spanned by vectors of the form
φ1(x) |�〉. Then the matrix element 〈α1| : φ̂2 : (x) |�〉 is
an integral containing 〈�| φ̂ φ̂ φ̂ |�〉, which is zero because
the Hamiltonian contains only even powers of the field φ̂.
A similar argument leads to 〈αb| φ̂(x) |�〉 = 0. As a con-
sequence of the equalities in Eq. (31), f̃1 and f̃b are allowed
to have supports intersecting both hyperboloids of mass m
and mb.

We conclude this section with some remarks on the
validity of the theory just described. In general, we can
have bound states whose mass falls above the two-particle
threshold of lighter particles, on the condition that they are
protected by some symmetry (internal quantum numbers).
In this case the symmetry selects a sector of the Hilbert
space, and when we restrict the mass-squared operator to
this sector, the mass of the composite particle appears as a
discrete point in the spectrum of P2 again.

The Haag asymptotic theorem critically depends on two
assumptions:

(1) There exists a lower and an upper mass gap for
the particle we want to create in such a way that
it is possible to sandwich the mass hyperboloid
corresponding to such a particle.

(2) We have access to an operator interpolating between
the vacuum and one-particle states of the particle we
want to create.

Clearly, studying these two conditions strongly depends on
the theory under consideration and can be very difficult, but
we can use standard techniques of lattice quantum field
theory to study these properties model by model, or the
Bethe-Salpeter equation as done in Refs. [74–76]. Smear-
ing a field operator in time can be avoided if we have at
our disposal an operator that does not couple the vacuum
to multiparticle states (as happens for free theories). For a
bound state whose mass is immersed in the continuum of
other particles, we also need to ensure that the interpolating
operator couples only to the sector where the bound state
lives, in a way similar to the reasoning leading to Eq. (31).
As an example, consider a theory where we have a com-
posite particle with spin 0 and mass m (a pion), and another
composite particle with spin 1/2 and mass M > 2m (a pro-
ton). These two particles are made of the same underlying
elementary fields, but the difference in spin should make
it easy to build interpolating fields from the vacuum to
each of the two particles without crossing, even though the

heavier particle has mass in the continuum of the lighter
one.

III. STATE PREPARATION USING THE
HAAG-RUELLE THEORY

In the following we assume that all of this holds as an
approximation on the lattice. The Haag-Ruelle scattering
theory was developed for spin systems in Ref. [77] and for
Euclidean lattice field theory in Ref. [78]. Detailed studies
of the effects of latticization on applications for quantum
simulation will be the subject of future work.

From now on we take τ = 0, ψ(t, x) = ψ(t, x; 0), as
given in Eq. (20), and

a†
ψ =

∑
x

ad
∫ +∞
−∞

dtψ(t, x)eiHtφ̂(x)e−iHt. (32)

We want to prepare the state a†
ψ1

a†
ψ2
|�〉, with ψ1 and

ψ2 well separated. Because of this, we can focus on one
wavepacket at a time, so in the following we will see how
to implement the operator a†

ψ on a quantum computer. In
Eq. (20), we choose g̃ peaked at around p̄ with support of
size δp and f̃1(p) peaked at around (Ē, p̄) with support of
size δE in the p0 direction and δp in the other directions,
with Ē = E(p̄). Also, we can take δE = O(m). First we
truncate the integration over t and the summation over x
around the space-time region where ψ is significantly dif-
ferent from zero, which, since ψ is a Schwartz function,
introduces an error vanishing faster than any power as the
hypervolume of the region is increased. We label the space
points in this region by x1, . . . , xS and we approximate the
integral with a sum over time points t1, . . . , tN with spacing
δt. By the uncertainty principle, the linear size of ψ over
space is proportional to 1/δp , and tN − t1 is proportional
to 1/δE = O(1/m). Thus, as an approximation of a†

ψ , we
have

ā†
ψ =

N∑
i=1

S∑
j=1

adδtψ(ti, xj )eiHti φ̂(xj )e−iHti

=
N∑

i=1

φ̂ψ(ti). (33)

We work in the field basis [12,13,79], where the operator
φ̂(x) is diagonal. If k qubits are dedicated to the lattice site
x, then φ̂(x) is implemented by a linear combination of Z
Pauli matrices,

φ̂(x) = φmax

2k − 1

k−1∑
i=0

2iσ z
(x,i). (34)

