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Circuit quantization is an extraordinarily successful theory that describes the behavior of quantum cir-
cuits with high precision. The most widely used approach of circuit quantization relies on introducing a
classical Lagrangian whose degrees of freedom are either magnetic fluxes or electric charges in the circuit.
By combining nonlinear circuit elements (such as Josephson junctions or quantum phase slips), it is possi-
ble to build circuits where a standard Lagrangian description (and thus the standard quantization method)
does not exist. Inspired by the mathematics of symplectic geometry and graph theory, we address this
challenge, and present a Hamiltonian formulation of nondissipative electrodynamic circuits. The resulting
procedure for circuit quantization is independent of whether circuit elements are linear or nonlinear, or if
the circuit is driven by external biases. We explain how to rederive known results from our formalism,
and provide an efficient algorithm for quantizing circuits, including those that cannot be quantized using
existing methods.
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I. INTRODUCTION

The quantum mechanical description of superconduct-
ing circuits has paved the way for the rapid evolution of
superconductor-based quantum computers [1–4], enabled
the discovery of the transmon [5], fluxonium [6], bosonic
[7], and more complex circuits [8], facilitated the advance-
ments of coupling between qubits [9], opened new avenues
towards quantum simulation [10], and led to the theory
of circuit quantum electrodynamics [11]. In this estab-
lished formalism of circuit quantization [12–22], general-
ized branch or node fluxes, or charges, describe the energy
of the elements. While these fluxes and charges are conju-
gates, in all but the simplest circuits, there are inevitable
constraints that arise between variables, complicating a
straightforward quantization prescription.
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A. The standard approach to circuit quantization

The standard resolution in the literature is to begin by
studying the classical Lagrangian mechanics of the cir-
cuit. In the Lagrangian formalism, we efficiently remove
nondynamical degrees of freedom by integrating them out;
after this step, we perform a Legendre transformation to a
classical Hamiltonian for the genuinely dynamical degrees
of freedom. Since the Legendre transformation reveals the
canonical momenta for each coordinate, we can quantize a
Hamiltonian self-consistently.

As a simple example, consider an inductor, L, with two
capacitors, C1 and C2, all in parallel [see Fig. 1(a)]. There
is one degree of freedom, which can be identified as the
flux φ across the inductor. Since φ̇ is the voltage drop
across the capacitor, one writes down a Lagrangian

L = 1
2
(C1 + C2)φ̇

2 − 1
2L
φ2. (1.1)

This Lagrangian is interpreted as a “kinetic energy minus
potential energy” term, and is mathematically equivalent to
a simple pendulum. Note that we are also able to elegantly
handle the two capacitors in parallel—the Lagrangian
automatically adds them into a single effective capacitor
for us. With a Lagrangian at hand, we find the conjugate
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(a) (b) (c)

FIG. 1. Examples of quantum circuits with Lagrangians using
one or two types of generalized coordinates. (a) An inductor
shunted by two capacitors: the Lagrangian of the circuit con-
tains a single type of variable, the flux across the inductor, such
that L(φ, φ̇). The charge-flux conjugate pairs are defined at the
Lagrangian level. (b) A Josephson junction and a quantum phase-
slip junction forming a loop. This quantum circuit cannot be
described by a Lagrangian using a single type of variable but only
with a Lagrangian that contains both charge and flux variables,
L(φ, φ̇, q, q̇). (c) A more complex circuit of multiple Joseph-
son junctions and quantum phase slips, where writing down a
Hamiltonian requires geometrical arguments.

momentum

q = ∂L
∂φ̇
= (C1 + C2)φ̇, (1.2)

and finally the Hamiltonian reads

H = 1
2(C1 + C2)

q2 + 1
2L
φ2, (1.3)

where φ and q are conjugate variables, and their Poisson
bracket is {φ, q} = 1. We can quantize the circuit based on
these conjugate pairs by imposing canonical commutation
relations

[
φ̂, q̂

]
= i�, (1.4)

where � is the reduced Planck constant, φ̂ is the flux
operator, and q̂ is the charge operator.

In the example above, we have linear capacitors and
inductors. Circuits might also contain a combination of
nonlinear and noninvertible capacitive and inductive ele-
ments, for example, Josephson junctions (JJs) [23,24] and
quantum phase slips (QPSs) [25–28]. Treating both of
these nonlinear and noninvertible elements in the same cir-
cuit is still an open problem: because the energy of the
JJs depends on the flux φ as E ∼ cos(2πφ/φ0), while the
energy of the QPSs on the charge q across the element as
E ∼ cos(2πq/2e), one can prove that no Lagrangian of
the circuit with a single type of variable (flux or charge)
exists in general [29]. Here, φ0 = h/2e is the fundamental
flux quantum, h is the Planck constant, and e is the elec-
tron charge. Although for the minimal circuit of one JJ
and one QPS included in a loop [see Fig. 1(b)], one can

immediately write down a Hamiltonian [30]

H = −EQ cos
(

2π
q
2e

)
− EJ cos

(
2π

φ

φ0

)
, (1.5)

circuits involving even a few of these elements can involve
nontrivial constraints [see Fig. 1(c)]. For example, the
number of degrees of freedom is not equal to the number of
JJs or QPSs; worse, the fluxes and charges across the dif-
ferent elements may not be conjugate pairs. Understanding
how to even identify the dynamical degrees of freedom,
let alone quantize the circuit, is an open problem. More-
over, modeling circuits that contain both JJs and QPSs
is especially important for designing a next generation of
qubits, which can realize Gottesman-Kitaev-Preskill-like
states with advantageous error-correction properties [30].

B. Our quantization method

In this paper, we present an alternative approach to
circuit quantization. Our approach is inspired by earlier
work [31] that links graph theory to circuit quantization.
However, rather than using Lagrangian mechanics as the
starting point, we instead appeal to the mathematics of
symplectic geometry [32–34], which generalizes textbook
Hamiltonian mechanics to more abstract and general set-
tings. We will show that this more abstract perspective
elegantly resolves the puzzle of how to choose canoni-
cal coordinates, without relying on any assumptions about
the constitutive relations of the inductive or capacitive
elements in the circuit. Hence, our approach is universal
for quantum circuits made out of nonlinear inductive and
capacitive elements and capable of resolving the puzzle
above.

The key insight of our theory is that the most natu-
ral quantization prescription involves building conjugate
degrees of freedom out of charge variables on branches
(qe) and flux variables on nodes (φv) of the capacitive
subgraph of the circuit (see Fig. 2). To understand our con-
struction, let us remind the reader how one usually models
circuits. The degrees of freedom are voltages V and cur-
rents I , which can be integrated in time to give flux φ
and charge q. In circuits, φ and q are canonically conju-
gate variables, similar to position and momentum: recall
Eq. (1.4). Of course, a typical circuit involves multiple
elements and therefore multiple flux and charge variables.
Due to Kirchhoff’s voltage law (the sum of the voltage
drops around a loop vanishes in the absence of external
magnetic fields), it is natural to define voltages on nodes
(or vertices) v of the circuit. On the other hand, currents I
are naturally defined on branches (or edges) e in the circuit.
In general, there is not a one-to-one mapping between the
branches v and nodes e of a circuit. How, therefore, can we
possibly find the conjugate pairs?

The mathematical puzzle above is not entirely seman-
tic. In classical and quantum Hamiltonian mechanics, there
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(a) (b) (c)

FIG. 2. Graph theory and quantum circuits. (a) An arbitrary circuit containing all four types of superconducting circuit elements:
capacitors, inductors, Josephson junctions, and quantum phase slips. The node fluxes are φvi , while the branch charges across the
capacitive elements are qei . (b) The graph of the full circuit. The vertices of the graph are label as vi, while the edges are denoted as ei.
Inductive branches are colored with blue lines, while capacitive ones are highlighted with red lines. The incidence matrix of the graph
of the full circuit is Aev . (c) The capacitive subgraph of the circuit containing only capacitive edges. The capacitive incidence matrix
is �ev .

must be an equal number of position and momentum coor-
dinates. As we described above, the prior resolution in the
literature has been to use Lagrangian mechanics to avoid
tackling this issue head on. With the notable exception
of Ref. [12,16], the Lagrangian is written using only one
type of variable (for example, branch fluxes), and then
the conjugate momenta is found at the Lagrangian level.
Any excess in degrees of freedom is dealt with by integrat-
ing out nondynamical variables. However, writing down a
Lagrangian as a first step is not always possible. A simple
example is the circuit that we discussed above, the dual-
mon qubit [30] shown in Fig. 1(b). The Hamiltonian in Eq.
(1.5) is only known because there is just one dynamical
degree of freedom.

What this paper provides is a way of solving the con-
straints on φ and q variables, directly in a Hamiltonian
formulation, such that we can find suitable linear combi-
nations of charge and flux variables that are canonically
conjugate (and equal in number). As stated above, the
approach is inspired by symplectic geometry, together with
the simple observation that the equations of motion for a
circuit follow from the action

S =
∫

dt

[
−Etot(qe,φv)+

∑
e,v

qe�evφ̇v

]
. (1.6)

Note that this action involves both branch charges qe
and node fluxes φv . Such an action may appear unusual

from the point of view of textbook Lagrangian mechan-
ics, where normally one writes a Lagrangian in terms of
coordinates and velocities, and which will contain more
“velocity” terms than the single linear-in-velocity term
found in Eq. (1.6). However, as we will thoroughly explain
in this paper, the form of the Lagrangian in the integrand
of the action above is fully analogous to the Lagrangian
L = pẋ − H(x, p), whose Euler-Lagrange equations repro-
duce Hamilton’s equations directly. Indeed, the action
in Eq. (1.6) manifestly encodes within it the Hamilto-
nian mechanics of the circuit. One can therefore inter-
pret Eq. (1.6) directly within the framework of Hamilto-
nian mechanics: rather than defining conjugate momenta
by differentiating a Lagrangian, we will explain how to
directly read off a Poisson bracket and Hamiltonian func-
tion directly from Eq. (1.6). In particular, the function Etot
(upon fixing all constrained variables, which we provide
a prescription to do) is the Hamiltonian itself, and equal
to the sum of inductive and capacitive energies in the cir-
cuit. Critically, the energy of elements are expressed in
their native coordinates: inductive elements’ energies are
expressed in terms of fluxes φv , while capactive elements’
energies are expressed in terms of charges qe. Furthermore,
�ev is the incidence matrix for the capacitive subgraph
of the circuit (see Fig. 2). qe�evφ̇v is naturally interpreted
using symplectic geometry, and implies both a classical
Poisson bracket, and a quantization prescription.

The rest of the paper will derive Eq. (1.6) in Sec. II,
explain how to subsequently quantize circuits in Sec. III,
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and then show how to identify the physical degrees of free-
dom in numerous example circuits in Sec. IV. We have
written this paper in a pedagogical and self-contained way;
no prior knowledge is required in either circuit quantiza-
tion or mathematical physics (beyond textbook Lagrangian
and Hamiltonian mechanics).

II. CLASSICAL FORMALISM

We now begin a gentle introduction to the classical
mechanics of quantum circuits. Our focus will be to
motivate the derivation of Eq. (1.6); however, we provide
background knowledge both into the experimental systems
and also the mathematics of Hamiltonian mechanics, as is
necessary to appreciate Eq. (1.6).

