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We present a learning algorithm for discovering conservation laws given as sums of geometrically local
observables in quantum dynamics. This includes conserved quantities that arise from local and global sym-
metries in closed and open quantum many-body systems. The algorithm combines the classical shadow
formalism for estimating expectation values of observable and data analysis techniques based on singu-
lar value decompositions and robust polynomial interpolation to discover all such conservation laws in
unknown quantum dynamics with rigorous performance guarantees. Our method can be directly realized
in quantum experiments, which we illustrate with numerical simulations, using closed and open quantum
system dynamics in a Z2 gauge theory and in many-body localized spin chains.
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I. INTRODUCTION

Machine learning (ML) is playing an increasingly
important role in physical sciences [1]. The ability of
ML to recognize patterns in data greatly facilitates the
data-driven approach to scientific research, where scien-
tific discoveries are achieved by analyzing experimental
data. Recently, many works have been done to discover
physical laws with ML models [2–14]. Following this
line, several works attempt to learn conservation laws in
classical mechanical systems [15,16]. The ML models in
these works can successfully discover conserved quanti-
ties in simple classical systems, such as energy conser-
vation, angular momentum conservation, and momentum
conservation in two-body gravitational systems.

The conservation law, or the integral of motion, is
also an important concept in quantum mechanics. There
are usually many global conservation laws in quantum
dynamics, such as the eigenstate projection operators,
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when the dynamics are governed by a Hamiltonian. How-
ever, these do not imply any special dynamical properties.
In the quantum setting, the physically relevant conser-
vation laws are those with locality structure [17]. Such
local integrals of motion [18–21] underlie, for instance, the
absence of thermalization and transport in certain quantum
systems—in contrast to ergodic systems, which typically
conserve only a few globally supported quantities such as
the total energy or number of particles. Thus, local inte-
grals of motion are central for our understanding of phe-
nomena such as many-body localization (MBL) [22–28]
and Hilbert space fragmentation [29].

In this work, we consider a broad class of conservation
laws with conserved quantities given by sums of geomet-
rically local observables. These conservation laws can be
geometrically localized or have support across the entire
system. We propose an algorithm for discovering all such
conservation laws in arbitrary quantum dynamical sys-
tems. We consider different types of quantum dynamics in
which a quantum state ρ(t) evolves with time, and its evo-
lution is described by the von Neumann equation under
a Hamiltonian H or a Lindblad master equation under a
Lindbladian L. Our algorithm is general enough to cover
Hamiltonians that change over time, for instance, period-
ically, as in Floquet systems, and find observables that
are conserved between periods. The conservation laws we
consider could be state dependent, i.e., the observables
are conserved for a certain subset of initial states. Such
observables can be more difficult to find than those that are
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conserved for all states because they will be overlooked if
only information from the Hamiltonian or the Lindbladian
is used.

Our algorithm combines classical shadow formalism
[30] and several data analysis techniques. The algorithm
uses classical shadows to estimate the expectation val-
ues of many Pauli observables at multiple times during
the quantum dynamics based on a limited number of
randomized measurements [30,31]. After estimating the
expectation values, the algorithm performs singular value
decomposition (SVD) on a data matrix and gets the low-
dimensional manifold corresponding to the conservation
laws. We rigorously prove that the algorithm can efficiently
learn all conserved quantities that are sums of geometri-
cally local observables in quantum dynamics. Although
some previous papers are using numerical techniques to
find such conservation laws based on known Hamiltonians
[32–36], our method can be directly applied to experiments
to find conservation laws in arbitrary unknown quan-
tum dynamics. Our method also comes with theoretical
guarantees that the sample and computational complex-
ities are both polynomial in the system size and preci-
sion. Note that, for Hamiltonian dynamics, one could also
obtain conservation laws by first learning the Hamiltonian
[37–53]. However, Hamiltonian learning protocols only
work efficiently when there are some known sparsity
or locality constraints on the Hamiltonian. For quantum
dynamics without such sparsity structure, prior works
involve exponential sample complexity or classical post-
processing cost. In comparison, our methods are not sub-
ject to these constraints. In addition, they allow for the
learning of state-dependent conservation laws and are not
restricted to Hamiltonian dynamics.

We perform numerical experiments illustrating the
learning of conserved quantities in closed and open sys-
tem dynamics in a Z2 gauge theory, arising from local
and global symmetries. In addition, we demonstrate the
learning of local, approximate conservation laws in a one-
dimensional XXZ chain with local disorder. Here, a sharp
increase in the number of local conserved quantities takes
place at a certain disorder strength, which we successfully
observe from the result of our algorithm.

Discovering conservation laws in quantum systems is a
fundamental problem and has also been studied in prior
works. To our knowledge, this is the first work to pro-
vide general rigorous guarantees for learning and testing
conservation laws in quantum experiments with unknown
dynamics, by employing the randomized measurement
toolbox [31] and the classical shadow formalism [30].
While Bentsen et al. [36] proposed a similar algorithm to
construct local conserved quantities in quantum dynam-
ics, they used it in classical simulations of known time-
independent Hamiltonian dynamics to study integrability.
Shtanko et al. [54] conducted physical experiments to
obtain conserved quantities that are supported in local

regions, which excludes conserved quantities supported on
the entire system, such as total magnetization. In contrast,
our protocol can uncover conservation laws supported
locally and globally. Furthermore, Shtanko et al. [54] con-
sidered quantities that are conserved at discrete points in
time, whereas we can also deal with the continuous-time
scenario through robust polynomial interpolation.

II. ALGORITHM DESCRIPTION

The goal of our algorithm is to find all conserved
quantities that are linear combinations of Pauli operators
supported on k = O(1) adjacent qubits, in an unknown
quantum dynamical system with experimentally feasible
measurements. The Hamiltonian or Lindbladian that gov-
erns the quantum dynamics is completely unknown and
need not be local, but we can control it to evolve for a time
of our choice and perform randomized single-qubit mea-
surements. Throughout this work, we use ρ(t) to denote
the time-evolved state and O(t) to denote the time-evolved
observable in the Heisenberg picture.

A. Classical shadows

The classical shadow formalism [30] was proposed to
efficiently predict local observables with experimentally
feasible randomized measurements [31]. To be specific, it
was shown that one can predict M arbitrary linear target
functions Tr(O1ρ), . . . , Tr(OMρ) up to an additive error ε

with only O(B log(M )/ε2) measurements, where B is the
upper bound of the shadow norm defined in Ref. [30]. This
result implies that a limited number of measurements are
enough to predict the expectation values of a large number
of observables. Making use of this property, we can pre-
dict all k-local Pauli observables with a limited number of
random measurements.

The classical shadow formalism is summarized as fol-
lows. We approximate an N -qubit quantum state by per-
forming randomized single-qubit Pauli measurements on
Ns copies of ρ. That is, we project each qubit to one of three
Pauli bases X , Y, Z and get a product state composed of
the six basis states {|0〉, |1〉, |+〉, |−〉, |i+〉, |i−〉}. Perform-
ing one randomized measurement gives us such a product
state, which can be stored in classical memory with an
N -element array. After performing such measurements on
Ns copies of states, we get NNs single-qubit measurement
results, which we can use to construct an approximation of
the unknown state ρ:

ρ̂ = 1
Ns

Ns∑

ns=1

ρ̂
(ns)
1 ⊗ · · · ⊗ ρ̂

(ns)
N . (1)

Here ρ̂
(ns)
i = 3|s(ns)

i 〉〈s(ns)
i | − I and s(ns)

i is the outcome of
qubit i in the nsth randomized measurement. Equation (1),
in principle, allows us to fully recover the density
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matrix ρ, in the sense that E[ρ̂] = ρ, where we take the
expectation value of many random unitaries and projective
measurements [31]. However, this requires an exponen-
tially large number of copies of states Ns = O(exp(N )).
In contrast, Ns = O(3r log(N )/ε2) is enough to provide
an ε-accurate approximation of all r-body reduced den-
sity matrices, allowing us to estimate expectation values
of r-local observables. We emphasize that this estimation
can be made robust against errors in the application of the
random unitaries and readout errors [55–57].

B. Learning conservation laws

Our algorithm makes use of classical shadow formal-
ism to evaluate the expectation values of all geometrically
k-local Pauli observables with randomized measurements
(the measurement results can be used to estimate all k-local
Pauli observables, but we only focus on the geometrically
local ones), and then postprocess the measurement data to
identify the conserved quantities. This is a nontrivial task
because there are uncountably many linear combinations
of these Pauli observables that can possibly be conserved.
Here we propose a method to efficiently narrow down the
range of conserved quantities to look for.

We consider a quantum system on a D-dimensional
lattice, with each site containing a qubit. We denote all geo-
metrically k-local Pauli operators by Pi, i = 1, 2, . . . , NP,
with NP ≤ O(N ). We then look for conserved quantities
of the form

O =
∑

i

ciPi. (2)

In other words, the sequence {Pi} forms a basis of the
subspace in which we search for conserved quantities.

The expectation values of Pi at time tj , j = 1, 2, . . . , NT,
form a data matrix of size NP × NT (NT = O(NP)), which
we denote by X . Its elements are

Xij = 〈Pi(tj )〉 . (3)

Our algorithm is built upon the following observation (see
also Refs. [36,47]): every conserved quantity of form (2)
lies in the null space of a matrix W�, where its transpose
matrix W is defined through

Wij = 〈Pi(tj )〉 − 1
NT

∑

j ′
〈Pi(tj ′)〉 . (4)

This is because, if operator O defined in Eq. (2) is con-
served then the

∑
i ci 〈Pi(tj )〉 are equal for all j , and they

are thus all equal to the average. Consequently,

∑

i

ci 〈Pi(tj )〉 = 1
NT

∑

ij ′
ci 〈Pi(tj ′)〉 . (5)

By Eq. (4) we then have W��c = 0, where �c =
(c1, c2, . . . , cNP ) is the vector formed by the coefficients
in O.