The effects of truncating and discretizing the spectrum
of φ̂(x) were studied in Refs. [12,13,79], where it is
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also shown that it is enough to take k quite small in a
broad range of situations. The operator (34) is not uni-
tary but can be implemented with linear combination of
unitaries (LCU) [80]. Furthermore, the operator ā†

ψ can be
implemented with LCU as well, with probability of success

ρ =
(
||ā†

ψ |�〉 ||
α

)2

, (35)

α = φmax

N∑
i=1

S∑
j=1

adδt|ψ(ti, xj )|. (36)

It is not easy to determine ρ exactly (more is said on this
at the end of this section), but one could use, for exam-
ple, the techniques described in Ref. [81] to find numerical
estimates for it. Then one would have to repeat state prepa-
ration O(1/ρ) times to get the desired initial state, or,
alternatively, one could apply amplitude amplification [81]
to obtain a quadratic speedup at the expense of a larger
circuit depth. Typically, we need to prepare two incoming
wavepackets. If we denote by ρ1 and ρ2 the probabili-
ties of obtaining the two wavepackets, the total probability
is given by ρ = ρ1ρ2. Generalization to more than two
wavepackets is straightforward.

Before moving on, we remarks on how to implement
the bound-state creation operator (29). The discussion goes
along the line described so far, except that now, instead of
Eq. (34), we have to use the operator

φ̂(x)2 =
(
φmax

2k − 1

)2 k−1∑
i,j=0

2i+j σ z
(x,i)σ

z
(x,j ) (37)

up to a shift. We are free to choose this shift in such a way
as to eliminate the terms with i = j in Eq. (37), which are
proportional to 1. In this way, instead of α in Eq. (36), we
obtain

αb ≈ 2
3
φ2

max

N∑
i=1

S∑
j=1

adδt|ψ(ti, xj )|. (38)

A. Circuit description

We want to give a high-level description of a circuit
implementing ā†

ψ , so we focus only on the dependence
on the lattice sites and the time to keep the discussion
concise. We take a register of Na = �log2(kNS)� ancillary
qubits and we label the computational basis as

∣∣ti, xj
〉
, with

i = 1, . . . , N and j = 1, . . . , S.
We define operators Vψ and V′ψ such that

Vψ |0〉⊗Na = 1√‖ψ‖1

N∑
i=1

S∑
j=1

√
adδtψ(ti, xj )

∣∣ti, xj
〉
, (39)

V′†ψ |0〉⊗Na = 1√‖ψ‖1

N∑
i=1

S∑
j=1

(√
adδtψ(ti, xj )

)∗ ∣∣ti, xj
〉
.

(40)

Then the circuits in Fig. 3 implement the operator ā†
ψ writ-

ten in Eq. (33) up to a normalization factor and when the
state |0〉⊗Na is obtained by measurement of the ancillary
register. In general we have t1 < 0, tN > 0, and ti − ti+1 =
−δt; therefore, the sequence of time evolution operators
appearing in Fig. 3(a) consists of a backward evolution
for time |t1|, followed by N steps forward, each one of
time δt for a total of tN − t1, and by a final backward
evolution for time tN . In Fig. 3(b) we notice that control-
ling only each φ̂ is equivalent to controlling e−iHti φ̂eiHti

because e−iHtieiHti = 1. To prepare two wavepackets, we
can take two ancillary registers, apply in sequence the cir-
cuit in Fig. 3, one for each wavepacket, and measure both
ancillary registers at the end.

B. Complexity

We show that the complexity in Fig. 3(a) is dominated
by the sequence of time evolutions. We do not want to dis-
cuss here how to implement the time evolution, as this is
not in the scope of this work. Moreover, we take k = Õ(1).

The sequence of operators �(t1), . . . ,�(tN ) requires
O(kSN ) = Õ(SN ) gates, as well as the operators V and
V′, which basically provide generic state preparation on
Na qubits, and we have S < V . We can estimate the error
introduced by discretizing the integral over t, and hence
how large N needs to be, in the following way. We take
t0 = t1 − δt/2 and T = tN − t1 + δt. Then we split the inte-
gral from t0 to t0 + T into N integrals in the following
way:

∫ t0+T

t0
ψ(t, x)eiHtφ̂(x)e−iHtdt

=
N∑

i=1

∫ ti+ δt2

ti− δt2
ψ(t, x)eiHtφ̂(x)e−iHtdt

=
N∑

i=1

∫ δt
2

− δt2
ψ(ti + t, x)eiHtieiHtφ̂(x)e−iHte−iHtidt, (41)

where from the second line to the third line we have
shifted the integration variable, t→ t+ ti. We expand
eiHtφ̂(x)e−iHt using the formula

eABe−A = B+ [A, B]+ 1
2

[A, [A, B]]+ · · · (42)

and we expand ψ(ti + t, x) using the Taylor expansion
around t = 0 up to order t2. Odd orders in t do not con-
tribute because the integration domain is symmetric around
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(a)

(b)

FIG. 3. Description of the circuit implementing ā†
ψ . The slash at the beginning of each line means that the line represents a register

of qubits: “anc.” is the ancillary register of Na qubits, xi is the register of k qubits dedicated to the site xi, and � is the set of qubits
dedicated to the rest of the lattice. (a) Circuit 1: High-level overview of the circuit implementing ā†

ψ . The operators�(ti) are described
in the circuit in (b). (b) Circuit 2: Overview of the operator implementing φ̂ψ (ti). The symbol connecting φ̂ in a squared box to the
rounded box containing ti, xj represents the operator φ̂(x) controlled on the state

∣∣ti, xj
〉
.

zero. The leading order gives us exactly the operators
appearing in Eq. (33). We use the spectral norm of the next

to leading order to estimate the error due to discretization
and we apply the triangular inequality:

ε = δ3
t

24
‖

N∑
i=1

eiHti
(
ψ̈(ti, x)φ̂(x)+ 2iψ̇(ti, x)[H , φ̂(x)]− ψ(ti, x)

[
H , [H , φ̂(x)]

])
e−iHti‖

≤ δ2
t

24

(
N∑

i=1

δt|ψ̈(ti, x)|‖φ̂(x)‖ + 2
N∑

i=1

δt|ψ̇(ti, x)|‖[H , φ̂(x)]‖ +
N∑

i=1

δt|ψ(ti, x)|‖
[
H , [H , φ̂(x)]

]
‖
)

. (43)

The dominant contribution is given by the term with[
H , [H , φ̂(x)]

]
, and the quantity

N∑
i=1

δt|ψ(ti, x)| (44)

is approximately a constant independent of the lattice and
the precision. Finally, given that T = δtN , we have

N = Õ

(
T√
ε

√
‖
[
H , [H , φ̂(x)]

]
‖
)

. (45)
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If we use a first-order Suzuki-Trotter formula to implement
the time evolution, we need [82]

NST = O
(

T2

ε
‖[Hφ , Hπ ]‖

)
(46)

Trotter steps to keep the error below ε. As one may check
by looking at Eqs. (47) and (48), the commutator [Hφ , Hπ ]

scales with the total size of the lattice, as it involves a sum-
mation over all the sites, while

[
H , [H , φ̂(x)]

]
involves

only a few neighbors of x. Thus, NST clearly dominates
over N even if we consider higher-order product formulae.
This shows that the complexity is determined by the time
evolution.

For the φ4 theory, we have

[
H , [H , φ̂(x)]

]
= 1

a2

d∑
i=1

[
2φ̂(x)− φ̂(x+ r̂i)− φ̂(x− r̂i)

]
+ m2

0φ̂(x)+
λ0

3!
φ̂(x)3, (47)

[Hφ , Hπ ] = i
∑

x

ad

⎡
⎣ 1

a2

d∑
j=1

(
φ̂(x)π̂(x)+ φ̂(x+ r̂j )π̂(x+ r̂j )− φ̂(x+ r̂j )π̂(x)− φ̂(x)π̂(x+ r̂j )− i

ad

)

+ m2
0

2

(
2φ̂(x)π̂(x)− i

ad

)
+ λ0

12

(
2φ̂3(x)π̂(x)− 3i

ad φ̂(x)
2
)]

. (48)

C. Success probability

Here we want to show what to expect regarding the
probability of success. We write it again here:

ρ =
(
||ā†

ψ |�〉 ||
α

)2

, (49)

α = φmax

N∑
i=1

S∑
j=1

adδt|ψ(ti, xj )|, (50)

ā†
ψ |�〉 =

N∑
i=1

S∑
j=1

adδtψ(ti, xj )eitiH φ̂(xj ) |�〉 . (51)

