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Quantum master equations are an invaluable tool to model the dynamics of a plethora of microscopic
systems, ranging from quantum optics and quantum information processing to energy and charge trans-
port, electronic and nuclear spin resonance, photochemistry, and more. This tutorial offers a concise and
pedagogical introduction to quantum master equations, accessible to a broad, cross-disciplinary audience.
The reader is guided through the basics of quantum dynamics with hands-on examples that increase in
complexity. The tutorial covers essential methods such as the use of the Lindblad master equation, Red-
field relaxation, and Floquet theory, as well as techniques such as Suzuki-Trotter expansion and numerical
approaches for sparse solvers. These methods are illustrated with code snippets implemented in PYTHON

and other languages, which can be used as a starting point for generalization and more sophisticated
implementations.
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I. INTRODUCTION

Master equations are differential equations used to
model the dynamics of systems that can be described as
a probabilistic combination of some states. For example,
the concentration dynamics of a chemical reaction x � y,
where some reactants x lead to some products y, can be
described by the differential equations

{
ṗx = ky→xpy − kx→ypx,
ṗy = kx→ypx − ky→xpy ,

(1)

where pi represent the concentrations of species i = x, y,
with ṗi = dpi/dt being their time derivative, and ki→j rep-
resent the rates of the transitions from species i to species j .
This equation can be easily solved to obtain the tran-
sient and steady-state concentrations of the reactants and
products, as a function of their initial concentrations and
transition rates. In a reaction such as the one modeled in
Eq. (1), the total concentration is conserved, since ṗtot :=
ṗx + ṗy = 0. Then, by recasting the problem in terms of
relative concentrations pi → pi/ptot, we can interpret pi as
the probability of being in state i. We can generalize this
idea to formulate master equations as first-order differential
equations to the vector of probabilities p = (p1, . . . , pn) of
being in one of the n states of some system of interest. As a

result, the dynamics of the state probabilities are prescribed
by the master equation

ṗ = F(p, t), (2)

with F often being a linear function of p represented by
some generating matrix A, as in ṗ = Ap.

However, when dealing with quantum systems, we must
take into account that coherent superpositions of states par-
ticipate in the evolution, as prescribed by Schrödinger’s
equation

d
dt

|ψ(t)〉 = − i
�

H |ψ(t)〉, (3)

where H is the Hamiltonian of the system and |ψ(t)〉 =∑n
j =1 cj (t)|φj 〉 is its state at time t, expressed as a coher-

ent superposition of the eigenstates BH = {|φi〉, . . . , |φn〉}
of the Hamiltonian, via the normalized complex coeffi-
cients cj (t) satisfying

∑
i |ci(t)|2 = 1. In this case, a vector

of probabilities p, with pi = |ci|2, is no longer sufficient to
completely describe the dynamics of the system, since dif-
ferent phases of ci will lead to different solutions. Master
equations for the dynamics of quantum systems can then be
expressed by use of another representation of the state of
the system, known as the density operator ρ. As discussed
in detail in Sec. II, the density operator contains all the
information regarding the probabilities (known as popula-
tions) of being in each state i, given by pi = 〈φi|ρ|φi〉, as
well as the phases (known as coherences) ϕij = 〈φi|ρ|φj 〉
associated with the coherent superpositions between basis
states |φi〉 and |φj 〉. Quantum master equations (QMEs) are
then formulated by generalization of Eq. (2), as first-order
differential equations to the density operator,

ρ̇ = F(ρ, t). (4)

In this tutorial we primarily cover a specific type of lin-
ear QME, one that respects a set of requirements for the
evolution of the density operator, as discussed in Sec. III.

QMEs, initially developed in quantum optics to study
light-matter interactions [1], have been used in a multitude
of settings, across different disciplines and fields, such as
photochemistry [2–4], energy and charge transport [5–7],
high-precision magnetometry [8–10], electronic spin reso-
nance [11–14] and nuclear spin resonance [15–17], quan-
tum information processing [18–21], and thermodynamics
in the quantum regime [22–24], and are certainly not lim-
ited to these settings. One of the key aspects of QMEs is
that they provide a coarse-grained stochastic description
[25] of the effect of unknown and uncontrollable agents
on a system of interest [26], leading to a computationally
inexpensive ensemble-averaged picture of the dynamics of
quantum systems. QMEs can be phenomenological [27]
or derived, from first principles [26], from a microscopic
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FIG. 1. QMEs provide a coarse-grained prescription for the dynamics of a quantum system (blue) that interacts weakly with its
environment (red). The state ρ of the quantum system, represented by the density operator (see Sec. II), evolves according to some
master equation ρ̇(t) = LT(t)[ρ(t)], where the Liouville superoperator LT(t) generating the evolution may depend on time t and on
the temperature T of the environment. The solution ρ(t) = �T(t; t0)[ρ(t0)] (and the master equation itself) can be used to study the
steady-state and nonequilibrium properties of the system. QMEs are a staple tool for modeling spin resonance, optical spectra, and
quantum information processing, and their use is certainly not limited to these fields and applications.

model of the system-environment interactions, as done in
Sec. IV. They can be used to obtain qualitative trends [28]
or make quantitatively accurate predictions [10]. They are
just as suitable for the derivation of analytical results [2] as
they are for the numerical simulation of complex systems
with a large number of degrees of freedom [29]. For these
reasons, QMEs, illustrated in Fig. 1, have become a stan-
dard approach to model the dynamics of quantum systems,
and they have become a starting point for the formulation
of more sophisticated descriptions.

Quantum master equations are now more accessible than
ever, thanks to the many dedicated libraries and software
packages, such as QUTIP [30], HOQST [31], SPINACH [32],
and QOTOOLBOX, to name a few. These resources offer
an invaluable platform for the quick implementation of
models and their systematic exploration. Indeed, they have
established themselves as a staple tool on the workbench
of a vast community of researchers. Pedagogical tutorials
and documentations of these libraries are just as precious
as the software itself, offering an accessible starting point
and a pathway for rapid progression.

Nevertheless, when one is directing newcomers from
different research areas to QMEs, an obstacle is often pre-
sented by the vast and technical library of resources such
as textbooks and notes, written for a specialized audience,
which may not be ideal for cross-disciplinary readers. To
bridge this gap, this tutorial provides the reader with a con-
cise introduction to quantum master equations, with a ped-
agogical, hands-on approach, in the style of an interactive
lesson or a workshop. The aim is to provide a handbook
for third-year students joining the research group, master
students ready to implement models, and doctoral students
and cross-disciplinary researchers looking to consolidate
and expand their expertise.

In this tutorial we cover essential theories, such as the
Lindblad master equation, Bloch-Redfield theory, and Flo-
quet theory, as well as numerical techniques for their
solutions, such as the stochastic wave function method, the

Suzuki-Trotter expansion, and numerical approaches for
sparse matrices. We illustrate these methods using scripts
implemented in PYTHON. Increasing in complexity, these
examples aim to provide a deeper understanding of the
methods implemented behind the curtains in libraries such
as QUTIP and QOTOOLBOX, and can be used as a starting
point for generalizations. This offers a unique opportunity
to learn about numerical implementations and computa-
tional complexity as the methods are introduced. All the
scripts included in the tutorial are available in Supplemen-
tal Material [33] and on GitHub, in the repository qme.
Versions of these scripts in MATLAB and MATHEMATICA
can also be found in Supplemental Material [33].

II. DENSITY OPERATORS

In this section we briefly review the mathematical
description of the state of a quantum system, focusing on
the numerical implementation of state vectors and density
operators. We assume that the reader is familiar with the
postulates of quantum mechanics, Hilbert spaces, expecta-
tion values, time evolution, and composite systems, which
can be reviewed in Refs. [26,34–41].

A. Pure states

Let us consider a d-dimensional quantum system with
Hilbert space H. Let B := {|φ1〉, |φ2〉, . . . , |φd〉} be an
orthonormal basis for H, so that 〈φi|φj 〉 = δij . For exam-
ple, B could be given by the orthonormal eigenstates of a
Hermitian operator such as some Hamiltonian H . Any state
of the system can be expressed as a coherent superposition
with complex coefficients ci ∈ C,

|ψ〉 = c1|φ1〉 + c2|φ2〉 + · · · + cd|φd〉 =
d∑

j =1

cj |φj 〉, (5)

020202-3

https://qutip.org/
https://github.com/USCqserver/HOQSTTutorials.jl
https://spindynamics.org
https://github.com/jevonlongdell/qotoolbox
https://github.com/frnq/qme


CAMPAIOLI, COLE, and HAPUARACHCHI PRX QUANTUM 5, 020202 (2024)

where the coefficients cj are such that 〈ψ |ψ〉 =∑d
j =1 |cj |2 = 1, according to the Born interpretation of

the wave function [42]. The square of the coefficients
in Eq. (5), |cj |2, represents the probability of finding the
system in the eigenstate |φj 〉 upon measurement in the
considered basis B. See Ref. [34] for a review of projec-
tive measurement and Ref. [41] for the generalization to
positive operator–valued measures).

Unit vectors such as |ψ〉 are called “pure states.” A pure
state contains all the available physical information about
the system, such as the expectation value of an observable
A associated with Hermitian operator A,

〈A〉 = 〈ψ |A|ψ〉. (6)

The PYTHON script B.1 in Supplemental Material [33] uses
methods from the NUMPY library to implement state vec-
tors and operators, and to calculate the expectation value
of some observable.

B. Mixed states: Proper and improper mixtures

There are two important scenarios where pure states are
no longer sufficient to describe the state of a system. First,
in experimental settings, we often lack knowledge of the
exact pure state |ψ〉 of our system. Instead, we may know
that the system is in any of the pure orthonormal states
{|ψj 〉} with some probabilities {pj }. In other words, our
knowledge of the system is represented by a statistical mix-
ture of pure states, described by the set {|ψj 〉, pj }. In such
a case, when more than one pj is nonzero, the system is
said to be in a mixed state. This is sometimes referred to
as a proper mixture [43]. In spin echo experiments [44],
the average state of a large number of independent spins is
typically interpreted as a proper mixture. Averaging over
many realizations of the same stochastic process (as dis-
cussed in Sec. III D 6 for the case of quantum trajectories)
also leads to a proper mixture. For example, this is well
represented by open-system models of electron and exciton
transport in disordered media [45].

Another important scenario where mixed states become
necessary is that of composite systems, i.e., systems com-
posed of two or more subsystems. As discussed in detail in
Sec. II D, if the state of the total system is entangled, the
state of a subsystem (i.e, the partial state) may need to be
represented by a density operator, as shown in the example
in script B.3 in Supplemental Material [33]. These mixed
states are sometimes referred to as improper mixtures [43].
Improper mixtures become particularly important when
one is studying entanglement of pure states that evolve uni-
tarily. In such a case, purity and von Neumann entropy
of partial states reveal how entangled a given subsys-
tem is with respect to a given bipartition. However, this
assessment becomes tricky for open systems, since their
state becomes mixed also due to decoherence induced by

the environment. Not surprisingly, much effort is being
invested in finding faithfully and efficient measures of
entanglement for mixed states [46–49].

C. Definition and properties of the density operator

Whether we are dealing with proper or improper mix-
tures of states, we can represent the set {|ψj 〉, pj } using a
linear operator on the Hilbert space,

ρ =
d∑

j =1

pj |ψj 〉〈ψj |, (7)

known as the density operator [41], where |ψj 〉〈ψj | is the
outer product of |ψj 〉 with itself, that is, the vector prod-
uct of |ψj 〉 with its dual 〈ψj |. The coefficients pj > 0
are such that

∑
j pj = 1, since they represent probabilities

(also known as convex combination). Density operators
have three fundamental properties:

(1) Hermitian. ρ = ρ†. This implies that ρ has only real
eigenvalues.

(2) Positive [50]. ρ > 0. That is, ρ eigenvalues pj ∈
[0, 1] are not negative.

(3) Normalized. Trρ = 1, which can also be stated as∑
j pj = 1, i.e., the sum of its eigenvalues (proba-

bilities) must add up to 1.