From the above analysis, we can see that all conser-
vation laws that are linear combinations of geometrically
k-local terms must correspond to a vector in the null space
of W�, and, consequently, we can find all of them by exam-
ining this null space. At the same time, the dimension of
this null space yields the number of independent conserva-
tion laws. Each singular value λ of W describes how much
its corresponding operator expectation value changes over
time [36]. More precisely, let u = (u1, u2, . . . , uNP ) be
the left singular vector corresponding to λ, and let O =∑

i uiPi; then

λ2 =
∑

j

∣∣∣∣ 〈O(tj )〉 − 1
NT

∑

j ′
〈O(tj ′)〉

∣∣∣∣
2

. (6)

Because of the inevitable shot noise, the matrix W� we
get from data will most likely not have a nontrivial null
space. Therefore, instead of looking at the null space, we
look at the subspace spanned by the left singular vectors
of W corresponding to singular values below a truncation
threshold ε, which serves as a precision parameter. These
singular vectors are readily obtainable by performing SVD
on our approximation of W based on finitely many samples
(see also Ref. [47] for a similar procedure in the context
of Hamiltonian learning). The number of such singular
values provides an upper bound of the number of inde-
pendent conserved quantities, which we prove later. The
computational cost of performing SVD on the data matrix
is O(N 3).

So far, we have mainly been concerned with conserved
quantities that are specific to a single initial state. We
may also learn conserved quantities for a distribution D
of initial states in a similar way. In this scenario, we not
only sample times tj , but also the initial states ρk from D
independently, for k = 1, 2, . . . , NI . The data matrix X is
constructed to have NP rows and NTNI columns, consist-
ing of entries Xi,jk = tr[Pi(tj )ρk], where j and k together
index the columns. Matrix W is similarly modified to be
Wi,jk = Xi,jk − N−1

T
∑

j ′ Xi,j ′k.

C. Testing conservation laws

The above procedure gives us candidates for conserva-
tion laws. However, it is not guaranteed that the quantities
we get are indeed conserved, and therefore we need to test
the candidates. Testing a finite group symmetry has been
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considered by LaBorde and Wilde [58], but their algorithm
requires implementing the group action on a quantum com-
puter, whereas we want to keep our procedure to only
single-qubit operations. There are two problems that we
need to overcome. The first is that in the above we only
look at a discrete set of times tj , and cannot rule out
the possibility that some quantity be conserved at these
discrete times, but not conserved at other times. The sec-
ond is that we cannot hope to tell if a quantity is exactly
conserved because of the presence of shot noise. Conse-
quently, we formalize the problem into a hypothesis testing
problem. We first define how far a quantity deviates from
its average up to time T by

d(O, ρ) = max
t∈[0,T]

∣∣∣∣tr[ρO(t)] − 1
T

∫ T

0
tr[ρO(s)]ds

∣∣∣∣. (7)

With d(O, ρ) we introduce the two hypotheses that we
want to distinguish:

Eρ∼D[d(O, ρ)] = 0 or Eρ∼D[d(O, ρ)] ≥ ε (8)

for every candidate O that comes from the learning proce-
dure. The classical shadow technique enables us to process
all the O in parallel.

For a fixed ρ ∼ D, we compute the maximal deviation
of observable O from its time average using robust poly-
nomial interpolation [59]. We first randomly sample the
discrete times tj , and then perform robust polynomial inter-
polation to obtain values for 〈O(t)〉 at all times t ∈ [0, T].
Then we can directly compute the maximal deviation from
the time average. This enables us to compute d(O, ρ) with
high confidence level. Note that the above discussion is
for continuous t. If we want to test conservation laws for
discrete t, such as for a Floquet system, then the problem
comes strictly easier, as interpolation will not be needed.
The ensemble average Eρ∼Dd(O, ρ) can be computed from
finitely many samples of ρ, thus enabling us to solve the
hypothesis testing problem in Eq. (8).

III. RIGOROUS GUARANTEES

As noted previously, the estimates for tr[Pi(tj )ρk] nec-
essarily involve shot noise, i.e., the noise as a result of
using measurement outcomes from only a finite number of
experiments. For different observables, the shot noise can
also be correlated when we measure multiple observables
in the same experiment. We then analyze how the noise
impacts the result we get, taking into account the possi-
ble correlation between shot noise on different observables.
First, we analyze that in the learning algorithm based on
finding the null space; the algorithm still yields an upper
bound of the number of conserved quantities even when
shot noise is present.

We denote the number of independent conserved quan-
tities by Nc, and the dimension of the null space of W�

by Dnull. It is guaranteed that Nc ≤ Dnull because a quan-
tity that is conserved at all times must also be conserved
at discrete times tj and for the sampled states ρk. We com-
pute W from the data matrix X , but, in practice, we do not
directly have access to X , but can only obtain its noisy
estimate X̂ , which leads to a noisy estimate for W that we
denote by Ŵ. The Ŵ estimate is almost surely full rank due
to the effect of the noise. We define E = X̂ − X , and this
is the matrix containing all the entrywise errors. Matrix
W is perturbed similarly, and the errors can be collected
into a matrix whose spectral norm is at most ‖E‖. Con-
sequently, we cannot directly estimate Dnull. As discussed
before, instead we look at the number of singular values of
Ŵ that are below a threshold ε, which we denote by D̂null.
For D̂null, we have the following theorem.

Theorem 1. With Õ(N 3ε−2 log(δ−1)) samples [60], we
can compute an integer D̂median

null satisfying Nc ≤ D̂median
null ,

where Nc is the number of conserved quantities, with
probability at least 1 − δ. In particular, when the quan-
tum system has constant correlation length, the sample
complexity can be reduced to Õ(N 2ε−2 log(δ−1)).

Here D̂median
null is the median of O(log(δ−1)) independent

estimates of Dnull obtained from independent experiments.
In the theorem, NP is the number of geometrically local
Pauli terms and is therefore O(N ). Here, NI NT ≥ NP is
necessary for avoiding numerical artifacts that do not cor-
respond to any conservation laws, but arise due to the rank
deficiency in the data matrix. In the numerical results in
Sec. IV below we find that NI NT = 2NP is enough for
getting the correct estimate, and, as a result, we choose
NI NT = O(N ). More general choices of NT, NI , and NP
are considered in Theorems 4 and 5 of Appendix A. For the
proof of this theorem, we refer the reader to Appendix A,
in which we bound singular value perturbation that comes
from shot noise. From its definition, we can see that D̂null is
a decreasing function of ε, and, consequently, for smaller
ε, we have a tighter upper bound for Dnull and the number
of conserved quantities Nc. If we keep the singular value
perturbation below ε then the Dnull 0-singular values of
W will still be below ε after perturbation, thus ensuring
that Dnull ≤ D̂median

null . This will require more samples as ε

decreases, as can be seen from Theorem 1.
We can also guarantee that by collecting all the left

singular vectors of Ŵ corresponding to singular values
below the threshold ε, we have all the conservation laws
approximately contained in the span. More precisely, each
conservation law, when expressed as a norm-1 vector,
will have an overlap with the subspace spanned by these
singular vectors, and this overlap is lower bounded by√

1 − ‖E‖2/ε2. Therefore, when ‖E‖ 
 ε, we have an
accurate description of all conservation laws. For a detailed
proof of this bound, see Appendix B.

Next, we provide guarantees that the candidates for con-
served quantities from the learning algorithm can be effi-
ciently verified using the procedure described previously.
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First, we consider the scenario where the conservation law
is specific to a single initial state, i.e., the distribution D is
completely concentrated on ρ.

Theorem 2. We assume that D is concentrated on a
single ρ. Let fi(t) = Tr[ρ(t)Oi] for i = 1, 2, . . . , χ . We
further assume that |d�fi(t)/dt�| ≤ O(���!) for all � ≥ 1.
Then, for T > 0, we can distinguish between the two
hypotheses in Eq. (8) for each i with probability at least
1 − δ using Õ(�Tε−2 log(δ−1) maxi ‖Oi‖2

shadow) samples.
Here, ‖Oi‖shadow is the shadow norm of Oi, as defined in
Ref. [30].

We refer the reader to Appendix C for a detailed proof.
We note that |d�fi(t)/dt�| ≤ O(���!) is a very reasonable
assumption to make. In addition, for (suitably normal-
ized) observables Oi that are sums of k-local Pauli oper-
ators (as obtained from our learning algorithm), we have
‖Oi‖shadow ≤ 3k. We show in Appendix F that this assump-
tion holds with � = O(1) when the dynamics is described
by the von Neumann equation, and the Hamiltonian sat-
isfies certain conditions. These Hamiltonians include geo-
metrically local Hamiltonians and certain power-law inter-
action Hamiltonians. Without such an assumption, we can
also choose � = ‖H‖ and then this inequality holds for
all Hamiltonians. An extension to the Lindbladian case is
straightforward.

Next, we consider a generic initial state distribution
D. In this scenario, we can sample ρk, k = 1, 2, . . . , NI ,
from the distribution D, and test if the observables
O1, O2, . . . , Oχ are conserved for the sampled initial states.
This naturally leads to the question of whether we can gen-
eralize the testing results for the sampled initial states to
the entire distribution. The above involves generalization
errors of the form

∣∣∣∣Eρ∼Dd(Oi, ρ) − 1
NI

NI∑

k=1

d(Oi, ρk)

∣∣∣∣. (9)

In Appendix D, we show that we can use NI =
O(ε−2 log(χδ−1) maxi ‖Oi‖2) to ensure that the gener-
alization errors for all observables are below ε/4 with
probability at least 1 − δ/2. For each sampled ρk, we
need Õ(�Tε−2 log(δ−1) maxi ‖Oi‖2

shadow) samples to com-
pute d(Oi, ρk), i = 1, 2, . . . , χ , according to Theorem 7 in
Appendix C 2, which multiplied by NI yields the total
sample complexity for estimating Eρ∼Dd(Oi, ρ) up to
precision ε/2.