Near the continuum limit, ||ā†
ψ |�〉 ||2 should approach its

continuum value

Z
∫

ddp
|g̃(p)f̃1(E(p), p)|2

2E(p)
, (52)

where Z depends on the normalization of the field opera-
tor φ̂(x). The summation in α can be approximated by an
integral, so we have

ρ ∼ Z
φ2

max

∫
ddp |g̃(p)f̃1(E(p),p)|

2

2E(p)(∫
dDx |ψ(x)|)2 . (53)

Since g̃(p)f̃1(p0, p) has support of size δE in the p0 direc-
tion and support of size δp in the other directions, we

have
(∫

dDx |ψ(x)|
)2

∼ 1
δEδd

p

∫
dDx |ψ(x)|2

= 1
δEδd

p

∫
dDp

∣∣∣g̃(p)f̃1(p)p0 + E(p)
2E(p)

∣∣∣2.

(54)

In the limit δp → 0 we can approximate g̃ with a δ function
centered in p̄, and recalling Ē = E(p̄), we obtain

∫
ddp |g̃(p)f̃1(E(p),p)|

2

2E(p)(∫
dDx |ψ(x)|)2 ∼ δd

p

Ē
δE|f̃1(Ē, p̄)|2∫ +∞

−∞ dp0 |f̃1(p0, p̄) p0+Ē
2Ē |2

∼ δd
p

Ē
(55)

and

ρ = O

(
Z
φ2

max

δd
p

Ē

)
. (56)

We now turn our attention to the factor Z/φ2
max. Set

σE =
√
〈ψE| φ̂(0)2 |ψE〉, (57)

σ0 =
√
〈�| φ̂(0)2 |�〉, (58)

where |ψE〉 is a state with maximum energy E and E is the
energy of the process being simulated. In Ref. [13], as a
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consequence of Chebyshev’s inequality, it is shown that

φmax = O

⎛
⎝σE

√
V
εtrunc

⎞
⎠ , (59)

where εtrunc is the error due to truncation of the spectrum
of φ̂(x). In the field representation we have

|ψE〉 =
∫ +∞
−∞

dφ1 · · ·
∫ +∞
−∞

dφV ψE(φ1, . . . ,φV)

× |φ1 · · ·φV〉 , (60)

where 1, . . . ,V is some labeling of the lattice sites. It
is well known [83] that ψE(φ1, . . . ,φV) decays rapidly
(exponentially or more) outside the classically forbid-
den region V(φ1, . . . ,φV) > E, where V(φ1, . . . ,φV) is the
potential associated with the Hamiltonian H . From the dis-
cussion in the Appendix it is clear that we can improve the
bound (59) to

φmax = O
(
σE

√
V + log2

V
εtrunc

)
. (61)

Moreover, from the analysis in Ref. [13] it follows that (at
most) σE = O(

√
Eσ0), and thus, ignoring the logarithmic

contribution, we have

φmax = O
(
σ0

√
EV
)

. (62)

We can use the Kållen-Lehmann representation of the two-
point function in the continuum to estimate σ0. We have

〈�| φ̂(x)φ̂(y) |�〉 = Z�+(x − y, m2)

+
∫ +∞

4m2
ρ(μ)�+(x − y,μ)dμ, (63)

where ρ(μ) ≥ 0 is the so-called spectral function and

�+(x,μ) = 1
(2π)d

∫
ddp

2
√
|p|2 + μe−ip·x. (64)

In renormalizable models such as φ4, the spectral function
is known to decay as 1/μ at all orders of perturbation the-
ory, ensuring the convergence of the integral in Eq. (63).
Therefore, we may assume that, at coincident points x = y,
the behavior of the two-point function is determined by
�+(0, m2), which diverges logarithmically for d = 1 and
linearly and quadratically (apart from logarithmic factors)
for d = 2 and d = 3, respectively. As 1/a is a natural cutoff

on the lattice, we may conclude that

φmax = Õ

(√
EZV
ad−1

)
, (65)

where we use the notation Õ(·) = O(·polylog(·)), and
consequently

ρ �
ad−1δd

p

VEĒ
, (66)

up to logarithmic factors. As we are interested in the con-
tinuum limit, the dominant factor is ad−1/V . From the
discussion in the Appendix, we expect this bound to be
quite loose. For the perturbative φ4 theory, for instance,
we can replace V with

√V .

