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In recent years, research in quantum computing has largely focused on two approaches: near-term
intermediate-scale quantum (NISQ) computing and future fault-tolerant quantum computing (FTQC).
A growing body of research into early fault-tolerant quantum computing (EFTQC) is exploring how to
utilize quantum computers during the transition between these two eras. However, without agreed-upon
characterizations of this transition, it is unclear how best to utilize EFTQC architectures. We argue for
the perspective that this transition period will be characterized by a law of diminishing returns in quan-
tum error correction (QEC), where the ability of the architecture to maintain quality operations at scale
determines the point of diminishing returns. Two challenges emerge from this picture: how to model this
phenomenon of diminishing return of QEC as the performance of devices is continually improving and
how to design algorithms to make the most use of these devices. To address these challenges, we present
models for the performance of EFTQC architectures, capturing the diminishing returns of QEC. We then
use these models to elucidate the regimes in which algorithms suited to such architectures are advanta-
geous. As a concrete example, we show that for the canonical task of phase estimation, in a regime of
moderate scalability and using just over one million physical qubits, the “reach” of the quantum computer
can be extended (compared to the standard approach) from 90-qubit instances to over 130-qubit instances
using a simple early fault-tolerant quantum algorithm, which reduces the number of operations per circuit
by a factor of 100 and increases the number of circuit repetitions by a factor of 10 000. This clarifies the
role that such algorithms might play in the era of limited-scalability quantum computing.
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I. INTRODUCTION

Quantum computers were first proposed to efficiently
simulate quantum systems [1]. It then it took about a
decade before it was discovered that quantum phenom-
ena, such as superposition and entanglement, could be
leveraged to provide an exponential advantage in perform-
ing tasks unrelated to quantum mechanics [2]. Although
of no practical use, the Deutsch-Jozsa algorithm sparked
interest in using a quantum computer to perform other
tasks beyond simulating quantum systems [3,4], the most
famous case being Shor’s algorithm [5]. Around the same
time, the ground-breaking discovery of quantum error-
correcting codes (QECCs) [6–10] set the stage for practical
quantum computing. This has shown that errors due to
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faulty hardware could not only be identified but also cor-
rected. Two pieces of the puzzle have been left, namely:

(1) Could quantum computation be done in a fault-
tolerant manner, i.e., could error-corrected qubits
perform better than physical qubits?

(2) Can one rigorously prove the existence of a thresh-
old [11] below which error can be reduced exponen-
tially in the time and memory overhead cost?

The first piece of the puzzle was tackled by Peter Shor
[12] and later, building on his work, threshold theorems
have been proved assuming various kinds of error models
[13–15]. For a specific quantum error-correcting code and
a noise model, it is then left to prove and find error thresh-
olds, with early works being Refs. [16–19]; this continues
to be an active area of research [20–23].

Meanwhile on the hardware side, astonishing progress
has been made across various modalities (e.g., supercon-
ducting, ion-trap, photonic, etc.) in terms of extending
qubit coherence times and improving entangling oper-
ations [24–31]. Driven by such advances, a watershed
moment occurred in 2016 when IBM put the first quantum

2691-3399/24/5(2)/020101(20) 020101-1 Published by the American Physical Society

https://orcid.org/0000-0003-3470-1246
https://ror.org/01bhrtv82
https://ror.org/03g5ew477
https://ror.org/03kpps236
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.020101&domain=pdf&date_stamp=2024-06-17
http://dx.doi.org/10.1103/PRXQuantum.5.020101
https://creativecommons.org/licenses/by/4.0/


KATABARWA, GRATSEA, CAESURA, and JOHNSON PRX QUANTUM 5, 020101 (2024)

computer on the cloud, giving the public access to quan-
tum computers. This event spurred widespread interest in
finding near-term quantum algorithms that did not need the
full machinery of fault tolerance. These algorithms first
formulate the problem as a solution to the ground state
of some Hamiltonian, store a trial ansatz on the quan-
tum processing unit (QPU), and use a classical optimizer
to find the optimal parameters. The variational principle
guarantees that the optimized parameters will produce a
state the energy of which upper bounds that of the target
Hamiltonian. These so-called hybrid classical-quantum
algorithms allow one to use short-depth quantum circuits
and reduce the need for high-quality quantum coherence.
They have found application in areas of quantum chem-
istry [32], machine learning [33,34], and optimization [35].
Another watershed moment occurred when the Google
Quantum AI team, along with collaborators, announced
their achievement of so-called “quantum supremacy” [36];
they argued that their hardware accomplished a computa-
tional sampling task far faster than possible with available
supercomputers.

Despite this progress, there is still need to reduce errors
and the area of quantum error mitigation arose as attempts
have been made to meet the needs of these applications
[37–41]. This way of using a QPU is what is characteris-
tic of the so called NISQ era [42]. Although there is no
strict definition of what constitutes a NISQ device, it can
generally be assumed that NISQ devices are too large to be
simulated classically but also too small to implement quan-
tum error correction. IBM’s work [43] is in some sense the
true dawn of the NISQ era, i.e., a quantum device where
error mitigation is important and classical simulation is
hard. A flurry of work [44–46] immediately arose pushing
classical methods of simulation and claiming to reproduce
IBM’s results. This is a new phase in which NISQ devices
will be put to the test by state-of-the-art classical simula-
tors and vice versa. Eventually, as the system size under
study is increased, the corresponding Hilbert space for
the quantum systems grows exponentially and the NISQ
device will be the only viable simulation approach. There
are methods in this regime that can extend the size of
simulations by cutting up the circuit and running smaller
versions on smaller devices and then knitting the results
back with some classical postprocessing [47].

But an important question remains and, in a very obvi-
ous sense, the elephant in the room is, “Are NISQ devices
and NISQ algorithms up for the task of realizing quan-
tum advantage at utility scale?” Work has been done in
quantum chemistry where the problem can be precisely
asked in, e.g., finding the ground state of large molecules.
The best estimates so far for resource estimates suggest
that the variational quantum eigensolver (VQE) is not up
to the task [48]. Other work suggests a possible quantum
advantage for the quantum adiabatic optimization ansatz
(QAOA) [49–51] in optimization but it remains to be seen

whether these claims can be confirmed in the presence of
noise at scale.

Given these roadblocks, should our attitude be to wait
for fully fault-tolerant devices? An area of research offers
an intriguing possibility; we are offered a trade-off—we
require fault-tolerant quantum computing but the ability to
run smaller quantum circuits at the cost of requiring more
sampling for the quantum device. Such a trade-off has been
the focus of a substantial amount of research in the past few
years [52–61]. However, in a regime where we are able to
arbitrarily scale the number of physical qubits while main-
taining quality fault-tolerant protocols, such a trade-off
would not be favorable; by increasing the circuit size using
methods such as quantum amplitude amplification [62],
the additional overhead of efficient fault-tolerant proto-
cols is negligible compared to the overall reduction in run
time. Accordingly, such a trade-off would be better suited
to a setting in which the efficiency of fault-tolerant pro-
tocols worsens with increasing system size. If the ability
to scale the number of physical qubits (i.e., the “scalabil-
ity”) is compromised by a worsening of the operations,
then these diminishing returns will, in turn, limit the size
of problems that can be solved. Such a regime of compu-
tation has been referred to as early fault-tolerant quantum
computing (EFTQC) [64], a natural successor to the NISQ
era. A field of research has emerged recently where the
proposed quantum algorithms enable this “circuit-size ver-
sus sample-cost” trade-off [52,54,55,57,58,65–69]. Two
questions are then placed before us:

(1) Will this regime of limited-scale quantum comput-
ers exist in a meaningful way?

(2) If so, will we be able to unlock intrinsic quantum
value at scale in this regime?

The ultimate answers to these questions will depend
on hard-to-predict factors, including hardware, quantum
error-correcting codes, quantum algorithm advances, and
improvements in competing classical hardware and algo-
rithms. Rather than predicting the time line of these
advances, we propose a quantitative framework to track
their progress. However, rather than attempt to precisely
model device characteristics, we will aim to model the
performance of quantum error correction by abstracting
the critical hardware features that predominantly affect the
logical error rates of quantum error correction. In Fig. 1,
we depict the landscape in which this framework assesses
the ability of a given hardware vendor to supply useful
physical qubits and operations, transitioning from NISQ
to EFTQC to FTQC.