Theorem 3. Under the same assumptions as in Theorem
7 in Appendix C 2, except that we do not restrict the
form of the initial state distribution D, the hypoth-
esis testing problem in Eq. (8) can be solved using
Õ(�Tε−4 log(δ−1) log(χδ−1) maxi ‖Oi‖2 maxi ‖Oi‖2

shadow)

samples.
So far, we have considered quantities that are on aver-

age conserved for an ensemble of states. It is natural to ask
whether we can determine if an observable O is conserved

for all states, namely, [H , O] = 0. Through a quantum
query complexity lower bound, we can show that this task
cannot be accomplished efficiently in the worst case. The
high-level idea of this argument goes as follows. Sup-
pose that we have a black-box oracle U encoding a bit
string x = (x1, x2, . . .) through U|n〉 = (−1)xn |n〉; then let-
ting H = U we can implement e−iHt using two queries to
U. If an algorithm can distinguish between ‖[H , O]‖ = 0
or ≥ 1 with high probability with Q queries to e−iHt, we can
then show that it can evaluate OR(x) with 2Q queries to U.
The query complexity lower bound of the OR function [61]
then tells us that Q = 	(2N/2). For a detailed statement of
the result and its proof, see Appendix E.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate our algorithm with numer-
ical examples. We consider a Z2 gauge theory and a
disordered Heisenberg model in one dimension.

A. Identifying conservation laws in a lattice gauge
theory

As a first numerical example, we consider a Z2 lattice
gauge theory with staggered matter fields in one spatial
dimension. For simplicity, we assume that the number of
qubits N is even, N mod 2 = 0. Then, the Hamiltonian is
specified by

HZ2 = 1
2a

N/2−1∑

i=0

(σ+
2i σ

x
2i+1σ

−
2i+2+H.c.)

+ m
N/2−1∑

i=0

(−1)i

2
(I2 + σ z

2i) + e
N/2−1∑

i=0

σ z
2i+1, (10)

where we choose periodic boundary conditions. By direct
inspection of the Hamiltonian, we find that we can expect
N/2 + 2 conservation laws, given by the Hamiltonian
itself, the magnetization

M =
N/2−1∑

i=0

σ z
2i, (11)

and N/2 Gauss laws

G2j = σ z
2j −1σ

z
2j σ

z
2j +1. (12)

We note that the magnetization and Hamiltonian are linear
combinations of geometrically 1-local and 3-local terms,
which have support on the entire system. In contrast, the
N/2 Gauss laws are strictly geometrically 3-local. In the
following, we consider N = 8 qubits, set the mass param-
eter to unity m = 1, and choose the electric field e = 3/2m
and lattice spacing a = m/3.
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FIG. 1. Learning conservation laws in a Z2 gauge theory. In
panel (a), we display the 30 smallest eigenvalues of the exact
data matrix for various evolution times T and numbers of initial
states NI . At sufficiently long times T, N + 2 singular values are
gapped out (light and dark blue). The use of multiple initial states
(green triangles) allows us to shorten the evolution time consid-
erably. Inset illustrates this effect, showing the gap as a function
of the number of initial states for fixed time T = 20. In panel (b),
we display the 20 smallest eigenvalues of the noisy data matrix,
constructed from M = 104 and M = 105 per initial state (NI =
15) and final time T = 20, NT = 41. For M = 104 (M = 105),
increasing M , two (six) singular values are gapped out. Testing
these against independently obtained data yields small variations
over time (inset). In panel (c), we display the Pauli basis expan-
sion of the corresponding lowest six singular vectors. We identify
the magnetization, Hamiltonian, and four Gauss laws. In all pan-
els, N = 8 and NT = 2NP/NI = 624. Points with error bars are
the average and standard deviation over 25 experiments with
identical parameters.

First, we investigate our protocol in the absence of shot
noise due to a finite number of measurements [Fig. 1(a)].
We aim to learn all conservation laws with weight k ≤ 3.
We find that, for sufficiently long times T = 200, data col-
lected from dynamics starting from a single initial random
product state NI = 1 is sufficient to identify all expected
N/2 + 2 conservation laws: the singular values λi for
1 ≤ i ≤ N/2 + 2 are close to zero (a nonzero value orig-
inates from finite machine precision) with a large gap to
λN/2+3. At shorter times T = 20 and NI = 1, the spectrum
of singular values appears to be continuous, and conser-
vation laws are not apparent. In contrast, data collected
from several random initial product states is substantially
more expressible (see Ref. [38] for a similar observation in
the context of Hamiltonian learning). Even at short times
T = 20, the expected conservation laws can be identified.
We emphasize that, hereby, we keep the total number of
points NTNI ≈ 2NP where data are taken to be constant
to enable a fair comparison (NT = 2NP = 624 for NI = 1
and NT = 41 for NI = 15). In all cases, the time points are
equally spaced.

Secondly, we simulate our complete protocol, includ-
ing a finite number of measurements M per time point

and initial state. We choose NI = 15 randomly chosen ini-
tial product states and a total evolution time of T = 20
with NT = 41 steps. We find that, for a moderate number
of M = 105 randomized measurements, N/2 + 2 singu-
lar values are gapped out [Fig. 1(b)]. Analyzing a Pauli
basis expansion of the corresponding normalized singular
vectors of our data matrix, we find that these correspond
to the expected conservation laws, magnetization, energy
(Hamiltonian), and N/2 Gauss laws [Fig. 1(c)].

Finally, to test that the learned quantities are indeed
conserved over times, we employ an independent data
set of the same size. We estimate expectation values of
the learned quantities at different times and compute their
maximum deviation from their mean values, averaged over
initial states. We note that this represents a more simpli-
fied testing procedure than employed in Secs. II and III,
and devote the full numerical implementation of the robust
polynomial interpolation for testing to future work. Indeed,
we find that quantities corresponding to small singular val-
ues have small variations over time up to shot noise origi-
nating from a finite number of randomized measurements
M . The testing procedure also helps us better distinguish
conservation laws from observables that are close to being
conserved, by opening up the gap between singular values,
as can be seen in Fig. 1(b). By using a different set of data
to perform testing, we can exclude quantities with only
small variation for a single noise realization or a single set
of initial states. This is similar to detecting overfitting in
supervised learning.

While we have so far concentrated on unitary dynam-
ics, we emphasize that our protocol can serve to learn
conservation laws of arbitrary quantum dynamics. To illus-
trate this point, we add local dephasing with strength γ ,
corresponding to jump operators Li = √

γ σ z
i , and solve

the corresponding Lindblad equation (all other Hamilto-
nian parameters remain the same). Since magnetization
and Gauss laws are diagonal in the computational Z basis,
they also remain conserved for γ > 0. In contrast, energy
conservation is lost, as shown in Fig. 2(a) where λ2 is
missing (the indices of the subsequent singular values
λ3, λ4, . . . have been shifted by 1 for clarity). We note
that this shows that our protocol can serve as an indica-
tor of decoherence mechanisms in an experiment targeting
to implement specific (e.g., Hamiltonian) dynamics—by
comparing learned versus expected conserved quantities.
In this context, we remark that experimental imperfec-
tion in the implementation of the randomized measurement
itself can, in principle, be detrimental to our protocol.
However, powerful error mitigation techniques in terms of
“robust classical shadows” exist that allow us to fully miti-
gate such measurement errors under very mild assumptions
and with a small overhead in terms of the required number
of measurements [55–57].

Our numerical experiments demonstrate that we can
learn conservation laws, which are linear combinations
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FIG. 2. Learning conservation laws in open quantum systems.
In panel (a), we display the 20 smallest singular values of W for
both the Hamiltonian (blue) and Lindbladian dynamics (orange)
with local dephasing with rate γ = 0.1. While magnetization and
Gauss laws are conserved in both cases, the Hamiltonian (energy)
is only conserved for Hamiltonian dynamics (λ2 is absent for
γ = 0.1). We choose M = 106 measurements and use a Gaus-
sian noise approximation to simulate the resulting shot noise.
In all panels, N = 8, NT = 41, NI = 15, and points with error
bars are the average and standard deviation over 25 experiments
with identical parameters. Panel (b) displays the singular val-
ues obtained from the data matrix W[j −1,j ,j −1] restricted to three
adjacent subsystem sites as a function of j . This allows us to
learn the Gauss laws, corresponding to the gapped singular val-
ues at even j , with considerably fewer measurements M = 104

[cf. Fig. 1(b)].

of k-local Pauli strings with a moderate number of
randomized measurements M . We can decrease the
required number of measurements further if we restrict
ourselves to learning conservation laws with support on
subsystems only, i.e., disregard quantities such as the mag-
netization or Hamiltonian, which are linear combinations
of few-body terms, but have support on the entire system.
To achieve this, we construct reduced data matrices WA
from measurement data obtained from subsystem A only.
This is illustrated in Fig. 2(b), where we plot the singu-
lar values of data matrices WAj with Aj = [j − 1, j , j +
1] containing the three sites j − 1, j , j + 1 as a function
of j (periodic boundary conditions are implied). With
only M = 104 randomized measurements [cf. M = 105 in
Fig. 1(b)] per time point and initial state, we can identify
the expected N/2 Gauss laws contained in subsystems Aj
with j mod 2 = 0.

B. Identifying conservation laws in a
many-body-localized system

Next, we consider a disordered one-dimensional XXZ-
spin chain with nearest-neighbor interactions that serves
as a standard model for investigating many-body local-
ization and thermalization [26–28]. It is described by the
Hamiltonian

HXXZ = Jx

∑

i

(σ x
i σ x

i+1 + σ
y
i σ

y
i+1) + Jz

∑

i

σ z
i σ z

i+1

+
∑

i

hiσ
z
i , (13)

where the local disorder potentials hi (i = 1, . . . , N ) are
randomly distributed in the interval [−w, w], and w is the
disorder strength. We assume in the following that Jx =
Jz = 1.

Numerical studies [18,62–64] indicate that this model
exhibits a transition from an ergodic phase at weak disor-
der to an ergodicity breaking many-body-localized phase
at sufficiently strong disorder [65]. While in the ergodic
phase, nearly all eigenstates obey the eigenstate thermal-
ization hypothesis [66,67], in the MBL phase the eigen-
state thermalization hypothesis is not valid, and the system
is characterized by an extensive number of quasilocal con-
servation laws τi (i = 1, . . . , N ), called l bits [18–21]. In
terms of these conservation laws, Hamiltonian (13) can be
written as

Hdiag =
∑

i

ξiτi +
∑

i<j

Jij τiτj +
∑

i<j <k

Jikj τiτj τk + · · · ,

(14)

where, in the MBL phase, the τi are quasilocal, in the
sense that they can be approximated by geometrically local
operators to exponential precision, and the coupling coef-
ficients Jij , Jikj decay exponentially with distance |i − j |.
We emphasize that, by switching to an energy eigenba-
sis, we can always rewrite Hamiltonian (13) in the form of
Eq. (14), also in the thermalizing phase. In general, how-
ever, the conservation laws τi will be completely nonlocal,
high-weight operators with vanishing overlap to the micro-
scopic degrees of freedom σ z

i . In this case, Eq. (14) is of
little use. Finally, we note that, independent of the disorder
strength, there are always two conserved quantities given
as sums of local observables, which are the Hamiltonian
itself and the total magnetization.