Density operators can represent both pure and mixed
states, and can be expressed in any basis B = {|φi〉}d

i=1 of
the Hilbert space H as

ρ =
d∑

i,j =1

ρij |φi〉〈φj | =

⎛
⎜⎜⎝
ρ11 ρ12 . . . ρ1d
ρ21 ρ22 . . . ρ2d

...
...

. . .
...

ρd1 ρd2 . . . ρdd

⎞
⎟⎟⎠ , (8)

where ρij is the associated matrix element with row i and
column j . The diagonal elements ρii of the density matrix
are known as populations and they denote the probabili-
ties of finding the system in the respective basis states |φi〉.
The off-diagonal elements ρij are known as coherences,
and provide information about the coherent superposition
of the basis states |φi〉 and |φj 〉 [51].

Similarly to state vectors, density operators encode all
the available information that can be extracted from the
considered system. For example, the expectation value of
some observable A associated with Hermitian operator A
can be calculated as

〈A〉 = Tr[Aρ]. (9)

The PYTHON script B.2 in Supplemental Material [33] pro-
vides an implementation of a density operator and the
evaluation of the expectation value of some observable.
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There we consider a system with dimension d = 3 in a
mixed state defined by state vectors {|ψ1〉, |ψ2〉, |ψ3〉} with
probabilities {0.1, 0.3, 0.6} and represented by the density
operator ρ = 0.1|ψ1〉〈ψ1| + 0.3|ψ2〉〈ψ2| + 0.6|ψ3〉〈ψ3|.

D. Composite systems

Composite systems consist of two or more (interact-
ing) quantum systems, whose Hilbert space is given by the
tensor product of the individual Hilbert subspaces, H =⊗

i Hi [41]. For example, a composite system might be
given by a pair of interacting two-level systems (qubits, in
quantum information theory) or by a system S interacting
with some large environment E.

1. Tensor product and partial trace

Any state ρ of a composite system can be represented
with use of a basis B constructed with use of the tensor
product of the basis elements of each subsystem’s basis
Bα = {|φi〉α}dα

i=1. For example, a bipartite system can be
expressed in the following basis:

B =
{
|φi〉1 ⊗ |φj 〉2

}
i,j

. (10)

In PYTHON, the tensor product can be implemented with
NUMPY with use of the Kronecker product kron:

psi = numpy.kron(psi1,psi2)

Similar implementations are available in MATHEMAT-
ICA and MATLAB, with KroneckerProduct and kron,
respectively. Note that the matrix element ordering in
the implementation of the Kronecker product is chosen
by convention. As a result, the Kronecker product is
implemented in slightly different ways across different
programming languages [52].

By generalizing Eq. (10) to N -body systems, we can also
write any N -body state using the local product basis as

|ψ〉 =
∑

α1,...,αN

ψα1,...,αN |α1〉1 ⊗ · · · ⊗ |αN 〉N , (11)

=
∑

α

ψα|α1 · · ·αN 〉, (12)

where α = (α1, . . . ,αN ), and {αi} is a di-dimensional set
of indices that spans all the local states of subsystem i.
Equation (12) is a shorthand notation in which the ten-
sor products are implicitly absorbed in the definition of the
basis states. However, when one is handling many-body
systems, it is essential to maintain the ordering chosen for
the tensor product composition. This becomes particularly
evident when one is defining and handling local operators,

i.e., operators that act only on one subsystem, such as

Ai = 11 ⊗ · · · ⊗ ai ⊗ · · · ⊗ 1N , (13)

where ai is some operator on the local Hilbert space
Hi, while Ai is the operator as defined on the full N -
body system. In other words, when constructing N -body
states and operators, we must be consistent in the order-
ing of Kronecker products and the placement of identity
operators.

When one is calculating expectation values of composite
systems, it may be useful to focus only on the marginal
state of one of the subsystems. The marginal state ρ1 of
subsystem α = 1 is obtained from the total state ρ by one
tracing over the degrees of freedom associated with the
rest of the Hilbert space (here subsystem 2):

ρ1 = Tr2[ρ]. (14)

The linear operator Trα[·] is called the “partial trace,” and
its definition can be found in Ref. [26]. Note that calcu-
lation of the expectation value of local observables, i.e.,
acting only on a given subsystem i, requires knowledge of
only the marginal ρi = Tri[ρ], where here Tri represents
the partial trace over all the subsystems except for i. For
the case of bipartite systems with dimensions d1 and d2,
the partial trace can be implemented in PYTHON with use
of NUMPY as follows:

rho1=np.trace(rho.reshape(d1,d2,d1,d2),

axis1=1, axis2=3)

rho2=np.trace(rho.reshape(d1,d2,d1,d2),

axis1=0, axis2=2)

In the code snippet above, the full density operator rho
first represented as a d1d2 × d1d2 matrix, is reshaped into a
d1 × d2 × d1 × d2 tensor. Then, the partial trace is evalu-
ated by one choosing the subarrays whose trace needs to
be returned. Following the ordering chosen with kron,
to obtain ρ1 we trace over the subarrays associated with
subsystem 2, i.e., axis1=1 and axis2=3.

For example, let us consider the following bipartite pure
state:

|ψ(θ)〉 = cos(θ)|00〉 + sin(θ)|11〉, (15)

where |00〉 = |0〉1 ⊗ |0〉2, |11〉 = |1〉1 ⊗ |1〉2, and its asso-
ciated density operator is given by ρ(θ) = |ψ(θ)〉〈ψ(θ)|.
The state ρ(θ) is separable for θ = 0,π/2, and is entangled
otherwise, being maximally entangled [53] for θ = π/4.
As a result, for θ �= kπ/2, the partial state of each sub-
system ρi(θ) = Trj [ρ(θ)] is not pure, and is therefore an
improper mixture. To measure the degree of mixedness of
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FIG. 2. Purity of the marginal state ρ1(θ) = Tr2ρ(θ), calculated using script B.3 in Supplemental Material [33] (see the script for
parameter values). The state ρ1(θ) is maximally mixed for θ = π/4, since ρ(π/4) is maximally entangled. This is an example of an
improper mixture.

a density operator, we can use a figure of merit known as
purity P ,

P[ρ] = Tr[ρ2] =
d∑

j =1

p2
j , (16)

which is bounded between 1, for pure states ρ = |ψ〉〈ψ |,
and 1/d, for maximally mixed states ρ = 1/d. The
PYTHON script B.3 in Supplemental Material [33] calcu-
lates the marginal state of the first subsystem, ρ1(θ) =
Tr2ρ(θ), showing that its purity P[ρ1(θ)] < 1 for θ �=
kπ/2. Notice that ρ1(θ) is maximally mixed when ρ(θ)
is maximally entangled, i.e., Trρ1(π/4) = 1/2, as shown
in Fig. 2.

A powerful implementation of the tensor product and
the partial trace (ptrace) for any type of composite
system is available in QUTIP, as shown in script C.1 in
Supplemental Material [33]. See Refs. [34,41] for more
on composite systems and Refs. [48,54,55] for an in-depth
analysis of entanglement and other quantum correlations.
For more on purity, entropy, measures of distinguishabil-
ity, and other information-theoretic figures of merit, see
Refs. [41,54].

2. Direct sum

Sometimes it is useful to compose systems given by the
addition of different Hilbert spaces. For example, when
one is studying a pair of interacting systems with Hilbert
space Ha = H1 ⊗ H2 and dimension da, it might be con-
venient to add some states {|φi〉b}db

i=1 to the picture, perhaps
representing the result of some transitions that are modeled
phenomenologically. In these cases the total Hilbert space
is given by

H = Ha ⊕ Hb. (17)

Explicitly, the direct sum between vectors u = (u1, u2)
T

and v = (v1, v2, v3)
T is conventionally given by u ⊕ v =

(u1, u2, v1, v2, v3)
T. Numerically, a basis for this space

can be constructed, from the bases of each individual
subsystem, with use of a block matrix structure,

M =
(

Ma 0
0T Mb

)
, (18)

where Ma and Mb are da × da and db × db matrices, respec-
tively, and 0 is a da × db matrix. The above structure can
be implemented in PYTHON as shown in script B.4. For
more information on tensor products, direct sums, and
irreducible representations, see Ref. [34].

E. Schrödinger and von Neumann equations

When one is studying the dynamics of quantum systems
using the density operator representation, Schrödinger’s
equation (3) becomes

ρ̇(t) = − i
�

[H , ρ(t)], (19)

which is known as the von Neumann equation [56], where
H is the Hamiltonian of the system (which can be time
dependent), ρ̇ = ∂tρ, and [·, ·] is the commutator [26]. In
general, the solution to this equation is given by some uni-
tary operator U(t; t0) that propagates the state of the system
from some initial time t0 to some time t,

ρ(t) = U(t; t0)ρ(t0)U(t; t0)†, (20)

where † is the conjugate transpose (adjoint). If H is
time independent, the solution is given by U(t; t0) =
exp[−iH(t − t0)/�] and can be reduced to U(τ ) =
exp[−iHτ/�] for all t, t0 such that τ = t − t0. See
Ref. [26,57] for more on the solution U for the time-
dependent Hamiltonian using time-ordering operators and
the Dyson series.
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1. Open quantum systems

The focus of this tutorial is the dynamics of systems that
interact with their surrounding environment. These can be
seen as being composed of a system of interest S and an
environment E that is usually large, uncontrollable, or not
experimentally accessible [26]. The dynamics of the full
composite system S-E (or universe) follows Eq. (19) with
Hamiltonian

H = HS + HE + Hint, (21)

where Hint represents the interaction between the system
with Hamiltonian HS and the environment with Hamilto-
nian HE .

If the solution U(t; t0) is known, the dynamics of the sys-
tem S can be drawn from the state of the universe ρ by one
tracing over the environment’s degrees of freedom,

ρS(t) = TrE
[
ρ(t)

]
. (22)

However, finding U for large composite systems is often
a difficult problem, both numerically and analytically.
Instead, we may seek to obtain a prescription for the
dynamics of the system’s state by performing the partial
trace of Eq. (19), to obtain

ρ̇S(t) = − i
�

TrE
{
[H , ρ(t)]

}
. (23)

Equation (23) provides the starting point for the deriva-
tion of density operator master equations such as those
reviewed in Secs. III and IV.

III. DENSITY OPERATOR MASTER EQUATIONS

Density operator master equations are a powerful tool
to study the dynamics of quantum systems that interact
weakly [58] with their surrounding environment. Origi-
nally developed in the field of quantum optics to study
light-matter interactions [1], they are also used to inter-
pret the effect of noise in quantum information processing
[41], transient emission and absorption spectra of opti-
cally active materials [59], and electronic and nuclear spin
resonance experiments [60].

The power of master equations resides in the choice
of ignoring the environment’s dynamics, which is often
uncontrollable and inaccessible. By ignoring the environ-
ment’s degrees of freedom, we can limit the scaling of
the computational requirements to a polynomial of d =
dimHS, where HS is the system’s Hilbert space. In this
section we introduce quantum master equations and focus
on their numerical implementation and solution, providing
direction for further reading.

A. Introduction to the Lindblad master equation

The paradigmatic example of a density operator master
equation is the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation [61–64], often known as the
Lindblad master equation,

ρ̇(t) = − i
�

[H , ρ(t)] +
∑

k

γk

[
Lkρ(t)L

†
k−

1
2

{
L†

kLk , ρ(t)
}]

,

(24)

where ρ is the system’s density operator [65], H is the
Hamiltonian of the system [66], and {Lk} are the Lindblad
operators [67] representing some nonunitary processes
such as relaxation or decoherence that occur at some rates
{γk}. The operators [., .] and {., .} denote the commuta-
tor and anticommutator of the operands. From now on, H
represents the Hamiltonian of the system, unless specified
otherwise.

