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Quantum Simulation of the First-Quantized Pauli-Fierz Hamiltonian

Priyanka Mukhopadhyay ,1,* Torin F. Stetina,2,3,† and Nathan Wiebe4,5,6,‡

1
Department of Physical & Environmental Sciences, University of Toronto, Ontario M1C 1A4, Canada

2
Simons Institute for the Theory of Computing, Berkeley, California 94720, USA

3
Berkeley Quantum Information and Computation Center, University of California, Berkeley, California

94720-1460, USA
4
Department of Computer Science, University of Toronto, Ontario M5S 2E4, Canada

5
Pacific Northwest National Laboratory, Richland, Washington 99354, USA

6
Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada

 (Received 27 August 2023; accepted 21 February 2024; published 15 March 2024)

We provide an explicit recursive divide-and-conquer approach for simulating quantum dynamics and
derive a discrete first-quantized nonrelativistic QED Hamiltonian based on the many-particle Pauli-Fierz
Hamiltonian. We apply this recursive divide-and-conquer algorithm to this Hamiltonian and compare it to
a concrete simulation algorithm that uses qubitization. Our divide-and-conquer algorithm, using lowest-
order Trotterization, scales for fixed grid spacing as Õ(�N 2η2t2/ε) for grid size N , η particles, simulation
time t, field cutoff �, and error ε. Our qubitization algorithm scales as Õ(N (η + N )(η +�2)t log(1/ε)).
This shows that even a naive partitioning and low-order splitting formula can yield, through our divide-
and-conquer formalism, superior scaling to qubitization for large�. We compare the relative costs of these
two algorithms on systems that are relevant for applications such as the spontaneous emission of photons
and the photoionization of electrons. We observe that for different parameter regimes, one method can be
favored over the other. Finally, we give new algorithmic and circuit-level techniques for gate optimization,
including a new way of implementing a group of multicontrolled-X gates that can be used for better
analysis of circuit cost.
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I. INTRODUCTION

The prospect of simulating quantum systems is a highly
anticipated application for fault-tolerant quantum com-
puters of the future. The inception of this application of
quantum computation is typically attributed to Richard
Feynman in the 1980s [1]. Since then, there has been
a flurry of both theoretical and experimental research
on Hamiltonian-simulation algorithms [2–11] and spe-
cific applications ranging from condensed-matter physics
[12–15], through chemistry [16–20], high-energy parti-
cle physics [21–26], quantum gravity [27–31], and much
more [32–38]. Research in these applications of simulating
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physics has shown a variety of challenges specific to
each regime of interest, and the subtleties of the benefits
and limitations of the select Hamiltonian-simulation algo-
rithms have become more apparent as progress has been
moving forward.

In this work, we focus on the nonrelativistic regime of
chemistry and on condensed matter, which is a very active
field in the development of quantum algorithms. Specifi-
cally, we use a first-quantized approach to simulating the
many electron degrees of freedom, due to their favorable
sublinear asymptotic scaling in the number of orbitals or
grid points, which is usually much larger than the num-
ber of electrons [20,39]. Typically, quantum simulations
of chemistry primarily focus on the Coulomb Hamilto-
nian for electrons, which includes one- and two-body
interactions and classical clamped nuclei using the Born-
Oppenheimer approximation. While this work is impor-
tant for understanding many chemical properties including
chemical-reaction rates, with both qualitative and quanti-
tative success, there are many basic and applied problems
where the fundamental nature of the quantum electro-
magnetic (EM) field is important. Thus, we would like
to treat electrons and the EM field on an even footing,
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where both have quantum degrees of freedom. One exam-
ple where this is important is in cavity QED [40–43].
Here, atomic or molecular systems are placed in a mirrored
cavity, increasingly coupling the matter system to the fun-
damental EM mode defined by the cavity size, to the point
at which electronic and photonic states combine into so
called “polaritonic” states. Obviously, the properties of this
system, which require explicit quantum degrees of free-
dom for the EM field, cannot be modeled properly with
electron-only Hamiltonians. Another active area of work
is in attosecond science, where experiment and theory are
actively investigating the short-time dynamics of electron
motion after photoexcitation [44–54]. Here, there are still
many unanswered questions about how the electrons move
in the short time after interacting with light but the compli-
cated light-matter correlations make this difficult to model
theoretically.

Overall, the dynamical properties of quantum EM fields
interacting with many-electron systems are still poorly
understood but there is significant basic and applied sci-
entific motivation to push our understanding further in this
field. One of the main goals of understanding this com-
plex interplay of QED will be to “actively control and
manipulate electrons on the attosecond time and angstrom
length scale” [55]. In order to attempt to simulate this
on a fault-tolerant quantum computer, we must add the
proper degrees of freedom to account for the quantum EM
field. To simulate nonrelativistic QED, we utilize the mul-
tielectron Pauli-Fierz Hamiltonian [sometimes referred to
as the nonrelativistic quantum electrodynamical (NRQED)
Hamiltonian], which is described in detail in Sec. II A.
In short, the physics of the Pauli-Fierz Hamiltonian mod-
ifies the electron-only one-body momentum term from
the Coulomb Hamiltonian to include a minimal-coupling
description of the light-matter interaction and retains the
standard two-body Coulomb electronic interaction, with a
free EM dynamical field term as well.

A. Our results and contributions

In this paper, we describe a couple of approaches
for the Hamiltonian simulation of a first-quantized full
NRQED simulation of light-matter interactions using the
first-quantized Pauli-Fierz Hamiltonian discretized on a
lattice.

(I) In Sec. II A, we describe the derivation of the
first-quantized general spin-1/2 Pauli-Fierz Hamil-
tonian for η particles given in Ref. [56]. The real
space is discretized onto a lattice, with a trunca-
tion of the electric field Hilbert space. According
to our knowledge, this is the first derivation of the
many-body Pauli-Fierz Hamiltonian in first quanti-
zation described in the literature. We consider two
approaches to simulate this Hamiltonian, ĤPF.

(II) First, we consider simulation using a recursive
divide-and-conquer approach [Algorithm I (see
Sec. II C)], improving on the technique introduced
in Ref. [6]. Here, we divide the given Hamilto-
nian into several fragments using Trotter-Suzuki
formulas [57,58], simulate each of them separately,
possibly using different algorithms, and then com-
bine the results. In Ref. [6], the authors have used
Trotterization for each fragment. In this paper,
we have combined Trotterization with qubitization.
Such approaches can be very useful if we want to
exploit the best of many worlds. For some Hamil-
tonians, especially those with commuting terms,
Trotterization gives less gate complexity but it has
a superpolynomial scaling of error tolerance. On the
other hand, qubitization has a logarithmic depen-
dence on the inverse of tolerable error but the gate
complexity depends on the �1 norm of the coeffi-
cients when the Hamiltonian is expressed as a sum
of unitaries. For many complicated Hamiltonians,
it may be difficult to simulate using one particular
existing technique. In such scenarios, the divide-
and-conquer approach can be very helpful. Such
divide-and-conquer types of approaches have shown
their value in Refs. [59,60], where the focus has
been on simulation of specific local Hamiltonians.
Our approach is more general and can be applied
to a broader spectrum of Hamiltonians, in order to
achieve better complexity of simulation.
In Sec. II C, we describe the divide-and-conquer
algorithm and derive a bound on the gate com-
plexity (Theorem 3). Later, in Appendixes G 1–G 4,
we describe in detail the simulation of each of the
partitions of ĤPF.

(III) The second algorithm (Algorithm II) that we con-
sider is to use qubitization [5,7,8]. For this, we block
encode the entire Hamiltonian ĤPF. In Sec. II B,
we describe a divide-and-conquer approach to con-
structing the block encoding of the sum and product
of different Hamiltonians. We show that for many
situations, it is advantageous in terms of number of
gates when we split the Hamiltonian into separate
parts, block encode each of them, and then combine
these parts. For both our algorithms, such recur-
sive block encoding has been useful. We describe
Algorithm II in Sec. II D and provide a bound on the
gate complexity (Theorem 4).

(IV) Both these algorithms have their own pros and cons
and depending on the Hamiltonian under considera-
tion, one can be favored over the other for different
parameter regimes. To illustrate more on this, in
Sec. III, we have compared the relative costs of
these two algorithms with those of some model sys-
tems of interest. For example, we consider a regime
of a small number of electrons in a single-atom
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system, which is relevant for applications such as
spontaneous emission of photons into the field,
photoionization of electrons, and the photoelectric
effect. Roughly, comparing Theorems 3 and 4, we
find that both of these algorithms have a quadratic
dependence on the lattice size N . While qubitization
has a quadratic dependence on the electric cutoff
�, divide and conquer shows a subquadratic depen-
dence. The complexity of the latter depends on the
partitioning and in this paper we have tried to prior-
itize �. This is reflected when we compare the cost
in Figs. 3 and 4. We observe that qubitization scales
better with respect to N , while divide and conquer
performs better with respect to �. Another interest-
ing phenomenon that we have observed is the fact
that as we increase the order of the Trotter splitting
in divide and conquer, the scaling becomes closer to
that of qubitization.
We have also discussed a few possible applica-
tions for simulating the Hamiltonian that we con-
sider, e.g., the determination of photoionization time
scales in atomic, molecular, and extended systems.
Further, we have discussed how the electric cutoff,
one of the parameters of interest, scales for certain
regimes of applied problems.

(V) On the circuit synthesis and optimization side,
we have developed a split-and-merge technique
(Theorem 2) to implement a group of multicont-
rolled-X gates in Sec. II B (see also Appendix D).
Such groups of gates occur in many places, e.g.,
Hamiltonian-simulation algorithms working with a
linear combination of unitaries [2–5,7], the synthe-
sis of efficient circuits for exponentiated Paulis [61],
the quantum approximate optimization algorithm
(QAOA) [62], quantum state preparation [63], quan-
tum machine learning [64], and the construction
of quantum read-only memory (QROM) [19] and
quantum random access memory (QRAM) [65].
The main intuition is to split and group the con-
trol qubits, use extra ancillas to store intermediate
information, and then implement the requisite logi-
cal function using these ancillas. We show that this
can lead to an asymptotic improvement in the gate
complexity of SELECT operations, by the shaving
of logarithmic factors. Such a circuit-optimization
technique may be of independent interest and may
be useful for other applications.

(VI) Among other technical contributions, we give
improved decompositions of certain matrices as lin-
ear combinations of unitaries. Specifically, we give
general procedures to decompose diagonal integer
matrices as a sum of exponentially fewer numbers
of unitaries. This also contributes to the asymptotic
improvement in gate complexity. In Appendix F, we
describe these decompositions and the computation

of the �1 norm of the Hamiltonian. It has been shown
in Ref. [58] that the Trotter error depends on nested
commutators. In Lemma 7, we show that these
nested commutators depend on pairwise commuta-
tors and on the sum of the �1 norm. The derivations
of these terms have also been given in Appendix H.
We hope that these technical contributions will be
useful in future works for better analyzing the com-
plexity of simulating Hamiltonians.

II. RESULTS

Here, we review the main results of our paper and pro-
vide an extended introduction to the physics of the Pauli-
Fierz Hamiltonian. The Pauli-Fierz Hamiltonian gives a
proper nonrelativistic treatment of single-particle QED.
This is frequently augmented to the multiparticle case
by including artificial Coulomb interactions between the
particles, resulting in a Hamiltonian that is more gen-
eral than the standard Hamiltonians studied in quan-
tum chemistry simulation. While the Pauli-Fierz Hamil-
tonian is a well-studied model, it is typically presented
in a second-quantized form. We will first review the
derivation of its first-quantized form, which we will
need in order to have a simulation algorithm the scal-
ing of which is comparable to the best-known simula-
tion results for chemistry in absentia of electrodynamical
effects.

A. Pauli-Fierz Hamiltonian

In order to simulate the Pauli-Fierz Hamiltonian, we
must first discretize the real space onto a lattice and pro-
vide a truncation for the electric field Hilbert space. We
will denote this cutoff as � and discretize the space as
a cubic lattice with side length L. N is the total num-
ber of grid points and so in each Cartesian direction
there are N 1/3 grid points. A single grid point, q, can
then be described as q = (qx, qy , qz) ∈ [0, N 1/3 − 1]3 ⊂
Z

3
+. We write that q varies from 1 to N for brevity,

instead of saying that qx, qy , and qz vary from 0 to
N 1/3 − 1. q + 1μ refers to the adjacent point of q in the
μth direction, i.e., it is obtained by adding the lattice
spacing to qμ. We often write q + 1 to refer to an adja-
cent point, when the direction is clear from the context or
when we want to refer to all the three neighboring points
of q.

In first-quantized representation, the particle number is
fixed and each particle has its own “copy” of the grid where
it lives. Subsequently, each first-quantized particle inter-
acts with the background field separately. The discretized
Hilbert space for the Pauli-Fierz Hamiltonian is then
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TABLE I. A list of the important variable definitions used throughout this paper.

Term Definition

η Number of particles in the simulation
e Bare electric charge
me Electron mass
N Number of lattice sites
G Set of lattice sites labeled q for a three-dimensional (3D) cubic lattice, where q ∈ [0, N 1/3]3 ⊂ Z

3
+

L Length of one side of the simulation box, where {L ∈ R | L > 0}
� = L3 Volume of box size L
� = �1/3/N 1/3 Lattice-spacing size
� Maximum cutoff for electric link quantum number
μ, ν Cartesian indices
σμ The μth Pauli matrix
Aμ(q) μth component of the magnetic vector potential at link site q

HPF = Hp ⊗ Hf (1)

= L2(C(2N )η(2�)3N
), (2)

where at each electric link between grid point q and q + 1,
there are 2�+ 1 possible electric link values. Recall that
we have three links per grid point in a periodic basis. How-
ever, for practical implementation, the link space will be
offset by one, so the total dimension of the Hilbert space
at each link is even, 2�. Collecting the notation into one
place for this paper, we will use the definitions as described
in Table I.

The general expression for the Hamiltonian on the N -
point cubic lattice with η electrons is

Ĥ = Hπ + Hs + HVee + HVne + Hf . (3)

Throughout this paper, we often refer to a summand
Hamiltonian as a “fragment Hamiltonian,” each of which
we will now describe. For convenience, we first describe
the registers on which the operators act. The state of the
qubits in the registers gives the wave function. There are
two registers, the particle register and the link register.
We store the spin and position of each of the η particles
in the particle register. To be precise, for each particle,
we allot one qubit to store the spin and 3 log2 N 1/3 =
log2 N qubits to store the Cartesian coordinates of its posi-
tion in the lattice grid. Thus the particle register is of
the form

⊗η

j =1 |s, q〉j , where q = (qx, qy , qz), and it has
η
(
1 + log2 N

)
qubits. Again, we assume a maximum cut-

off for the electric link eigenstates, �. In the link register,
we allot log2(2�) qubits for each of the three links per grid
point. Thus there are 3N log2(2�) qubits in the link space.
In later sections, when we describe the simulation algo-
rithms, we will mention that in each register we keep extra
qubits for selecting a subspace on which an operator acts
but these do not reflect on the state of the wave function.