With our learning algorithm, we target conserved quan-
tities given as sums of local observables. While we expect
to be able to learn the local XXZ Hamiltonian and total
magnetization for all disorder strengths, the conserved
quantities τi are expected to be inaccessible in the thermal
phase due to their nonlocal nature. In contrast, for strong
disorder, we expect an extensive amount of approximately
conserved local quantities, approximating the quasilocal l
bits τi to high precision. To test these expectations in small
systems, we simulate our protocol by sampling the random
initial product state, picking a random disorder pattern, and
time evolving under the corresponding XXZ Hamiltonian
(13) using exact diagonalization. We evaluate Pauli expec-
tations of all NP geometrically up to 3-local Pauli operators
at NT = 41 equidistant time points up to a final time T =
40. We repeat this for NI ≈ 2NP/NT initial states per fixed
disorder pattern. To simulate realistic shot noise arising
from a finite number of randomized measurements, we
use a Gaussian noise approximation adding independent
Gaussian noise to each expectation value with a variance
corresponding to M = 5 × 105 randomized measurements

010350-7



YONGTAO ZHAN et al. PRX QUANTUM 5, 010350 (2024)

(a)

(b)

N
um

be
r 

of
 C

on
se

rv
ed

 Q
ua

nt
iti

es

Disorder Strength w

FIG. 3. Learning conservation laws in disordered spin chains.
(a) We display the ten lowest squared singular values of the
data matrix Ŵ constructed using NI = 17 initial states evolved
according to HXXZ with different disorder strengths w = 2, 4, 6
(blue, orange, green) to a final time T = 40 and evaluated at
NT = 41 equally spaced time points. We add Gaussian noise,
simulating shot noise arising from M = 5 × 105 measurements.
Each point is averaged over 11 random disorder patterns; the
error bars indicate the standard error of the mean. The two small-
est singular values λ1, λ2 correspond to the magnetization and
Hamiltonian, respectively. As the disorder strength w becomes
larger, the singular values λi≥3 decrease significantly, indicat-
ing an increasing number of approximate conservation laws.
(b) We show the number of singular values below a threshold
ε = 0.02 as a function of w for different system sizes. As in panel
(a), we choose M = 5 × 105, T = 40, NT = 41. The numbers of
initial states for system sizes N = 6, 10, 14 are NI = 9, 17, 24,
respectively, to ensure that NI NT ≈ 2NP. Points correspond to the
median of 11 random Hamiltonian configurations. We observe a
sharp increase with increasing disorder strength.

per time point and initial state [68]. Finally, we construct
the data matrix Ŵ and perform SVD.

In Fig. 3(a), we display the ten lowest singular values
of Ŵ as a function of disorder strength, with each point
corresponding to an average over 11 random Hamiltonian
configurations. Consistent with our expectation, we find,
independent of the disorder strength, two small singular
values, corresponding to the magnetization and Hamilto-
nian. As remarked before, they still attain a nonzero value

due to the finite number of measurements M . In addition,
we find that the singular values λi (i ≥ 3) decrease strongly
with increasing disorder strength, indicating an increasing
number of approximately conserved quantities. To show
this more quantitatively, in Fig. 3(b) we plot the number of
singular values below a threshold ε = 0.02 as a function of
the disorder strength for various system sizes. We observe
a sharp increase at a disorder strength, which is consis-
tent with previous findings on the onset of many-body
localization effects in finite-size systems [18,62–64]. In
addition, the number of singular values below the threshold
increases with system size, indeed indicating an extensive
number of approximately conserved quantities.

V. CONCLUSION AND OUTLOOK

In this paper, we propose a method for learning conser-
vation laws in arbitrary quantum dynamics. Our method
can find a set of observables that include all conservation
quantities with high probability, and we also propose a
method to test the conservation law candidates obtained
in this way. The sample complexity and classical process-
ing time are both at most polynomial in the system size.
The conservation laws hold for either a single input state
or an ensemble of input states, and for the latter case,
we derive a generalization bound ensuring that the result
from finitely many samples can be reliably generalized
to the entire ensemble. We provided a proof of principle
of our method using numerical experiments in a one-
dimensional Z2 lattice gauge theory and one-dimensional
MBL systems. Beyond these examples, we envision a wide
range of applications for our protocol, ranging from Hilbert
space fragmentation [29] to random circuits with sym-
metries [69] and the study of general quantum channels
[70]. In addition, knowledge of conserved quantities in
dynamics enables powerful error mitigation techniques for
noisy intermediate-scale quantum devices [71] and more
efficient (randomized measurement) protocols for probing
many-body entanglement [72,73].
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APPENDIX A: COUNTING CONSERVATION
LAWS

In this appendix, we prove that the learning procedure
outlined in Sec. II can reliably provide an upper bound for
the number of conserved quantities. To simplify the nota-
tion, we consider mostly the case of a single initial state,
but comment on the appropriate redefinitions for the case
of multiple initial states. The proof generalizes to the latter
situation without requiring any change.

We define the expectation value matrix X = (Xij )NP×NT
(we require that NT ≥ NP), where

Xij = 〈Pi(tj )〉 . (A1)

From experiments we obtain estimates forming a matrix
X̂ = (X̂ij )NP×NT . The error is described by the matrix

Eij = X̂ij − Xij . (A2)

The estimate is unbiased, which means that E[E] = 0. The
variance depends on what method we use to get the esti-
mates X̂ij . In this appendix, we discuss two scenarios: the
naive approach, which requires repreparing the state for
each expectation value, and classical shadows, enabling
the simultaneous estimation of many expectation values.

Matrix X can be used to characterize conservation laws.
If an observable

∑

i

ciPi (A3)

is conserved then we have

∑

i

ci 〈Pi(tj )〉 = 1
NT

∑

ij ′
ci 〈Pi(t′j )〉 (A4)

for all j = 1, 2, . . . , NT. Writing the above equation in
matrix form, we have

c�X = 1
NT

c�X 11�, (A5)

where 1 = (1, 1, . . . , 1)� is the NT-dimensional vector with
all entries being 1. Therefore, every conserved quantity is

contained in the null space of the matrix

W� =
(

I − 1
NT

11�
)

X �, (A6)

where I denotes the identity matrix. The dimension of its
null space, which we denote by Dnull, provides an upper
bound for the number of conserved quantities.

When we use multiple initial states, the relationship
between W and X becomes slightly different. The entry-
wise relationship is Wi,jk = Xi,jk − N−1

T
∑

j ′ Xi,j ′k, which
we can reformulate in matrix language as

W� =
[(

I − 1
NT

11�
)

⊗ I
]

X �, (A7)

where I − 11�/NT acts on the index j and I acts on the
index k.

Note that Dnull is not directly available to us. What
we can do is estimate Dnull through the number of small
singular values of the matrix

Ŵ� =
(

I − 1
NT

11�
)

X̂ �. (A8)

When there are multiple initial states, the transformation
from X̂ to Ŵ is similar to Eq. (A7). Note that in both
cases, because ‖I − 11�/NT‖ ≤ 1, we have ‖W − Ŵ‖ ≤
‖X − X̂ ‖ = ‖E‖. We denote the number of singular values
of the above matrix that are below ε by D̂null. We show that,
with enough samples, we can guarantee that, with large
probability,

Dnull ≤ D̂null. (A9)

We denote the singular values of W and Ŵ by σi and σ̂i, j =
1, 2, . . . , NP, arranged in ascending order, respectively. By
Mirsky’s inequality [74], we have

|σ̂i − σi| ≤ ‖W − Ŵ‖ ≤ ‖E‖, (A10)

where ‖ · ‖ denotes the spectral norm. Consequently, if
σi = 0 for any i then σ̂i ≤ ‖E‖. Therefore, we have the
following lemma.

Lemma 1. When ‖E‖ ≤ ε, inequality (A9) holds.
Furthermore, we do not need the upper bound for ‖E‖

to hold with probability 1. Rather, as long as the upper
bound holds with a probability that is greater than 1/2 by
a constant, we can simply repeat the procedure multiple
times, and take the median of all D̂null that are computed.
This ensures that the median D̂median

null ≥ Dnull with proba-
bility at least 1 − δ with O(log(δ−1)) using the Chernoff
bound. Consequently, it suffices to upper bound E‖E‖.
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Lemma 2. When E‖E‖ ≤ ε/4, then

Dnull ≤ D̂median
null (A11)

with probability at least 1 − δ, where D̂median
null is the median

taken over O(log(δ−1)) independent samples of D̂null.
Our main tool in bounding E‖E‖ is through the non-

commutative Khintchine inequality [75, Section 9.8]. This
inequality implies that, as stated in Ref. [76, Eq. (1.2)],
for a real symmetric random matrix M = ∑

j gj Aj , where
the gj are independent and identically distributed standard
Gaussian random variables and the Aj are real symmetric
matrices of size d × d, we have

C1

√√√√
∥∥∥∥

∑

j

A2
j

∥∥∥∥ ≤ E‖M‖ ≤ C2

√√√√
∥∥∥∥

∑

j

A2
j

∥∥∥∥ log(d).

(A12)

Because of the requirement for M to be real and sym-
metric, instead of directly considering E, we need to

consider

SE =
(

0 E
E� 0

)
= σ−⊗E + σ+⊗E�. (A13)

Note that ‖SE‖ = ‖E‖. Therefore, we only need to upper
bound ‖SE‖.