A. Circuit elements and degrees of freedom

First, we review the definition of branch charges and
node fluxes. When describing superconducting circuits, we
assume that the circuit elements are connected by per-
fect superconducting wires without inductive or resistive
contributions. We call a part of the circuit that contains a
circuit element a branch, and an intersection of the super-
conducting wires a node. We will soon mathematically
describe the circuits as graphs, where branches will be
associated to edges in the graph, and nodes as vertices of
the graph. We will use the former terminology throughout
the paper to conform with the tradition used in quantum
circuits. As an homage to the mathematics, however, we
will use the letter e to denote a generic branch (edge), and
v to denote a generic node (vertex).

Now, consider a two-terminal superconducting circuit
element defined between two nodes of a circuit. The node
voltage Vv(t) is the voltage at a given node, and the branch
current Ie(t) is the current flowing through the circuit ele-
ment. We assume that it is sufficient to use only the voltage
at nodes and the current across the element to describe
the system and ignore the current and voltage distribution
inside the elements, i.e., we use a lumped-element approxi-
mation for the circuit [35]. Next, we define the generalized
node flux φv and the branch charges qe as the time integral
of the voltage and the current

φv(t) =
∫ t

−∞
dτVv(τ ), (2.1a)

qe(t) =
∫ t

−∞
dτ Ie(τ ). (2.1b)

It is also common to define the generalized branch fluxes,
as the difference between the fluxes of the corresponding
nodes; if branch e connects nodes vi and vj , the branch
flux is

φe(t) = φvi(t)− φvj (t). (2.2)

FIG. 3. Circuit elements and their constitutive relations. The
circuit elements that we consider in this work connect two vari-
ables (flux, charge, and their derivatives). Inductive elements
relate flux φ and the current q̇, such as linear inductors (L) and
Josephson junctions (JJ). On the other hand, capacitive elements
connect charge q with voltage φ̇, such as linear capacitors (C) and
quantum phase-slip elements (QPS). The memristor (M ) [36] and
resistor (R) connect directly charge with flux or their derivatives.

The most standard variables in which one performs cir-
cuit quantization are φv or φe, starting in the Lagrangian
formalism. However, such coordinates cannot describe
circuits with quantum phase-slip elements due to their
noninvertible charge-voltage relationship. To address that
challenge, loop charges have been also used as an alterna-
tive approach to describe charge degrees of freedom in the
Lagrangian description, in the special case where the graph
of the circuit is planar [16].

The various circuit elements establish different rela-
tions between the branch variables and their derivatives
[see Fig. 3]. For example, linear capacitors and inductors
connect linearly two variables

q̇e = 1
L
φe, (2.3a)

φ̇e = 1
C

qe, (2.3b)

where C is the capacitance, L is the inductance, and for
simplicity, we dropped the explicit time dependence of the
variables in the notations.

The two most well-known nonlinear and nondissipative
superconducting circuit elements are the (multichannel,
low-transmission) Josephson junctions and the quantum
phase-slip junctions, where the connection between the
variables is sinusoidal instead of linear

q̇e = IC sin
(

2π
φe

φ0

)
, (2.4a)

φ̇e = VQ sin
(

2π
qe

2e

)
. (2.4b)

Here, IC is the critical current of the Josephson junction,
and VQ is the voltage amplitude of the quantum phase-
slip junction. There are other more complicated relations,
e.g., for high-transmission Josephson junctions, containing
higher harmonics in the current-phase relationship [37].

In this work, we focus only on nondissipative circuits;
thus, the two types of elements that we are concerned
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with are the capacitive and inductive elements. The energy
stored in the elements can be expressed as

E =
∫ t

−∞
dτ Ie(τ )Ve(τ ) =

∫ t

−∞
dτ q̇e(τ )φ̇e(τ ). (2.5)

We then see that the energy of the capacitive elements
EC depends only on the branch charge qe such that EC =
EC(qe), while the energy of the inductive elements EI is a
function of only the branch flux φe and EI = EI(φe). For
example,

linear capacitor: EC(qe) = q2
e

2C
, (2.6a)

quantum phase slip: EC(qe) = −EQ cos
(

2π
qe

2e

)
, (2.6b)

linear inductor: EI(φe) = φ2
e

2L
, (2.6c)

Josephson junction: EI(φe) = −EJ cos
(

2π
φe

φ0

)
,

(2.6d)

where EJ = φ0IC/(2π) and EQ = 2eVQ/(2π) are the
Josephson and quantum phase-slip energies. The deriva-
tive of the energy with respect to the coordinates gives
the voltage for capacitive elements, and the current for
inductive elements

Ve(t) = ∂EC(qe)

∂qe
, (2.7a)

Ie(t) = ∂EI(φe)

∂φe
. (2.7b)

B. Circuits and graph theory

Electrical network graph theory [38] has played an
important role in the existing theory of circuit quantization
[13,14,31,39]. Following this approach, a quantum circuit
can be considered as a directed graph, where the two-node
circuit elements correspond to the edges of the graph, and
the vertices of the graph are the points of the circuit where
the elements connect. We consider a particular example of
a circuit (see Fig. 2) that has k nodes and K branches, and
we denote the set of nodes as V and the set of branches
as E . We assume that we do not lump together induc-
tive and capacitive elements, so that we can classify each
branch as one or the other. Suppose there are N capacitive
branches and K − N inductive branches. The set of capac-
itive branches is C ⊂ E , and the set of inductive branches
is I ⊂ E ; thus, |E | = K , |C| = N , and |I| = K − N .

A key object of the graph is the incidence matrix Aev that
provides information on the interconnection of the circuit
elements. In particular, the rows and columns of the matrix
correspond to the edges and vertices respectively, and the

value of a matrix element is +1 (−1) if an edge points
toward (from) a vertex, otherwise it is 0:

Aev =

⎧
⎪⎨
⎪⎩

1, if e→ v

−1, if e← v

0, otherwise.
(2.8)

By using Aev, we can write down equations of motion
in a compact way, which will eventually lead us to our
quantization prescription.

To see this, we define the branch charges qe only on
the capacitive edges of the graph, whereas we assign
node fluxes φv to all nodes. We consider circuits without
time-dependent external fluxes and gate voltages for now.

Let us first explain why, in fact, the flux variables should
naturally live on vertices. Kirchhoff’s voltage rule states
that in the absence of external magnetic fields around
any loop of branches e1 → e2 → · · · → en → e1 of (any)
length n:

n∑
j=1

φej = 0. (2.9)

Observe that if φe(t) = φv(t)− φu(t)whenever e = u→ v

[see Eq. (2.2)], then this constraint would automatically be
obeyed. Mathematically, one can actually prove that all
solutions to the constraints in Eq. (2.9) are of this form
[40]. It thus makes sense to think of the dynamical vari-
ables as the φv , which are much less constrained, rather
than φes, which obey all of the constraints in Eq. (2.9).

Kirchhoff’s current law states that for any node v, the
exiting and entering currents are equal

∑
e:e entering v

Ie(t) =
∑

e:e exiting v

Ie(t). (2.10)

Using the incidence matrix Aev defined above, we can write
Eq. (2.10) as

∑
e

AevIe(t) = 0. (2.11)

To obtain a more explicit version of Kirchhoff’s laws, we
need to consider the energy of the various elements. The
total inductive energy of the system is

EI,tot =
∑

e=u→v∈I
EI,e(φe) =

∑
e=u→v∈I

EI,e(φv − φu),

(2.12)

where we have defined EI,e to be the energy function for
the inductor on edge e. Similarly, there is energy stored in
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the capacitive branches:

EC,tot =
∑
e∈C

EC,e(qe), (2.13)

and the total energy of the system is

Etot = EC,tot + EI,tot. (2.14)

Here, we emphasize that the energies can be general func-
tions of the charge-branch variables or node-flux variables.
Note also that Etot is not necessarily a Hamiltonian func-
tion, since the variables φv and qe are not conjugate in any
obvious way. We will explain how to obtain a Hamiltonian
from Etot by the end of the section.

Now, we describe the equations of motion, which pro-
vide the glue between the charge and flux variables, and
link time derivatives of φv and qe to the energies above.
First, if e = u→ v ∈ C is a pair of nodes that are con-
nected through a capacitive branch e, the voltage between
the nodes is equal to the voltage drop across the connecting
capacitors. Using Eq. (2.7a), we find

φ̇v − φ̇u − ∂EC,e(qe)

∂qe
= 0 for all e = u→ v ∈ C.

(2.15)

Second, at each node, we apply Kirchhoff’s current law.
For a capacitive edge we have Ie = q̇e, while for an
inductive edge Eq. (2.7b) implies that

Ie − ∂EI,e(φv − φu)

∂φ
= 0 for all e = u→ v ∈ I .

(2.16)

Hence we arrive at our second equations of motion upon
plugging into Eq. (2.7b)

∑
e=u′→v′∈I

Aev
∂EI,e(φv′ − φu′)

∂φ
+

∑
e∈C

Aevq̇e = 0

for all v ∈ V . (2.17)

Observe that these equations of motion follow from the
principle of least action applied to the Lagrangian

L = −Etot(qe for e ∈ C,φv for v ∈ V)+
∑

e∈C,v∈V
qe�evφ̇v ,

(2.18)

where �ev is the incidence matrix whose rows corre-
spond to capacitive edges only, and columns correspond
to all vertices. We will explain how to interpret such
Lagrangians as encoding a Hamiltonian dynamical sys-
tem in Sec. II C. While entrywise �ev = Aev, we use the

�ev notation to emphasize that now we care only about
capacitive edges. Etot is simply the energy of all circuit ele-
ments. Indeed, Eq. (2.15) comes from the Euler-Lagrange
equation of motion of φv , while Eq. (2.17) comes from the
equation of motion of qe. This may seem like a miracle!
But we hope that by the end of this paper, the reader will
walk away thinking that Eq. (2.18) is in fact the most nat-
ural Lagrangian for a circuit. Firstly, it elegantly allows
us to encode φv as degrees of freedom on nodes, while qe
are degrees of freedom on branches. Secondly, and much
more importantly, it also encodes within it the universal
prescription for circuit quantization.

As we describe in the upcoming sections, it is possi-
ble to remove nondynamical degrees of freedom relying
on the geometrical properties of the capacitive incidence
matrix �ev. After removing those variables, we arrive at
a set of qi and φj variables that are the linear combina-
tion of the original charge-branch and flux-node variables,
where, crucially, the number of charge and flux variables
are equal. With these variables, the Lagrangian reads

L = −H(qi,φj )+
∑

i,j

qi�̃ij φ̇j , (2.19)

where the total energy term corresponds to the Hamilto-
nian function H(qi,φj ) = Etot(qi,φj ) and the second term
in the Lagrangian contains a square invertible matrix �̃ij
that determines the symplectic matrix of the circuit. In fact,
we will show in Sec. II E how to choose variables wherein
�̃ij is the identity matrix.

