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Monitored quantum dynamics—unitary evolution interspersed with measurements—has recently
emerged as a rich domain for phase structure in quantum many-body systems away from equilibrium.
Here we study monitored dynamics from the point of view of an eavesdropper who has access to the
classical measurement outcomes, but not to the quantum many-body system. We show that a measure
of information flow from the quantum system to the classical measurement record—the informational
power—undergoes a phase transition in correspondence with the measurement-induced phase transition
(MIPT). This transition determines the eavesdropper’s (in)ability to learn properties of an unknown initial
quantum state of the system, given a complete classical description of the monitored dynamics and arbi-
trary classical computational resources. We make this learnability transition concrete by defining classical
shadow protocols that the eavesdropper may apply to this problem, and show that the MIPT manifests as a
transition in the sample complexity of various shadow-estimation tasks, which become harder in the low-
measurement phase. We focus on three applications of interest: Pauli expectation values (where we find
the MIPT appears as a point of optimal learnability for typical Pauli operators), many-body fidelity, and
global charge in U(1)-symmetric dynamics. Our work unifies different manifestations of the MIPT under
the umbrella of learnability and gives this notion a general operational meaning via classical shadows.
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I. INTRODUCTION

Recent advances in our ability to address and read
out individual degrees of freedom in many-body quan-
tum systems have motivated interest in new types of
dynamics where the role of the observer is central. In
these monitored dynamics [1–5], the observer’s measure-
ments shape the evolution of the system and drive it to
sharply different possible ensembles of late-time states.
These ‘measurement-induced phase transitions’ (MIPTs)
thus define a new paradigm for phase structure in open
systems away from equilibrium. At the same time, these
technological developments have raised the salience of
quantum state learning—the general problem of character-
izing properties of unknown, potentially complex quantum
states with as few measurements as possible [6,7]. In
this work we connect these two threads by formulating
MIPTs as learnability transitions within the framework of
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classical shadows, a leading practical approach to state
learning.

The canonical formulation of the MIPT is in terms of a
phase transition in the entanglement properties of ensem-
bles of quantum trajectories [1–3]. In the standard setup,
the system evolves through random circuit dynamics com-
posed of local unitary gates interrupted by local projective
measurements with probability p . As the measurement
rate p is tuned, the ensemble of late-time trajectories
undergoes a phase transition from a disentangling phase
in which trajectories display area-law entanglement (at
high p , corresponding to frequent measurements) to an
entangling phase in which trajectories display volume-law
entanglement (at low p , corresponding to infrequent mea-
surements). (Models of dynamics with additional struc-
ture, e.g., fermionic Gaussian systems [8–10] or systems
that obey a symmetry [11–13], may exhibit different phe-
nomenology and richer phase diagrams. Here we focus on
the more generic scenario of non-Gaussian dynamics with-
out symmetries.) While the p = 0 and p = 1 limits are
transparent, the existence of a robust volume-law phase at
any finite measurement rate is, a priori, surprising. While
local unitary gates can generate entanglement only at the
boundary of a subsystem, disentangling measurements act
everywhere in the bulk: a (naïvely) imbalanced competition,
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which should always favor the area-law phase. A key
insight for understanding the stability of the volume-law
phase was furnished in Refs. [14,15], which posited that
the volume-law phase can be understood as a dynamically
generated random code in which the correlations between
two subsystems are hidden in highly nonlocal degrees of
freedom, inaccessible to local measurements. This nat-
urally leads to two complementary information-theoretic
perspectives on the MIPT: (a) the coding perspective and
(b) the learning perspective, discussed below. The latter is
the focus of this work.

A. Coding

The coding perspective is primarily understood from
the point of view of an experimentalist, Alice, control-
ling a quantum system, see Fig. 1(a). Over the course
of the dynamics, measurements are performed on the
system (either by Alice herself or by a particular type
of “environment” that broadcasts the measurement out-
comes). These measurements disturb the initial state of
the system. In order to undo this disturbance as much as
possible, Alice can perform “recovery” operations on the
combined final state of the quantum system and classical
measurement apparatus—concretely, she decodes the

measurement record m (which is a binary string of mea-
surement outcomes indexed by spacetime locations) to
decide on a unitary operation Um to apply to the quan-
tum state. As a function of parameters in the monitored
dynamics (typically the space-time density of measure-
ments set by p), Alice’s ability to recover her initial state
undergoes a phase transition: on the entangling side, she
can successfully recover an extensive amount of quantum
information; on the disentangling side, only a subexten-
sive amount. (This setup can equivalently be formulated in
terms of Alice’s ability to reconstruct a message sent to her
by Bob over a noisy quantum channel.)

We refer to this point of view as the coding per-
spective on the MIPT [14,15], due to its close analogy
with quantum error correction (QEC) [16–18]. The mea-
surement record m serves as the “syndrome” and the
conditional unitary Um as the correction or recovery oper-
ation (more accurately, in this setting the measurements
play a dual role—both as the “errors” that disturb the
encoded information, and as the syndromes that allow for
its in-principle recovery); the MIPT arises as a phase tran-
sition in the rate of this code, i.e., the ratio of logical
qubits to physical qubits, which goes from finite to vanish-
ing. In other words, in the entangling phase an extensive
amount of quantum information survives in the combined

(a) (b)

FIG. 1. Different perspectives on measurement-induced phases of quantum information. (a) Coding perspective. A state ρ of a
quantum many-body system is subject to monitored dynamics, possibly after an encoding or “prescrambling” step (the global unitary
V). The measurement record m is stored in a classical system, here represented by the lab notebook. The experimentalist, Alice, has
access to both the quantum and classical systems (green shaded box). After the dynamics, through classical computation conditioned
on the measurement record m, Alice can in principle find a recovery operation Um and apply it to the quantum system. There is a
phase transition in how many qubits from the initial state ρ can be recovered in this way, i.e., in the coding properties of monitored
dynamics. (b) Learning perspective. An eavesdropper, Eve, has access only to the classical system (red shaded box). She attempts to
learn properties of ρ by estimating functions f (ρ) [e.g., expectation values Tr(ρO)] via classical shadows. There is a phase transition in
the sample complexity of these estimation tasks—i.e., in the learnability of the state ρ from the measured data m. The two perspectives
(a),(b) are dual to each other and the transitions coincide.
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quantum-classical state of system and measurement
record. While its recovery may be practically hard (in
terms of classical computation and quantum circuit com-
plexity), its in-principle presence or absence defines sharp
phases. This corresponds to a phase transition in the capac-
ity of the channel that maps the initial quantum state to the
combined quantum-classical postmeasurement state [14].
This channel capacity also corresponds to the trajectory-
averaged entropy of mixed states subject to the monitored
evolution, so the coding transition is equally described as
a dynamical purification transition [15]. Further, the idea
of decoding implicit in this setup has led to groundbreak-
ing developments in our experimental understanding of the
MIPT [19–21].

B. Learning

In this work, we take a complementary perspective of
learning rather than coding, i.e., we focus on the informa-
tion transmitted to the classical measurement record alone,
rather than the combined quantum-classical state. This per-
spective is centered on an “eavesdropper,” Eve, who does
not have access to the quantum many-body system, but
wants to learn some properties (e.g., observable expecta-
tion values) of its unknown initial state. She may try to
do so by collecting classical measurement outcomes and
performing suitable computation on them, Fig. 1(b).

This perspective has been studied in the literature in two
contexts. The first studies the sensitivity of the distribution
of measurement outcomes to changes in the initial state.
(These are diagnosed either through the Fisher information
of the measurement record [22], or through a linear cross-
entropy diagnostic that compares the measurement record
from a quantum experiment to that of a classical simulation
of the same circuit with a different input state [23].) In the
second context, the monitored dynamics is enriched with
a U(1) symmetry, and an eavesdropper attempts to learn
the global charge of a system from measurements of local
charge densities [24]. In both cases, the focus is only on the
information present in the classical measurement record, as
the postmeasurement quantum many-body state is consid-
ered inaccessible. This point of view is complementary to
the coding perspective. An intuitive expectation is that, if
coding is successful, then the “syndrome” measurements
m should reveal no information about the initial state, and
thus learning should fail; conversely, if coding fails, infor-
mation “leaks” into the classical measurement record and
learning should become possible.

In this work we sharpen this intuition and make it opera-
tionally meaningful. We view the monitored dynamics as a
single, complex “randomized measurement” [7] performed
on the system. From Eve’s point of view, this general-
ized measurement destroys the quantum state and turns
it into classical data. As such, it is impossible for her to

recover quantum information, as in coding (e.g., any entan-
glement with an outside reference system is destroyed in
the process); but it may still be possible to learn a classical
description of the state, as in tomography.

We introduce classical shadow protocols [6] that Eve
may use to learn various properties of the unknown initial
state from the outcomes of many shots of these generalized
measurements. We then show that the MIPT manifests as
a transition in the sample complexity of these tasks, i.e.,
how many shots of the experiments Eve needs before she
can confidently make predictions. The transition in sam-
ple complexity may be from polynomial to exponential,
between two exponentials, or between two polynomials,
depending on the task at hand. Our framework is very
general and furnishes a unified language to describe and
study learnability transitions in various different contexts
(including previous examples from the literature such as
charge learning [24]). Finally, we argue, and prove in
some cases, that these learnability transitions reflect a
transition in the informational power [25] of monitored
dynamics—an intrinsic property independent of the chosen
learning protocol.

The balance of this paper is structured as follows. In
Sec. II we provide a concise, pedagogical review of rele-
vant background topics: generalized measurements, moni-
tored dynamics, and classical shadows. Expert readers may
safely skip this section. We then discuss monitored dynam-
ics as a generalized measurement in Sec. III. We review the
idea of informational power [25] of generalized measure-
ments and apply it to monitored dynamics, proving under
certain assumptions (and conjecturing more generally) that
it undergoes a phase transition at the MIPT. In Sec. IV
we introduce “eavesdropper’s shadows”—classical shad-
ows protocols that an eavesdropper may use to learn the
state of the system from measurement records. The conse-
quences of the MIPT on these classical shadow protocols
are then analyzed in turn: Sec. V on the expectation value
of Pauli operators, where we additionally investigate the
effect of spatial locality on learnability; Sec. VI on many-
body fidelities, which directly connects to recent work
on the linear cross-entropy as an order parameter for the
transition [23]; and Sec. VII on learning properties of the
charge distribution via U(1)-symmetric monitored dynam-
ics [12,24], which can also be studied naturally in the
formalism of eavesdropper’s classical shadows. As we do
not impose limits on classical computational resources,
we find that the learnability transition coincides with the
charge-sharpening transition in Ref. [12], as expected
[24]. Finally, in Sec. VIII we summarize our results and
point out directions for future work.

II. REVIEW

In this section we review essential background
topics—generalized measurements (POVMs), monitored
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dynamics, and classical shadows—for the sake of a self-
contained discussion. This part may be skipped by expert
readers.

A. Generalized measurements

Generalized measurements in quantum mechanics are
described by positive-operator-valued measures (POVMs),
sets of operators {Eα} (also known as effects) that obey
(i) positivity, Eα ≥ 0 and (ii) normalization

∑
α Eα = I.

These predict the probability of observing each outcome
α on a given state ρ by the identification pα ≡ Tr(ρEα),
which is guaranteed to be a valid probability distribution
by conditions (i–ii). A POVM describes measurement out-
comes but not the associated postmeasurement states of
the quantum system. That additional data is contained in
the instruments {Kα} (also known as Kraus operators in the
context of quantum channels), that obey Eα = K†

αKα . The
state ρ is updated after the measurement as

ρ �→
∑

α

pαρα , ρα = KαρK†
α/pα , (1)

where ρα is the conditional postmeasurement state of the
system given outcome α.