To address the first question, we propose a very simple
model [see Eq. (1)] to quantitatively discuss these regimes.
This simple model describes how the quality of elemen-
tary quantum operations degrades as the system size is
increased; i.e., we model the physical gate error rate as a
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FIG. 1. A rough demarcation of the regimes of NISQ, EFTQC,
and FTQC according to the scalability model introduced in
Sec. II. The vertical axis quantifies the base error rate (i.e.,
that achievable for a single qubit), while the horizontal axis
quantifies the ability of the architecture to maintain low error
rates as it is scaled (i.e., its scalability). The contours indi-
cate the maximum physical-qubit number that the architecture
is warranted in scaling to as predicted by the scalability model
of Eq. (1). The NISQ-to-EFTQC transition is characterized by
having enough qubits to implement fault-tolerant non-Clifford
operations (e.g., T factories), while the EFTQC-to-FTQC tran-
sition is characterized by the ability to accommodate very large
problem instances (e.g., encoding 10 000 logical qubits using in
109 physical qubits). The red cross corresponds to data presented
in Appendix A, which estimates that a hardware vendor of today
(IBM) has a scalability of 1.75 with p0 = 0.005. An editable
version of the plot can be accessed at Ref. [63].

function of the physical-qubit number. We dub this model
the scalability of a device. We emphasize that this model
drastically simplifies the complex nature of device model-
ing. However, the models that we propose can be under-
stood as slight generalizations of those typically used for
fault-tolerant resource estimation [70,71]. For the second
question, we quantify how recently developed algorithms
can extend the “reach” of quantum computers with limited
scalability. This is an important step toward understanding
what value such methods can provide.

The paper is organized as follows. In Sec. II, we
present the scalability model and apply this to an exam-
ple resource estimation for the quantum phase-estimation
(QPE) algorithm. In Sec. III, we review progress in algo-
rithms for early fault-tolerant quantum computers and then
present an example of one such algorithm, showing how it
can improve the capabilities of a device with limited scal-
ability. Finally, in Sec. IV, we discuss the implications of

our findings and outline important future research direc-
tions.

II. MODELING EARLY FAULT-TOLERANT
QUANTUM COMPUTATIONS

A. Introduction to the scalability model

In this section, we establish and discuss the precise sense
in which a device can be an early fault-tolerant device. We
first note the tension in the very phrase early fault toler-
ance. Fault tolerance evokes the ability to ensure efficient
suppression of error despite the use of faulty operations
[12]. The string of results [9,13,14,18] collectively known
as the threshold theorems show that in principle this can
be achieved. In fact, due to these results, we know [13]
that under quite general assumptions, such as allowing
for long-range correlations of noise and non-Markovianity,
fault tolerance is still possible. These foundational works
would put the threshold error rate around 10−5–10−6.
However, more optimistic threshold predictions have been
made using numerical investigations [72]. For the sur-
face code [73], which is a leading contender for practical
quantum computing [74], such simulations have led to the
prediction of quite optimistic thresholds of approximately
1% [75], which have also been argued for analytically [76].
On the other hand, numerical thresholds are based on par-
ticular assumptions of noise and error that cannot fully
capture the complexity of quantum architectures at scale.
For example, an important assumption is that a single num-
ber can be used to capture the performance of operations
and that this single number remains constant as larger code
distances [77] are used [75]. Such thresholds have become
the established targets for hardware developers [78–81].

The “early” in “early fault tolerance,” on the other hand,
suggests some kind of limited ability to achieve fault
tolerance, i.e., using a polynomial amount of resources
to achieve exponential error suppression [82,83]. This
tension is what lies behind the motivation for this work.

A key insight toward resolving this tension is to realize
what we call the scalability requirement:

In order to reap the benefits of being below any threshold,
an approach to building a quantum architecture must be
able to maintain each operation below the threshold error
rate as larger and larger architectures are built.

The failure to achieve the scalability requirement
implies the existence of scale-dependent errors. While
NISQ devices fail to meet the scalability requirement,
the hope is that future quantum computers will meet this
requirement over a large range of device scales, effec-
tively enabling fault-tolerant quantum computing. Taking
EFTQC to be the transition from NISQ to FTQC, we
will characterize it as satisfying the scalability requirement
only over a limited range of device scales. Ultimately, this
investigation is motivated by wanting to understand the
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prospects of using early fault-tolerant quantum comput-
ers to solve utility-scale problems. In order to do so, we
must make use of some model of early fault-tolerant quan-
tum computers. While accurate modeling of such quantum
computers might include modality-specific considerations
such as the heterogeneity of superconducting qubit chiplet
architectures [84] or connecting elementary logic units
of ion-trap architectures [85], we will take a modality-
independent approach. The reason for this choice is to
enable the setting of requirements for solving utility-scale
problems that any hardware vendor can aim to satisfy. To
achieve this, our model will describe the simplest charac-
teristics necessary to determine the effectiveness of quan-
tum error correction, as the quality of the logical operations
determines the algorithmic capabilities of the architecture.

While we have cast our modeling as a simplified
approach, there is an important sense in which it gen-
eralizes previous approaches to modeling fault-tolerant
quantum computations. These approaches to predicting the
physical-qubit costs and run times for a quantum com-
putation assume that device error is scale independent
[70,71,86]. Accordingly, these approaches do not model
the transition between NISQ devices with scale-dependent
error and future FTQC with nearly scale-independent error.
So our challenge is expand these models to accommodate
quantum computations in the regime in which the scalabil-
ity requirement is only satisfied up to a point or, in other
words, to model the performance of quantum computations
in devices that have scale-dependent error rates.

Therefore, our approach will be seen as (1) a gen-
eralization that incorporates both the scale-independent
and -dependent settings and (2) an attempt to bridge the
observed scale dependence of error in today’s devices
with the hoped-for scale independence of error in future
quantum architectures. We expect that the degree of scale
dependence will inform the capabilities of the architecture
being modeled. Furthermore, scale-dependent error may
warrant the development and use of quantum algorithms
that are suited to this limitation. These considerations moti-
vate the main question pursued in the remainder of this
paper: “How does the degree of scale-dependent error
determine the capabilities of early fault-tolerant quantum
computers?”

To address the origin of scale-dependent error, we con-
sider the general setup used to prove the fault-tolerant
threshold theorems. It is assumed that we have the follow-
ing Hamiltonian as

H = HS + HB + HSB,

where Hs is the Hamiltonian governing the evolution of
the system, which for our discussion can be the evo-
lution corresponding to implementing the quantum gate,
HB governs the evolution of some bath, and HSB entan-
gles the bath with the qubits in the computation. The

scale-dependent errors arise from the engineering details
involved in implementing HS as larger and larger chips are
developed. These engineering problems cannot be com-
pletely inserted into HSB and yet would ultimately impact
how easily we could stay below threshold as we try to
scale up. For fixed frequency qubits in superconducting
architectures, the issue of “frequency crowding” affects the
quality that any single two-qubit gate can achieve [87]. The
number of frequencies that must be avoided when imple-
menting the cross-resonant gate increases as the number
of qubits increases in the chip; this makes targeting the
required frequency harder and harder as you scale up.
Another scale-dependent engineering difficulty can arise
from unwanted interactions between control lines going
into the chip. The calibration of these pulses is partly a
classical problem that gets more complicated and cumber-
some as the chip gets larger. The issue of “cross-mode
coupling” at ion traps will affect the fidelity of the gate
[88,89], where the target has a specific motional mode
but unwanted couplings destroy the quality of the gate.
The problem has a classical component that scales with
the number of qubits. In the above cases, the physics of
accurate addressability of a qubit or pairs of qubits is a
problem that becomes harder with an increasing number
of qubits and thus affects the quality of the gate operation.
Recent works have explored the consequences of scale-
dependent errors, which would most likely arise from the
limited resources to control qubits and design good-quality
operations [90,91].

It is reasonable to believe that the assumption of scale-
independent error rates may eventually become effec-
tively true on account of modularity, as future quantum
architectures will likely be made from repeated modular
components [93,94]. And while the holy grail of (effec-
tively) scale-independent subthreshold error rates may
some day be realized, quantum architectures will neces-
sarily undergo a transition from today’s scale-dependent
error to the future of scale-independent error. We will take
this transition to be the defining characteristic of early
fault-tolerant quantum computing.