C. From Hamiltonian mechanics to symplectic
geometry

To understand how Eq. (2.19) leads us to circuit quan-
tization, we need to take a step back and comment on
a crucial analogy. Consider for the moment the classical
mechanics textbook problem of an object with N degrees
of freedom with coordinates (x1, . . . , xN ) and canonically
conjugate momenta (p1, . . . , pN ) that is described by a
Hamiltonian H(xi, pi). In this section we will use raised
or lowered indices to emphasize the connections with
mathematics: raised indices correspond to vector fields on
phase space, while lowered indices correspond to differ-
ential forms (this is historically known as contravariant
versus covariant vectors). Observe that if we define the
Lagrangian as

L = −H(xi, pi)+
N∑

i=1

piẋi, (2.20)

and the action as S = ∫
dt L, the Euler-Lagrange equations

reproduce Hamilton’s equations:

0 = δS
δpi =

∂L
∂pi
− d

dt
∂L
∂ ṗi
= ẋi − ∂H

∂pi , (2.21a)
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0 = δS
δxi =

∂L
∂xi
− d

dt
∂L
∂ ẋi
= −ṗ i − ∂H

∂xi . (2.21b)

Now, suppose that we have an invertible matrix Mij , and
we define a “Lagrangian” such that

L = −H(xi, pi)+
N∑

i,j=1

piMij ẋj . (2.22)

Again we find a kind of Hamiltonian mechanics, but with a
slightly modified form of Hamilton’s equations. Denoting
the elements of the matrix inverse M−1 with raised indices
so that

N∑
j=1

M ij Mjk =
N∑

j=1

Mkj M ji = δi
k, (2.23)

we find that

0 = ẋi −
N∑

j=1

M ij ∂H
∂pj , (2.24a)

0 = −ṗ i −
N∑

j=1

∂H
∂xj M ji. (2.24b)

In simple terms, the M matrix tells us that the canonical
conjugate variables are not pi and xi, but rather pi and∑

j Mij xj .
If we define the Poisson bracket for two functions f and

g as

{f , g} =
N∑

i,j=1

M ij
(
∂f
∂xi

∂g
∂pj −

∂g
∂xi

∂f
∂pj

)
, (2.25)

then Hamilton’s equations can be rewritten for an arbitrary
function f as

ḟ = {f , H}. (2.26)

As we highlight in Sec. III, such theories can be quantized
in a general way, subject to certain physical assump-
tions [41]. Importantly, with a few caveats, our classi-
cal Lagrangian for a circuit, which is L = −H(qi,φj )+∑

i,j qi�̃ij φ̇j has precisely the form of Eq. (2.22).
It is helpful to reformulate the previous paragraph in

a more abstract language. Let us collect the position
and momentum coordinates into a single variable ξ I =
(x1, . . . , xN , p1, . . . , pN ), and define the matrix

ωIJ =
(

0 Mij
−Mji 0

)
. (2.27)

Note that ωIJ = −ωJI is antisymmetric, invertible, in our
special case a constant, and it is called the symplectic

form [42]. Mathematicians define Hamiltonian mechanics
in terms of a Hamiltonian function H , which generates
time evolution via the Poisson brackets in Eq. (2.26), and
a symplectic form ω. Defining the inverse of ωIJ as ωIJ as
before:

2N∑
J=1

ωIJωJK =
2N∑

J=1

ωKJω
JI = δI

K , (2.28)

we can rewrite the Poisson bracket as

{f , g} =
2n∑

I ,J=1

∂f
∂ξ I ω

IJ ∂g
∂ξ J . (2.29)

The pair of a manifold with coordinates ξ I and sym-
plectic form ω is called a symplectic manifold. Such a
symplectic manifold is required for a notion of Hamilto-
nian mechanics to exist [32,33]. Importantly however, any
symplectic manifold gives rise to the structures of Hamil-
tonian mechanics—even ones where there are no global
canonical conjugate pairs of coordinates. The mathemati-
cal theory of geometric quantization [43] shows that there
is a way to quantize all such systems.

The key point is that “Lagrangians” of the form of Eq.
(2.22),

L = −H(xi, pi)+
N∑

i,j=1

piMij ẋj , (2.30)

which are similar to our circuit Lagrangian in Eq. (2.18),

L = −H(qi,φj )+
∑

i,j

qi�̃ij φ̇j , (2.31)

are immediately understood in the language of Hamilto-
nian mechanics and symplectic geometry. In particular,
we simply read out the Hamiltonian function H(qi,φj )

and a Poisson bracket {φi, qj } = �̃−1
ji , which allows us to

elegantly transition from classical to quantum mechanics.

D. Symplectic geometry of a circuit

After having reviewed the basics of symplectic geom-
etry, we return to the question of how to construct the
Hamiltonian H(qi,φj ) function of an arbitrary circuit from
its total energy Etot(qe,φv) and the connectivity of the
elements �ev. In this section, we focus on the general
approach, while in Sec. IV we provide examples. A mathe-
matically precise discussion, with proofs of all claims and
careful definitions is relegated to Appendix A.

To begin, it is important to notice that the incidence
matrix �ev appearing in the Lagrangian of the circuit [see
Eq. (2.18)] is not invertible. This is in contrast to the
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FIG. 4. Symplectic geometry of a circuit. When describing a
circuit with its capacitive graph, we can define two types of
geometrical objects that correspond to null vectors of the capac-
itive incidence matrix of the circuit: inductively shunted islands
(green-filled rectangular), and capacitive loops (orange-filled
rectangular). The variables associated with these null vectors
must be removed to be able to quantize the circuit. Additional
variables can be removed based on the Noether charges of the
circuit. The edges that are part of a (nonunique) spanning tree
are highlighted with wide lines.

definition of the symplectic matrix, which is constructed
from an invertible matrix Mij [see Eq. (2.22)]. Thus, at
this point, it is not possible to carry out a Legendre trans-
formation to arrive from the Lagrangian to a Hamiltonian
with conjugate flux and charge pairs. The root of the prob-
lem is that we overcounted the degrees of freedom the
way we constructed the Lagrangian. However, as we prove
in Appendix A and summarize in Sec. II E, we can con-
sistently and efficiently remove variables associated with
constraints to obtain an invertible matrix (and a symplectic
form) from the incidence matrix. Crucially, this procedure
depends only on the geometrical structure of the capaci-
tive subgraph of the circuit: the locations of inductively
shunted islands and capacitive loops (see Fig. 4).

There are three general methods to reduce the number
of variables in our approach, which we highlight here (and
give examples of in Sec. IV). Firstly, we may find a left null
vector, le, of the incidence matrix: a linear combination of
the branches such that

∑
e

le�ev = 0. (2.32)

Geometrically, these null vectors correspond to loops in the
circuit, where all branches in a loop have capacitive ele-
ments on them (see proof in Appendix A). Physically, the
Euler-Lagrange equations for these null vectors lead to the
physical constraint that the voltages in such a capacitive
loop vanishes

∑
e

le
∂EC

∂qe
= 0. (2.33)

This constraint fixes one of the charge variables in terms
of the others in the loop. We denote the set of such capac-
itive loops as 
C. For a loop Z ∈ 
C, the form of the null
vectors is

le =
{±1 e ∈ Z

0 e /∈ Z . (2.34)

The ±1 sign is based on the orientation of the edges in the
loop: all signs are +1 when the edges are all oriented so
they touch tip to tail: see the examples for more details in
Sec. IV.

Secondly, the right null vectors rv of �ev also imply
constraints. These are the combinations of nodes such that

∑
v

�evrv = 0. (2.35)

The geometrical meaning of these vectors is that they rep-
resent inductively shunted islands. The constraint asso-
ciated with these vectors is that the total current entering
the island must equal the current exiting the island. In this
case, the Euler-Lagrange equations read

∑
v

∂EI

∂φv
rv = 0. (2.36)

We denote the set of all subsets of vertices that correspond
to such inductively shunted islands as �I . Note that for any
such island J ∈ �I , we have J ⊆ V . The explicit form of
the null vector rv becomes

rv =
{

1 v ∈ J
0 v /∈ J . (2.37)

These left and right null vectors correspond to nondynami-
cal variables that can be removed from the Lagrangian (see
Appendix B). After removing the variables associated with
the left and right null vectors of �ev, the Lagrangian will
have fewer coordinates. The linear combinations of coordi-
nates, which remain are the non-null vectors of�ev, which
becomes a nondegenerate matrix �̃ij in the subspace of
remaining modes. The total energy Etot, restricted to the
corresponding constrained subspace, is the Hamiltonian H
for the circuit. Hence, we can find a symplectic form for
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the remaining coordinates, and a Hamiltonian function to
quantize.

Removal of the left and right null vectors of � does
not in general compromise our ability to quantize a circuit
[44]. One can explicitly show that an effective Hamil-
tonian persists after “integrating out” the nondynamical
variables. In particular, because the nondynamical vari-
ables (by construction) do not enter qe�evφ̇v , they do not
affect the symplectic form on phase space, which remains
well defined. As we explain in Appendix B, replacing
the Hamiltonian with an effective Hamiltonian where con-
strained variables are fixed by their equations of motion
does not compromise the Hamiltonian structure of the the-
ory, so long as the constraints have a unique solution. If
the constraints do not have any solution, it may be the case
that the circuit itself is unphysical: for example, a loop
of capacitive elements is placed into the circuit and Kir-
choff’s voltage law cannot be satisfied by the constitutive
relations along that loop [45]. If the constraints have mul-
tiple solutions, the circuit is singular; we discuss this case
in Sec.IV G.

Let us now detail a few simple ways to remove degrees
of freedom. Suppose that, as in Fig. 4, there is a vertex (or
more generally, a set of vertices) that are only connected to
the rest of the circuit via capacitive edges. For simplicity
here, let us focus on the case where, as in Fig. 4, it is a
single vertex v2. Then, the Lagrangian L in Eq. (2.18), and
therefore the Hamiltonian H , is invariant under constant
shifts in φv2 :

H(φv2) = H(φv2 + c). (2.38)

Noether’s theorem states that such continuous symmetry
allows one to remove one dynamical variable (i.e., one
q and one φ) from the problem [46]. Removal of such a
degree of freedom is contingent on the assumption that any
external probes one couples to the circuit will not depend
on this “Noether charge,” or couple it to the dynamical
degrees of freedom.

We remark that every vertex is in some inductively
shunted island, so

0 =
∑
J∈�I

∑
v∈J

rv
∂EI

∂φv
=

∑
v∈V

∂EI

∂φv
. (2.39)

This rather trivial expression has an important physical
interpretation: for every circuit, there is always at least one
node degree of freedom that is nondynamical. In particular,
we may fix

∑
v

φv = c (2.40)

to any desired value c without physical consequence. This
is a gauge degree of freedom, which is often leveraged by

choosing a “ground node” that takes on a value of zero at
all times.

E. Choosing canonically conjugate variables

At this point, we can formally attempt to quantize the
theory, as we describe in Sec. III, by replacing Poisson
brackets with quantum commutators. But, as we will see
when quantizing the theory, it is desirable to find n pairs of
“canonical coordinates”:

{xi, pj } = δij . (2.41)

This is because, in quantum mechanics, Poisson brack-
ets become quantum mechanical commutators. However,
when calculating the Poisson brackets using Eq. (2.25) in
our formalism, we find that the Poisson brackets corre-
spond to the element of the symplectic matrix

{φj , qi} = �̃−1
ij . (2.42)

This does not jeopardize our ability to quantize the circuit,
but it is still desirable to find coordinates where Eq. (2.41)
holds. In this section, we show how to find charge and flux
variables that achieve this. For simplicity, we will focus on
an example presented in Fig. 4, and relegate the general
argument to Appendix A.

Our argument is exclusively about the second term in
the Lagrangian of the system in Eq. (1.6), which reads as∑

e,v qe�evφ̇v . We aim to find a set of (�i, Qi) variables
for which this term takes the form of

∑
i Qi�̇i. As we dis-

cussed before in Sec. II D, in part this will mean removing
all left and right null vectors. Remarkably, in the construc-
tion that follows, these null vectors will be automatically
removed.