Like the Hamiltonian generates coherent dynamics, the
Lindblad operators [68] generate incoherent transitions in
the space of states. Unlike the Hamiltonian, they do not
need to be Hermitian. For example, a decay transition from
some excited state |e〉 to some ground state |g〉 is mediated
by the Lindblad operator

L↓ = |g〉〈e|. (25)

Indeed, when we apply L↓ to |e〉, we obtain |g〉 = L↓|e〉.
Note that L†

↓ = |e〉〈g| �= L↓.
Equation (24) is used to approximate the evolution of

the density operator of a system S with Hamiltonian H that
is weakly coupled to a Markovian (memoryless stochas-
tic process) environment [26]. The GKSL master equation
is the general form for a completely positive and trace-
preserving Markovian and time-homogeneous map for the
evolution of the system’s density operator ρ [26]. A dis-
cussion of the motivations for these requirements can be
found in Refs. [26,64]. Derivations of Eq. (24) can be
found in Refs. [26,51,69].

1. Microscopically derived and phenomenological
Lindblad master equation

Before looking at the solution of the GKSL mas-
ter equation, we briefly discuss its motivation from a
mathematical and microscopic perspective. As anticipated
in Sec. II E 1, quantum master equations are rigorously
obtained from a microscopic description of the system and
the environment, i.e., prescribed by a system-environment
Hamiltonian Htot such as

Htot = H +
∑
α

Aα ⊗ Bα + HE , (26)

with H (HE) being the system (environment) Hamilto-
nian and {Aα} ({Bα}) being a set of system (environment)
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coupling operators. As we discuss further in Sec. IV,
the microscopic derivation of Eq. (24) proceeds via a
sequence of approximations (Born, Markov, and secu-
lar), under the assumption that the system-environment
couplings are weak when compared with the other char-
acteristic energies. These approximations guarantee that
Eq. (24) propagates any system’s density operator into a
well-defined state for all times. A microscopic derivation
is also essential to reveal the nature and timescales of the
decoherence and relaxation channels that affect the sys-
tem, meaning that Lindblad operators {Lk} and rates γk are
obtained directly from the system spectrum, the coupling
operators Aα , the environment’s state ρE , and its correla-
tion functions 〈Bα(τ )Bβ(0)〉. The interested reader can find
a detailed derivation of the GKSL master equation and its
approximation in Refs. [26,69].

When a microscopic model of the system-environment
interactions is not available, for example, due to inaccessi-
bility of some of the environmental microscopic degrees
of freedom, one can obtain a phenomenological quan-
tum master equation, starting from evident (and poten-
tially experimentally accessible) incoherent processes that
affect the system. To obtain a master equation from phe-
nomenological arguments, one can construct the Lindblad
operators {Lk = |ψk〉〈ψ ′

k|} associated with the transitions
|ψ ′

k〉 → |ψk〉, which happen at some rate γk, where |ψk〉
are some states of the system.

Here we stress the fact that, when possible, a micro-
scopic derivation is always preferable to a phenomenolog-
ical one. The latter is more suitable for toy models and
may result in an inexact description of decoherence chan-
nels and rates. In this tutorial, we discuss examples of
using either approach. For simplicity, we begin from phe-
nomenological master equations, proceeding to the micro-
scopic derivations of Lindblad and Bloch-Redfield master
equations in Sec. IV.

B. The Liouville superoperator

When one is solving Eq. (24), it is convenient to express
the master equation in a vector notation,

ρ̇ = Lρ, (27)

known as superoperator or Liouville form, where ρ =
vec(ρ) is the vectorized form of ρ and L is the superopera-
tor associated with the generator ρ̇ of Eq. (24). The matrix
associated with the density operator ρ can be reshaped into
a vector in many equivalent ways [70], resulting in differ-
ent superoperators. Any reshaping is valid, as long as one
keeps track of the ordering in the elements of the super-
operator. Script B.5 in Supplemental Material [33] illus-
trates reshaping via the NUMPY method reshape. Similar
methods are available in MATHEMATICA and MATLAB.

To see how the representation of Eq. (27) comes about,
it is instructive to first write Eq. (24) in terms of the matrix

elements of the density operator ρ̇ij = Lij ,klρkl, where the
sum over kl is omitted with use of Einstein’s notation.
From this notation it is clear that the Liouville super-
operator in this form is a four-legged tensor (i.e., it has
four indices). Then one can merge pairs of indices as
α = f (i, j ) and β = f (k, l) to obtain ρ̇α = Lα,βρβ , thus
effectively obtaining Eq. (27). Since the choice of reshap-
ing function f is arbitrary, one must be consistent when
performing this operation. Alternatively, one can work
directly with the tensor representation of the superopera-
tor Lij ,kl, which can help in reducing the computational
cost of solving the dynamics (e.g., when one is using finite-
difference methods). From this tensor notation it is possible
to entirely forego the reshaping, and use numerical meth-
ods such as NUMPY’s einsum, which perform Einstein
summation according to a chosen convention. However, it
is important to keep in mind that some numerical solvers
(such as odeint in SCIPY) support working only with
vectors, and thus reshaping often becomes a necessity.

A robust implementation of the reshaping is imple-
mented in QUTIP with the methods operator_to_
vector and vector_to_operator. Nevertheless, it
is important to keep in mind that one must be careful when
one is reshaping superoperators into operators (and vice
versa), again due to the ordering conventions of different
Kronecker product implementations.

1. Constructing the Liouville superoperator

While the superoperator L can be constructed “by hand”
for small systems, it is advisable to have a systematic
approach to compile it from some Hamiltonian H and
some Lindblad operators {Lk}. Two common ways are to
either follow an index prescription for the superoperator
tensor ρab = ∑

cd Labcdρcd or to use the following linear
algebra identity for the column-ordered form of vec(ρ)
[71,72]:

vec(AXB) = (BT ⊗ A)vec(X ). (28)

To take advantage of the latter, we proceed by inserting the
identity operator 1 into Eq. (24),

1ρ̇1 = − i
�

(
Hρ1 − 1ρH

)

+
∑

k

γk

[
LkρL†

k−
1
2

(
L†

kLkρ1 + 1ρL†
kLk

)]
, (29)

from which the superoperator can be easily constructed
with use of the tensor product structure discussed in
Sec. II D and implemented with the kron method
in PYTHON and MATLAB or the KroneckerProduct
function in MATHEMATICA. Combining Eqs. (27)–(29), we
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obtain

L = − i
�

(
1 ⊗ H − H T ⊗ 1

)

+
∑

k

γk

[
L∗

k ⊗ Lk − 1
2

(
1 ⊗ L†

kLk + LT
k L∗

k ⊗ 1
)]

.

(30)

The PYTHON script B.6 in Supplemental Material [33]
implements Eq. (30) using NUMPY arrays. It is worth not-
ing that here the rates γk are embedded into the Lindblad
operators via Lk → L′

k = √
γkLk for a simpler implemen-

tation. As discussed in the next sections, the superoperator
form offers a direct pathway to solving Eq. (24) based
on the solution of a system of linear ordinary differential
equations.

Before we proceed, let us discuss the operation and
memory cost associated with constructing the superopera-
tor. By reshaping the Hamiltonian and jump operators, we
go from a d × d to a d2 × d2 dense matrix representation
for a single-body system with dimension d. For an N -
body system with local dimension d, a dense superoperator
representation grows exponentially as d2N × d2N . Fortu-
nately, for most physical systems the Liouvillian is sparse
and therefore the operations and memory cost associated
with its construction can be afforded even for some classes
of many-body systems (see Refs. [73,74] for an introduc-
tion to tensor network methods for many-body quantum
systems and ITensor for some efficient implementation
using the languages C++ and JULIA). Arguably, except
for small systems, one should always aim to construct
a sparse superoperator. Furthermore, some time-evolution
and steady-state solution algorithms (e.g., finite-difference
methods) do not need the full Liouvillain L but rather need
the function F : ρ → ρ̇, which can be easily constructed
directly from Eq. (24) (an example of this function can be
found in the PYTHON script B.15 in Supplemental Material
[33]). The computational cost of evaluating this function
is, in general, lower than that required to construct the full
Liouvillian, since it is evaluated for a specific state from a
usually small set of operators (H and Lk) that also tend to
be sparse.

C. Steady-state solution

Before we look at the dynamics ρ(t) of the density oper-
ator, let us discuss some methods to obtain the steady-state
solution of Eqs. (24) and (27).

1. Use of the null space of the Liouville superoperator

Once we have expressed a linear master equation in the
superoperator form, we can use the matrix L to study the
behavior of the system. Of immediate interest is the steady-
state solution (ρ̇ = 0), which is often measured directly in
experiments. To find any steady-state solutions, we solve

for the null space of L [75], which is the subspace of all
vectors ρ that satisfy the equation

Lρ = 0. (31)

Numerically, this can be done with use of the NullSpace
function in MATHEMATICA, the null function in MATLAB,
or the null_space method in the NUMPY library SCIPY.
An analytic solution can also be sought with this approach
with MATHEMATICA or with SYMPY in PYTHON.

If there is a unique solution, solving for the null space
will provide the corresponding steady-state density matrix
vector ρ(∞) up to a constant factor, the value of which is
given by the original normalization condition Tr(ρ) = 1.
If there are multiple solutions, solving for the null space
will give linearly independent vectors. In such a case, the
steady state depends on the initial state of the system.
For example, let us consider a two-level system Hamil-
tonian [76] H with energy splitting � and coupling �,
and Lindblad operators L↓ and L0 associated with spon-
taneous relaxation (loss of energy) and dephasing (decay
of coherences), respectively,

H = �

(
0 �

� �

)
, (32)

L↓ = √
γ↓

(
0 1
0 0

)
, (33)

L0 = √
γ0

(
0 0
0 1

)
, (34)

where γ↓ and γ0 are the rates associated with relaxation
and dephasing. In the PYTHON script B.7 in Supplemen-
tal Material [33], we construct L in PYTHON and solve
for its null space for the case of (1) driving and relax-
ation with no dephasing, γ0 = 0, and (2) dephasing and
no driving or relaxation, �, γ↓ = 0. In case (1), there is a
unique steady state that becomes ρ(∞) = (

1, 0, 0, 0
)T for

� = 0, i.e., the ground state of the system, as expected
for a two-state system undergoing spontaneous relaxation
with no driving field. Instead, for the case of dephas-
ing and no driving, the null function returns two vec-
tors ρ(∞) = (

1, 0, 0, 0
)T ,

(
0, 0, 0, 1

)T, i.e., the ground and
excited states. Their convex hull is a one-dimensional lin-
ear subspace associated with all possible steady states of
L. In this case, the specific steady state depends on the
choice of initial state. See Sec. C in Supplemental Material
[33] for a MATLAB implementation of the method used in
script B.7.

2. Iterative methods

Most of the available null space solvers, such as
scipy.null_space, are based on the use of the sin-
gular value decomposition. For this reason, their compu-
tational cost scales rapidly with the size of the system,
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making them rather ineffective beyond small systems and
toy models. A common strategy to tackle large problems
consists in using iterative solvers [77], such as SCIPY’s
bicg, bicgstab, gmres, and minres. These are often
used in conjunction with an efficient approach to calculate
ρ̇ (such as the one based on sparse arrays given in script
B.5 in Supplemental Material [33]) together with a renor-
malization constraint. These methods can be scaled up to
exceptionally large systems thanks to their numerical effi-
ciency and, if there is a single solution, they are guaranteed
to converge.

3. Algebraic solution

The steady state solution ρ(∞) for both linear and
nonlinear [78] generators can be obtained by our solv-
ing Eq. (24) for ρ̇ = 0 algebraically or symbolically.
Solving a system of symbolic equations becomes rapidly
very expensive and therefore it is often only feasi-
ble for small systems. When possible, however, sym-
bolic solutions provide insightful analytic expressions
that are easy to interpret. In PYTHON, algebraic solu-
tions can be sought with use of the solve method
of the SYMPY library, as demonstrated in script B.8
in Supplemental Material [33] for the case of � = 0,
γ0 = 0, with respect to Eq. (32).

Algebraic solutions can also be sought in MATLAB with
solve or in MATHEMATICA with use of the Solve
method. These provide a more straightforward approach to
solving symbolic matrix equations. A MATLAB implemen-
tation of script B.8 can be found Supplemental Material
[33] in script C.2.