It may further be helpful to view the whole measurement
process as a quantum-classical channel

ρ �→
∑

α

pαρα ⊗ |α〉〈α|C, (2)

where the states |α〉〈α|C are states of a classical reg-
ister, e.g., Alice’s lab notebook. We can always embed
such states as orthonormal basis elements [they need to be
orthogonal as they are perfectly distinguishable (classical)
states] of a sufficiently large Hilbert space.

B. Monitored dynamics

Monitored dynamics is a type of open-system evo-
lution whose quantum trajectories are labeled by a
classical “measurement record” m. We take m =
(mt1,x1 , . . .mtM ,xM ) ∈ {0, 1}M to be a collection of binary
measurement outcomes gathered over different positions
and times (ti, xi) in the evolution. The quantum many-body
state ρ evolves into a quantum-classical state

ρ �→
∑

m

KmρK†
m⊗|m〉〈m|C, (3)

which notably is of the same form as Eq. (2): we can in
fact view the whole monitored evolution as a single POVM
with 2M possible outcomes m ∈ {0, 1}M occurring with
probabilities pm = Tr(ρEm), Em = K†

mKm.
Remarkably, it was discovered that the ensemble of

quantum trajectories ρm ≡ KmρK†
m/pm can undergo a

sharp phase transition as a function of model parameters,
e.g., the density or rate of measurements in the dynamics,
from an “entangling” to a “disentangling” phase [1–5,14,
15,19–22,26–32]. The phenomenology of these phases is
very rich and beyond the scope of this review section. Here
we focus only on the aspect most relevant to this work,
which is dynamical purification [15], closely related to the
coding perspective discussed above: due to the nonunitar-
ity of measurements, an initially mixed state at late enough
times generically becomes nearly pure, Em[Tr(ρ2

m)]
t→∞−−−→

1. Here the average is taken over the ensemble of tra-
jectories with Born probability pm = Tr(ρEm). The time
scale over which this happens varies sharply depending on
which phase we are in: it is O(log(N )) in the disentangling
or pure phase, and O(exp(N )) in the entangling or mixed
phase, where N is the size of the system (e.g., number of
qubits). This reflects the emergence of a quantum code in
the entangling phase, which protects some information and
prevents it from leaking to the environment for very long
times. In particular, taking a dynamic limit with t, N → ∞
with t = �(N ) ensures that the average purity becomes an
order parameter for the two phases (1 in the disentangling
phase, <1 in the entangling phase).

A subtle experimental aspect of this physics is that
it is revealed only in nonlinear functions of the trajec-
tories {ρm}, such as the aforementioned average purity
EmTr(ρ2

m). It does not appear in the average of linear
functions, which are fully determined by the average final
density matrix ρ ′ = Em[ρm] = ∑

m KmρK†
m. This is the

output of dissipative dynamics and thus generically triv-
ial across the phase diagram. A naïve approach based on
measuring properties of individual trajectories incurs an
exponential sampling overhead, of order 2M , due to post-
selection of the M measurement outcomes (producing the
same trajectory twice takes of order 2M trials).

More sophisticated approaches that ameliorate or avoid
this prohibitive sampling cost have been proposed [19,33–
35] and implemented experimentally [20,21]. Reference
[19] proposed scalable order parameters that can be mea-
sured by decoding the measurement record and applying
feedback control to the quantum system, similar to the
setup in Fig. 1(a). Building on this, other approaches have
more recently been proposed that bypass the need for
quantum feedback by defining “hybrid” quantum-classical
order parameters that correlate quantum state readout with
the output of classical simulations [21,23,36–38]. These
approaches generally trade the exponential sample com-
plexity of order 2M for the complexity of classical simula-
tion, which may be polynomial or exponential depending
on the models. We will show below that our work furnishes
a new set of hybrid order parameters for the MIPT, in
the form of variances of shadow estimators. We also note
that another approach making use of classical shadows to
diagnose the MIPT was proposed recently [38], with the
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complementary goal of learning the final, postmeasure-
ment state. The goal is thus conceptually distinct from
our learnability perspective, despite employing similar
tools—a testament to the generality and wide applicability
of the classical shadow framework, reviewed next.

C. Classical shadows

Classical shadows are a framework for learning prop-
erties of quantum states in a relatively sample-efficient
manner by making use of randomized measurements [6,
7,39–55]. In this work we will make use of classical
shadows in order to formulate a general framework that
operationalizes the notion of “learnability” in monitored
dynamics.

The standard shadow protocol [6,7] attempts to learn
properties of an unknown quantum state ρ by making
measurements in a complete orthonormal basis, e.g., the
computational basis after a suitable random rotation U.
From such a measurement one obtains a snapshot |b〉〈b|
of the rotated state UρU†, and thus a snapshot U†|b〉〈b|U
of the original state ρ (here b ∈ {0, 1}N is an output bit-
string). Averaging many such snapshots over outcomes of
b and random choices of U yields a “noisy” version of ρ:

M(ρ) =
∑

b

∫
dU 〈b|UρU†|b〉U†|b〉〈b|U, (4)

where 〈b|UρU†|b〉 is the probability of obtaining the mea-
surement outcomes b. Here dU is shorthand for whichever
measure on the unitary group we are using (whether con-
tinuous or discrete) and M is known as the shadow chan-
nel. Therefore, by “denoising” our snapshots we obtain
unbiased estimators of the true density matrix:

ρ̂ = M−1[U†|b〉〈b|U]. (5)

The classical simulation complexity of the protocol is
determined by the complexity of obtaining the unrotated
snapshot U†|b〉〈b|U, and of determining and applying the
inverse channel M−1 on a classical computer.

The snapshots in Eq. (5) can then be used to predict
many properties of ρ; for example, for linear expectation
values 〈O〉, the estimators ô = Tr(ρ̂O) average to the cor-
rect answer. The cost of the learning protocol is quantified
by the number of samples that are needed to make an
accurate prediction. This is dictated by the shadow norm
‖O‖2

sh (which controls the variance of ô), whose scaling
depends on the chosen ensemble of measurements. Impor-
tant results are known for the standard protocols based on
local random Pauli (i.e., locally randomized) and random
Clifford (i.e., globally randomized) measurements. In the
former one has ‖P‖2

sh = 3k where P is a Pauli operator of
weight k, making the scheme practical for local (few-body)
operators. In the latter, ‖O‖2

sh = Tr(O†O) for any opera-
tor O, making the method suitable for low-rank operators

such as pure-state projectors. This has the important appli-
cation of computing many-body fidelity with pure states.
The shadow protocol has recently been generalized to shal-
low shadows [48–51] in which the randomization step is
effected by finite-depth circuits, and which yields an expo-
nential gain in sampling complexity for the task of learning
large, spatially contiguous k-body operators.

Classical shadows have been recently extended to the
case of generalized (i.e., nonprojective) measurements,
represented by a POVM {Eα} [44,45]. Given a measured
outcome α, there are several possibilities for what to use as
a “snapshot,” giving rise to a family of shadow channels,
which generalize Eq. (4) and take the form

M(ρ) =
∑

α

∫
dU Tr(ρEU

α )η
U
α . (6)

Here we use the superscript U to denote that the effect Eα
and the snapshot ηα both in general depend on random
unitary rotations that are part of the protocol, again rep-
resented by integration over dU, but we do not assume a
specific form. We will suppress this dependence on ran-
dom unitaries from our notation in the following. In Sec.
IV we will see three different choices for ηα that are well
motivated by conceptual or practical considerations.

III. INFORMATIONAL POWER OF MONITORED
DYNAMICS

Taking the learning perspective illustrated in Fig. 1(b),
monitored dynamics as a whole is effectively a general-
ized measurement on the system—a process that maps the
quantum state ρ to a probability distribution over outcomes
m. In particular, if Km is the evolution operator corre-
sponding to trajectory m, then the process is described by a
POVM {Em ≡ K†

mKm}, which maps the quantum state ρ to
the classical probability distribution {Tr(ρEm)}. The ques-
tion of learning thus boils down to the “strength” of this
generalized measurement, or the information content of its
outcomes.

To sharpen this notion, let us consider an ensemble of
states E = {(pi, ρi)}. This is a discrete collection of states
ρi, each one occurring with probability pi, e.g., from some
classical stochastic process involved in the state prepara-
tion. We want to know how well a POVM � = {Em} can
distinguish the different states ρi in the ensemble E .

If the state ρi was drawn, then the outcome m occurs
with probability pm|i ≡ Tr(ρiEm). Along with pi (given
as part of the definition of E), this defines the joint
distribution

pi,m = pm|ipi = Tr(piρiEm) (7)

and thus also the marginal pm = Tr(ρEm), with ρ =∑
i piρi the average state of the ensemble. With this data,
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we can define the mutual information between the POVM
� and the state ensemble E as the mutual information
between variables i and m in the joint distribution Eq. (7):

I(E : �) = −
∑

i

pi ln pi −
∑

m

pm ln pm +
∑

i,m

pi,m ln pi,m

=
∑

i,m

pi,m ln
pi,m

pipm
, (8)

where the expression in the second line is in the form of a
Kullback-Leibler divergence between the true distribution
pi,m and the product of its marginals pipm, in which the two
variables are independent. Informally, this mutual informa-
tion characterizes how much the measurement outcome m
knows about the underlying state i.

Finally, maximizing the mutual information I(E : �)
Eq. (8) over possible choices of the ensemble E yields an
intrinsic property of the POVM � known as its informa-
tional power [25,56,57]:

W(�) = max
E

I(E : �). (9)

The optimization involved in the definition of informa-
tional power, Eq. (9), may be hard in general. However, it
becomes trivial if we include a “prescrambling” or “encod-
ing” step—meaning the system is rotated by a random
unitary V before being measured, as sketched in Fig. 1. In
that case, we show in Appendix A that

W(�) = Q(I/D)−
∑

m

πmQ(σm), (10)

where D is the dimension of the many-body Hilbert space
[in this work we take D = qN , i.e., a system of N q-state
qudits; we also focus on qubits (q = 2) when specified],
Q(ρ) is a function known as the subentropy (see Appendix
A 2), and we have introduced a state ensemble E� =
{(πm, σm)} given by

{
πm = Tr(Em)/D,
σm = Em/Tr(Em).

(11)

This state ensemble is dual to our POVM � = {Em} [to
every state ensemble E = {(pi, ρi)} one can canonically
associate the POVM �E = {piρ

−1/2ρiρ
−1/2}, with ρ =∑

i piρi. This is known as the “pretty good measurement”
[58]. All POVMs � obey �E� = �, and all state ensem-
bles E with ρ = I/D obey E�E = E]. It is straightforward
to check, from the POVM conditions, that this is in fact a
state ensemble, i.e., that πm is a valid probability distribu-
tion and that the σm are states. In fact, both objects have
intuitive physical interpretations: πm is the probability of
obtaining outcome m when running monitored dynamics

on the fully mixed state ρ = I/D; σm ∝ K†
m(I/D)Km is

the output of Heisenberg-picture monitored evolution K†
m,

also acting on the fully mixed state. In the most com-
mon models of monitored dynamics, made only of unitary
gates and projective measurements [1,2], the Schrödinger
and Heisenber pictures are equivalent at the ensemble
level (while individual trajectories are generically not self-
adjoint, the ensemble—over random unitary operations,
locations, and outcomes of measurements—is invariant
in those models: {Km} = {K†

m}), so that we can interpret
E� as a valid ensemble of trajectories for a monitored
mixed-state evolution. Note that this is not the ensemble
of physical monitored trajectories of the quantum system,
{(pm, KmρK†

m/pm)}, with pm = Tr(Emρ): such states are
inaccessible to Eve. The ensemble E� instead emerges
as a description of the measurement process, built purely
from a classical description of the dynamics (the Km oper-
ators) available to Eve. This mapping of the measurement
process to an auxiliary ensemble of monitored trajectories
plays a key role in this work.