First, we choose a spanning tree T ⊆ C of the capaci-
tive subgraph. Here a spanning tree corresponds to a set
of capacitive branches T ⊂ C so that every node adjacent
to some branch in C is adjacent to some branch in T , but
without any cycles. Schematically, one can manufacture a
spanning tree by simply choosing an edge to delete from
every cycle in 
C. For example in Figure 4, we can take
the spanning tree to be

T = {e1, e2, e3}. (2.43)

An alternative choice is {e1, e2, e4}, and the choice made
does not affect the spectrum or dynamics of the resulting
circuit (the resulting Hamiltonians differ by a canonical
transformation). Recalling the definition of branch flux in
Eq. (2.2), we define branch fluxes �f for f ∈ T as our
fundamental degrees of freedom. One can explicitly show
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that

∑
e∈C

∑
v∈V

qe�evφ̇v =
∑
f ∈T

Qf �̇f , (2.44)

where Qf is a linear combination of the original qe vari-
ables with integer coefficients 0,±1. In our example, we
find

∑
e∈C

∑
v∈V

qe�evφ̇v = qe1�̇e1 + qe2�̇e2 + (qe3 + qe4)�̇e3

= Qe1�̇e1 + Qe2 φ̇e2 + Qe3�̇e3 . (2.45)

We will show how to use this procedure in the additional
examples of Sec. IV.

Observe that in this construction, we have immedi-
ately removed one linear combination of node fluxes on
each disconnected subgraph of C. In Fig. 4, we can see
the following right null vectors are no longer dynami-
cal degrees of freedom: φv6 , φv1 + φv2 + φv3 , φv4 + φv5 .
The three branch flux variables on the spanning tree are
linearly independent to these nondynamical modes. Simi-
larly, the linear combinations of charges that are removed
are the unphysical ones corresponding to charges flowing
around capacitive loops. In our example, this combination
of branch charges qe3 − qe4 is orthogonal to the physi-
cal degree of freedom Qe3 = qe3 + qe4 that arose in Eq.
(2.45). Happily, all the needed left and right null vectors
of �ev are automatically removed by this “spanning-tree
construction” of choosing good coordinates.

III. CIRCUIT QUANTIZATION

With the understanding of how to use our formalism to
describe arbitrary nondissipative circuits at the classical
level, we now discuss how to carry out circuit quantization.
Suppose that the circuit is described by the Lagrangian

L = −H(qi,φj )+
∑

i,j

qi�̃ij φ̇j = −H(Qf ,�f )

+
∑
f ∈T

Qf �̇f . (3.1)

Note that we have used the spanning-tree construction
of Sec. II E to choose good variables to quantize. The
equations of motion for the nondynamical coordinates are
constraints that should also be solved before quantization.
Let us first suppose that, after such constraints have been
implemented, the dynamical variables Qf and �f are real
valued, and the classical phase space is R2n, if the number
of conjugate pairs Qf and �f is n.

Referring to the definition of the Poisson brackets in Eq.
(2.25), we see that

{�i, Qj } = δij . (3.2)

To quantize the circuit, we define commutation relations
between the charge operator Q̂i and the flux operator �̂j as

[�̂i, Q̂j ] = i�δij , (3.3)

as long as both Q̂i and �̂j are noncompact (i.e., not
periodically identified) variables.

The quantum mechanical Hamiltonian is simply
Ĥ(Q̂i, �̂i), where as in the classical setting, we must first
restrict to the constrained subspace by solving for left and
right null vectors of �ev. Since in our theory, all circuit
elements are purely capacitive or purely inductive, there
is no ambiguity about the operator ordering of noncom-
muting Q̂i and �̂i, so Ĥ is a uniquely specified operator.
This completes our formulation of circuit quantization for
nondissipative circuits.

Such a simple and intuitive solution to circuit quanti-
zation is possible because we are able to find a globally
constant Poisson bracket on the classical phase space.
There do exist Hamiltonian systems outside of the scope
of this paper where this task cannot be achieved [47]. The
most notable property of our quantization procedure, and
our formalism on the whole, is that Eq. (3.3) is agnostic
to the form of the Hamiltonian; it depends only on the
capacitive subgraph of the circuit.

We now revisit our assumption that the classical phase
space was R2n. When considering circuits, it may be the
case that some of the flux coordinates are periodically
identified:

�i ∼ �i + φ0, (3.4)

where φ0 is the flux quantum. For example, it is generally
assumed that flux across a Josephson junction shunted by
a capacitor is periodic [48]. It is well known [49] that in
such circuits, �i is not a well-defined operator; the well-
defined operators become exp[2π i�/φ0 · n] for integer n.
Our quantization prescription does not change in this sce-
nario: one simply avoids writing Eq. (3.3) and instead
writes

[e2π i�̂/φ0 , Q̂/2e] = −e2π i�̂/φ0 , (3.5)

which is now expressed in terms of globally defined
operators.

Let us remark on what has transpired from a mathe-
matical perspective. For simplicity let us assume a single
dynamical Q and � variables; the argument immediately
generalizes to the higher-dimensional case. The original
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classical phase space is M = R2. The periodic identifica-
tion of � corresponds to identifying points in phase space
when the � coordinates are related as in Eq. (3.4). At
the classical level, this turns the phase space into R× S1,
where Q ∈ R and � ∈ S1. Here � ∈ S1 lives on a circle,
which is equivalent to the real line with all points shifted
by φ0 identified. Because the manifold R× S1 is a nonsin-
gular quotient of R2, there exists [50] a symplectic form
ω on R× S1, which is equal to the inclusion of the orig-
inal symplectic form on R2. In more physical terms, this
means that we can use the same commutation relations to
quantize the reduced phase space, provided we study only
well-defined functions as in Eq. (3.5). Note that in quantum
mechanics, � becoming periodic means that Q becomes
integer valued.

In this paper, we study classical phase spaces that are
quotients of R2n by periodically identifying � coordinates
only. The framework of geometric quantization may prove
important if one can build circuits where both a Q and �
degree of freedom should be periodically identified at the
classical level. We leave this intriguing possibility to future
work. The mathematics of geometric quantization for torus
phase spaces can then become relevant [43].

IV. EXAMPLES AND GENERALIZATIONS

In this section, we provide examples of how to use our
formalism to efficiently derive a quantizable Hamiltonian
for various circuits. We emphasize that many of these
examples have already been studied using other meth-
ods; the purpose of this section is to demonstrate that the
formalism we have developed, from a rather different start-
ing point, can both reproduce and ultimately extend the
existing methods in the literature.

A. Inductively and capacitively shunted islands

As a first example to understand how we can eliminate
variables associated with unphysical degrees of freedom,
we consider an inductively shunted island. An inductively
shunted island contains a set of nodes that lie on a path con-
sisting of only capacitive branches or a single node that is
connected only to inductive elements. For formal defini-
tions and other relevant discussions, see Appendix A. As
we discussed before, an inductively shunted island corre-
sponds to a right null vector of the incidence matrix �ev.
Figure 5(a) shows an example of a circuit that has two
inductively shunted islands: a node is connected to two
inductors, L1 and L2, and a quantum phase-slip element
with energy EQ is also shunted by the inductors. The cir-
cuit has three node variables but using the constraints for
right null vectors [see Eq. (2.36)], we can eliminate two
flux variables.

(a) (b)

FIG. 5. Inductively and capacitively shunted islands. (a) The
inductively shunted island at node flux φv2 corresponds to the
right null vector of the incidence matrix �ev; thus, we need to
remove such variable to be able to arrive to a self-consistent
Hamiltonian. (b) The capacitively shunted island at φv2 corre-
sponds to a Noether charge in the circuit. It is possible but not
required to remove such a variable to be able to define conjugate
pairs.

To start, we write down the incidence matrix of the
capacitive subgraph

� = (−1 0 1
)

, (4.1)

where the single row corresponds to the qe1 branch charge,
and the three columns refer to the three flux-node variables.
The capacitive and the inductive energies are

EC = −EQ cos
(

2π
qe1

2e

)
, (4.2a)

EI = 1
2L1

(
φv1 − φv2

)2 + 1
2L2

(
φv2 − φv3

)2 . (4.2b)

Thus, based on Eq. (1.6) the Lagrangian is

L =
∑
e,v

qe�evφ̇v − EI − EC

= qe1(φ̇v3 − φ̇v1)+ EQ cos
(

2π
qe1

2e

)
− 1

2L1

(
φv1 − φv2

)2

− 1
2L2

(
φv2 − φv3

)2 . (4.3)

We notice that there are two inductively shunted islands
and hence two right null vectors

�I = {{v1, v3}, {v2}} ←→ rv =
⎛
⎝

1
0
1

⎞
⎠ ,

⎛
⎝

0
1
0

⎞
⎠ , (4.4)

indicating that φv1 + φv3 and φv2 are nondynamical vari-
ables. Furthermore, based on the constraints imposed by

020309-11



ANDREW OSBORNE et al. PRX QUANTUM 5, 020309 (2024)

the right null vectors [51] [see Eq. (2.36)], we can write
that

φv1 − φv2

L1
+ φv3 − φv2

L2
= 0. (4.5)

After some algebra, we can simplify the Lagrangian such
as

L = Q�̇+ EQ cos
(

2π
Q
2e

)
− 1

2(L1 + L2)
�2, (4.6)

where � = φv3 − φv1 , and Q = qe1 . We can see that this
geometrical method reproduced the well-known result of
how to add inductors together. The system is left with one
degree of freedom, and the symplectic form (the first term
in the Lagrangian) indicates that the conjugate variables
are {�, Q} = 1. Finally, the Hamiltonian is

H = −EQ cos
(

2π
Q
2e

)
+ 1

2(L1 + L2)
�2. (4.7)

We remark that the conjugate pairs in this example were
necessarily Q and � because there is only one capacitive
branch and thus it must have been included in any spanning
tree.

As a second example, we consider a capacitively
shunted island, for example, a node between two capaci-
tors [see Fig. 5(b)]. A capacitively shunted island is a set
of vertices that can be traversed by moving only along
branches with inductive elements. As before, a node con-
nected only to capacitors constitutes its own island. In our
formalism, the presence of such an island does not lead to
a null vector of the adjacency matrix. Thus, removing such
variables is not necessary to define a symplectic form and
to carry out quantization (see Appendix C for an example).
However, we can remove such degrees of freedom since
capacitively shunted islands correspond to Noether cur-
rents, which represent an additional constraint. Physically,
this constraint corresponds to Kirchhoff’s current law, i.e.,
the current through a network of capacitors is conserved.

In this example [see Fig. 5(b)], the circuit contains
a Josephson junction and two capacitors in a loop; the
Lagrangian describing this circuit is given by Eq. (1.6)

L = qe1(φ̇v2 − φ̇v1)+ qe2(φ̇v3 − φ̇v2)

+ EJ cos
(

2π
φv1 − φv3

φ0

)
− 1

2C1
q2

e1
− 1

2C2
q2

e2
.

(4.8)

Our spanning-tree [52] construction provides for us the fact
that the variables

Qe1 = qe1 ,

Qe2 = qe2 ,

�e1 = φv2 − φv1 ,

�e2 = φv3 − φv2

(4.9)

form canonical conjugate pairs with

{�e′ , Qe} = δee′ . (4.10)

Written in terms of these variables, the Lagrangian is

L = Qe1�̇e1 + Qe2�̇e2 + EJ cos
(

2π
�e1 +�e2

φ0

)

− 1
2C1

Q2
e1
− 1

2C2
Q2

e2
. (4.11)

At this point, the circuit can be quantized. However, we can
remove one more variable by noticing that the constraint
due to the Noether current is

δS
δφv2

= q̇e1 − q̇e2 = Q̇e1 − Q̇e2 = 0. (4.12)

This is easy to understand as simply the conservation
of charge on the two inner plates connecting the capac-
itors. A nonzero constant of integration would represent
only a time-independent charge trapped between the plates
therein. In this case, we can write

Qe1�̇e1 + Qe2�̇e2 = Q(�̇e1 + �̇e2), (4.13)

where we redefine Q = Qe1 = Qe2 and � = �e1 +�e2
with {�, Q} = 1. This choice is just a reflection of the fact
that a free particle is “integrated out” by using Eq. (4.12).
Thus, the Hamiltonian reads

H = 1
2

(
1

C1
+ 1

C2

)
Q2 − EJ cos

(
2π
�

φ0

)
. (4.14)

In this way, we see that Noether charges provide instruc-
tions on how to add capacitive circuit elements in series.