D. Solving the dynamics of the system

We now discuss how to solve Eq. (24) in order to obtain
the state of the system ρ(t) at any time t from a given

initial condition ρ0 = ρ(t0). Let us represent the solution
with the dynamical map ρ(t) = �(t; t0)[ρ0]. For linear,
time-independent generators L, the solution to Eq. (27)
can be obtained by our calculating the following matrix
exponential [26]:

ρ(t) = exp
[
L(t − t0)

]
ρ(t0). (35)

The operator P(t; t0) = exp
[
L(t − t0)

]
is called the “prop-

agator” of the evolution. In Eq. (35) we have implicitly
represented the propagator P(t; t0) as a matrix, i.e., by
our applying the same reshaping function that we used
to vectorize ρ → ρ to both of its index pairs. Then one
can represent the solution as a density operator ρ(t) just
by applying the inverse reshaping on ρ(t). The propaga-
tor can also be stored as a four-legged tensor Pij ,kl(t; t0),
in which case the solution reads ρij (t) = Pij ,kl(t; t0)ρkl(t0).
See Ref. [69] for details on how to obtain the dynamical
map � from P using, for example, a Kraus operator rep-
resentation. Equation (35) is implemented in PYTHON with
use of SCIPY in script B.9 in Supplemental Material [33],
with the result shown in Fig. 3.

See script C.8 in Supplemental Material [33] for an
implementation of Eq. (35) using MATLAB. Calculating
the matrix exponential is just one of the many ways to
solve the dynamics of the systems. In this section we touch
upon several other approaches, some of which are briefly
summarized in Table I.

Script B.10 in Supplemental Material [33] shows how
to use Eq. (35) to study the effect of temperature on a
physical implementation of a quantum logic gate [79]. In
that example, we consider the Hadamard–controlled NOT
(CNOT) gate [79], given by the sequential composition of
the Hadamard gate H on the first qubit

U1 = H ⊗ 1 := 1√
2

(
1 1
1 −1

)
⊗ 1, (36)

0 2 4 6 8 10

t

0.6

0.8

1.0

T
r[

ρ
(t

)ρ
0
]

with expm
with mesolve

FIG. 3. Propagation using matrix exponential (expm from NUMPY), obtained with use of script B.9 in Supplemental Material
[33]. The propagated state ρ(t) is obtained with use of Eq. (35), and is compared with the solution obtained with use of a finite-
difference method (mesolve from QUTIP) implemented in script C.5 in Supplemental Material [33] (see the script for parameter
values).
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TABLE I. Summary of the pros and cons of some methods to solve the dynamics of a single-body system with dimension d and dense
representation. Refer to each section for more information on when to use each method and to Sec. III D 8 for sparse representations.

Method Pros Cons

Matrix exponential (Sec. III D) Exact, reusable for different ρ0. O(d4) memory and operations cost.
Action of matrix exponential (Sec. III D 8) Exact, O(d2) operations cost. Not reusable for different ρ0.
Diagonalization (Sec. III D 1) Exact, reusable for different ρ0. Does not always exist.
Finite difference (Sec. III D 5) O(d2) memory and operations cost. Approximate, not reusable for different ρ0.
Quantum trajectories (Sec. III D 6) O(d) memory cost, efficient disorder

sampling.
Approximate.

and the CNOT gate

U2 = CNOT :=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (37)

The resulting gate, shown in Fig. 4, can be used to obtain
the (maximally entangled) Bell state

|�+〉 = |00〉 + |11〉√
2

= U2U1|00〉, (38)

starting from the fiducial input state |00〉. In practice, the
gate is implemented by means of two time-independent

Hamiltonians H1 and H2,

H1 = 1
2

(
1 − σz + σx√

2

)
⊗ 1, (39)

H2 = 1 − σz

2
⊗ 1 − σx

2
, (40)

that act on some initial state for some time τ = π [80]. If
the unitary gates Uj are also Hermitian, their generating
Hamiltonians Hj can be obtained by diagonalization of the
gates,

Uj =
dim∑
k=0

ω
(j )
k |ω(j )k 〉〈ω(j )k |, (41)

to obtain Uj = exp[−iπHj ], with Hj = |ω(j )0 〉〈ω(j )0 |.

FIG. 4. Left: A Hadamard-CNOT gate is implemented with two time-independent Hamiltonians H1 and H2. A temperature-dependent
decoherence process affects the performance of the gate implementation via dephasing and relaxation rates {γk(T)}, which are greater
as the thermal energy kBT increases with respect to the energy gap �ω0 between ground |0〉 and excited |1〉 states, with kB being
the Boltzmann constant. As a result, the output state ρout = �2(τ )[�1(τ )[ρin]] differs from the target state |�+〉 = U2U1|00〉, given in
Eq. (38). Right: This difference is measured here with use of the fidelity F(ρ, σ) = (Tr[

√√
ρσ

√
ρ])2, which is equal to 1 when ρ = σ ,

i.e., when ρout = |�+〉〈�+|. For low temperature kBT � ω0, the circuit well approximates the desired gate, while for high temperature
kBT � ω0, the information about the input states is completely lost due to decoherence, with ρout = 1/4 being the maximally mixed
state. The purity of the output state P[ρout] = Tr[ρ2

out] shows that as the temperature increases, the implemented gate is no longer
unitary, and instead maps an initially pure state to a mixed state. This figure is obtained using script B.10 in Supplemental Material
[33] (see the script for parameter values).
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In practice, decoherence processes, such as dephasing
and relaxation, prevent us from implementing ideal uni-
tary gates as U1 and U2. As a result, the output state
is, in general, a mixed state, ρout = �2(τ )[�1(τ )[ρ0]]. In
this example, the effect of temperature is modeled via
some temperature-dependent transition rates γk(T), which
are greater as the temperature increases, as prescribed by
Bloch-Redfield theory, as discussed in Sec. IV.

It is worth pointing out that the approach used in script
B.9 is by no means optimized, and calculates a new propa-
gator for every time step in the time domain considered.
When working with evenly spaced time steps, we can
reduce the computational cost by using the composition
rule of dynamical semigroups, as discussed in Sec. III D 2.
In QUTIP, instead, the solution is obtained with use of
the mesolve method, which by default uses SCIPY’s
numerical integration library integrate.

1. Decomposition of the Liouville superoperator

The superoperator L is generally a complex, non-
Hermitian matrix. For this reason a spectral decomposition
of L is not always guaranteed [81]; that is, L may not
admit the diagonal representation L = VDV−1, although it
always admits a singular value decomposition [82] of the
form L = U�V†, where U and V are unitaries and �ii are
the singular values (real and non-negative).

Let us here assume that L can be diagonalized. Since it
is not Hermitian [83], its eigenvalues λk will, in general,
be complex. Furthermore, its left and right eigenvectors,
which abide by the relationships [84]

LRk = λkRk, (42)

L†
kL = λkL†

k , (43)

do not need to coincide. Notice that both Rk and Lk are
column vectors; hence, L†

k is a row vector. Each left and
right eigenvector can be normalized via

R̂k = Rk
/√

L†
kRk, (44)

L̂
†
k = L†

k

/√
L†

kRk. (45)

The normalized eigenvector pairs then follow the usual
orthonormalization condition [84],

L̂
†
i R̂j = δij . (46)

The solution of Eq. (27) for a system with time-
independent Liouville superoperator L can now be

expressed as follows:

ρ(t) =
d2∑

k=1

L̂
†
kρ(t0)R̂keλk(t−t0), (47)

where d is the dimension of the Hilbert space. For an in-
depth analysis of the information contained in the spectrum
of the Liouvillian, see Ref. [85].

The advantage of expressing the time evolution in the
form of Eqs. (35) and (47) is that it is exact (when the
eigenvalues are found exactly) for all times and therefore
does not depend on the step size or other operational details
of the integration routine used to solve the differential
equation. In the PYTHON script B.11 in Supplemental Mate-
rial [33], we use SCIPY to obtain the temporal solutions for
a system with

H = �

(
0 �

� 0

)
, (48)

L =
(

0 1
1 0

)
, (49)

ρ(0) = (
0, 0, 0, 1

)T , (50)

using the spectral decomposition of L. The solution is
shown in Fig. 5. A MATLAB implementation of this method
can be found in script C.6 in Supplemental Material [33].

2. Propagation via semigroup composition

The dynamical maps generated by a linear Markovian
quantum master equation such as Eq. (24) are a fam-
ily of single-parameter maps �t that have the following
composition property:

�s ◦�t = �s+t, t, s ≥ 0. (51)

They are therefore known as a quantum dynamical semi-
group. Equation (51) can also be expressed as�s[�t[ρ]] =
�s+t[ρ]. For more on quantum dynamical semigroups,
see Ref. [26]. Equation (51) can be expressed in the
superoperator form as

P(s)P(t) = P(s + t), t, s ≥ 0, (52)

which follows directly from the properties of the exponen-
tial and the fact that [Ls,Lt] = 0. Note that the above does
not generally hold for time-dependent L(t) and nonlinear
generators L(ρ(t)).

When propagating a system in time over an evenly
spaced time set {kδt}m

k=1, we can use the composition rule
of dynamical semigroups to vastly reduce the computa-
tional cost of propagation. Instead of calculating a new
propagator P(tk) for each time step tk = t0 + kδt, we can
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FIG. 5. Dynamics of the state ρ(t) for Eq. (48), solving the Lindblad master equation with use of the normalized superoperator
singular vectors, obtained with script B.11 in Supplemental Material [33] (see the script for parameter values).

calculate a single propagator P1 = P(δt) and obtain all the
others using

P(tk) =
k∏

j =1

P1 = Pk
1. (53)

The PYTHON script B.12 in Supplemental Material [33]
implements Eq. (53); the results are shown in Fig. 6.

This approach is particularly useful when propagation is
done for very long times or when large time steps are used,
in which cases SCIPY’s integrate methods usually tend
to accumulate large numerical errors. For propagation over
several orders of magnitude, it may be convenient to break
each timescale into evenly spaced time steps to resolve
the details of different dynamical transients. For example,
this is useful when one is looking at dynamics from the
femtosecond to nanosecond timescales.

3. Baker-Campbell-Hausdorff and Zassenhaus formula

Hamiltonians and superoperators are often sums of two
or more terms, such as W = U + V. As briefly noted in
Sec. III D 2, when the terms commute with each other

[U, V] = 0, the solution can be obtained from the compo-
sition of individual terms. For example, let L = L1 + L2,
with [L1,L2] = 0. Then

P(t) = exp(Lt) = exp(L1t) exp(L2t). (54)

Instead, when considering pairs of noncommuting opera-
tors [X , Y] �= 0, we have exp(X + Y) �= exp(X ) exp(Y) =
exp(Z). The solution to the latter equation for Z is known
as the Baker-Campbell-Hausdorff formula [86] and reads

Z = X + Y + 1
2

[X , Y]

+ 1
12

(
[X , [X , Y]] + [Y, [Y, X ]]

)
+ · · · . (55)

The Baker-Campbell-Hausdorff solution finds application
when used in the Zassenhaus formula, which allows us to
decompose a matrix exponential exp[(X + Y)t], where t is

0 2 4 6 8 10

t

0.6

0.8

1.0

T
r[

ρ
(t

)ρ
0
]

with semigroup
with expm

FIG. 6. Propagation using semigroup decomposition, obtained with script B.12 in Supplemental Material [33] (see the script for
parameter values) compared with that obtained by computation of a new propagator for each time step.
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a scalar parameter, in terms of a product series,

exp[(X + Y)t]

= exp[Xt] exp[Yt] exp
[

− 1
2

[X , Y]t2
]

× exp
[

1
3

(
[Y, [X , Y]] + 1

2
[X , [X , Y]]

)
t3
]

· · · .

(56)

The formula is useful when the product series can be trun-
cated or approximated to a certain set of terms. This is, for
example, particularly useful when the generator is time-
dependent Lt and [Lt,Ls] �= 0: by choosing a sufficiently
small time step δt such that s = t + δt, one can truncate the
series in Eq. (56) to terms in O(δtm) for some m > 1, as
discussed in the next section.