1. The naive approach

Let us first consider the approach where each entry of
X̂ is sampled independently. In this scenario, the entries of
matrix E are independent. Therefore, we can write

E =
∑

ij

gij σij eie�
j . (A14)

Here, gij is a standard Gaussian random variable and

σ 2
ij = 〈Pi(tj )2〉 − 〈Pi(tj )〉2

Ns
, (A15)

where Ns is the number of samples used for each X̂ij . We are assuming that the error is Gaussian, which is reasonable for
large Ns due to the central limit theorem.

Correspondingly,

SE =
∑

ij

gij σij (σ
−⊗eie�

j + σ+⊗ej e�
i ). (A16)

By Eq. (A12) we have

E[‖SE‖] ≤ C2

√√√√
∥∥∥∥

∑

ij

σ 2
ij (|0〉〈0| ⊗ eie�

i + |1〉〈1| ⊗ ej e�
j )

∥∥∥∥ log(NP + NT)

≤ C2

√√√√max
{

max
i

∑

j

σ 2
ij , max

j

∑

i

σ 2
ij

}
log(NP + NT). (A17)

Because ‖Pi‖ ≤ 1, we have

E[‖E‖] ≤ E[‖SE‖] ≤ O
(√

NP + NT

Ns
log(NP + NT)

)
.

(A18)

To ensure that E[‖E‖] ≤ ε/4, we need to choose

Ns = Õ((NP + NT)ε
−2). (A19)

The total number of samples is therefore

NP × NT × Ns × O(log(δ−1))

= Õ(NPNT(NP + NT)ε
−2 log(δ−1)), (A20)

where we recall that NP is the number of geometrically
k-local Pauli observables, NT is the number of time points,
and Ns is the number of samples for estimating each matrix
element X̂ij .
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When considering NI initial states, we replace all NT
with NTNI . The above expression then becomes

NP × NTNI × Ns × O(log(δ−1))

= Õ(NPNTNI (NP + NTNI )ε
−2 log(δ−1)). (A21)

Through Lemma 2, we can compute the cost of learning.
Theorem 4. With Õ(NPNTNI (NP + NTNI )ε

−2 log
(δ−1)) samples, we can ensure that Dnull ≤ D̂median

null with
probability at least 1 − δ, where D̂median

null is the median
taken over O(log(δ−1)) independent samples of D̂null.

Note that, in practice, we usually do not choose NI to
be large, but rather choose NTNI = O(N ), where N is the
system size.

2. Using classical shadows

Using classical shadows to construct X̂ , we no longer
have the simple decomposition in Eq. (A14). At each time
tj , the vector consisting of observable expectation values
X̂·j is a Gaussian random vector with covariance matrix
�j /Ns (again, Gaussianity is a result of the central limit
theorem), in which

�
j
ii′ =

{
3ω(Pi,Pi′ ) 〈Pi(tj )Pi′(tj )〉 − 〈Pi(tj )〉 〈Pi′(tj )〉 if Pi and Pi′ completely commute,
−〈Pi(tj )〉 〈Pi′(tj )〉 otherwise,

(A22)

where by “completely commute” we mean that the two
Pauli operators can be simultaneously diagonalized in the
same single-qubit Pauli eigenbasis, and ω(Pi, Pi′) is the
number of qubits on which Pi and Pi′ overlap. Let us first
perform an eigendecomposition for �j :

�j =
∑

l

λ
j
l v

j
l v

j �
l (A23)

with λ
j
l ≥ 0 because �j is symmetric positive semidefi-

nite. Then we have

X̂·j =
∑

l

glj

√
λ

j
l /Nsv

j
l + X·j , (A24)

where “=” means equal in distribution, and the glj are
independent and identically distributed standard Gaussian
random variables. Then, the error matrix E can be written
as

E =
∑

lj

glj

√
λ

j
l /Nsv

j
l e�

j . (A25)

Through the same analysis as in Eq. (A17), we have

E[‖SE‖]

≤ C2

√√√√max
{

max
i

∑

j

λ
j
l

Ns
, max

j

∑

i

λ
j
l

Ns

}
log(NP + NT)

≤ C2

√

max
j

‖�j ‖NP + NT

Ns
log(NP + NT). (A26)

Therefore,

E[‖E‖] ≤ O
(√

max
j

‖�j ‖NP + NT

Ns
log(NP + NT)

)
.

(A27)

The next step is to then bound maxj ‖�j ‖. Note that
in the worst case, we have maxj ‖�j ‖ = O(NP). This is
in fact attainable: we can choose ρ(tj ) = |GHZ〉〈GHZ|,
where |GHZ〉 = (|00 · · · 0〉 + |11 · · · 1〉)/√2, and let Pi =
Zi for i = 1, 2, . . . , NP. Then, we have �j = 2I + 11�,
thus giving ‖�j ‖ = O(NP).

In this worst case, in order to ensure that E[‖E‖] ≤ ε/4,
we need

Ns = O(NP(NP + NT) log(NP + NT)ε
−2). (A28)

The total number of samples needed is

NT × Ns × O(log(δ−1))

= Õ(NPNT(NP + NT)ε
−2 log(δ−1)). (A29)

Note that here, even though we did not need to multiply by
NP on the left-hand side as in Eq. (A20), an NP dependence
nevertheless appears on the right-hand side through Ns. As
a result, we still get the same sample complexity scaling as
in the naive approach [Eq. (A20)].

However, if correlation decays rapidly, classical shad-
ows can offer us an advantage. More specifically, let us
assume that the quantum system is on a D-dimensional
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lattice. Furthermore, for all 0 ≤ t ≤ T,

| 〈Pi(t)Pi′(t)〉 − 〈Pi(t)〉 〈Pi′(t)〉 | ≤ O(e−d(Pi,Pi′ )/ξ ), (A30)

where d(Pi, Pi′) is the distance between Pi and Pi′ , and ξ is
the correlation length. Because the Pi are supported on at
most k = O(1) adjacent qubits, the number of Pi′ within r
distance from Pi grows like rD. Therefore we have

∑

i′
| 〈Pi(t)Pi′(t)〉 − 〈Pi(t)〉 〈Pi′(t)〉 | ≤ O(ξD) (A31)

for all i. For �
j
ii′ , in each row there are only O(1)

many entries that are different from 〈Pi(t)Pi′(t)〉 −
〈Pi(t)〉 〈Pi′(t)〉, as can be seen from Eq. (A22). The absolute
value of each entry is upper bounded by O(1). Conse-
quently,

∑

i′
‖�j

ii′‖ ≤ O(ξD). (A32)

Then we have

‖�j ‖ ≤ max
i

∑

i′
‖�j

ii′‖ ≤ O(ξD), (A33)

which indicates that ‖�j ‖ = O(1) when ξ , D = O(1).
In this good scenario, we only need

Ns = O((NP + NT) log(NP + NT)ε
−2). (A34)

The total number of samples needed is

NT × Ns × O(log(δ−1)) = Õ(NT(NP + NT)ε
−2 log(δ−1)),

(A35)

which is quadratically better than the scaling in terms of
the NP dependence. When we take into account having NI
initial states, the number of samples then becomes

NTNI × Ns × O(log(δ−1))

= Õ(NTNI (NP + NTNI )ε
−2 log(δ−1)). (A36)

Again, through Lemma 2, we have the following result.
Theorem 5. We assume that the quantum system is

defined on a D-dimensional lattice and that Eq. (A30)
holds for all 0 ≤ t ≤ T. Then, with Õ(NTNI (NP +
NTNI )ε

−2 log(δ−1)) samples, we can ensure that Dnull ≤
D̂median

null with probability at least 1 − δ, where D̂median
null is

the median taken over O(log(δ−1)) independent samples
of D̂null.

APPENDIX B: ACCURACY OF THE LEARNED
CONSERVATION LAWS

In the learning procedure described in Sec. II, we obtain
a subspace spanned by the singular vectors of matrix Ŵ.
We show in this appendix that this subspace contains all
the conserved quantities approximately.

We use the following result for singular vector perturba-
tion to characterize the accuracy of the conservation laws
obtained from our learning procedure.

Lemma 3. Suppose that we have matrix A ∈ R
M×N and

vector w ∈ R
M such that w�A = 0. We let Â = A + δA.

We then write down the singular value decomposition of
Â as Â = ∑r

k=1 σ̂kûkv̂
�
k , where σ̂1 ≤ · · · ≤ σ̂r. Let r′ be the

largest index such that σ̂r′ ≤ ε. We decompose w through

w = ŵ + w⊥, (B1)

where ŵ = ∑r′
k=1 ûkû�

k w. Then we have

‖w⊥‖ ≤ ‖w�δA‖
ε

. (B2)

Proof. By the triangle inequality

‖w�Â‖ ≤ ‖w�A‖ + ‖w�δA‖ = ‖w�δA‖. (B3)

On the other hand,

‖w�Â‖2 = ŵ�ÂÂ�ŵ + ŵ�ÂÂ�w⊥ + w�
⊥ÂÂ�ŵ

+ w�
⊥ÂÂ�w⊥

≥ w�
⊥ÂÂ�w⊥, (B4)

where we have used the facts that ŵ�ÂÂ�ŵ ≥ 0 and

ŵ�ÂÂ�w⊥ =
r∑

k=1

σ̂ 2
k ŵ�ûkû�

k w⊥ = 0 (B5)

because of the orthogonal decomposition (B1). Similarly,
we have w�

⊥ÂÂ�ŵ = 0. Because w⊥ only overlaps with ûk
for k ≥ r′ + 1, we have

w�
⊥ÂÂ�w⊥ ≥ σ̂ 2

r′+1‖w⊥‖2 ≥ ε2‖w⊥‖2. (B6)

Therefore,

‖w�Â‖2 ≥ ε2‖w⊥‖2. (B7)

Combining the above with Eq. (B3) we have

‖w⊥‖ ≤ ‖w�δA‖
ε

. (B8)

This completes the proof. �
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In the context of our algorithm, we let A = W, Â = Ŵ,
and w = �c (‖�c‖ = 1) in the above lemma. Here �c corre-
sponds to an exact conserved quantity O = ∑

i ciPi, Ŵ is
the shifted data matrix, in which we subtract the time aver-
age from all entries so that each row sums to zero, and
W is its noiseless limit. For simplicity, we first focus on
the case with a single initial state, i.e., NI = 1. In practice,
W is perturbed to be Ŵ, and the corresponding perturba-
tion is δA = E(I − 11�/NT), where E contains the noise
on each entry of the data matrix X . The above result tells
us that the subspace we obtain through performing SVD on
Ŵ approximately contains the exact conservation law O if

‖�c�E(I − 11�/NT)‖ 
 ε. (B9)

Here, ε is our chosen truncation threshold for singular
values. To see what this means for the conservation law
O = ∑

i ciPi, we first define

ε′ = ‖�c�E(I − 11�/NT)‖/ε 
 1.