Now, we describe each term of the fragment Hamilto-
nian in Eq. (3). For a more detailed background on the

derivation of these Hamiltonian terms, see Appendix A.
The operators act on three disjoint subspaces correspond-
ing to the particle spin, the particle position, and the gauge
link space. First, we describe the fragment Hamiltonians,
HVee and HVne , that involve only the particle degrees of
freedom acting on the Hp Hilbert space:

HVee = I ⊗
⎛
⎝ e2

4πε0�

η∑
i<j

N∑
q,r

1
||q − r||2 |q〉〈q|i |r〉〈r|j

⎞
⎠

⊗ I, (4)

HVne = I ⊗
(

− e2

4πε0�

η∑
i

K∑
κ

N∑
q

Zκ
||q − Rκ ||2 |q〉〈q|i

)

⊗ I. (5)

HVee and HVne capture the instantaneous Coulomb-
interaction terms between two electrons and the attrac-
tive term between an electron and a classical fixed point
charge representing a nucleus, respectively. |q〉〈q|i is
shorthand notation for the operator acting only on particle
i over the η-particle Hilbert space,

(⊗i−1
k=1 Ik

)
⊗ |q〉〈q|i ⊗(⊗η

k=i+1 Ik
)
. Additionally, κ indexes K classical nuclei at

real-space coordinate Rκ .
The free electromagnetic field Hamiltonian, Hf , acting

on the EM-field Hilbert space Hf is described as

Hf = I ⊗ I

⎛
⎝

N∑
q=1

3∑
μ=1

e2

2
E2

q,μ −
N∑

q=1

3∑
μ�=ν=1

1
e2 W2

q,μ,ν

⎞
⎠ ,

(6)

where each link q connects points adjacent to point q in
the lattice. If the inner summation index or subscript of an
operator is μ, then link q connects point q to its neigh-
bor in the μth direction of the lattice. We will explain
shortly what the double subscripts μ, ν imply in the case
of operator Wq,μ,ν .
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In the electric link basis, the Eq,μ operators are defined as

Eq,μ =
�−1∑
ε=−�

ε|ε〉〈ε|q,μ, E2
q,μ =

�−1∑
ε=−�

ε2|ε〉〈ε|q,μ, (7)

where |ε〉 and ε correspond to eigenvectors and eigenval-
ues of a particle in a ring, respectively, for each link q.
Here, we note that the cutoffs on the field are asymmetric
(�− 1 above and −� below) because, for convenience,
we want the dimension of the space to be a power of 2,
which facilitates a simpler binary encoding in our quan-
tum simulations. The magnetic field term can be defined
in terms of the “plaquette” operator, which is a product of
raising and lowering operators on link sites. The latter is
denoted by Uq,μ. Specifically,

Uq,μ =
�−1∑
ε=−�

|ε + 1〉〈ε|q,μ = exp
(
i�Aq,μ

)
(8)

and the plaquette operator is

W2
q,μ,ν =

3∑
μ�=ν

Uq,μUq+1μ,νU
†
q+1ν ,μU†

q,ν + H.c. (9)

Here, we note that (q,μ) and (q, ν) are the links connecting
point q to its adjacent point in the μth and νth direction,
respectively. We denote these adjacent points by q + 1μ
and q + 1ν , respectively. (q + 1μ, ν) is the link connect-
ing point q + 1μ to its adjacent point in the νth direction,
while (q + 1ν ,μ) is the link connecting point q + 1ν to
its adjacent point in the μth direction. Thus the operators
act on a plaquette, i.e., four edges of a square face in the
three-dimensional (3D) cube.

Next, Hπ is the modified electron kinetic term includ-
ing the interaction with the magnetic vector potential, in a
familiar form,

Hπ =
η∑

j =1

N∑
q

1
2me

(
I ⊗ pj ⊗ I − I ⊗ I ⊗ e

c
A(q)

)2
,

(10)

where we use the canonical quantization of the standard
particle momentum p → −i∇:

Hπ = 1
2me

η∑
j

N∑
q

(
I ⊗ (−i∇j )⊗ I − I ⊗ I ⊗ e

c
A(q)

)2

= 1
2me

η∑
j

N∑
q

3∑
μ=1

(
I ⊗ (−i∇j ,μ)⊗ I

− I ⊗ I ⊗ e
c

Aq,μ

)2

= 1
2me

η∑
j

N∑
q

3∑
μ=1

(
−I ⊗ ∇2

j ,μ ⊗ I + I ⊗ (i
2e
c

∇j ,μ)

⊗ Aq,μ + I ⊗ I ⊗ e2

c2 A2
q,μ

)
, (11)

where ∇j is the position gradient operator over the 3D grid
for particle j and A(q) represents the vector potential oper-
ator acting on the links connecting q to its adjacent point
in each of the three Cartesian directions. Thus, here the
summation over μ is implicit, which we will expand on
later.

At each link (q,μ), Aq,μ can be expanded from the
definition of Uq,μ, as noted in Eq. (8) and the latter forms
the “electric field ladder operators” along with its adjoint
form. Using this representation, we can determine the form
of Aq,μ as follows:

Aq,μ = 1
i�

log
(
Uq,μ

)
, (12)

Aq,μ = 1
i�

log

(
�−1∑
ε=−�

|ε + 1〉〈ε|q,μ

)
. (13)

By construction, the matrix log of the above operator turns
out to be diagonal in the Fourier-transformed basis, where
F is the Fourier-transform operator:

FAq,μF† = 1
i�

log(C)q,μ, (14)

in which C is Sylvester’s “clock” matrix,

C =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1

⎞
⎟⎟⎟⎟⎠

(15)

where ω = e2π i/d, d being the dimension of the matrix.
Therefore,

log(C) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0

0
2π i
d

0 · · · 0

0 0
2 × 2π i

d
· · · 0

...
...

...
. . .

...

0 0 0 · · · (d − 1)2π i
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Thus, as expected, the Aq,μ operator on an electric field link
is diagonal in the Fourier-transformed electric field basis
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and so

Aq,μ = 1
i�

F† log(C)q,μF . (17)

Lastly, the magnetic spin interaction matrix is defined as
follows:

Hs = −e
c

η∑
j =1

N∑
q

σ j · B(q)= −e
c

η∑
j =1

N∑
q

σ j · (∇ × A(q)) ,

(18)

where “×” denotes a vector cross product. This term is
derived from the initial particle-field interaction term in
Eq. (A1), using the Pauli vector identity, as is described
in more detail in Appendix B. Expanding into a sum over
Cartesian directions and separating the subspaces, the spin
Hamiltonian becomes

Hs = −e
c

η∑
j

N∑
q

3∑
μ�=ν �=ξ

σj ,μ ⊗ I ⊗ (∇νAq,ξ − ∇ξAq,ν
)

.

(19)

Throughout this work, we will assume atomic units, � =
e = me = 4πε0 = 1, where ε0 is the vacuum permittivity
constant, unless otherwise noted. Therefore, the final form
of the first-quantized Pauli-Fierz Hamiltonian in atomic
units is

ĤPF =
⎛
⎝ 1
�

η∑
k<j

N∑
q,r=1

(
I ⊗ 1

||q − r||2 |q〉〈q|k |r〉〈r|j ⊗ I

)

− 1
�

η∑
j =1

K∑
κ=1

N∑
q=1

(
I ⊗ Zκ

|q − Rκ‖2
|q〉〈q|j ⊗ I

)⎞
⎠

+
⎛
⎝1

2

η∑
j =1

N∑
q=1

3∑
μ=1

(−I ⊗ (i∇j ,μ ⊗ I

− I ⊗ I ⊗ 1
c

Aq,μ

)2
)

+
⎛
⎝

N∑
q=1

3∑
μ=1

I ⊗ I ⊗ 1
2

E2
q,μ −

N∑
q=1

3∑
μ�=ν=1

W2
q,μ,ν

⎞
⎠

−
⎛
⎝1

c

η∑
j =1

N∑
q=1

3∑
μ�=ν �=ξ=1

σj ,μ ⊗ I

⊗ (∇νAq,ξ − ∇ξAq,ν
)
⎞
⎠

:= HV + Hπ + Hf + Hs. (20)

For convenience of representation in later parts of this
paper, we define the following:

Hπ = H1π + H2π + H3π , (21)

where

H1π = 1
2

η∑
j =1

N∑
q=1

3∑
μ=1

−I ⊗ ∇2
j ,μ ⊗ I,

H2π = 1
c

η∑
j =1

N∑
q=1

3∑
μ=1

I ⊗ (i∇j ,μ)⊗ Aq,μ,

H3π = 1
2c2

η∑
j =1

N∑
q=1

3∑
μ=1

I ⊗ I ⊗ A2
q,μ;

Hf = Hf 1 + Hf 2, (22)

where

Hf 1 =
N∑

q=1

3∑
μ=1

I ⊗ I ⊗ 1
2

E2
q,μ,

Hf 2 = −
N∑

q=1

3∑
μ�=ν=1

I ⊗ I ⊗ W2
q,μ,ν ;

and

HV = HVee + HVne , (23)

where

HVee = 1
�

η∑
k<j

N∑
q,r=1

(
I ⊗ 1

||q − r||2 |q〉〈q|k |r〉〈r|j ⊗ I

)
,

HVne = − 1
�

η∑
j =1

K∑
κ=1

N∑
q=1

(
I ⊗ Zκ

|q − Rκ‖2
|q〉〈q|j ⊗ I

)
.

Our aim in the remainder of the work is to provide meth-
ods to block encode each of these pieces so that we can
simulate them using qubitization as well as a divide-and-
conquer scheme.

B. Recursive block encoding

In simulation algorithms such as qubitization [5,7] and
quantum singular-value transformation (QSVT) [8], we
need to block encode a matrix into a unitary in a higher-
dimensional Hilbert space. In this section, we briefly
describe this approach and discuss how block encod-
ings can be recursed through an approach reminiscent of
classical divide-and-conquer algorithms [66].
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Definition 1 (Block encoding [8]). Suppose that A is an
n-qubit operator, μ, ε ∈ R+, and m ∈ N. We then say that
the (m + n)-qubit unitary UA is a (λ, m, ε) block encoding
of A if

‖A − λ (〈S| ⊗ In)UA (|S〉 ⊗ In) ‖∞ ≤ ε, (24)

where |S〉 is an m-qubit state, also referred to as the “signal
state.”

We will often drop the second argument and write
“(λ, −, ε) block encoding of A,” because we focus on the
gate complexity and the second argument only captures the
extra ancilla needed in the block encoding. Often, for even
more brevity, if ε = 0, then we write “block encoding of
A/λ.”

Suppose, without loss of generality, that we have a
Hamiltonian Hi expressed as a linear combination of
unitaries (LCU), i.e., Hi = ∑Mi

j =1 hij Uij , such that λi =∑
j |hij |. In this case, we can have a (λi, log Mi, 0) block

encoding of Hi using an ancilla-preparation subroutine and
a unitary-selection subroutine, which we denote by PREPi
and SELECTi, respectively:

PREPi |0〉log Mi =
Mi∑

j =1

√
hij

λi
|j 〉 (25)

SELECTi =
Mi∑

j =1

|j 〉 〈j | ⊗ Uij (26)

It can be shown that [3]

〈0| PREP
†
i · SELECTi · PREPi |0〉 = Hi

λi
. (27)

Suppose that we have M Hamiltonians, H1, . . . , HM , each
of which has an LCU decomposition and for each one of
them we define the subroutines as in Eqs. (25) and (26).
Now, we use these subroutines to define the following:

PREP |0〉log M+∑i log Mi =
(

M∑
i=1

√
wiλi

A |i〉
)

⊗
M⊗

i=1

PREPi

(28)

SELECT =
M∑

i=1

(
|i〉 〈i| ⊗

i−1⊗
k=1

I ⊗ SELECTi

⊗
M⊗

k=i+1

I

)
, (29)

where wi > 0 and A = ∑M
i=1 wiλi. We can use the above

two subroutines to block encode a linear combination of

Hamiltonians, i.e., we can show that

(〈0| ⊗ 1)PREP† · SELECT · PREP(|0〉 ⊗ 1) = 1
A

M∑
i=1

wiHi.

Similar approaches have been used in previous works such
as Refs. [8,18,20] but we provide a general and rigorous
statement of this recursive-block-encoding result in the
following theorem, where we provide a formal statement.

Theorem 1. Let H = ∑M
i=1 wiHi be the sum of M Hamil-

tonians and let each of them be expressed as a sum of uni-
taries, as Hi = ∑Mi

j =1 hij Uij , such that λi = ∑
j |hij |, wi >

0. Each of the summand Hamiltonians is block encoded
using the subroutines defined in Eqs. (25) and (26). Then,
we can have an (A, 
log2(M )�, 0) block encoding of H ,
where A = ∑M

i=1 wiλi, using the ancilla-preparation sub-
routine (PREP) defined in Eq. (28) and the unitary-selection
subroutine (SELECT) defined in Eq. (29):

(1) The PREP subroutine has an implementation cost of
CPREP = ∑M

i=1 CPREPi + Cw, where CPREPi is the num-
ber of gates to implement PREPi and Cw is the cost of
preparing the state

∑M
i=1

√
wiλi/A |i〉.

(2) The SELECT subroutine can be implemented with a
set of multicontrolled-X gates, {Mi pairs ofClog2 Mi+1

X gates : i = 1, . . . , M }, M pairs of Clog M X gates,
and

∑M
i=1 Mi single-controlled unitaries, {cUij : j =

1, . . . , Mi; i = 1, . . . , M }.
The proof is given in Appendix C, where we argue that

we require fewer gates if we divide and block encode,
instead of block encoding H as a sum of M ′ = ∑M

i=1 Mi
unitaries. As an example, let us compare the number of
controlled-NOT (CNOT) and T gates required to implement
the SELECT subroutine as follows:

SELECT : |i〉 |0, k1〉1 . . . |1, j 〉i . . . |0, kM 〉M |ψ〉
�→ |i〉 |0, k1〉1 . . . |1, j 〉i . . . |0, kM 〉M Uij |ψ〉 .

In the above, we have represented each set of ancilla qubits
in the M + 1 subspaces of PREP as a separate register. We
allot one ancilla qubit, initialized to 0, for each PREPi regis-
ter. If the state of the first register containing log M qubits
is |i〉, then the ith register corresponding to PREPi is selected
by flipping this ancilla to 1. We require M (compute-
uncompute) pairs of Clog2 M X gates and M ancillas to make
this selection. Now, if the state of the PREPi register is |j 〉,
then we select the j th unitary in the LCU decomposition
of Hi, i.e., Uij . To select unitaries of the ith Hamilto-
nian Hi, we require Mi pairs of Clog2 Mi+1X . Decompos-
ing these multicontrolled-NOT gates [67,68], we require∑

i Mi(4 log(Mi + 1)− 4)+ M (4 log M − 4) T gates and∑
i Mi(4 log(Mi + 1)− 3)+ M (4 log M − 3) CNOT gates.

The use of logical AND gadgets reduces the gate complex-
ity in the uncomputation part.
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Now suppose that we block encode H as a sum of M ′ =∑M
i=1 Mi unitaries. In the SELECT′ subroutine, we have M ′

unitaries, each controlled on log2 M ′ qubits. Each of them,
in turn, can be implemented with a (compute-uncompute)
pair of Clog2 M ′

X and one controlled unitary. Decomposing
the multicontrolled-NOT in terms of Clifford+T gates [67,
68], we see that we require at most M ′(4 log2 M ′ − 4) T
gates and M ′(4 log2 M ′ − 3) CNOT gates.

Thus the difference in the T-gate-count estimate is
∑

i

Mi(4 log(Mi + 1)− 4)+ M (4 log M − 4)

−
(

4 log

(∑
i

Mi

)
− 4

)(∑
i

Mi

)

= 4
∑

i

Mi log

(
Mi + 1∑

j Mj

)
+ 4M log M − 4M ,

which is less than 0 in most cases. Similarly, we can show
that the difference in the CNOT count estimate is

4
∑

i

Mi log

(
Mi + 1∑

j Mj

)
+ 4M log M − 3M ,

which is again less than 0 in most cases. We use the same
number of controlled unitaries in both approaches. Thus,
using the divide-and-conquer technique (Theorem 1), it is
possible to reduce the implementation cost in terms of the
gate count, especially with regard to T gates and CNOT
gates.

More details can be found in Appendix C, where we
have also explained that we can follow such an approach
to block encode the product of Hamiltonians using fewer
gates.

Remark 1 (Sum of same Hamiltonians but acting on dis-
joint subspaces). Suppose, in Theorem 1, that all the Hi
are the same but that they act on disjoint subspaces. In this
case, each PREPi is the same and so it is sufficient to keep
only one copy of PREPi in the PREP subroutine of Eq. (28).
We can absorb wi in the weights of the unitaries obtained in
the LCU decomposition of Hi. Thus, in this case, we have

PREP |0〉log M+log Mi =
(√

1
M

M∑
i=1

|i〉
)

⊗ PREPi. (30)

We require only 
log M� Hadamard (H) gates to prepare
the superposition in the first register by padding out the
number of such subspaces to be a power of 2. This step can
be avoided, although standard approaches require ampli-
tude amplification [20]. With this modification in mind, we
also need to make slight modifications in the SELECT proce-
dure. This time, we keep an extra ancilla qubit, initialized
to 0, in each subspace. Given a particular state of the first

register, we select a subspace by flipping the qubit in the
corresponding subspace. The unitaries in each subspace
are now additionally controlled on this qubit (of its own
subspace). In Appendix C, we discuss the more general sit-
uation when each PREPi is the same but the Hamiltonians
Hi are different.

We can further optimize the number of gates by imple-
menting the group of multicontrolled unitaries in the
SELECT subroutines, using the following theorem. Here,
we partition the control qubits into different groups, store
intermediate information in some ancillas, and then imple-
ment the required logic using these intermediate results.

