
PRX QUANTUM 5, 020305 (2024)

Engineering 3D Floquet Codes by Rewinding
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Floquet codes are a novel class of quantum error-correcting codes with dynamically generated logi-
cal qubits arising from a periodic schedule of noncommuting measurements. We utilize the interpretation
of measurements in terms of condensation of topological excitations and the rewinding of measurement
sequences to engineer new examples of Floquet codes. In particular, rewinding is advantageous for obtain-
ing a desired set of instantaneous stabilizer groups on both toric and planar layouts. Our first example is
a Floquet code with instantaneous stabilizer codes that have the same topological order as the three-
dimensional (3D) toric code(s). This Floquet code also exhibits a splitting of the topological order of the
3D toric code under the associated sequence of measurements, i.e., an instantaneous stabilizer group of
a single copy of the 3D toric code in one round transforms into an instantaneous stabilizer group of two
copies of the 3D toric code up to nonlocal stabilizers in the following round. We further construct bound-
aries for this 3D code and argue that stacking it with two copies of the 3D subsystem toric code allows
for a transversal implementation of the logical non-Clifford controlled-controlled-Z gate. We also show
that the coupled-layer construction of the X-cube Floquet code can be modified by a rewinding schedule
such that each of the instantaneous stabilizer codes is finite depth equivalent to the X-cube model up to
toric codes; the X-cube Floquet code exhibits a splitting of the X-cube model into a copy of the X-cube
model and toric codes under the measurement sequence. Our final 3D example is a generalization of the
2D Floquet toric code on the honeycomb lattice to three dimensions, which has instantaneous stabilizer
codes with the same topological order as the 3D fermionic toric code.

DOI: 10.1103/PRXQuantum.5.020305

I. INTRODUCTION

Quantum error-correcting codes are a key ingredient
for fault-tolerant quantum computation. There is an active
effort to develop new error-correcting codes with better
code properties, such as encoding rate, code distance, and
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circuit-level thresholds. For every such error-correcting
code, there is an associated quantum dynamics involving
quantum gates, errors, and the repeated extraction of the
syndrome for decoding. Naturally, the goal of develop-
ing new error-correcting codes is to optimize the quantum
dynamics to reduce overheads and minimize the noise on
the logical information.

Recently, Hastings and Haah [1] introduced the first
example of what has emerged as a new class of codes,
dubbed Floquet codes, which exhibit dynamically gen-
erated logical qubits. In their example, the dynamics of
the system is governed by a periodic sequence of non-
commuting two-qubit Pauli measurements and exhibits
instantaneous stabilizer codes that are a sequence of topo-
logical quantum error-correcting codes. Importantly, the
schedule is such that the logical information is preserved
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from one instantaneous code space to the next. Given the
low-weight parity checks needed to operate the code and
its relatively high error threshold [2–4], Floquet codes
offer compelling alternatives to the toric code. The current
understanding of Floquet codes is still under active devel-
opment, thus underscoring the importance of introducing
new examples and formalizing the tools to develop new
Floquet codes.

In this paper, we introduce new examples of three-
dimensional (3D) topological Floquet codes, referred to as
(1) the 3D Floquet toric code (TC), (2) the X-cube Floquet
code with a rewinding schedule, and (3) the 3D Floquet
fermionic toric code (FTC). We also construct an example
of a new 2D Floquet code called the Floquet color code,
for which we expect the interpretation of measurements
as condensation in a parent stabilizer code and rewinding
schedules to be useful.

An essential tool employed in our constructions is the
concept of “rewinding” a measurement schedule, where
the sequence of measurements is reversed at some point
within a period. A similar strategy was stated in Ref. [5]
to adapt the honeycomb code to a system with a bound-
ary. We adopt a physical description of rewinding in terms
of the evolution of measured checks. First, we claim that,
for every Floquet code discussed in our work, there is an
associated nontrivial parent stabilizer code. We can con-
sider the sequence of measurements in a Floquet code as
performing a sequence of condensations on this parent sta-
bilizer code. The operators associated with condensation in
one step can sometimes survive as finite-weight stabilizers
under subsequent measurements; this is the case we are
interested in, and we refer to this as the evolution of the
condensation checks. Under rewinding, the evolution of
condensation checks is reversed before all of them evolve
into nonlocal stabilizers. In our examples of the 3D Floquet
TC and X-cube Floquet code, the evolved condensation
checks at each step determine the topological order of
the instantaneous stabilizer groups (ISGs), and rewinding
helps to achieve the desired ISGs by not evolving beyond
a certain point and reversing the evolution. Sometimes,
these nonlocal stabilizers can be the logical operators of
the Floquet code, like in the case of the 2D Floquet TC
on a planar layout, and in those cases, rewinding helps to
avoid measuring logical information.

In summary, our understanding of rewinding in terms
of the evolution of condensation checks leads to a physical
interpretation for the ISGs and boundaries of Floquet codes
constructed using rewinding schedules, including the con-
struction in Ref. [5]. Therefore, we argue that rewinding
is beneficial for creating a desired set of ISGs on both
toric and planar layouts. We expect the tools we explic-
itly utilized for our microscopic constructions of Floquet
codes to be useful in constructing a wider class of Floquet
codes, including those with quantum low-density parity
check (LDPC) codes as ISGs.

(1) Our first key example is the 3D Floquet TC, which
has ISGs that are equivalent under a finite-depth
local quantum circuit with ancilla (FDLQC equiv-
alent) to the usual 3D TC (or two copies of it). Our
construction is inspired by the coupled-layer con-
struction of Ref. [6], in the sense that we prepare
an instantaneous state of stacks of 2D TCs along
orthogonal directions, then perform measurements
that “condense” pairs of e anyons along the inter-
section of two orthogonal layers. In the subsequent
rounds of measurements, the stabilizers responsi-
ble for this condensation can generically evolve into
higher-weight stabilizers. By using a schedule that
rewinds, we ensure that not all evolved checks are
nonlocal stabilizers, and that, in turn, ensures that
the system does not evolve back into a stack of 2D
TCs. This could be useful for specialized decoding
tasks such as single-shot decoding of looplike exci-
tations in the 3D TC ISGs. We note that Bauer [7]
presented a construction of a 3D Floquet TC using
the path-integral framework.

Because of the evolution of checks into higher-
weight operators, we observe an exotic splitting of
the 3D TC ISG obtained in the preceding round to
two copies of the 3D TC up to nonlocal stabilizers.
We also construct a planar variant of the 3D Flo-
quet TC with boundaries that condense pointlike or
looplike excitations for each ISG. Unlike the planar
variant of the 2D Floquet TC, the boundaries of the
3D Floquet TC do not undergo an automorphism.
By stacking this planar variant of the 3D Floquet TC
with two copies of the planar variant of the “subsys-
tem toric code” [8] (which has three-qubit checks),
we can prepare an instantaneous state of the cubic
lattice 3D TC stacked with two copies of the 3D
checkerboard lattice TC. Such a stacked code allows
for an implementation of the logical non-Clifford
controlled-controlled-Z (CCZ) gate [9].

(2) Our second example is the X-cube Floquet code
with a rewinding schedule. We note that the con-
struction of the X-cube Floquet code in Ref. [10]
also uses a coupled-layer construction. However, in
their construction, the ISGs evolve back into decou-
pled layers of 2D TCs (up to nonlocal stabilizers).
We show in Sec. V that this can be avoided by
rewinding the schedule. We also work out explicit
FDLQCs to map the ISGs to the X-cube model up to
the 3D TC and stacks of 2D TCs. This, in turn, leads
to a result of the splitting of the topological order
in the X-cube Floquet code under the sequence of
measurements: the X-cube model ISG in one round
splits into a copy of the X-cube model and TCs in
the subsequent rounds.

(3) Lastly, we construct a Floquet code with ISGs that
are FDLQC equivalent to the 3D fermionic TC, i.e.,
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with the same topological order as a 3D Z2 gauge
theory with an emergent fermion [11]. Our construc-
tion is based on the 3D generalization of Kitaev’s
honeycomb model of Ref. [12]. In this construction,
we use rewinding to avoid inadvertently measuring
all logical operators throughout the schedule.

Besides the abovementioned 3D examples, we also con-
struct a new 2D Floquet code for which we expect the
key principles used in this paper for the 3D Floquet codes,
i.e., rewinding and the interpretation of condensation in
a parent stabilizer code, to be useful. In Appendix A, we
construct the 2D Floquet color code, which exhibits ISGs
that are FDLQC equivalent to the 2D color code. This
should not be confused with the CSS honeycomb code of
Refs. [13–15], which has also been referred to as the Flo-
quet color code in Refs. [14,16]. The 2D Floquet color
code is constructed on the ruby lattice and is the first exam-
ple of a 2D Floquet code on a nontrivalent lattice. We
consider three different measurement schedules for the Flo-
quet color code. The first one is a six-step schedule that
exhibits an order-3 automorphism of the logical opera-
tors, the second one is a rewound version of the first one
with a trivial automorphism, and the last one is a six-step
schedule that is not a rewinding schedule but has a triv-
ial automorphism. For the first two schedules, notably, one
of the ISGs is equivalent to the conventional color code
up to concatenation with a three-qubit repetition code, thus
allowing for the transversal implementation of certain logi-
cal Clifford gates. The rewound version is expected to yield
gapped boundaries by truncating the checks at the bound-
aries; however, we were not able to construct boundary
conditions that maintain the transversality of the above-
mentioned logical Clifford gates, and hence we leave the
boundaries for future work. We also explicitly write the
parent stabilizer code of the Floquet color code, which is
FDLQC equivalent to two copies of the 2D color code.

In summary, our work establishes new examples of Flo-
quet codes and formalizes rewinding as a tool for design-
ing Floquet codes with beneficial code properties, such
as desired ISGs, which could be relevant for decoding
and transversal logical gates. We expect that construct-
ing examples such as these will be an important step
towards developing a comprehensive classification of Flo-
quet codes and for the construction of novel Floquet
codes.

The paper is organized as follows. In Sec. II, we state
preliminary definitions, formalize the notion of rewind-
ing measurement schedules, and state general properties of
rewinding schedules, such as trivial logical automorphisms
after a measurement cycle. We also discuss the basic ideas
behind interpreting Floquet codes as sequences of conden-
sations in a parent stabilizer code and the evolution of
checks associated with those condensations. In Sec. III,
we review the Floquet code of Ref. [4], referred to as the

Floquet TC, and describe the rewinding schedule for the
boundary construction using the evolution of checks. Sec-
tions IV, V, and VI describe the constructions of the 3D
Floquet TC, the rewinding X-cube Floquet code, and the
3D Floquet FTC, respectively. In Appendix A, we discuss
the Floquet color codes with Z3 automorphism and trivial
automorphisms. In Appendix B, we discuss the counting
of logical qubits in the 3D Floquet TC. In Appendix C, we
describe a particular ISG of the X-cube Floquet code in
terms of the effective qubits created by the checks.

II. REWINDING FLOQUET CODE SCHEDULES

In this section, we state preliminary definitions and for-
malize the notion of a rewinding measurement schedule for
a Floquet code. We then argue that a Floquet code with a
rewinding schedule exhibits a trivial automorphism of the
logical operators after a single period and that the mea-
surement quantum cellular automata (MQCAs) defined at
the boundary have a trivial index [17]. Lastly, we describe
the interpretation of Floquet codes as a sequence of con-
densations in a parent stabilizer code and how the checks
can sometimes evolve and grow into bigger instantaneous
stabilizers.

A. Definitions

In general, a Floquet code is defined by two pieces of
data: (i) a set of operators that are measured throughout
the dynamics, known as the check operators (or, more sim-
ply, the checks), and (ii) a periodic measurement schedule,
which dictates when the check operators should be mea-
sured. We find it convenient to further define the check
group as the group generated by the checks. We call the
center of the check group, i.e., the subgroup of opera-
tors in the check group that commute with every element
of the check group, the stabilizer group of the check
group. We note that the stabilizers can be interpreted as
conserved quantities of the dynamics since their measure-
ment outcomes are not affected by the measurement of the
checks.