4. Suzuki-Trotter expansion

A consequence of the Zassenhaus formula is that, for
small time steps δt, Eq. (56) can be truncated to the first
order in δt with errors on the order of O(δt2),

exp[(X + Y)δt] = exp[X δt] exp[Yδt] + O(δt2). (57)

This can be used to obtain the solution for long times with
use of the product series,

e(X +Y)t = lim
n→∞

[
exp

(
X

t
n

)
exp

(
Y

t
n

)]n

, (58)

also known as the Suzuki-Trotter expansion or the Lie
product formula [86]. This approach is particularly useful
when one is studying the dynamics of interacting many-
body systems or time-dependent generators. The PYTHON
script B.13 in Supplemental Material [33] uses the Suzuki-
Trotter expansion to propagate a system by separating the
contribution of the two noncommuting superoperators. The
results are shown in Fig. 7.

5. Numerical solution with finite-difference methods

While the matrix exponential is a powerful tool to obtain
the exact solution of Eq. (27), it may be less computation-
ally expensive to compromise some precision in favor of
less demanding time and memory requirements. Not only
can finite-difference methods be efficient in solving den-
sity operator master equations, they can also be used to
solve the dynamics of nonlinear and time-dependent gen-
erators. In this case, the approach consists in solving the
set of coupled differential equations obtained by element-
wise comparison of the left-hand and right-hand sides of
Eq. (24).

Script B.14 in Supplemental Material [33] is a continu-
ation of script B.11 and solves the dynamics of the same
two-level system using the fourth-fifth order Runge-Kutta
differential equation method. The method is implemented
with use of the initial-value problem solver solve_ivp
from the scipy.integrate library for PYTHON. The
solution is shown in Fig. 8. A MATLAB implementation of
the same code can be found in script C.8 in Supplemental
Material [33].

6. Solution using the stochastic wave function method

Since the number of complex floating-point numbers
required to represent superoperators such as L and P scales
as d4, memory may become an issue for large systems
[87]. To circumvent this problem, we can propagate a den-
sity operator using the stochastic wave function method
[1], also known as the Monte Carlo wave function method
or master equation unraveling. Originally developed for
quantum optics, the method is an adaptation of the kinetic
Monte Carlo method [88] to the solution of Eq. (24).
This approach can also be used to efficiently average over
disorder realizations by resampling the disorder at each
trajectory [89,90].

Instead of propagating a density operator solving
Eq. (27), the method provides a procedure to propagate a
state vector |ψ0〉 under the influence of some generator L

0 2 4 6 8 10

t
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0.8

1.0

T
r[

ρ
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)ρ
0
]

m = 50
m = 100
m = 1000

FIG. 7. Propagation using Suzuki-Trotter expansion for different numbers m of time steps (50, 100, and 1000) obtained with script
B.13 in Supplemental Material [33] (see the script for parameter values).
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FIG. 8. Propagation using the finite-difference approach, based on the fourth-fifth order Runge-Kutta method (RK45). The solution
is obtained with use of script B.14 in Supplemental Material [33] (see the script for parameter values) and is compared with the solution
obtained with use of script B.11, based on the singular value decomposition (SVD).

by sampling a sufficiently large number N of stochastic
trajectories �j = {|ψj (t)〉} to then obtain the time-evolved
density operator ρ(t) by averaging over them,

ρ(t) =
N∑

j =1

|ψj (t)〉〈ψj (t)|. (59)

Let H be the Hamiltonian of the system and let {Lk}M
k=1 be

a collection of Hermitian [91] Lindblad operators. In the
simplest form of the method, each trajectory�j is sampled
according to the following steps:

(1) The probabilities associated with any of the k inco-
herent transitions mediated by the Lk jump operators
are calculated:

δpk = δt〈ψ(t)|L†
kLk |ψ(t)〉 ≥ 0, (60)

with δp = ∑M
k=1 δpk.

(2) A uniform random number u ∈ (0, 1] is sampled.

(a) If δp < u, then no jump occurs and the state
|ψ(t)〉 at time t is evolved by means of the
non-Hermitian effective Hamiltonian

Heff = H − i�
M∑

k=1

L†
kLk/2 (61)

to obtain

|ψ̃(t + δt)〉 =
(

1 − i
�

H †
effδt

)
|ψ(t)〉, (62)

where |ψ̃〉 indicates that the state vector may not
be normalized.

(b) If δp ≥ u, a jump occurs. A new uniform ran-
dom number u′ ∈ (0, 1] is sampled. The event
that occurs is chosen by finding the first k such

that Qk > u′, where Qk = ∑k
j =1 δpj /δp . The

state is propagated to be

|ψ̃(t + δt)〉 = Lk|ψ(t)〉. (63)

(3) The state is normalized:

|ψ(t + δt)〉 = |ψ̃(t + δt)〉√
〈ψ̃(t + δt)|ψ̃(t + δt)〉

. (64)

In this approach no superoperator is assembled and no
matrix exponential is calculated. Furthermore, since the
trajectories �j are completely independent of each other,
this method can be trivially parallelized by one running N
trajectories over N different processing nodes to reduce the
computational time by a factor of N .

A PYTHON implementation is presented in script B.16
in Supplemental Material [33] for a two-level system with
H = σz and Lindblad operators {σz/2, σx/5} with initial
state |ψ〉 = (|0〉 + |1〉)/√2 in the σz basis. The results are
shown in Fig. 9.

Note that the time-step δt can be chosen to be a fraction
of some operator norm of the Hamiltonian, such that δt �
‖H‖−1

op . An equivalent MATHEMATICA implementation can
be found in script C.9 in Supplemental Material [33].
A robust implementation of the stochastic wave function
method is also available in QUTIP.

7. Time-dependent generators

If the Hamiltonian or the decoherence terms depend on
time, Eq. (27) is generalized to

ρ̇ = L(t)ρ, (65)

where the Liouville generator L(t) now explicitly depends
on time. In this case the solution of Eq. (35) is not valid.
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FIG. 9. Propagation with the
stochastic wave function method
with N = 10, 100, or 1000 tra-
jectories using script B.16 in
Supplemental Material [33] (see
the script for parameter val-
ues), with sample = N . The
stochastic wave function solution
approaches the exact solution in
the limit of large N . Here the solu-
tion is compared with the solu-
tion obtained with QUTIP’s finite-
difference method mesolve.

The general solution of Eq. (65) is given by

ρ(t) = T
{

exp[
∫ t

0 dsL(s)]
}
ρ(t0), (66)

where T is the time-ordering operator, analogous to the
Dyson series for time-dependent Hamiltonians and wave
function propagation [26,92]. Equation (66) can be approx-
imated, for instance, by means of a sequence of stepwise
time-independent generators, before one resorts to other
means of numerical integration.

If the generator L(t) is approximately piecewise time
independent, then Eq. (35) can be applied to each time
slice, with use of the result of the previous slice to provide
the input state for the next slice. This scenario is com-
mon in many optical and spin resonance experiments. For
example, it can be used to compute the effect of applying a
laser pulse resonant with an atomic transition. It can then
be used to model the behavior of the system while the pulse
is ON and immediately after it is turned off.

Let us consider a system with Hamiltonian H = H0 +
v(t)H1, where H0 = ω0σz/2, H1 = ω0σx/2, v(t) = cos(ωt),
and the Lindblad dephasing operator J = |g〉〈g| = (1 −
σz)/2, with dephasing rate γ . The generator L(t) = L0 +
L1(t) can be split into a time-independent part L0, associ-
ated with H0 and L0, and a time-dependent part L1(t). To
reduce the computational cost when propagating this sys-
tem, we can update the propagator by updating only the
time-dependent part. The PYTHON script B.17 in Supple-
mental Material [33] generalizes the solution of Eq. (35)
to the case of time-dependent generators by updating the
superoperator at each time t; the solution is shown in
Fig. 10.

Note that for this approach to be accurate, the time step
δt has to be sufficiently small so that v(t + δt) ≈ v(t)+
O(δt2). For rapidly varying time-dependent Hamiltonians,

other methods are required. If H(t) is periodic, a solution
can be found with use of an effective time-independent
Hamiltonian, obtained with use of Floquet theory, as dis-
cussed in Sec. V.

In practice, especially when one is using theoretical
system parameters, it is often possible to get exact cancel-
lations that may have no physical grounding but can result
in degenerate eigenvectors. While there are mathematical
techniques that deal with these situations, it is often easier
to just add an infinitesimal (numerically of order machine
precision) imaginary term iε, ε � 1, to each element of the
matrix. This can remove the degeneracy, even if the term
is made sufficiently small to have no perceivable effect on
the resulting calculations.

8. Sparse solvers and other methods

When one is dealing with very large systems, it is
always desirable to exploit the sparseness of the superop-
erator and states, since calculating the matrix exponential
and the singular value decomposition may become pro-
hibitively expensive. Fortunately, most physical systems
have sparse Liouvillians whose memory requirements
scale as d22 ln(d). A number of different techniques can
be used to treat sparse and large superoperators, such as
the following:

(1) Use of methods for sparse arrays (SparseArray
in MATHEMATICA), such as null-space solvers. A
library of linear algebra methods for sparse arrays
for MATLAB is available in Ref. [93];

(2) Use of Krylov subspace methods to solve for
exp(Lt)ρ0 directly [94]; the packages expokitpy
and KryPy [95] offer Krylov method implementa-
tions for PYTHON.
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FIG. 10. Solution of time-dependent generator obtained with use of the piecewise time-independent propagator for the system
considered in script B.17 in Supplemental Material [33] (see the script for parameter values). The evolution is generated by a time-
dependent Hamiltonian H(t) = ω0σz/2 + v(t)ω0σx/2, with v(t) = cos(ωt), and a time-independent Lindblad dephasing operator J =
(1 − σz)/2, associated with rate γ . The solution is obtained for ω0 = 2, ω = 3, and γ = 0.3 for three different time steps δt as indicated
in the legend.

(3) Taking the action of the exponential on a given
sparse initial state. In MATHEMATICA this can be
done with MatrixExp as in

rhot = MatrixExp[M t, rho0]

(4) Use of the Arnoldi method [96]. This can be done
in MATHEMATICA with use of the Eigensystem
function in combination with "Arnoldi",

Eigensystem[M t, k, Method ->

"Arnoldi"]

where k represents the index of the eigenvalue (or
singular value) to be calculated;

(5) Use of the Arnoldi-Lindblad method introduced
in Ref. [97] for time-independent and periodically
time-dependent systems. The method applies the
Arnoldi iterative diagonalization while using the
algebraic properties of the Liouville superoperator.

However, sometimes the simplest option may be to imple-
ment a finite-difference method such as the Runge-Kutta
method with sparse linear algebra, as it is often just as fast
as more sophisticated methods.

E. Correlation functions

Correlation functions measure the relationship between
microscopic quantities across time, space, and other
observables. In statistical mechanics, they are used to cal-
culate the ensemble properties of stochastic processes and

to determine the degree of order or randomness in a sys-
tem. For example, the effect of atmospheric turbulence
on the propagation of light beams can be modeled from
the correlation functions C(t, t′, r, r′) = 〈n(t, r)n(t′, r′)〉 of
the refractive index n(t, r) [98]. Similarly, the magnetic
properties of materials can be inferred from the spatial
correlation functions between spins [99].

In quantum stochastic processes, correlation functions
are used to determine the magnitude of decoherence and
relaxation processes, as we discuss in depth in Sec. IV.
The macroscopic properties of a variety of systems can be
calculated from the correlation functions of their micro-
scopic features. Of particular importance are emission
and absorption spectra in light-matter interaction (see
Sec. III E 2), noise power spectra and relaxation rates,
and bunching and antibunching statistics of photons [100],
electrons [101], and other particles. Here we examine the
basics of correlation functions and show how these can be
calculated from the master equation governing the evolu-
tion of the density operator. We then apply these results to
calculate the emission spectrum in a simple example of a
two-level system interacting with an electromagnetic field.