Theorem 2. Consider the unitary U = ∑M−1
j =0 |j 〉〈j | ⊗ Uj

for unitary operators Uj that can be implemented control-
lably. Let us assume that M is a power of 2 for simplicity.
Suppose that we have log2 M qubits and M (compute-
uncompute) pairs of Clog2 M X gates for selecting the M
basis states. Let r1, . . . , rn ≥ 1 be positive fractions such
that

∑n
i=1 1/ri = 1 and log2 M/ri are integers. Then, U can

be implemented using a circuit with

n∑
i=1

M
1
ri C

log2 M
ri X + MCnX

(compute-uncompute) pairs of gates, M applications of
controlled Uj , and at most

∑n
i=1 M 1/ri ancillas.

The proof is provided in Appendix D. Following the
construction in Refs. [67,68], the number of T gates
required to implement such multiply controlled gates is

Tn =
n∑

i=1

M
1
ri

(
4 log2 M

ri
− 4

)
+ M (4n − 4) (31)

and the difference between the T-count estimates with and
without splitting is

T1 − Tn = M (4 log2 M − 4)−
n∑

i=1

M
1
ri

(
4 log2 M

ri
− 4

)

− M (4n − 4)

= 4M (log2 M − n)− 4
n∑

i=1

M
1
ri

(
log2 M

ri
− 1

)
,

(32)

which can be positive for many values of n, r1, r2, . . . , rn.
For example, if each 1/ri = 1/n, i.e., we divide the control
qubits into equal-sized groups, then

(T1 − Tn)
′ = 4M (log2 M − n)− 4nM

1
n

(
log2 M

n
− 1

)

= 4
(

M − M
1
n

) (
log2 M − n

)
, (33)

which is 0 if n = 1 and n = log2 M and is greater than 0
for every 1 < n < log2 M . More illustrations are given in
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(a) (b)

FIG. 1. (a) The logarithm of the difference in the T-gate-count estimates for a SELECT operation with M controlled unitaries, denoted
by (T1 − Tn)

′, for various numbers of partitions n, for the case when each partition has an equal number of control qubits, i.e., log2 M/n.
In these cases, we see that the optimal division occurs when n = 2, which corresponds to the set being split in half. (b) The number
of pairs of T gates for different values of M and numbers of partitions n, when we make equal partitioning. In these cases, we observe
that the case in which the controls of the SELECT circuit are split into two groups outperforms the other splittings considered.

Fig. 1(a), where we show the variation of this difference
[Eq. (33)] for different values of n and M and we find that
the maximum difference occurs when we divide into two
equal parts. It can be shown that when 0 < 1/ri ≤ 1

2 , then
M 1/ri(log2 M/ri) ≤ K ′M , for a large enough constant K ′.
So, we can say that the number of T gates and CNOT gates
is in O(M ), saving logarithmic factors in the asymptotic
complexity. This bound also holds for many 1/ri >

1
2 but

breaks down at ri = 1. In Fig. 1(b), we compare the num-
ber of T gates for different values of n when the size of
each partition is the same [Eq. (31)]. The linear growth is
evident from the curves. Similarly, we can show that we
can have a reduction in the number of CNOT gates. With
the help of logical AND gadgets, we do not need to use any
T gate for the uncomputation part.

C. Algorithm I: Divide and conquer—recursive
Trotter splitting

The notion of the divide-and-conquer approach to simu-
lation is simple. The core idea behind it is that a Trotter
splitting can be used as a means of dividing the simu-
lation into smaller parts, each of which can be directly
simulated or further subdivided into smaller parts. The
recursive division of the Hamiltonian naturally forms a
tree, as depicted in Fig. 2. The partitions of the Hamilto-
nian are found according to a heuristic based on various
criteria, such as the norm, commutativity, etc., and then
simulation of each fragment is performed using differ-
ent simulation algorithms with sufficient accuracy. We can
repeatedly divide each fragment and use the Trotter-Suzuki
formula [57,58] to bound the error in the exponentials. The
resulting number of operations is bounded by the result of
the following theorem.

Theorem 3. Let p1 ≥ 1 be a constant. Assuming that
η, K ≤ N , 1/c�2 ∈ o(1) and K , Zsum ∈ O(η), it is possible
to simulate e−iĤPFt with error ε, using a divide-and-conquer

algorithm, with gate complexity in

Õ

(
N 2t log2�

( η
�2 +�2

)( tη
ε�2�

) 1
p1

)
.

ĤPF ; t

Sp1 ; ε1

r1N1 r1N1

H11 = Hf1 + Hs + HV + Hπ

τ1 = t
r1

Sp2 ; ε2

H12 = Hf2

τ1 = t
r1

; G1; δ1

r2N2 r2N2

H21 = Hf1

τ2 = τ1
r2

; G2; δ2

H22 = Hs + Hπ + HV

τ2 = τ1
r2

Sp3 ; ε3

r3N3 r3N3

H31 = Hs + H3π

τ3 = τ2
r3

; G31; δ31

H32 = HV + H1π + H2π

τ3 = τ2
r3

; G32; δ32

FIG. 2. A tree depicting the partition of the Hamiltonian at
different stages. In each rectangular node, we mention the Hamil-
tonian and the time interval. If the Hamiltonian is partitioned, i.e.,
it is a parent node, then we divide the rectangle and in the lower
half we mention the order of the Trotter-Suzuki formula and the
error incurred due to splitting. The leaf nodes (thick rectangles)
store the Hamiltonians that are simulated. They store information
about the time, gate, and simulation error. The edges are labeled
by the number of segments of the time interval of the parent and
the number of exponentials (copies of each child node) obtained
after applying the Trotter-Suzuki formula.
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We take two factors into account for grouping the
Hamiltonian terms. First, we consider the pairwise com-
mutators. This is because the error introduced due to
splitting is determined by the expansion of the Trotter-
Suzuki formula, given in Ref. [58], and depends on the
norm of the nested commutators [58]. From Lemma 7
(stated later), we find that the pairwise commutators play a
significant role in bounding the nested commutators, espe-
cially for lower-order formulas. We must keep in mind that
as we increase the order, the number of exponentials and
hence the complexity increases. Our algorithm mitigates
these errors by grouping together terms with larger com-
mutator bounds, so that this does not reflect on the overall
error. The second factor that we consider is the �1 norm of
the fragment Hamiltonians. Specifically, we consider the
�1 norm of the coefficients in an LCU decomposition of the
Hamiltonian and this also serves as an upper bound on the
spectral norm of the Hamiltonian. In simulation algorithms
such as those in Refs. [4,5,7,8] the block encoding of the
Hamiltonian is repeated a number of times, proportional

to its �1 norm. So, if we block encode terms with small
norm together with terms with larger norm, then we end
up repeating the smaller norm terms more frequently than
is necessary. Instead, we group these terms separately and
adjust the error accordingly. We summarize the different
�1-norm and pairwise commutators in Tables II and III and
in Appendices F and H we give a more detailed description
of our calculations.

Let U = e−iĤPFt, where t is the total evolution time and
Ũ is the final unitary that we implement. In the first level of
splitting, we divide ĤPF into two parts, i.e., ĤPF = H11 +
H12, where H11 = Hf 1 + Hs + HV + Hπ and H12 = Hf 2.
This is because the innermost commutators between Hs,
HV, and Hπ are significantly higher (Table III) and we have
tried to avoid terms with �. By grouping them together,
we have tried to keep the error small and independent of
�. We divide t into r1 intervals, each of length τ1 = t/r1,
such that we can approximate the Trotter-Suzuki formula
of order p1 well within each time segment. If Û is the uni-
tary that we obtain by approximating U, then invoking [69,

TABLE II. A summary of the number of unitaries in the decomposition of different Hamiltonians and operators and an upper bound
on the �1 norm of the coefficients in an LCU decomposition of the Hamiltonian. The latter is also an upper bound on the spectral norm
of the Hamiltonian. In the last column, we have mentioned the unitaries occurring in the decompositions of the operators. For A2 and
E2, we have given the unitaries for the decomposition provided in this paper, which yields the number of unitaries shown in brackets.
Here, 2a + 1 is the number of points used in the finite-difference approximation and h is the spatial scaling of the grid used in the
finite-difference formula.

Hamiltonian or operator Number of unitaries �1 norm Types of unitaries

A 
log2 d� + 1
2π
�

Z (Corollary 1)

A2 2
log2 d�
(

or
log2

2 d + log2 d
2

)
4π2

�2 Z (Corollary 2)

∇ 2a
ln(2a2)

h
Adder (Lemma 18)

∇2 2a + 1
4π2

3h2 Adder (Lemma 16)

E2 2 log2�

(
or

log2
2�+ log2�+ 2

2

)
�2 Z [Eq. (F6)]

U 1 1 Rotation, QFT (Corollary 3)

H1π 6aηN
8π2ηN

h2 ·

H2π 6aηN log2 d
12πηN ln 2a2

ch�
·

H3π 6ηN log2 d
12π2ηN

c2�2 ·

HVee

η(η − 1)N
2

η(η − 1)
2�2 ·

HVne ηLN
η

�2

(∑K
κ=1 |Zκ |

)
:= ηZsum

�2 ·

Hf 1 6N log2�
3N�2

2
·

Hf 2 6N 6N ·
Hs 12ηNa log2 d

12πηN ln 2a2

ch�
·
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TABLE III. A summary of the bounds on the norm of the pairwise commutators between types of terms that appear in the Pauli-
Fierz Hamiltonian. Components that can be computed using the antisymmetry of the commutator have been dropped from the table
for clarity.

Hπ HVee HVne Hf 1 Hf 2 Hs

Hπ 0 . . . . . . · · ·
HVee

4πη(η − 1)N 8/3

h2�2

(
π + 6h ln(2a2)

c�

)
0 - · · ·

HVne

4πηN 5/3KZmax

h2�2

(
π + 6h ln(2a2)

h�

)
- 0 · · ·

Hf 1
6πηN�2

c�

(
ln(2a2)

h
+ 2π

c�

)
0 0 0 · ·

Hf 2
198πηN

c�

(
ln(2a2)

h
+ π

c�

)
0 0 12N� 0 ·

Hs
96π2η2N ln(2a2)

hc2�2

(
ln(2a2)

h
+ π

c�

)
0 0

24πηN�2 ln(2a2)

ch�
288πηN ln(2a2)

ch�
0

Box 4.1],

‖U − Û‖ = ‖
(

e−iĤPFt/r1
)r1 − (

Sp1(H11, H12; t/r1)
)r1 ‖

≤ r1‖e−iĤPFτ1 − Sp1(H11, H12, τ1)‖ := r1ε1.
(34)

Suppose, after approximating e−iĤPFτ1 using the Trotter-
Suzuki formula, that we obtain at most N1 terms of the
form e−iH11τ1 = U(1)

1τ1
and e−iH12τ1 = U(1)

2τ1
. We denote the

unitary implementation of U1τ and U2τ by Ũ(1)
1τ1

and Ũ(1)
2τ1

,
respectively. Thus,

‖Û − Ũ‖ ≤ r1N1‖U(1)
1τ1

− Ũ(1)
1τ1

‖ + r1N1‖U(1)
2τ1

− Ũ(1)
2τ1

‖
:= r1N1‖U(1)

1τ1
− Ũ(1)

1τ1
‖ + r1N1δ1. (35)

Thus, after the first level of splitting in the figure, using
Eqs. (34) and (35), we have

‖U − Ũ‖ ≤ ‖U − Û‖ + ‖Û − Ũ‖
≤ r1ε1 + r1N1δ1 + r1N1‖U(1)

1τ1
− Ũ(1)

1τ1
‖. (36)

In the second level of splitting depicted in the figure, we
divide H11 into two groups, H21 = Hf 1 and H22 = Hs +
HV + Hπ . We further divide τ1 into r2 intervals, each of
length τ2 = τ1/r2. Let Û(1)

1τ1
be the unitary that we obtain

by approximating U(1)
1τ1

with a Trotter-Suzuki formula of
order p2. Then,

‖U(1)
1τ1

− Û(1)
1τ1

‖
= ‖ (e−iH11τ1/r2

)r2 − (
Sp2(H21, H22; τ1/r2)

)r2 ‖
≤ r2‖e−iH11τ2 − Sp2(H21, H22; τ2)‖. := r2ε2, (37)

After approximating e−iH11τ2 , suppose that we obtain at
most N1 e−iH21τ2 = U(2)

1τ2
and e−iH22τ2 = U(2)

2τ2
. The unitary

implementations of e−iH21τ2 and e−iH22τ2 are denoted by
Ũ(2)

1τ2
and Ũ(2)

2τ2
, respectively. Thus,

‖Û(1)
1τ1

− Ũ(1)
1τ1

‖
≤ r2N2‖U(2)

1τ2
− Ũ(2)

1τ2
‖ + r2N2‖U(2)

2τ2
− Ũ(2)

2τ2
‖

:= r2N2δ2 + r2N2‖U(2)
2τ2

− Ũ(2)
2τ2

‖ (38)

and so by plugging Eqs. (37) and (38) into Eq. (36), we
obtain the following after the second level of splitting:

‖U − Ũ‖ ≤ r1ε1 + r1N1δ1 + r1N1 (r2ε2 + r2N2δ2

+ r2N2‖U(2)
2τ2

− Ũ(2)
2τ2

‖
)

. (39)

In the third level of splitting, we divide H22 into two
groups, H31 = Hs + H3π and H32 = HV + H1π + H2π . We
also divide τ2 into r3 intervals, each of length τ3 = τ2/r3.
Let Û(2)

2τ be the unitary that we obtain by approximating
U(2)

2τ2
with a Trotter-Suzuki formula of order p3. Then,

‖U(2)
2τ2

− Û(2)
2τ2

‖
= ‖ (e−iH22τ2/r3

)r3 − (
Sp3(H31, H32; τ2/r3)

)r3 ‖
≤ r3‖e−iH22τ3 − Sp3(H31, H32; τ3)‖ := r3ε3. (40)

After approximation, suppose that we obtain at most
N3 e−iH31τ3 := U(3)

1τ3
and e−iH32τ3 := U(3)

2τ3
. The unitary

implementations of e−iH31τ3 and e−iH32τ3 are denoted by
Ũ(3)

1τ3
and Ũ(3)

2τ3
, respectively. So,

‖Û(2)
2τ2

− Ũ(2)
2τ2

‖ ≤ r3N3‖U(3)
1τ3

− Ũ(3)
1τ3

‖
+ r3N3‖U(3)

2τ3
− Ũ(3)

2τ3
‖

:= r3N3δ31 + r3N3δ32 (41)
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and hence plugging Eqs. (40) and (41) into Eq. (39), we
obtain the following bound on the simulation error after
the third and final level of splitting:

‖U − Ũ‖ ≤ r1ε1 + r1N1δ1 + r1r2N1ε2 + r1r2N1N2δ2

+ r1r2N1N2 (r3ε3 + r3N3δ31 + r3N3δ32)

= r1ε1 + r1N1δ1 + r1r2N1ε2

+ r1r2N1N2δ2 + r1r2r3N1N2ε3

+ r1r2r3N1N2N3(δ31 + δ32). (42)

Let the numbers of gates required to implement the uni-
taries U(1)

2τ1
, U(2)

1τ2
, U(3)

1τ3
, and U(3)

2τ3
be G1, G2, G31, and G32,

respectively. Thus, the total number of gates for imple-
menting U = e−iĤPFt is

G ≤ r1N1G1 + r1r2N1N2G2

+ r1r2r3N1N2N3 (G31 + G32) . (43)

We summarize the above results in the following lemma.
For simplicity, we assume that the time lengths are always
exactly divisible by the number of segments. This lemma
can be generalized for arbitrary divisions, for which we
can draw a tree similar to Fig. 2, which may be useful in
deriving bounds on the error and gate complexity.

Lemma 1. Let N1, N2, and N3 be the number of oper-
ator exponentials that appear in the divide-and-conquer
simulation method given in Fig. 2, where the τi refer to
the time step, εi the error tolerance at the level of the
division, δi is the synthesis error that is tolerable, and Gi
represents the gate count required for implementing the
resulting exponentials. If U = e−iĤPFt and Ũ is the final
unitary implementation of U, then the total simulation
error is

‖U − Ũ‖ = r1 (ε1 + N1 (δ1 + r2 (ε2 + N2 (δ2 + r3ε3

+ r3N3(δ31 + δ32)))))

and the total number of gates required is

G ≤ r1N1 (G1 + r2N2 (G2 + r3N3 (G31 + G32))) .

We describe the algorithms to simulate the exponen-
tials of the four fragments H12, H21, H31, and H32 in
Appendix G. Above, we state the complexity of the circuits
in terms of Clifford+T and (controlled)-rotation gates. Clif-
ford+T is one of the most popular fault-tolerant universal
gate sets but not all unitaries can be exactly implementable
by it. Therefore, we have used rotation gates, which are the
only approximately implementable gates that we use. The
T-count of the (controlled-)rotation gate is proportional to
the logarithm of the synthesis error [70–73] and thus low
T-counts are often observed for reasonable error budgets.