Having established this formalism, we can now interpret
the analytical result for the informational power W(�), Eq.
(10). An exact analytical expression for the subentropy
Q(ρ) in terms of the spectrum of ρ is known [59], but
not particularly illuminating. However, for stabilizer states
(in fact for all states proportional to projectors), one can
analytically obtain a more explicit form for the subentropy
(see Appendix A 3),

Q(ρ) = 1 − γ − δH(qS). (12)

Here q is the local Hilbert-space dimension (D = qN ),
S is the entropy of ρ (in dits), γ = 0.577 . . . is Euler-
Mascheroni’s constant, and δH(x) = Hx − (ln(x)+ γ ) is
the deviation of the harmonic sum Hx = 1 + 1

2 + · · · +
1/x from its large-x expansion ln(x)+ γ . δH is non-
negative and bounded above by a constant; it vanishes as
approximately 1/2x for large x.

Thus we arrive at the following result for monitored
Clifford circuits (where all the trajectories σm are stabilizer
states):

W(�) = Em[δH(qSm)] − δH(qN ), (13)

with the average over trajectories taken according to the
measure πm. This explicitly depends on the entropy of
monitored trajectories Sm = − logq[Tr(σ 2

m)], meaning that
the dynamical purification transition manifests as a transi-
tion in the informational power. In the entangling phase,
the trajectories σm remain highly mixed, with Sm ∝ N ;
for large N , employing the expansion δH(x) ∼ 1/(2x), we
obtain

W(�) � 1
2
Em[Tr(σ 2

m)] − 1
2D

D→∞−−−→ 0, (14)
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so that the informational power, which quantifies learn-
ability from the measurement record, goes to zero in the
entangling phase. In the disentangling phase, the trajec-
tories purify and the entropies Sm quickly decay towards
zero [reaching O(1) values at logarithmic depth] and thus
δH(qSm) remains finite.

To summarize, we have shown that the informational
power of prescrambled Clifford monitored dynamics of
depth t = poly(N ) for large systems N � 1 obeys

W(�) =
{∼ q−sN (entangling phase),

const. > 0 (disentangling phase), (15)

with s ∈ [0, 1] the order parameter of the purification
phase transition (entropy density). We conjecture that the
same transition holds for generic (non-Clifford) moni-
tored dynamics. A suggestive result to this effect is that a
Renyi-2 version of the mutual information I(E : �) can be
computed exactly and depends only on the average purity
of the system, thus manifestly displaying the purification
transition (see Appendix A 4). While this is not a valid
mutual information, in randomized settings it is often a
good proxy for the qualitative behavior of the true mutual
information.

We note that the informational power is related to the
Fisher-information diagnostic in Ref. [22], which mea-
sures the susceptibility of the measurement outcome dis-
tribution to small changes in the initial state. Like the
informational power, the Fisher information aims to quan-
tify how much information about the quantum state flows
into the measurement record, thus the two approaches are
closely related. A technical difference is that the Fisher
information depends on the initial state and the choice of
perturbation, while the informational power is an intrin-
sic property of the monitored dynamics. More importantly,
the Fisher-information diagnostic in Ref. [22] generically
requires the collection of exponentially many samples (so
that probability distributions can be estimated with some
accuracy), while in our work we will show that the transi-
tion in informational power is reflected in the complexity
of classical shadows, and can be determined from few sam-
ples—the complexity bottleneck in our scheme lies instead
in the classical simulation of the quantum system (needed
to carry out classical shadow estimation).

Finally, we note that the informational power is
equal to the channel capacity of the quantum-to-classical
channel mapping the state ρ to a classical probabil-
ity distribution over measurement records m [25]: ρ �→∑

m Tr(Emρ)|m〉〈m|C, where {|m〉C} is an orthonormal
basis of classical states of the measurement device, as in
Eq. (3). Therefore, W(�) directly quantifies the flow of
information from Alice’s unknown state to Eve’s classi-
cal data, sketched in Fig. 1(b). The MIPT arises as a sharp
transition in this flow of information. In the rest of this

work we examine how this transition affects Eve’s ability
to learn properties of the quantum state ρ.

IV. EAVESDROPPER’S SHADOWS

The informational power transition discussed above
suggests a general characterization of the MIPT as a learn-
ability phase transition. To assign an operational meaning
to the transition, one needs to consider concrete proto-
cols that Eve might employ to learn features of Alice’s
unknown initial state ρ from the eavesdropped classical
data m. Classical shadows, reviewed in Sec. II C, have
emerged as a general and powerful framework for address-
ing this type of problem. Here we apply them to the gen-
eralized measurement associated with monitored dynam-
ics. We will refer to these protocols as “eavesdropper’s
shadows.”

A. Setup

We consider an experimentalist, Alice, who controls a
quantum many-body system, and an eavesdropper, Eve,
who wants to learn properties of Alice’s system with-
out having access to it. Alice prepares an initial state ρ
and runs some model of monitored dynamics on it (e.g.,
a brickwork circuit with single-qubit projective measure-
ments [1,2]). She iterates this process many times, with
the same state ρ but a different realization of the dynam-
ics each time. Eve only has access to the following, purely
classical data, for each run of the experiment:

(i) complete classical description of the monitored
dynamics (e.g., circuit architecture, gates, locations
and basis of measurements);

(ii) midcircuit measurement record m.

Eve aims to learn as much as she can about the initial state
ρ from as few runs of the experiment as possible. This
setup in sketched in Fig. 1(b).

Eve’s task can be readily cast in the framework of classi-
cal shadows with generalized measurements [44,45]. From
Eve’s point of view, this setup is equivalent to a general-
ized measurement of ρ, namely the POVM � = {Em =
K†

mKm}, with Km being the Kraus operator for quantum
trajectory m of the monitored dynamics. While we have
left it implicit to lighten our notation, Em also depends
on random unitary gates that vary with each realization;
therefore, it is a type of randomized measurement [7]. The
problem of learning about ρ from outcomes m of the ran-
domized measurements is thus formally analogous to the
standard classical shadow protocol [6,7], Sec. II C.

B. Protocol

In the standard protocol, based on a projective POVM
{U†|b〉〈b|U}, the choice of a postmeasurement “snapshot”
state is automatic—upon getting outcome b, the best guess
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for the pre-measurement state is just the POVM element
itself, σU,b ≡ U†|b〉〈b|U. In the general case, with a non-
projective POVM {Em}, the choice is less obvious. In fact,
there are several valid choices motivated on practical or
conceptual grounds, as we will see below; all of them
recover the “canonical” choice in the limit of the POVM
becoming projective. Denoting a choice of snapshot state
by ηm, we have a measure-and-prepare channel

M(ρ) =
∑

m

Tr(Emρ)ηm, (16)

which can in principle be used for classical shadow esti-
mation, along the same steps outlined in Sec. II C.

A natural choice for ηm is based on a general map-
ping between POVMs and state ensembles, Eq. (11): we
propose setting ηm = σm. This choice closely mirrors the
standard protocol, Sec. II C, upon replacing U �→ Km (ran-
dom monitored dynamics instead of random unitary rota-
tion) and |b〉〈b| �→ I/D. The latter is a uniform average
over all possible outcomes |b〉, representing Eve’s com-
plete ignorance about the final state of the system. Beyond
this heuristic reasoning, we note that this choice can be for-
mally motivated as the Petz recovery map [60–63] from
the space of measurement records to the space of quantum
states, see Appendix B.

With this prescription, the shadow channel reads

M(ρ) =
∑

m

Tr(ρEm)σm

= D
∑

m

πmTr(ρσm)σm

= DTr2[(I ⊗ ρ)σ (2)], (17)

where Tr2 is the partial trace over the second replica, and
σ (2) is the second moment operator of the state ensemble
E� = {(πm, σm)} dual to our POVM � = {Em} [see Eq.
(11)]:

σ (2) =
∑

m

πmσ
⊗2
m . (18)

For most typical models of monitored dynamics (featur-
ing only unitary evolution and projective measurements),
the states σm are quantum trajectories of a valid moni-
tored evolution K†

m acting on the fully mixed state; thus
the second-moment operator σ (2) is directly sensitive to
the MIPT. For instance, the order parameter of dynami-
cal purification phases [15,19] (Sec. II B), the trajectory-
averaged purity P , can be obtained as an expectation value

on the two-replica state σ (2):

P =
∑

m

πmTr(σ 2
m) = Tr(σ (2)τ̂ ), (19)

with τ̂ the replica SWAP operator. Thus σ (2) undergoes
a sharp change at the MIPT, and by extension so does
the shadow channel M, Eq. (17). We will investigate the
consequences of this sharp change in terms of learnability
transitions in the rest of the paper.

C. Alternative prescriptions

Before proceeding, we note that other choices for the
“snapshot” ηm are possible and well motivated. In partic-
ular, two choices have been considered in the literature in
the context of classical shadows with generalized measure-
ments [44,45]. We discuss them in detail in Appendix B,
and briefly summarize the results below:

(i) Least squares [45]: set ηm = Em. This is not a
state (due to trace normalization), and the result-
ing “shadow channel” M(ρ) = ∑

m Tr(ρEm)Em
is thus not a channel. Classical shadows work
regardless. This choice minimizes the two-norm
distance between the observed (Tr(ρEm)) and pre-
dicted [Tr(ρ̂Em), with ρ̂ the classical shadow of
ρ] measurement outcome distributions. The shadow
channel takes a form analogous to Eq. (17) [see
Eq. (B7)], but with a modified second-moment
operator

σ̃ (2) =
∑

m

π̃mσ
⊗2
m , (20)

where the probabilities are π̃m = π2
m/

∑
m′ π2

m′ .
This also features a MIPT, albeit with a different uni-
versality class due to a different reweighting of the
trajectories [11,22,23,64,65].

(ii) Maximum fidelity [44]: set ηm = |ψm〉〈ψm| where
|ψm〉 is the leading eigenvector of Em (we neglect
degeneracies). This choice maximizes the fidelity
〈φ|M(|φ〉〈φ|)|φ〉 between the input and output of
M, on average over Haar-random input states |φ〉.
Again the shadow channel takes a form analogous
to Eq. (17) [see Eq. (B10)], but with σ (2) replaced
by the state

σ (∞,1) =
∑

m

πm|ψm〉〈ψm| ⊗ σm. (21)

The expectation of the replica SWAP τ̂ on this state
yields the average of q−S∞ , meaning this is also
sensitive to the MIPT, with the same universality

020304-8



LEARNABILITY TRANSITIONS IN MONITORED. . . PRX QUANTUM 5, 020304 (2024)

Sa
m

pl
e 

co
m

pl
ex

ity

p1pc0

D

D2

∼ D1+ s(p)

Pauli expectation value 
(prescrambled)

(b)

p1pc0

D

D2
Pauli expectation value 

(typical / average)
(a)

∼ Ds(p)

p1pc0

D

D2
Many-body fidelity 
(prescrambled)

(c)

p1p#0

N

N2

Global charge 
[U(1)-symmetric dynamics]

(d)

FIG. 2. Schematic summary of main results for the sample complexity of various estimation tasks via “eavesdropper’s shadows,” as
a function of the measurement rate p . N is the system size, D = qN is the Hilbert-space dimension, and s(p) is the entropy density (order
parameter of the entangling phase). (a) Estimation of Pauli expectation values, Sec. V B. Different operators have different complexity;
the curve shows the qualitative behavior of average or typical elements of the N -qudit Pauli group. The MIPT (p = pc) emerges as a
point of minimum complexity. (b) Estimation of Pauli expectation values with a prescrambling step, Sec. V C. All nonidentity Paulis
have the same complexity, of order D1+s(p), which changes nonanalytically at the MIPT. (c) Estimation of many-body fidelity (with
a prescrambling step), Sec. VI. The complexity transitions from constant to exponential in N at the MIPT. (d) Estimation of global
charge from dynamics with U(1) symmetry, Sec. VII. The complexity transitions from order N to order N 2/t at the charge-sharpening
transition, p = p#.

and critical point as Eq. (17) in this case (all Renyi
entropies with indices n > 1 are bounded within a
multiplicative constant of each other, so S2 and S∞
have the same critical properties).