1. Quantum regression theorem

Linear systems are amply studied in physics because
of their simplicity and exact solvability. The equations of
motion of the averages of the operators of such systems
are often linear, as for the case of Eq. (27). For these sys-
tems, it can be shown that the averages of their two-time
correlation functions obey exactly the same equations of
motion. This result, first derived by Lax, is known as the
quantum regression theorem [102,103], and it provides a
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method for calculating any two-time correlation function
〈A(t)B(t′)〉, i.e., involving any two observables at different
points in time, for a system whose dynamics are prescribed
by a quantum master equation ρ̇ = Lt[ρ] [102].

Suppose that for a certain set of operators {Ai}, the linear
master equation (27) yields the following closed system of
linear ordinary differential equations to their averages for
some coefficients Gij [26]:

d
dt

〈Ai(t)〉 =
∑

j

Gij 〈Aj (t)〉. (67)

Then their two-point correlation functions

〈Ai(t + τ)Al(t)〉 = Tr
[
Ai�(t + τ ; t)[Alρ(t)]

]
, (68)

where �(t; t0) is the dynamical map from time t0 to time t,
associated with the master equation ρ̇ = Lt[ρ] observe the
same dynamics,

d
dt

〈Ai(t + τ)Al(t)〉 =
∑

j

Gij 〈Aj (t + τ)Al(t)〉. (69)

Note how the right-hand side of Eq. (68) corresponds to
the average of Ai at time t + τ with the choice of initial
density operator ρ → Alρ(t) [103].

Any two-time correlation function 〈A(t + τ)B(t)〉 can
then be simplified with use of Eq. (68) as [30]

〈A(t + τ)B(t)〉 = Tr[A�(t + τ ; t)[Bρ(t)]}],
= Tr[A�(t + τ ; t)[B�(t; 0)[ρ(0)]]]. (70)

When calculating 〈A(t + τ)B(t)〉 numerically, we can first
obtain ρ(t) = �(t; 0)[ρ(0)] with ρ(0) as the initial state.
We then propagate Bρ(t) using the dynamical map, to
obtain�(t + τ , t)[Bρ(t)], and conclude by taking the trace
of the resulting operators. If we are interested in steady-
state properties, the two-time correlation functions sim-
plify further. By replacing ρ(0)with the steady state ρSS =
limt→∞�(t; 0)[ρ(0)], we can calculate 〈A(t + τ)B(t)〉 as

〈A(t + τ)B(t)〉 = Tr[A�(t + τ ; t)[BρSS]],

= Tr[A�(τ ; 0)[BρSS]],

= 〈A(τ )B(0)〉. (71)

2. Emission and absorption spectra

Emission and absorption spectra of an optical material
can be calculated from the two-time correlation functions
of the transition operators associated with the emission
and absorption of photons, respectively. For example, an
atomic medium given by an ensemble of noninteracting d-
level systems that interact with the electromagnetic field

will emit light when excited. Its spectrally resolved inten-
sity is proportional to its emission spectrum E(ω), which
measures the likelihood of transition between eigenstates
|φi〉 → |φj 〉 with energy difference ω. In first-order per-
turbation theory, E(ω) can be calculated by means of the
Fermi golden rule [26]. Line-broadening effects caused by
decoherence and relaxation processes can be calculated
in second-order perturbation theory with use of two-point
correlation functions and the quantum regression theorem.

Let us consider a generic two-level emitter with Hamil-
tonian H = �σz/2 to illustrate how the emission spectrum
is calculated. The system can emit a photon via the tran-
sition operator σ− = (σx − iσy)/2 and absorb a photon
via its Hermitian conjugate σ †

− = σ+ = (σx + iσy)/2. Let
the system be in a stationary state ρSS. Then its emission
spectrum is calculated from the correlation function of the
transition operators 〈σ †

−(τ )σ−(0)〉 as [26]

E(ω) ∝ F(ω)[〈σ †
−(τ )σ−(0)〉] (72)

=
∫ ∞

−∞
dτe−iωτ 〈σ †

−(τ )σ−(0)〉 (73)

= 2 Re
{∫ ∞

0
dτe−iωτ 〈σ †

−(τ )σ−(0)〉
}

, (74)

where F(ω) is the Fourier transform. Equation (74) fol-
lows from our decomposing the limits of the Fourier
transform in Eq. (72) at t = 0, followed by the use of
the relation 〈σ †

−(−τ+)σ−(0)〉 = 〈σ †
−(τ+)σ−(0)〉∗, where τ−

denotes τ < 0 and τ+ denotes τ ≥ 0 [26]. The general-
ization to the emission spectra of multilevel emitters is
obtained by generalization of Eq. (72) as discussed in
Ref. [10]. The emission spectrum E(ω) is calculated as the
sum of all the contributions from the possible transitions
|i〉 → |j 〉 between the eigenstates of the system with i > j ,
modeled by the operators σij = |φj 〉〈φi|,

E(ω) ∝
∑
i>j

F(ω)[〈J †
ij (τ )Jij (0)〉], (75)

with Jij = √
γij σij , for some rates γij .

If the emitter is illuminated by a tunable probe field with
angular frequency ωp , whose amplitude is assumed to be
weak as to not significantly perturb the atom’s Hamilto-
nian, the steady-state probe absorption spectrum can be
obtained as follows [104–106]:

A(ν) ∝ Re
{∫ ∞

0
dτeiντ 〈[σ †

+(τ ), σ+(0)]〉
}

, (76)

where ν = ωp − ω is the detuning of the probe beam
relative to the driving laser.

We refer the reader to Refs. [1,107,108] for further
details on correlation functions and spectra. We have
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FIG. 11. Left: Real and imaginary parts of the steady-state correlation function C(t) = 〈σ+(τ )σ−(0)〉SS for a two-level system H =
�σz/2 with Rabi frequency� and decay rate � = �/10. Right: Emission spectrum E(ω) of the considered two-level system associated
with transition operator σ− = |g〉〈e| = σ

†
+. The peaks coincide with the transition frequencies ωij = ωi − ωj associated with transitions

|i〉 → |j 〉, as shown by the labels. The emission spectrum calculated with use of the semigroup composition rule is compared with the
emission spectrum obtained with use of QUTIP with use of script C.10 in Supplemental Material [33] (see the script for parameter
values).

included the step-by-step implementation of an example
of a two-level system emission spectrum using Eq. (72)
in script B.18 in Supplemental Material [33]. The result-
ing time-domain emission correlation and spectrum are
depicted in Fig. 11, alongside the corresponding QUTIP
version of the same calculation.

IV. BLOCH-REDFIELD THEORY

In the previous section we discussed how to imple-
ment the Lindblad master equation from a phenomenolog-
ical model of decoherence and relaxation. However, it is
sometimes necessary to start from a microscopic descrip-
tion—i.e., the system and environment Hamiltonian—to
obtain a master equation for the density operator of the
system. When the system interacts weakly with its envi-
ronment, this can be achieved with use of Bloch-Redfield
theory [26,109]. This theory is useful when we lack a
model for decoherence and relaxation but we know the
nature of the system-environment interactions that drive
such processes. As a result, the theory provides a pow-
erful approach to determine the temperature dependence
of dephasing and thermalization rates directly from first
principles.

A. Bloch-Redfield master equation

Let us consider a system S, with dimension dimS, that
interacts with its environment E according to the following
general Hamiltonian:

H = HS + HE + Hint (77)

= HS + HE +
∑
α

Aα ⊗ Bα , (78)

where the coupling operators Aα (Bα) are Hermitian and act
on the system (environment) such that Hint is a small per-
turbation of the unperturbed Hamiltonian H0 = HS + HE .
Then, under approximations 1–3 discussed in Sec. IV B,
the dynamics of the system’s density operator ρ in the
eigenbasis {|ωa〉} of HS [110] is prescribed by the Bloch-
Redfield master equation,

ρ̇ab(t) = −iωabρab(t)+
∑
c,d

Rabcdρcd(t), (79)

where ωab = ωa − ωb are the frequencies associated with
transitions |ωb〉 → |ωa〉. The Bloch-Redfield tensor Rabcd
is prescribed by the following expression, where δij is the
Kronecker δ:

Rabcd = − 1
2�2

∑
α,β

{
δbd

dimS∑
n=1

A(α)an A(β)nc Sαβ(ωcn)

− A(α)ac A(β)db Sαβ(ωca)

+ δac

dimS∑
n=1

A(α)dn A(β)nb Sαβ(ωdn)

− A(α)ac A(β)db Sαβ(ωdb)

}
. (80)

In Eq. (80), A(α)ab = 〈ωa|Aα|ωb〉 are the elements of the
coupling operators Aα in the eigenbasis of the system
Hamiltonian, while Sαβ(ω) corresponds to the noise-power
spectrum of the environment coupling operators [36,111],

Sαβ(ω) =
∫ ∞

−∞
dτeiωt Tr

[
Bα(τ )Bβ(0)ρE

]
, (81)
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taken by our assuming ρE is some steady state of the
environment.

1. Thermal relaxation and detailed balance condition

When Bloch-Redfield theory is used, it is common to
consider environments in thermal equilibrium at inverse
temperature β = 1/kBT. For example, the environment
may be assumed to be in a Bose-Einstein distribution,

Gβ(HE) = exp(−βHE)

Z , (82)

with Z = Tr[exp(−βHE)], and to be invariant under
future evolutions (Gibbs state) [26]. In the secular approx-
imation, discussed in Sec. IV C, any out-of-equilibrium
density operator that evolves under the dynamics pre-
scribed by Eq. (79) with ρE = Gβ(HE) will relax towards
thermal equilibrium (exchanging energy with the envi-
ronment). Indeed, the steady state of Eq. (79) is itself a
Gibbs state Gβ(HS) at thermal equilibrium with inverse
temperature β.

The condition for this to occur is known as detailed bal-
ance, and can be expressed in terms of the ratio between
the rates ka→b associated with transitions |ωa〉 → |ωb〉
separated by energy ωba = ωb − ωa:

ka→b

kb→a
= exp(−βωba). (83)

The detailed balance condition implies that the equilib-
rium populations of the eigenstates of the system fol-
low the Boltzmann distribution pa ∝ exp(−βωa). In terms
of noise-power spectra, the detailed balance condition
becomes Sαβ(−ω)/Sαβ(ω) = exp(−βω).

2. Example: Spin-boson model

Before discussing the approximation required to derive
the Bloch-Redfield master equation, let us implement
Bloch-Redfield theory for the simple and ubiquitous spin-
boson model. We consider a two-level system coupled with
a large ensemble of uncorrelated harmonic oscillators at
thermal equilibrium (bosonic bath)

H = ε0

2
σz + �

2
σz +

∑
k

�ωkb†
kbk + σz ⊗

∑
k

gk
(
b†

k + bk

)
,

(84)

where gk is the strength of the coupling between σz and
some mode ωk.

First, we calculate the correlation functions Ckk′(t) for
the bath operators Bk = gk

(
b†

k + bk

)
,

Ckk′(t) = δkk′Tr
[
Bk(t)Bk′(0)Gβ(HE)

]
, (85)

= g2
k

1 − exp(−βωk)

(
e−iωkt + eiωkt−βωk

)
, (86)

where we used the fact that the modes are uncorrelated
(δkk′) and assumed the bath to be in thermal equilibrium
ρE = Gβ(HE) at inverse temperature β, as in Eq. (82).