In all cases, we have separately reported the complexity of
the (controlled-)rotation gates, without further decompos-
ing it with the Clifford+T gate set. This is because in this
paper we do not account for the gate-synthesis error.

The decomposition of the operators is described explic-
itly in Appendix F. We summarize these decompositions in
Table II. We give the number of unitaries and the �1 norm
and for the operators in the last column we mention the
types of unitaries in these decompositions. For our analy-
sis, we also require bounds on the pairwise commutators of
the different Hamiltonian partitions. We summarize these
bounds in Table III and we give a detailed derivation in
Appendix H.

Here, in the following lemmas, we summarize the
bounds on the total number of gates required for simulat-
ing each of the fragment Hamiltonians. This information
will be useful for deriving the complexity of simulating
e−iĤPFt, using both of the algorithms that we consider. The
proofs can be found in Appendixes G 1–G 4. Here, we give
some brief explanations of mainly the PREP and SELECT
subroutines while block encoding.

Lemma 2. Let H12 = −∑N
q=1

∑3
μ�=ν=1 I ⊗ I ⊗ W2

q,μ,ν ,
where W2

q,μ,ν is the plaquette operator described in Eq. (9).
Then, we require

G ′
1 ∈ O (N log d)

gates to have a (6N , −, 0) block encoding of H12 and hence
the number of gates required for simulating eiH12τ1 with
error δ12 > 0, using qubitization, is

G1 ∈ O
(

N 2τ1 log d + log(1/δ12)

log log(1/δ12)
N log d

)
.

We know that H12 = Hf 2 [Eq. (22)], which corresponds
to the plaquette terms in the dynamics of the system.
In Corollary 3, we show that the raising operator Uq,μ
[defined in Eq. (8)] is as follows:

Uq,μ = Fq,μ

⎛
⎝

log2 d−1⊗
k=1

Rz(θk)

⎞
⎠

q,μ

F†
q,μ,

where θk = 2π
d 2k and F is the Fourier transform. This

shows that an individual Uq,μ can be implemented using
log2(d) single-qubit rotations. The plaquette operator
Wq,μ,ν can be implemented using four such terms and
thus W2

q,μ,ν [Eq. (9)] can be implemented by a layer of
at most 4 log2 d parallel rotations, conjugated by Fourier
transformation. The ancilla-preparation subroutine does
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the following:

PREPf 2 |0〉∗

=
⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠⊗

⎛
⎝ 1√

6

3∑
μ�=ν=1

1∑
k=0

|μ〉 |ν〉 |k〉
⎞
⎠ .

First, we have the log2 N -qubit electric link index register
that stores the N electric link indices in equal superposi-
tion. Next, we have the (4 + 1)-qubit spin-index register.
The first four qubits store the value of μ, ν. The last qubit
indicates whether we apply the H.c. If μ = ν or μ, ν > 3,
then we discard. Throughout this paper, by “discarding”
we mean unfollowing a computation path. This is indicated
by an ancilla qubit, which when set to |1〉, we only apply I.

The unitary-selection operator can be expressed as

SELECTf 2 =
N∑

q=1

3∑
μ�=ν=1

1∑
k=0

|q,μ, ν, 0〉 〈q,μ, ν, 0|

⊗ Uq,μUq+1μ,νUq+1ν ,μUq,ν

+
N∑

q=1

3∑
μ�=ν=1

1∑
k=0

|q,μ, ν, 1〉 〈q,μ, ν, 1|

⊗ U†
q,νU

†
q+1ν ,μU†

q+1μ,νU
†
q,μ,

by which we can conveniently prove that

〈0| PREP
†
f 2 · SELECTf 2 · PREPf 2 |0〉 = Hf 2

6N
,

providing a (6N , ., 0) block encoding if Hf 2. A more
detailed analysis of the gate complexity can be found in
Appendix G 1.

Lemma 3. Let H21 = ∑N
q=1

∑3
μ=1 I ⊗ I ⊗ 1

2 E2
q,μ,

where E2
q,μ is the operator described in Eq. (7). Then, with

Trotterization, we can implement e−iH21τ2 exactly using the
following number of gates:

G2 ∈ O
(
N log2�

)
.

Alternatively, we can have a (3N�2/2, −, 0) block encod-
ing of H21 with the following number of gates:

G ′
2 ∈ O

(
N log2�

)
.

We know that H21 = Hf 1 [Eq. (22)] and since
[E2
�,μ, E2

q,ν] = 0 if � �= q, so e−iHf 1τ2 = ∏N
q=1

∏3
μ=1 I ⊗

I ⊗ e−i(1/2)E2
q,μτ2 . If ζ = 1 + log2�, then E2 can be written

as a sum of Z operators, as shown below, and we simulate

e−iHf 1τ2 by Trotterization, as done in Ref. [24]:

E2 = 1
6
(
22ζ−1 + 1

)
I +

ζ−1∑
j =0

2j −1Zj +
ζ−2∑
j =0

ζ−1∑
k>j

2j +k−1Zj Zk.

(44)

Lemma 4 (Lemma 2 in Ref. [24]). There exists a circuit
that implements e−iE2τ2 on ζ qubits exactly, up to an (effi-
ciently computable) global phase, using (ζ + 2)(ζ − 1)/2
CNOT operations and ζ(ζ + 1)/2 single-qubit rotations.
Here, ζ = 1 + log2�.

Since E2 is expressed as a sum of Pauli operators, we
can use the algorithm in Ref. [61] to optimize the rotation
gates, possibly at the cost of a small increase in the number
of Toffoli gates. More details on the gate complexity can be
found in Appendix G 2.

Alternatively, we can use qubitization to simulate
e−iH21τ2 . Algorithm II, described in Sec. II D, applies
qubitization on the entire Hamiltonian ĤPF and for this we
need to block encode H21, which we briefly describe here.
The ancilla-preparation subroutine is defined as follows:

PREPf 1 |0〉∗ =
⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠⊗

⎛
⎝ 1√

3

3∑
μ=1

|μ〉
⎞
⎠

× ⊗

⎛
⎜⎝

log2(2�)+log(2�)+2
2∑

k=1

√
wk∑
k wk

|k〉

⎞
⎟⎠ .

Here, the wk are the weights of the unitaries in the
LCU decomposition of E2 [Eq. (44)]. In the first log2 N -
qubit electric link index register, we store the N elec-
tric link indices in equal superposition. In the next
two-qubit spin-index register, we store the values of μ.
Since E2 is a sum of (log2

2(2�)+ log2(2�)+ 2)/2 =
(log2

2�+ 3 log2�+ 4)/2 unitaries [Eq. (44)], the last
register of log2

(
log2

2�+ 3 log2�+ 4
)− 1 qubits stores

the indices of the unitaries in a superposition, weighted
according to Eq. (44).

The unitary-selection subroutine does the following:

SELECTf 1 : |q〉 |μ〉 |k〉
⎛
⎝

N⊗
q=1

3⊗

μ′=1

|fe = 0〉q,μ′

⎞
⎠ |φ〉

�→ |q〉 |μ〉 |k〉 (|1〉)q,μ
(
E2

k

)
q,μ |φ〉

and it follows in a straightforward manner that

〈0| PREP
†
f 1 · SELECTf 1 · PREPf 1 |0〉 = Hf 1

3N�2/2
;

here too we keep in mind that ‖Hf 1‖ ≤ 3N�2/2, from
Table II. More details on the gate complexity for block
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encoding can be found in Appendix G 2. We omit discus-
sion of the number of gates required for simulating e−iH21τ2

using qubitization because it is not needed in this paper and
also it is quite straightforward to derive.

Lemma 5. Let

H31 = −1
c

η∑
j =1

N∑
q=1

3∑
μ�=ν �=ξ=1

(
σj ,μ ⊗ I

)⊗ (∇νAq,ξ − ∇ξAq,ν
)

+ 1
2c2

η∑
j =1

N∑
q=1

3∑
μ=1

I ⊗ I ⊗ A2
q,μ,

where Aq,μ is the operator described in Eq. (17). Then, we
can have a (A31, −, 0) block encoding H31, where A31 =
12πηN ln 2a2/ch�+ 12π2ηN/c2�2, with

G ′
31 ∈ O (η + N (a + log d) log d)

gates and hence the number of gates required for simu-
lating eiH31τ3 with error δ31 > 0, using qubitization, is as
follows:

G31 ∈ O
(
η2N ln(2a2)

�2 τ3 + ηN 2 ln(2a2) log d
�2 (a + log d)τ3

+ log(1/δ31)

log log(1/δ31)
(η + N (a + log d) log d)

)
.

We block encode H31 = Hs + H3π in a recursive man-
ner, using Theorem 1 repeatedly. Let

H j ,q
s = −

3∑
μ�=ν �=ξ=1

(
σj ,μ ⊗ I

)⊗ (∇νAq,ξ − ∇ξAq,ν
)

=
3∑

μ�=ν �=ξ=1

(
σj ,μ ⊗ I

)⊗ (∇ξAq,ν − ∇νAq,ξ
)

and

H j ,q
3π =

3∑
μ=1

I ⊗ I ⊗ A2
q,μ,

such that

H j ,q
31 = 1

c
H j ,q

s + 1
2c2 H j ,q

3π , H j
31 =

N∑
q=1

H j ,q
31 ,

H31 =
η∑

j =1

H j
31.

1. Block encoding of H j ,q
s

The ancilla-preparation subroutine, denoted by PREP
j ,q
s ,

does the following:

PREPj ,q
s |0〉∗ =

⎛
⎝ 1√

6

3∑
μ�=ν �=ξ

1∑
b=0

|μ〉 |ν〉 |ξ〉 |b〉
⎞
⎠

⊗
(

a∑
k=−a

√
|d′

2a+1,k|∑
k |d′

2a+1,k|
|k + a〉

)

⊗
⎛
⎝

log2 d∑

k′=1

√
w′

k′∑
k′ w′

k′
|k′〉

⎞
⎠ .

The first (2 × 3 + 1) = 7-qubit spin-index register stores
directions or spins in equal superposition and the last
qubit selects between ∇νAq,ξ and ∇ξAq,ν . The second and
third registers, with log2(2a) and log2 log2 d qubits, respec-
tively, indicate which adder to apply or on which qubit Z
gate should be applied. These are unitaries obtained in the
LCU decomposition of ∇ (Lemma 18) and A (Corollary
1) in Appendix F. We denote the next subroutine by
SELECT

j ,q
s , which is described as follows:

SELECTj ,q
s : |μ, ν, ξ , 0〉 |k′′〉 |k′〉 |φ〉

�→ |μ, ν, ξ , 0〉 |k′′〉 |k′〉 (σμ ⊗ I
)

j (∇k′′)q,ν (Ak′)q,ξ |φ〉 .

Controlled on |μ〉, we apply σμ on the spin subspace of
the j th particle. Controlled on |ν, ξ〉 we select spin sub-
spaces of the qth link register. Controlled on |k′′〉 and |k′〉,
we apply the k′′th and k′th unitaries in the LCU decomposi-
tions of ∇ and A, respectively. If the third qubit in the spin
register is |1〉, then we apply ∇ξ and Aν . It follows that

〈0| PREPj ,q†
s · SELECTj ,q

s · PREPj ,q
s |0〉 = H j ,q

s

12π ln 2a2/h�

and thus we have a (12π ln 2a2/h�, ., 0) block encoding
of H j ,q

s .

2. Block encoding of H j ,q
3π

The first ancilla-preparation subroutine is described as
follows:

PREP
j ,q
3π |0〉∗ =

⎛
⎝ 1√

3

3∑

μ′=1

|μ′〉
⎞
⎠ ⊗

⎛
⎜⎝

log2 d+log d
2∑

k=1

√
w′

k∑
k w′

k
|k〉

⎞
⎟⎠.

The first two-qubit register is the spin-index register. Since
A2 is a sum of (log2

2 d + log2 d)/2 unitaries (Table II),
we prepare a log2

[
(log2

2 d + log2 d)/2
]
-qubit register in a
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superposition weighted according to the LCU decomposi-
tion of A2 (Corollary 2 in Appendix F). The next subroutine
is described as follows:

SELECT
j ,q
3π : |μ′〉 |k〉 |φ〉 �→ |k〉 (A2

k

)
q,μ′ |φ〉 .

It follows that

〈0| PREP
j ,q†
3π · SELECT

j ,q
3π · PREP

j ,q
3π |0〉 = H j ,q

3π

24π2/�2

and thus we have a (24π2/�2, ., 0) block encoding of H j ,q
3π .

3. Block encoding of H31

We use Theorem 1 repeatedly. First, we block encode
H j ,q

31 = (1/c)H j ,q
s + (1/2c2)H j ,q

3π with O(1) extra gate cost.
Next, we consider H j

31 = ∑N
q=1 H j ,q

31 , where each of the
summand Hamiltonians acts on separate link registers,
and finally we consider H31 = ∑η

j =1 H j
31, where again the

summands act on separate subspaces. Thus the overall
ancilla-preparation subroutine is

PREP31 |0〉∗ =
⎛
⎝ 1√

η

η∑
j =1

|j 〉
⎞
⎠⊗

⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠

⊗
(√

λs

cA |0〉 +
√
λ3π

2c2A |1〉
)

⊗ PREPj ,q
s ⊗ PREP

j ,q
3π ,

where λs = ‖H j ,q
s ‖ = 12π ln 2a2/h�, λ3π = ‖H j ,q

3π ‖ =
24π2/�2, and A = (λs/c)+ (λ3π/2c2). The overall
unitary-selection subroutine is as follows:

SELECT31 : |j , q, 0〉 |μ, ν, ξ , b, k′′, k′〉 |μ′, k〉 |φ〉
�→ |j , q, 0〉 |μ′, k〉 SELECTj ,q

s

(|μ, ν, ξ , b, k′′, k′〉 |φ〉)

SELECT31 : |j , q, 1〉 |μ, ν, ξ , b, k′′, k′〉 |μ′, k〉 |φ〉
�→ |j , q, 1〉 |μ, ν, ξ , b, k′′, k′〉 SELECT

j ,q
3π

(|μ′, k〉 |φ〉) .

It is straightforward to check that

〈0| PREP
†
31 · SELECT31 · PREP31 |0〉 = H31

ηNA ,

where ηNA = (12πηN ln 2a2/ch�)+ (12π2ηN/c2�2),
which is also the sum of the norms of the Hamiltonians
Hs and H3π in Table II. Thus we have a (ηNA, ., 0) block
encoding of H31. More details about the procedures and
gate-complexity analysis can be found in Appendix G 3.

Lemma 6. Let

H32 = 1
�

η∑
k<j

N∑
q,r=1

(
I ⊗ 1

||q − r||2 |q〉〈q|k |r〉〈r|j ⊗ I

)

− 1
�

η∑
j =1

K∑
κ=1

N∑
q=1

(
I ⊗ Zκ

|q − Rκ‖2
|q〉〈q|j ⊗ I

)

×
η∑

j =1

N∑
q=1

3∑
μ=1

(
I ⊗

(
−1

2
∇2

j ,μ

)
⊗ I + 1

c
I

⊗
(

i
c
∇j ,μ

)
⊗ Aq,μ

)
,

where Aq,μ is the operator described in Eq. (17). Then,
we can have a (A32, −, 0) block encoding of H32, where
[η(η − 1)/2�2] + (ηZsum/�

2)+ (8π2ηN/h2)+ (12πηN
ln 2a2/ch�), with

G ′
32 ∈ O

(
ηa log2 N + N log2 d + log2 N log2

N
δ′

+ K log2
1
δ′′

)

gates, where δ′, δ′′ > 0. Let R32 ∈ O
(
ηN/�2 [1 + (ηs/N )]

τ3 + [log(1/δ32)/log log(1/δ32)]). Then, the number of
gates required for simulating eiH32τ3 with error δ32 > 0,
using qubitization, is G32 ∈ R32 · G ′

32.
Again, we use Theorem 1 to block encode H32 = HV +

H1π + H2π in a recursive manner. We define the following:

H j ,q,μ
1π = −I ⊗ ∇2

j ,μ ⊗ I, H j ,q,μ
2π = I ⊗ (

i∇j ,μ
)⊗ Aq,μ,

H j ,q,μ
12π = 1

2
H j ,q,μ

1π + 1
c

H j ,q,μ
2π , H12π =

η∑
j =1

N∑
q=1

3∑
μ=1

H j ,q,μ
12π .