We start by describing the particular setting in which
we model scale-dependent error. Our model will center
around the concept of scalability, the ability to maintain
low error rates (e.g., subthreshold) as larger architectures
are requested. Our setting and model are driven by the
need to answer the following question: “For a series of
quantum computations of increasing size, how well will
a hardware vendor be able to service the request to run
the quantum computations?” Accordingly, we will not con-
sider the capabilities of a single quantum device or a single
quantum architecture, as the hardware vendor might have
several architectures to service computations of various
sizes. Furthermore, we will not consider the capabilities
of the hardware vendor as they improve over time, as our
hypothetical test is used to assess capability at one moment
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in time. In order to make this quantitative, we can con-
sider a scalability profile: an empirically derived function
that reports the worst-case error rate among the elementary
operations of the device as a function of the requested num-
ber of physical qubits. For the case of today’s IBM devices,
we present data on their scalability profile in Appendix A.
In lieu of scalability-profile data for future quantum ven-
dors, we propose a simple parametrized model for this
function:

pphys(Qphys;V) = p0Q1/s
phys, (1)

where Qphys is the number of physical qubits in the archi-
tecture and V labels the particular hardware vendor that
is providing the qubits at any time. Parameters p0 and s
capture the base error rate and the “scalability,” respec-
tively. It is helpful to view this model as a power-law fit
of a scalability profile. In Appendix B, we investigate the
more optimistic case of a logarithmic model. The case of
s = ∞ corresponds to scale-independent error, or infinite
scalability, while any finite value of s corresponds to the
case of finite or limited scalability.

We would like to emphasize here that the scalability
model proposed is a first attempt to approach the prob-
lem of the scalability profile of future quantum hardware.
This is a very hard and complex problem and it is highly
hardware dependent. However, the goal of this work is to
show that given some tentative assumptions on the hard-
ware scalability profile, resource-estimation tools could
help to explore and evaluate the consequences on quantum
computing research and development.

As we will show in Sec. III, in the context of fault-
tolerant quantum computing, a finite scalability will result
in a finite limit on the number of physical qubits being used
before fault-tolerant protocols yield diminishing returns.
We then explain how this limit on the physical-qubit num-
ber places a limit on the problem sizes that the architecture
can accommodate. Importantly, all of these considerations
apply in the setting where fault-tolerant protocols are being
used. This differs from the setting assumed for NISQ
quantum computing [42], where physical qubits instead
of logical qubits are used for computation. Before moving
to Sec. III, we provide some perspective on the transition
from the NISQ regime to the EFTQC regime. Specifically,
in the rest of this subsection, we estimate the minimal num-
ber for Qphys in an EFTQC computation, assuming a simple
surface-code architecture.

The total number of physical qubits for a computa-
tion can be written as Qphys = Qcomp + QMSD, where Qcomp
is the number of physical qubits used to compute (i.e.,
to store and route the logical data) and QMSD are the
physical qubits used for magic state distillation. To cal-
culate the minimum number of qubits required for QEC,
we will set Qcomp = 2(d + 1)2 [71], corresponding to a
single surface-code logical qubit, and pick the smallest

magic state factories that give an improvement on the error
rate.

The most efficient magic state factories known in the
surface code are given in Ref. [95]. We have listed the
smallest of these in Table I (note that these do not give
much of an improvement over the physical error rate).
Ignoring the errors introduced from the gates involved
in the injection process, the error rate of an injected T
state is given by max(pout, pL). Thus, in both of the cases
shown in Table I, we expect that the error of the injected T
state will be pL. This means that in an EFTQC demonstra-
tion with minimal distance (d = 3), the error rate for the
computation with high-quality operations will be 10−5, a
factor-of-10 decrease in the failure rate. In contrast, opera-
tions of lower quality do not exhibit any improvement over
the physical error rate, as the distance 3 is trivially small
for operations of this quality. If we have a single logical
qubit, then this minimum viable example of EFTQC will
be at least 554 and 842 qubits depending on the quality of
the physical operations.

Note that the magic state distillation factory has domi-
nated the number of qubits. As a result, the FTQC com-
munity has put a lot of work into decreasing the size of
factories [95], improving injection protocols [96], or elim-
inating distillation entirely [97]. One would expect that the
first EFTQC demonstrations will employ many of these
techniques rather than the “pure-FTQC” calculation pre-
sented above. In a more careful calculation to estimate a
lower bound for the EFTQC range, one may want to take
such techniques into account and calculate Qphys. Refin-
ing this estimate to clarify and lower the NISQ-to-EFTQC
transition is important future work.

B. Example: Quantum phase estimation compiled to
the surface code

In Sec. II A, we introduced Eq. (1) as a model for how
physical operation error rates might increase with the sys-
tem size. To understand the implications of this model, we
work through the example of using the QPE algorithm [62]
to solve the phase-estimation task. The task of phase esti-
mation is to estimate the eigenphase of a unitary operator
U with respect to an eigenstate |ψ〉, assuming access to cir-
cuits that implement c-U and prepare |ψ〉. We review how
to estimate the quantum resources required to perform this
task under the scalability model and compare these to the
ideal model case (i.e., s → ∞).

A fault-tolerant resource estimation answers the follow-
ing question: “How many physical qubits are needed per
logical qubit to ensure that the logical error rates are suf-
ficiently low to make the algorithm succeed (with some
probability)?” To answer this, we must (1) determine what
logical error rates the algorithm deems as “sufficiently
low” and (2) establish the relationship between the logical
error rate and the quantum resources.
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For (1), the QPE algorithm will succeed with sufficiently
high probability as long as the total circuit error rate is
below some value pC. We will set pC = 0.1, noting that, in
the literature, this tolerable circuit error rate varies from 0.1
[71] to 0.01 [70] but can be made lower using alternative
algorithms [99–101]. This tolerable circuit error rate, along
with the number of operations per circuit, lets us bound
the tolerable operation error rate. The quantum circuit will
ultimately be compiled into a set of logical operations that
are implemented using fault-tolerant protocols [e.g., ini-
tialization of |0〉, measurement in the computational basis,
H gate, controlled-NOT (CNOT) gate, and T gate]. We define
GC to be the number of elementary logical operations
(including idling [102]) used by the circuit. To ensure that
the circuit error rate is less than pC, it suffices [103] to
ensure a logical error rate of pL ≤ pC/GC (by the union
bound).

For the quantum phase-estimation algorithm, GC is
determined by the target accuracy and the number of oper-
ations per c-U. To yield an estimate of the phase angle
to within ε of the true value requires the use of a circuit
with 1/ε applications of c-U [104]. For our purposes, we
assume a model for GC by fitting data in Table II of Ref.
[64] to the following power law, where that work has cho-
sen ε to be approximately half a percent of the total system
energy,

GC = αQβ
L , (2)

yielding α = 4.12 × 109 and β ≈ 0.515. Thus, the success
of the algorithm is ensured (with high probability) by

pL ≤ pC

αQβ
L

. (3)

For simplicity, we shall assume that the number of log-
ical qubits needed for magic state factories is accounted
for in this model (for details of the assumptions and the
relevant references, see the notes in the Ref. [98] desmos
plot of Fig. 3) and we will assume that the physical-qubit
overhead is captured by the code distance used for the data
qubits (though the factories typically have multiple layers
of concatenation with differing code distance).

For (2), we will assume a model of error suppression
based on simulations of the surface code in Ref. [105]. This
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FIG. 2. The concept of scalability captures the ability of a
quantum architecture to maintain low physical error rates as
the number of physical qubits of the architecture is increased.
Here, we show the scalability profiles of different quantum archi-
tectures given by the scalability model [Eq. (1)] for different
scalability values (s = 0.5, 1.5, 2.5, 3.5, 4.5, ∞) and base error
rate p0 = 10−4. A finite scalability implies that beyond a cer-
tain physical-qubit size, the architecture cannot maintain physical
error rates below the error threshold (pth) of the fault-tolerant pro-
tocol. An editable version of the plot can be accessed at Ref.
[92].

model is

pL = A(pphys/pth)
(d+1)/2, (4)

where Ref. [71,105] estimates A = 0.1 and pth = 0.01. The
number of physical qubits used to encode one logical qubit
in the surface code is 2(d + 1)2, leading to

Qphys = 2(d + 1)2QL. (5)

In the case that pphys is independent of the number of phys-
ical qubits, pL can be made arbitrarily small, with cost
(depending on code distance d) scaling as d ∼ log(1/pL).

TABLE I. The two smallest possible magic state distillation factories given by Ref. [95]: pphys is the physical error rate, Qphys is the
number of physical qubits required to create the factory, pout is the probability that the output state magic state is incorrect, Qmin, EFTQC
is a rough lower bound on the number of qubits in an EFTQC calculation, and pL is the logical failure rate in that lower bound
calculation, where d = 3.