We note that all three prescriptions reduce to the one
from Ref. [6] for the case of projective measurements, but
they differ for generalized measurements. In the follow-
ing we will use the prescription ηm = σm unless otherwise
specified; the qualitative conclusions would be unchanged
with either prescription, since as we saw each of them is
sensitive to the MIPT.

To summarize, we have examined different strategies
that Eve might use to learn properties of Alice’s unknown
initial state ρ from the measurement record m via classi-
cal shadows. We have found that the shadow channel is
determined by a moment operator for an emergent ensem-
ble of monitored quantum trajectories of a mixed-state
dynamics, Eq. (11). As the second moment of trajectories
is sensitive to the MIPT, we expect this to lead to a qual-
itative change in the performance of classical shadows. In
the following sections we work out the consequences of
this observation on a range of different manifestations of
the measurement-induced phase transition. Our results are
schematically summarized in Fig. 2.

V. LEARNING PAULI EXPECTATION VALUES

In this section we begin to unravel the consequences
of the connection between “eavesdropper’s shadows” and
dynamical purification of mixed states introduced in Sec.
IV. We start by focusing on Eve’s ability to learn Pauli
expectation values on the unknown initial state ρ, namely
to estimate 〈P〉 = Tr(ρP) (P is a Pauli operator; we use
generalized Pauli operators generated by the “clock” and
“shift” operators) to constant additive error ε.

A. Shadow norm and entanglement

In general, the sample complexity of learning the expec-
tation of an operator O on a state ρ is given by its squared
shadow norm ‖O‖2

sh, see Sec. II C. This is given formally
by

‖O‖2
sh = DTr(ρ ⊗ M−1(O)⊗ M−1(O)σ (3)), (22)

where σ (3) = ∑
m πmσ

⊗3
m is the third moment operator of

the trajectory ensemble E = {(πm, σm)} (note that there is,
implicit in this notation, an average over random unitary
gates {u}, which enter the monitored dynamics. An average∫

d{u} is implicitly present concurrently with each trajec-
tory average

∑
m πm; we drop it to lighten the notation).

If the ensemble is Pauli invariant [47,66] and O is a Pauli
operator, Eq. (22) simplifies to

‖O‖2
sh = 1

D
Tr(OM−1(O)), (23)

which is independent of ρ. Furthermore, if the POVM is
invariant under multiplication by single-site Pauli opera-
tors [66] (as is the case in typical models of monitored
dynamics, made with random Haar or Clifford gates), the
Pauli operators are eigenmodes of the channel: M(P) =
λPP. Thus, by Eq. (23), their shadow norm is ‖P‖2

sh = λ−1
P .

We now derive a relationship between the eigenvalues
λP (controlling the shadow norms of Pauli operators) and
the entanglement structure of the ensemble of trajecto-
ries E . We have, using operator-to-state notation [(O| for
super-bras, |O) for super-kets, with inner product (A|B) =
Tr(A†B)],

λP = (P|M|P)
(P|P) = Tr[P⊗2σ (2)]. (24)
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At the same time, the averaged purity of a subsystem A in
the ensemble of monitored trajectories E is

PA = Tr[τ̂Aσ
(2)] (25)

with τ̂A the replica SWAP operator acting only on subsystem
A. We can expand τ̂ in the Pauli basis as

τ̂A = 1
DA

∑

P: supp(P)⊆A

P⊗2, (26)

where DA is the Hilbert-space dimension for subsys-
tem A and supp(P) denotes the support of P, i.e., the
subsystem where P is nonidentity (expanding τ̂ in the
two-replica Pauli basis as τ̂ = ∑

αβ cαβPα ⊗ Pβ , the coef-
ficients cαβ are given by cαβ = Tr[τ̂ (Pα ⊗ Pβ)]/D2 =
Tr(PαPβ)/D2 = δαβ/D). A relationship between the entan-
glement feature {PA} and the eigenvalues {λA} of channel
M follows:

DAPA =
∑

P: supp(P)⊆A

λP =
∑

B⊆A

(q2 − 1)|B|λB, (27)

where the first sum is over Pauli operators P supported
inside A, while the second is over subsystems B contained
inside A [we use λA (A being a subsystem) and λP (P being
a Pauli operator) interchangeably, with the understand-
ing that λP = λsupp(P)]. The second equality holds because
there are (q2 − 1)|B| distinct Pauli operators with support
B. The inverse of Eq. (27) yields

λA = (1 − q2)−|A| ∑

B⊆A

PB(−q)|B|, (28)

which is a well-known relationship between entangle-
ment and shadow norm in the theory of classical shadows
[47,48,51,52,66]; we see that it straightforwardly extends
to our setting of shadows with generalized measurements,
when taking {PA} to be the entanglement feature of moni-
tored trajectories σm.

Equations (27) and (28) connect entanglement proper-
ties of the trajectories with shadow norms of Pauli oper-
ators. This is interesting as it suggests a sharp change in
the performance of classical shadows at the dynamical
purification transition, consistent with our prior analysis
in Secs. III and IV. The connection between entanglement
and shadow norms in Eq. (28) is not straightforward, as
it is a sum of exponentially many terms with alternating
signs. Nonetheless, a simple exact statement can be made
about the harmonic mean of ‖P‖2

sh for all Pauli operators
supported inside a subsystem A: rewriting Eq. (27), we

have
⎛

⎝ 1
D2

A

∑

P: supp(P)⊆A

‖P‖−2
sh

⎞

⎠
−1

= DA/PA ∼ D1+s
A , (29)

where s ∈ [0, 1] is an entropy density defined by the scal-
ing of average purity PA ∼ q−sNA = D−s

A . This implies a
sharp change of the shadow norm distribution at the purifi-
cation transition, which separates the pure phase (s = 0)
from the mixed phase (s > 0). The harmonic mean of
squared shadow norms scales exponentially in subsys-
tem size NA on both sides of the transition, as D1+s

A =
q[1+s(p)]NA , but the coefficient in the exponential changes
nonanalytically at the critical point p = pc [where s(p) �
�(pc − p)|p − pc|ν , with � the Heaviside theta and ν �
1.3 a critical exponent [15]]. Notably, the harmonic mean
Eq. (29) is a lower bound to both the average shadow norm
(arithmetic mean) and the typical shadow norm (geometric
mean), implying that both must diverge as �(2(1+s)NA) in
the entangling phase and as �(2NA) in the disentangling
phase.

B. Optimal learning at the MIPT

To gain more insight on the structure of the shadow
norm distribution, beyond the exact harmonic-mean result
of Eq. (29) and the bounds it implies, we turn to numerical
simulations. We perform exact numerical simulations of
mixed-state monitored dynamics (a standard model made
of brickwork layers of Haar-random gates and single-qubit
Z measurements with probability p ∈ [0, 1]) on up to N =
12 qubits. Note we are limited to this size by the fact that
we simulate the full density matrix dynamics (equivalent
to a pure state of 2N qubits). We obtain the entangle-
ment feature {PA} averaged over many realizations of the
dynamics; from the entanglement feature we obtain the
full set of shadow norms {λ−1

A } via Eq. (28). Results are
shown in Fig. 3. The harmonic mean of shadow norms,
as predicted, is a function only of the averaged purity,
and is thus monotonically decreasing in the measurement
rate p . However the arithmetic mean D−2 ∑

P ‖P‖2
sh and

geometric mean exp(D−2 ∑
P log ‖P‖2

sh) alike exhibit non-
monotonic behavior, with a minimum near the purification
transition p ≈ 0.16.

This is explained by the fact that, deep in the pure phase,
one recovers random Pauli shadows (i.e., shadows with
random local, single-qubit Pauli measurements [6]). This
is exactly true at p = 1, and we expect it to be a fairly accu-
rate approximation throughout p ≥ 0.5, where the circuit is
nonpercolating. (For 1/2 < p < 1, a more precise analogy
is with classical shadows with locally entangled measure-
ments [52], as the measurement basis typically breaks up
into a tensor product of finite-sized bases, one for each
nonpercolating cluster of the circuit.) In this regime, even
with complete access to the system, spatial locality makes
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FIG. 3. (a) Squared shadow norms of Pauli operators under
eavesdropper’s shadows as a function of measurement rate p ,
for different system sizes N . Data is from exact numerical sim-
ulations of quantum trajectory density matrices, averaged over
between 2000 and 40,000 random circuit realizations depend-
ing on size. The harmonic mean (dotted lines) is monotonically
decreasing in p , being completely determined by the system’s
purity; the arithmetic mean (solid) and geometric mean (dashed)
show a minimum at the MIPT. (b) Same data (for the arith-
metic mean) plotted as a function of N displays clear exponential
scaling proportional to Dα = 2αN . Dashed lines are fits. (c) Fit
coefficient α versus p shows a minimum at the MIPT.

learning large Pauli operators very inefficient. On the other
hand, in the mixed phase, as seen earlier, the informational
power of Eve’s measurements goes to zero, making any
learning inefficient. The MIPT is a “sweet spot” between
these two obstructions: the informational power is still
finite (at polynomial depth), while the restriction of locality
is alleviated.

Approaching the transition from the area-law side, we
expect eavesdropper’s shadows to perform similarly to
shallow shadows [48–51] with finite depth: in other words,
Eve manages to eventually read out all the information, but
this takes an amount of time that grows as the transition is
approached, giving information more time to spread, anal-
ogous to increasing circuit depth in shallow shadows. At
the transition, this “effective depth” should diverge; it is
tempting to speculate a relationship with shallow shadows
at log(N ) depth, which were shown to give Pauli shadow
norms of order qN for large Pauli operators (consistent with
the scaling of both harmonic and arithmetic-mean ‖P‖2

sh at
the MIPT observed here).

Thus there are two conceptually independent reasons
why Eve’s task of learning the expectation values of gen-
eral Pauli operators via classical shadows may be hard:
spatial locality at large p (pure, disentangling, or non-
coding phase) and a fundamental lack of information at

small p (mixed, entangling, or coding phase). Numeri-
cal results indicate that an optimum is reached near the
purification transition, pc ≈ 0.16, where the performance
is close to random Clifford shadows (‖P‖2

sh ∼ D for all
traceless Paulis). This is a novel characterization of the
MIPT, as the optimum rate p for learning Pauli expectation
values from the measurement record.

C. Complexity transition

For the rest of this work, we will focus on the pres-
ence or absence of any information in the measurement
record, regardless of its locality structure. For this reason,
it is advantageous to “prescramble” the input state ρ with
a random global Clifford operation V, as in Sec. III, which
eliminates issues with spatial locality. This dramatically
simplifies the picture, as the channel M now depends on
a single property of the trajectory ensemble—its average
global purity P . We have

M(ρ) = D
∫

dV Tr2[(I ⊗ ρ)V⊗2σ (2)(V†)⊗2]

= (D − P)Tr(ρ)I + (DP − 1)ρ
D2 − 1

. (30)

This reproduces the familiar random-Clifford result (I +
ρ)/(D + 1) for P = 1. For P = 1/D (no measurements),
it correctly gives I/D: there is no information at all about
ρ, the measurement channel is a global erasure and is not
invertible. Intermediate values of P interpolate between
these two extremes. In particular, the channel is invertible
whenever P > 1/D.

It follows that all traceless operators are eigenmodes of
M with eigenvalue

λ = DP − 1
D2 − 1

= D1−s − 1
D2 − 1

∼ D−(1+s), (31)

where ∼ denotes asymptotic scaling at large D. Thus in
particular, all Pauli operators P �= I have shadow norm

‖P‖2
sh ∼ D1+s = q(1+s)N , (32)

which indeed changes sharply at the purification transition,
as the entropy density goes from s = 0 (pure phase) to s >
0 (mixed phase).