We say that a measurement schedule rewinds or that the
Floquet code is a rewinding Floquet code if the sequence
of measurements is performed in reverse order at some
point in the schedule. For example, we consider a set of
measurements labeled 0, 1, and 2. If the measurements
are performed periodically in the sequence 012021, as in
Ref. [5], then the schedule is, in fact, rewinding. This can
be seen by writing a few periods of the schedule as

· · · 0120-0210-0120-0210-0120-0210 · · · , (1)

where we have written a single 0 round with repeated
0s, i.e., as 0-0 to demonstrate the rewinding explicitly.
The sequence 0120 is then explicitly followed by the
reverse sequence 0210. In our examples below, we find that
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rewinding is a valuable tool for constructing boundaries
of Floquet codes, as acknowledged in Refs. [3–5], and
for obtaining a desired set of ISGs. This may, in turn, be
useful for developing Floquet codes with beneficial decod-
ing properties and transversal implementations of logical
gates.

B. Trivial automorphism and the MQCA index

We now state the general properties of such rewinding
schedules—specifically, we emphasize that there is a triv-
ial automorphism of the logical operators, implying that a
planar variant of the rewinding Floquet code defines mea-
surement quantum cellular automata at its boundary with a
trivial index [17,18].

Consider a Floquet code with a rewinding schedule of
the form 012021 on a torus. We assume that this Floquet
code is reversible in the sense of Ref. [17]. This means that,
for each consecutive pair of ISGs, there exists a complete
set of shared logical operator representations for every
logical operator. That is, there is a complete set of oper-
ators that commute with both stabilizer groups. In between
rounds, we must update the logical operators by multiply-
ing instantaneous stabilizers of the current round to obtain
a logical operator that also commutes with the ISG of the
next round. Intuitively speaking, the rewinding ensures
that any instantaneous stabilizers that were multiplied to
the logical operators are removed when the schedule is
run backward. Thus, we arrive back at the same logical
representative after the full rewound cycle.

To see this explicitly, we denote the representations of
a logical operator that are shared by ISGs of consecu-
tive rounds r and r′ as LOR(r, r′), where round r′ follows
round r. For the six-round schedule 012021, the logical

operator representations of rounds 0 and 1 can be chosen
to be LOR(0, 1). To evolve to round 2, we can multiply by
instantaneous stabilizers of the 1-ISG to obtain LOR(1, 2).
To go to the second instance of round 0, we can mul-
tiply by instantaneous stabilizers of the 2-ISG to obtain
LOR(2, 0). We now begin the rewinding process. Repre-
sentation LOR(2, 0) = LOR(0, 2) is a valid representation
for the second instance of round 2. The next rounds are 1
and 0, so we multiply by the same elements of the 2-ISG
to obtain LOR(2, 1) and the same elements of the 1-ISG
to obtain LOR(1, 0) = LOR(0, 1). The net result is that we
are back to the original representation LOR(0, 1) that we
started with. Hence, the automorphism is trivial. Later in
Sec. III A, we explicitly show the shared logical operators
for the rewinding sequence of the 2D Floquet TC in Fig. 1.

The argument that the logical operators “rewind” also
implies that the MQCA for the full period, as defined in
Ref. [17], is trivial. If the Floquet code is put on a system
with a boundary, one can consider the evolution of the log-
ical operators at the boundary as defining an MQCA. Then,
since the automorphism of logical operator representations
is trivial for the full period, the MQCA is also trivial for
the full period. We note however that the MQCA is non-
trivial for half a period of the rewinding schedule for the
2D Floquet TC [17].

C. Condensation in a parent stabilizer code and the
evolution of checks

The measurements in the Floquet codes discussed in
our work can be interpreted as a sequence of condensa-
tions in a parent stabilizer code. Let us first clarify what
is meant by condensation. If we start with a topologically

G B R B G R

(a)

(b)

FIG. 1. (a) The check operators of the Floquet code consist of two-body Pauli check operators XX , YY, and ZZ for the red, green,
and blue edges, respectively. The stabilizers of the check group are generated by the products of check operators along closed loops, as
shown; the product of check operators around a square plaquette consists of Pauli operators Y, while the products of check operators
around octagon plaquettes consist of Pauli operators X or Z depending on the sublattice. (b) Evolution of a representation of a logical
operator in the GBRBGR schedule on the square-octagon lattice. The labels G, B, and R at the top indicate the rounds of the Floquet
code. In each round, the representations commute with both the checks of the current and next rounds. At the end of the cycle of six
rounds, the representation is back to the starting representation and, hence, the automorphism is trivial.
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ordered state, condensing a nontrivial topological excita-
tion means that those excitations are proliferated and can
now be created without any energetic cost. In other words,
the resulting ground state involves a superposition of the
presence and absence of that excitation in any location.
One way to implement this condensation in the Hamilto-
nian picture is to add the creation operator of the excitation
as a term in the Hamiltonian and tune its strength to a large
relative value. In scenarios involving measurements such
as Floquet codes, this condensation can be performed by
measuring the creation operator of the excitation, which,
in turn, adds it to the stabilizer group of the instanta-
neous state while removing any previous instantaneous
stabilizers that anticommute with it.

We claim that, for all the Floquet codes discussed in this
work [19], a parent stabilizer code can be constructed by
taking the stabilizers of the associated check group and
adding in a maximal set of commuting local Pauli terms
that are products of ISG checks around closed loops. For
the 2D Floquet TC, previous work has shown that the color
code can be interpreted as a parent stabilizer code [14]
and it can be derived using this constructive definition.
In Appendix A, in which we construct the Floquet color
code, we explicitly construct the parent stabilizer code by
taking the stabilizers of the check group and closed loops
of checks measured in the three rounds. For the 3D Floquet
TC and the X-cube Floquet code, the construction involves
coupling layers of 2D Floquet TCs. Even though the layers
are coupled, we can form a maximal set of local commut-
ing terms to consist of products of checks around closed
loops within 2D layers; the resulting parent stabilizer code
for both the 3D Floquet TC and the X-cube Floquet code
is simply stacks of color codes, as one might intuitively
expect for the coupled-layer construction. This is described
explicitly in Sec. IV B 2 below.

We now discuss how the checks evolve under a
sequence of measurements. The evolution of an element of
an ISG depends on whether it commutes with the checks in
the subsequent round of measurements. In the 2D Floquet
TC, any element in the current ISG that commutes with all
of the checks measured in the subsequent round is a (static)
stabilizer of the check group of the Floquet code; there
are no products of checks, except stabilizers of the check
group, in the current ISG that survive into the subsequent
round as stabilizers. In the 3D Floquet TC, this is not the
case. There are checks whose products are not stabilizers of
the full check group and still survive as stabilizers into the
next round because they commute with all of the checks of
that next round. These checks are associated with conden-
sation of nontrivial excitation across orthogonal layers in
the ISG of a stack of 2D toric codes. In general, it is the
checks that condense an excitation of the ISG and not just
that of the parent stabilizer code, whose products we expect
to survive into subsequent rounds. Note that from here on,
we refer to these checks as condensation checks [20], and

they are said to evolve into bigger condensation checks
under subsequent rounds of measurements. In subsequent
rounds of the 3D Floquet code, this growth of condensation
checks can keep happening until all of them become non-
local stabilizers. In order to obtain a desired ISG, we utilize
rewinding to avoid this situation, i.e., we reverse the evo-
lution before all condensation checks evolve into nonlocal
stabilizers. There is a physical explanation of the evolution
of condensation checks in terms of the topological data of
the parent stabilizer code. We provide this explanation for
the 3D Floquet TC in Sec. IV B 2 below.

III. TWO-DIMENSIONAL FLOQUET TC ON A
PLANAR LAYOUT

A. Review: 2D Floquet TC with a rewinding schedule

We now review the 2D Floquet TC, which is essential
to our 3D construction. Following Ref. [4], the 2D Floquet
TC can be defined on a two-dimensional square-octagon
lattice with periodic boundary conditions and a qubit at
each vertex. We color the edges of the lattice red, green,
and blue, as shown in Fig. 1. The red, green, and blue col-
ors determine the two-qubit Pauli check operators XX , YY,
or ZZ, respectively, associated with an edge. We refer to
the checks on the red, green, and blue edges as R, G, and B
checks, respectively. The stabilizers of the check group are
generated by three types of operators, supported on either
a square or an octagon, as shown in Fig. 1(a). We refer to
these as the square stabilizers and the octagon stabilizers.

To initialize the code, we measure the checks RBGR in
sequence. Subsequently, in each period, we measure the
sequence GBRBGR [21]. As it is essential in the construc-
tion of the 3D Floquet TC, we note that this schedule is
rewinding, so the logical automorphism is trivial under the
full period. We also note that this is the schedule used in
Refs. [3,4] to define the 2D Floquet TC on a system with a
boundary.

The ISGs obtained upon measuring the R, G, and B
checks are referred to as the R, G, and B ISGs, respectively.
These ISGs are generated by the stabilizers of the check
group and the check operators measured in the round. The
G ISG, for example, is generated by the square and octagon
stabilizers as well as the two-qubit YY stabilizers on the
green edges.

The G ISG is precisely the 2D TC on the square lattice
concatenated with a two-qubit repetition code on the green
edges. More specifically, the two-qubit repetition code on
each green edge is defined by a YY stabilizer and logical
operators

Xeff = XX ≡ ZZ, Zeff = YI ≡ IY. (2)

That is, in the subspace where all the green checks YY
are satisfied, we may define an effective qubit on each
edge according to the above equation. In this subspace,
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the octagon stabilizers can be recast as products of the Xeff
on four effective qubits, allowing them to be interpreted as
the vertex terms of the square-lattice 2D TC. Similarly, the
square stabilizers can be written as a product of the Zeff on
four effective qubits and hence correspond to the plaquette
terms of the 2D TC. We define the violations of vertex and
plaquette stabilizers to be e anyons and m anyons, respec-
tively. The e anyons are created by the application of Zeff
on the green edges, and the m anyons are created by the
application of Xeff on the green edges.

The R and B ISGs are precisely the 2D TC on a rotated
lattice up to concatenation with a four-qubit code. Since
the B and R ISGs are symmetric, we make this explicit
for the B ISG. Each square of the lattice consists of four
qubits and three instantaneous stabilizers, i.e., one YYYY
stabilizer and an additional two ZZ stabilizers from the
measurements of the B checks. Because of these stabiliz-
ers, an effective qubit can be defined on each square with
the effective (logical) operators

Xeff = ZIZI , Zeff = XXII , (3)

where the first two and last two qubits come from the two
blue edges on the square, respectively. The above opera-
tors commute with the three instantaneous stabilizers on
the square. In other words, each square supports a [[4, 1, 2]]
code. In the logical subspace of the [[4, 1, 2]], the octagon
stabilizers reduce to a product X ⊗4

eff or Z⊗4
eff depending on

the sublattice, as shown in Fig. 2. Thus, on the effec-
tive qubits defined by the [[4, 1, 2]] code, we have a 2D
rotated TC.

We note that on a torus, we could also just use the three-
round sequence GBR instead of the six-round rewinding
sequence GBRBGR. However, the three-round sequence

does not work for the 2D Floquet TC on a planar lay-
out. Below, we discuss why the three-round sequence does
not work for the planar layout, using the evolution of
condensation checks at the boundary.

B. Rewinding boundary for the 2D Floquet TC:
evolution of condensation checks

Let us consider how to create a boundary of the 2D
TC using condensation checks. In order to create the
e boundary, we first note that the e excitations (viola-
tions of vertex X stabilizers) are created by single-qubit
Pauli-Z operators. To define the boundary, we add these
single-qubit Pauli-Z stabilizers at the boundary to the sta-
bilizer group. Because of this, the X stabilizers at the
boundary are no longer in the stabilizer group, and the
four-qubit Z stabilizer generators can be broken down into
two-qubit Pauli-Z stabilizers. We define the m boundary
similarly.