Then, by Lemma 3, there exists �̂c within the subspace of
singular vectors that we obtain from SVD such that

‖�c − �̂c‖ ≤ ε′.

Note that �̂c = (ĉ1, ĉ2, . . . , ĉNP ) corresponds to an operator
Ô = ∑

i ĉiPi that we learn. The above bound tells us that

‖Ô − O‖HS ≤ ε′, (B10)

where ‖ · ‖HS denotes the normalized Hilbert-Schmidt
norm, i.e., ‖M‖HS = Tr[M †M ]/2N . Therefore, we learn
operator Ô from performing SVD is an approximate con-
servation law corresponding to O.

The above discussion is still valid for multiple initial
states, i.e., NI > 1. Instead of δA = E(I − 11�/NT), we
have

δA = E[(I − 11�/NT) ⊗ I ]

through Eq. (A7). All the subsequent derivation remains
valid.

From the above analysis, we can see a tension in our
choice of threshold ε: decreasing ε helps us better distin-
guish exactly conserved quantities from the approximate
ones, but on the other hand, it increases the precision
requirement on our data matrix Ŵ.

APPENDIX C: TESTING CONSERVATION LAWS
FOR A SINGLE INITIAL STATE

In this appendix, we discuss how to test the conserved
quantities that we have learned. The testing procedure is
briefly outlined in Sec. II. Here, we provide a more detailed

description, prove its correctness, and also analyze the
cost.

Let fi(t) = Tr[ρ(t)Oi], where each Oi is a sum of low-
weight Pauli operators, for i = 1, 2, . . . , χ . We further
assume that, using the notation f (k)(t) to denote the kth
derivative of f (t),

|f (k)
i (t)| ≤ C�kk! (C1)

with constants C and �. We note that this is a very rea-
sonable assumption to make. For time evolution under the
von Neumann equation, this assumption holds with � =
O(1) for geometrically local Hamiltonians and Hamiltoni-
ans with certain fast-decaying long-range interactions. For
details, see Appendix F. In general, we can always choose
� = ‖H‖. For the Lindblad master equation, a similar
result can also be obtained.

1. Expectation value interpolation for multiple
observables

In this subsection, we find functions p̂i(t), which are
piecewise polynomials, such that

|fi(t) − p̂i(t)| ≤ ε (C2)

with probability at least 1 − δ for each t ∈ [0, T].

a. Introduction to the robust polynomial interpolation
algorithm

Here we provide a short high-level introduction to the
robust polynomial interpolation algorithm used in our pro-
tocol. We use the result from Ref. [59] to quantify the
number of samples needed to achieve a certain interpola-
tion accuracy, but, in practice, we can use the conventional
Chebyshev fitting method rather than the method proposed
in Ref. [59]. This is because Kane et al. [59] carefully
designed their algorithm to be robust against adversarial
noise, whereas the noise we encounter from experiments is
stochastic rather than adversarial.

In our protocol, the robust polynomial interpolation is
only used for short-time interpolation. More precisely, we
want to construct a polynomial p(t) that approximates
f (t) uniformly in the interval [0, T] for small T. With the
assumption given in Eq. (C1), we consider the case where
�T ≤ 1. For convenience, we define

f̃ (x) = f ((T/2)(x + 1)), (C3)

so that we have the variable x in the interval [−1, 1],
which is the domain on which Chebyshev polynomials
form an orthogonal basis. We then expand f̃ (x) as a linear
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combination of Chebyshev polynomials

f̃ (x) =
∞∑

k=0

ckTk(x), (C4)

where Tk(x) is the kth Chebyshev polynomial of the first
kind. The coefficients can be obtained through

ck = 2 − δ0k

π

∫ 1

−1

Tk(x)f̃ (x)√
1 − x2

dx, (C5)

where δmn denotes the Kronecker delta.
With the above setup, we can evaluate ck numerically.

First, we argue that one only needs to evaluate very few ck.
This is because we can truncate the Chebyshev expansion
in Eq. (C4) at K = O(log(ε−1)) [as a result of Eq. (C1)] to
get

f̃ (x) =
K∑

k=0

ckTk(x) + O(ε). (C6)

This can be proved by converting the Chebyshev expan-
sion to the Fourier expansion, changing the variable x =
cos(θ), and then applying results about the decay of
Fourier coefficients as discussed in Chapter 4 of Ref. [77].
We therefore only need to evaluate ck for k = 0, 1, . . . , K
to get accuracy O(ε).

We then discuss two ways to evaluate ck. The first
is through Monte Carlo integration, and is the approach
taken in Ref. [59]. Let x̂ be a random variable obeying
the Chebyshev distribution, i.e., with probability density
1/(π

√
1 − x2) in the interval [−1, 1]. Then we can observe

that

(2 − δ0k)E[Tk(x̂)f̃ (x̂)] = ck. (C7)

Therefore we can generate multiple samples of x̂, denoted
by x1, x2, . . . , xNs , and then approximate ck by

ck ≈ 2 − δ0k

Ns

Ns∑

j =1

Tk(xj )f̃ (xj ). (C8)

Approximating each ck to precision ε takes Ns = O(ε−2)

samples of x̂ and the corresponding f̃ (x̂). When applying
this approach to learn conservation laws, f (t) and there-
fore f̃ (x̂) can only be evaluated with shot noise. This adds
to the variance, but does not change the O(ε−2) scaling.
To ensure a uniform ε approximation for f (t), we need
each ck to be evaluated to precision O(ε/K). Note that
K = O(log(ε−1)). We therefore arrive at a sample com-
plexity of O(ε−2 log2(ε−1)) with this method; i.e., with
this many pairs of (tj , f (tj )) where the value of f (tj )

Number of Samples

Max Fitting Error

FIG. 4. The uniform approximation error max0≤t≤T |f (t) −
p(t)| as a function of the number of samples of f (t) using the
Gauss-Chebyshev approach. Both axes are on the logarithmic
scale. The gray dashed line has slope −0.5, representing the
1/

√
Ns scaling, where Ns is the number of samples. The function

being fitted is f̃ (x) = (1 + i)e(0.3)iπx + e−(0.19)iπx with K = 3.

is subject to random noise, we will be able to obtain a
polynomial p(t) such that

max
t∈[0,T]

|f (t) − p(t)| ≤ ε (C9)

with large probability.
Another method for evaluating ck is through the Gauss-

Chebyshev quadrature. We can discretize the integral in
Eq. (C5) as

ck ≈ 2 − δ0k

K + 1

K+1∑

j =1

Tk(xj )f̃ (xj ), (C10)

where xj = cos(2π(j − 1)/(K + 1)). Note that because
of the spectral accuracy of the Gauss-Chebyshev quadra-
ture we only need K + 1 quadrature points instead of Ns
different x values as in Eq. (C8). We therefore need to
evaluate f̃ (xj ) to precision O(ε/K) for each j . This takes
O(K2ε−2) samples for each j . In total there are K + 1 dif-
ferent f̃ (xj ) to evaluate, and, consequently, the final sam-
ple complexity is O(K3ε−2) = O(ε−2 log3(ε−1)). Despite
the slightly worse asymptotic scaling compared to the
Monte Carlo integration approach, we found that if ε is
not too small, the Gauss-Chebyshev method in fact takes
fewer samples to achieve the same accuracy. In Fig. 4, we
numerically show that the error decays roughly as 1/

√
Ns

as the number of samples Ns increases.

b. Short-time interpolation

We first propose a method for the case where �T ≤ 1. In
this case, f (t) can be well approximated by a polynomial
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through a Taylor expansion. We have

fi(t) =
∞∑

k=0

f (k)
i (T/2)

k!
(t − T/2)k

=
K∑

k=0

f (k)
i (T/2)

k!
(t − T/2)k + O

( C
2K

)
, (C11)

where in deriving the second line, we have used the fact
that

∣∣∣∣
f (k)
i (T/2)

k!
(t − T/2)k

∣∣∣∣ ≤ C
(

�T
2

)k

≤ C
2k . (C12)

We then define

pK
i (t) =

K∑

k=0

f (k)
i (T/2)

k!
(t − T/2)k. (C13)

This is a degree-K polynomial satisfying

|fi(t) − pK
i (t)| ≤ C

2K (C14)

for t ∈ [0, T].
Following Ref. [48], which in turn relies on Ref. [59],

we generate independent and identically distributed sam-
ples t1, t2, . . . , tm from the Chebyshev distribution on [0, T],
specified by the probability density function (1/π)(t(T −
t))−1/2. We then generate Ns classical shadows for each
tj , j = 1, 2, . . . , m. Therefore we are able to generate esti-
mates yij such that

E[yij ] = fi(tj ), var[yij ] = O
(‖Oi‖2

shadow

Ns

)
. (C15)

Therefore, with an appropriately chosen constant factor,
we have

|yij − fi(tj )| ≤ O
(‖Oi‖2

shadow

Ns

)
(C16)

with probability at least 2/3. This indicates that

|yij − pK
i (tj )| ≤ O

(‖Oi‖2
shadow

Ns

)
+ C

2K (C17)

with probability at least 2/3. By the Chernoff-Hoeffding
theorem, the above inequality holds for a majority of the
j = 1, 2, . . . , m with probability at least 1 − e−	(m).