4. Block encoding of H12π

As in the case of H31, we first block encode H j ,q,μ
1π

and H j ,q,μ
2π separately, using the ancilla-preparation subrou-

tines PREP
j ,q,μ
1π and PREP

j ,q,μ
2π , respectively, followed by the

unitary-selection subroutines SELECT
j ,q,μ
1π and SELECT

j ,q,μ
2π ,

respectively. Then, we block encode H j ,q,μ
12π and H12π ,

as discussed in Theorem 1. Thus our overall ancilla-
preparation subroutine is as follows:
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PREP12π |0〉∗ =
⎛
⎝ 1√

η

η∑
j =1

|j 〉
⎞
⎠⊗

⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠

⊗
⎛
⎝ 1√

3

3∑
μ=1

|μ〉
⎞
⎠

⊗
(√

λ1

2A′ |0〉 +
√
λ2

cA′ |1〉
)

⊗ PREP
j ,q,μ
1π

⊗ PREP
j ,q,μ
2π ,

where λ1 = ‖2H1π‖, λ2 = ‖cH2π‖,A′ = (λ1/2)
+ (λ2/c) = (8π2ηN/h2)+ (12πηN ln 2a2/ch�) and

PREP
j ,q,μ
1π |0〉∗ =

(
a∑

k=−a

√
|d2a+1,k|∑
k |d2a+1,k| |k + a〉

)
,

PREP
j ,q,μ
2π |0〉∗ =

⎛
⎝

a∑
k1=−a

√
|d′′

2a+1,k1
|∑

k1
|d′′

2a+1,k1
| |k1 + a〉

⎞
⎠

⊗
⎛
⎝

log2 d∑
k2=1

√
wk2∑
k2

wk2

|k2〉
⎞
⎠ .

The overall unitary-selection subroutine is as follows:

SELECT
j ,q,μ
1π : |k′〉 |φ〉 �→ |k′〉 (I ⊗ ∇2

k′
)

j ,μ |φ〉 ,

SELECT
j ,q,μ
2π : |k′

1〉 |k′
2〉 |φ〉 �→ |k′

1〉 |k′
2〉
(
∇k′

1

)
j ,μ

(
Ak′

2

)
q,μ

|φ〉 ,

SELECT12π : |j , q,μ, 0〉 |k′〉 |k′
1, k′

2〉 |φ〉
�→ |j , q,μ, 0〉 |k′

1, k′
2〉 SELECT

j ,q,μ
1π

(|k′〉 |φ〉) ,

SELECT12π : |j , q,μ, 1〉 |k′〉 |k′
1, k′

2〉 |φ〉
�→ |j , q,μ, 1〉 |k′〉 SELECT

j ,q,μ
2π

(|k′
1, k′

2〉 |φ〉) .

It can be verified in a straightforward manner that

〈0| PREP
†
12π · SELECT12π · PREP12π |0〉 = H12π

A′ ,

where A′ = (8π2ηN/h2)+ (12πηN ln 2a2/ch�), which
is also the sum of the norms of H1π and H2π (Table II).

5. Block encoding of HV

We know that HV = HVee + HVne and we block encode
it, following the approach taken in Refs. [18,20], with
some modifications and incorporating the optimizations
in Theorem 2. The ancilla-preparation subroutine is as
follows:

PREPV |1〉 |0〉∗

∝ |0〉
η∑

i<j

N 1/3∑

vx ,vy ,vz=−N 1/3

1
‖v‖2

|i〉 |j 〉 |vx, vy , vz〉

− |1〉
η∑

i=1

K∑
κ=1

N 1/3∑

vx ,vy ,vz=−N 1/3

√
Zκ

‖v‖2
|i〉 |κ〉 |vx, vy , vz〉 .

The first ancilla is used to select between HVee and
HVne . Next, the log2 η-qubit register stores the par-
ticle indices in equal superposition. We follow the
state-preparation procedure, described in Ref. [18], to
prepare

∑N 1/3

vx ,vy ,vz=−N 1/3 1/‖v‖2 |v〉. This is described in
Appendix I. The unitary-selection subroutine is described
as follows:

SELECTV : |0〉 |i〉 |j 〉 |v〉 |q1, . . . qi, . . . qj , . . . qη〉 |0〉
�→ |0〉 |i〉 |j 〉 |v〉 |q1, . . . qi, . . . qj , . . . qη〉 |qi − qj 〉 ,

SELECTV : |1〉 |i〉 |κ〉 |v〉 |q1, . . . qi, . . . qη〉 |0〉
�→ |1〉 |i〉 |κ〉 v |q1, . . . qi, . . .qη〉 |Rκ − qi〉 .

If the first qubit is |0〉, we discard if qi − qj �= v. Since,
for each pair of qi and qj , only one value of v survives,
the probability distribution is unaffected. If the first regis-
ter is |1〉, then we use a classical database to access Rκ .
Controlled on the particle-index register, we take the dif-
ference Rκ − qi and discard the computational path if it is
not equal to v.

6. Block encoding of H32

Since HV has a probabilistic ancilla-preparation subrou-
tine, we can block encode H32 = HV + H12π using the pro-
cedure described in Ref. [20], by repeating the PREPV sub-
routine a constant number of times. This does not change
the asymptotic gate complexity. In Appendix G 4, we
give a more detailed description of these block-encoding
procedures and the gate complexity.

7. Trotter error

Now, we derive bounds on the Trotter errors ε1, ε2, and
ε3, thus bounding the simulation error described in Lemma
1. If a Hamiltonian H = ∑�

γ=1 Hγ is a sum of � fragment
Hamiltonians, then e−itH can be approximated by a prod-
uct of exponentials, using the pth-order Trotter-Suzuki
formula [57], Sp(t) = e−itH + A (t), where ‖A (t)‖ ∈
O
(̃
αcommtp+1

)
if each Hγ is Hermitian [58]. Here,

α̃comm = ∑�
γ1,γ2,...,γp+1=1 ‖[Hγp+1 , . . . [Hγ2 , Hγ1 ]]‖. The fol-

lowing result provides an upper bound on α̃comm. The proof
is given in Appendix H, where we also explained some
variations that can lead to tighter bounds.
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Lemma 7. Let H = ∑�
γ=1 Hγ and α̃comm = ∑�

γ1,γ2,...,γp+1=1 ‖[Hγp+1 , . . . [Hγ2 , Hγ1 ]]‖. Then, for any integer
1 ≤ p ′ ≤ p ,

α̃comm ≤ 2p−(p ′+1)
∑

γi1 ,γi2 ,...,γip ′+1

‖[Hγp ′+1
, [. . . [Hγ3 , [Hγ2 , Hγ1 ]] . . .]]‖

⎛
⎝

�∑
γ=1

‖Hγ ‖
⎞
⎠

p−p ′

.

In this paper, we take p ′ = 1; hence the need to compute all the first-order commutators in Table III, as well as the
norm in Table II. Now, we have the results needed to prove our main theorem about divide-and-conquer simulations in
Theorem 3.

Proof of Theorem 3. It is clear that we can bound the Trotter errors due to repeated splitting of the Hamiltonian ĤPF,
using the bounds in Tables II and III. In the rest of the paper, we assume that h ≤ Kh�, for some constant Kh, that a is a
constant, and we let

ηs := η + Zsum, (45)

where Zsum = ∑K
κ=1 |Zκ |. In the first level (Fig. 2), we have two partitions, H11 = Hf 1 + Hs + HV + Hπ and H12 = Hf 2,

and the error introduced due to this split [Eq. (34)] is

ε1 ∈ O
(̃
α1comm(t/r1)

p1+1) , (46)

where

α̃1comm ≤ 2p1−2‖[Hf 2, Hf 1 + Hs + HV + Hπ ]‖ · (‖Hπ‖ + ‖HV‖ + ‖Hf ‖ + ‖Hs‖
)p1−1 . (47)

Using the bounds in Table II, we obtain

‖Hπ‖ + ‖HV‖ + ‖Hf ‖ + ‖Hs‖ ≤ 12π2ηN
c2�2 + 8π2ηN

h2 + 24πηN ln(2a2)

ch�
+ η(η − 1)

2�2 + ηZsum

�2 + 3N�2

2
+ 6N

= ηN
�2

(
8π2�

2

h2 + 12π2

c2 + 24π ln(2a2)

c
· �

h
+ η + 2Zsum

2N
+ 6�2

η
+ 3�2�2

2η

)

� K1
ηN
�2

(
1 + ηs

N
+ �2�2

η

)
[for some constant K1]. (48)

From Table III, we obtain

‖[Hf 2, Hf 1 + Hs + Hπ + HV]‖ ≤ ‖[Hf 2, Hf 1]‖ + ‖[Hf 2, Hs]‖ + ‖[Hf 2, Hπ ]‖ + ‖[Hf 2, HV]‖

≤ 12N�+ 288πηN ln(2a2)

ch�
+ 198πηN

c�

(
ln(2a2)

h
+ π

c�

)

= ηN
�2

(
12
�2�

η
+ 486π ln(2a2)

c
· �

h
+ 198π2

c2

)

≤ K2
ηN
�2

(
1 + �2�

η

)
[for some constant K2]

and so

α̃1comm ≤ 2p1−2K1Kp1−1
2

(
ηN
�2

)p1
(

1 + �2�

η

)(
1 + ηs

N
+ �2�2

η

)p1−1

,

and hence

ε1 ∈ O

((
ηN
�2

)p1
(

1 + �2�

η

)(
1 + ηs

N
+ �2�2

η

)p1−1 ( t
r1

)p1+1
)

. (49)
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In the second level (Fig. 2), we have partitioned H11 into H21 = Hf 1 and H22 = Hs + HV + Hπ and so the error [Eq. (37)]
introduced is

ε2 ∈ O
(̃
α2comm(t/r1r2)

p2+1) ,

where α̃2comm ≤ 2p2−2‖[Hf 1, Hs + HV + Hπ ]‖ · (‖Hf 1‖ + ‖Hs‖ + ‖HV‖ + ‖Hπ‖
)p2−1 .

From Table III, we have

‖[Hf 1, Hs + HV + Hπ ]‖ ≤ 6πηN�2

c�

(
ln(2a2)

h
+ 2π

c�

)
+ 24πηN�2 ln(2a2)

ch�
≤ K3

ηN�2

�2 ,

for some constant K3, and from Table II, somewhat similarly to Eq. (48), we have

‖Hf 1‖ + ‖Hs‖ + ‖HV‖ + ‖Hπ‖ ≤ K4
ηN
�2

(
1 + ηs

N
+ �2�2

η

)
.

So, α̃2comm ≤ K3Kp2−1
4 �22p2−2

(
ηN/�2

)p2
[
1 + (ηs/N )+ (�2�2/η)

]p2−1 and hence

ε2 ∈ O

(
�2

(
ηN
�2

)p2
(

1 + ηs

N
+ �2�2

η

)p2−1 ( t
r1r2

)p2+1
)

. (50)

In the third level of the divide-and-conquer algorithm (Fig. 2), H22 is divided into H31 = Hs + H3π and H32 = HV +
H1π + H2π and so the error [Eq. (40)] is

ε3 ∈ O
(̃
α3comm(t/r1r2r3)

p3+1) ,

where α̃3comm ≤ 2p3−2‖[Hs + H3π , HV + H1π + H2π ]‖ · (‖Hs‖ + ‖HV‖ + ‖Hπ‖)p3−1 .

From Table III, we have

‖[H31, H32]‖ = ‖[HV, Hs] + [H1π , Hs] + [H2π , Hs] + [HV, H3π ] + [H1π , H3π ] + [H2π , H3π ]‖

= ‖[H2π , Hs]‖ ≤ K5
η2N
�4 [for some constant K5]

and from Table II we have, in the nonrelativistic limit where log(a)/c�2 ∈ O(1) and since N ≥ η,

‖Hs‖ + ‖HV‖ + ‖Hπ‖ ≤ 8π2ηN
h2 + 12π2ηN

c2�2 + 24πηN ln(2a2)

ch�
+ η(η − 1)

2�2 + ηZsum

�2

≤ K6
ηN
�2

(
1 + ηs

N

)
[for some constant K6].

So, α̃3comm ≤ K5Kp3−1
6 (η/�2)2p3−2

(
ηN/�2

)p3 [1 + (ηs/N )]p3−1, and hence

ε3 ∈ O

(
η

�2

(
ηN
�2

)p3 (
1 + ηs

N

)p3−1
(

t
r1r2r3

)p3+1
)

. (51)
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We can bound the overall simulation error ε using Lemma 1, where we take Ni ≤ 2 · 5pi−1. Using Eqs. (49)–(51), we
obtain

ε ≤ r1ε1 + r1r2N1ε2 + r1r2r3N1N2ε3 + r1N1δ1 + r1r2N1N2δ2 + r1r2r3N1N2N3(δ31 + δ32)

∈ O

(
tp1+1

(
ηN

r1�2

)p1
(

1 + �2�

η

)(
1 + ηs

N
+ �2�2

η

)p1−1

+5p1�2tp2+1
(

ηN
�2r1r2

)p2
(

1 + ηs

N
+ �2�2

η

)p2−1

+5p1+p2
η

�2 tp3+1
(

ηN
�2r1r2r3

)p3 (
1 + ηs

N

)p3−1
+ r15p1δ1 + r1r25p1+p2δ2

+r1r2r35p1+p2+p3(δ31 + δ32)
)

. (52)

Also, from Lemma 1 we have the following bound on the total gate complexity:

G ∈ O
(
5p1r1G1 + 5p1+p2r1r2G2 + 5p1+p2+p3r1r2r3(G31 + G32)

)
, (53)

where G1, G2, G31, and G32 are the gate complexities given in Lemmas 2–6. We make the additional assumption that δ′ = δ′′
and observe that because of our choice of asymmetric cutoffs on the field, 2� = d, which follows from the dimension of
operator A that acts on the link space. Then, substituting these values, we find that

G1 ∈ O
(

N 2 t
r1

log�+ log(1/δ1)

log log(1/δ1)
N log�

)
,

G2 ∈ O
(
N log2�

)
,

G31 ∈ O

(
η2N
�2

t
r1r2r3

+ ηN 2 log2�

�2

t
r1r2r3

+ log(1/δ31)

log log(1/δ31)
(η + N log2�)

)
,

G32 ∈ R32 · G ′
32,

R32 ∈ O
(
ηN
�2

(
1 + ηs

N

) t
r1r2r3

+ log(1/δ32)

log log(1/δ32)

)
,

G ′
32 ∈ O

(
η log N + N log�+ log N log

N
δ′ + K log

1
δ′

)
.

In principle, the least upper bound on the cost of the simulation can be found by optimizing over r1, r2, r3, p1, p2, p3,
δ1, δ2, δ31, and δ32, while ensuring the constraint on the overall error in Eq. (52). However, this is a difficult nonlinear
optimization problem and the true optima are difficult to find. Nonetheless, any choice of values will yield an upper bound
on the complexity and, for simplicity, we take the simplest choice that satisfies the bound on the error in Eq. (52). We take
the orders of the splitting formulas p1 = p2 = p3 to be the same:

r1 ∈ O

⎛
⎝
(

t
ε

) 1
p1 tηN
�2

(
1 + ηs

N
+ �2�2

η

)1− 1
p1
(

1 + �2�

η

) 1
p1

⎞
⎠ , r2 ∈ O

⎛
⎝� 2

p1

(
1 + �2�

η

)− 1
p1

⎞
⎠ ,

r3 ∈ O
(( η

�2�2

) 1
p1

)
.

We take

δ1 ∈ O
(
ε

r1

)
∈ O

⎛
⎝
(ε

t

)1+ 1
p1

(
ηN
�2

)−1 (
1 + ηs

N
+ �2�2

η

) 1
p1

−1
⎞
⎠ ,

δ2 ∈ O
(
ε

r1r2

)
, δ31, δ32 ∈ O

(
ε

r1r2r3

)
.
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Since r2, r3 ≥ 1, for simplicity we choose δ2, δ31, δ32 ∈ O(δ1). δ′ is included in the error of block encoding H32, so we can
assume that δ′ ∈ O (δ1).