Now, for the 2D Floquet TC, each ISG is a TC on an
effective lattice, and for one of the ISGs, we have the effec-
tive terms (Pauli-Z operators on the effective qubits) at the
boundary, as defined above. Under subsequent rounds, the
condensation checks at the boundary evolve into larger-
weight operators. As long as these boundary condensation
checks are constant weight, they condense either the e or m
bulk excitation at the boundary. In particular, we consider a
truncation through green checks for the three-round sched-
ule. In this case, after a full-cycle GBR, if we measure
G checks again, the condensation checks would evolve
into a nonlocal operator that is a logical operator of the
ISG. The evolution of the boundary condensation checks
in the three-round RGB schedule is shown in Fig. 3. To
not measure the logical information, instead of following
up with G after the GBR part of the schedule, a rewinding

R ISGsB ISGsG ISGs

FIG. 2. Bulk stabilizers of the effective TC ISGs in the 2D Floquet code. In the G ISGs, the effective qubits (shown using ellipses)
live on the green edges, and we get the usual square-lattice TC stabilizers. In the B and R rounds, the effective qubits (shown using
circles) live on the square plaquettes, and we get ISGs that are 2D TCs on rotated square lattices.
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-boundary
B ISG

-boundary

R ISG
-boundary

G ISG

-boundary
G ISG after GBR sequence

(b)

(a)

FIG. 3. The issue with the boundary construction (truncation through green checks) using the three-round GBR schedule is expressed
in terms of the evolution of condensation checks. (a) The e boundary of the 2D TC, obtained by adding single-qubit condensation
checks, the Pauli-Z operators (shown inside circles), on the qubits sitting at the vertical edges in the upper half plane. This leads to
condensation of e charges in the upper half plane, forming an e boundary of the TC as shown. (b) The evolution of condensation checks
is at the boundary of the 2D Floquet code. The microscopic condensation checks are shown in green text. In the first G ISG, the single-
qubit Pauli-Y operators act (on the effective qubits) as the Pauli-Z (condensation) operators shown in (a). In the B ISG, the product of
the single-qubit Y operators and the green check, as shown, is left invariant as a stabilizer, and, hence, this is the evolved condensation
check. In the R ISG, the product of blue checks and the prior evolved condensation check is left invariant as a stabilizer. If we follow
this GBR sequence with a G round, as one would in a three-round schedule, the condensation check evolves into a nonlocal stabilizer
after multiplication with red checks. This nonlocal operator is a logical operator on a planar layout of the G ISG with two e boundaries
and two m boundaries. Thus, the logical information is measured out in the three-round schedule. If the schedule is rewound then the
size of the condensation checks can be kept constant, and logical information preserved.

schedule GBRBGR is used instead. This ensures that after
the R round, we reverse back to the B round and G
round with constant weight condensation checks. In Fig. 4,

we illustrate the boundary for the case of the rewinding
schedule GBRBGR. In this case, no logical information is
measured, and we get the desired ISGs.
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R(1) ISG R(2) ISG

-boundary -boundary

G ISGs B ISGs

-boundary-boundary

FIG. 4. Truncation through the green checks in the ISGs in the 2D Floquet TC on the square-octagon lattice with the GBRBGR
schedule. For the G ISGs, the effective qubits (illustrated using ellipses) live on the green edges, and for the B and R ISGs, the effective
qubits (illustrated using circles) live on the square plaquettes. The bulk and boundary stabilizers are written in terms of the effective
Pauli operators. Top: the truncation through green checks condenses the e anyons (convention chosen is shown) in the G and B ISGs.
Bottom: the truncation through green checks in the two R ISGs. For these two R ISGs, the boundary undergoes an automorphism in
its type due to the bulk automorphism. We denote by R(1) ISG the ISG in the first R round and by R(2) ISG the ISG in the second R
round in the sequence. The truncation through green checks describes an e (m) boundary in the R(1) ISG (R(2) ISG) for the convention
chosen.

IV. THREE-DIMENSIONAL FLOQUET TC

We now present the 3D Floquet TC whose ISGs are
FDLQC equivalent to the usual 3D TC (or two copies). The
construction is inspired by the coupled-layer construction
of the 3D TC presented in Ref. [6]. More specifically, our
strategy for building the 3D Floquet TC is to start with
layers of 2D Floquet codes and add measurements that
implement the condensation procedure of Ref. [6] at the
level of the ISGs. We use 2D Floquet codes on square-
octagon lattices, which are stacked along the x, y, and z
axes, as our building blocks.

Before going into the detailed construction of the 3D
Floquet TC, we review the coupled-layer construction of
the 3D TC and the construction of the 2D Floquet TC with
a rewinding schedule on the square-octagon lattice. Read-
ers who are familiar with the details of the coupled-layer
construction of the 3D TC and 2D Floquet TC are welcome
to skip directly to Sec. IV B below.

A. Review: coupled-layer construction

The coupled-layer construction of the 3D TC in Ref. [6]
starts with stacks of 2D TCs, along the x, y, and z axes, as
shown in Fig. 5(a). The 2D TCs here are defined on square
lattices with qubits on the edges. Taken together, the layers
of 2D TCs define a cubic lattice with two qubits on each
edge. The edges parallel to the z axis, for example, have
one qubit from a 2D TC in a y-z plane and another from a
2D TC in an x-z plane.

The 2D layers are then coupled together by forcing an
interlayer ZZ operator at each edge to be a stabilizer [22].
This requires removing the 2D TC stabilizers that fail to
commute with the ZZ operators. Note that the vertex terms
of the 2D TCs do not commute with the interlayer ZZ
checks, but the product of three vertex stabilizers, one
from each intersecting plane, does commute. Therefore,
this product of X -type stabilizers remains in the stabilizer
group.
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FIG. 5. Constructing three-dimensional topological codes
from stacks of 2D TCs. A choice of vertex and plaquette stabiliz-
ers in each 2D TC layer of the stacks is shown on the left. Putting
the three orthogonal stacks of 2D TC stacks together results in a
lattice where each edge is now a composite edge that consists
of two edges (qubits) from the 2D TC layers. Measuring ZZ on
the pair of qubits on each composite edge results in effective 3D
TC stabilizers with an effective qubit (due to the ZZ stabilizer)
on each composite edge; some ZZ stabilizers on the compos-
ite edges are shown. The resulting X stabilizer is shown on the
right. Measuring XX instead of ZZ on the pair of qubits on each
composite edge results in the X-cube model stabilizers on the
effective qubits.

Operationally, the ZZ stabilizers define a single effec-
tive qubit at each edge. The effective stabilizer group is
then equivalent to the usual 3D TC up to concatenation
with two-qubit repetition codes; the product of three ver-
tex stabilizers becomes the vertex stabilizer on the cubic
lattice and the plaquette interlayer ZZ checks; the logi-
cal operators of the 3D TC can be represented by e-string
operators along noncontractible paths and membranes built
from stacks of m-string operators.

Intuitively, the interlayer ZZ operators create pairs of e
anyons. By adding the ZZ operators to the stabilizer group,

we have condensed pairs of e anyons from intersecting 2D
TCs. Along the z axis, for example, the ZZ operator cre-
ates a pair of e anyons with one from the y-z plane and the
other from the x-z plane. Heuristically, the condensation of
interlayer pairs of e anyons implies that the e anyons can
transfer without any energy cost between layers at an inter-
section, while the m anyons in individual layers become
confined.

B. Six-round rewinding schedule

To build the 3D Floquet TC, we start with layers of 2D
Floquet TCs on square-octagon lattices, which are stacked
along the x, y, and z axes. The stacks of square-octagon
lattices define a 3D truncated cubic lattice with two qubits
at each vertex; see also Ref. [10]. For clarity, we resolve the
vertices in Fig. 6 to show the connectivity of each square-
octagon foliation.

The check group of the 3D Floquet TC is generated
by the check operators of the 2D Floquet TCs and two-
qubit interlayer YY check operators that couple the layers
together as in Fig. 6. There are three interlayer YY checks
for each octahedron of the truncated cubic lattice. These
correspond to the three ways of pairing the x-y, y-z, and
x-z planes. The stabilizers of the check group are gener-
ated by the square stabilizers of the 2D Floquet TCs and
the product of three octagon stabilizers sharing a truncated
cube, as shown in Fig. 7.

To initialize the 3D Floquet TC, we first initialize the
stack of 2D Floquet codes with the four-round measure-
ment sequence RBGR. At this point, the ISG is equivalent
to a stack of 2D TCs up to concatenation with two-qubit
repetition codes. We then measure the G checks and the

FIG. 6. Stacks of square-octagon lattices (see Fig. 1) along three orthogonal directions to prepare the resource stacks of 2D TC
layers before reaching the 3D TC ISG of the 3D Floquet TC. For the 3D TC ISG in the G round (see Table I), the plaquette operators
on the octahedron map to the plaquette operators on the cubic lattice in the manner shown. In the middle, we show how the plaquette
stabilizers on the circled “octahedron” in the ISG of green check measurements are mapped from the plaquette stabilizers in the stacks
of square-lattice 2D TC layers. On the right are shown the condensation checks that couple the stacks of square-octagon models such
that the resulting ISG in the G round is the usual representation of the 3D TC on the cubic lattice in terms of the effective qubit Pauli
operators.
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FIG. 7. Stabilizers of the check group of the 3D Floquet TC.
They form a subgroup of the stabilizers of the square-octagon
layers such that they commute with the condensation checks.
Top: in each cube, the product of three octagon stabilizers from
orthogonal foliations, as shown, commutes with the condensa-
tion checks. Note that the octahedrons can have four different
configurations of edges in the unit cell shown in Fig. 6, so all
of the stabilizers that are products of three octagons on a cube
do not look exactly as the one shown. Bottom: the square sta-
bilizer terms from the square-octagon layers commute with the
condensation checks.

interlayer YY checks simultaneously (round 0 listed in
Table I). In terms of the effective Pauli operators Xeff and
Zeff in the G ISG of the 2D Floquet TC [Eq. (2)], the
interlayer YY checks are precisely the ZeffZeff terms of the
coupled-layer construction as described in Sec. IV A and
Fig. 5. Hence, the interlayer YY checks create pairs of e
anyons on intersecting layers. Therefore, the interlayer YY
checks condense pairs of e anyons, and after measuring the
YY checks, the ISG is the 3D TC, up to concatenation with
two-qubit repetition codes on the green edges.

We continue with a periodic measurement schedule of
the checks, according to the sequence GBRBGR, where

TABLE I. The GBRBGR schedule of measurements for the 3D
Floquet TC. The measured checks and the ISGs in each round are
written. We note that in the ISG with two copies of the 3D TC,
the two copies are in an entangled logical state due to nonlo-
cal stabilizers of the form Z1,iZ2,i, where Z1,i and Z2,i are logical
string operators of the two 3D TCs along nontrivial cycles i of
the associated 3D tori.

Round Measurement ISG

0 G (green YY + interlayer YY) 3D TC
1 B (blue ZZ) 3D TC × 3D TC
2 R (red XX ) 3D TC × 3D TC
3 B (blue ZZ) 3D TC × 3D TC
4 G (green YY + interlayer YY) 3D TC
5 R (red XX ) 3D TC × 3D TC

the G round implicitly includes the interlayer YY checks.
We note that the interlayer YY checks fail to commute with
the subsequent B and R checks, so they are removed from
the B and R ISGs. However, products of the interlayer
YY checks and possibly checks measured in the preceding
rounds survive as stabilizers. We refer to these new instan-
taneous stabilizers as the evolved condensation checks,
and these are shown in Fig. 8. On each octahedron of
the truncated cubic lattice, only one of the three inter-
layer YY checks (depending on the octahedron) evolves
to a constant-weight stabilizer. The other two evolve into
nonlocal stabilizers. An example of a nonlocal evolved
condensation check is shown in Fig. 9.