Quality of operations Factory name pphys Qphys pout Qmin, EFTQC pL

Higher-quality (15-to-1)5,3,3 10−4 522 4.7 × 10−6 554 10−5

Lower-quality (15-to-1)7,3,3 10−3 810 5.4 × 10−4 842 10−3
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FIG. 3. The scalability model of Eq. (1) predicts that for each
finite value of scalability parameter s, there is a maximum
problem-instance size that can be accommodated by the architec-
ture. Each curve is a contour in the Qphys-QL plane of a solution
to Eq. (7) for a particular value of the scalability parameter s
(3, 3.5, 4, 4.5, ∞). The remaining parameters of Eq. (7) are set
to pth = 10−2, p0 = 10−4, α = 4.12 × 109, and β = 0.515 [see
Eq. (2], following Ref. [64, Table II]. The transition from solid
to faded dashed curves occurs when the physical-qubit number
reaches Qopt

phys = Qmax
phys/e

2, beyond which increasing the code dis-
tance leads to diminishing returns. The diagonal black dotted
lines show the physical-qubit count for two fixed code distances:
7 (small distance) and 51 (large distance). Note that code dis-
tance is discrete, which, if taken into account, would result in the
contours jumping from one fixed-code-distance line to the next.
However, we have chosen to allow for the distance parameter to
be continuous, for ease of viewing the trends of the contours. An
editable version of the plot can be accessed at Ref. [98].

However, if we replace pphys with the Qphys-dependent
function pphys(Qphys) of Eq. (1) (i.e., the scalability model),
the logical error rates cannot be made arbitrarily small.
The smallest error rate is achieved when pphys = pth, which
occurs when Qphys = (pth/p0)

s; including more qubits (i.e.,
increasing the code distance) will lead to a decrease in the
logical error rate. This number of physical qubits is there-
fore the maximal number of physical qubits that should be
used under the scalability model:

Qmax
phys = (pth/p0)

s. (6)

So, for example, when pth = 0.01 and p0 = 0.001 (as is
sometimes assumed for superconducting qubit resource
estimates with the surface code [71]), we have Qmax

phys = 10s.
A more optimistic setting of p0 = 0.0001 leads to Qmax

phys =

102s. In Fig. 1, we depict contours of Qmax
phys in the plane of

p0/pth versus s.
The above concepts can be summarized as follows:

Requirement:
pC ≥ GCpL (algorithm error tolerance)

Cost:
Qphys = 2(d + 1)2QL (surface-code overhead)

Models:
GC = αQβ

L (QPE-circuit gate count)

pL = A
(

pphys
pth

) d+1
2

(surface-code logical error rate)

pphys = p0Q1/s
phys (scalability of physical

error-rate model)

Putting these together, we can determine the number of
physical qubits required to ensure that QPE returns an ε-
accurate estimate (with high probability) as a function of
the number of logical qubits QL (roughly corresponding to
the problem size). This relationship is expressed by Qphys-
QL pairs that ensure that Eq. (3) is satisfied (i.e., that the
logical error rates are low enough for the algorithm to
succeed):

√
8QL log

(
Aα
pC

Qβ
L

)
≤ √

Qphys log
(

pth

p0
Q−1/s

phys

)
. (7)

Before applying this result to the quantitative example that
has been set up, we make a few general remarks that apply
to any algorithm analyzed in this manner.

First, we consider the right-hand side of this inequality.
This function will determine an optimal value for Qphys,
which we label as Qopt

phys. Previously, we have described a
maximum value of Qphys as set by the condition of pphys
being below threshold. However, the maximum allowed
value of QL is now set by a function of Qphys; to increase
this ceiling, we should maximize the right-hand-side func-
tion of Qphys. This function achieves its maximum of
(2e/s)2 (pth/p0)

s at a value of

Qopt
phys = 1

e2

(
pth

p0

)s

≤ Qmax
phys. (8)

This is considered the optimal number of physical qubits
in that it enables the use of the largest number of logical
qubits. As an example, for pth = 0.01, p0 = 0.0001, and
s = 3.5, the optimal number of physical qubits is Qopt

phys ≈
1.35 × 106.

These quantities of Qmax
phys and Qopt

phys can help us to quan-
tify the scalability parameters p0 and s that are relevant to
the NISQ-to-EFTQC transition and the EFTQC-to-FTQC
transitions. At the end of Sec. II A, we have described how
the NISQ-to-EFTQC transition might occur in the range
of 100–10 000 physical qubits. Considering Eqs. (6) and
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(8), this determines the (p0, s) pairs characteristic of this
transition and shown as the red-to-green blend in Fig. 1.

We motivate the idea that the transition from EFTQC
to FTQC is characterized by how the quantum compu-
tations are “bottlenecked.” In the case of fault-tolerant
quantum computing, it is envisioned that the ability to
run larger and larger quantum computations is possible
as long as the computations are not practically limited
by resources such as time and energy. We propose that
early fault-tolerant quantum computing be characterized
by the regime in which the largest possible quantum com-
putations are limited by the maximum number of physical
qubits warranted in the architecture (Qmax

phys or Qopt
phys). View-

ing time as the limiting resource, if we assume that the
quantum computation must finish within a month, then this
limits the problem sizes that can be accommodated accord-
ingly. Using the quantum chemistry resource estimations
of Ref. [71] as a point of reference, problem instances that
would take a month would require on the order of 107

physical qubits. There may be other classes of problems
that become run-time limited when fewer or more physical
qubits are required. Thus, in Fig. 1, we depict the transi-
tion from EFTQC to FTQC as the green-to-blue gradient
ranging from 106 to 108.

Second, we consider the left-hand side of Eq. (7). Most
of the parameters are contained in the factor Aα/εpC. In
Sec. III B, we will explain the importance of this factor in
quantifying the “burden” placed on the elementary fault-
tolerant protocols. Equation (7) shows that decreasing this
burden factor affords a decrease in the number of physi-
cal qubits Qphys. Alternatively, when fixing the number of
physical qubits, a reduction in the burden factor affords an
increase in the number of logical qubits and subsequently
the maximum problem size or “reach” of the quantum
computer. The methods introduced in Sec. III A will be
understood to reduce this burden factor, enabling algo-
rithms to be run using fewer physical qubits, though at the
cost of an increase in run time.

In Fig. 3, we show the contours of solutions to Eq. (7)
for several scalability values s. The most striking feature
is that for the finite values of scalability (s < ∞), there
is a maximum-size instance (measured by QL) that the
architecture can accommodate using the QPE algorithm.
For example, in the case of s = 3.5, p0 = 0.0001, and
pth = 0.01, we find that the largest instance that can be
accommodated (i.e., the “reach” of the quantum architec-
ture) is QL ≈ 90. The maximum number of logical qubits
Qmax

L can be solved for by setting Qphys = Qopt
phys in Eq. (7)

and solving for QL,

Qmax
L = Qopt

phys

8s2β2W

(√(
Aα
pC

) 1
β Qopt

phys
8s2β2

)2 , (9)

where W(x) is the solution to W(x) exp(W(x)) = x, known
as the Lambert W function. Using the upper bound of
W(x) ≤ ln(x), we can lower bound the maximum qubit
number as

Qmax
L ≥

(
pth
p0

)s

2e2s2β2 ln

((
Aα
pC

) 1
β

( pth
p0

)s

8e2s2β2

)2 , (10)

where we have used the expression for Qopt
phys. This

maximum solvable problem size motivates the question
explored in the next section: “With a fixed scalability, is
it possible to extend the ‘reach’ of a quantum architecture
using algorithms designed for finite scalability?”

III. QUANTUM ALGORITHMS FOR EARLY
FAULT-TOLERANT QUANTUM COMPUTERS

A. Review of methods

Section II ended with a question about how to extend
the reach of quantum computers that have limited scal-
ability or, in other words, early fault-tolerant quantum
computers. A growing body of work in quantum algo-
rithms has developed a suite of methods that might be used
to address this problem. Such algorithms solve the tasks of
phase estimation [100,106–108], multiple-eigenvalue esti-
mation [101,109–111], ground-state property estimation
[112], amplitude estimation [52,54,55,116], ground-state
energy estimation [57,60,61,66,67,69], and ground-state
preparation [59,115]. In this subsection, we provide a
nonexhaustive review of the literature in this area. Note
that some of the works do not use the term “EFTQC.” Nev-
ertheless, we include them because of their influence on
later works [52,54,55] or the similarity in their motivations
[61,111].