D. Information extracted per measurement

The result in Eq. (32) implies that, to learn the expec-
tation of P on the unknown state ρ, Eve needs many
more samples in the mixed phase than she does in the
pure phase—a factor of approximately qsN more. In other
words, the amount of information about ρ leaking into the
measurement record m is suppressed exponentially in the
mixed phase. This characterization of the mixed or coding
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phase [14,15,19] is complementary to the exponentially
long lifetime (also scaling as qsN ) of information in the
system.

In the present framework, however, we can make an
even more precise statement about the way in which infor-
mation on ρ leaks into the measurement record. A key
result in dynamical purification [15,29] is that, as a func-
tion of circuit depth t, the entropy density s in the mixed
phase decreases as

s(t) ∼ s0 − 1
N

logq(t) (33)

(at times 1 � t � qs0N ), where s0 is the entropy density
“plateau” that characterizes the mixed phase. The ansatz
in Eq. (33), plugged into Eq. (32), gives squared shadow
norm

‖P‖2
sh ∼ 1

t
D1+s0 (34)

for any traceless Pauli P. This quantifies the total number
of circuit runs needed to learn 〈P〉 up to constant error. We
can translate this number of circuits into a total number
of measurements, Mtot: with M ∼ pNt measurements per
circuit, we have

Mtot ∼ M × ‖P‖2
sh ∼ Nq(1+s0)N , (35)

which is t independent. [Note this conclusion depends cru-
cially on the coefficient of log(t) being exactly 1, which
was argued, e.g., in Refs. [15,29].]

The fact that Mtot, the total number of measurements
needed, is approximately t independent gives it an invari-
ant meaning: there is, effectively, a fixed amount of infor-
mation learned by Eve per measurement; this amount is
approximately q−(1+s0)N bits. The factor of q−N comes
from Haar-random encoding of the initial state (prescram-
bling), while the factor of q−s0N is the additional encoding
coming from the dynamics in the mixed phase. This gives
a sharp, operational meaning to the idea that measurements
fail to read out information about the encoded quantum
state in the mixed phase. This sample complexity further
saturates the scaling of the informational power in the
entangling phase, Sec. III, showing that eavesdropper’s
shadows are (near) optimal for this task.

VI. LEARNING MANY-BODY FIDELITY

Another observable of interest in many applications,
e.g., benchmarking, is the fidelity with a pure many-body
state F = 〈ψ |ρ|ψ〉. The complexity of learning F via
classical shadows is given by the shadow norm of the
rank-1 projector |ψ〉〈ψ |. Notably, this shadow norm is
O(1) in random Clifford shadows [39], which makes these
observables interesting as practical targets. Reference [23]

recently proposed a diagnostic for measurement-induced
phases based on a linear cross-entropy function, which
intuitively captures the (in)distinguishability between mea-
surement records drawn from monitored dynamics acting
on different initial states; here we show that this diagnostic
can in fact be readily framed in terms of fidelity estimation
via eavesdropper’s shadows.

A. Review of linear XEB diagnostic

The linear cross-entropy diagnostic proposed in Ref.
[23] reads

XEB =
〈

p(m|ρ0)∑
m′ p(m′|ρ0)2

〉

m∼p(m|ρ)
, (36)

where p(m|ρ) is the probability of drawing measurement
record m in an experiment on the initial state ρ. The idea
is that ρ0 is a “simple” (e.g., stabilizer) initial state whose
probabilities p(m|ρ0) are computed classically, whereas ρ
is a generic initial state, and m ∼ p(m|ρ) denotes samples
drawn from an experiment on quantum hardware initial-
ized in state ρ. We again assume the monitored circuit is
prefaced by a global random Clifford operation, as in Sec.
V C and in Ref. [23].

In the notation of our work, we have p(m|ρ) =
Tr(Emρ). Thus in the limit of a large number of experi-
mental samples, the linear-XEB diagnostic reads

XEB =
∑

m p(m|ρ)p(m|ρ0)∑
m p(m|ρ0)2

=
∑

m π
2
mTr(σ⊗2

m ρ ⊗ ρ0)∑
m π

2
mTr(σ⊗2

m ρ⊗2
0 )

= Tr[(ρ ⊗ ρ0)σ̃
(2)]/Tr[ρ⊗2

0 σ̃ (2)], (37)

where σ̃ (2) is the modified second-moment operator from
Eq. (20), defined according to probabilities π̃m ∝ π2

m, that
also appears in the least-squares shadow prescription. As
we discussed in Sec. IV (see also Appendix B), the ensem-
ble of trajectories Ẽ = {(π̃m, σm)} is known to also dis-
play an entanglement phase transition, albeit with different
universality [22]. Thus the XEB quantity in Eq. (37) is
sensitive to a MIPT.

Reference [23] in particular showed that, when includ-
ing a prescrambling stage (as in Secs. III and V C), in the
mixed phase we have XEB � 1 independent of ρ, while in
the pure phase XEB becomes sensitive to ρ and in partic-
ular approaches a finite value < 1 if ρ differs significantly
from ρ0. Aside from the specific details of the protocol,
this is suggestive of a phase transition in learnability of the
initial state: in the pure phase we can successfully tell if ρ
and ρ0 are different, in the mixed phase we fail to do so.
In the following, we clarify this connection to a learnabil-
ity phase transition and frame this result in the language of
shadow estimation.
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B. Fidelity from a modified linear XEB

To sharpen the connection between the XEB diagnostic
of Eq. (36) [23] and learnability, let us start by introducing
a slight variation of the quantity, based on how much a new
measurement record m from the experiment updates Eve’s
belief about the unknown initial state ρ of the system.

We define the quantity

XEB′ = 〈p(ρ0|m)〉m∼p(m|ρ) , (38)

which differs from Eq. (36) by the order of condition-
ing [p(ρ0|m) instead of p(m|ρ0) in the numerator of Eq.
(36)] and by the absence of a normalization factor, which
becomes unnecessary in this case. This quantity has an
intuitive interpretation as Eve’s updated belief about the
initial state, given her new information about a measure-
ment record m eavesdropped from Alice.

To suitably define the conditional probability p(ρ0|m),
we start with Eve’s joint probability distribution over ini-
tial (pure) states of the system ρ and measurement records
m:

p(ρ, m) dρ = Tr(ρEm) dρ, (39)

where dρ is a measure over quantum states that reflects
Eve’s prior beliefs about Alice’s initial state ρ (e.g., a
uniform measure representing complete ignorance); we
require

∫
dρ ρ = I/D. From this joint distribution we can

obtain the marginal

p(m) =
∫

dρ p(ρ, m) = Tr(Em/D) = πm, (40)

and thus the conditional probability via Bayes’ rule:

p(ρ|m) dρ = p(ρ, m) dρ
p(m)

= DTr(ρσm) dρ. (41)

In the limit of a large number of experimental shots, we
thus obtain

XEB′ =
∑

m

p(m|ρ)p(ρ0|m) = D
∑

m

Tr(ρEm)Tr(ρ0σm)

= DTr(ρ0M(ρ)), (42)

which is explicitly a function of the shadow channel M
in Eq. (17), and thus sensitive to the standard MIPT
(“standard” meaning with correct trajectory weights πm).

Finally, with prescrambling, we use Eq. (30) to obtain

XEB′ = D − P + (DP − 1)F
D − 1/D

� 1 + PF , (43)

where F = Tr(ρρ0) is the fidelity between the true quan-
tum state ρ and the classical guess ρ0 (taken to be pure).

The � denotes the asymptotic scaling at large D, to lead-
ing order. Thus in the mixed phase, where P ∼ D−s � 1,
XEB′ is exponentially close to 1 regardless of the fidelity
F between the unknown state ρ and the guess ρ0, whereas
in the pure phase it approaches a constant value that is
informative about F:

XEB′ D→∞−−−→
{

1 (mixed phase)
1 + const. × F (pure phase) (44)

To practically assess the learnability of F , we must also
consider the fluctuations of p(ρ0|m) across experimental
shots m. We address this question in Appendix C, where
we show that

δXEB′ ∼ D−s/2 (45)

to leading order in large D. Learning the value of the
fidelity F to additive error ε requires learning the value
of XEB′ � 1 + PF to additive error Pε ∼ D−sε; this
requires a number of repetitions

M ∼ (δXEB′)2

(Pε)2 ∼ Dsε−2, (46)

which undergoes a sharp change from constant to expo-
nential at the MIPT.

C. Shadow estimation

The same phase transition in sample complexity as Eq.
(46) can be straightforwardly obtained from shadow esti-
mation of the fidelity F = 〈ψ |ρ|ψ〉 with a many-body state
|ψ〉. The sample complexity of learning F is quantified by
the squared shadow norm of the operator O = |ψ〉〈ψ |:

‖|ψ〉〈ψ |‖2
sh = DTr(ρ ⊗ M−1(|ψ〉〈ψ |)⊗2σ (3)), (47)

with σ (3) the third moment of the ensemble of trajectories:

σ (3) =
∑

m

πmσ
⊗3
m . (48)

With prescrambling, Eq. (47) can be computed analyt-
ically; see Appendix C for details. In all, we obtain to
leading order in large D

‖|ψ〉〈ψ |‖2
sh = P−1 + FP−2P (3) + O(1/D)

∼ Ds, (49)

where P (3) = EmTr(σ 3
m) relates to the third Renyi entropy

of the ensemble of trajectories, and the second line uses the
fact that P ≥ P (3). This gives the same sample complexity
(scaling as Ds) as Eq. (46).

To summarize, we have shown that the cross-entropy
diagnostic of Ref. [23] (Sec. VI A) can be reinterpreted,
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with a small modification, as a protocol to learn the fidelity
of unknown initial state ρ with another state ρ0 = |ψ〉〈ψ |
(Sec. VI B); this task is easy (requires a constant number
of experimental samples) in the disentangling phase, and
hard (requires an exponential number of samples approx-
imately qsN ) in the entangling phase. In turn, the task
can be straightforwardly phrased in terms of estimation of
the fidelity under eavesdropper’s shadows (Sec. VI C); its
complexity, given by the squared shadow norm of the pro-
jector ρ0 = |ψ〉〈ψ |, exhibits a transition from constant to
exponential at the MIPT.

VII. LEARNING CHARGE IN U(1)-SYMMETRIC
DYNAMICS

A setting where learnability transitions in monitored
dynamics are already well established is that of systems
with a U(1) symmetry [12,24,67]. There, one may try to
learn the global charge Q of the system from measurements
of the local charge density qx. The success of this learn-
ing task depends on the decoder (i.e., classical prediction
algorithm) used; however, granting Eve arbitrary classi-
cal computational resources, the learnability transition [24]
was found to coincide with the charge-sharpening transi-
tion, discussed below [12,67]. Here we recover the same
result in the framework of eavesdropper’s shadows, where
it takes the form of a transition in the shadow norm of the
global charge operator ‖Q̂‖sh.

A. Setup

We consider a system of N qubits with a U(1) symmetry
generated by the charge operator

Q̂ = 1
2

∑

i

Zi =
N/2∑

Q=−N/2

Q�̂Q, (50)

where �̂Q are orthogonal projectors on the charge sectors,
of rank

( N
Q+N/2

)
. The system evolves under a combination

of U(1)-symmetric unitary gates and measurements of the
local charge density Zi.

Reference [12] identified a charge-sharpening transi-
tion in this class of models. Charge sharpening is the
loss of charge fluctuations over the course of symmet-
ric monitored dynamics; it is analogous to the dynamical
purification transition, but restricted to a state’s number
entropy. (Writing a symmetric state ρ as a direct sum of
states in each charge block ρ = ⊕

Q pQρQ, the number
entropy is Sn = −∑

Q pQ ln pQ.) Purification of the num-
ber entropy corresponds to projecting a state into a single
charge sector. The time scale for this process (sharpening
time, t#) undergoes a transition from order log(N ) to order
N . The transition was located at a critical measurement rate
p = p# < pc, where pc is the entanglement (or purification)
critical point. In other words, one has a transition between a

fuzzy phase (p < p#) and a sharp phase (p > p#) within the
entangling phase, while the disentangling phase (p > pc) is
always sharp.