IV. COMPARISON WITH THE JLP ALGORITHM

In this section we compare the complexity scaling of our
strategy with the complexity scaling of the JLP strategy
[12,13] in the case when both methods are applicable—that
is, when we want to prepare elementary particles. We con-
sider only the φ4 theory. The settings in the two cases are
very similar and a comparison is immediate.

The JLP algorithm can be summarized in five steps:

(1) Free vacuum preparation
(2) Creation of free wavepackets
(3) Adiabatic transformation of the free wavepackets

into interacting wavepackets
(4) Time evolution
(5) Measurements

As stated in Sec. I, our strategy requires the preparation
of the interacting vacuum. While other techniques, such
as variational approaches, might be more suitable in prac-
tice, to study the complexity we choose here to do the
following:

(1) Free vacuum preparation
(2) Adiabatic transformation of the free vacuum into the

interacting vacuum
(3) Creation of interacting wavepackets
(4) Time evolution
(5) Measurements

Steps 4 and 5 are the same in the two approaches, and in
both cases the bottleneck of complexity is in the initial-
state preparation—steps 1, 2, and 3—so we focus on these
steps only. We consider here the case of two particles in
the initial state. As the complexity depends on the success
probability, simulating scattering between three or more
incoming particles becomes more and more inefficient in
our approach, and is of little or no practical interest in
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general. We assume the reader is familiar with Ref. [13],
especially with Secs. 3.2 and 4.2. We do not want to dis-
cuss the details of how time evolution is implemented,
although it may have an impact on complexity. Our goal
is to give a rough estimate, certainly not exhaustive, and
to compare it with the results obtained by Jordan, Lee,
and Preskill. To this end and following their approach, we
assume we can implement time evolution with a kth-order
Suzuki-Trotter formula with large k. The gate cost for time
t on a lattice of V sites is

(V t)1+
1
2k , (67)

which we indicate as

(V t)1+o(1) (68)

to simplify the presentation. The little-o notation is used
also to include logarithmic factors implicit in the Õ nota-
tion.

The most-time-consuming parts are typically the free
vacuum preparation and the adiabatic transformation. The
complexity for the free vacuum preparation, using the
Kitaev-Webb method [84,85], is O(V2.376). This exponent
is determined by the classical computation of the LDL
decomposition of the covariance matrix. The quantum cir-
cuit has a depth of Õ(V2) and requires O(log2 V) ancillary
qubits [85].

The adiabatic transformation of the wavepackets
requires a modification with respect to a traditional treat-
ment to take into account the fact that wavepackets are not
eigenstates of the Hamiltonian, as described in Sects 3.1
and 4.2 in Ref. [13]. In particular, the adiabatic transfor-
mation, of total time τWP, needs to be split into J ∼ √τWP
steps and interspersed with backward time evolution to
suppress the dynamical phases. This causes the adiabatic
error ε to vanish as J 2/τ 2

WP ∼ 1/τWP instead of as 1/τ 2
WP.

Our approach has the advantage that the adiabatic trans-
formation is performed on the vacuum, rather than on the
wavepackets, and there is no need to suppress the dynam-
ical phases. To continue the discussion, we distinguish
between the weak coupling regime and the strong coupling
regime from now on. In both regimes we take the adiabatic
paths chosen in Refs. [12,13].

A. Weak coupling

We consider scaling in the continuum limit. To deter-
mine the scaling of the time τvac required to perform the
adiabatic transformation in the vacuum, we can use the
analysis of adiabaticity in Sec. 4.2 in Ref. [13], taking

J = 1. Our setting V = adV leads to

τvac =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Õ

(√
V
ε

)
, d = 1, 2,

Õ

(√
V

a4ε

)
, d = 3,

(69)

to be compared with the result obtained by Jordan, Lee,
and Preskill

τWP =

⎧⎪⎪⎨
⎪⎪⎩

Õ
(

V
ε

)
, d = 1, 2,

Õ
(

V
a6ε

)
, d = 3.

(70)

We next consider the number of gates needed for the free
vacuum preparation, Gprep, and the two kinds of adiabatic
transformation, GWP and Gvac. To this end, we take a ∼ √ε
and V ∼ log2(1/ε), as argued in Ref. [13]. There, in Sec.
3.2, Jordan et al. also provide Gprep = Õ(1/ε1.188d) and, by
Eq. (68),

GWP ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ε

)1.5+o(1)

, d = 1,
(

1
ε

)2+o(1)

, d = 2,
(

1
ε

)5.5+o(1)

, d = 3.