These algorithms have typically been developed with
certain improvements in mind that include: reduction of
the logical qubit number [66,115], reduction of the number
of operations per circuit [52,54,57], the reduction of expen-
sive operations [64,67] (e.g., non-Clifford operations such
as T gates and Toffoli gates), and establishing or increas-
ing the robustness to error [54,100,101,107,117]. In many
cases, achieving these improvements comes at a cost. The
predominant cost is an increase in the number of circuit
repetitions (also known as the “sample complexity,” “num-
ber of samples,” or “shots”), and, subsequently, the run
time. Another cost is an increase in classical processing
(e.g., converting the measurement-outcome data from the
many circuit repetitions into the estimate of the ground-
state energy). In Sec. III B, we will detail an example
algorithm where these trade-offs can be easily understood.

One of the first algorithms suited for early fault-tolerant
quantum computers was the so-called α-VQE method [52].

020101-8



EARLY FAULT-TOLERANT QUANTUM COMPUTING PRX QUANTUM 5, 020101 (2024)

This method for solving the task of amplitude estima-
tion enables a trade-off between the number of quantum
operations per circuit O(1/εα) and the number of circuit
repetitions Õ(1/ε2(1−α)) (where Õ indicates that we ignore
polylog factors), set by a tunable parameter α. Later, Wang
et al. introduced a variable-depth amplitude estimation
algorithm that is robust to substantial amounts of circuit
error [54]. Similar methods have been explored in the con-
text of quantum algorithms for finance [55,118] and some
have been implemented on quantum hardware [119,120].

Another thread in the development of quantum algo-
rithms for early fault-tolerant quantum computing has
focused on problems related to physical systems such as
electronic structure or condensed-matter systems speci-
fied by their Hamiltonians. In this direction, one of the
first papers to introduce the phrase “early fault-tolerant”
was Ref. [64], where the author reduced the counts of
expensive non-Clifford operations to make simulation of
the Fermi-Hubbard model more amenable to smaller fault-
tolerant quantum computers. Other methods have sought to
reduce the logical qubit requirements. Previous approaches
had mostly been based on the QPE algorithm [15], which
uses additional ancilla qubits for reading out the phase
[121]. A method for estimating the spectrum of a Hamil-
tonian without the use of QPE (and its ancilla qubit over-
head) was introduced in Ref. [122]; instead, the spectrum
is estimated by classically postprocessing measurement-
outcome data from Hadamard tests of the c-eiHt circuit.
Then, one of the first papers to motivate their algorithm
development in the context of early fault-tolerant quan-
tum computers was Ref. [66]. The authors developed
a novel postprocessing technique for the measurement-
outcome data generated in Ref. [122] and carried out an
analysis of their ground-state energy-estimation (GSEE)
algorithm, showing that they could achieve a run time
with Heisenberg-limit scaling of O(1/ε), compared to
the O(1/ε4) run time of Ref. [122] (when improved and
applied to the task of GSEE). Placing their work in the
context of early fault-tolerant quantum computing, this
work solidified this new research direction in quantum
algorithms and helped place earlier works in the context
of early fault-tolerant quantum computing. For a sum-
mary of the performance of this and related ground-state
energy-estimation algorithms, see Table III. By combining
the insights of Ref. [66], linear combination of unitaries
[123], and QDRIFT [124], in Ref. [67], the authors have
developed a method to exploit structure in the Hamilto-
nian to make the overall complexity of GSEE independent
of the number of terms in the Hamiltonian. They have
also demonstrated that their method enables trading the
number of operations per circuit for number of circuit rep-
etitions. A methodology similar to the above works has
been applied to the task of estimating ground-state proper-
ties [112], which is often required in industrially relevant
quantum chemistry calculations [106,125].

TABLE II. Quantum algorithms for EFTQC.

Task Algorithm

Phase estimation Time-series estimator [106]
Randomized Fourier estimation

[100,107]
Modified robust phase estimation [108]

Multiple-eigenvalue
estimation

Adaptive multiorder phase estimation
[109]

Robust multiple-phase estimation [101]
Multimodal multilevel QCELS [110]
Observable dynamic mode

decomposition [111]
Ground-state

property estimation
Heaviside-filter property estimation

[112]
Amplitude estimation α-QPE [52]

Robust amplitude estimation [54]
Power-law AE (also QoPrime AE) [55]

Ground-state energy
estimation

Quantum filter diagonalization [53]
Multireference selected quantum Krylov

[113]
Variational QPE [56]
Fourier filtering [66]
Statistical phase estimation [67]
Gaussian filter [57]
QCELS [60]
Quantum Lanczos [61]
Rejection sampling [69]
Gaussian QPE [114]

Ground-state
preparation

Gaussian booster [59]
Quantum eigenvalue transform of

unitary matrices with real
polynomials [58]

Single-ancilla Lindbladian [115]

The EFTQC algorithms developed for amplitude
estimation [52,54,55] have established a trade-off between
operations per circuit and circuit repetitions. These result
in tuning the run time between Heisenberg-limit scal-
ing O(1/ε) and the central-limit scaling O(1/ε2). This
raises the question of whether a similar trade-off can be
established for the task of ground-state energy estimation.
Such circuit trading has been established in Ref. [57]. The
authors have shown an exponential reduction in the num-
ber of operations per circuit in terms of accuracy depen-
dence (i.e., a reduction from Õ(1/ε) to Õ(log 1/ε)). This
reduction in number of operations per circuit comes at the
cost of an increase in circuit repetitions from Õ(log 1/ε) to
Õ(1/ε2). With this method, the minimal number of opera-
tions per circuit is Õ(1/�), where � is a lower bound on
the spectral gap of H . It is often the case that � is larger
than ε, enabling a reduction in number of operations using
this method [57]. Later, Ding and Lin [60] have established
a similar result using an approach based on numerically fit-
ting a parametrized curve to a set of estimated expectation
values, which they refer to as quantum complex exponen-
tial least squares (QCELS). They have also shown that,

020101-9



KATABARWA, GRATSEA, CAESURA, and JOHNSON PRX QUANTUM 5, 020101 (2024)

TABLE III. A scaling comparison of select ground-state
energy-estimation methods for early fault-tolerant quantum com-
puters: ε is the estimation error, γ is a lower bound on the
ground-state overlap (i.e., | 〈ψ | gs〉|), � is a lower bound on the
gap (i.e., E1 − E0), and α and δ are parameters that can be chosen
to balance the number of operations per circuit and run time.

Ground-state
energy-
estimation

Operations per
circuit Run time

method

Fourier
filtering [66]

Õ(ε−1) Õ(γ−4ε−1)

Gaussian filter
[57]

Õ
(
ε−α�−1+α) Õ

(
γ−4ε−2+α�1−α)

QCELS [60] Õ(�−1)+ δ/ε Õ
(
γ−4δ−(2+O(1))�−1 + δ/ε

)
Rejection

sampling
[69]

Õ
(
ε−α�−1+α) Õ

(
γ−2ε−2+α�1−α)

assuming that the ground-state overlap | 〈ψ | gs〉| = γ is
sufficiently close to 1, the circuit depth of energy estima-
tion can be made arbitrarily small while still retaining the
Heisenberg-limit scaling.

These two methods that have enabled a reduction in
the number of operations per circuit [57,60] have required
a run time and number of circuit repetitions scaling as
O(1/γ 4). In contrast, for methods using more operations
per circuit, a run-time scaling of O(1/γ 2) [126] (and even
O(1/γ ) [58]) has been shown to be possible. This has
motivated the search for algorithms that could improve
the run-time scaling with respect to overlap to O(1/γ 2),
while also using few operations per circuit. The first work
to achieve this was Ref. [69]. This algorithm uses the
quantum computer in a very different manner compared to
previous approaches. To estimate the ground-state energy,
a classical computer first generates a uniformly random
sampling of energy values on an interval expected to con-
tain the ground-state energy. Then, for each sample, a
quantum circuit is designed such that a binary measure-
ment outcome from the quantum computer is used to
decide whether or not that sample should be accepted or
rejected. The set of accepted samples are proven to be
drawn from a Gaussian distribution centered about the
ground-state energy and the mean of these samples will be
close to this value. The number of operations per circuit
can be tuned anywhere from O(1/ε) to O(1/�), where
the consequence is a broadening of the Gaussian peak
width (requiring more samples to achieve the same accu-
racy). Later, in Ref. [114], the authors have also developed
a ground-state energy-estimation algorithm with O(1/�)
operations per circuit and O(1/γ 2) circuit repetitions based
on a Gaussian-filter variant of QPE. Although this uses
more ancilla qubits like QPE, Ref. [114] shows that the

number of operations per circuit is reduced compared to
previous methods.