To treat the contribution of a large ensemble of modes,
we replace the sum over the coupling strength gk with
an integral over some spectral density J (ω) that well
approximates the bath:

∑
k

g2
k →

∫ ∞

0
dωJ (ω). (87)

The spectral density is the product of the square of the
system-environment coupling strength and the density of
environmental states in frequency space [112]. A common
choice is the Ohmic spectral density J (ω) = ηωe−ω/ωc ,
which is characterized by a cutoff frequency ωc and a
dimensionless parameter η, from which we obtain the
noise-power [69],

S(ω) =
∫ ∞

−∞
dteiωt

∑
k

Ckk(t) (88)

≈
∫ ∞

−∞
dteiωt

∫ ∞

0
dω′J (ω′)

(
e−iω′t + eiω′t−βω′)
1 − exp(−βω′)

(89)

= 2πηω exp(−|ω|/ωc)

1 − exp(−βω) . (90)

We now possess all the elements required to compose
the Bloch-Redfield tensor of Eq. (80). Note that we have
only one system coupling operator A = σz, associated with
a single noise-power spectrum S(ω). The PYTHON script
B.19 in Supplemental Material [33] presents an implemen-
tation of the Bloch-Redfield tensor, which can then be used
to propagate the state of the system with use of one of the
methods discussed in Sec. III. Note that to simplify the
solution of Eq. (27), the unitary part of the generator has
been absorbed into the tensor R,

Rabcd → R′
abcd = −iωacδacδbd + Rabcd. (91)

B. Approximations for the Bloch-Redfield master
equation

While the Lindblad master equation is guaranteed to
be completely positive and trace preserving [113], care
must be taken when one is using Bloch-Redfield theory.
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First, the following approximations have to be respected
to obtain Eq. (79) from the reduced-state von Neumann
equation [26,109], as discussed in Sec. II E:

(1) Weak-coupling approximation. The interaction Hint
is a small perturbation of the unperturbed Hamilto-
nian H0 = HS + HE .

(2) Born approximation. The system-environment den-
sity operator is factorized at all times, ρint(t) =
ρS(t)⊗ ρE , with ρE being some steady state of the
environment (justified also by the weak-coupling
approximation).

(3) Markov approximation. The bath correlation func-
tions gαβ(τ ) = Tr

[
Bα(τ )Bβ(0)ρE

]
have a short cor-

relation timescale τE , gαβ(τ ) ≈ 0 for τ � τE .

Within these approximations, the Bloch-Redfield master
equation does not, in principle, guarantee positivity of
the density operator. That is, when one is propagating
the system in time ρ(t) = �t[ρ0], the populations of ρ
may become negative for some time t > 0 [114]. For this
reason, when one is propagating a density operator numer-
ically, it is advisable to check its positivity. The PYTHON
script B.20 in Supplemental Material [33] can be used to
test the positivity, Hermitianity, and normalization condi-
tion of a density operator. The function is_state(rho)
returns 1 if a rho is a density operator and a value s < 1 if
rho deviates from the conditions of positivity, Hermitian-
ity, and normalization, where 1 − s is a measure of such
deviation.

C. Lindblad form of the Bloch-Redfield master
equation

By application of the rotating-wave approximation
(RWA), it is possible to write the Bloch-Redfield mas-
ter equation in the Lindblad form of Eq. (24) and thus
guarantee its complete positivity,

ρ̇ = − i
�

[HS, ρ] +
∑
αβ

∑
ω

Sαβ(ω)
[

Aα(ω)ρA†
β(ω)

− 1
2

{
A†
α(ω)Aβ(ω), ρ

}]
,

(92)

where Aα(ω) = ∑
ω=ωb−ωa

A(α)ab |ωa〉〈ωb| are the coupling
operators in the frequency domain, such that the sum over
ω needs to be done only over the transition (Bohr) frequen-
cies ω = ωb − ωa, as in Eq. (80) [26]. To apply the RWA,
all the contributions from the rapidly oscillating terms,
i.e., with characteristic frequency |ωab − ωcd| ≥ τ−1

E , are
ignored as they approximately average to zero. This is
sometimes also called “secular approximation,” although
technically the two approximations do not coincide [115].

This form is useful, for example, to systematically com-
pile the Bloch-Redfield tensor from a list of system cou-
pling operators Aα and noise-power spectra Sαα , or even to
compose the full Liouville superoperator associated with
the dynamics of Eq. (92).

Example: Network with random energies and couplings.
Let us consider a system consisting of N states |k〉 with
energies εk that interact via couplings vjk, with associated
Hamiltonian

HS =
∑

k

εk|k〉〈k| +
∑
j<k

(
vjk|j 〉〈k| + h.c.

)
. (93)

Let us assume that each state |k〉 couples with a local
environment of uncorrelated bosonic modes character-
ized by some noise-power spectrum Sk(ω). This type of
system-environment model is typically used to model the
transport of charge carriers (electrons and holes) or cou-
pled electron-hole pairs (excitons) in disordered organic
semiconductors [116]. In the PYTHON script B.21 in Sup-
plemental Material [33] we study the dynamics of an
instance of such a random quantum network using Bloch-
Redfield theory in the secular approximation; the results
are shown in Fig. 12.

The Bloch-Redfield tensor is calculated with use of the
general method introduced in script B.19 in Supplemental
Material [33], while the propagator is calculated adaptively
for different timescales. A robust and efficient method
for the calculation of the Bloch-Redfield tensor is imple-
mented in the bloch_redfield_tensor function of
QUTIP’s module bloch_redfield.

D. Computational requirements for the Bloch-Redfield
master equation

Numerical implementations of Markovian master equa-
tions such as the Lindblad and Bloch-Redfield master
equations are generally inexpensive, when compared with
the numerical implementation of methods involving mem-
ory kernels or environmental degrees of freedom [26,117].
Nevertheless, as the size of the system increases, solving
density operator master equations can become computa-
tionally demanding [118]. Therefore, when one is imple-
menting Bloch-Redfield theory numerically, it is important
to keep track of the required computational resources.

1. Memory requirements

Let d = dimHS be the dimension of the Hilbert space
associated with the system’s Hamiltonian HS. For any
density operator master equation, the number of com-
plex floating-point numbers required to store the density
operator scales with d2, with the coherences (off-diagonal
elements) taking up most of this memory requirement.
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FIG. 12. Solution of the Bloch-Redfield (BR) master equation (ME) and associated Pauli master equations for the random quantum
network of scripts B.21 and B.22 in Supplemental Material [33] (see the scripts for parameter values).

Analogously, the memory requirements to store the Liou-
ville superoperator associated with Eqs. (24) and (79) scale
as d4. When memory becomes an issue, it is possible to
use stochastic wave function methods to limit the memory
scaling to that of the system dimension (d) for the state
and that of the Hamiltonian (d2) for the propagation, as
discussed in Sec. III D 6.

2. Operations requirements

There are three main computationally demanding tasks
one encounters when solving any density operator master
equation numerically in Liouville space:

(1) Constructing the generator of the evolution L, asso-
ciated with ρ̇ = Lρ.

(2) Computing the propagator Pt = exp[Lt].
(3) Propagating the state ρ t = Ptρ0.

As discussed in Sec. III D, there is an array of approaches
to reduce the expense of these tasks, depending on the type
of problem.

a. Propagation. Starting from the bottom, propagating
the state in Liouville space involves a matrix multiplication
Pρ between a d2 vector ρ = vec(ρ) and a d2 × d2 operator
P. Without any optimization, the number of floating-point
operations required scales with d4 [118].

b. Matrix exponential. The number of operations
required to compute the propagator depends on the
method used to calculate the exponential of the matrix

associated with L. For example, SCIPY’s implementa-
tion (scipy.linalg.expm) uses the Padé method to
approximate the matrix exponential (see Refs. [119,120]
for details on the number of operations required). This
is generally a demanding task, for Lindblad and Bloch-
Redfield master equations alike. Some approaches to mit-
igate the computational costs associated with this task are
discussed in Sec. III D.

c. Bloch-Redfield tensor. When it comes to construct-
ing the generator of the evolution, calculating the Bloch-
Redfield tensor R becomes substantially more demanding
than calculating the bare Lindblad generator L. In essence,
this is because each system coupling operator Aα may
contribute to any of the d2 transitions |ωa〉〈ωb| in the
eigenbasis of HS. Therefore, when constructing a Bloch-
Redfield tensor from m coupling operators Aα , we may
need to perform a number of operations that scales with
m2 × d2. In contrast, to construct a Lindblad superoper-
ator L from m jump operators Lk, we need a number of
operations that scales only with m. See Ref. [118] for fur-
ther information on the computational resources required
for Bloch-Redfield theory and the efficiency of different
numerical implementations. It is worth mentioning that
the numerical construction of the Bloch-Redfield tensor
for time-dependent Hamiltonians can become particularly
challenging, as it is often necessary to reconstruct the
tensor as the Hamiltonian eigensystem changes over time.

E. Pauli master equation

The computational cost of Bloch-Redfield master equa-
tions reduces dramatically under some special circum-
stances. If the system’s Hamiltonian HS is nondegenerate
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and if the secular approximation is applied [121], the
equations of motion for the populations pa(t) of the eigen-
states |ωa〉 are closed and decoupled from the equations
of motion for the coherences [26]. The result is a system
of linear ordinary differential equations to the populations,
known as the Pauli master equation:

ṗa(t) =
∑

b

[
Wabpb(t)− Wbapa(t)

]
, (94)

where the matrix elements

Wab =
∑
αβ

A(α)ba A(β)ab Sαβ(ωba) (95)

represent the rates of transition between eigenstates a
and b.

The Pauli equation (94) can be written in the vector form
ṗ(t) = Wp(t) and solved analytically or numerically with
use of the matrix exponential p(t) = exp[Wt]p(0). Since
the population vector p is d dimensional, the computa-
tional resources required to implement the Pauli master
equation scale with d2. Pauli master equations find appli-
cations in scenarios where dephasing happens over a much
shorter timescale than thermal relaxation. As an example,
room-temperature exciton transport properties were stud-
ied with this approach in Refs. [122,123]. Script B.22 in
Supplemental Material [33] implements the Pauli master
equation associated with the problem set up in script B.21.
The results are shown in Fig. 12.

V. PERIODICALLY DRIVEN SYSTEMS AND
FLOQUET THEORY

Up until this point, all the Hamiltonians considered are
constant, are piecewise constant, or vary slowly enough
that they can be considered piecewise constant. Now we
consider the common situation where some part of the
Hamiltonian is periodically oscillating in time:

H(t) = H0 + sin(ωt + φ0)H1, (96)

where H0 and H1 are two (generally noncommuting)
time-independent Hamiltonians, ω is some oscillation fre-
quency, and φ0 ∈ R is some initial phase. A very common
example is a two-level system interacting with an oscil-
lating electric or magnetic field, which is encountered
experimentally when one is driving transitions with a laser
or a microwave field. However, the approach detailed here
is very general and applies to any harmonically oscillating
Hamiltonian whose frequency ω and overtones kω (k ∈ Z)
are near resonant with a transition |En〉 → |Em〉 between
eigenstates |En〉 with energy En of the considered internal
Hamiltonian H0,

k�ω ≈ |Em − En|. (97)

A. Two-level system interacting with an electric field

Let us consider a single two-level system subjected to an
oscillating electric field E(t) of wavelength λ. If the atom
is much smaller than λ, the field will appear spatially con-
stant in the region occupied by the atom. This enables us
to write the field as a function of time,

E(t) =
(

E0e−iωt + E∗
0eiωt

)
ẑ, (98)

assuming that E is oriented along the ẑ direction, where ω
is the angular frequency of the incoming radiation.