The charge-sharpening transition p = p# was found
to correspond to a transition in learnability of the total
charge in the initial state ρ, at least in the limit where
Eve has access to complete information about the circuit
and unlimited classical computational resources (which
is the setting we consider). This result can be recov-
ered straightforwardly in our “eavesdropper’s shadows.”
The formalism of Sec. IV carries over to this case; how-
ever, the shadow channel M, Eq. (17), is not invertible.
To see this, let us note that the states σm are diago-
nal in the charge: they are produced by starting from
the fully mixed state I/D and acting with Z measure-
ments and U(1)-symmetric gates, neither of which can
create coherences between charge sectors. Then, defin-
ing for each operator O the charge-diagonal component
O� = ∫

(dφ/2π)e−iφQ̂OeiφQ̂ = ∑
Q�̂QO�̂Q, we have

M(O�) = D
∑

m

πmTr(σmO�)σm

= D
∑

m

πmTr(σm,�O)σm = M(O) (51)

(we have used cyclicity of the trace and the fact that
σm,� = σm for all m). It follows that all operators that are
off diagonal in the charge are in the kernel of M:

M(O − O�) = 0. (52)

This means that such operators are not learnable, with
any number of samples, under this classical shadow pro-
tocol. However, when restricted to the subspace of charge-
diagonal operators, M may become invertible and it may
be possible to successfully learn all charge-diagonal oper-
ators. Here we focus on the problem of learning total
charge Q, which by definition is charge diagonal and so in
principle learnable via eavesdropper’s shadows. The sam-
ple complexity of this task is determined by the squared
shadow norm ‖Q̂‖2

sh, which we study next.

B. Shadow norm of the charge operator

The shadow norm in general is given by

‖Q̂‖2
sh = DTr(ρ ⊗ M−1(Q̂)⊗2σ (3)), (53)

which depends on the initial state ρ. Different choices
for the initial state are possible—e.g., Ref. [24] consid-
ers initial states that are in either of two charge sectors
Q0, Q1. Here for simplicity and generality we take an
average over all possible initial states (according to any
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1-design distribution, such that
∫

dρ ρ = I/D). This yields
the state-averaged shadow norm:

‖Q̂‖2
sh,avg = Tr(M−1(Q̂)⊗2σ (2)) = 1

D
Tr[Q̂M−1(Q̂)],

(54)

where the first equality comes from the fact that
Tr1(σ

(3)) = σ (2) and the second from the definition of M,
Eq. (17).

It is now helpful to introduce super-ket and -bra nota-
tion and write Eq. (54) as ‖Q̂‖2

sh,avg = (Q̂|M−1|Q̂)/D. For
all invertible Hermitian forms H and all nonzero com-
plex vectors v we have, by convexity, v†H−1v/(v†v) ≥
[v†Hv/(v†v)]−1. Therefore, the following bound holds:

‖Q̂‖2
sh,avg ≥ (Q̂|Q̂)2

D(Q̂|M|Q̂)
. (55)

The numerator is computed straightforwardly:

(Q̂|Q̂) = Tr(Q̂2) = 1
4

∑

i,j

Tr(ZiZj ) = N
4

D. (56)

For the denominator, we note

(Q̂|M|Q̂)
D

=
∑

m

πmTr(Q̂σm)
2 = Em[〈Q̂〉2

m]. (57)

This is the variance across trajectories of the charge
expectation value. (Since Emσm = I/D, we have Em[〈Q̂〉m]
= Tr(Q̂)/D = 0 and thus Em[〈Q̂〉2

m] = varm〈Q̂〉m.) This
is directly related to the order parameter of the charge-
sharpening transition used in Ref. [12], the trajectory-
averaged charge fluctuation δQ = Em[〈Q̂2〉m − 〈Q̂〉2

m]: in
particular, we have

varm[〈Q̂〉m] = N
4

− δQ. (58)

This follows from the fact that the first term in δQ is taken
in the fully mixed state and gives Tr(Q̂2)/D = N/4.

We can thus recast the bound Eq. (57) in terms of the
charge-sharpening order parameter:

‖Q̂‖2
sh,avg ≥ δQ0

1 − δQ(t)/δQ0
, (59)

where δQ0 = N/4 = Tr(Q̂2) is the quantum fluctuation of
charge in a completely mixed state. Below we work out the
consequences of this bound in each phase.

Sharp phase. We have δQ(t) ∼ δQ0e−ct with c >
0 a constant. At sufficiently large constant depth t ∼
1
c log(1/ε) the charge sharpens to within tolerance ε, and

we have ‖Q̂‖2
sh ≥ (1 − ε)N/4: it takes �(N ) experiments,

or a total of �(N 2) measurements, to learn the charge
of the initial state within error ε. This bound is expected
from a simple central limit theorem argument [24] and
would apply even upon measuring all qubits immedi-
ately, so the bound in this phase is trivial [Note that the
random initial state we consider need not have definite
charge. It has mean charge 0 and fluctuations O(

√
N ),

so lowering the uncertainty to O(1) takes of order N
experiments. This is unlike Ref. [24], where the initial
state is promised to be of definite charge and so a single
shot may suffice]. It is easy to see that, if each outcome
m uniquely specifies a value Q of the charge (as is the
case after sharpening), then O(N ) experiments are also
sufficient.

Fuzzy phase. We have [12] δQ(t) ∼ δQ0e−ct/N —i.e.,
the sharpening time t# diverges linearly in system size N .
This gives

‖Q̂‖2
sh,avg ≥ N/4

1 − e−ct/N � N 2

4ct
, (60)

where the approximation holds at times t � N . At finite
t, this proves that of order N 2/t samples are needed, for
a total of Mtot ∼ (N 2/t)× (Nt) ∼ N 3 local measurements.
This result is parametrically larger than in the sharp phase,
scaling as N 3 rather than N 2. Furthermore, it is analo-
gous to our previous result on learning Pauli operators,
Sec. V D, in that an invariant unit of information extracted
per measurement emerges. [This holds as long as t is not
much larger than the sharpening time t# ∼ N so that the
scaling ansatz for δQ(t) applies.] In the fuzzy phase, this
unit is suppressed by a factor of N relative to the sharp
phase.

To summarize, we have analyzed the state-averaged
shadow norm of the charge operator ‖Q̂‖2

sh,avg, which quan-
tifies the number of experimental repetitions needed to
learn the charge 〈Q̂〉 of an unknown initial state from
the measurement record and knowledge of the circuit.
We have shown that this behaves differently in the two
measurement-induced phases: it is O(N ) throughout the
sharp phase, whereas it is bounded below by approxi-
mately N 2/t in the fuzzy phase. The total number of mea-
surements (there are of order Nt measurements per exper-
imental repetition) thus transitions from O(N 2) (sharp
phase) to �(N 3) (fuzzy phase). Thus, in the same way in
which the entanglement phase transition was shown to be a
transition in learnability of generic properties such as Pauli
expectation values (Sec. V) and many-body fidelities (Sec.
VI), the charge-sharpening transition emerges as a transi-
tion in learnability of the charge Q̂ in symmetric monitored
dynamics.
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VIII. DISCUSSION

A. Summary

We have presented a learnability perspective on
measurement-induced phases of quantum information,
based on the ability of an eavesdropper to learn prop-
erties of an unknown quantum state of the system from
classical midcircuit measurement data. The learnability
perspective is complementary to more well-established
perspectives on the MIPT based on the entanglement prop-
erties of postmeasurement states of the quantum many-
body system, or to the coding perspective, which focuses
on recovering quantum information from the combined
quantum-classical state of the many-body system and mea-
surement device. In our setting, the eavesdropper, Eve,
collects measurement records m from multiple repetitions
of the experiment. In combination with a complete classi-
cal description of the dynamics and unconstrained classical
computing resources, Eve can try to learn properties of the
system’s unknown initial state ρ—without access to the
final, postmeasurement state.

We have shown that the MIPT generically coincides
with a complexity phase transition for these tasks, i.e., a
transition in the number of measurement outcomes needed
to predict properties of ρ to a fixed accuracy. This is
underpinned by a transition in the informational power of
the POVM associated to monitored dynamics. This is an
invariant measure of the information flow from the quan-
tum state to the classical measurement record (technically
a channel capacity), which sharply changes from finite to
exponentially small at the MIPT.

We give an operational meaning to this transition
through the framework of classical shadows, which fur-
nishes a unified language to describe learnability transi-
tions in various different contexts. To this end, we intro-
duced a family of classical shadows protocols that the
eavesdropper may use to concretely predict properties of
ρ, and analytically showed that they carry signatures of the
MIPT; namely the shadow channel used in the estimation
process depends on the second moment of an associated
ensemble of monitored quantum trajectories, which can
undergo a MIPT. We have then unpacked the consequences
of this result on several estimation tasks of interest.

Pauli expectation values. We have found the critical
point p = pc to be (on average) optimal for the estimation
of Pauli operators—the critical point balances the negative
effects of spatial locality in the disentangling phase (which
makes learning large Pauli operators more difficult) against
the overall lack of information in the entangling phase.
Washing out the effects of locality with a prescrambling
step (i.e., a sufficiently deep random unitary circuit pre-
ceding the monitored dynamics), we analytically derived
the sample complexity of Pauli estimation for any traceless
Pauli to be proportional to q(1+s)N , with q the local Hilbert-
space dimension, N the size of the system, and s ∈ [0, 1]

the order parameter of the entangling phase (entropy den-
sity). The MIPT thus manifests as a nonanalyticity in the
coefficient of the exponential in this case.

Many-body fidelity. We analytically derived the sam-
ple complexity of fidelity estimation (with prescrambling)
to be proportional to qsN , transitioning from constant to
exponential at the MIPT. Furthermore, we found a close
connection between shadow estimation of the fidelity and
a previously proposed order parameter for the MIPT based
on a linear cross-entropy diagnostic [23].

Charge. We considered models of monitored dynamics
with a U(1) symmetry and derived the sample complexity
of learning the global charge expectation 〈Q̂〉 on the ini-
tial state. We have found a transition, this time between
distinct power laws in N , at the charge-sharpening transi-
tion [12]. Thus we have recast previous results on charge
learnability transitions in the unified language of shadow
estimation, on the same footing as the other learnability
transitions identified above. A striking result, derived both
for the entanglement and charge-sharpening transitions,
is the emergence of an invariant amount of information
extracted per measurement by the eavesdropper.

B. Experimental implications

In this work we have focused uniquely on the sample
complexity of the various learning tasks: how many repeti-
tions of the quantum experiment are necessary for learning.
We have intentionally neglected the issue of classical
computational complexity. This is key to any practical
considerations.

Several recent works have, in various ways, introduced
“hybrid” quantum-classical order parameters for the MIPT
that trade experimental sample complexity (associated to
a “postselection overhead” of obtaining postmeasurement
properties) for classical computational complexity [19,21,
23,36–38]. This is generally advantageous as (i) classical
resources are cheaper and more available than quantum
ones, (ii) the required classical simulation may in fact be
efficient (e.g., in Clifford or matchgate circuits, etc.), and
(iii) even when that is not the case, the exponential barrier
for classical simulation [typically of order exp(N )] may be
more favorable than that of quantum sampling [typically
of order exp(NT), T being the duration of the dynamics].