Using the robust polynomial interpolation method pro-
posed in Ref. [59], and as stated in Theorem E.1

of Ref. [48], we can construct polynomials p̂i(t) from
{(tj , yij )} such that

|pK
i (t) − p̂i(t)| ≤ O

(‖Oi‖2
shadow

Ns
+ C

2K

)
(C18)

for all t ∈ [0, T] with probability at least 1 − δ′, by choos-
ing

m = O(K log(Kδ′−1)). (C19)

This then leads to

|fi(t) − p̂i(t)| ≤ O
(‖Oi‖2

shadow

Ns
+ C

2K

)
(C20)

for all t ∈ [0, T]. Therefore, p̂i(t) is a good uniform approx-
imation of fi(t) for each i. Alternatively, we can also
construct the polynomial approximation using the methods
outlined in Appendix C 1 a to get a similar cost scaling.

The above method can fail in two scenarios: either the
error bound (C17) fails to hold for a majority of times, or
the sampled times fail to correctly capture the profile of
the function. The former failure scenario has its probabil-
ity bounded by e−	(m) by the Chernoff-Hoeffding theorem,
and the latter by δ′ from the robust polynomial interpola-
tion procedure. As a result, if we want to keep the total
failure probability for a single fi(t) to be at most δ, then we
only need

e−	(m) + δ′ ≤ δ. (C21)

To this end, and taking into account Eq. (C19), it suffices
to choose

m = O(K log(Kδ′−1)), δ′ = δ/2. (C22)

We want the uniform approximation error in Eq. (C20) to
be upper bounded by ε. Therefore we can choose

Ns = O
(

maxi ‖Oi‖2
shadow

ε2

)
, K = O(log(Cε−1)).

(C23)

Combining the above analysis, in particular Eqs. (C22)
and (C23), the total number of classical shadows we
need is

Ns × m = O
(

maxi ‖Oi‖2
shadow

ε2 log(Cε−1)

× log
(

log(Cε−1)

δ

))
. (C24)

We summarize the above analysis in the following lemma.
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Lemma 4. Let fi(t) = Tr[ρ(t)Oi] for i = 1, 2, . . . , χ . We
further assume that |f (k)

i (t)| ≤ C�kk!. Then, for T ≤ 1/�,
we can construct polynomials p̂i(t), i = 1, 2, . . . , χ , with
degree up to O(log(Cε−1)) such that

Pr
[

max
t∈[0,T]

|p̂i(t) − fi(t)| > ε
]

< δ, (C25)

using

O
(

maxi ‖Oi‖2
shadow

ε2 log(Cε−1) log
(

log(Cε−1)

δ

))

(C26)

classical shadows of the time-evolved state ρ(t).

c. Long-time interpolation

We now consider the case where T is not necessarily
upper bounded by 1/�. In this case we can simply par-
tition the interval [0, T] into segments, each of length at
most 1/�, and there are therefore �T such segments. We
then use the algorithm described in Appendix C 1 b to gen-
erate a polynomial to approximate each fi(t) on each of the
�T segments. Piecing these polynomials together we have
a piecewise polynomial approximation ĝi(t) that approxi-
mates fi(t) for all t ∈ [0, T]. The success probability of this
procedure can be obtained via a union bound. We therefore
arrive at the following theorem from Lemma 4.

Theorem 6. Let fi(t) = Tr[ρ(t)Oi] for i = 1, 2, . . . , χ .
We further assume that |f (k)

i (t)| ≤ C�kk!. Then, for T > 0,
we can construct piecewise polynomial functions ĝi(t), i =
1, 2, . . . , χ , with degrees up to O(log(Cε−1)) on at most
�T segments such that

Pr
[

max
t∈[0,T]

|ĝi(t) − fi(t)| > ε
]

< δ, (C27)

using

O
(

�T maxi ‖Oi‖2
shadow

ε2 log(Cε−1) log
(

�T log(Cε−1)

δ

))

(C28)

classical shadows of the time-evolved state ρ(t).

2. Testing conservation laws

For each i = 1, 2, . . . , χ , we define the time average f̄i =
(1/T)

∫ T
0 fi(t)dt. For each i, we want to test which of the

two following hypotheses is true.
Hypothesis 1. For all t ∈ [0, T], fi(t) = f̄i.
Hypothesis 2. There exists t∗ ∈ [0, T] such that |fi(t∗) −

f̄i| ≥ ε.
Unlike the usual statistical hypothesis testing situation,

the two hypotheses we consider above are treated on an

equal footing, and therefore we do not need to distinguish
between the null hypothesis and the alternative hypothe-
sis. This is possible because we are considering a promise
decision problem.

With the piecewise polynomial approximations ĝi(t)
we have, we can easily distinguish the two cases. An
ε/8-uniform approximation ensures that

|ĝi(t) − fi(t)| ≤ ε

8
,

∣∣∣∣
1
T

∫ T

0
ĝi(t)dt − f̄i

∣∣∣∣ ≤ ε

8
. (C29)

Therefore, if Hypothesis 1 is true then we have

∣∣∣∣
1
T

∫ T

0
ĝi(t)dt − ĝi(t)

∣∣∣∣ ≤ ε

8
+ ε

8
= ε

4
. (C30)

If Hypothesis 2 is true then we have

∣∣∣∣
1
T

∫ T

0
ĝi(t)dt − ĝi(t∗)

∣∣∣∣

≥ |f̄i − fi(t∗)| −
∣∣∣∣
1
T

∫ T

0
ĝi(t)dt − f̄i

∣∣∣∣ − |fi(t∗) − ĝi(t∗)|

≥ 3ε

4
. (C31)

Therefore, the two hypotheses can be distinguished by
the statistic maxt∈[0,T] |(1/T)

∫ T
0 ĝi(t)dt − ĝi(t)| ≤ ε/4 or ≥

3ε/4.
We can successfully distinguish between the two cases

if we get an ε-uniform approximation for fi(t). Therefore
we can use Theorem 6 to determine the cost of keeping the
error probability below δ (which means that both the type-
I and type-II error probabilities are below δ). We therefore
have the following theorem.

Theorem 7. Let fi(t) = Tr[ρ(t)Oi] for i = 1, 2, . . . , χ .
We further assume that |f (k)

i (t)| ≤ C�kk!. Then, for T > 0,
we can distinguish between Hypotheses 1 and 2 for each i
correctly using

O
(

�T maxi ‖Oi‖2
shadow

ε2 log(Cε−1) log
(

�T log(Cε−1)

δ

))

(C32)

classical shadows of the time-evolved state ρ(t).

APPENDIX D: TESTING CONSERVATION LAWS
FOR AN ENSEMBLE OF INITIAL STATES

In this appendix, we upper bound the generalization
error given in Eq. (9) in the main text, which we restate
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here:

∣∣∣∣Eρ∼Dd(Oi, ρ) − 1
NI

NI∑

k=1

d(Oi, ρk)

∣∣∣∣. (D1)

Note that |d(O, ρ)| ≤ 2‖O‖ by the definition of d(O, ρ)

given in Eq. (7). As a result, by Hoeffding’s inequality, the
above generalization error is at most ε′ with probability at
least

1 − 2 exp
(

− NIε
′2

2‖O‖2

)
. (D2)

This means that, in order to make the generalization error
at most ε with probability at least 1 − δ′, we need

NI = O(ε−2 log(δ′−1)‖O‖2). (D3)

APPENDIX E: QUERY COMPLEXITY LOWER
BOUND FOR TESTING CONSERVATION LAWS

FOR ALL INITIAL STATES

In this appendix, we consider the setting where the
Hamiltonian e−iHt on N qubits is provided through an ora-
cle, and we want to show that testing whether H commutes
with a simple observable can require 	(2N/2) queries to
the oracle in the worst case.

Our result is based on the lower bound for comput-
ing the OR function. In this setting, an 2N -bit string x =
(x0, x1, . . . , x2N −1) is provided through an oracle U that
satisfies

U|n〉 = (−1)xn |n〉 (E1)

for n = 0, 1, . . . , 2N − 1. In order to compute OR(x) [78],
it is known that at least 	(2N/2) queries to U are needed
[61]. This query complexity lower bound still holds even
if we constrain x to contain at most a single 1, which cor-
responds to the partial function setting discussed in the
comment after Theorem 4.13 of Ref. [61].

Now we choose our Hamiltonian H = U to be this ora-
cle unitary U, which is incidentally also Hermitian. We
further restrict to the case where x contains at most a sin-
gle 1. We first implement e−iHt using the oracle U itself.
Because the eigenvalues of H = U are ±1, we can imple-
ment e−iHt using only two queries of U for arbitrary t
through phase kickback.

We now assume that an algorithm can do the following:
given access to e−iHt (acting on N qubits) for arbitrarily
chosen t, it can distinguish the two cases

[H , X1] = 0 or ‖[H , X1]‖ ≥ 1, (E2)

where X1 is the Pauli-X operator on the first qubit. If the
algorithm can accomplish the task with Q queries to e−iHt,

we next argue that it can compute OR(x) using 2Q queries
to U (because of the implementation of e−iHt discussed in
the previous paragraph), and in this way show that Q =
	(2N/2).

Our argument goes as follows: if OR(x) = 1 then there
exists 0 ≤ n∗ ≤ N − 1 such that xn∗ = 1, whereas xn = 0
for all other n because of our restriction of the domain of
the OR function. Therefore,

H = U = I − 2|n∗〉〈n∗|. (E3)

One can then compute

‖[H , X1]‖ = 2‖[|n∗〉〈n∗|, X1]‖ = 2, (E4)

where we have used the fact that X1|n∗〉 is orthogonal to
|n∗〉. On the other hand, if OR(x) = 0 then H = U = I ,
and, as a result, [H , X1] = 0. Therefore, as long as we can
distinguish the two cases in Eq. (E2), we are able to eval-
uate OR(x). The above argument therefore leads us to the
following theorem.

Theorem 8. Given access to e−iHt (acting on N qubits)
for arbitrarily chosen t as a black-box oracle, any algorithm
that can distinguish between [H , X1] = 0 and ‖[H , X1]‖ ≥
1 with probability at least 2/3, where X1 is the Pauli-X
operator on the first qubit, takes at least 	(2N/2) queries to
e−iHt in the worst case.