For brevity, let

L1 := 1 + ηs

N
+ �2�2

η
. (54)

Then, we have

r1G1 + r1r2G2

∈ O

⎛
⎝N 2t log�+ log(1/δ1)

log log(1/δ1)

(
t
ε

(
1 + �2�

η

)) 1
p1

L
1− 1

p1
1

tηN 2 log�
�2 +

(
t
ε

) 1
p1

L
1− 1

p1
1

tηN 2 log2�

�2 �
2

p1

⎞
⎠

∈ O

⎛
⎝ log(1/δ1)

log log(1/δ1)

(
t
ε

(
1 + �2�

η

)) 1
p1

L
1− 1

p1
1

tηN 2 log�
�2 +

(
t
ε

) 1
p1

L
1− 1

p1
1

tηN 2 log2�

�2 �
2

p1

⎞
⎠ (55)

and

r1r2r3G31 ∈ O

(
η2Nt
�2 + ηN 2t log2�

�2 + log(1/δ1)

log log(1/δ1)

(
t
ε

) 1
p1

L
1− 1

p1
1

(
η2Nt
�2 + tηN 2 log2�

�2

)( η
�2

) 1
p1

)

∈ O

(
log(1/δ1)

log log(1/δ1)

(
tη
ε�2

) 1
p1

L
1− 1

p1
1

(
η2Nt
�2 + tηN 2 log2�

�2

))
. (56)

Now, let ηs + N := Ns. Then,

r1r2r3G32 ∈ O

(
ηNst
�2 G ′

32 + log(1/δ1)

log log(1/δ1)

(
t
ε

) 1
p1 ηNt
�2 L

1− 1
p1

1 G ′
32

( η
�2

) 1
p1

)

∈ O
(
ηN ′

s t
�2 G ′

32

) [
Ns + N

log(1/δ1)

log log(1/δ1)

(
tη
ε�2

) 1
p1

L
1− 1

p1
1 := N ′

s

]

∈ O
(
η2N ′

st log N
�2 + ηNN ′

st log�
�2 + ηN ′

s t
�2 log N log

N
δ′ + ηN ′

sKt
�2 log

1
δ′

)
(57)

and so

G ∈ r1G1 + r1r2G2 + r1r2r3 (G31 + G32)

∈ O

⎛
⎝η2N ′

st log N
�2 + ηNN ′

st log2�

�2

(
1 + �2�

η

) 1
p1 + ηN ′

st
�2 log N log

N
δ′ + ηN ′

sKt
�2 log

1
δ′

⎞
⎠ , (58)

where Ns = η + Zsum + N , N ′
s = Ns + N [log(1/δ1)/log log(1/δ1)]

(
tη/ε�2

)1/p1 L1−(1/p1)
1 , and L1 = 1 + [(η + Zsum))/

N ] + (�2�2/η). Also, δ′ ∈ O
(
(ε/t)1+(1/p1)

(
ηN/�2

)−1 L(1/p1)−1
1

)
. The result of Theorem 3 then follows by making

these substitutions and using Õ notation to drop subdominant logarithmic factors from the asymptotic bound on the
gate complexity in Eq. (58). �
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D. Algorithm II: Qubitization without divide and
conquer

In this section, we describe another algorithm for simu-
lating e−iĤPFt, where we apply qubitization on the entire
exponential, i.e., we do not divide the Hamiltonian and
apply different algorithms to simulate each fragment. So
now, we block encode the entire ĤPF.

From Lemmas 2–6, we know the gate complexities G ′
1,

G ′
2, G ′

31, and G ′
32 for block encoding H12/λ12, H21/λ21,

H31/λ31, and H32/λ32, where λ12 = ‖H12‖, λ21 = ‖H21‖,
λ31 = ‖H31‖, and λ32 = ‖H32‖, respectively. We remind
the readers that in this paper ‖Hi‖ for any Hamiltonian Hi
is equal to the sum of the coefficients in an LCU decom-
position of Hi, which can also be used as a bound on
the �1 norm of Hi. Since ĤPF = H12 + H21 + H31 + H32,
using Theorem 1 we can say that the cost of having a
(λ12 + λ21 + λ31 + λ32, −, 0) block encoding of ĤPF is

G ′ ∈ O
(
G ′

2 + G ′
1 + G ′

31 + G ′
32

)
, (59)

where G ′
1, G ′

2, G ′
31, and G ′

32 are the gate complexities
described in Lemmas 2–6. With the assumptions made in
the previous section, we have

G ′
1 ∈ O (N log�) ,

G ′
2 ∈ O

(
N log2�

)
,

G ′
31 ∈ O

(
η + N log2�

)
,

G ′
32 ∈ O

(
η log N + N log�+ log N log

N
δ′ + K log

1
δ′

)

and so

G ′ ∈ O
(
η log N + N log2�+ log N log

N
δ′ + K log

1
δ′

)

∈ O
(
(η + log N ) log N + (K + log N ) log

1
δ′

+ N log2�

)
.

Also, from Eq. (48),

‖ĤPF‖ ≤ ‖Hπ‖ + ‖HV‖ + ‖Hs‖ + ‖Hf ‖

∈ O
(
ηN
�2 L1

)
,

where

L1 = 1 + η + Zsum

N
+ �2�2

η
,

and so we require O
{
(ηNt/�2)L1 + [log(1/ε)/ log log

(1/ε)]} calls to the block encoding of ĤPF in order to

implement an ε-precise block encoding of e−iĤPFt [8]. We
can assume that δ′ ∈ O

[
(ε�2/ηNtL1)

]
. Thus the number

of gates required is as follows:

G ′′ ∈ O
((

ηNt
�2 L1 + log(1/ε)

log log(1/ε)

)
((η + log N ) log N

+ (K + log N ) log
1
δ′ + N log2�

))
. (60)

Hence we obtain the following theorem.
Theorem 4. Assuming that η, K ≤ N , a is constant,

1/�2c ∈ O(1), and K , Zsum ∈ O(η), then there exists an
algorithm that simulates e−iĤPFt with error ε, using qubiti-
zation, with gate complexity in

Õ
(

Nt
( η
�2 +�2

)(
η log

1
ε

+ N log2�

))
.

This shows that we can achieve similar scaling to that
attainable with Trotter-Suzuki simulations. One impor-
tant difference, however, is that the scaling with the cut-
off is superior for the divide-and-conquer approach for
the case in which p1 = 1. The scaling with respect to ε
and t is, however, superior for qubitization. This shows
that we expect both simulation algorithms to offer advan-
tages in appropriate regimes. We observe this for chemical
applications in the following section.

III. APPLICATIONS

As we saw in Sec. II, there are different asymptotic
advantages and disadvantages to simulating the Pauli-Fierz
Hamiltonian using either qubitization or the divide-and-
conquer algorithm. One advantage of divide and conquer is
the fact that we do not have to repeat the simulations of all
the fragments, H12, H21, H31, and H32, the number of times
proportional to the �1 norm of the complete ĤPF. Rather,
each fragment is repeated a number of times proportional
to a smaller Hamiltonian with a lower �1 norm (refer to
Fig. 2 for convenience)—see Eqs. (55)–(57). Due to Trot-
ter splitting, we do have to repeat the number of times more
than the �1 norm but by a clever choice of grouping such
that the commutators are less and by an appropriate selec-
tion of the order of splitting, it is possible to reduce the gate
complexities. Further, since we have the liberty to apply
different simulation algorithms, it has been possible to sim-
ulate part of the Hamiltonian (i.e., H21) by Trotterization,
which has a much lower gate complexity.

However, a direct comparison of these costs is obfus-
cated by the high number of different variables and terms.
In this section, we will compare the relative costs of
these algorithms compared to some model system of inter-
est, while scaling a single important system variable, in
order to gain an intuition for which algorithm one would
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choose depending on the explicit physical regimes of the
selected systems of interest. The main two regimes that we
want to explore here are small atomic systems, with many
degrees of freedom on the electromagnetic links, and large
extended material systems in the thermodynamic limit with
many electrons. Since we only have expressions for the
asymptotic costs of these algorithms, we will fix a start-
ing instance of the problem with set values and then take
the ratio of the algorithm with itself, as a single variable is
changed. In this way, the missing constant factors become
irrelevant and we can fairly compare the two algorithms on
the same footing, at the expense of the fact that the “cost
ratio” is dependent on the initial problem instance and has
no clear meaning in terms of actual gate complexity.

A. Atomic and/or molecular regime

First, we will compare costs for the regime of a small
number of electrons in a single-atom system, to investi-
gate regimes of application such as spontaneous emission
of photons into the field, as well as photoionization of elec-
trons, also known as the photoelectric effect. For example,
in the latter case, state-of-the-art attosecond-laser-pulse
experiments have attempted to probe electronic dynamics
after photoexcitation [44]. In many theoretical models and
given previous experimental limitations, this excitation is
typically treated as instantaneous but on the attosecond
time scale, complicated electron-photon dynamics occur
that are still poorly understood. Here, the theoretical pre-
dictions do not match the experimental values. Specif-
ically, in the neon atom, an experiment has concluded
that there is a (21 ± 5)-as delay between photoemission
of the 2p orbital with respect to the 2s orbital from the
same approximately 100-eV photon source [45]. The ori-
gin of this effect is still not fully understood and various
different explanations have been explored by theoretical
investigations [46–54]. In the bigger picture, we can see
a possible benefit of full quantum simulation on fault-
tolerant quantum computers to settle these mysteries in
ways that cannot be done without computing correlated
electrons and quantum EM fields, especially for even more
complicated molecular and material systems.

Using the neon attosecond-photoemission experiment
as an example reference system, we can compare the
gate-complexity cost ratio of the different Hamiltonian-
simulation algorithms with respect to one variable at a
time. This allows us to compare the asymptotic gate
complexity of the algorithms indirectly on the same foot-
ing, without having to worry about the constant factors
that have been dropped for ease of analysis. The asymp-
totic gate complexity for the divide-and-conquer algorithm
(DC) and the qubitization algorithm have previously been
reported in Eqs. (58) and (60), respectively. To create a
reference instance inspired by the above attosecond exper-
iment on neon, we refer to the following unless otherwise

Qubitization
DC1
DC2

104 107 1010 1013
1

1010

1020

1030

N

C
os
tr
at
io

FIG. 3. The cost ratio of both the qubitization simulation
algorithm and the divide-and-conquer algorithm when the order
of the outermost Trotter splitting, i.e., p1 = 1 (DC1) and p1 = 2
(DC2), with respect to the reference single-neon-atom system as
a function of N grid points. For the reference, we have N = 100.

noted: η = Zsum = 10, the simulation box size is �1/3 =
30 (Bohr), which is roughly 10 times the atomic radius of
neon, N = 106 lattice sites, � = 100, and the simulation
time is t = 83, where 83 ≈ 2000 as. Additionally, the error
ε = 10−3 in all cases.

First, we examine the cost ratio, as a function of N ,
of the simulation algorithms with respect to the reference
neon calculation at N = 102. This is shown in Fig. 3. We
have also varied the order of the outermost Trotter splitting
(Fig. 2), i.e., variable p1 in Eq. (58), and plotted the cost
ratio as a function of N . We see qubitization scales better
for all N up to 1015. However, by choosing a higher value
of p1, we begin to approach the qubitization cost-ratio scal-
ing, emphasizing that the divide-and-conquer technique
can be “tuned” to the problem instance at hand, depend-
ing on the most important variable(s) of interest. Again,
note that the meaning of the “cost ratio” on the y axis is
ambiguous for actual gate costs but is a useful tool for
comparing which algorithms scale better when choosing
a variable and picking a specific problem instance.

Another variable of interest is �, the cutoff on the value
for the electric field link space. To compare the scalings
in terms of �, we maintain the same neon-atom reference
calculation but set the minimum cutoff to � = 2 and com-
pare up to� = 1010. The cost ratio compared to the� = 2
instance is shown in Fig. 4. In Fig. 4(a), we can see a
sizable difference in the cost ratios on the log-log scale,
where the DC algorithm outperforms qubitization. Again,
selecting a higher-order value for the outermost Trotter
splitting, i.e., variable p1 in Eq. (58) in the DC algorithm,
changes the cost ratio to approach the qubitization result. In
Fig. 4(b), we look at small values of� (on a standard linear
plot) and see that even for small values of �, the cost ratio
can be dramatically different between the two algorithms.
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FIG. 4. The cost ratio of both the qubitization simulation algorithm and the divide-and-conquer algorithm when the order of the
outermost Trotter split, i.e., p1 = 1 (DC1) and p1 = 2 (DC2), with respect to the reference single-neon-atom system as a function of
�. For the reference, we have� = 2. (a) A log-log plot in which we compare up to higher values of�. (b) The same data in a standard
linear plot, where we focus on a smaller range for the value of �.

Intuitively, this is expected because we have partitioned in
such a way that the gate complexity has less dependence
on�. For example, as mentioned before, we have grouped
Hs, HV, and Hπ together within H11 and ensured that the
commutator error between H11 and H12 (Fig. 2) is indepen-
dent of�. Again, we emphasize that different partitionings
of ĤPF and tuning of parameters such as the order of split-
ting in the divide-and-conquer algorithm can yield different
results.

B. Bounds on �

While we have discussed the cost of simulation with
respect to the chosen cutoff, �, with respect to each elec-
tric field link, we now want to discuss how � scales for
certain regimes of applied problems. In order to quantify
this, we need a more formal method to discuss the qual-
ity of a given choice of �. A succinct way to quantify this
has been presented in Ref. [26], with a quantity denoted
as “leakage.” Specifically, leakage quantifies the probabil-
ity that for some initial state λ on the links between the
bounds ±�0, the state grows beyond � at time t, defined
as

∥∥(1 −�[−�,�]
)

e−itH�[−�0,�0]
∥∥ , (61)

where H is the Hamiltonian and the projectors � are
defined as

�[−�,�] =
∑
|λ|≤�

�λ (62)

and

�λ = |λ〉〈λ| (63)

for a single link site. Using this definition, the long-time
leakage bound has been defined in Ref. [26, Theorem 3]

and is a quantity that quantifies a bound on � given a
specific time t, using the t = 0 starting bounds, �0. The
long-time leakage bound can be computed as

�(t) = �0 +
⌈ 1
δ − 1

(
(�1−r

0 + 2χ |t|(1 − r)(δ − 1))
1

1−r

− �0)
⌉
(δ − 1), (64)

where r = 0 for lattice gauge theories, δ is an inte-
ger, where δ > 0, and χ is a constant dependent on the
definition of the Hamiltonian. Specifically, we can choose
χ to upper bound the spectral norm of the Hamiltonian
terms that modify the value on the electric link spaces.
Using similar notation in Ref. [26], we denote this Hamil-
tonian as H �

W, acting on a single choice of link �:

H �
W =

η∑
j

(
2i
c

∇j ⊗ A� + 1
c2 I ⊗ A2

�

)

+
3∑

μ�=ν=1

(
U�,μU�+1,ν , U†

�+1,μU†
�,ν + H.c.

)
. (65)

Therefore, the upper bound of the spectral norm of H �
W is

||H �
W|| ≤ 4πη ln(2)

�2c
+ 4π2

�2c
+ 6, (66)

using (Table II). By setting χ equal to this value, this
implies that

χ = ||H �
W|| ∈ O

(
ηN 2/3

�2/3

)
. (67)
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Therefore,

�(t) ∈ O
(
ηN 2/3t
�2/3

)
. (68)

Note that this bound increases linearly with time. This
is potentially problematic for long-time evolutions as, in
effect, it causes the time dependence of the simulation to
scale polynomially with t.

C. Heuristic � estimate for typical light-matter
interaction energies

While the leakage bound provides a formal guarantee on
the � bounds in the worst-case scenario, we do not expect
it to be tight in most physically reasonable situations. In
particular, a major assumption made by the above analysis
is that the input state has maximally bad scaling and in turn
leads to linear scaling of the error bound with time. In prac-
tice, however, if we are interested in low-energy physics
of a system, then these worst-case scenarios are unlikely
to occur. Here, we provide a proposed way to address
this by giving physically informed estimates to heuristi-
cally bound � for the systems of interest in nonrelativistic
light-matter interactions. First, we can assume that for a
single-particle-like excitation between an incoming pho-
ton, will be upper bounded by the deepest potential well
on the heaviest atom. Specifically, for a hydrogenic atom,
the single-electron energy levels in units of hartrees are

En = − Z2

2n2 , (69)

where n is the principle quantum number and the zero-
point energy is set at n = ∞, or when the electron is
unbound, and Z is the charge of the nucleus modeled as
a point charge. Therefore, the highest bound-state energy
needed naturally corresponds to the deepest (1s) orbital,
where n = 1. Therefore, we will fix n = 1 and take the
absolute value of the energy expression with the maximum
Z value in the system to correspond to the highest effective
� as

�̃1e = Z2
max

2
. (70)

for a single-electron excitation. Now, for a system con-
taining η electrons, we can assume that they are all
noninteracting and occupy the lowest-energy state of the
Zmax hydrogenic ion and the effective cutoff is then upper
bounded as

�̃ ≤ ηZ2
max

2
. (71)

This upper bound roughly corresponds to assuming that
all η electrons are occupying the 1s orbital of the deepest

potential well and that η individual photons interact and
excite the system into the continuum.