Our perspective in this work automatically leads to
a family of these quantum-classical order parameters,
namely the variances of shadow estimators for various
properties of ρ. Such variances can be estimated from a
small number of experimental datapoints in both phases.
For example, learning a Pauli expectation value 〈P〉 in the
mixed phase is hard due to the large variance var(p̂) ∼
D1+s of the shadow estimator p̂; our estimate of 〈P〉 after
M iterations of the experiment, (1/M )

∑M
i=1 p̂i, carries an

uncertainty approximately
√

var(p̂)/M , so that M ∼ D1+s

experiments are needed in order to make the error small.
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However, the variance var(p̂) itself is easily estimated
from M = O(1) iterations of the experiment, and its scal-
ing with system size N (proportional to q[1+s]N ) serves as
an order parameter of the MIPT. We note that all sam-
ples generated by the quantum experiment are valid and
can be used for shadow estimation. The practical complex-
ity reduces entirely to classical computation, as various
steps of shadow estimation (computation of the snap-
shots, the shadow channel, the inverted snapshots, and the
observable estimators) may require exponential classical
resources.

C. Outlook

Our work opens some interesting directions for future
work. First of all, we have chosen to focus only on the sam-
ple complexity of learning, neglecting the classical compu-
tational complexity. It would be interesting, especially with
an eye to practical applications, to revisit our results with
restrictions on classical computation resources: how much
can Eve learn, e.g., with only polynomial-time classical
algorithms? The methods used in this work generically
require exponential-time computation; are there other more
efficient methods that can still capture the learnability
transition?

For the problem of learning the global charge
from U(1)-symmetric dynamics [24], it was found that
polynomial-time decoders still give rise to learnabil-
ity transitions, albeit at a larger measurement rate p;
with increasing computational resources, one eventually
recovers the “intrinsic” transition at p = p# (the charge-
sharpening transition [12]). Does a similar picture hold
for the entanglement transition? We have found that, with
unlimited classical computation, the MIPT p = pc yields a
learnability transition; would the transition move to some
larger measurement rate p > pc upon restricting classical
computational resources? The percolation threshold (e.g.,
p = 1/2 in one-dimensional brickwork circuits [1]), above
which the monitored dynamics breaks down into finite-
sized space-time regions, may be an upper bound for such
a transition in polynomial-time learnability. We leave this
question as an interesting direction for follow-up research.

In this work we have focused on non-Gaussian sys-
tems. However, Gaussian systems can exhibit potentially
richer types of measurement-induced criticality and dif-
ferent entanglement phase diagrams (e.g., without a sta-
ble volume-law phase) [8,10,68]. It would be interesting
to understand how such behaviors map onto the perfor-
mance of eavesdropper’s shadows, relative to standard
“matchgate shadows” for fermionic systems [46].

Another open question is the precise nature of eaves-
dropper’s shadows across the phase diagram, and espe-
cially at the critical point. We have found that, without
prescrambling, the MIPT appears as an optimum in the
learnability of typical or average Pauli operators on the

system, see Sec. V B and Fig. 3. This is due to the com-
bination of two effects: the lack of informational power
in the entangling phase, and the role of locality in the
disentangling phase (the latter makes large Pauli opera-
tors particularly hard to learn). We have conjectured that
in the entangling phase, eavesdropper’s shadows func-
tion similarly to random Clifford shadows [6], up to an
overall inflation of sample complexity by the exponential
factor qsN (due to the suppressed informational power);
whereas in the disentangling phase, they function similarly
to shallow shadows [48–51] of variable depth (recovering
the zero-depth limit, i.e., random Pauli measurements, at
p = 1). This leaves the question of eavesdropper’s shad-
ows at the MIPT. The logarithmic scaling of entanglement
at the critical point is expected to yield a distinctive fin-
gerprint on the shadow norm distribution [via Eq. (28)],
perhaps similar to classical shadows based on tree tensor
networks. Testing and quantifying these conjectures, and
finding potential applications, are exciting directions for
future research.

Note added.—Recently, we became aware of a related
work on classical shadows from monitored dynamics [69].
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APPENDIX A: INFORMATIONAL POWER

In this Appendix we collect various technical results
related to the computation of the informational power,
Sec. III.

1. Derivation of Eq. (10)

Here we derive the analytical expression for the pre-
scrambled informational power in terms of the subentropy,
Eq. (10).
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With prescrambling by a random many-body uni-
tary V, our POVM is given by � = {V†EmV}, with
effects indexed by the pair (m, V), which plays the role
of a generalized “outcome.” The pair (m, V) occurs
with probability Tr(VρV†Em) (note this is a probabil-
ity density over the continuous variable V with the Haar
measure dV. The POVM normalization condition reads∑

m

∫
dV (V†EmV) = ∑

m Tr(Em)I/D = I.). Due to pre-
scrambling, all pure-state ensembles E = {(pi, |ψi〉〈ψi|)}
that unravel the same density matrix ρ have the same
mutual information with � [59]: indeed, we have

I(E : �) =
∑

i

pi

∑

m

∫
dV 〈ψi|V†EmV|ψi〉

× ln
〈ψi|V†EmV|ψi〉

Tr(Emρ)
; (A1)

then, introducing a Haar-random state |φ〉 ≡ V|ψi〉 and
replacing integration over the unitary group (Haar measure
dV) with integration over the Hilbert space (Haar measure
dφ), we obtain

I(E : �) =
∑

m

πm

∫
dφ f (〈φ|Dσm|φ〉)

−
∑

m

πm

∫
dV f [Tr(DσmVρV†)], (A2)

where σm is as in Eq. (11) and we have introduced the
shorthand f (x) = x ln(x). This shows that all pure-state
ensembles E that unravel the same ρ have the same mutual
information I(E : �), as claimed.

We can now proceed to maximize the mutual informa-
tion. It can be shown that the second line of Eq. (A2) is
≤ 0 [by convexity of f (x)], thus it can be maximized by
setting ρ = I/D. Next, we note that the mutual informa-
tion is nondecreasing under replacement of a mixed state
ρi in the ensemble with a pure decomposition, (pi, ρi) �→
{(pij ,

∣∣ψij
〉〈
ψij

∣∣)} such that
∑

j pij
∣∣ψij

〉〈
ψij

∣∣ = piρi [This
follows from convexity of f (x) = x ln(x)]. Thus the opti-
mal ensemble can always be written in terms of pure states
only. It follows that the optimization is trivial—any 1-
design ensemble of pure states (e.g., the computational
basis) maximizes the mutual information. The informa-
tional power, following Eq. (A2), is thus given by

W(�) =
∑

m

πmG(σm), (A3)

G(σ ) =
∫

dφ 〈φ|Dσ |φ〉 ln 〈φ|Dσ |φ〉. (A4)

The Haar integral G has been worked out for general σ
in Ref. [59], and gives

G(σ ) = Q(I/D)− Q(σ ), (A5)

where Q(σ ) is the subentropy, see below. This yields
Eq. (10).

2. Subentropy

Here we provide some more details about the subentropy
Q(ρ) [59].

Like the von Neumann entropy S(ρ), the subentropy
Q(ρ) is solely a function of the spectrum of ρ, {λj }D

j =1:

Q(ρ) = −
D∑

j =1

λj ln λj∏
k �=j (1 − λk/λj )

. (A6)

If the spectrum is degenerate with λi = λj , the formula can
be regularized by taking a limit λi → λj ; Q(ρ) is finite and
well defined.

Another connection between entropy and subentropy
is that they bound (above and below, respectively) the
“accessible information” of a state ensemble E , defined as

A(E) ≡ max
�

I(E : �). (A7)

Note the duality with the informational power of a POVM,
cf. Eq. (9). As shown in Ref. [59], one has Q(ρ) ≤ A(E) ≤
S(ρ), where ρ = ∑

i piρi is the average density matrix of
the state ensemble. The ensemble E attaining the lower
bound A(E) = Q(ρ) for a given ρ is known as the Scrooge
ensemble and has recently emerged as a candidate univer-
sal distribution for postmeasurement states of subsystems
in chaotic dynamics [70–72].

An important difference with the entropy is that the
subentropy cannot be extensive. In fact it is bounded
above by a constant: we have Q(ρ) ≤ Q(I/D) = 1 − γ −
δH(D) < 1 − γ < 0.424. [Here γ = 0.577 . . . is Euler-
Mascheroni’s constant and δH(x) = ∑x

j =1 1/j − ln(x)−
γ , as in the main text.]

3. Informational power of Clifford monitored
dynamics

Here we derive Eq. (12), which underlies the result
for the informational power of Clifford monitored circuits,
Eq. (13).

We consider the Haar integral G(ρ) from Eq. (A4) for
the case in which ρ is proportional to a projector, ρ = �/r
where �2 = � and r is the rank of �. This includes the
case of stabilizer states. First we use a standard replica trick
to write

G(ρ) = ∂n

∫
dφ 〈φ|Dρ|φ〉1+n

∣∣∣∣
n=0

. (A8)

We then evaluate the integral for integer values of n
by using the form of the (n + 1)th moment of the Haar
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measure on a D-dimensional Hilbert space [70,72]:

ρ
(n+1)
Haar,D ≡

∫
dφ|φ〉〈φ|⊗n+1 = (D − 1)!

(D + n)!

∑

σ∈Sn+1

σ̂ , (A9)

where σ is a permutation of n + 1 elements and σ̂ is the
associated replica permutation operator. We obtain

G(ρ) = ∂n

⎡

⎣ (D − 1)!
(D + n)!

∑

σ∈Sn+1

Tr((Dρ)⊗n+1σ̂ )

⎤

⎦

n=0

.

(A10)

Using the fact that ρ = �/r (r being the rank of the
projector�) we have Tr(�⊗n+1σ̂ ) = ∏|σ |

i=1 Tr(�ni) = r|σ |,
with |σ | the number of cycles in the permutation σ , and ni
the length of each cycle. Thus

G(ρ) = ∂n

⎡

⎣ (D − 1)!
(D + n)!

(
D
r

)n+1 ∑

σ∈Sn+1

r|σ |

⎤

⎦

n=0

. (A11)

The summation over σ can be done exactly by noting that,
upon taking the trace of Eq. (A9) and replacing D �→ r,
one has

(r − 1)!
(r + n)!

∑

σ∈Sn+1

r|σ | = Tr(ρ(n+1)
Haar,r) = 1. (A12)

It follows that

G(ρ) = ∂n

[(
D
r

)n D!
(D + n)!

(r + n)!
r!

]

n=0
, (A13)

where the Hilbert-space replicas are gone and we can now
take the derivative (i.e., replica limit).

Analytically continuing the factorial to the � function,
we have (x + n)! = x! + x!(Hx − γ )n + O(n2), with Hx =∑x

j =1 1/j the harmonic sum. We conclude

G(ρ) = ln(D/r)+ Hr − HD = δH(r)− δH(D), (A14)

with δH(x) = Hx − (ln(x)+ γ ) as in the main text.
Finally, writing the rank r of the state in terms of the
entropy as qS we obtain Eq. (12).

4. Renyi-2 informational power of general monitored
dynamics

Here we introduce a Renyi-2 version of the informa-
tional power, which is computable for general (nonstabi-
lizer) states. Note that the Renyi-2 version of the mutual
information on which this construction is based is not
a valid mutual information (e.g., does not obey positiv-
ity); nonetheless in randomized settings it often behaves

in a qualitatively similar way to the true mutual informa-
tion, so our result here is suggestive of the presence of an
informational power transition in general (nonstabilizer)
monitored dynamics.

We define the Renyi-2 informational power W2 by max-
imizing (over state ensembles E) the Renyi-2 “mutual
information”

I2(E ,�) = S2(pi)+ S2(pα)− S2(pi,α)

= ln

∑
i,α p2

i,α∑
i,α p2

i p2
α

. (A15)

Going through the same manipulations as in Eq. (A2), we
have

I2(E ,�) = ln
∑

i p2
i
∑

m

∫
dφ 〈φ|Em|φ〉2

∑
i p2

i
∑

m Tr(Em)2/D2
. (A16)

Defining modified probabilities p̃i = p2
i /

∑
j p2

j and π̃m =
π2

m/
∑

m′ π2
m′ we arrive at

I2(E ,�) = ln
∑

i

p̃i

∑

m

D2π̃m

∫
dφ 〈φ|σm|φ〉2. (A17)

The integrand is independent of i, which again shows
that the mutual information is independent of E owing to
prescrambling. We get

W2(�) = ln
∑

m

π̃m
D

D + 1
[
1 + Tr(σ 2

m)
]

= ln
1 + P

1 + 1/D
, (A18)

where P is the average purity of the trajectories σm,
averaged over the modified distribution π̃m.