(71)

Following the same reasoning, we find

Gvac ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ε

)1+o(1)

, d = 1,
(

1
ε

)1.5+o(1)

, d = 2,
(

1
ε

)3+o(1)

, d = 3.

(72)

We see that Gprep dominates over Gvac for all the dimen-
sions.

The advantage obtained by avoiding the adiabatic trans-
formation on wavepackets is partially spoiled by the fact
that the wavepacket creation does not succeed with a
probability of 1. For simplicity, we consider two similar
wavepackets, so, by Eq. (66) (replacing V with

√V in
weakly coupled φ4 theory), we find that the probability
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goes as

ρ �
(

ad−1δd
p√VEĒ

)2

. (73)

This means that we need to repeat the state preparation

O
(

1
ρ

)
= Õ

(
V

a3d−2

)
(74)

times to obtain the correct initial state. Notice that the LDL
decomposition of the covariance matrix does not need to
be repeated every time, so the total complexity of the state
preparation protocol proposed here is obtained by multi-
plying the depth of the free vacuum preparation by 1/ρ,
which gives

G = Õ
(V2

ρ

)
∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ε

)1.5+o(1)

, d = 1,
(

1
ε

)4+o(1)

, d = 2,
(

1
ε

)6.5+o(1)

, d = 3,

(75)

with depth given by Õ(V2) = Õ(1/εd). The total complex-
ity can be improved at the expense of a larger depth by use
of amplitude amplification, in which case we have

G′ = Õ
( V2

√
ρ

)
∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ε

)1.25+o(1)

, d = 1,
(

1
ε

)3+o(1)

, d = 2,
(

1
ε

)4.75+o(1)

, d = 3.

(76)

For a direct comparison, the total complexity of the JLP
algorithm is given by

GJLP ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ε

)1.5+o(1)

, d = 1,
(

1
ε

)2.376+o(1)

, d = 2,
(

1
ε

)5.5+o(1)

, d = 3.

(77)

B. Strong coupling

Because of the triviality issue of the φ4 theory in a three-
dimensional space, we can have strong coupling only for

d = 1, 2, when we approach the phase transition. For the
success probability, we take

ρ �
(

ad−1δd
p

VEĒ

)2

. (78)

We limit our discussion to the scaling of complexity with
the coupling strength and the momenta of the incoming
particle. If the phase transition occurs at the critical value
λc, we can take |λ0 − λc| as a measure of the coupling
strength. To estimate the scaling of the adiabatic time with
this quantity, we use the results in Ref. [86], implying
τvac ∼ 1/m3. The temporal size T of the wavepacket ψ in
Eq. (33), which determines the duration of the time evo-
lution required to create the wavepacket in our approach,
grows at most as 1/m, by the uncertainty principle, so τvac
dominates over T. Near the phase transition, the physical
mass vanishes as

m ∼
{
λc − λ0, d = 1,
(λc − λ0)

0.63, d = 2,
(79)

which gives

τvac ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

λc − λ0

)3

, d = 1,
(

1
λc − λ0

)1.89

, d = 2.

(80)

Furthermore, the probability of success (78) does not
depend explicitly on the mass gap. However, the volume
has to be large enough to contain the wavepackets, which
in turn have linear size proportional to 1/m; hence,

V ∼

⎧⎪⎪⎨
⎪⎪⎩

1
λc − λ0

, d = 1,
(

1
λc − λ0

)1.26

, d = 2.
(81)

Considering the volume dependence in Eq. (68), the adi-
abatic transformation has a stronger scaling than the free
vacuum preparation. Taking into account the success prob-
ability (78), we find that, at fixed a and incoming momenta,
the total complexity scales with the coupling strength as

Gstrong ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

λc − λ0

)6+o(1)

, d = 1,
(

1
(λc − λ0)

)5.67+o(1)

, d = 2.

(82)
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Using amplitude amplification, we have

G′strong ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

λc − λ0

)5+o(1)

, d = 1,
(

1
(λc − λ0)

)4.41+o(1)

, d = 2.

(83)

The corresponding result found in Refs. [12,13] is

Gstrong,JLP ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

λc − λ0

)9+o(1)

, d = 1,
(

1
(λc − λ0)

)6.3+o(1)

, d = 2.