B. The dualmon qubit

We continue the series of examples with the circuit
that motivated our discussion, the dualmon circuit [30].
In this device, a Josephson junction and a quantum phase-
slip element form a loop [see Fig. 6(a)]. In the following,
we analyze the circuit in the absence of offset charges
and external fluxes. Later, we show how these external
parameters can be added to our formalism.
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(a) (b) (c)

FIG. 6. Examples for quantum circuits in the framework of symplectic geometry. The branches are colored based on the type of
element they contain; red: capacitive elements, blue: inductive elements. The circuits are (a) dualmon circuit, (b) offset-charge-sensitive
transmon [53], (c) external-flux-sensitive fluxonium.

First, we define the flux variables at the two nodes, φv1
and φv2 , and the branch charge across the capacitive ele-
ment, qe1 . The incidence matrix of the capacitive subgraph
is simply

� = (−1 1
)

. (4.15)

The circuit has one inductively shunted island, and no
capacitive loop, thus the null vectors are

�I = {{v1, v2}} ←→ rv =
(

1
1

)
, (4.16a)


C = { } ←→ le =
(
0
)

. (4.16b)

Based on Eq. (2.36), the constraint arising from the right
null vector is trivial, and does not reduce the number
of variables in the circuit. However, the identification
of the right null vector itself formally removes a degree
of freedom, which can also be seen in that the variable
φv1 + φv2 never appears in the Lagrangian. Formally, this
null vector is appropriately removed by the spanning-tree
construction.

From the spanning-tree construction, we see that Q =
qe1 is conjugate to � = φv2 − φv1 so that {�, Q} = 1. Fur-
thermore, if the Josephson energy is EJ and the quantum
phase energy is EQ, the capacitive and inductive energies
in the circuit are

EC = −EQ cos
(

2π
Q
2e

)
, (4.17a)

EI = −EJ cos
(

2π
�

φ0

)
. (4.17b)

Using Eq. (1.6), we write the Lagrangian of the circuit as

L =
∑
e,v

qe�evφ̇v − EI − EC

= Q�̇+ EQ cos
(

2π
Q
2e

)
+ EJ cos

(
2π
�

φ0

)
. (4.18)

Finally, the Hamiltonian function takes the form of

H = −EQ cos
(

2π
2e

Q
)
− EJ cos

(
2π
φ0
�

)
. (4.19)

C. Offset charges and external voltages in the
transmon

Now, we show how we can incorporate the offset
charges in our description through the example of the
offset-charge sensitive transmon or Cooper-pair box [see
Fig. 6(b)]. The circuit contains a single Josephson junction
with Josephson energy of EJ shunted by a capacitor C, and
coupled with capacitance Cc to a classical gate voltage Vg
that models the effects of offset charges. A key observa-
tion is that in our formalism, we include voltage sources by
treating them as additional capacitive edges. While they
do not end up leading to new degrees of freedom, this is
how they are straightforwardly handled in our framework.

In our example, the circuit has three nodes (vi, where
i = 1, 2, 3), and three capacitive branches, including the
voltage source (ei, where i = 1, 2, 3). Thus, the capacitive
incidence matrix is

� =
⎛
⎝
−1 1 0
0 −1 1
1 0 −1

⎞
⎠ , (4.20)

where the columns correspond to the three vertices and
rows to the three branches. By inspection, we note that
the inductively shunted islands, capacitive loops, and the
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corresponding null vectors in the circuit are

�I = {{v1, v2, v3}} ←→ rv =
⎛
⎝

1
1
1

⎞
⎠ , (4.21a)


C = {{e1, e2, e3}} ←→ le =
(
1 1 1

)
. (4.21b)

The capacitive and inductive energies are

EC =
q2

e1

2C
+ q2

e2

2Cc
+ qe3Vg , (4.22a)

EI = −EJ cos
(

2π
φv2 − φv1

φ0

)
. (4.22b)

Thus, based on Eq. (1.6) the Lagrangian of the circuit
reads

L =
∑
e,v

qe�evφ̇v − EI − EC

= qe1(φ̇v2 − φ̇v1)+ qe2(φ̇v3 − φ̇v2)+ qe3(φ̇v1 − φ̇v3)

− q2
e1

2C
− q2

e2

2Cc
− qe3V+ EJ cos

[
2π
φ0
(φv2 − φv1)

]
.

(4.23)

In this example, the choice of spanning tree is not unique.
We will choose

T = {e1, e2} (4.24)

as a spanning tree, and because the sum of the branch
fluxes in the loop vanishes

φe3 = −φe1 − φe2 . (4.25)

Then we introduce the new variables

Qe1 = qe1 − qe3 ,

Qe2 = qe2 − qe3 ,

�e1 = φe1 ,

�e2 = φe2 .

(4.26)

We are free to rewrite

L = Qe1�̇e1 + Qe2�̇e2 −
(Qe1 + qe3)

2

2C
− (Qe2 + qe3)

2

2Cc

− qe3Vg + EJ cos
[

2π
φ0
�e1

]
. (4.27)

Only the capacitive loop (left null vector) gives a nontrivial
constraint based on Eq. (2.33) since

Qe1 + qe3

C
+ Qe2 + qe3

Cc
+ Vg = 0, (4.28)

which can be used to fix qe3 in terms of Qe1 and Qe2 .
Further, there is a Noether current, which produces the
constraint

0 = δS
δφv3

= q̇e2 − q̇e3 = Q̇e2 = 0. (4.29)

Choosing the constant of integration to be zero, and defin-
ing Q = Qe1 and � = �e1 with {�, Q} = 1, we arrive at
the Lagrangian in the form of

L = Q�̇− (Q− CcVg)
2

2(C+ Cc)
+ EJ cos

(
2π
�

φ0

)
, (4.30)

after dropping a constant term. Thus, we can write the
Hamiltonian function in the well known form

H = (q− CcVg)
2

2(C+ Cc)
− EJ cos

(
2π
�

φ0

)
. (4.31)

From this point, it is straightforward to quantize H even
with compact variable � [see Eq. (3.5)].

D. External flux in the fluxonium

Now, we turn our attention to the case of external fluxes.
It is generally straightforward to include external flux
biases; here, we model it by coupling the circuit induc-
tively to a loop with current Is flowing [see Fig. 6(c)]. If
the mutual induction is M , the relevant energy term is

E = M
L

Is(φv1 − φv2). (4.32)

For the sake of brevity, we will simply write out the
Lagrangian of the fluxonium following similar procedures
as in the first two examples:

L = qe1(φ̇v2 − φ̇v1)+
q2

e1

2C
+ EJ cos

(
2π
φv2 − φv1

φ0

)

− 1
2L
(φv2 − φv1)

2 − M
L

Is(φv2 − φv1), (4.33)

which, after finding the spanning tree, can be further
written as

L = Q�̇+ Q2

2C
+ EJ cos

(
2π
�

φ0

)
− 1

2L
(�− φext)

2,

(4.34)

where� = φv2 − φv1 , Q = qe1 , and φext = −MIs. We have
neglected an overall constant contribution to L. Thus, the

020309-14



SYMPLECTIC GEOMETRY AND CIRCUIT QUANTIZATION PRX QUANTUM 5, 020309 (2024)

Hamiltonian of the circuit reads

H = Q2

2C
− EJ cos

(
2π
�

φ0

)
+ 1

2L
(�− φext)

2, (4.35)

where the sole conjugate pair consists of Q and�. We will
examine the case of time-dependent external biases φext in
Sec. IV F.

E. Josephson junctions with quantum phase slips

Let us now look at a more complicated example, which
cannot be quantized using the existing paradigm. Con-
sider the circuit drawn in Figs. 2 and 4, which has both
nonlinear capacitors and nonlinear inductors. Despite this,
it is not singular [22]. In order to build a well-defined
Lagrangian, one may expect to incorporate both node-flux
and loop-charge [12,16] variables. Using our approach, we
will show that such a construction is both algorithmic and
transparent. We will directly obtain a Hamiltonian operator
for this quantum circuit.

We begin by writing down a Lagrangian using the
incidence matrix discussed in Sec. II C:

L = qe1(φ̇v2 − φ̇v1)+ qe2(φ̇v3 − φ̇v2)

+ qe3(φ̇v4 − φ̇v3)+ (qe4 + qe5)(φ̇v5 − φ̇v4)

− 1
2C1

q2
e1
+ EC cos

(
2π

qe2

2e

)

− 1
2C3

q2
e3
− 1

2C4
q2

e4
− 1

2C5
q2

e5

+ EJ cos
(

2π
φv4 − φv3

φ0

)

− 1
2L2

(φv6 − φv5)
2 − 1

2L3
(φv1 − φv6)

2. (4.36)

There is a single capacitive cycle and three capacitively
shunted islands, which give rise to the independent con-
straints

0 = δS
δφv6

= φv6 − φv5

L2
+ φv6 − φv1

L3
, (4.37a)

0 = δS
δqe4

− δS
δqe5

= qe4

C4
− qe5

C5
. (4.37b)

The only further simplification is the presence of a Noether
current that will simplify the capacitors added in series.
The relevant constraint is given by

0 = δS
δφv2

= q̇e1 − q̇e2 , (4.38)

and we elect to set the constant of integration to zero. Tak-
ing advantage of all of the constraints in Eqs. (4.37) and

(4.38), we see

L = qe1(φ̇v3 − φ̇v1)+ qe3(φ̇v4 − φ̇v3)+ (qe4 + qe5)

× (φ̇v5 − φ̇v4)−
1

2C1
q2

e1
+ EC cos

(
2π

qe1

2e

)

+ EJ cos
(

2π
φv4 − φv3

φ0

)

− 1
2C3

q2
e3
− 1

2(C4 + C5)
(qe4 + qe5)

2

− 1
2(L2 + L3)

(φv1 − φv5)
2. (4.39)

Now, we relabel variables according to the identification

�ei =

⎧⎪⎨
⎪⎩

φv3 − φv1 e = e1

φv4 − φv3 e = e3

φv5 − φv4 e = e4

, (4.40a)

Qe =

⎧⎪⎨
⎪⎩

qe1 e = e1

qe3 e = e3

qe4 + qe5 e = e4

(4.40b)

and our Lagrangian takes the form

L = Qe1�̇e1 + Qe3�̇e3 + Qe4�̇e4

− 1
2C1

Q2
e1
+ EC cos

(
2π
2e

Qe1

)
− 1

2C3
Q2

e3

− 1
2(C4 + C5)

Q2
e4
+ EJ cos

(
2π
φ0
�e3

)
− 1

2(L2 + L3)

× (�e1 +�e3 +�e4)
2. (4.41)

Finally, it is straightforward to write down the Hamiltonian

H = 1
2C1

Q2
e1
− EC cos

(
2π
2e

Qe1

)
+ 1

2C3
Q2

e3

+ 1
2(C4 + C5)

Q2
e4
− EJ cos

(
2π
φ0
�e3

)
+ 1

2(L2 + L3)

× (�e1 +�e3 +�e4)
2 (4.42)

with

[�ei , Qej ] = i�δij . (4.43)

Since it is desirable to have a Hamiltonian, which is
quadratic in derivatives, we elect to write

Qei = −i�
∂

∂�ei

i = 3, 4, (4.44a)
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�ei = i�
∂

∂Qei

i = 1, (4.44b)

which is of course allowed by Eq. (4.43). This choice
ensures that no more than two derivatives appear in H ,
which may make it easier to incorporate our algorithm into
existing software packages for circuit quantization.