Another thread of research in ground-state energy
estimation has drawn on methods from numerical linear
algebra to classically postprocess quantum measurement-
outcome data in a more efficient and robust manner [53,56,
61,111,113,127]. These methods employ techniques such
as filter diagonalization [53,56], Lanczos methods [61],
and dynamic mode decomposition [111]. Some of these
methods [61,127] have been shown to only require a num-
ber of operations per circuit scaling as Õ(1/�), similar to
Ref. [57]. However, in the case of Ref. [61], the run-time
upper bound has a scaling of Õ(1/�2), compared to the
Õ(�) run-time scaling of Ref. [57]. An important direc-
tion for future work will be to carry out empirical studies
that give more realistic estimates for the run times, required
operations per circuit, and robustness of these algorithms.

As mentioned above, all ground-state energy-estimation
methods have a run time that depends on the overlap
between the input trial state and the ground state 〈ψ | gs〉
= γ . The run time of these ground-state energy-estimation
algorithms can be improved by using a ground-state prepa-
ration method to improve this overlap before running
the ground-state energy-estimation algorithm. For papers
analyzing the interplay between ground-state energy esti-
mation and state preparation, see Refs. [128–130]. An
excellent overview of ground-state preparation algorithms
is presented in Table II of Ref. [58]. In the regime of
early fault-tolerant quantum computing, it may be advanta-
geous to use ground-state preparation methods that reduce
the number of operations per circuit. One such method
has been proposed in Ref. [59], where an approximate
Gaussian filter of varying width can be used to suppress
high-energy states and boost the overlap with the ground
state. More recently, in Ref. [115], the authors have intro-
duced a novel ground-state preparation method based on
Lindblad dynamics, engineering a process that has the
ground state as the unique steady state.

Finally, we discuss another important thread of research
for early fault-tolerant quantum computing: robustness.
As shown in Sec. II B, pC, the circuit error rate that
the algorithm can tolerate, plays a role in determining
the fault-tolerant overhead. An increase in the robustness
(i.e., pC) reduces the fault-tolerant overhead. A canoni-
cal reference on the robustness of quantum algorithms is
Ref. [99], which introduced the robust phase-estimation
algorithm. The authors have shown that their variant of
QPE is able to tolerate a substantial circuit error rate
of approximately 35%. Such robustness analysis is espe-
cially important when reduction of fault-tolerant overhead
is essential, as in quantum algorithms suited for early
fault-tolerant quantum computers.

One of the first works to analyze the robustness of
a quantum algorithm in the EFTQC setting was Ref.
[100]. Here, the simple robust phase-estimation algorithm

020101-10



EARLY FAULT-TOLERANT QUANTUM COMPUTING PRX QUANTUM 5, 020101 (2024)

was introduced and its robustness was analyzed with
respect to two different models of algorithmic noise (i.e.,
a model of how the measurement-outcome probabilities
are impacted). For a discussion of these algorithmic noise
models, see Sec. III B. A variant of the robust phase-
estimation algorithm has been developed in Ref. [107]
that enables circuit trading. Here, the robustness of the
algorithm is analyzed with respect to the exponential-
decay model (see Sec. III B). Most recently, in Ref. [117],
the authors have developed an algorithm for ground-state
energy estimation that is provably robust with respect to
the exponential-decay model (see Eq. 16).

The works presented above represent a foundation for an
increasingly important research direction: the development
of quantum algorithms suited to the capabilities of finite-
scalability quantum computers. They are built to reduce
the logical qubit number, to enable a trade-off between
the gate count and the sample cost, and they are robust
to error in the circuit. All of these features contribute to
reducing the burden placed on fault-tolerant operations and
thus reducing fault-tolerant overheads. This helps us to
run larger problem instances on earlier quantum computers
or, in other words, to “extend the reach” of a finite-
scalability quantum architecture. While we have focused
on quantum algorithms for early fault-tolerant quantum
computing, techniques such as error mitigation will also
likely play an important role in supporting early fault-
tolerant quantum computing. Similar to the way in which
the above algorithms reduce gate counts at the cost of
an increase in sample complexity, error-mitigation meth-
ods can be understood to increase the robustness of the
quantum algorithm at the cost of an increase in sample
complexity. In Sec. III B, we will make these concepts
more clear through an example.

B. Example: Randomized Fourier estimation under
finite scalability

Section II B ended with the question of how we might
extend the reach of finite-scalability quantum computers.
Section III A overviewed a host of quantum algorithms
suited for addressing this question. In this section, we
take one quantum algorithm from the previous section and
quantitatively investigate its ability to extend the reach of
a finite-scalability quantum computer for the task of phase
estimation.

We use as our example the randomized-Fourier-
estimation (RFE) algorithm as introduced in Ref. [100] and
adapted for trading circuit repetitions for number of oper-
ations per circuit in Ref. [107]. The RFE algorithm solves
the task of phase estimation introduced in Sec. II B. It is an
alternative to the standard QPE algorithm [131] and related
algorithms such as robust phase estimation (RPE) [99].

We consider the RFE algorithm to be a prototypical
quantum algorithm suited for early fault-tolerant quantum
computing given that it has the following features:

(a) Qubit conservation: the (high-level) circuit con-
serves qubit count by using just one ancilla qubit.

(b) Circuit trading: the number of operations per circuit
is tuned by input parameter K , enabling a trade-off
between this quantity and the required number of
circuit repetitions.

(c) Robustness: the algorithm is robust to circuit error
and this robustness can be understood in terms of a
signal corrupted by a noise floor.

As we will show, and like many of the other EFTQC algo-
rithms introduced in Sec. III A, these features equip the
algorithm to accommodate limited scalability in the early
fault-tolerant quantum computing regime. Furthermore,
RFE is very simple, helping to facilitate discussion of
these algorithmic concepts relevant to early fault-tolerant
quantum computing.

We will briefly review RFE and then investigate how
trading circuit repetitions for decrease of operations and
robustness to error help to increase the problem-instance
size (i.e., the “reach”) that can be solved with a finite-
scalability architecture.

1. Introduction to RFE

The RFE algorithm relies on the Hadamard test cir-
cuit (as depicted in Fig. 4). Each Hadamard test circuit is
parametrized by the circuit depth (k) and a phase parame-
ter (φ). The output-measurement probabilities correspond
to an oscillatory function that encodes θ :

Pr(z|θ ; k,φ) = 1
2
(1 + zRe(eiφ 〈ψ | Uk |ψ〉)) (11)

= 1
2
(1 + z cos(kθ + φ)). (12)

It is convenient to view the expected value of z, which
is g(k) = cos(kθ + φ), as the true signal encoding θ . The
phase θ is then estimated from measurement-outcome data
in a manner similar to estimating the frequency of a noisy
estimate of g(k). The parameters k and φ are chosen uni-
formly randomly in each sample, with k ∈ [0, K − 1] and
φ ranging between 0 and 2π . Each measurement outcome
z obtained from the circuit is used to form an unbiased
estimator f̂j = 2ze−i2πkj /J e−iφ of the discrete Fourier trans-
form of the signal g(k), where J is an algorithm parameter
that sets the grid size of the Fourier spectrum. The estimate
of the Fourier signal can be made more accurate by taking
multiple samples and averaging them:

f̂j = 1
M

M∑
i=1

f̂ (i)j . (13)
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By accumulating enough measurement outcomes, one can
estimate θ accurately (i.e., within ε) with high probability
(i.e., less than 1 − δ) by locating the tallest peak (or point
of largest magnitude) in the estimate of the discrete Fourier
transform,

θ̂ = 2π
J

argmaxj
1
M

M∑
i=1

f̂ (i)j . (14)

The accuracy of the algorithm is limited by parameter J ,
which is set to ensure that the Fourier resolution matches
the desired accuracy.