IV. CONCLUSIONS

We have derived the first-quantized representation of
the many-body Pauli-Fierz Hamiltonian (also referred to
as the nonrelativistic QED Hamiltonian) and subsequently
designed two algorithms to simulate its dynamics. First, we
have developed a divide-and-conquer algorithm that parti-
tions the Hamiltonian terms and simulates each one using
different simulation algorithms, such as Trotterization and
qubitization. Next, we have derived the complexity of
simulating this Hamiltonian using complete qubitization.
Additionally, we have discussed some potential appli-
cations, such as simulating the attosecond dynamics of
photoionization in atoms and molecules. We have also
discussed the relative merits of using these two algo-
rithms for different parameter regimes. We have observed
that, depending on the partitioning scheme, the divide-
and-conquer approach has the potential to yield smaller
gate costs. For example, one particular parameter of inter-
est is the electric cutoff �. Roughly, the complexity of
qubitization varies quadratically with �, while divide and
conquer shows a subquadratic dependence. While both of
these algorithms scale quadratically with the lattice size
N , it appears that the cost of qubitization scales more
favorably with this parameter overall. Another interesting
observation is the fact that as we increase the order of
the Trotter splitting in the divide-and-conquer method, the
scaling approaches that of qubitization. Finally, we have
also developed efficient techniques to implement a group
of multicontrolled-X gates, which shaves off log factors
in the asymptotic complexity and thus can yield a signifi-
cant improvement in the cost of implementing the SELECT
operations.

Overall, we have found that the quantum simulation of
the first-quantized many-body Pauli-Fierz Hamiltonian is
efficient but there are many avenues for future work. First,
we expect that there are many opportunities for optimizing
this simulation in general and especially when tailored to
specific applications of interest. Second, since the Pauli-
Fierz Hamiltonian captures so much of the phenomena in
the low-energy regime of molecules and condensed matter
interacting with light, we expect that many new applica-
tions of this model can be employed that have not not
discussed here. In fact, the identification of key appli-
cations of this model and the computation of exact gate
counts for said applications is an exciting avenue to probe
for evidence of practical advantages of this simulation
routine on future fault-tolerant quantum computers.

Looking ahead, there are a number of ways in which this
work can be built on. An open question involves whether
these ideas can be generalized to a broader class of field
theories, including non-Abelian gauge theories. Further,
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while the Pauli-Fierz model is appropriate for a strong
electromagnetic field coupled with the system, it is not
capable of capturing all of the QED because of its inability
to generate electromagnetic fields directly through particle
motion; instead, it relies on the ad hoc introduction of the
Coulomb potential. Providing ways to go beyond the lim-
itations of this model would be an important step toward
completing our understanding of how to simulate QED on
a quantum computer.
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APPENDIX A: DERIVATION OF THE
FIRST-QUANTIZED PAULI-FIERZ

HAMILTONIAN

In this appendix, we derive the first-quantized Pauli-
Fierz Hamiltonian. The full (rigged) Hilbert space of the
Pauli-Fierz model, HPF, in Euclidean 3D space, describ-
ing spin-1/2 electrons as fermions and the bosonic gauge
field, has the form

HPF = Hp ⊗ Hf ,

where Hp is the Hilbert space of the particles and Hf is
the Hilbert space of the electromagnetic (EM) field. The
Hilbert space that describes the particles is

Hp = Pa

(
η⊗

L2(R3,C2)

)
,

where Pa is the projection onto the antisymmetric subspace
of the η-particle system. The Hilbert space for the EM field
Hf is then

Hf = L2(R3 × {−∞, ∞}),
where the spectrum of the field is unbounded. Naturally,
for a finite simulation, the maximum allowed values on

the EM field need to be related to a cutoff �. This needs
to be quantitatively estimated for the energy scales in the
problem of interest and is discussed in Sec. III. The gen-
eral spin-1/2 Pauli-Fierz Hamiltonian for η particles is the
following:

Ĥ =
η∑
j

[
σ j ·

(
pj − e

c
A(x)

)]2
+ Ĥf + ĤV. (A1)

This follows the form of Ref. [56, Equation 20.2], where
the bold notation corresponds to vectors. σ j is the vector
of Pauli matrices {σ1, σ2, σ3} acting on the spin-1/2 degree
of freedom for particle j , pj is the 3-vector of momentum
{px, py , pz} for the j th particle in 3D space, e is the elec-
tric charge constant, c is the speed of light, and A(x) is
the magnetic vector potential {Ax(x), Ay(x), Az(x)}, where
x ∈ R3 is the position space coordinate. This Hamiltonian
is represented in the Coulomb gauge, ∇ · A = 0, mean-
ing that the divergence of the magnetic vector potential is
chosen to be 0.

The Ĥf term in Eq. (A1) is the free-photon-space Hamil-
tonian, defined as the following:

Ĥf = 1
2

∫
d3xE(x)2 + B(x)2, (A2)

where E(x) is the electric field component and B(x) is
the magnetic field component, defined as the following in
terms of A(x):

E(x) = −1
c
∂

∂t
A(x), (A3)

B(x) = ∇ × A(x). (A4)

The ĤV term in Eq. (A1) is the instantaneous two-particle
Coulomb-repulsion interaction, defined as

ĤV =
η∑

i�=j

eiej

2||ri − rj ||2 , (A5)

where rj is the position vector of particle j . This gives a
continuous Hamiltonian that describes the dynamics of a
fermionic system that is coupled to an external electro-
magnetic field. In order for the relativistic limit to hold,
we need to assume that 1/c � 1. This limit also removes
any need to incorporate Ampere’s law in the calculation,
because such corrections only contribute at higher order in
1/c. However, it is worth noting that if the magnetic fields
generated by the fermions are substantial, then models
such as these may not be applicable.

APPENDIX B: NONRELATIVISTIC SPIN TERM IN
THE STANDARD PAULI-FIERZ HAMILTONIAN

Following the derivation from Ref. [56], the general
spin-1/2 Pauli-Fierz Hamiltonian for η particles is the
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following:

Ĥ =
η∑
j

[
σ j ·

(
pj − e

c
A(x)

)]2
+ Ĥf + ĤV, (B1)

where we are only focused on the first term, which includes
the spin-1/2 particles coupled to the field. With this
definition, we can then expand the first term in Eq. (A1)
to isolate the spin-dependent terms.

The first term in Eq. (A1) can be expanded as follows
for a single particle j using the Pauli vector identity (σ ·
a)(σ · b) = a · b + iσ · (a × b):

[
σ j ·

(
pj − e

c
A(x)

)]2

=
[
σ j ·

(
pj − e

c
A(x)

)] [
σ j ·

(
pj − e

c
A(x)

)]
(B2)

=
(

pj − e
c

A(x)
)

·
(

pj − e
c

A(x)
)

+ iσ ·
((

pj − e
c

A(x)
)

×
(

pj − e
c

A(x)
))

. (B3)

The first term just reduces back to the original kinetic
momentum term without spin. Therefore, using the fact
that the cross products p × p and A × A vanish,

[
σ j ·

(
pj − e

c
A(x)

)]2

=
(

pj − e
c

A(x)
)2

+ iσ

·
((

pj − e
c

A(x)
)

×
(

pj − e
c

A(x)
))

(B4)

=
(

pj − e
c

A(x)
)2

+ iσ ·
(

p × p − e
c

p

×A(x)− e
c

A(x)× p + e2

c2 A(x)× A(x)
)

(B5)

=
(

pj − e
c

A(x)
)2

+ iσ ·
(
−e

c
p × A(x)− e

c
A(x)× p

)

(B6)

=
(

pj − e
c

A(x)
)2

− i
e
c
σ · (p × A(x)+ A(x)× p) .

(B7)

Now, by substituting in p → −i∇, assuming that this oper-
ates on a scalar function ψ , and subsequently using the
vector identity ∇ × (ψA) = ψ(∇ × A)− (A × ∇)ψ , we

obtain

[
σ j ·

(
pj − e

c
A(x)

)]2
ψ

=
(
∇j − e

c
A(x)

)2
ψ − e

c
σψ

· (∇j × A(x)+ A(x)× ∇j
)
ψ (B8)

=
(
∇j − e

c
A(x)

)2
ψ − e

c
σ

· (∇j × (A(x)ψ)+ A(x)× (∇jψ)
)

(B9)

=
(
∇j − e

c
A(x)

)2
ψ − e

c
σ · (ψ(∇j × (A(x))

−(A(x)× ∇j )ψ + A(x)× (∇jψ)
)

(B10)

=
(
∇j − e

c
A(x)

)2
ψ − e

c
σ · (∇j × A(x)ψ

)
(B11)

=
(
∇j − e

c
A(x)

)2
ψ − e

c
σ · B(x)ψ . (B12)

Therefore, the Pauli-Fierz Hamiltonian including spin sim-
plifies to

Ĥ =
η∑
j

[(
pj − e

c
A(x)

)2
− e

c
σ j · B(x)

]
+ Ĥf + V̂coul,

(B13)

where the only spin-dependent term at the one-body-
interaction level is the σ j · B(x) term.

APPENDIX C: DIVIDE AND CONQUER FOR
BLOCK ENCODING

In this appendix, we describe a divide-and-conquer
approach for block encoding of weighted linear combina-
tion or the product of Hamiltonians. Suppose that we have
M Hamiltonians, H1, . . . , HM , such that each has an LCU
decomposition as Hi = ∑Mi

j =1 hij Uij and λi = |hij |. We can
have a (λi, log Mi, 0) block encoding of Hi using an ancilla-
preparation subroutine and a unitary-selection subroutine,
which we denote by PREPi and SELECTi, respectively:

PREPi |0〉log Mi =
Mi∑

j =1

√
hij

λi
|j 〉 , (C1)

SELECTi =
Mi∑

j =1

|j 〉 〈j | ⊗ Uij , (C2)

〈0| PREP
†
i · SELECTi · PREPi |0〉 = Hi

λi
. (C3)
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Now, we use these subroutines to define the following:

PREP |0〉log M+∑i log Mi =
(

M∑
i=1

√
wiλi

A |i〉
)

⊗
M⊗

i=1

PREPi,

(C4)

SELECT =
M∑

i=1

(
|i〉 〈i| ⊗

i−1⊗
k=1

I ⊗ SELECTi

⊗
M⊗

k=i+1

I

)
, (C5)

where wi > 0 and A = ∑M
i=1 wiλi. In the following

theorem, we show that we can block encode a linear
combination of these Hamiltonians using the above sub-
routines.

Theorem 5. Let H = ∑M
i=1 wiHi be the sum of M Hamil-

tonians and let each of them be expressed as a sum of uni-
taries, as Hi = ∑Mi

j =1 hij Uij , such that λi = ∑
j |hij |, wi >

0. Each of the summand Hamiltonians is block encoded
using the subroutines defined in Eqs. C1 and C2. Then,
we can have a (A, 
log2(M )�, 0) block encoding of H/A,
where A = ∑M

i=1 wiλi, using the ancilla-preparation sub-
routine (PREP) defined in Eq. (C4) and the unitary-selection
subroutine (SELECT) defined in Eq. (C5):

(1) The PREP subroutine has an implementation cost of
CPREP = ∑M

i=1 CPREPi + Cw, where CPREPi is the num-
ber of gates to implement PREPi and Cw is the cost of
preparing the state

∑M
i=1

√
wiλi/A |i〉.

(2) The SELECT subroutine can be implemented
with a set of multicontrolled-X gates, {Mi pairs of
Clog2 Mi+1X gates : i = 1, . . . , M }, M pairs of
Clog M X gates, and

∑M
i=1 Mi single-controlled uni-

taries - {cUij : j = 1, . . . , Mi; i = 1, . . . , M }.
Proof. The ancilla-preparation and unitary-selection

subroutines for the block encoding of H/A have been
defined in Eqs. C4 and C5:

PREP |0〉log M+∑i log Mi =
(

M∑
i=1

√
wiλi

A |i〉
)

⊗
M⊗

i=1

PREPi =
(

M∑
i=1

√
wiλi

A |i〉
)

⊗
M⊗

i=1

⎛
⎝

Mi∑
j =1

√
hij

λi
|j 〉
⎞
⎠ ,

SELECT =
M∑

i=1

(
|i〉 〈i| ⊗

i−1⊗
k=1

I ⊗ SELECTi ⊗
M⊗

k=i+1

I

)

=
M∑

i=1

⎛
⎝|i〉 〈i| ⊗

i−1⊗
k=1

I ⊗
⎛
⎝

Mi∑
j =1

|j 〉 〈j | ⊗ Uij

⎞
⎠⊗

M⊗
k=i+1

I

⎞
⎠ .

Thus,

SELECT · PREP |0〉 |ψ〉 =
M∑

i=1

Mi∑
ji=1

⎛
⎝
√

wiλi

A |i〉 ⊗
i−1⊗
k=1

⎛
⎝

Mk∑
jk=1

√
hkj

λk
|jk〉

⎞
⎠⊗

√
hiji

λi
|ji〉 ⊗

M⊗
k=i+1

⎛
⎝

Mk∑
jk=1

√
hkj

λk
|jk〉

⎞
⎠
⎞
⎠Uiji |ψ〉

and

〈0| PREP† = (PREP |0〉)† =
(

M∑
i=1

√
wiλi

A 〈i|
)

⊗
M⊗

i=1

⎛
⎝

Mi∑
j =1

√
hij

λi
〈j |
⎞
⎠

and hence

〈0| PREP† · SELECT · PREP |0〉 |ψ〉 =
M∑

i=1

Mi∑
ji=1

wiλi

A
hiji

λi
Uiji |ψ〉 + |�⊥〉 =

(
1
A

M∑
i=1

wiHi

)
|ψ〉 + |�⊥〉 .

Thus we have a block encoding of H/A.
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It is quite clear that the cost of implementing PREP is as
given in the statement of the lemma. So now we describe
the implementation of SELECT, which can be written as
follows:

SELECT : |i〉 |0, k1〉1 . . . |1, j 〉i . . . |0, kM 〉M |ψ〉
�→ |i〉 |0, k1〉1 . . . |1, j 〉i . . . |0, kM 〉M Uij |ψ〉 .

In the above, we have represented each set of ancilla qubits
in the M + 1 subspaces of PREP as a separate register. We
allot one ancilla qubit, initialized to 0, for each PREPi reg-
ister. If state of the first register containing log M qubits is
|i〉, then the ith register corresponding to PREPi is selected
by flipping this ancilla to 1. We require M (compute-
uncompute) pairs of Clog2 M X gates and M ancillas to make
this selection. Now, if the state of the PREPi register is |j 〉,
then we select the j th unitary in the LCU decomposition
of Hi, i.e., Uij . To select unitaries of the ith Hamiltonian
Hi, we require Mi pairs of Clog2 Mi+1X . Each of these flip
another ancilla corresponding to each unitary in the LCU
decomposition. The unitaries are implemented controlled
on this ancilla. This explains the implementation cost of
the SELECT subroutine. �

1. Advantages

Now, we explain that we can have a decrease in gate
complexity if we follow this divide-and-conquer approach,
instead of block encoding H as a sum of M ′ = ∑M

i=1 Mi
unitaries:

H =
M∑

i=1

wiHi =
M∑

i=1

Mi∑
j =1

wihij Uij .

We have a PREP′ subroutine, acting on log2 M ′ ancilla
qubits, the states of which select a particular unitary in
the decomposition. A superposition of these basis states
with weights wihij can be obtained by using approximately
log2 M ′ = log2(

∑
i Mi) H gates, 2M ′ + 3 log2 M ′ − 7 =

2
∑

i Mi + 3 log2(
∑

i Mi)− 7 CNOT gates, and 2M ′ − 2 =
2
∑

i Mi − 2 rotation gates [74–76]. In the SELECT′ sub-
routine, we have M ′ unitaries, each controlled on log2 M ′
qubits. Each of them, in turn, can be implemented with
a (compute-uncompute) pair of Clog2 M ′

X and one con-
trolled unitary. Decomposing the multicontrolled-NOT in
terms of Clifford+T [67,68], we see that we require at most
M ′(4 log2 M ′ − 4) T, M ′(4 log2 M ′ − 3) CNOT. The use of
logical AND gadgets reduces the gate complexity in the
uncomputation part.