F. Time-dependent external charges or fluxes

In the example above, we introduced the external flux
by inductively coupling the circuit to an external current
source. There is an alternative way in our description to
introduce external flux: we can add one or more new
branches with a voltage source to a loop. To understand
this construction, we recall that Faraday’s law states that in
the presence of time-dependent magnetic fields, the sum of
voltages in a loop equals the rate of change of the magnetic
field. Thus, if ei (i = 1, 2, . . . , n) are the physical capacitive
branches in a loop

n∑
i=1

φei + φext = 0, (4.45)

where φext is the external flux piercing the loop. This sug-
gests that we can think of the external flux as just another
branch in the loop with an additional fixed flux φext. How-
ever, a natural question arises at this point: where should
one put this additional branch in the loop? As discussed
in Refs. [54,55], the various Hamiltonians are linked by a
gauge transformation.

Figure 7 shows an example of how one can place the
“flux batteries” in a circuit to capture the external flux.
The circuit is flux-tunable transmon, where two Joseph-
son junctions, EJ 1 and EJ 2, are shunted by capacitors C.
Notice that we have the freedom to place the external flux
batteries in various ways, for example, here we choose to
put two batteries with fluxes of αφext and βφext in the loop.
The condition of α + β = 1 ensures that the total external
flux in the loop is φext. This approach makes the circuit
artificially a four-node circuit, but using the constraints
outlined in this paper, we can end up with a single degree
of freedom.

To start, we recall that batteries are capacitive elements
in our formalism, and using the variables in Fig. 7, we
write down the Lagrangian

L = qe1(φ̇v4 − φ̇v1)+ qe2(φ̇v2 − φ̇v3)+ qe3(φ̇v3 − φ̇v4)

+ qe4(φ̇v1 − φ̇v2)+ EJ 1 cos
(

2π
φv1 − φv4

φ0

)
+ EJ 2 cos

×
(

2π
φv3 − φv2

φ0

)
− 1

2C

(
q2

e1
+ q2

e2

)

− βφ̇extqe4 − αφ̇extqe3 , (4.46)

FIG. 7. Circuit in time-dependent external flux. A flux-tunable
transmon with two Josephson junctions shunted by two capaci-
tors. The external flux in the loop enclosed by the two junctions
can be modeled as one or more additional batteries in a loop,
as long as the total flux provided by these batteries equals the
external flux. The batteries are modeled as capacitive elements.

where the last two lines are the contribution of the voltage
sources. Using the constraint arising from the capacitive
loop
C = {{e1, e4, e2, e3}}, and integrating out qe3 and qe4 ,
we arrive at the Lagrangian

L = Q�̇− 1
2
(α − β)Qφ̇ext + EJ 1 cos

(
2π
�− αφext

φ0

)

+ EJ 2 cos
(

2π
�+ βφext

φ0

)
− 1

4C
Q2, (4.47)

where Q = qe1 − qe2 and � = φv3 − φv1 . And finally, the
Hamiltonian is

H = 1
4C

Q2 − EJ 1 cos
(

2π
�− αφext

φ0

)

− EJ 2 cos
(

2π
�+ βφext

φ0

)
+ 1

2
(α − β)Qφ̇ext,

(4.48)

with conjugate pairs {�, Q} = 1.
Notice that the last term in Eq. (4.48) depends on

our choice of how to distribute the batteries in the loop.
For example, in the “irrotational gauge” [54,55], when
α = β = 1

2 , there is no term linear in Q. We can trans-
form between the different gauges at the classical level
by a time-dependent type-2 canonical transformation from
(Q,�)→ (Q′,�′). For example, if we take α = 1 and
β = 0, the Hamiltonian is

H = 1
4C

Q2 − EJ 1 cos
(

2π
�− φext

φ0

)

− EJ 2 cos
(

2π
�

φ0

)
+ 1

2
Qφ̇ext, (4.49)
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while in the irrotational gauge

H̃ = 1
4C

Q̃2 − EJ 1 cos

(
2π
�̃− 1

2φext

φ0

)

− EJ 2 cos

(
2π
�̃+ 1

2φext

φ0

)
. (4.50)

In this particular example, the generating function is

G(�, Q̃, t) = Q̃ ·
(
�− φext

2

)
, (4.51)

which implies

Q = ∂G
∂�
= Q̃, (4.52a)

�̃ = ∂G

∂Q̃
= �− 1

2
φext, (4.52b)

H̃ = H + ∂G
∂t
= H − 1

2
Qφ̇ext. (4.52c)

G. Singular circuits

When a Josephson junction is not accompanied by a
parallel capacitor, or a quantum phase-slip element has
no series inductor attached to it, the resultant circuit
can become singular [22]. In this section, we analyze
an example for such a singular circuit, which leads to a
nonanalytical Hamiltonian.

The circuit is presented in Fig. 8(a), and it has a quan-
tum phase slip, a capacitor, and an inductor all in parallel.
Following our procedures, we arrive at a Lagrangian of

L = qe1(φ̇v2 − φ̇v1)+ qe2(φ̇v1 − φ̇v2)−
1

2C
q2

e1

+ EQ cos
(

2π
qe2

2e

)
− 1

2L
(
φv1 − φv2

)2 . (4.53)

By looking at the geometry of the circuit, we notice that
there is one capacitive loop C = {{qe1 , qe2}}, which based
on Eq. (2.33) gives rise to the constraint

VQ sin
(

2π
qe2

2e

)
+ qe1

C
= 0. (4.54)

When πVq/e > C, this constraint cannot be uniquely
solved. More generally, the constraint cannot be solved
analytically in terms of simple functions, although it can
be solved straightforwardly numerically. A detailed dis-
cussion on this topic can be found in Ref. [22]. We

(a) (b)

FIG. 8. Singular circuit. (a) Example for a one-mode cir-
cuit where a quantum phase element has no series inductance
attached to it. The circuit has a capacitive loop, C = {{qe1 , qe2}}
leading to a nonanalytical constraint. (b) When a series induc-
tance is included in the circuit, the capacitive loop is broken,
and the system has two degrees of freedom and an analytical
Hamiltonian.

denote

Q = qe1 − qe2 (4.55)

and write

VQ sin
(

2π
qe2

2e

)
+ Q+ qe2

C
= 0. (4.56)

By denoting a solution of Eq. (4.56) as qe2 (Q), and
introducing � = φv2 − φv1 , the Hamiltonian becomes

H = 1
2C

[
Q+ qe2(Q)

]2 − EQ cos
[

2π
qe2(Q)

2e

]
+ 1

2L
�2,

(4.57)

where the conjugate pairs are {�, Q} = 1.
In circuits, which can be realized in current experiments,

this singular behavior is not present because quantum
phase-slip elements always have a series inductor compo-
nent LS [see Fig. 8(b)]. This additional element transfers
the singular one-mode circuit into a two-mode circuit. The
key observation is that the presence of the series induc-
tance breaks the capacitive loop, and removes the left null
vector of the circuit, thus, the constraint of Eq. (4.54) is
lifted. After a few steps, the Hamiltonian reads

H = 1
2C

Q2
e1
+ 1

2L
�2

e1
+ 1

2LS
(�e1 +�e2)

2

− EQ cos
[

2π
Qe2

2e

]
(4.58)

where

Qe1 = qe1 ,

Qe2 = qe2 ,

�e1 = φv2 − φv1 ,

�e2 = φv1 − φv3 ,

(4.59)
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and the conjugate pairs are {�e1 , Qe1} = 1 and {�e2 , Qe2}= 1.
As was explained in detail in Ref. [22], the quan-

tum mechanical spectra of the singular versus nonsingular
Hamiltonians can drastically differ. The mechanism for
this is analogous to the Born-Oppenheimer approxima-
tion for molecules, in which the light electrons cannot be
approximated as sitting near the classical minima of the
ion-electron potential: instead the wave function becomes
spread out in configuration space. In the example above,
when LS → 0, any low-energy quantum mechanical eigen-
state ψ(Qe1 , Qe2) will become highly delocalized in the
Qe1 + Qe2 direction, such that the effective potential cannot
be approximated by Eq. (4.57).

A similar argument can be made for the case of parallel
capacitors for Josephson junctions.

H. Connecting to the existing Lagrangian formalism

Finally, let us briefly discuss how our formalism
straightforwardly reproduces the existing Lagrangian for-
malism in suitable limits. As one example, consider a
circuit with only linear capacitors, and inductive elements
of any kind. The linear capacitor at the capacitive branch
e ∈ C has capacitance Ce, while the inductive element at an
inductive branch e ∈ I is described by an energy function
ge. In our formalism, the Lagrangian is

L(qe,φv , φ̇v) =
∑

e∈C,v∈V
qe�evφ̇v −

∑
e∈C

q2
e

2Ce
−

∑
e∈I

ge(φe),

(4.60)

where �ev is the usual capacitive incidence matrix. Since
L is a quadratic function of qe, but L does not depend
on the time derivatives of the charges q̇e, we can easily
“integrate out” qe. (This statement remains true in a quan-
tum mechanical path integral.) Solving the Euler-Lagrange
equation for qe, we find

�evφ̇v = qe

Ce
. (4.61)

Then defining a capacitance matrix as

Cuv =
∑

e

Ce�eu�ev, (4.62)

we find a Lagrangian expressed only in terms of node-flux
variables, as is standard in the literature [14]:

L(φv , φ̇v) =
∑

u,v∈V

1
2

Cuvφ̇uφ̇v −
∑
e∈I

ge(φe). (4.63)

V. OUTLOOK

In this paper, we have developed a universal theory
of circuit quantization for all LC circuits. Our approach
allows for the quantization of singular circuits, with arbi-
trary graph topology, and with arbitrary time-dependent
sources. The approach is inspired by symplectic geom-
etry and graph theory, and the quantization prescription
depends only on the topology of the capacitive subgraph,
but not on which elements are linear or nonlinear. The
“spanning-tree construction” leads to a straightforward
quantization prescription using a set of canonically con-
jugate coordinates that could be efficiently implemented
in future software packages that perform generic circuit
quantization.

Looking forward, this approach will provide an efficient
algorithm for computing the numerical spectra of compli-
cated hybrid circuits simultaneously involving Josephson
junctions, quantum phase slips, and other arbitrary nonlin-
ear elements that can be classified as inductive or capac-
itive. Obtaining these spectra will be a critical step in
identifying the behavior of quantum phase slip and other
nonlinear capacitive elements in a circuit quantum electro-
dynamics setup, opening new avenues to design and create
novel superconducting devices beyond the current archi-
tectures. Further, this formalism should extend naturally to
nonlinear mechanical oscillators [56–60] and ideal nonre-
ciprocal elements [61], and may also be extensible to the
quantization of transmission lines [62].
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APPENDIX A: MATHEMATICAL FORMALISM

In this Appendix, we provide a mathematically precise
discussion of the results highlighted in the main text. First,
we prove the necessary graph theoretic properties of �ev.
Second, we prove facts about circuit quantization, includ-
ing the existence of the “spanning-tree construction” of
canonical coordinates for arbitrary circuits, and identifying
the number of Noether conserved charges.
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1. Graph theory for circuits

In previous discussions, we have elected to use termi-
nology familiar in the superconducting circuit community.
We will continue to do so here. For the mathematically
inclined, we refer to graph-theoretical edges as branches
and we refer to vertices as nodes.