The generators of each of the ISGs thus consist of (i)
the checks measured in that round, (ii) the condensation
checks or evolved condensation checks, (iii) some octagon
stabilizers (which octagon terms are in the ISG depends
on the precise round), and (iv) the stabilizers of the check
group. We list the topological order of the ISGs in each
round of the schedule in Table I. Explicit circuits to map

G B R(1) R(2)

FIG. 8. The evolution of one condensation check in the 3D Floquet TC with schedule GBR(1)BGR(2), where we have added the
superscripts to the R rounds to specify their positions. The different rounds are labeled as shown. There is no difference in the evolved
condensation checks in the ISGs of the two B rounds (and of the two G rounds) due to rewinding and, hence, we show only one B
round (and one G round). In G rounds, the condensation check is a two-qubit operator. In B rounds, the interlayer term that survives is
a product of green edges (thickened) and two original two-qubit condensation checks. Blue checks are multiplied by the representation
in the B round to get the representation in the R(1) round. In the R(2) round we get a representation of the evolved condensation check
similar to the B round, but across different octahedrons. We get another interlayer term in the R(2) round, which is a product of green
checks and two-qubit condensation checks of the G round.
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FIG. 9. A nonlocal stabilizer made of Pauli-Y operators in the
B ISG. It is a product of the two-qubit condensation checks and
green checks that are shown with thick lines. Two out of the three
two-qubit condensation checks on each octahedron evolve into
nonlocal stabilizers along different nontrivial cycles. The nonlo-
cal stabilizer is a product of two e-logical string operators from
the G ISG. These string operators are no longer stabilizer equiv-
alent in the B ISG as they are logical string operators of two
different copies of 3D TCs.

the ISGs to the canonical form of the 3D TC (or two copies
of it) are given in Ref. [45]. The counting of logical qubits
is described in Appendix B.

We note that the rewinding GBRBGR schedule ensures
that, in each round, there is an extensive number of
constant-weight evolved condensation checks. This is not
the case for the three-round schedule RGB, in which all
the condensation checks evolve into nonlocal stabilizers,
leading to an ISG of a stack of 2D TCs with some log-
ical operators fixed as nonlocal stabilizers. Intuitively,

rewinding the schedule prevents the possibility that all the
evolved condensation checks are nonlocal. We also note
that the automorphism of logical operators is trivial, which
follows from the rewinding property discussed in Sec. II B.

1. Splitting into two copies of the 3D TC

Interestingly, the B ISGs and the R ISGs are FDLQC
equivalent to two copies of the 3D TC, up to nonlocal sta-
bilizers. Here, we elaborate on the mechanism by which
the single 3D TC splits into two copies of the 3D TC
via measurements. In short, the constant-weight evolved
condensation checks can be interpreted as short string
operators that create pairs of e anyons on the next-nearest-
neighbor octagons of the 2D square-octagon lattices. The
configuration of evolved condensation checks is such that
the ISG is FDLQC equivalent to two copies of the 3D
TC with a constraint on the logical subspace given by the
condensation checks that evolve into nonlocal stabilizers.

The fact that two copies of the 3D TC arise in the B
ISG is best understood in the effective picture of TC lay-
ers. In Sec. III A, we showed that in the B and R ISGs
of the 2D Floquet TC, we get TCs on rotated lattices
with an effective qubit on each square plaquette of the
square-octagon lattice. The B ISG of the 3D Floquet TC
can hence be understood as a coupled-layer construction

y

x

z

(a) (b) (c)

FIG. 10. Coupled layer construction in a three-foliated stack of 2D rotated TC layers to describe the B ISG of the 3D Floquet TC.
(a) In the B round or R round of the 2D Floquet TC on the square-octagon lattice, we get an effective TC on a rotated square lattice
(check the effective description of the square-octagon layers in the B round of the 2D Floquet code in Fig. 2). To describe the B ISG
for the 3D Floquet TC, consider the three-foliated (stacks of 2D planes along three directions) stack of 2D rotated TCs along with the
evolved condensation checks in the B ISG; a 2D rotated TC layer from each foliation is shown in (a). We omit the subscript eff from
the Pauli operators in both (a) and (c) for simplicity. (b) The unit cell of the three-foliated stack of 2D rotated TCs. Each coarse-grained
vertex, where the three foliations meet, has three qubits. The evolved condensation checks are illustrated using thick red edges. Each
thick red edge denotes a four-qubit operator X ⊗4

eff ; the thick red edge along the y direction denotes a four-qubit Pauli-X ⊗4
eff operator

on the qubits that belong to foliations xy and yz, as shown on the right. Because of these evolved condensation checks, only certain
products of Z stabilizers from 2D rotated TC layers survive as stabilizers [shown in (c)], and depending on the cube, these products
correspond to the e1 and e2 charges of the two 3D TCs in the B ISG. The cubes corresponding to e1 (e2) charges are (not) highlighted
using purple dots, which form a checkerboard pattern. (c) On each cube, we consider a product of Z stabilizers of 2D rotated TC layers
that commute with the condensation checks. For each of the cubes in the front layer of the unit cell in (b), the products of Z-plaquette
terms of 2D rotated TCs that survive as stabilizers in the B ISG are shown. The X stabilizers from the 2D rotated TC layers are left
transparent just to clarify how the plaquette terms appear on a cube.
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(a) (b)

FIG. 11. (a) A logical membrane operator of the 3D TC ISG in the G rounds of the 3D Floquet TC; the membrane is a product of
m-logical strings (made of Pauli-Z operators shown as blue dots) of the 2D TCs in the planes orthogonal to the membrane. (b) In the
B rounds, the membrane operator splits into two Pauli-Z membrane operators corresponding to two copies of 3D TCs that form the B
ISG. One membrane consists of Pauli-Z operators acting on qubits indicated by the blue dots, while the other acts on those indicated
by the blue stars.

starting from rotated 2D TC layers stacked along three
orthogonal directions, as shown in Fig. 10.

In the effective description of 2D rotated TC layers,
the evolved condensation checks act as four-qubit Pauli-X
operators, which create pairs of e anyons across intersect-
ing layers, with the violations of Z stabilizers in the 2D
rotated TCs corresponding to the e anyons. The evolved
condensation checks are illustrated on the effective lattice
using thick red edges in Fig. 10(b). The fact that these
evolved condensation checks belong to the stabilizer group
implies that only certain products of Z stabilizers of the
2D layers, as shown in Fig. 10(c), survive as stabilizers
after condensation. The violations of these products of Z
stabilizers correspond to the e charges of the two 3D TCs.

Given the structure of the evolved condensation checks,
the e charges on nearest-neighboring cubes, in fact, belong
to inequivalent superselection sectors. Hence, we label
them e1 and e2, corresponding to the two copies of the 3D
TC. This illustrates that the two 3D TCs “live” on two sub-
lattices of the full cubic lattice. This splitting is captured by
the membrane logical operators of the two ISGs illustrated
in Fig. 11.

We now consider the two R ISGs appearing in the GBR-
BGR schedule. We label these two consecutive R ISGs as
the R(1) ISG and the R(2) ISG. The key difference in the R(1)

ISG, compared to the preceding B ISG, is that we now have
four-qubit Pauli-Zeff evolved condensation checks in the
effective description of 2D rotated TC layers. The effective
2D rotated TC Xeff (Zeff) stabilizers are also now changed

to Zeff (Xeff) stabilizers, since the [[4, 1, 2]] codes on the
squares now have XX checks as stabilizers; see Fig. 2 for
our convention of Xeff and Zeff in the R ISGs of the 2D Flo-
quet TC. Thus, R(1) ISG is equivalent to the B ISG up to a
basis change, and we again get two copies of the 3D TC (up
to nonlocal stabilizers). The full configuration of evolved
condensation checks in the unit cell is shown in the left of
Fig. 12. The nonlocal stabilizers, in this case, are the same
as those of the B ISG in Fig. 9, but with Pauli-Y operators
replaced by Pauli-X operators. These can be obtained by
multiplying the nonlocal stabilizers of the B ISG by the B
checks.

In the R(2) ISG, the evolved condensation checks are
four-qubit X ⊗4

eff and three-qubit X ⊗3
eff ; the microscopic rep-

resentations are shown in the far-right diagram of Fig. 8
and the effective representations are shown in Fig. 12 along
with the configuration of evolved condensation checks in
the unit cell. We again get two copies of 3D TCs (up to
nonlocal stabilizers) as the ISG. The nonlocal stabilizers,
in this case, are similar to those of the B ISG, but shifted
in space.

2. Evolution of condensation checks using topological
data of the parent stabilizer code

As mentioned in Sec. II C, the reason for the growth
of condensation checks is that after their measurements,
the next round of checks may only commute with certain
products of the condensation checks. It is these products
of condensation checks that survive as stabilizers into the
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yz

x

R(1) ISG R(2) ISG

FIG. 12. Configuration of condensation checks in the two R ISGs is shown in the three-foliated stack of rotated lattice TC layers
(check the effective description of the square-octagon layers in the R round of the 2D Floquet code in Fig. 2). In the R(1) ISG (R(2)

ISG), the evolved condensation checks are Z⊗4
eff (X ⊗4

eff in red and X ⊗3
eff in pink) operators; representations for the four-qubit condensation

checks along the y direction and for the three-qubit condensation check are shown; here the superscripts xy and yz in Pauli operators
X xy

eff and X yz
eff denote the foliations the qubits belong to.

next round. Rewinding helps to ensure that not all con-
densation checks evolve into nonlocal stabilizers. In the
case of the 3D Floquet TC, if all condensation checks
become nonlocal, we obtain an ISG that is FDLQC equiv-
alent to a three-foliated stack of 2D TCs. Hence, rewinding
helps to avoid this ISG, and instead, we obtain the 3D
TC(s) as ISGs. We now discuss how the evolution of
condensation checks can be described using the braiding
and fusion data of the excitations in the parent stabilizer
code of the 3D Floquet code, i.e., stacks of 2D color
codes.

We first state why a stack of color codes is the par-
ent stabilizer code for the 3D Floquet TC. Invoking our
construction from Sec. II C, we can consider products of
checks around closed loops that commute with each other
and the stabilizers of the check group shown in Fig. 7. The
product of green checks around each octagon, products of
blue checks around each octagon, products of red checks
around each octagon, and products of red checks around
each square form closed-loop stabilizers that, along with
the stabilizers of the full check group of Fig. 7, form the
stabilizer generators of a parent stabilizer code. This code
is FDLQC equivalent to a three-foliated stack of 2D color
codes. This is also what one may intuitively expect given
that the parent stabilizer code for the 2D Floquet code is
the color code [14] and we use a coupled-layer construc-
tion involving a stack of 2D Floquet codes to get the 3D
Floquet code.

Using the notation of Ref. [14] for the anyons of the
color code, the measurements of the 2D Floquet code cor-
respond to condensing the anyons rX , gY and bZ in order.
After each condensation, we obtain 2D TC ISGs and tran-
sition between them without loss of logical information.
The deconfined and confined anyons for the steps when

gY and bZ anyons are condensed are shown at the top in
Fig. 13.

In the 3D Floquet code, if we ignore the interlayer
measurements that condense pairs of e anyons, only the
rX -gY-bZ sequence of condensations would be performed
in each color code layer of the parent code. To be con-
sistent with our Pauli notation used for the 3D Floquet
code, consider that we do the interlayer pair condensation
across orthogonal color code layers along with the gY con-
densation. In the round of gY condensation, it is gX ≡ gZ
and rY ≡ bZ that form the e and m anyons of the 2D TC
ISG, respectively. This is illustrated in the top left table of
Fig. 13. The condensation operator is a two-qubit Pauli-YY
operator, as shown in Fig. 8. In the parent code of a stack
of 2D color codes, the Pauli-Y operators act on orthogo-
nal color code layers. Application of a single Y operator in
one color code layer creates rY, gY, and bY anyons. How-
ever, because gY is already condensed, meaning that it is
equivalent to vacuum 1, gY ≡ 1, we are left with rY and
bY, which are equivalent and correspond to the e anyons
as mentioned. This is illustrated in the bottom left diagram
of Fig. 13. Thus, the two-qubit Pauli-Y condensation oper-
ator creates two pairs of e anyons, one pair in each of the
orthogonal color code layers.