Algorithm parameters:
J (sets the Fourier-domain grid

spacing)
K (sets the maximum number of

c-U per circuit)
M (sets the number of circuit

repetitions, i.e., samples)
Error and confidence requirements:
ε = 2π/J (ensures that the θ -adjacent

discrete frequencies are
accurate)

δ = 8J exp(−M/W(K , J , λ)) (ensures that enough samples
are taken, given K , J , and λ;
see below)

Operations per circuit:
EGC = K−1

2 GU (expected value, with the
maximum being (K − 1)GU)

Circuit repetitions:
M = W(K , J , λ) log( 16π

δε
) (number of samples needed;

for definition of W(K , J , λ),
see Ref. [107])

FIG. 4. An archetypal circuit template used by many EFTQC
algorithms. The measurement-outcome probabilities depend on
|ψ〉 and U as Pr(±1|k,φ) = 1

2 (1 ± cos(kθ + φ)). Measurement
outcomes can be processed to In the case of the randomized
Fourier estimation (RFE) algorithm, the measurement outcomes
encode the The parameter k is uniformly randomly chosen among
{0, . . . , K − 1} for each circuit repetition. K then controls the
maximal circuit depth and is used to reduce the number of oper-
ations per circuit. We define S(φ) = [[1, 0], [0, exp(i ∗ φ)]] and
the elements in the blue box can be collectively interpreted as
a measurement with respect to the observable σφ = cos(φ)σx −
sin(φ)σy , where σx and σy are the conventional Pauli operators.
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FIG. 5. This plot shows that under the scalability model, the
EFTQC algorithm randomized Fourier estimation (RFE) can
extend the reach of the quantum computation from 90 logical
qubits to over 200 logical qubits. This is achieved by either
reducing the number of c-U used per circuit or increasing the
tolerable circuit error rate pC in the RFE algorithm. Both of
these reduce the burden factor Aα/εpC appearing in Eq. (7). This
increase in the “reach” of the quantum computer comes at the
cost of an increase in the run time (roughly by the burden factor),
which is a combination of the decrease in time per circuit and
the increase in the number of circuit repetitions. Here, we take
the scalability to be s = 3.5 (this puts us in the millions of phys-
ical qubits likely regime for first useful quantum computation)
with p0 = 10−4, which implies that the optimal number of phys-
ical qubits is Qopt

phys = 1/e2 (pth/p0)
s ≈ 1.35 × 106. An editable

version of the plot can be accessed at Ref. [132].

2. Circuit trading

We now describe how this algorithm is able to trade the
number of operations per circuit for circuit repetitions. The
maximum number of operations per circuit (in expectation)
is (K − 1)GU, where GU is the number of operations in a
single c-U. In the QPE algorithm, 1/ε calls are made to
c-U, corresponding to setting K ≈ 1/ε. In RFE, we can
reduce the number of operations per circuit by setting K to
any value less than 1/ε. This reduction in K reduces the
burden factor in Eqs. (7) and (10) proportionally. In Fig. 5,
we show how varying reductions in the burden factor lead
to an increase in the problem size that RFE can accommo-
date. Equation (10) predicts that this increase in problem
size grows as O(1/ ln2(B)) with burden factor B. For the
specific example considered, the largest problem instance
can be increased from 90 to over 200 by decreasing K by
a factor of 100 000.

As mentioned previously, circuit trading means that a
decrease in operations per circuit comes at the cost of an
increase in the number of circuit repetitions. This trade-
off can be understood as follows. Decreasing K causes
the width of the peak in the discrete Fourier spectrum to
increase. With the spectrum being more flat near the peak,
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smaller amounts of noise in the signal are able to shift
the peak location more than ε (leading to algorithm fail-
ure). This statistical sampling noise must then be reduced
by taking more samples. The analytic relationship is given
in the appendix of Ref. [107]. This describes the nature
of the trade-off between operations per circuit and circuit
repetitions.

3. Robustness

The RFE algorithm has been analyzed in previous
work with respect to three different algorithmic noise
models: adversarial noise and Gaussian noise [100] and
exponential-decay noise [107]. We give brief explanations
of how the Gaussian noise and the exponential-decay noise
impact the algorithm performance and thus explain the
robustness of the RFE algorithm to a particular model
of noise. In Ref. [100], the Gaussian-noise model is ana-
lyzed, wherein it is assumed that for each circuit (labeled
by k), the output probability has been corrupted by a small
perturbation drawn from a Gaussian distribution,

Pr(z|θ ; k,φ) = 1
2
(1 + z(cos(kθ + φ)+ ηk)), (15)

where each ηk has been drawn from a Gaussian distribu-
tion with mean zero and standard deviation σ . How does
this impact the performance of the algorithm? The ηk can
be understood to corrupt the expected value of z (i.e., the
signal g(k)). This impacts the Fourier spectrum by adding
a “noise floor” related to the Fourier transform of the ηk.
The algorithm can still succeed as long as this noise floor
does not shift the location of the peak by more than ε. In
Ref. [100], the authors have proved that if σ is below a
certain quantity (dependent on ε and δ), then the algorithm
can succeed with more than 1 − δ probability.

In Ref. [107], the exponential-decay model is derived
from a lower-level noise model. The exponential-decay
model assumes that the likelihood function now includes
a factor that decreases exponentially in k,

Pr(z|θ ; k,φ) = 1
2
(1 + ze−kλ cos(kθ + φ)), (16)

with decay parameter λ. Experiments [119,120] show that
this model is accurate for small systems. This exponential-
decay factor causes the expected value of z (i.e., the
underlying signal g(k)) to attenuate as k is increased. In the
Fourier domain, this attenuation translates into an attenua-
tion of the peak (see the desmos plot at Ref. [133]). As with
the peak broadening due to reducing K , a smaller amount
of statistical noise is sufficient to shift the location of the
estimated peak more than ε. Accordingly, more samples
must be taken to sufficiently reduce this statistical noise.

Under the assumption that the exponential-decay model
holds exactly, Ref. [107] shows that with arbitrarily large

decay parameter λ, the algorithm can generate an ε accu-
rate estimate with probability greater than 1 − δ. In other
words, the algorithm can be made arbitrarily robust. The
reason is that the exponential-decay error does not shift
the location of the peak in the Fourier spectrum of the
expected signal. This increase in robustness translates into
a decrease in the burden: allowing the circuit error rate pC
to increase toward 1 increases the allowed logical error rate
pL, decreasing the burden factor.

Consider a reduction in the burden on account of an
increase in the tolerable circuit error rate pC, which quan-
tifies the robustness of the algorithm. Note that in the case
in which pC is close to 1, a better approximation than the
union bound can be used to replace pC with ln(1/(1 − pC)),
which grows to infinity as pC → ∞. We remark that in
the case of the exponential-decay model, the circuit error
rate is pC = 1 − e−kλ, which leads to ln(1/(1 − pC)) = kλ.
Therefore, as we allow for an increase in λ, the bur-
den factor is reduced proportionally (where we keep in
mind that, for small values of pC, the burden factor scales
proportionally to it).

We have previously discussed Fig. 5 in the context of
circuit trading. This figure can also be used to demon-
strate the impact of increased robustness. Considering an
increase in pC to be the cause of the burden-factor reduc-
tion, in Fig. 5, we show how the reach of the quantum
computer is increased accordingly. As with circuit trading,
there is a price paid for this extended reach of the quantum
computer: for the RFE algorithm, Ref. [107] shows that
the run time grows exponentially in λ for λ ≥ 1/2 (where
K is set to its minimum value of 2). Therefore, in practice,
there may be an upper limit to the degree of robustness,
beyond which the run time becomes too large to be practi-
cal. This is an issue that many error-mitigation techniques
face [134]. This similarity may not be surprising in that the
way in which RFE accommodates error is a type of error
mitigation.

In practice, the exponential-decay model is not exact.
Instead, we expect that in any given device and compila-
tion of c-U, the likelihood function will include some devi-
ation (possibly varying over time) from the exponential-
decay model likelihoods. While in the exact exponential-
decay model the Fourier peak location is unchanged,
allowing deviations from this model can shift the loca-
tion of the peak. This sets a lower limit to the achiev-
able accuracy ε, a feature that is found in the bounded
adversarial-noise model and the Gaussian-noise model of
Ref. [100].

We have demonstrated how the RFE algorithm, as an
archetypal EFTQC algorithm, enables a reduction in the
burden placed on the fault-tolerant protocols. In Fig. 5,
we demonstrate how larger problem-instance sizes can be
accommodated by either reducing the number of oper-
ations per circuit (decreasing K) or by increasing the
robustness of the algorithm (increasing pC). This is because
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the burden factor Aα/pC incorporates both of these quan-
tities. For both examples of reducing the burden factor,
there is an increase in the run time of the algorithm.
Although the RFE algorithm enables parallelizing the
circuit repetitions over multiple quantum computers to
reduce run time, the run time is expected to be a bottleneck
for many applications. Therefore, the run-time costs of
reducing the fault-tolerance burden must be carefully con-
sidered (for a quantitative account of such run-time costs
for RFE, see Ref. [107]). We leave a thorough investiga-
tion of the run-time costs of decreasing the fault-tolerance
burden for EFTQC algorithms to future work.