Definition 1. Let V and E be discrete node and branch
sets. Chains on V are elements of

D(V) =
{∑
v∈V

mv|v〉
∣∣∣∣∣ mv ∈ Z

}
, (A1)

where |v〉 is a vector in a vector space of dimension
|V|. Chains on E are elements of a set D(E) defined
analogously.

Definition 2. Define the incidence map A : E → V ×
V , such that if A(e) = (u, v), branch e is oriented from
u to v. We will really be using the incidence matrix A :
D(V)→ D(E), defined (using bra-ket notation) as

〈e|A|v〉 =
⎧⎨
⎩

1 A(e) = (u, v) for some u
−1 A(e) = (v, u) for some u
0 otherwise

. (A2)

In the framework of homology, the incidence matrix A can
be thought of as the boundary map ∂ . Let Aev = 〈e|A|v〉.
Less formally, Aev = 1 if edge e ends on v, while Aev = −1
if e starts on v. We say that (V , E , A) is a directed graph.

Definition 3. Let G = (V , E , A) be a directed and con-
nected graph. Partition E so that E = C ∪ I and C ∩ I =
∅. We define (V , E , A, C) as a circuit. Intuitively, we will
put a capacitive element on all branches in C, and an
inductive element on all branches in I .

We note that the choice to require G to be connected
is without loss of generality since a circuit with multiple
connected components would lead to a separable problem
in later discussion. The object, which we define to be a
circuit, consists of a directed graph and a determination of
which branches contain capacitors.

Definition 4. The reduced incidence matrix � :
D(V)→ D(C) obeys 〈e|�|v〉 = 〈e|A|v〉. The dimensions
of � are distinct, and in what follows �ev = 〈e|�|v〉 will
appear frequently.

It is possible that multiple branches begin and end at the
same place: in other words, we could have A(e1) = A(e2)

for some e1 �= e2. We could also have e1 ∈ I and e2 ∈ C.
The following definitions will prove useful in what

follows:

Definition 5. An (unoriented) cycle of length l, δ =
(e1, . . . , el), is an ordered list of l branches in C, with
the property that there exist nodes v1, . . . , vl such that
A(e1) = {v1, v2}, A(e2) = {v2, v3}, . . ., A(el) = {vl, v1}.
Here the notation means we do not care about the ordering:
{u, v} = {v, u}. Indeed, we do not care about the orienta-
tion of edges on a cycle for this discussion. Intuitively, δ is
a loop made out of only capacitors in the circuit. Let 
C
denote the set of cycles in C. For the length l cycle defined
above, we write

|δ〉 = |(e1, . . . , el)〉 =
l∑

j=1

σj |ej 〉 ∈ D(C), (A3)

where

σj =
{

1 A(ej ) = (vj , vj+1)

−1 A(ej ) = (vj+1, vj )
. (A4)

We remark that the choice of σi implies that, for δ in 
C,
〈δ|A|v〉 = 0 for all |v〉 in D(V). Qualitatively, one could
say that σi is chosen so that the chain corresponding to a
given cycle is in some manner “oriented” even if the cycle
itself is not.

Definition 6. An inductively shunted island in circuit
(V , E , A, C) is a subset U ⊆ V with the following property:
u1 ∈ U and u2 ∈ U both hold if and only if there exists
a path from u1 to u2 along branches in C. Note that a
node connected only to inductors forms its own island. Let
�I (V , E , A, C) (denoted as �I for shorthand hereafter) be
the set of all such islands. For island i ∈ �I , write

|i〉 =
∑
v∈i

|v〉 ∈ D(V). (A5)

We make an analogous definition for inductors, which
will be useful in future discussion.

Definition 7. Let (E ,V , C, A) be a circuit. Consider the
undirected graph GL = (V ,I) formed out of only the
inductive branches. We say that an capacitively shunted
island j is a connected subgraph of GL, which is not a
proper subgraph of any other connected subgraph of GL.
If the set of all such capacitively shunted islands is �C,
then

GL =
⋃

j∈�C

(j ∩ V , j ∩ I). (A6)

We remark that GL contains all nodes that are in G and
in particular even those connected to no inductors. Such
nodes constitute their own capacitively shunted island in
the same manner that nodes connected only to capacitors
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make up their own capacative island. The set of inductive
islands derived from some circuit is unique.

Combining all of the definitions above, the following
theorem summarizes the critical properties of �.

Theorem 1. The generically nonsquare matrix� has the
following properties:

(1) 〈α|� = 0 (i.e., 〈α| is a left null vector of �) if and
only if

|α〉 =
∑
δ∈
C

αδ|δ〉, αδ ∈ Z. (A7)

Note that the right-hand side in general contains
linearly dependent vectors.

(2) �|β〉 = 0 (i.e., |β〉 is a right null vector of �) if and
only if

|β〉 =
∑
i∈�I

βi|i〉, βi ∈ Z. (A8)

(3) � contains a nondegenerate submatrix �̄, which is
a n× n square matrix where

n = |V| − |�I |. (A9)

Proof. We prove the three parts in turn:

(1) It is straightforward to see that Eq. (A7) is a null
vector of �, using linearity and the fact that for any
cycle δ of length l,

〈δ|� = (〈v1| − 〈v2|)+ (〈v2| − 〈v3|)+ · · ·+
(〈vl| − 〈v1|) = 0. (A10)

The converse is implied by the homology of the
undirected graph (V , C), but we prove it explicitly.
It will prove convenient to (without loss of gen-
erality) choose the orientations of edges |e〉 such
that for all e, 〈α|e〉 ≥ 0 [64]. Pick an edge e such
that 〈α|e〉 > 0. If 〈e|� = 〈v| − 〈u|, then there must
exist an edge e′, with 〈α|e′〉 �= 0 and 〈e′|�|v〉 = −1,
since 〈e|�|v〉 = 1 but 〈α|�|v〉 = 0. Build the bra
〈ψ | = 〈e| + 〈e′|, and observe that

〈ψ |� = 〈v′| − 〈u|. (A11)

If 〈v′| �= 〈u|, then we keep going: look for another
edge in 〈α| of the form 〈e′′|� = 〈v′′| − 〈v′|—such
an edge must exist since 〈α| is a null vector, etc.
Then update |ψ〉 → |ψ〉 + |e′′〉. Since in each step

of this process,
∑

e

〈e|ψ〉 → 1+
∑

e

〈e|ψ〉, (A12)

eventually, this process must terminate because we
will (if it does not) run out of edges in 〈α| to include.
When the process does terminate and we find a
left null vector 〈ψ | with 〈ψ |� = 0. If 〈α| − 〈ψ | =
0, then 〈α| simply corresponds to a chain associ-
ated with a cycle δ ∈ 
C. Otherwise, 〈α| − 〈ψ | is
a nontrivial vector where we can simply repeat the
argument. Since the sum of coefficients of 〈α| − 〈ψ |
is smaller than the sum in 〈α|, the process will termi-
nate. By construction, each 〈ψ | that we find in this
process formed a cycle δ ∈ 
C, meaning our null
vector can be expressed as a chain of the form Eq.
(A7).

(2) Pick some e ∈ C. We know that 〈e|�|β〉 = 0, which
means that if A(e) = (u, v), then 〈u|β〉βu = βv =
〈v|β. For any two vertices in island i ∈ �I , we
can find a path between them (call its length l):
(e1, . . . , el). Applying this argument to all edges
along the path, we conclude that if v1,2 ∈ i, βv1 =
βv2 . Thus, the most generic null vector is of the form
Eq. (A8). It is also straightforward to check that Eq.
(A8) is always a right null vector.

(3) This follows from the rank-nullity theorem, the fact
that D(V) is a |V|-dimensional vector space, and
the fact that the number of linearly independent null
vectors in Eq. (A8) is |�I |.

Thus we prove all three claims. �

The substance of Theorem 1 is that it is possible to
define a symplectic form (and thus to quantize) immedi-
ately after enumerating the null vectors of �, which are
counted exhaustively by the theorem above. Later results
will provide simplifications to circuits in general, but none
of the following results are strictly necessary to generically
quantize nondissipative circuits. Point 3 of the theorem
above immediately implies the following corollaries:

Corollary 1. Consider the circuit (V , E , A, C). Define

g = |C| − |V| + 1. (A13)

g is the graph-theoretic equivalent of a topological genus,
and it counts the number of loops in a graph.

g − 1 = |
C| − |�I |. (A14)

Proof. The rank nullity theorem guarantees that the row
rank and the column rank of � are equal, and |V| − |�I |
counts the row rank of � while |E | − |
C| counts the
column rank therein. �
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2. Circuit quantization on general graphs

The discussion in Appendix A 1 was entirely self-
contained. At this point, we shift our focus to the relation
of graph theory to the dynamical systems of interest.
What follows will depend on discussion that can be found
broadly in Sec. II.

Theorem 2. Let G = (E ,V , A, C) be a circuit. It is
always possible to define |C| − |
C| variables Qi = Aieqe

and �i = Bivφ
v so that

∑
e,v

qe�evφ̇v =
|C|−|
C|∑

i=1

Qi�̇i =
|C|−|
C|∑

i=1

∑
e,v

AieBivqeφ̇v .

(A15)

Aie and Biv can be obtained by picking a spanning tree
T ⊆ C. The transformations between the variables corre-
sponding to different spanning trees are canonical.

Proof. Choose a spanning tree T of C and write

C \ T = {a1, a2, . . . , a|
C|}. (A16)

The spanning tree has the property that every node adjacent
to some branch in C is adjacent to some branch in T , and T
contains no cycles. Succinctly, if v1 and v2 are connected
by capacitors, there is a unique shortest path from v1 to v2
traversing only on branches in T . The choice of T is nec-
essarily nonunique and we will later show that the choice
of T cannot have physical implications. By the unique-
ness in T of a path between two vertices, every branch
flux from C \ T can be expressed as an linear combination
of branch fluxes from T with integer coefficients. [Recall
the definition of branch flux φe in Eq. (2.2).] Namely, there
exists some (generally rectangular) matrix K ∈ R|T |×|C\T |
satisfying

φe =
∑
f ∈T

Kef φf (A17)

for e ∈ C \ T . By construction, Kef ∈ {−1, 0, 1}.
We recognize that
∑
e,v

qe�evφ̇v =
∑
f ∈T

qf φ̇f +
∑
e �∈T

∑
f ∈T

qeKef φ̇f . (A18)

Define

M = (
I|T | K

)T (A19)

and rewrite

Qf =
∑

e

qeMef . (A20)

Since M has rank |T |, the Qf variables are independent,
and they span a vector space of dimension |T | = |C| −

|
C|, so we see that all left null vectors of �ev have been
removed by this definiton. A similar argument shows that
the φf variables are also independent, and thus all right
null vectors have been removed.