In the following round, bZ is condensed, and, thus, rY
and gY are confined. Thus, we can no longer use the equiv-
alences gY ≡ 1 and rY ≡ bY. Moreover, bY ≡ bX and
rZ ≡ gZ are the deconfined anyons, and we choose to label
bY ≡ bX as the e anyon. This is illustrated in the top right
table of Fig. 13. The confined excitations rY and gY must
be canceled to find an evolved condensation check. This
is possible if we take the product of two-pair condensation
checks (the two-qubit Pauli-Y operator across orthogonal
layers) and the condensation operator for gY (the green
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FIG. 13. Top: condensation of gY (left) and bZ (right) anyons
in the 2D color code. When gY is condensed, meaning that gY
is equivalent to vacuum 1, the crossed-out anyons are confined
and we obtain a 2D TC; we label the deconfined anyons rY ≡
bY as the e anyon and gX ≡ gZ as the m anyon of the 2D TC.
Similarly, when bZ is condensed, the crossed-out anyons, shown
in the right table, are confined, and we label bX ≡ bY and rZ ≡
gZ as the e and m anyons of the resulting 2D toric code. Bottom:
in the left diagram, the two-qubit Pauli-Y condensation check is
shown using a dark green arc connecting orthogonal 2D color
code layers of the parent stabilizer code. These are applied in
the G round along with intralayer green checks, which condense
gY anyons in color code layers. A single Pauli-Y operator in the
dark green arc acts on a parent color code as shown, resulting
in the creation of gY, bY, and rY anyons. Since gY is condensed
before, gY ≡ 1 and bY ≡ rY correspond to the e anyon, we are
left with a pair of e anyons in the color code layer. Applying
the two-qubit Pauli-Y operator on the dark green arc results in
such pairs for both of the orthogonal layers. On the right, we
show that, when bZ is condensed in the B round following the
G round, the single Y now create confined excitations rY and gY,
and these confined excitations need to be canceled out. This is
possible by multiplying the products of two arc-shaped two-qubit
Pauli-Y operators with the green checks shown with thick lines.
Hence, such a product survives as an evolved condensation check
in the B round.

checks). This product cancels out the confined excitations
gY and rY and creates two pairs of bY on orthogonal color
code layers. This is illustrated in the bottom right diagram
of Fig. 13. Thus, again, we have a pair of e anyons that
are condensed across orthogonal layers. The requirement
of the cancelation of the confined excitations serves as an
alternate physical explanation for the evolution of conden-
sation checks into bigger condensation checks. Moreover,
there are two inequivalent flavors of such composites cor-
responding to the two sublattices and, hence, the B ISG
is FDLQC equivalent to two copies of the 3D TC, as
described microscopically earlier. This is up to the caveat
that a nonlocal stabilizer fixes the state of the two copies

of the 3D TC such that only one logical qubit remains. A
similar description in terms of condensation holds for the
R ISGs.

C. Boundary construction

We now consider a boundary construction for the 3D
Floquet TC. Since the 3D Floquet TC is based on a
coupled-layer construction, we start by reviewing the
boundaries for the 2D Floquet TC on the square-octagon
lattice [3,4]. We consider, in particular, the truncation of
the square-octagon lattice shown in Fig. 14(a). Here, any
check that is truncated is included in the check group as
a single-qubit check. In the first R ISG of the schedule
GBRBGR, we get m boundaries (i.e., smooth boundaries)
where the truncation cuts through the blue and red edges,
and e boundaries (i.e., rough boundaries) where the trun-
cation cuts through the green edges. After half a period of
the rewinding schedule, the boundaries switch types.

We now use this construction of boundaries for the
2D Floquet code to determine the boundaries of the 3D
Floquet TC. The truncation for the three foliations of
square-octagon layers is specified in Fig. 14(b). For one
of the foliations, the truncation goes through only the blue

(a)

(b) (c)

FIG. 14. (a) Truncation of a layer of the square-octagon lat-
tice in the 2D Floquet TC. (b) The boundary truncations of the
square-octagon layers that form the lattice for the 3D Floquet
TC. (c) Boundaries for a planar configuration of the 3D Floquet
TC: we get e-condensing boundaries on the left and right, and m-
condensing boundaries on the other four sides. Note that in the
ISGs that are FDLQC equivalent to two copies of the 3D TC, the
boundary labeled e should be interpreted as having two sublat-
tices, one condensing e1 and the other condensing e2; the same
holds for the boundary labeled m.
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and red edges, while for the other two, the truncation goes
through the red and blue edges on the top and bottom
and green edges on the left and right sides. The result-
ing 3D Floquet TC is such that, for each ISG, we have
charge-condensing boundaries on the left and right and the
loop-condensing boundaries on the remaining four sides,
as in Fig. 14(c).

We note that the particular choice to truncate the blue
and red edges on the lower halves of the square plaque-
ttes ensures that in the 3D Floquet TC lattice, the two-qubit
condensation checks in the G ISG are never truncated. This
choice can nonetheless lead to truncated evolved conden-
sation checks. The truncated evolved condensation checks
survive as stabilizers along the boundary with truncated
green edges, while they do not survive along the bound-
aries with truncated blue and red edges since they do not
commute with the single-qubit blue and red checks.

The result of these truncations is that, for each ISG,
the charges (possibly two types e1 and e2, depending on
the round) are condensed on the right and left bound-
aries, while the looplike excitations are condensed on the
remaining four sides.

It is straightforward to understand this result from the
perspective of the 2D TCs on the effective lattice. In the G
ISG, the e charge is associated with the product of octag-
onal plaquettes, which also correspond to e anyons of the
layers. Since the truncation through green checks creates
an e-condensing boundary for the 2D G ISGs, the e charge
of the 3D code also condenses at that boundary. Simi-
larly, the loop excitations are condensed at the truncation
through the blue and red edges.

In both of the B ISGs, we have the effective picture of
the 2D rotated TCs, and the evolved condensation checks
in the bulk are of the form X ⊗4

eff , which implies that the e
charges are associated with products of Zeff stabilizers. For
the B ISG of the 2D Floquet code, the truncation through
green checks condenses the violations of the Zeff stabiliz-
ers supported on the octagonal plaquettes consisting of red
and green edges. This is illustrated in Fig. 4. Thus, for the
B ISG of the 3D Floquet code, at the truncation through
green edges, we condense the violations of these Zeff sta-
bilizers, corresponding to pointlike excitations, and at the
truncation through blue and red edges, we condense the
violations of the Xeff stabilizers corresponding to looplike
excitations.

After the B round, we have the R(1) ISG. For both
of the R ISGs, we can again use the effective picture of
rotated toric layers along three foliations and the action
of evolved condensation checks. For the 2D Floquet TC,
the truncation through green edges gives an e (m) bound-
ary in the R(1) ISG (R(2) ISG). This is illustrated in Fig. 4,
where the stabilizers at the boundary are shown in terms
of the effective Pauli operators. The evolved condensation
checks in the R(1) ISG and R(2) ISG are given by Z⊗4

eff and
X ⊗4

eff , respectively, and are shown in Fig. 12. In the R(1)

ISG, since the evolved condensation checks are given by
Z⊗4

eff , the stabilizer products corresponding to e charges (m
loops) are given by the Xeff (Zeff) stabilizers. In the R(1) ISG
of the 2D Floquet code, the truncation through green edges
condenses Xeff stabilizers; see Fig. 4. Hence, in the R(1)

ISG of the 3D Floquet TC, the truncation through green
edges condenses the pointlike excitations. Similarly, the
truncation through the blue and green edges condenses the
looplike excitations of the 3D TCs.

Similarly, in the R(2) ISG, the evolved condensation
checks are given by X ⊗4

eff and X ⊗3
eff , as shown in Fig. 12,

and the stabilizer products corresponding to e charges (m
loops) are given by the Zeff (Xeff) stabilizers. As shown in
Fig. 4, the truncation through green edges condenses the
excitations of the Zeff stabilizers in the R(2) ISG. Hence, in
the R(2) ISG of the 3D Floquet TC, the truncation through
green edges again condenses the pointlike excitations, and
the truncation through the blue and green edges condenses
the looplike excitations of the 3D TCs. To conclude, even
though the 2D Floquet code layers undergo a boundary
transformation from e type to m type, the 3D Floquet
TC boundaries of given types condense the same type of
excitations in each ISG respectively.

D. Transversal non-Clifford gate

One key computational advantage of the 3D TC is that
it allows for an implementation of the transversal logical
non-Clifford gate [9]. Such an advantage is retained for our
3D Floquet TC. This is because the 3D TC in the G ISG is
precisely the conventional cubic lattice 3D TC up to con-
catenation with a two-qubit repetition code. We can stack
the 3D Floquet TC with two copies of the 3D TC on the
checkerboard lattice to yield the transversal CCZ gate as an
on-site symmetry of the stabilizer group [9]. More specif-
ically, on a system with both the 3D Floquet TC and two
3D checkerboard lattice TCs, we can perform the transver-
sal logical CCZ gate in the round of the Floquet cycle in the
G ISG. Since the logical information is preserved under
subsequent measurements for both the 3D Floquet TC and
the 3D checkerboard lattice TCs, one can wait to do the
CCZ gate transversally in the G ISG and then proceed with
subsequent rounds.

The checkerboard lattice surface code (planar variant)
can be obtained as instantaneous stabilizer codes of the 3D
subsystem TC, which uses measurements of three-qubit
checks [8]. Hence, one can stack the planar variant of our
3D Floquet code with two copies of the 3D subsystem TC
to do the non-Clifford CCZ gate in the G round of the 3D
Floquet TC.

V. REWINDING THE X-CUBE FLOQUET CODE

The X-cube Floquet code of Ref. [10] has ISGs that are,
for some rounds, stacks of 2D TCs, and for other rounds,
FDLQC equivalent to the X-cube model or another fracton
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G B R(1) R(2)

(a) (b)

FIG. 15. (a) Two-qubit condensation checks (green round) in the X-cube Floquet code. (b) The evolution of one condensation check
in the Floquet code with schedule GBR(1)BGR(2). The different rounds are labeled. There is no difference in the ISGs in the two B
rounds (and in the two G rounds) due to rewinding and hence only one B round (G round) is shown. In the R(2) ISG, besides products
of two-qubit condensation checks and green checks (shown on the left in the R(2) subfigure), we also have products of two-qubit
condensation checks around every octahedron (shown on the right in the R(2) subfigure) that survive as stabilizers.

model. This Floquet code is again based on a coupled-layer
construction and uses stacks of 2D Floquet TCs on the
square-octagon lattices, as used for our 3D Floquet TC in
the previous section. Hence, the microscopic lattice is the
same as given in Fig. 6, and the effective underlying lattice
for the B ISG is the same as given in Fig. 10(a). However,
the sequence of measurements is different and, hence, the
stabilizers supported on those lattices are different.

In this section, we propose a rewinding schedule for the
X-cube model such that each ISG is a fracton model, and
unlike Ref. [10], we do not go to an intermediate ISG of
stacks of TCs. We consider a rewinding schedule of the
form GBR(1)BGR(2), where 1 and 2 label the positions of
the two R rounds in the sequence. The on-site condensation
checks, as shown in Fig. 15(a), are measured along with
the green checks in the G round. The rewinding schedule
ensures that in each subsequent round, not all condensa-
tion checks evolve into nonlocal stabilizers. The evolution
of the condensation checks under the rewinding schedule
is shown in Fig. 15. Note that, if we had used the schedule
GBR then the R round would have been followed by the G
round, and all the condensation checks would have evolved
into nonlocal stabilizers, resulting in an ISG of a subspace
of stacks of 2D TCs. This is because after a full-cycle
GBRG where no extra condensation checks are measured,
the measurements of the local checks in the BRG part of
the sequence (without the two-qubit condensation checks)
result in an ISG of a three-foliated stack of 2D TCs, while
the two-qubit condensation checks measured in the first G
round evolve into logical operators of the stacks; this leads
to an ISG that is a subspace of the stack of 2D TCs.

The ISGs in the rewinding X-cube Floquet code are
FDLQC equivalent to those listed in Table II. Explicit
FDLQCs to map the ISGs to these models are given in
Ref. [45]. The G ISG is exactly the canonical X-cube
model concatenated with four-qubit repetition codes on
the composite green edges. The B ISG is FDLQC equiv-
alent to a product of decoupled models (up to nonlocal
stabilizers), including the X-cube model, 3D TC, and a
three-foliated stack of 2D TCs. Similar to the 3D Floquet

TC, the ISG in the R(1) round is related to that of the B
rounds by a basis change and is hence FDLQC equivalent
to the same models. The ISG in the R(2) round, which fol-
lows immediately after the G round, has different evolved
condensation checks, as shown in Fig. 15. The R(2) ISG is
FDLQC equivalent to a product of the X-cube model and a
three-foliated stack of 2D TCs. We note that such splitting
of the topological order also happens in the (nonrewind-
ing) X-cube Floquet code of Ref. [10]. However, it was
not identified in that work.