(84)

Finally, we consider scaling with incoming momenta, at
fixed coupling strength and volume. The free vacuum
preparation and the adiabatic transformation in the vac-
uum do not depend explicitly on the incoming momenta,
but the lattice spacing has to be small enough to contain
momentum mode p . With a ∼ 1/p , the free vacuum prepa-
ration has a cost proportional to p2d, while the adiabatic
transformation has a slower growth. The time evolution
required for the wavepacket creation has a cost count
of (VT)1+o(1) ∼ pd+1+o(1), since T grows at most linearly
with p . The success probability (78) has scaling p4d+2.
Putting all this together, we find the scaling

Gstrong ∼
{

p8+o(1), d = 1,
p14+o(1), d = 2

(85)

or, using amplitude amplification,

G′strong ∼
{

p5+o(1), d = 1,
p9+o(1), d = 2.

(86)

The corresponding result in Refs. [12,13] is

Gstrong,JLP ∼
{

p4+o(1), d = 1,
p6+o(1), d = 2.

(87)

The scaling with the spread of the wavepackets in momen-
tum space, δp , can be obtained in a similar way. In this
case, we take V ∼ 1/δd

p , while we keep a fixed. The total
scaling is give by

Gstrong ∼
(

1
δp

)6d+o(1)

, (88)

which can be improved to

G′strong ∼
(

1
δp

)4d+o(1)

(89)

with use of amplitude amplification.

V. CONCLUSIONS

In this paper we provide a quantum algorithm to create
single-particle wavepackets of a lattice quantum field the-
ory starting from the vacuum state. The method we propose
is quite general and the idea is independent of details of
the model. For example, it works equally well for free and
interacting theories. The key aspect of our strategy is that
it is suitable for preparation of composite particles, which
is an important novelty in the context of quantum simula-
tion of relativistic scattering. To our knowledge this is the
first work on state preparation of bound states for digital
quantum simulation of scattering.

The work is based on the Haag-Ruelle scattering theory
in the framework of axiomatic quantum field theory, which
is ideal for quantum simulation as it is developed in the
operator formalism. In this respect, this work also shows
the potential importance that the axiomatic approach might
have for quantum computation applied to quantum field
theory, as both fields are suited to nonperturbative investi-
gations from first principles. The Haag asymptotic theorem
1 provides a strong limit to obtain scattering states, rather
than a weak limit as is the case in the more famous LSZ
approach. This feature is what makes the Haag-Ruelle
framework particularly suitable for quantum simulation,
together with the fact that the convergence rate of the
strong limit is very fast, as discussed after Theorem 1.

Our present result shows the potential of the Haag-
Ruelle formalism in the context of quantum simulation.
Here we decided to use LCU because it seems to us the
easiest and most natural route, but there may be other,
more efficient techniques in the context of digital quan-
tum computation or in other contexts. Excluding the steps
of vacuum preparation, and of time evolution and mea-
surement, our algorithm requires a number of qubits that
grows logarithmically with the size of the wavepacket, and
a circuit depth equivalent to that of the time evolution.
It succeeds with a probability that vanishes polynomially
in the continuum limit for highly energetic processes and
for narrow wavepackets in momentum space. The size of
the mass gap is relevant only because the extension of the
wavepacket in the time coordinate is inversely proportional
to the mass gap.

This work decomposes the problem of state prepara-
tion for scattering into more approachable ones. On one
hand, efficient techniques to prepare the vacuum state are
required. On the other hand, one has to find interpolating
operators with the correct properties for a given parti-
cle in a given theory, and one needs to know the size
of the corresponding lower and upper mass gaps. On the
first front, much work has already been done in the con-
text of quantum computation, and we propose a way to
prepare the interacting vacuum by an adiabatic transforma-
tion. We found that a scattering protocol based on creating
wavepackets from the adiabatically prepared vacuum is in
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some cases more efficient than the protocol proposed by
Jordan et al. [12,13]. For the second front, standard tech-
niques of Euclidean lattice field theory are available. As a
next step, the approach of this work needs to be special-
ized case by case. Also, we need to investigate how gauge
invariance and the presence of massless particles affect this
approach.