IV. DISCUSSION AND OUTLOOK

In this perspective, we have investigated the regime
between NISQ and FTQC, which is referred to as “early
fault-tolerant quantum computing.” To understand the
prospects for utility in this regime, we have proposed a
simple computational model to quantitatively capture the
performance of quantum architectures within these three
regimes. The scalability model characterizes the ability of
a quantum hardware vendor to provide systems with low
physical error rates as the requested number of physical
qubits is increased. This differs from previous approaches
that assume a scale-independent performance for their
quantum architectures [70,71,86]. We have demonstrated
that the QPE algorithm [62] compiled to the surface code
[105] has a limit on the problem size that can be accom-
modated by a vendor with finite scalability, according to
our model. Unsurprisingly, this is due to scale-dependent
error rates [Eq. (1)] combined with the diminishing returns
of fault-tolerant protocols as the error rates of the device
approach the numerically estimated threshold value [75].
Next, we have shown that by using an algorithm suited to
finite scalability (the RFE algorithm [100]), when granted
the same scalability, the problem size limit can be extended
from around 90 qubits (for QPE) to around 130 qubits
(using the same number of physical qubits). This comes
at the cost of a roughly factor-of-100 increase in run time.

The scalability model has enabled us to quantitatively
discuss the transition from NISQ to EFTQC to FTQC.
This transition is characterized by the waning of scale-
dependent physical error rates (see Eq. (1)). At the end of
Sec. II A, we have described how the nature of the transi-
tion from the regime of NISQ to EFTQC is difficult to pre-
dict; future advances might allow for implementing certain
fault-tolerant components far sooner than current methods
would enable. However, we have mentioned some of the
technical considerations that might govern the transition
and, accordingly, we depict this transition in Fig. 1 to occur
through the range of Qmax

phys being 100–10 000. Regarding
the transition from EFTQC to FTQC, we have described in
Sec. II A how each regime might be characterized by dif-
ferent bottlenecks; EFTQC is characterized by the largest

solvable problem instances being bottlenecked by the num-
ber of available physical qubits (or, better, Qopt

phys), whereas
FTQC is characterized by the largest solvable problem
instances being bottlenecked by the run time. Accordingly,
we explain how this transition might occur in the range of
Qmax

phys being 106–108.
Different factors, such as hardware, algorithmic, and

fault-tolerance advances, play a dominant role in char-
acterizing the EFTQC regime. The recent work in Ref.
[43] provides evidence for the utility of noisy quantum
devices in the pre-fault-tolerant era and emphasizes the
role of hardware advances to achieve this. Moreover,
many works have highlighted the importance that quan-
tum algorithm development has in leveraging the capa-
bilities of the quantum devices to their maximum poten-
tial [52,54,119,135]. Recent works have also explored
the effect of noise in the performance of quantum algo-
rithms and highlighted the need to use QEC prudently
[107,118,126,136,137]. This work is a first attempt to
incorporate all the aforementioned factors (hardware, algo-
rithmic, and fault-tolerance advances) in order to vali-
date the assumption that there is a meaningful regime of
early fault-tolerant quantum computing methods, which
is usually assumed in papers on the subject [57,60,66].
What remains to be determined is how rapidly quan-
tum hardware will progress through this regime; or, in
other words, it remains to determine how the scala-
bility of quantum hardware vendors will increase over
time.

To put these results into context, recent resource esti-
mates on a variety of molecules relevant to Li-ion elec-
trolyte chemistry [138] show that above 100 logical qubits
would be necessary to tackle such systems. This indicates
that extending the reach of the problem size limit from 90
logical qubits to over 130 with the framework discussed
here might have interesting implications, i.e., allowing us
to study problems of interest before the realization of the
FTQC regime. Our results suggest that the EFTQC regime
could exist in a meaningful way, i.e., using the same quan-
tum resources compared to FTQC (number of physical
qubits and scalability model), while affording the use of
a larger number of logical qubits (Fig. 5).

This work has explored the usefulness of the EFTQC
regime for a specific quantum algorithm and QEC model,
namely, the RFE [100] and the surface code [105]. The
underlying methodology, however, can be easily extended
to other algorithms and fault-tolerant protocols while using
the suggested or alternative scalability models. Although
the proposed model of scalability is quite general, we do
not expect it to perfectly fit the scalability profile of ven-
dors over many orders of magnitude. But, we anticipate
that it could capture the qualitative behavior over at least
a few orders of magnitude. Moreover, we have shown
in Appendix B that even when a more optimistic model
is used (specifically a logarithmic model), the qualitative

020101-14



EARLY FAULT-TOLERANT QUANTUM COMPUTING PRX QUANTUM 5, 020101 (2024)

finding remains: there is an upper limit on the size of the
quantum computation.

Future work could explore other models of scalability
that might, e.g., be given directly by the hardware provider
and accommodate the features of the architecture as it is
scaled. Another interesting direction is to adapt the scal-
ability model to address the interplay between quantum
error mitigation (including error detection) and quantum
error correction [139,140], which will help drive the tran-
sition from NISQ to EFTQC. Moreover, the proposed
framework could be applied to other combinations of algo-
rithms and quantum error-correcting codes and be used
to examine the utility of the EFTQC regime for other
potential application fields of quantum computing.

Our work provides evidence for the utility of the EFTQC
regime within a framework that includes crucial fac-
tors of quantum computing, such as hardware, algorithm,
and fault-tolerance advances. To incorporate the hardware
advances, we have introduced a simple scalability model
to capture the performance of devices that are continu-
ally improving. As it is yet unclear how exactly quantum
devices will scale up to incorporate millions or billions of
physical qubits [42], the proposed model of scalability is
just a first attempt to bridge the gap between NISQ and
FTQC. Future works in these directions could help move
beyond the NISQ-FTQC dichotomy and further explore
how EFTQC might deliver practical quantum advantage
at scale.
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APPENDIX A: SCALABILITY OF TODAY’S
DEVICES

Here, we estimate the scalability of today’s quantum
devices. To this end, we have collected data from two IBM
devices available on the cloud, namely, lagos and brisbane.
We have collected the CNOT error rates at 10:00 a.m. each
day over 30 d. In Fig. 6, we plot the mean and standard
deviation of the worst-case CNOT error rates for the stud-
ied devices. We then make a power-law fit of the data to
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FIG. 6. The worst two-qubit gate error of two IBM quantum
devices on the cloud as a function of the number of qubits. The
power-law fit (blue line) suggests that today’s scalability is s =
1.75 and p0 = 0.005.

estimate the p0 and s as introduced in Eq. (1). We find that
p0 = 0.005 and s = 1.75, which we refer to as today’s scal-
ability. In Fig. 1, we show this point to lie in the NISQ
regime, despite p0 being below threshold.

It is very hard to guess what the right scalability model
of future devices will be and different architectures will
most probably have very different profiles. However, the
scope of this perspective paper is to raise awareness and
spawn more research on the topic, especially by collab-
orating with hardware designers who will provide more
realistic scalability models. Even if the scalability model
turns out to be completely wrong, the quantitative results
discussed in the main text will be different but the qual-
itative results will remain the same—predicting that a
maximum size limit will emerge due to practical limita-
tions of the scalability profiles. The goal of this work is
to show that resource-estimation tools could help make
tentative assumptions and evaluate their consequences.

APPENDIX B: LOGARITHMIC SCALABILITY
MODEL

In this appendix, we investigate the implications of a
more optimistic scalability model. Instead of the power-
law model of Eq. (1), we consider a logarithmic model for
the scalability profile,

pphys(Qphys;V) = p0

(
1 + 1

σ
ln(Qphys)

)
, (B1)

where σ is the scalability parameter analogous to s in
Eq. (1). The parametrization is chosen such that at Qphys =
1, the function value and slope match those of Eq. (1). With
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FIG. 7. The QPE resource overhead under the logarithmic
scalability model of Eq. (B1). Similar to the power-law model
shown in Fig. 3, the logarithmic scalability model also predicts
that for each finite value of scalability parameter σ , there is a
maximum problem-instance size that can be accommodated by
the architecture. However, the logarithmic scalability model is
more optimistic in that for the same base error rate pphys(Qphys =
1) = p0 and for the same (logarithmic) slope at Qphys = 1, the
maximum problem-instance size is far larger for the logarithmic
scalability model. Thus, in order to observe the limited problem-
instance size in the range of 10–10 000 logical qubits, we use the
larger base error rate of p0 = 0.001 compared to the p0 = 0.0001
used in Fig. 3. An editable version of the plot can be accessed at
Ref. [141].

this alternative scalability model, the physical-qubit num-
ber at which the physical error rate exceeds the threshold
value is now

Qmax
phys = exp

(
σ

p0 − pth

pth

)
, (B2)

which, compared to the power-law model, grows exponen-
tially in the gap between p0 and pth.
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