We now discuss the counting of logical qubits in the
rewinding X-cube Floquet code. As mentioned, the G ISG
is exactly the canonical X-cube model concatenated with
four-qubit repetition codes on the composite green edges.
Hence, we have 6L − 3 logical qubits in the G ISG [23]. To
count the number of logical qubits in the B ISGs and R(1/2)

ISG, we consider even system sizes L = 2n for simplic-
ity. The FDLQC-equivalent model, as stated in Table II,
implies a total of 6L logical qubits as we get 6n − 3 logical
qubits from the X-cube model, three logical qubits from
the 3D TC, and 6n logical qubits from the three-foliated
stack of 2D TCs. The B ISG has three independent non-
local stabilizers; an example is shown in Fig. 16. Because

TABLE II. The ISGs in the (rewinding) GBRBGR schedule
of measurements for the X-cube Floquet code. The measured
checks and the ISGs in each round are written in the measurement
column. In the ISG column, XC denotes the X-cube model, 3D
TC denotes the 3D TC, and “stacks” denote a three-foliated stack
of 2D TCs. For even system sizes L = 2n, the three-foliated stack
consists of n layers of 2D TCs along each of the three orthogonal
lattice directions.

Round Measurement ISG

0 G (green YY + interlayer YY) XC
1 B (blue ZZ) XC × 3D TC × stacks
2 R (red XX ) XC × 3D TC × stacks
3 B (blue ZZ) XC × 3D TC × stacks
4 G (green YY + interlayer YY) XC
5 R (red XX ) XC × stacks
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FIG. 16. An example of a nonlocal stabilizer (only a cut-out
part is illustrated) in the B ISG of the X-cube Floquet code. It is
a product of the green checks shown using thick lines and two-
qubit condensation checks marked using thick circles.

of these three nonlocal stabilizers, the number of logical
qubits in the B ISG is 6L − 3, which in turn implies that
the 6L − 3 qubits from the G ISG are all preserved. For
an effective description of the B ISG in terms of a rotated
2D TC stack and the counting of logical qubits using that,
see Appendix C. The R(1) ISG is the same as the B ISG
up to a basis change, and, hence, we have 6L − 3 logical
qubits. Because of rewinding, the second B ISG is exactly
the same as the first B ISG. The R(2) ISG is FDLQC equiv-
alent to the X-cube model and a three-foliated stack of 2D
TCs; hence, the number of logical qubits is 6L − 3. Over-
all, 6L − 3 logical qubits are preserved in the rewinding
X-cube Floquet code.

VI. THREE-DIMENSIONAL FLOQUET
FERMIONIC TORIC CODE

In this section, we present a Floquet code that has ISGs
that are FDLQC equivalent to the 3D FTC [11,24]. The
construction is based on the 3D generalization of Kitaev’s
honeycomb model introduced in Ref. [12], which has a
fixed-point gapped Hamiltonian of the (static) 3D FTC.
Even though the 3D FTC encodes three logical qubits, our
Floquet code with 3D FTC ISGs only encodes a single
logical qubit on a system with periodic boundary condi-
tions due to inadvertently measuring a subset of the logical

x

z

y

(1, 0, 0)
(0, 1, 0)

(0, 0, 1)

FIG. 17. The 3D FTC is defined on a trivalent lattice. The
edges are labeled x (red), y (black), and z (blue), corresponding
to XX , YY, and ZZ checks.

operators. Again, we utilize a rewinding schedule to avoid
measuring the logical operators for the remaining logical
qubit.

A. Sixteen-round measurement schedule

Our first example is defined on the trivalent lattice in
Fig. 17 with periodic boundary conditions [25]. We place
a qubit at each vertex and label the edges x, y, and z, as in
Fig. 17. The two-body check operators on edges x, y, and
z are XX , YY, and ZZ, respectively.

Similar to the 2D Floquet TC in Sec. III A, the stabi-
lizers of the check group are generated by products of
the two-body checks along closed paths, which include
stabilizers supported on noncontractible paths. The local
generators of the stabilizer group are ten-body products
of check operators around a plaquette. Given the shape
of these plaquettes, we refer to these stabilizers as the
“armchair” stabilizers. There are four possible orientations
for the armchairs: front, back, left, or right facing [see
Figs. 18(a)–18(d)]. For each 3-cell, there exists a local rela-
tion between four armchair stabilizers, with one facing in
each direction, as pictured in Fig. 18(e). Thus, we only
need to infer the measurement outcomes of three out of
the four orientations of armchair stabilizers.

Y

Y

Y

Y
Y

X

Y

X

Z

Z

(a)

XY Z

Z Z

YXZ

ZZ

(b)

Y
X

Z

Z Z

Z Z

Z
X

Y

(c)

Y
X

Z

YY

Y
Y Y

X
Z

(d) (e)

FIG. 18. There are four types of local generators of the stabilizer group: the (a) front, (b) back, (c) right, and (d) left armchair
stabilizers, which are equivalent to a product of checks around the plaquette. (e) The four armchair stabilizers satisfy a local relation.
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C A

B D
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B D
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D

(d)

FIG. 19. (a)–(d) The front-facing armchair stabilizers can be inferred from five rounds of measurements. The measurements in
rounds 0–3 are shown in brown, green, blue, and pink, respectively. The final round is a repetition of round 0. The measurements
for the back-facing and left-facing armchairs are defined similarly. The labels A, B, C, and D shown for the front-facing armchair
stabilizers are decided according to the pairs of rounds of checks used to infer them, i.e., 01, 12, 23, and 30, respectively, as described
in the text; see also Fig. 20.

Our measurement schedule is designed to extract the
syndrome for one orientation of armchair stabilizers at a
time. We use a separate set of five rounds of measurements
to infer the front-, back-, and right-facing armchair sta-
bilizers. We do not need to infer the measurement of the
left-facing armchairs, given the local relation in Fig. 18(e).
The five rounds of measurements are shown in Fig. 19 and
are labeled 0, 1, 2, 3, and 0, where the 0 round is repeated at
the end of the cycle. If we label the armchairs of a unit cell
as A, B, C, and D, as in Fig. 20, we see that after applying
consecutive 01, 12, 23, and 30 checks, the A, B, C, and D
armchair stabilizers are inferred, respectively. Therefore,
the above schedule measures all the armchair stabilizers
for a given orientation, as desired. We proceed similarly
for the back- and right-facing armchair stabilizers.

Naively, a potential measurement schedule is to period-
ically measure the sequence FBR, where F, B, and R stand
for the five-round measurement schedules for extracting
the front, back, and right-facing armchair syndromes. This

BD

CA

A C

D B

A

AAAAA

A

D D

D

A

FIG. 20. There are four labels for the armchairs: A, B, C, and
D. The labels for front-facing armchairs are written with the
usual orientation of A, B, C, D, while those for the right- and
back-facing armchairs are tilted and reflected. The labels for the
B and C right-facing armchairs do not appear in this portion of
the lattice.

schedule, however, does not exhibit any dynamically gen-
erated logical qubits. This is because, in transitioning
between the orientations, e.g., F to B, we inadvertently
measure the stabilizers supported along noncontractible
paths around the torus. Specifically, in transitioning from
F to B, B to R, and R to F, we measure the logical opera-
tors supported on noncontractible paths along the (1, 0, 0),
(0, 1, 1), and (1, 0, 1) directions, respectively (see Fig. 21).
As such, the FBR schedule gives a Floquet code that does
not encode any qubits.

To rectify this, we rewind the schedule at the level of
the armchair orientations, i.e., we periodically measure the
sequence FBFR. This sequence avoids the transition from
B to R, implying that we do not inadvertently measure
the stabilizer supported on a noncontractible path along
the (0, 1, 1) direction. We note that the second five-round
sequence F can be replaced with a single round of 0 mea-
surements for the front-facing armchair. In summary, our
schedule consists of repeating the following sequence of
16 rounds of measurements:

(0, 1, 2, 3, 0)F(0, 1, 2, 3, 0)B0F(0, 1, 2, 3, 0)R (4)

with the subscripts denoting the orientations of the arm-
chairs. This modification to the FBR schedule ensures that
we retain a single dynamically generated logical qubit.

After each round of measurements, the ISG is FDLQC
equivalent to the 3D FTC. To verify this, we use the
entanglement renormalization group [26,27] to construct
an explicit circuit to map the ISGs to the canonical form of
the 3D FTC, as shown in Ref. [45]. We note that, at a high
level, the stabilizers of the check group generate a so-called
anomalous two-form symmetry [24], i.e., the symmetry
operators (the stabilizers) are supported on loops and the
pointlike excitation at the endpoint of a truncated string
operator has nontrivial (in this case fermionic) exchange
statistics. This implies that each ISG has an anomalous
two-form symmetry, which is sufficient to guarantee that
the ISGs necessarily have an emergent fermion.
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FIG. 21. Logical operators are inadvertently measured using the FBR schedule when transitioning between inferring the armchair
stabilizers with different orientations. The logical operators measured in the transitions (a) F to B, (b) B to R, and (c) R to F are shown.
We note that the two specified A plaquettes are sufficient to determine the labeling of the other plaquettes.

The 3D FTC has three logical qubits on a system with
periodic boundary conditions. However, given that our
schedule inadvertently infers the measurement of the stabi-
lizers supported on noncontractible paths along the (1, 0, 0)

and (1, 0, 1) directions, our Floquet 3D FTC encodes a sin-
gle logical qubit. The logical Pauli-Z operator can be rep-
resented by a product of two-body check operators along
the (0, 1, 0) direction, as in Fig. 22(a). This can be inter-
preted as the nonlocal stabilizer of the check group that
remains unmeasured throughout the measurement sched-
ule. The logical Pauli-X operator can be represented by
an operator supported on a membrane perpendicular to the
(0, 1, 0) direction [Fig. 22(b)]. We find that the sequence
(0, 1, 2, 3, 0)F implements the trivial automorphism (and
similarly for the B and R sequences). Thus, due to the
rewinding nature of the FBFR schedule, the full 16-round
period undergoes a trivial automorphism.

VII. DISCUSSION

In this paper, we constructed examples of 3D topologi-
cal Floquet codes with ISGs that are FDLQC equivalent to

the 3D TC, X-cube model, and 3D fermionic TC. We also
construct the 2D Floquet color code in Appendix A. To
construct the 3D Floquet codes, we utilize rewinding mea-
surement schedules and their description in terms of the
evolution of condensation checks. As mentioned in Sec. I,
we expect the principles behind our explicit microscopic
examples to aid in the construction of a wider class of Flo-
quet codes, including those with quantum LDPC codes as
ISGs. Below, we comment on aspects of our Floquet codes
that could lead to directions for future work.

A. Local reversibility and possible fault tolerance

In Ref. [17], it was suggested that the local reversibil-
ity of a topological Floquet code could imply the existence
of a nonzero threshold. We consider the implications of
this conjecture for our Floquet codes. To do this, we first
state some definitions from Ref. [17] for completeness. If
every consecutive pair of ISGs in a Floquet code form a
locally reversible pair then the code is said to be locally
reversible. To define a locally reversible pair of ISGs, we

X
X

X
X

X X
X X

(a) (b)
Y

Y

Y

Z

Z

Y

FIG. 22. The Floquet 3D FTC encodes one logical qubit. (a) The Z logical operator is a product of two-body check operators along
the (0, 1, 0) direction. (b) The X logical operator can be represented by an operator supported on a membrane that is orthogonal to the
string of the logical Z operator.
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first define a locally generated ISG. An ISG is locally gen-
erated above a subgroup if there is a set of local operators
that, along with the subgroup elements, form a generat-
ing set of the ISG. The ISGs in our Floquet codes are
all locally generated above a subgroup, with the subgroup
being the intersection of two ISGs. Now, two ISGs, let
us say 0-ISG and 1-ISG, form a locally reversible pair if,
(a) for both of them, there is a choice of local generat-
ing sets above the intersection (LGAI) of the two ISGs,
i.e., we have 0-LGAI and 1-LGAI, respectively, with the
intersection subgroup 0-ISG ∩ 1-ISG, and if (b) one gen-
erator from 0-LGAI (1-LGAI) anticommutes with exactly
one generator from 1-LGAI (0-LGAI). Such anticommut-
ing pairs are referred to as conjugate pairs. In Appendix A,
we show how local reversibility holds for our Floquet color
code construction. Hence, based on the abovementioned
conjecture, we expect it to have a nonzero fault-tolerant
threshold.