Now suppose another spanning tree, T ′, is chosen [65].
Suppose further that T and T ′ differ by a single edge, so
that

T = {f0} ∪A (A21)

and

T ′ = {f1} ∪A (A22)

with both f0 and f1 absent from A ⊂ C. Further demand
that f0 and f1 are in the same cycle. Since T and T ′ are both
spanning trees, there exists some matrix � whose entries
are elements of {1,−1, 0} so that

φf =
∑

f ′
�ff ′φf ′ (A23)

for f ′ in T ′ and f in T . Moreover, necessarily |T | = |T ′|
so � is square. Moreover, � is the identity on edges
common to T and T ′. Since f1 is an element of T ′ \ T ,

φf1 =
∑
f ∈T

Kf1f (T )φf , (A24)

where K(T) denotes the K matrix constructed in Eq. (A17)
for T . Since f0 is the unique element of T \ T ′ and f0 is in
the same cycle as f ′, necessarily the element Kf1f0(T ) �= 0,
as otherwise there would be a cycle in T . So

φf1 =
∑

f �=f0∈T
Kf ′f (T )φf + Kf1f0(T )φf0 (A25)

and thus

Kf1f0(T )φf0 = φf1 −
∑

f �=f0∈T
Kf1f (T )φf . (A26)

Evidently,

�ff ′ =
(

I|T ∩T ′| 0
0 Kf1f0(T )

) (
I|T ∩T ′| 0

Kf1f (T ) 1

)
. (A27)

Schematically, � = D(I+ N) with N2 = 0 and D2 = I.
Immediately, �−1 = (I− N)D.
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Now, clearly,
∑
f ∈T

Qf φ̇f =
∑
f ∈T

∑
f ′∈T ′

Qf �ff ′φf ′ = Q′f ′ φ̇f ′ (A28)

with

Q′f ′ =
∑
f ∈T

Qf �
f
f ′ . (A29)

Now the transformation

Q→ Q′ = Q�

φ→ φ′ = �−1φ
(A30)

is clearly canonical.
Lastly, for general T and T ′, we can find a sequence

T → T1 → · · · → T ′ where at each step, Tj and Tj+1
differ by a single edge. The composition of canonical
transformations corresponding to each step is still canoni-
cal. �

In the proof of Theorem 2, the Qf variables are inde-
pendent and always number |C| − |
C|. Moreover, the
transformation between different choices of spanning tree
is canonical. Together, these two facts imply that the same
nondynamical degrees of freedom are removed by every
choice of spanning tree. By Theorem 1 these are neces-
sarily those corresponding to the current about each loop
of c apacitors. Similarly, the null vectors associated to
inductively shunted islands are always the same.

Theorem 2 depends only upon Theorem 1 and previ-
ous graph-theoretic constructions. In practice, it is often
the case that one naturally identifies conjugate variables
by applying Theorem 3 instead, without the need to apply
the above result. Further, it may pose a technical chal-
lenge to write the Hamiltonian associated with some circuit
in terms of only Qe variables as defined above (see Sec.
IV G), but as a matter of principle the Hamiltonian will
always exist.

One utility of Theorem 2 arises in the circumstance
where one wishes to periodically identify some subset of
variables on a finite interval. Upon doing so, it is required
that the conjugate of the periodic variable be integer valued
and Theorem 2 guarantees that this is the case. We state the
following two observations to emphasize this point:

Observation 1. Consider the phase space

M = R
|V| ×R

|C|. (A31)

Given the reduced incidence matrix �, define the 2-form
on M

ω =
∑
e∈C

∑
v∈V

�evdqe ∧ dφv . (A32)

Then there exists a submanifold M̄ of M , which is sym-
plectic, diffeomorphic to (equivalent to) the cotangent
bundle T∗Rn = R2n, with ω a globally constant symplectic
form. On M̄ ,

ω =
∑
f ∈T

dQf ∧ dφf (A33)

as guaranteed by Theorem 2.

Observation 2. Let G = (E ,V , A, C) be a circuit, and let
ω be the symplectic form ω on T∗Rn provided by Corollary
1 through Theorem 1. If some number of variables are
identified as periodic, the symplectic form on the resulting
quotient manifold, ω′ is given by the quotient map.

This result follows immediately from the quotient man-
ifold theorem [50]. We remark that the symplectic form
produced by the quotient map is not exact, in the physically
relevant case where we quotient by a free group action of
Zk, so that Rk/Zk = Tk becomes a torus.

Now, we count the number of degrees that can be
removed by Noether’s theorem for a general circuit.

Theorem 3. Let (E ,V , A, C) be a circuit. Consider the
symplectic form and Hamiltonian provided by Eq. (2.18).
If �C is the set of capacitively shunted islands, there exist
|�C| − 1 Noether charges.

Proof. Enumerate the (unique) elements of �C =
{J1, J2, . . . , J|�C|}. Without loss of generality, take J1 =
{u1, . . . , ul}. If any inductive edge couples to a ui ∈ J1, the
edge also connects to another vertex in J1 (by definition
of a capacitively shunted island). Therefore, since H only
depends on φvs via inductive edges,

H(qe,φv) = H(qe,φv + cv) (A34)

where

cv =
{

1 v ∈ J1
0 v /∈ J1

. (A35)

From Lagrangian (2.18), evaluate the Euler-Lagrange
equation

0 =
∑
v∈V

cv
δS
δφv
= −

∑
v∈V

cv

[∑
e∈C

q̇e�ev − ∂H
∂φv

]

= − d
dt

∑
v∈J1

∑
e∈C

qe�ev. (A36)

We conclude that

QJi =
∑
v∈Ji

∑
e∈C

qe�ev (A37)

is a constant of motion.
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Since we can do this for all |�C| islands, we may naively
conclude that there are |�C| independent Noether charges.
However, notice that

∑
Ji∈�C

QJi =
∑
v∈V

∑
e∈C

qe�ev = 0, (A38)

since every edge enters one vertex and exits one vertex.
Therefore, there is a constraint that not all QJis can be
independent. Since we assume that the circuit is connected,
there will be no other constraints on any QJi , since any sub-
set of the capacitively shunted islands (that is not the entire
circuit) must be connected to another part of the circuit by
at least one capacitive edge, meaning that the generaliza-
tion of Eq. (A38) does not vanish for any other subset of
�C. �

APPENDIX B: SOLUBILITY OF ENERGETIC
CONSTRAINTS

Theorem 2 implies that for a generic circuit, the term∑
e∈C,v qe�evφ̇v can be rewritten as

∑
e∈C,v

qe�evφ̇v =
∑
α,β

ξαω
αβ ξ̇β . (B1)

Here α,β run only over the degrees of freedom formed in,
e.g., the spanning-tree construction of Sec. II D, and ωαβ is
the canonical symplectic form, which is antisymmetric and
invertible. Notice that ξα can contain both charge and flux
degrees of freedom within it. In other words, the action for
a circuit can generically be written as

S =
∫

dt

⎡
⎣∑
α,β

ξαω
αβ ξ̇β − H(ξ1, ξ2, . . . , ξN , η1, η2, . . . , ηM )

⎤
⎦

(B2)

with ηM corresponding to the left and right null vectors
of �ev, which correspond to nondynamical variables, i.e.,
constraints. Functional derivatives of S yield

δS
δξα
=

∑
β

ωαβ ξ̇β − ∂H
∂ξα

,

δS
δηα
= − ∂H

∂ηα
.

(B3)

If the principle of least action is to be obeyed, it follows
that there must exist some η̄ = (η̄1, η̄2, . . . , η̄M ) such that

∂H
∂ηα

∣∣∣∣
η=η̄
= 0. (B4)

Suppose for the moment that a unique solution η̄ exists
that satisfies Eq. (B4) for each α = 1, 2, . . . , M , such that

∂η̄a/∂ξα is finite. Let us define the effective Hamiltonian

Heff(ξ) = H(ξ , η̄(ξ)). (B5)

We claim that the action

S =
∫

dt

⎡
⎣∑
α,β

ξαω
αβ ξ̇β − Heff(ξ1, ξ2, . . . , ξN )

⎤
⎦ , (B6)

which explicitly now encodes a Hamiltonian dynamical
system due to the invertibility of ωαβ , is equivalent to the
one which we wrote down above. To see this, notice that
the equations of motion for this action simply become

δS
δξα
=

∑
β

ωαβ ξ̇β − ∂Heff

∂ξα
=

∑
β

ωαβ ξ̇β − ∂H
∂ξα

∣∣∣∣
η=η̄

−
M∑

a=1

∂H
∂ηa

∂ηa

∂ξα

∣∣∣∣
η=η̄
=

∑
β

ωαβ ξ̇β − ∂H
∂ξα

∣∣∣∣
η=η̄

,

(B7)

where we have used Eq. (B4) in the last step. We conclude
that the theory in Eq. (B2) describes Hamiltonian dynamics
on a symplectic manifold RN (or quotient thereof, if some
of the coordinates are periodically identified).

It remains to discuss what happens if our assumption
of a unique solution η̄ is not satisfied. The first possibil-
ity is that there infinitely many solutions due to a “gauge
freedom”—for example, this arises when considering the
“gauge” freedom to shift φv → φv + c for some constant
c. In this case, we simply define our symplectic manifold
by fixing a gauge (e.g., φu = 0 at one vertex u) and con-
tinue. The second possibility is that there are no solutions
to a constraint Eq. (B4). Because the constraint variables η
are always sums of either flux or charge like variables only,
the only way this can arise is due to an inductive island
at which the inductive constitutive relations are not com-
patible with Kirchoff’s current law, or a capacitive loop
at which the capacitive constitutive relations are not com-
patible with Kirchoff’s voltage law. Therefore, we regard
this second possibility as unphysical, and do not proceed
to analyze the dynamics or quantize the circuit.

The final, and most subtle, possibility, is that there are
multiple solutions to the equation. This is what happens
for the singular circuit of Sec. IV G. The analysis of how
to quantize such singular circuits necessarily goes beyond
the framework of the present paper. Perhaps the simplest
strategy would be to simply follow by fiat one branch of
solutions η̄, and quantize the model for the correspond-
ing choice of Heff; we do not guarantee however that this
is the physically correct prescription, and in general this
is a challenging problem. However, as we noted in the
main text, in physical superconducting circuits, parasitic
elements always remove such ambiguities, and after this
point our framework can be applied straightforwardly.
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APPENDIX C: QUANTIZATION WITHOUT
NOETHER CHARGES

We have remarked that Theorem 1 is necessary to carry
out the quantization procedure but that Theorem 3 is not.
We will provide an example that makes this distinction
clear. The Lagrangian corresponding to the circuit drawn
in Fig. 5(b) is given by

L = qe1(φ̇v2 − φ̇v1)+ qe2(φ̇v3 − φ̇v2)−
1

2C1
q2

e1
− 1

2C2
q2

e2

− 1
2L
(φv3 − φv1)

2. (C1)

To be explicit, the matrix � is given by

� =
(−1 1 0

0 1 −1

)
(C2)

and we see readily that � has the right null vector cor-
responding to a uniform sum over nodes, which informs
us that the time evolution of φv1 + φv2 + φv3 is not fixed
by L. In the spanning-tree construction, we choose dynam-
ical variables �e1 and �e2 to be branch fluxes on the
unique spanning tree; the standard branch charges Qe1 =
qe1 and Qe2 = qe2 are the canonical conjugate variables.
The Lagrangian becomes

L = Qe1�̇e1 + Qe2�̇e2 −
1

2C1
Q2

e1
− 1

2C2
Q2

e2

− 1
2L
(�e1 +�e2)

2. (C3)

The quantum Hamiltonian is

H = − �2

2C1

∂2

∂�2
e1

− �2

2C2

∂2

∂�2
e2

+ 1
2L
(�e1 +�e2)

2. (C4)

We recognize Eq. (C4) as a harmonic oscillator coupled to
a free particle, after a suitable coordinate charge. The free
particle degree of freedom could have been removed from
the start by using Theorem 3: the Noether charge is asso-
ciated with charge conservation on the subcircuit trapped
between the two capacitors. Neglecting the Noether charge
when performing quantization implicitly assumes that the
decoupled degree of freedom does not couple to an exter-
nal probe of interest.
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