It follows that the above-defined “Renyi-2 informational
power” exhibits a MIPT: in the mixed phase, with P =
D−s and s > 0, we have W2(�) → 0 in the large-system
limit; in the pure phase, with P = q−S and S finite, we have
W2(�) → ln(1 + q−S) > 0. Note that, due to the modified
measure over trajectories, the transition is in a different
universality class from the standard one [22,23].

APPENDIX B: ALTERNATIVE CONSTRUCTIONS
FOR EAVESDROPPER’S SHADOWS

Here we complete the discussion in Sec. IV by providing
details on multiple options for classical shadows protocols
based on generalized measurements, and how they relate to
the MIPT. We start from the prescription discussed in the
main text, and how it can be formally interpreted as Petz
recovery of the quantum state ρ from the measurement
record m. We then review two existing approaches for
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shadows based on generalized measurements—one based
on least squares, one on maximum fidelity. We obtain
the associated shadow channels and discuss how they are
sensitive to the MIPT.

1. Petz recovery

We begin with the prescription followed in Sec. IV,
i.e., ηm = σm. To complement the heuristic justifica-
tion based on time-reversed monitored dynamics, we
show that the same prescription arises as the Petz
recovery map [60–63] relative to the channel N (ρ) =∑

m Tr(Emρ)|m〉〈m| (mapping quantum states to classical
measurement records) and the reference state ρ0 = I/D.
The Petz map for a noise channel N and reference state
ρ0 is defined in general as

Rρ0,N
Petz (•) = ρ

1/2
0 N † [N (ρ0)

−1/2 • N (ρ0)
−1/2] ρ1/2

0 .
(B1)

The Petz map tries to undo the action of the channel N ,
which plays the role of noise; it manifestly succeeds for
the reference state ρ0, as seen by plugging in • = N (ρ0)

in Eq. (B1). It also succeeds for any other states whose
relative entropy with ρ0 is nondecreasing under the action
of N [60,62]. These properties have made it a useful tool
from formal quantum information to applications in error
correction [73] and gravity [63,74]. For the task at hand,
RPetz maps classical states (i.e., probability distributions
over measurement records) to quantum states, which is
indeed our goal: given some eavesdropped measurement
record m, predict the quantum state ρ it came from.

Using the fact that N (ρ0) = ∑
m πm|m〉〈m| and

N †[|m〉〈m|] = Em, explicit calculation of the Petz recov-
ery on a classical state pexp = ∑

m pexp
m |m〉〈m| yields

Rρ0,N
Petz (p

exp) =
∑

m

pexp
m

Em

Dπm
=
∑

m

pexp
m σm. (B2)

In conclusion, the Petz recovery prescription says that,
given an experimental outcome m (representable as a δ-
function distribution pexp

m′ = δm,m′), Eve should prepare the
state σm.

2. Least squares

Reference [45] proposes using ηm = Em based on a
least-squares criterion. Namely, given an experimentally
observed measurement record distribution pexp

m , we can try
to reconstruct the unknown state ρ by minimizing the cost
function

L(ρ) =
∑

m

[
pexp

m − Tr(Emρ)
]2 , (B3)

i.e., the two-norm of the distance between observed dis-
tribution pexp

m and predicted distribution Tr(Emρ). At this

stage it is convenient to introduce some extra notation:
we use |m〉〉 = |m〉〈m| to denote classical states of the
measurement record, and |A) to denote quantum operators
as states in a doubled Hilbert space. Defining again the
quantum-to-classical channel N = ∑

m |m〉〉(Em| already
encountered in the discussion of the Petz recovery above,
we can write the predicted distribution for a given ρ as
Tr(ρEm) = 〈〈m|N |ρ). The cost function thus reads

L(ρ) = ∥∥|pexp〉〉 − N |ρ)∥∥2 , (B4)

with |pexp〉〉 = ∑
m pexp

m |m〉〉 for short, and its optimization
reduces to usual least squares, with the well-known result

|ρ̂) = (N †◦N )−1N †|pexp〉〉. (B5)

In a nutshell, this prescription says that for every run of
the experiment, giving some outcome m, we should con-
struct a “snapshot” N †|m〉〉 = |Em) and then an “inverted
snapshot” M−1(Em), where the “measurement channel”
M is given by

M = N †◦N =
∑

m

|Em)(Em|. (B6)

The operator Em is evidently not a state, due to its
trace normalization: we have Em = Dπmσm in the nota-
tion introduced in Sec. II A. It follows that M is not a
channel (it is not trace preserving). The shadow protocol
works regardless, as the application of the inverse shadow
channel M−1 takes care of the incorrect normalization.

Finally, it is helpful to rewrite the shadow channel in
terms of a state ensemble dual to our POVM {Em}, in
analogy with Eq. (17). We have

M(ρ) =
∑

m

Tr(ρEm)Em = D2
∑

m

π2
mTr(ρσm)σm

= D2

(
∑

m

π2
m

)
Tr[(I ⊗ ρ)σ̃ (2)], (B7)

where σ̃ (2) is the second moment operator of the ensem-
ble Ẽ = {(π̃m, σm)} defined by the usual states σm =
Em/Tr(Em) [cf. Equation (11)] but with a modified proba-
bility distribution π̃m = π2

m/
∑

m′ π2
m′ :

σ̃ (2) =
∑

m

π̃mσ
⊗2
m . (B8)

This trajectory ensemble also features a MIPT, but due to
the modified weights it has a different universality [22]
and generally occurs at a different (though empirically very
close [23]) measurement rate.

020304-20



LEARNABILITY TRANSITIONS IN MONITORED. . . PRX QUANTUM 5, 020304 (2024)

3. Maximum fidelity

Finally, Ref. [44] proposes using the pure state corre-
sponding to the leading eigenvalue (we neglect degenera-
cies at this stage) in Em: |ψm〉〈ψm| = limn→∞ En

m/Tr(En
m).

This choice maximizes the the Haar-averaged fidelity
between input and output states of the shadow channel,
F = ∫

dφ 〈φ|M(|φ〉〈φ|)|φ〉: we have

F = D
∑

m

πm

∫
dφ〈φ|σm|φ〉〈φ|ηm|φ〉

=
∑

m

πm
1 + Tr(σmηm)

D + 1
. (B9)

This is maximized by taking ηm = |ψm〉〈ψm|, the projector
on the leading eigenvector of σm, as claimed. We note that
this construction is closely related to a previous proposal
for a notion of “quantumness” of a Hilbert space [75,76],
based on the ability of a classical eavesdropper to read and
resend the information without being detected.

The resulting shadow channel is given by

M(ρ) = DTr[(I ⊗ ρ)σ (∞,1)], (B10)

where we defined a generalized “moment operator”

σ (∞,1) =
∑

m

πm|ψm〉〈ψm| ⊗ σm (B11)

for the ensemble of trajectories. This operator is sensitive
to the MIPT; for example, the expectation value of the
replica SWAP operator τ̂ yields

Tr(σ (∞,1)τ̂ ) =
∑

m

πm〈ψm|σm|ψm〉 = Em[e−S∞,m],

(B12)

the “annealed average” over trajectories of the Renyi-∞
entropy. The measure over trajectories in this case is the
conventional one, πm.

APPENDIX C: XEB CALCULATIONS

Here we derive two results relating to the sample com-
plexity of fidelity estimation from Sec. VI—Eq. (45) and
(49)—both of which involve a third-moment expectation
value.

1. Computation of third-moment quantity

We start by obtaining an auxiliary result: evaluating the
third-moment quantity

� ≡ Tr(ρ ⊗ ρ⊗2
0 σ (3)), (C1)

with ρ0 = |ψ〉〈ψ | and σ (3) the third-moment operator
given in Eq. (48). Due to prescrambling, the latter is

expressed as a sum of three-replica permutations,

σ (3) =
∑

ν∈S3

cν ν̂

= ceê + cτ (τ̂1,2 + τ̂2,3 + τ̂3,1)+ cχ(χ̂++χ̂−), (C2)

where e is the identity permutation, τi,j is the transposition
of elements i, j , and χ± are the cyclical permutations. By
plugging Eq. (C2) into the definition of �, we get

� = ce + cτ + 2(cτ + cχ )F , (C3)

where F = Tr(ρρ0) is the fidelity between the true state ρ
and the guess ρ0 = |ψ〉〈ψ |.

By making use of Weingarten functions [77]

⎧
⎪⎨

⎪⎩

Wg(e) = (D2 − 2)/g(D)
Wg(τij ) = −D/g(D)
Wg(χ±) = 2/g(D)

(C4)

with g(D) = D(D2 − 1)(D2 − 4), we get

⎛

⎝
ce
cτ
cχ

⎞

⎠ = 1
g(D)

⎛

⎝
D2 − 2 −3D 4

−D D2 + 2 −2D
2 −3D D2

⎞

⎠

⎛

⎝
1
P
P (3)

⎞

⎠ ,

(C5)

where P (3) = Tr(χ±σ (3)) = EmTr(σ 3
m) is related to the

third Renyi entropy of the trajectories. Therefore we have

ce + cτ = D2 − D − 2 +P(D2 − 3D + 2)+P (3)(4 − 2D)
D(D2 − 1)(D2 − 4)

� D−3(1 + P) (C6)

and

cτ + cχ = 2 − D + P(D2 − 3D + 2)+ P (3)(D2 − 2D)
D(D2 − 1)(D2 − 4)

� D−3(P + P (3)). (C7)

Here � denotes leading order in D. With this we conclude

� � D−3[1 + P + 2F(P + P (3))]. (C8)
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2. Statistical fluctuations of modified linear XEB

Here we derive Eq. (45). The standard deviation δXEB′

is given by

(δXEB′)2 = 〈p(ρ0|m)2〉m∼p(m|ρ) − 〈p(ρ0|m)〉2
m∼p(m|ρ).

(C9)

The second term is simply (XEB′)2, already computed in
Eq. (43). Focusing on the first, we have

〈p(ρ0|m)2〉m∼p(m|ρ) = D3Tr(ρ ⊗ ρ0 ⊗ ρ0 σ
(3)), (C10)

which is proportional to the � quantity in Eq. (C8). It
follows that

(δXEB′)2 = P + 2FP (3) − (FP)2. (C11)

In the pure phase, both P and P (3) are constant. In the
mixed phase they both vanish asymptotically, with P ∼
D−s and P (3) ≤ P . Equation (45) follows.

3. Shadow norm computation

Here we derive Eq. (49). The inverse channel M−1,
derivable from Eq. (30), reads M−1(ρ) = λ−1ρ − cI
with λ = (DP − 1)/(D2 − 1) and c = (D − P)/(DP −
1). This yields

‖ρ0‖2
sh = D

{
c2Tr(ρσ (1))− 2cλ−1Tr(ρ ⊗ ρ0σ

(2))

+λ−2Tr(ρ ⊗ ρ⊗2
0 σ (3))

}
, (C12)

where we have used the fact that moment operators obey
Tr1(σ

(k)) = σ (k−1) (tracing over one of the k replicas yields
the moment operator on k − 1 replicas). The first two
terms are straightforwardly evaluated by noting that, due
to prescrambling, σ (1) = I/D and σ (2) = [(1 − P/D)e +
(P − 1/D)χ ]/(D2 − 1) (e,χ are the two replica permuta-
tions, identity and swap). The last term, involving the third
moment, is again given by the � quantity evaluated in Eq.
(C8). Explicit evaluation yields Eq. (49).
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