In the last stages of the present work, we became aware
of two new preprints [87,88], where similar problems are
addressed with different approaches.
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APPENDIX

Considering that the probability distribution determined
by ψE in Eq. (60) is concentrated in the classically allowed
region, the bound Eq. (59) seems loose, and we now
explore this idea in more detail. We take a potential of the
form

V(φ1, . . . ,φV) = Ṽ(φ1, . . . ,φV)+ 1
a2

∑
<j ,j ′>

(
φj − φj ′

)2 ,

(A1)

Ṽ(φ1, . . . ,φV) =
V∑

j=1

v(φj ), (A2)

where the summation in Eq. (A1) runs over nearest-
neighbor pairs on the lattice and v(φ) is a polyno-
mial bounded from below like λ0φ

4 + m2
0φ

2. Let cube(φ)
denote the V-dimensional hypercube centered at the origin
and of linear size 2φ > 0. Let φcl be the smallest φ such
that cube(φcl) contains the region Ṽ(φ1, . . . ,φV) < E (φcl
would be enough to describe the entire classical dynamics).
Our aim here is to show that

φmax = O
(
φcl + log2

( V
εtrunc

))
. (A3)

The terms in the summation in Eq. (A1) are positive
semidefinite, which implies that the classically allowed
region of V is contained in the classical region of Ṽ for all
energies. Moreover, as V ≥ Ṽ, the decay of the wave func-
tion outside the classical region should also be no slower
for V than for Ṽ [89]. Therefore, for our purposes, it is
enough to consider Ṽ.

As Ṽ does not contain mixing terms between different
sites, we roughly approximate

ψE(φ1, . . . ,φV) ∼ 1√
A
ψ1(φ1) · · ·ψ1(φV), (A4)

where ψ1(φcl) = 1 and ψ1(φ) rapidly decreases for φ >
φcl (for a quadratic v, ψ1 decays like a Gaussian times a
polynomial). We also set

u(φ) =
∫ φ

−φ
|ψ1(φ̃)|2dφ̃. (A5)

The normalization constant A is fixed by our requiring
∫

RV
dVφ

1
A
|ψ1(φ1) · · ·ψ1(φV)|2 = 1, (A6)

which gives A = u(+∞)V . Now we take φmax > φcl, and
we consider

cube(φmax) = R
V \ cube(φmax). (A7)

The error due to truncation εtrunc corresponds to the integral
of |ψE|2 over cube(φmax). Using

∫
cube(φmax)

=
∫

RV
−
∫

cube(φmax)
, (A8)

we find

εtrunc =
∫

cube(φmax)
dVφ

1
A
|ψ1(φ1) · · ·ψ1(φV)|2

= 1−
[

u(φmax)

u(+∞)
]V

= 1−
[

1− u(+∞)− u(φmax)

u(+∞) .
]V

(A9)

From the definition of an exponential,

ex ≈
(

1+ x
V
)V

, (A10)

it is enough to take

u(+∞)− u(φmax)

u(+∞) = O
(εtrunc

V
)

(A11)

to ensure Eq. (A9) holds. Since ψ1(φ) vanishes exponen-
tially or faster than φ→+∞, so does u(+∞)− u(φmax)

as φmax →+∞, and we obtain Eq. (A3).
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As a next step we would need to determine the relation
between φcl and σE . While it is clear that

σE = O(φcl + log2 V), (A12)

φcl may be asymptotically much larger than σE and the
form of the potential plays an important role. To see what
φcl looks like, and to compare Eq. (A3) with Eq. (59), we
focus on a more specific example—namely, the φ4 theory
at energy E = O(1). We have

v(φ) = ad (λ0φ
4 + m2

0φ
2) . (A13)

It can be shown that

φcl =

√√√√−m2
0 +

√
4a−dλ0E + Vm4

0

2λ0
, m2

0 < 0, (A14)

φcl =

√√√√−m2
0 +

√
4a−dλ0E + m4

0

2λ0
, m2

0 > 0. (A15)

In the continuum limit in the perturbative regime we have
[12,13]

m2
0 = Õ

(
1

ad−1

)
, (A16)

λ0 = Õ(1), (A17)

m2
0 < 0, (A18)

so

φcl = Õ
( V1/4

a(d−1)/2

)
. (A19)

On the other hand,

σ0 = Õ

(√
Z

ad−1

)
, (A20)

and from comparison with Eq. (A19), we obtain

φcl = Õ
(V1/4

Z1/2 σ0

)
. (A21)

Provided Z is nonvanishing, we see that this result leads
to a quadratic improvement in V with respect to the more
general bound (61).
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