We expect the schedules for the 3D Floquet TC and 3D
Floquet FTC to also be locally reversible. There are non-
local stabilizers in the ISGs, but they exist as stabilizers
in the intersection of any consecutive pair of ISGs and
do not preclude the existence of locally conjugate gener-
ating sets. Here, we discuss only the reversibility (instead
of local reversibility) of ISGs in the 3D Floquet TC. We
can consider the pair of ISGs, 3D TC in the G round, and
a subspace of two copies of 3D TCs in the B round. Any
string logical operator of the G ISG 3D TC is indeed also
a logical string operator of the ISG of two copies of 3D
TCs up to nonlocal stabilizers. Hence, the two ISGs share
their full set of logical operators and, hence, as defined in
Ref. [17], this is a sufficient criterion for reversibility.

B. Bifurcation of the topological order under
measurements

In the 3D Floquet TC, we observed that, as the con-
densation checks evolved into four-qubit operators, we
obtained the ISG of two copies of the 3D TC, up to non-
local stabilizers. Starting from stacks of TCs, if we are
allowed measurement of higher-but-constant-weight con-
densation checks, we can obtain a higher constant number
of copies of the 3D TC. It would be interesting to see if
there is a Floquet code arising from coupled layers, such
that the condensation checks always evolve by a constant
factor so that the topological order self-bifurcates under
every round of measurements [28]. A similar question
holds for the bifurcation of the Floquet codes of frac-
ton models under measurements as in the X-cube Floquet
code; we observed a splitting of the X-cube topologi-
cal order into the X-cube model and TCs. Bifurcation is
already known to occur for the fracton topological order
under the entanglement renormalization group [26,27,29].
However, topological orders are conventional fixed points
under the entanglement renormalization group. Thus, it is

interesting to explore if, under specialized measurement
sequences, the conventional topological order such as the
3D TC can exhibit bifurcation. On the other hand, it would
also be interesting to explore if there is a fundamental
obstruction to having such measurement dynamics.

C. Three-dimensional Floquet TC on a fractal

In Sec. IV C, we discussed the planar realization of
the 3D Floquet TC. It is known that in the 3D TC, one
can punch holes with smooth boundaries to build a frac-
tal lattice code embedded in three dimensions with fractal
Hausdorff dimension 2 < DH < 3 [30,31]. Starting with
the G ISG, we can, in principle, punch holes with smooth
boundaries by truncating the checks across the red and blue
edges. In subsequent rounds, as discussed in Sec. IV C,
these boundaries always remain loop-condensing bound-
aries, although they may become loop-condensing bound-
aries of two copies of the 3D surface code (3D TC with
boundaries) depending on the round. Thus, we expect our
construction with holes to yield a Floquet code with ISGs
that are fractal surface codes embedded in three dimen-
sions [30,31]. It would be interesting to explore such
Floquet codes on fractal lattices further for both memory
and computation.

D. Classification of measurement schedules

One fundamental question motivated by our work is
what schedules exist for a given check group and what
automorphisms of the logical information they exhibit. For
instance, in Appendix A, we write three schedules for the
Floquet color code, one which exhibits a Z3 automor-
phism of logical operators, a rewound version that exhibits
a trivial automorphism, and another six-round schedule
that exhibits a trivial automorphism. It would be interest-
ing to determine whether there is a notion of equivalence
between the two schedules with a trivial automorphism,
such as the notion of simple equivalence discussed in
Ref. [17]. It would also be interesting to have a recipe
to construct the inequivalent Floquet codes, given a set of
checks on a lattice. For the 3D Floquet FTC, we presented
a schedule with 16 rounds that preserved one logical qubit.
A more efficient schedule could exist: one that preserves all
logical qubits. However, our attempts with different sched-
ules and on different trivalent lattices were unsuccessful.
Hence, we leave this as a future direction.

One potential source of inspiration for new sched-
ules, although not periodic, comes from the authors of
Refs. [32,33], who considered weighted random measure-
ments of XX , YY, and ZZ checks in the 2D Floquet TC on
the honeycomb lattice. In particular, they found a regime in
which the topological information is protected. One could
consider such schedules for our Floquet code examples,
especially for the 3D Floquet FTC. We were not able to
preserve all three logical qubits, but this may be possible
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with an appropriate random measurement schedule; simi-
lar to the 2D case, we expect that there is a regime in which
all three logical qubits are preserved under the dynamics.

The MATHEMATICA codes used in this paper are avail-
able from GitHub [45].
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APPENDIX A: TWO-DIMENSIONAL FLOQUET
COLOR CODE

In this appendix, we construct the 2D Floquet color
code, whose ISGs are FDLQC equivalent to the 2D color
code. We then discuss the Z3 automorphism of logical
operators and the construction of a rewinding schedule that
trivializes the automorphism.

The Floquet color code is based on the topological sub-
system code of Ref. [36], which is defined on the ruby
lattice with a qubit at each vertex, as depicted in Fig. 23(a).
The group of check operators is generated by two-qubit
operators, specified by assigning a label x, y, or z to each
edge of the lattice. The corresponding check operators on
the x, y, and z edges are the two-qubit Pauli operators, XX ,
YY, and ZZ, respectively [37].

The stabilizers of the check group are generated by
two types of operators, both of which are supported on
each “inflated” hexagon of the ruby lattice, as shown in
Fig. 23(a). We call the generator that is a product of Z
operators around a hexagon the hexagon stabilizer, and the
generator that is a product of X and Y operators the inflated
hexagon stabilizer.

1. Three-round measurement schedule

The measurement schedule of the Floquet color code
consists of three rounds, labeled 0, 1, and 2, with the
checks of each round shown in Fig. 23(b). We note that
this schedule is also given in Ref. [38] in the context of
the topological subsystem code [39]. This schedule ensures
that the stabilizers of the check group are inferred once
every cycle.

In each round, the ISG is FDLQC equivalent to the color
code. We demonstrate this for round 2 by showing that the

ISG is precisely the color code concatenated with the three-
qubit repetition code. In round 2, the measured checks
consist of ZZ operators on every edge of the triangles.
Since there are three qubits and two independent checks
per triangle, an effective qubit (three-qubit repetition code)
lives on each triangle with effective Pauli operators

Xeff = XYY ≡ XXX , Zeff = ZII ≡ ZZZ, (A1)

where “≡” is the equivalence up to the two-qubit ZZ
checks. In terms of the effective Pauli operators, the instan-
taneous stabilizers reduce to those of the color code. There-
fore, the round-2 ISG is the color code up to concatenation
with three-qubit repetition codes. For rounds 0 and 1, the
FDLQCs that map the ISGs to the color code are given in
Ref. [45].

As an aside, the logical gates that can be implemented
transversally for the (CSS) color code [40,41] can still be
implemented transversally in round 2 when the ISG is
the color code up to concatenation with three-qubit repe-
tition codes. If we label the four logical qubits 1 through
4 then the transversal logical gates for a single copy
of the color code (in particular the choice of basis) are
CNOT12CNOT34 and SWAP12SWAP34. To realize the former,
we act with Seff = SII on one orientation of triangles (say,
left pointing) and S†

eff = S†II on the other orientation (right
pointing) after the second round of measurements. Simi-
larly, we can act with an effective Hadamard gate Heff =
(Xeff + Zeff)/

√
2 on all triangles to realize the latter logical

gate.
Since the logical information is preserved under the Flo-

quet code dynamics, these gates can be done in round 2
and the processed logical information carries over to sub-
sequent rounds. We note that a planar realization of the
color code would allow for a transversal implementation
of all logical Clifford gates [41,42]. We leave the construc-
tion of a planar variant of our Floquet color code to future
work.

2. The Z3 automorphism of logical operators

Given that the ISGs are FDLQC equivalent to the color
code, the Floquet color code encodes four logical qubits
on a torus. This implies that the Floquet code has two
dynamically generated logical qubits since the topologi-
cal subsystem code of Ref. [36] hosts only two logical
qubits. We refer to the logical operators of the subsys-
tem code as the static logical operators and the logical
operators, which are neither static logical operators nor
nonlocal stabilizers of the check group, as the dynamically
generated logical operators [43]. Indeed, since the static
logical operators have representations that commute with
all check operators, they do not evolve under the dynam-
ics. As discussed below, there is a nontrivial automorphism
of the dynamically generated logical operators after a full
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(c)

(d)

(a) (b)

FIG. 23. (a) The ruby lattice on which the Floquet color code is defined. The edges of the hexagon are labeled x and y, which
correspond to the XX and YY check operators. All the edges connecting different colored hexagons are labeled z, corresponding to a
ZZ check operator. The generators of the stabilizer group consist of two operators supported on every “inflated” hexagon. We show the
two generators on two green inflated hexagons on the right. (b) The three-round schedule of measurements of the Floquet color code;
all the checks on the triangle are measured in round 2, but only some are shown for clarity. (c) Instantaneous square stabilizers in rounds
0 and 1 that form from products of checks in preceding rounds. These square stabilizers are significant in the effective measurement or
inference of the stabilizers on the green inflated hexagon and in working out the automorphism of logical string operators. In (c) and
(d), the checks of the current round are shown in black and the checks of the next round are shown in gray. (d) The Z3 automorphism
of dynamically generated logical operators of the Floquet color code.

period. This automorphism happens through multiplication
with dynamically generated logical operators that belong
to the check group, but do not commute with all the ele-
ments of the check group. This is in contrast to the 2D
Floquet TC, where the automorphism happens due to mul-
tiplication with a dynamically generated logical operator
that belongs to the center of the check group and has been
referred to as the inner logical in Ref. [1].

For the three-round Floquet cycle, the dynamically gen-
erated logical operators exhibit a Z3 automorphism, as
shown in Fig. 23(d). The logical operator representation
in each round r commutes with the ISGs of rounds r and
r + 1. The logical operator representation in each round r
is related to that in the preceding round r − 1 via multi-
plication with the ISG stabilizers of round r. Besides the
checks measured in round r, we used the instantaneous
square stabilizers shown in Fig. 23(c) to work out the
representations. Since there are no nonlocal stabilizer gen-
erators of the check group, the automorphism occurs due

to multiplication with products of dynamically generated
logical operators belonging to the check group. In other
words, the product of the check operators that get multi-
plied after a full cycle is a logical of the ISG, but not a
static logical or a nonlocal stabilizer of the check group.
Because of the Z3 automorphism that occurs every three
rounds, it takes nine rounds for a trivial automorphism.

To see the automorphism explicitly, we can apply the
mapping to effective qubits in round 2 [Eq. (A1)] to the
string operators shown in Fig. 23(d). In the first instance
of round 2, we find that the logical consists of Zeff = ZII
on each triangle connecting the red plaquettes. If we trun-
cate such a string in the effective color code pictures, the X
and Y red plaquettes of the effective color code will be vio-
lated. In the second instance of round 2, we have a string
of Xeff = XYY on each triangle connecting blue plaquettes.
Thus, truncating such a string will violate the Y and Z blue
plaquettes of the effective color code. Lastly, in the third
instance of round 2, the strings are a product of Yeff = XXY
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connecting green plaquettes. Truncating these strings will
violate the X and Z green plaquettes of the effective color
code.

3. Six-round rewinding schedule

Instead of trivializing the automorphism through nine
measurement rounds, we can use the six-round rewinding
schedule 012102, in which the Z3 automorphism action
after 012 is rewound back. The evolution of logical oper-
ator representations is the same as shown in Fig. 23(c) for
any three consecutive rounds with 0-, 1-, and 2-checks.
In principle, this rewinding schedule enables the construc-
tion of the Floquet color code on a triangular geometry,
such as in Refs. [41,42]. Below, we write another six-round
schedule for the Floquet color code, which exhibits a triv-
ial automorphism. It would be interesting to see if that
six-round schedule is equivalent to the above rewinding
schedule using some notion of equivalence, such as simple
equivalence discussed in Ref. [17].