APPENDIX F: TIME-DERIVATIVE BOUNDS FOR
LOCAL OBSERVABLE EXPECTATION VALUES

We consider a general Hamiltonian of the form

H =
∑

P∈{I ,X ,Y,Z}N

λPP, (F1)

where |λP| ≤ 1, and P = ⊗
j Pj is a Pauli operator with

components Pj ∈ {I , X , Y, Z}. We show that the local
observable expectation values behave nicely as a func-
tion of time for a class of Hamiltonians. More precisely,
consider a local observable O, which, by definition, is sup-
ported on s = O(1) adjacent qubits; we want to bound the
high-order derivatives of

〈O(t)〉 = Tr[eiHtOe−iHtρ]. (F2)

The Hamiltonians H we consider need to satisfy the
following assumption.

Lemma 5. Let H in Eq. (F1) be a k-local Hamiltonian.
We assume that, for each qubit j ,

∑
P:Pj �=I |λP| ≤ �. Then

∣∣∣∣
d�

dt�
〈O(t)〉

∣∣∣∣ = O(�!(2�(k − 1))�‖O‖). (F3)
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Proof. First, we observe that

d�

dt�
〈O(t)〉 = tr[eiHt ad�

H (O)e−iHtρ], (F4)

where we recall the notation that adA(B) := [A, B]. There-
fore, it suffices to prove that

‖ ad�
H (O)‖ = O(�!(2�(k − 1))�‖O‖). (F5)

We first expand ad�
H (O) using the expression for H in

Eq. (F1):

ad�
H (O) =

∑

P1,P2,...,P�

λP1λP2 · · · λP�

× [P�, . . . [P2, [P1, O]] . . . ]. (F6)

Note that the nested commutator [P�, . . . [P2, [P1, O]] . . . ]
�= 0 only if each Pr overlaps with the nested commutator
up to the r − 1 level, r = 1, 2, . . . , �. For a fixed sequence
of {Pr}, we recursively define these nested commutators
through

O0 = O, Or = [Pr, Or−1], r = 1, 2, . . . , �. (F7)

Then, for each Pr, there must exist a qubit qr such that both Pr and Or−1 act nontrivially on qr, in order for
[P�, . . . [P2, [P1, O]] . . . ] �= 0. Consequently, we have

∑

P1,P2,...,P�

|λP1λP2 · · · λP� |‖[P�, . . . [P2, [P1, O]] . . . ]‖

≤
∑

q1∈supp(O)

∑

P1:P1
q1 �=I

∑

q2∈supp(O1)

∑

P2:P2
q2 �=I

· · ·
∑

q�∈supp(O�-1)

∑

P�:P�
q�

�=I

|λP1λP2 · · · λP� |‖O‖

= ‖O‖
∑

q1∈supp(O)

∑

P1:P1
q1 �=I

|λP1 |
∑

q2∈supp(O1)

∑

P2:P2
q2 �=I

|λP2 | · · ·
∑

q�∈supp(O�-1)

∑

P�:P�
q�

�=I

|λP� |. (F8)

Note that
∑

P�:P�
q�

�=I |λP� | ≤ � by assumption. As a result,

∑

q�∈supp(O�-1)

∑

P�:P�
q�

�=I

|λP� | ≤ | supp(O�−1)|�

≤ (s + (� − 1)(k − 1))�, (F9)

where we have used the fact that | supp(O�−1)| ≤ s + (� −
1)(k − 1), which can be proved by induction on �. Because
of this, the right-hand side of Eq. (F8) can be upper
bounded by

(s + (� − 1)(k − 1))�‖O‖
×

∑

q1∈supp(O)

∑

P1:P1
q1 �=I

|λP1 |
∑

q2∈supp(O1)

∑

P2:P2
q2 �=I

|λP2 | · · ·

×
∑

q�−1∈supp(O�-2)

∑

P�:P�−1
q�−1 �=I

|λP�−1 |. (F10)

One can keep doing this � times, and the right-hand side of
Eq. (F8) is bounded by

‖O‖��s(s + k − 1) · · · (s + (� − 1)(k − 1)). (F11)

Because of Eq. (F6), this is an upper bound of ‖ ad�
H (O)‖.

We only need to bound s(s + k − 1) · · · (s + (� −
1)(k − 1)). We have

s(s + k − 1) · · · (s + (� − 1)(k − 1))

= (k − 1)�
s

k − 1

(
s

k − 1
+ 1

)
· · ·

(
s

k − 1
+ � − 1

)

≤ (k − 1)�
(�s/(k − 1)� + � − 1)!

�s/(k − 1) − 1�!

= (k − 1)�
(�s/(k − 1)� + � − 1

�

)
�!

≤ (k − 1)�2�s/(k−1)�+�−1�!

= O((2(k − 1))��!). (F12)

This completes the proof. �
Next, we show that geometrically local Hamiltonians

and local Hamiltonians with power-law interaction that
decays fast enough satisfy the assumptions of Lemma 5.
The key quantity of interest is

∑
P:Pj �=I |λP|, which is the

sum of the absolute value of all coefficients of Pauli terms
that act nontrivially on a qubit j . For geometrically local
Hamiltonians, there are only O(1) terms acting on any
given qubit, and, consequently,

∑
P:Pj �=I |λP| = O(1) if

|λP| ≤ 1, as assumed at the beginning of this section.
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For power-law interaction Hamiltonians, we adopt a
restricted definition to make the discussion easier, without
neglecting any essential feature of these Hamiltonians. For
these Hamiltonians, λP �= 0 only when P involves at most
two qubits. Moreover, |λP| = O(d−α), where d is the dis-
tance, on a D-dimensional lattice, between the two qubits,
and α is the exponent deciding how rapid the decay is. The
sum of all coefficients involving a qubit j can be roughly
bounded by

∑

j ′∈ZD

|j ′|−α , (F13)

where Z is the set of all integers, and Z
D is

a D-dimensional lattice. When α > D + 1, we have∑
j ′∈ZD |j ′|−α < ∞, thus giving us a bound

∑
P:Pj �=I

|λP| = O(1).
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Explicit construction of local conserved operators in disor-
dered many-body systems, Phys. Rev. B 94, 144208 (2016).

[35] E. Chertkov, B. Villalonga, and B. K. Clark, Numeri-
cal evidence for many-body localization in two and three
dimensions, Phys. Rev. Lett. 126, 180602 (2021).

[36] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi,
X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman, Inte-
grable and chaotic dynamics of spins coupled to an optical
cavity, Phys. Rev. X 9, 041011 (2019).

[37] J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile,
N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, and A.
Laing, et al., Experimental quantum Hamiltonian learning,
Nat. Phys. 13, 551 (2017).

[38] T. J. Evans, R. Harper, and S. T. Flammia, Scalable
Bayesian Hamiltonian learning, ArXiv:1912.07636.

[39] A. Gu, L. Cincio, and P. J. Coles, Practical black box
Hamiltonian learning, ArXiv:2206.15464.

[40] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, Robust
online Hamiltonian learning, New J. Phys. 14, 103013
(2012).

[41] D. Hangleiter, I. Roth, J. Eisert, and P. Roushan, Precise
Hamiltonian identification of a superconducting quantum
processor, ArXiv:2108.08319 (2021).

[42] N. Wiebe, C. Granade, C. Ferrie, and D. Cory, Quantum
Hamiltonian learning using imperfect quantum resources,
Phys. Rev. A 89, 042314 (2014).

[43] N. Wiebe, C. Granade, C. Ferrie, and D. G. Cory, Hamil-
tonian learning and certification using quantum resources,
Phys. Rev. Lett. 112, 190501 (2014).

[44] W. Yu, J. Sun, Z. Han, and X. Yuan, Practical and efficient
Hamiltonian learning, ArXiv:2201.00190 (2022).

[45] A. Zubida, E. Yitzhaki, N. H. Lindner, and E. Bairey, Opti-
mal short-time measurements for Hamiltonian learning,
ArXiv:2108.08824.

[46] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, Robust
online Hamiltonian learning, New J. Phys. 14, 103013
(2012).

[47] Z. Li, L. Zou, and T. H. Hsieh, Hamiltonian tomography via
quantum quench, Phys. Rev. Lett. 124, 160502 (2020).

[48] D. S. Franca, L. A. Markovich, V. Dobrovitski, A. H.
Werner, and J. Borregaard, Efficient and robust estimation
of many-qubit Hamiltonians, ArXiv:2205.09567.

[49] J. Haah, R. Kothari, and E. Tang, Optimal learning of
quantum Hamiltonians from high-temperature Gibbs states,
ArXiv:2108.04842 (2021).

[50] L. Pastori, T. Olsacher, C. Kokail, and P. Zoller, Charac-
terization and verification of Trotterized digital quantum
simulation via Hamiltonian and Liouvillian learning, PRX
Quantum 3, 030324 (2022).

[51] M. C. Caro, Learning quantum processes and Hamiltonians
via the Pauli transfer matrix, ArXiv:2212.04471.

[52] H.-Y. Huang, Y. Tong, D. Fang, and Y. Su, Learning
many-body Hamiltonians with Heisenberg-limited scaling,
ArXiv:2210.03030.

[53] T.-L. Zhao, S.-X. Hu, and Y. Zhang, Maximum-likelihood-
estimate Hamiltonian learning via efficient and robust quan-
tum likelihood gradient, Phys. Rev. Res. 5, 023136 (2023).

[54] O. Shtanko, D. S. Wang, H. Zhang, N. Harle, A. Seif, R.
Movassagh, and Z. Minev, Uncovering local integrability
in quantum many-body dynamics, ArXiv:2307.07552.

[55] S. Chen, W. Yu, P. Zeng, and S. T. Flammia, Robust shadow
estimation, PRX Quantum 2, 030348 (2021).

[56] D. E. Koh and S. Grewal, Classical shadows with noise,
Quantum 6, 776 (2022).

[57] V. Vitale, A. Rath, P. Jurcevic, A. Elben, C. Branciard,
and B. Vermersch, Estimation of the quantum Fisher
information on a quantum processor, ArXiv:2307.16882
(2023).

[58] M. L. LaBorde and M. M. Wilde, Quantum algorithms
for testing Hamiltonian symmetry, Phys. Rev. Lett. 129,
160503 (2022).

[59] D. Kane, S. Karmalkar, and E. Price, in 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science
(FOCS) (IEEE, Berkeley, CA, 2017), p. 391.

[60] We use the asymptotic notation Õ(f (x)) to denote
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