The total system Hamiltonian H = HS + Hint is the sum
of the Hamiltonian of the two-level system,

HS = �
ω0

2
σz, (99)

with eigenstates |g〉 and |e〉, and the atom-field dipolar
interaction Hamiltonian Hint [124,125],

Hint = −d · E, (100)

where d is the transition dipole moment operator of the
atom. Assuming that the field predominantly interacts with
only one electron in the atom, we write d in terms of the
electron position re as d = −ere, where e is the elementary
charge. With use of a parity argument, it can be shown that
the diagonal matrix elements of d vanish, i.e., 〈g|d|g〉 =
〈e|d|e〉 = 0. As a result, the dipole operator reads

d = 〈e|d|g〉|e〉〈g| + 〈e|d|g〉∗|g〉〈e|, (101)

from which we define the Rabi frequency � of the
two-level system and its associated counter-rotating fre-
quency �̃,

� = 〈g|d · ẑ|e〉E0

�
, �̃ = 〈e|d · ẑ|g〉E∗

0

�
. (102)

The interaction Hamiltonian then reads

Hint = −�

(
�e−iωt + �̃eiωt

)
|e〉〈g|

− �

(
�̃∗e−iωt +�∗eiωt

)
|g〉〈e|. (103)

1. Rotating-wave approximation

Let us now write the full Hamiltonian H in the interac-
tion picture H̃ = U†

0HU0, with U0 = exp(−iHSt/�),

H̃ = HS − �

(
�e−i�ωt + �̃ei(ω+ω0)t

)
|e〉〈g|

− �

(
�̃∗e−i(ω+ω0)t +�∗ei�ωt

)
|g〉〈e|, (104)

with �ω = ω − ω0. If the driving field is close to reso-
nance with the energy splitting of the two-level system,
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i.e., ω ≈ ω0, the two timescales involved in the dynamics
are separated from each other,

�ω � ω + ω0. (105)

The rapidly oscillating terms in ω + ω0, associated with
the counter-rotating frequency �̃, quickly average to zero
over the timescale of the Rabi frequency�. As a result, the
RWA of the Hamiltonian H in the original frame reads

H RWA = HS − �

(
�e−iωt|e〉〈g| +�∗eiωt|g〉〈e|

)
. (106)

2. Time-independent Hamiltonian in the rotating frame

The Hamiltonian in Eq. (106) can be written in the rotat-
ing frame of the driving field via the transformation gen-
erated by the time-dependent unitary Vω = exp(iHSt/�) =
exp(iωσz/2t) [124],

H RWA → H RWA
ω = VωHVω†+i�V̇ωVω†. (107)

In this frame the Hamiltonian reads

H RWA
ω = �

�ω

2
σz + �Re[�]σx + �Im[�]σy ,

= �

2

(
�ω 2�∗
2� −�ω

)
. (108)

This is now a time-independent Hamiltonian in the rotat-
ing frame of the driving field, and can be treated with
the methods introduced in previous sections. Typically, the
decoherence operators are not oscillatory and are also time
independent in this frame, which means solving the master
equation also proceeds as above.

B. Floquet theory and Schrödinger evolution

The RWA is strictly valid only when the Rabi frequency
� is much smaller than the transition frequency ω0. When
this is not the case, for example, in the limit of strong driv-
ing inducing multiphoton processes, more sophisticated
techniques are required [126].

A common approach to treating strong driving beyond
the RWA is the use of Floquet theory. In this approach,
the evolution of a system undergoing periodic variation
is expressed in a Fourier series in terms of the oscillation
frequency. The Floquet theorem states that a set of time-
dependent differential equations whose coefficients vary
periodically will have solutions with the same periodic-
ity. This is the temporal equivalent of Bloch’s theorem in
space, with the solution expressed in terms of quasiener-
gies instead of quasimomenta.

In the context of quantum systems, Floquet theory pro-
vides a method for finding solutions to the time-dependent
Schrödinger equation due to the influence of a time-
periodic Hamiltonian. The Floquet treatment of the two-
level system problem under strong driving was introduced

by Shirley [127]. However, the approach is of general
validity and is invaluable in a variety of settings, such
as analogue quantum simulation [128], quantum infor-
mation processing [129], heat engines and laser cooling
[130], quantum optimal control [131,132], and time crys-
tals [133,134].

1. Floquet modes and quasienergies

Let us consider the time-dependent Schrödinger
equation for a periodic Hamiltonian H(t) = H(t + nT), for
all n ∈ Z,

i�
d
dt

|ψ(t)〉 = H(t)|ψ(t)〉. (109)

The Floquet theorem states that the general solution has
the form

|ψ(t)〉 =
∑
α

e−iεα t/�|φα(t)〉, (110)

where |φα(t)〉 = |φα(t + nT)〉 are some periodic func-
tions, known as Floquet modes, and εα are the associated
quasienergies, constant in time and uniquely defined up
to multiples of ω = 2π/T [127]. By plugging Eq. (110)
into Eq. (109), we can recast the problem as an eigenvalue
problem to the quasienergies for the operator H(t) :=
H(t)− i�dt,

H(t)|φα(t)〉 = εα|φα(t)〉. (111)

This equation can be solved numerically or analytically to
find the quasienergies and the Floquet modes. An alter-
native approach to finding the solution is to solve the
eigenvalue problem posed by the propagator U(t + nT; t)
[135],

U(t + nT; t)|φα(t)〉 = e−iεαT/�|φα(t)〉, (112)

which is then solved for ηα = exp(−iεαT/�), to find εα =
−� arg(ηα)/T. This approach is implemented in QUTIP
with the floquet_modes method.

2. Floquet Hamiltonian and Fourier analysis

Thanks to their shared periodicity we can express both
the Hamiltonian and the Floquet modes as Fourier series,

|φα(t)〉 =
∑

n

e−iωnt|α, n〉, (113)

H(t) =
∑

n

e−iωntHn, (114)

where we have implicitly introduced the Fourier com-
ponents |α, n〉 and Hn of the Floquet modes and of the
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Hamiltonian, respectively,

|α, n〉 = 1
T

∫ T

0
dteiωnt|φα(t)〉, (115)

Hn = 1
T

∫ T

0
dteiωntH(t). (116)

This allows us to define a Floquet Hamiltonian HF whose
components are given by

〈α, n|HF |β, m〉 = H (α,β)
n−m + nωδαβδnm, (117)

which can be used to calculate probabilities of transition
Pα→β(t) between modes α and β, as discussed in the next
section.

3. Transition probabilities from Floquet theory

Let us consider a simple sinusoidal variation in the
Hamiltonian, such that H has a finite Fourier series

H(t) =
1∑

n=−1

e−iωntHn, (118)

= H0 + H̃1 cos(ωt), (119)

with H̃1 := H−1e−iωt + H1eiωt. Then the Floquet Hamiltonian has the general structure

HF =

⎛
⎜⎜⎜⎝

H0 − 2�ω H1 0 0 0
H−1 H0 − �ω H1 0 0

0 H−1 H0 H1 0
0 0 H−1 H0 + �ω H1
0 0 0 H−1 H0 + 2�ω

⎞
⎟⎟⎟⎠, (120)

where the size of the matrix is limited by the number of
harmonics included in the Fourier expansion. If we then

diagonalize HF , the time-dependent wave function can be
written in terms of the eigenvectors |λ〉 and corresponding
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FIG. 13. Absorption probability associated with the transition |g〉 → |e〉 in a two-level system with Hamiltonian H0 = δσz/2 + εσx
and eigenvalues λg and λe. The system is strongly driven via the interaction Hint = Vσz/2 with a cavity mode of frequency ω. The
vertical dashed lines correspond to the n-photon transitions, which are enabled as the interaction strength V increases. The figures are
generated with use of script C.11 in Supplemental Material [33] (see the script for parameter values).
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eigenvalues λ of the Floquet Hamiltonian:

HF |λ〉 = λ|λ〉. (121)

The time-dependent wave function |ψ(t)〉 = U(t; t0)|ψ(t0)〉
is then expressed in terms of the propagator U(t; t0), whose
elements can be written as

Uβα(t; t0) =
∑

n

〈β, n| exp[−iHF(t − t0)/�]|α, 0〉einωt

=
∑

n

∑
λ

〈β, n|λ〉〈λ|α, 0〉e−iλ(t−t0)/�einωt.

(122)

The probability at time t of a given transition α → β

between Floquet modes with quasienergies εα and εβ can
then be computed directly:

Pα→β(t − t0) =
∑

k

|〈βk| exp[−iHF(t − t0)/�]|α0〉|2.

(123)

In addition, because the time evolution is given by the Flo-
quet components, the time-averaged probability Pα→β can

be evaluated as

Pα→β =
∑

k

∑
λ

|〈βk|λ〉〈λ|α0〉|2. (124)

This equation is implemented in the PYTHON script B.23 in
Supplemental Material [33] for a system given by a two-
level system interacting with a quantized electromagnetic
field mode a† with frequency ω,

H = HS + Vσz(a†e−iωt + aeiωt)+ �ωa†a, (125)

under different driving strengths V, as shown in Fig. 13.
The size of the Floquet Hamiltonian scales with both

the number of states and the number of modes included
in the Floquet expansion. The relative magnitude of ||H1||
to ||H0|| controls how many modes need to be included. In
practice, this can be determined by one increasing the num-
ber of modes until the result converges. It is worth noting
that this method can be computationally costly due to the
size of the Floquet Hamiltonian. However, if convergence
can be achieved, the method is exact and therefore can be
used to compute the effects of strong driving, multipho-
ton transitions, and other effects beyond the rotating-wave
approximation.
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FIG. 14. Absorption probability associated with the transition |g〉 → |e〉 in a two-level system with Hamiltonian H0 = δσz/2 + εσx
and eigenvalues λg and λe. The system is strongly driven via the interaction Hint = Vσz/2 with a cavity mode of frequency ω, while also
being affected by the dephasing Lindblad operator L = σz at rate �z. The vertical dashed lines correspond to the n-photon transitions,
which are damped as the dephasing rate increases. The figures are generated with use of script B.24 in Supplemental Material [33] (see
the script for parameter values).
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4. Extension of Floquet theory to decoherence processes

While the extension of Shirley’s approach to model
decoherence is less well established, there have been a
number of different approaches, depending on how the
expansion in Floquet components is introduced in the mas-
ter equation [92,136–138] as well as other approaches
to including beyond-rotating-wave physics into a master
equation treatment [126,139–142].

One approach, which is also relatively simple to code,
was introduced by Bain and Dumont [143] to model

higher-order corrections in magic angle spinning NMR
experiments. In their approach they use the Liouville form
introduced in Sec. III B and express a periodic superopera-
tor Lt as a Floquet expansion,

Lt =
∞∑

n=−∞
e−inωtL(n), (126)

resulting in a Floquet superoperator LF ,

LF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · · · · · · · ·
· · · L(0) − 2�ω L(1) 0 0 0 · · ·
· · · L(−1) L(0) − �ω L(1) 0 0 · · ·
· · · 0 L(−1) L(0) L(1) 0 · · ·
· · · 0 0 L(−1) L(0) + �ω L(1) · · ·
· · · 0 0 0 L(−1) L(0) + 2�ω · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (127)

that generates the dynamics in an effective time-
independent Markovian master equation, in analogy with
the Floquet Hamiltonian in the Shirley approach. To illus-
trate this approach, we have included a step-by-step imple-
mentation of the Floquet superoperator (script B.24 in
Supplemental Material [33]) and an example of its use for
a driven two-level system with decoherence (script C.12 in
Supplemental Material [33]), as shown in Fig. 14.

However, the existence of a time-independent Floquet
superoperator LF is not always guaranteed, as shown in
Ref. [92]. Depending on the choice of Lt, the evolution
might be described by an equivalent non-Markovian mas-
ter equation that is homogeneous in time but not time
local. Although more computationally demanding than the
standard Floquet approach, this extension to decoherence
processes is quite general and can be applied to master
equations with oscillatory Hamiltonian components fairly
easily [144,145].

VI. DISCUSSION

In this tutorial we have covered the basics of quan-
tum master equations, showcasing their significance with
examples and discussions. The methods reviewed here,
such as use of the GKSL master equation and Bloch-
Redfield theory are the cornerstone of stochastic quantum
dynamics, and constitute only a small fraction of the devel-
oped field of open quantum systems. For further reading
on these topics, we direct readers to Refs. [26,36,38,41,
54,64,79,103,146–150]. The power of quantum master

equations goes well beyond the systems and examples con-
sidered. The theory has been extended to non-Markovian
dynamics [151–156], nonlinear systems [157,158], and
time-convolutionless master equations [159–162], and is
in constant development [163–168].

Further research in this field has been focusing on sev-
eral aspects, such as extending the applicability of QMEs
beyond the standard approximations [114,169,170], the
combination of use of QMEs with compression methods
[171] such as tensor networks [172–177], the use of neu-
ral networks [178–181], and the quantum simulation of
open system dynamics [182–185]. These exciting devel-
opments are set to expand the range of applicability of
QMEs to problems that are typically hard to solve, such
as the dynamics of correlated many-body quantum sys-
tems that underlie the physics of quantum phase transitions
[186–190], quantum computing architectures [191–194],
optoelectronic devices [195,196], and complex chemical
reactions [197–200].
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