4. Condensation picture

It is insightful to understand the Floquet codes in this
work in terms of sequences of condensations in a parent
stabilizer code [14]. As mentioned in Sec. II C, a natural
generating set for the stabilizer group of the parent stabi-
lizer group is the stabilizers of the check group and closed
loops of checks from each round that commute to form a
stabilizer group. For the Floquet color code, we write down
a parent stabilizer code, as shown in Fig. 24. Since none

1

1

1

0

0

0

0

0

00

0
2 2

FIG. 24. Stabilizers in the parent stabilizer code for the Flo-
quet color code. The stabilizers shown and the static stabilizers
shown in Fig. 23(a) form the stabilizer generators of the parent
code. We show how these stabilizers are products of checks of
rounds 0, 1, and 2 around closed loops. We have six-body X sta-
bilizers around the red and blue hexagons, formed from products
of 0-checks. We have six-body X stabilizers around the green
hexagons made from products of 1-checks. We have four-body
stabilizers of two kinds on the squares between the green and
blue hexagons. One kind is a product of 0-checks, and the other
one is a product of 2-checks, as shown. The resulting parent
stabilizer code is FDLQC equivalent to two copies of the color
code.

(a) (b)

FIG. 25. (a) Local reversibility of ISGs in rounds 0 and 1 of the
Floquet color code. The 0-checks on the red hexagon are marked
using thick edges. Their conjugate partner 1-checks are marked
using a thin edge of the same color as the 0-check. The circled
checks are the checks that we do not need to consider to form the
pairs of conjugate local operators above the intersection of 0-ISG
and 1-ISG; the intersection includes the product of 0-checks and
the product of 1-checks around the hexagon. (b) Local reversibil-
ity of ISGs in rounds 1 and 2 of the Floquet color code. The
1-checks on the red hexagon are marked using thick edges. Their
conjugate partners are products of 2-checks that are marked using
thin edges of the same color as the 1-check. We do not need to
consider the circled checks in the pairs of conjugate local opera-
tors above the intersection of 1-ISG and 2-ISG; the intersection
contains the product of all 1-checks on the red-inflated hexagon
and the inflated hexagon stabilizers of the check group.

of the individual ISG checks are included in the parent
stabilizer code, the measurements of the check operators
can then be interpreted as condensing an excitation of this
parent stabilizer code, resulting in the ISGs of the Floquet
code. The parent code shown in Fig. 24 is FDLQC equiv-
alent to two copies of the color code or four copies of the
TC. The exact circuit to map this code to four copies of the
TC is given in Ref. [45].

5. Local reversibility

In Sec. VII A 1, we mentioned the definition of local
reversibility used in Ref. [17] and the conjecture that it
could imply a nonzero fault-tolerant threshold. We now

1
5

3

2,4
0,3

0,2

2,5

1,4
0,4

FIG. 26. Six-round schedule that has the trivial automorphism
of dynamically generated logical operators.
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discuss the local reversibility of the Floquet color code.
The reader is advised to check Sec. VII A 1 for defini-
tions. In the Floquet color code, the intersection 0-ISG ∩
1-ISG contains the product of 0-checks and the product
of 1-checks around each hexagon. Hence, we can remove
one 0-check and 1-check from our local generating sets.
The removed checks and conjugate pairs for 0- and 1-
ISGs are illustrated in Fig. 25(a). The pairs of ISGs in
rounds 1 and 2 as well as rounds 2 and 0 are also locally
reversible. We now explain this for a pair of rounds 1 and
2. The intersection 1-ISG ∩ 2-ISG includes the product of

1-checks on the inner and outer boundaries of the red-
inflated hexagons and the stabilizers of the check group
on each of the three inflated hexagons. Hence, we remove
one 1-check and three 2-checks on the red-inflated hexagon
from our consideration because we need to form the conju-
gate pairs only above the intersection. Then, the conjugate
pairs are the products of 2-checks in a chain whose one
end intersects with its conjugate partner 1-check in one
qubit and the other end intersects the removed 1-check.
The removed checks and conjugate pairs for 1- and 2-ISGs
are illustrated in Fig. 25(b).
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FIG. 27. Top row: effective color code ISG stabilizers after measurements of round 0 and round 1, respectively, in the six-round
Floquet color code with trivial automorphism. The thick black edges indicate the check operators measured in the current round. The
six stabilizer generators, two for each inflated hexagon, are shown in terms of effective edge logical operators Xe and Ze. On an edge
with XX check, Xe = ZZ, Ze = XI , on an edge with YY check, Xe = XX , Ze = YI , and on an edge with ZZ check, Xe = XX , Ze = ZI .
The hexagon stabilizers are shown inside the hexagons, while all the Pauli operators outside the hexagon form the inflated hexagon
stabilizer. For round 0, the stabilizer shown in brown is a ZZZZ operator left invariant from the previous round of measurements and is
expressed as XeXe in terms of the effective edge Pauli operators. Right: for round 1, the stabilizer shown in brown is a ZZYY operator
left invariant from the product of ZZZZ and IIXX measured in the previous two rounds of measurements; it is expressed as ZeZeZeZe
in terms of the effective edge Pauli operators. Bottom row: the trivial automorphism of a logical operator in the six-round Floquet
color code. The thick black edges indicate the check operators measured in the current round, and the gray edges indicate the checks
measured in the next round.
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6. Alternative six-round Floquet color code schedule
with trivial automorphism

We now specify a variant of the Floquet color code that
exhibits a trivial automorphism of the logical operator rep-
resentations but is not a rewinding schedule. The schedule
is depicted in Fig. 26. This schedule is designed so that the
hexagon and inflated hexagon stabilizers of the blue pla-
quettes can be inferred from rounds 0 and 1. Similarly, the
stabilizers associated with the green and red hexagons and
inflated hexagons can be inferred from the 2, 3 and 4, 5
measurement rounds, respectively.

The ISGs after rounds 0 and 1 are shown in Fig. 27. The
ISGs for rounds 2, 3, 4, 5 can be determined by applying
the lattice symmetries. Using entanglement renormaliza-
tion, we find that each ISG is FDLQC equivalent to the
color code. The explicit FDLQCs, written using the poly-
nomial representation [27,44], can be found in Ref. [45].

APPENDIX B: COUNTING OF LOGICAL QUBITS
IN THE 3D FLOQUET TC

The counting of logical qubits in the G ISG is straight-
forward due to its mapping to the cubic lattice 3D TC up
to concatenation with two-qubit repetition codes. The local
relations among plaquette stabilizers on the cubes in the
cubic lattice 3D TC map to the local relation among checks
as shown in Fig. 28. Here, we state the counting of logical
qubits in the cubic lattice 3D TC, which implies the same
for the G ISG. On a torus with linear size L, there are 3L3

physical qubits, 3L3 plaquette stabilizers with L3 − 2 inde-
pendent local relations among them, L3 vertex stabilizers

with one global relation among them. Thus, we get three
logical qubits.

For the B ISG, the evolved condensation checks are
either local operators, as shown in Fig. 8, or nonlocal
stabilizers, as shown in Fig. 9. We also have blue-green
plaquettes as stabilizers in the ISG. Besides that, we have
the stabilizers of the check group and the blue checks as
stabilizers of the ISG. It is again useful to work in the effec-
tive picture of a three-foliated stack of 2D rotated TCs and
consider the condensation checks and nonlocal stabilizers
on top of that. We start with the stack of 2D rotated TCs
with periodic boundary conditions, and we now have the
X ⊗4 condensation checks in the configuration, as shown
in Fig. 10(a). On every cube of this lattice, we have a Z
stabilizer as described above, i.e., it is the product of Z
stabilizers among three plaquettes sharing the canonical
corner associated with the cube. These Z stabilizers corre-
spond to the vertex operators of the two copies of 3D TCs.
We assume the linear system size L to be even here and in
the discussion on automorphism below. This is because in
the B ISG, having an odd number of cubes on a torus will
lead to a spatial defect in the configuration of condensation
checks shown in Fig. 10(a), and we avoid such a scenario
for simplicity. There are L3 cubes and thus L3 such Z sta-
bilizer operators. There are two relations among these Z
stabilizers, one on each sublattice, leaving us with L3 − 2
independent Z stabilizers. There are 3L2 X -plaquette stabi-
lizers and 3L × L2/4 condensation stabilizers, where 3L is
the number of planes. The number of relations among the
X stabilizers is L3/4 + 4. The form of relations is com-
plicated and is shown in Ref. [45]. Considering the three

(a) (b)

FIG. 28. (a) A local relation in the 3D TC stabilizer group obtained from condensation in stacks of square-lattice TCs; the product
of the ZZZZ-plaquette operators of 3D TCs on the six plaquettes around a cube and the ZZ condensation checks on the encircled pairs
of qubits is equal to the identity. To understand the local relation in the G ISG of the Floquet code, we also show the square-octagon
plaquettes corresponding to plaquettes involved in the local relation shown in (a). (b) The corresponding local relation in the G ISG of
the 3D Floquet TC on the associated lattice (stacks of the 2D square-octagon lattices). It is a product of condensation checks (shown
using thick dark green arcs), green checks (shown in thick green), and the square plaquette operators (which are products of red and
blue checks highlighted using thick lines).
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FIG. 29. Effective description of the B ISG of the X-cube Floquet code in terms of rotated 2D TC layers and evolved condensation
checks that couple them. (a) The rotated 2D TC layers are shown along with the plaquette stabilizers. (b) The unit cell of the effective
3D lattice. There are four kinds of cubes labeled A, B, C, and D. (c) For each cube, the product of Z-plaquette stabilizers of 2D TCs
around it forms a stabilizer of the B ISG. (d) The evolved condensation checks in the B ISG are X -stabilizer operators. They are
defined on the plaquettes where Z stabilizers of the 2D TC live but act on the qubits in the foliations orthogonal to the plaquette; see
the difference in color of the Pauli operators and the edges of the plaquette.

nonlocal stabilizers, we get three logical qubits for the B
ISG. The B ISG can be mapped via an explicit circuit
to two copies of 3D TCs up to nonlocal stabilizers; see
Ref. [45]. The counting of logical qubits in the other ISGs
is similar to the counting for the G ISG or B ISG.

APPENDIX C: EFFECTIVE DESCRIPTION OF
THE B ISG OF THE X-CUBE FLOQUET CODE

To calculate the number of logical qubits explicitly
using the relations of stabilizers in the B ISG, we use the
effective description of a three-foliated stack of rotated 2D
TCs. The stabilizers of the B ISG, including the evolved
condensation checks, are shown in Fig. 29. The X stabiliz-
ers of the rotated 2D TC layers are also X stabilizers of the
B ISG. The product of Z stabilizers of 2D TC layers around
each cube of the 3D lattice forms a stabilizer of the B ISG.
Besides these, on every plaquette corresponding to the Z
stabilizer of the 2D TC layer, there lives an X stabilizer
acting on the qubits of the orthogonal foliations. These are
the evolved condensation checks.

For counting of logical qubits, we consider linear system
size L = 2n, where L is the number of cubes along each
lattice direction since the unit cell as shown in Fig. 29(b)
consists of an even number of cubes along each direction.
We have 3L3/2 X -plaquette stabilizers, L3 Z-cubic sta-
bilizers and 3L3/2 evolved condensation stabilizers. This
gives a total of 4L3 stabilizers. For the X -plaquette sta-
bilizers of the 2D TCs, there is a relation in each plane,
and, hence, there are 3L planar relations. Besides these, we
have L3 local relations among the X -plaquette stabilizers
and evolved condensation checks, which are also X -type
stabilizers. There is a global relation formed from the prod-
uct of cubic Z stabilizers of each type (A, B, C, and D,
respectively). However, only three of them are indepen-
dent. There is a relation among the cubic stabilizers on

every dual lattice plane. Considering the aforementioned
global relations, there are 3(L − 1) such independent pla-
nar relations. Thus, there are 3L + 3 + 3(L − 1) global
relations and L3 local relations, giving overall 6L + L3

relations among the stabilizers. Considering 3L3 physical
qubits, we have 6L logical qubits.

Because of the three nonlocal stabilizers as described in
the main text, we have 6L − 3 logical qubits that are actu-
ally preserved. This is expected since the preceding ISG
(G ISG) is the X-cube model (up to concatenation) and has
6L − 3 logical qubits.
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