Now, let us use the divide-and-conquer method
described in Theorem 5. For the PREP subroutine, we
require log2 M +∑

i log2 Mi = log(M
∏

i Mi) H gates,
2(M +∑

i Mi)+ 3(log2 M + ∑
i log2 Mi)− 7(M + 1) =

2(M +∑
i Mi)+ 3 log(M

∏
i Mi)− 7(M + 1) CNOT gates,

and 2(M +∑
i Mi)− 2(M + 1) = 2

∑
i Mi − 2 rotation

gates. Comparing with the above estimate, we see that
we require the same number of rotation gates and more
H gates, and the difference in the CNOT count is

2(M +
∑

i

Mi)+ 3 log(M
∏

i

Mi)− 7(M + 1)

− 2
∑

i

Mi − 3 log(
∑

i

Mi)+ 7

= 2M + 3 log
(

M
∏

i Mi∑
i Mi

)
− 7M

= 3 log
(

M
∏

i Mi∑
i Mi

)
− 5M , (C6)

which can be less than 0 for certain values of M and
Mi. For the SELECT subroutine, we require, for each i, Mi
pairs of Clog2 Mi+1X and M pairs of Clog2 M X . Decompos-
ing these [67,68], we require

∑
i Mi(4 log(Mi + 1)− 4)+

M (4 log M − 4) T gates and
∑

i Mi(4 log(Mi + 1)− 3)+
M (4 log M − 3) CNOT gates. Thus the difference in the
T-gate-count estimate is

∑
i

Mi(4 log(Mi + 1)− 4)+ M (4 log M − 4)

− (4 log(
∑

i

Mi)− 4)(
∑

i

Mi)

= 4
∑

i

Mi log

(
Mi + 1∑

j Mj

)
+ 4M log M − 4M ,

which is less than 0 in most cases. Similarly, we can show
that the difference in the CNOT count estimate is

4
∑

i

Mi log

(
Mi + 1∑

j Mj

)
+ 4M log M − 3M ,

which is again less than 0 in most cases. We use the same
number of controlled unitaries in both approaches. Thus,
using the divide-and-conquer technique (Theorem 5), it is
possible to reduce the implementation cost in terms of the
gate count, especially with regard to the T gate and the
CNOT gate.

2. Block encoding of Hamiltonians with same
ancilla-preparation subroutine

Suppose, in Theorem 5, that each PREPi is the same,
which can occur if the LCU decomposition of each Hi has
the same weights. We note that the unitaries in the decom-
position can be different. Then, in the PREP subroutine of

010345-28



QUANTUM SIMULATION OF THE FIRST-QUANTIZED. . . PRX QUANTUM 5, 010345 (2024)

Eq. (C4), it is sufficient to keep only one copy of PREPi:

PREP |0〉log M+log Mi =
(

M∑
i=1

√
wiλi

A |i〉
)

⊗ PREPi. (C7)

In the special case when all Hi are the same but are act-
ing on disjoint subspaces, then the first log M qubits need

to be in equal superposition. This has been explained in
Sec. II B, as it is more pertinent for our paper.

3. Block encoding of product of Hamiltonians

Suppose that we have Hp = ∏M
i=1 Hi, where each Hi

can be block encoded with subroutines described in
Eqs. (C1)–(C3). Let A′ = ∏M

i=1 λi. Then, we can block
encode Hp/A′ using the following subroutines:

PREPp |0〉
∑

i log2 Mi =
M⊗

i=1

⎛
⎝

Mi∑
ji=1

√
hiji

λi
|ji〉

⎞
⎠ =

M1∑
j1=1

M2∑
j2=1

. . .

MM∑
jM =1

⎛
⎝
√∏M

k=1 hkjk

A′

M⊗
k=1

|jk〉
⎞
⎠ , (C8)

SELECTp =
M1∑

j1=1

M2∑
j2=1

. . .

MM∑
jM =1

(
M⊗

k=1

|jk〉 〈jk| ⊗
M∏

k=1

Ukjk

)
. (C9)

It follows that

〈0| PREP†
p · SELECTp · PREPp |0〉 |ψ〉

= 1
A′

M1∑
j1=1

M2∑
j2=1

. . .

MM∑
jM =1

M∏
k=1

hkjk Ukjk |ψ〉 + |�⊥〉

=
(

1
A

M∏
i=1

Hi |ψ〉
)

+ |�⊥〉 (C10)

and it is also easy to see that the total implementation cost
is the sum of the cost of implementing the block encoding
of each Hi. Hence we have the following theorem.

Theorem 6. If Hp = ∏M
i=1 Hi is a product of M Hamilto-

nians, such that Hi can be block encoded with the subrou-
tine defined in Eqs. (C1)–(C2), then we can block encode
Hp/A′ with the PREPp and SELECTp subroutines defined in
Eqs. (C8)–(C9):

(1) The PREPp subroutine has an implementation cost of∑M
i=1 CPREPi , where CPREPi is the implementation cost

of PREPi.
(2) The SELECTp subroutine has an implementation cost

of
∑M

i=1 CSELECTi , where CSELECTi is the implementa-
tion cost of SELECTi.

4. Advantages

Now, let us compare with the procedure in which we
block encode Hp by expressing it as a sum of M ′′ =∏M

i=1 Mi unitaries. We can have an ancilla-preparation sub-
routine with log2 M ′′ ancillas and for arbitrary weights
we require log2 M ′′ H gates, 2M ′′ + 3 log2 M ′′ − 7 CNOT

gates, and 2M ′′ − 2 rotation gates for preparing the
weighted superposition. Using Theorem 6, we require the
same number of H gates but the number of CNOT gates
required is at most 2

∑
i Mi + 3

∑
i log2 Mi −∑

i 7 and the
number of rotation gates required is at most 2

∑
i Mi −∑

i 2, which is much less. The difference in the number
of CNOT gates is

2
∑

i

Mi + 3
∑

i

log Mi − 7M − 2
∏

i

Mi

− 3 log(
∏

i

Mi)+ 7

= 2

(∑
i

Mi −
∏

i

Mi

)
− 7(M − 1) < 0,

while the difference in the number of rotation gates is

2
∑

i

Mi − 2M − 2
∏

i

Mi + 2

= 2

(∑
i

Mi −
∏

i

Mi

)
− 2(M − 1) < 0.

Without using Theorem 6, for the unitary-selection sub-
routine we require M ′′ unitaries, each of which is con-
trolled on log2 M ′′ ancillas. So we require M ′′ pairs of
Clog2 M ′′

X gates and M ′′ controlled unitaries. Decomposing
the multicontrolled-X gates, we require M ′′(4 log2 M ′′ −
4) T gates and M ′′(4 log2 M ′′ − 3) CNOT gates. Using
Theorem 6 we require, for each i, Mi pairs of Clog2 MiX
gates and Mi controlled unitaries. Thus, in total, we require
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∑
i Mi(4 log2 Mi − 4) T gates and

∑
i Mi(4 log2 Mi − 3)

CNOT gates. The difference in the T-gate-count estimate is

4
∑

i

Mi log Mi − 4

(∏
i

Mi

)
log

(∏
i

Mi

)

− 4
∑

i

Mi + 4
∏

i

Mi

= 4
∑

i

Mi log Mi − 4

(∏
i

Mi

)∑
i

log Mi

− 4

(∑
i

Mi −
∏

i

Mi

)

≤ 4
∑

i

⎛
⎝Mi −

∏
j

Mj

⎞
⎠ log Mi − 4

∑
i

⎛
⎝Mi −

∏
j

Mj

⎞
⎠

= 4
∑

i

⎛
⎝Mi −

∏
j

Mj

⎞
⎠ log2

Mi

2
(C11)

and the difference in the CNOT-gate-count estimate is

4
∑

i

(
Mi −

∏
i

Mi

)
log Mi − 3

(∑
i

Mi −
∏

i

Mi

)
,

both of which are less than 0 in most cases. Clearly, we
get much lower gate counts using the divide-and-conquer
approach (Theorem 6).

APPENDIX D: SYNTHESIZING A GROUP OF
MULTICONTROLLED-X GATES : SPLIT AND

MERGE

Situations often arise in which we need to select and
implement something. For example, in many simulation
algorithms [2–5,7,8], we need to selectively implement
all the unitaries appearing in a LCU decomposition of a
Hamiltonian. Let M be the number of unitaries and, for
simplicity, let us assume that M is a power of 2. Usu-
ally, we allot log2 M ancillas, the state of which selects
an unitary. Thus we require M unitaries, each controlled
on log2 M qubits. Each of these multicontrolled unitaries
can be implemented with a (compute-uncompute) pair of
Clog2 M X gates and a single-controlled unitary. Such sets
can also appear in other applications, as in Refs. [19,61–
65], and so the technique that we develop here can also be
useful in those cases. In our case, the size of this set is M
and the number of T gates required, following the construc-
tion in Ref. [67,68], is T1 = M (4 log2 M − 4), while the
number of CNOT gates required is M (4 log2 M − 3). The
use of logical AND gadgets eliminates the need to use any
T gate for the uncomputation part.

We can reduce the number of gates by “splitting” the
control and “merging” the resulting logic. The basic intu-
ition is as follows. Each unitary is associated with a
log2 M -bit binary string, corresponding to a basis state of
the log2 M control qubits. Suppose that we split the con-
trol qubits into two sets, each of length log2 M/2, and
associate each unitary with a pair of binary strings of
length log2 M/2. For each set, we use M 1/2 Clog2 M/2X
gates to select M 1/2 basis states by flipping M 1/2 ancil-
las. Then, we use M 1/2 · M 1/2 C2X gates to select a basis
state from each set and associate it with a unitary. Thus
we require M 1/2Clog2 M/2X + MC2X pairs of gates (com-
pute and uncompute) and hence the number of T gates
required is at most

√
M
[
(4 log2 M/2)− 4

]+ M × 4 [67].
This constitutes a saving of a log factor in the complexity.
The difference in the cost compared with the case without
splitting is

M (4 log2 M − 8)−
√

M (4 log2 M − 8)− 4M

= 4
√

M
(√

M − 1
)
(log2 M − 2) > 0

when M ≥ 4. Similarly, we can show that we require fewer
CNOT gates at the price of extra ancillas. The number of
extra ancillas required is at most

√
M + √

M = 2
√

M .
This technique can be generalized to the case in which
the controls are split into multiple sets, as stated in the
following theorem.

Theorem 7. Consider the unitary U = ∑M−1
j =0 |j 〉〈j | ⊗ Uj

for unitary operators Uj that can be implemented control-
lably. Let us assume that M is a power of 2, for simplicity.
Suppose that we have log2 M qubits and M (compute-
uncompute) pairs of Clog2 M X gates for selecting the M
basis states. Let r1, . . . , rn ≥ 1 be positive fractions such
that

∑n
i=1 1/ri = 1 and log2 M/ri are integers. Then, U can

be implemented with a circuit with

n∑
i=1

M
1
ri C

log2 M
ri X + MCnX

(compute-uncompute) pairs of gates, M applications of
controlled Uj , and at most

∑n
i=1 M 1/ri ancillas.

Proof. We split the log2 M qubits into n sets, such that
the ith set has log2 M/ri qubits. Using M 1/ri Clog M/riX
gates, we select from a set of 2log2 M/ri = M 1/ri extra ancilla
qubits, each corresponding to a basis state of the qubits in
this set. That is, each multicontrolled-X gate has a target on
one of these extra ancilla qubits, which gets selected (i.e.,
state flips) if the control qubits are in a certain basis state.
We can use

(∏n
i=1 M 1/ri

) = M CnX gates, such that each
has one control in an ancilla qubit of each of the n sets, in
order to select the basis states of the log2 M qubits. �

A very simple illustration is given in Fig. 5, where
M = 8.
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q1 • • • •
q2 • • • •
q3 • • • •

/ U1 U2 U3 U4 U5 U6 U7 U8

(a)

q1 • •
q2 • •
q3 • • • •
a1 • •
a2 • •
a3 • •
a4 • •

/ U1 U2 U3 U4 U5 U6 U7 U8

(b)

FIG. 5. (a) A SELECT circuit, consisting of eight unitaries and three qubits. (b) An implementation of the same circuit using the
split-and-merge technique (Theorem 7).

APPENDIX E: REQUIRED RESULTS ON NORM AND COMMUTATOR OF MATRICES

In this appendix, we give some results on the norm and commutator of matrices, which we use repeatedly throughout
our paper. The spectral norm of a matrix A, denoted by ‖A‖, is its largest singular value.

Theorem 8 ([77]). Let A ∈ R
m×n have a singular-value decomposition UA�AVT

A and let B ∈ R
p×q have a singular-value

decomposition UB�BVT
B. Then,

(UA ⊗ UB)(�A ⊗�B)(VT
A ⊗ VT

B)

yields a singular value decomposition of A ⊗ B (after a simple reordering of the diagonal elements of �A ⊗�B and the
corresponding right and left singular vectors).

Thus, we can say that ‖A ⊗ B‖ = ‖A‖‖B‖. Also, we know that it is an operator norm and thus that it satisfies the
scaling property ‖aA‖ = |a|‖A‖, the submultiplicative property ‖AB‖ ≤ ‖A‖‖B‖, and the triangle inequality ‖A + B‖ ≤
‖A‖ + ‖B‖. If A is unitary, then ‖A‖ = 1.

Let us define the adjoint operator adx : y → [x, y].
Lemma 8. Let Xj = ∑mj

ij =1 A(j )ij , for j = 1, . . . , p , where A(j )ij are elements from the same ring. Then,

adXp adXp−1 . . . adX3adX2X1 =
mp∑

ip =1

mp−1∑
ip−1=1

· · ·
m2∑

i2=1

m1∑
i1=1

ad
A(p)ip

ad
A(p−1)

ip−1
. . . adA(3)i3

adA(2)i2
A(1)i1 .

Proof. We prove the lemma by induction. First, we consider the following base case:

adX2X1 =
⎡
⎣

m2∑
i2=1

A(2)i2 ,
m1∑

i1=1

A(1)i1

⎤
⎦ =

⎛
⎝

m2∑
i2=1

A(2)i2

⎞
⎠
⎛
⎝

m1∑
i1=1

A(1)i1

⎞
⎠−

⎛
⎝

m1∑
i1=1

A(1)i1

⎞
⎠
⎛
⎝

m2∑
i2=1

A(2)i2

⎞
⎠

=
m2∑

i2=1

m1∑
i1=1

[
A(2)i2 , A(1)i1

]
=

m2∑
i2=1

m1∑
i1=1

adA(2)i2
A(1)i1 . (E1)

Assume that the result holds for the nested commutators between X1, . . . , Xp−1; i.e.,

adXp−1 . . . adX3adX2X1 =
mp−1∑

ip−1=1

· · ·
m2∑

i2=1

m1∑
i1=1

ad
A(p−1)

ip−1
. . . adA(3)i3

adA(2)i2
A(1)i1

=
mp−1∑

ip−1=1

· · ·
m2∑

i2=1

m1∑
i1=1

[
A(p−1)

ip−1
,
[
· · ·

[
A(2)i2 , A(i1)i1

]
· · ·

]]
. (E2)
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Then, using the above equation, we have

adXp

(
adXp−1 . . . adX3adX2X1

)
=
⎡
⎣

mp∑
ip =1

A(p)ip ,
mp−1∑

ip−1=1

· · ·
m2∑

i2=1

m1∑
i1=1

[
A(p−1)

ip−1
,
[
· · ·

[
A(2)i2 , A(i1)i1

]
· · ·

]]
⎤
⎦

=
mp∑

ip =1

· · ·
m2∑

i2=1

m1∑
i1=1

[
A(p)ip ,

[
· · ·

[
A(2)i2 , A(i1)i1

]
· · ·

]]
[Eq. (E1)]

and thus the lemma is proved. �
Lemma 9.

[⊗n
i=1Ai, ⊗n

i=1Bi
] =

n∑
k=1

(
k−1⊗
i=1

BiAi ⊗ [Ak, Bk] ⊗
n⊗

i=k+1

AiBi

)
.

Proof. We prove this by induction.
Base case. Let n = 2. Then,

[A1 ⊗ A2, B1 ⊗ B2] = (A1 ⊗ A2)(B1 ⊗ B2)− (B1 ⊗ B2)(A1 ⊗ A2)

= (A1B1 ⊗ A2B2)− (B1A1 ⊗ B2A2)

= A1B1 ⊗ A2B2 − B1A1 ⊗ A2B2 + B1A1 ⊗ A2B2 − B1A1 ⊗ B2A2

= (A1B1 − B1A1)⊗ A2B2 + B1A1 ⊗ (A2B2 − B2A2)

= [A1, B1] ⊗ A2B2 + B1A1 ⊗ [A2, B2].

Now assume that the given equality holds for n = m; i.e.,

[⊗m
i=1Ai, ⊗m

i=1Bi
] =

m∑
k=1

(
k−1⊗
i=1

BiAi ⊗ [Ak, Bk] ⊗
m⊗

i=k+1

AiBi

)
. (E3)

We show that it holds for n = m + 1 and hence the lemma is proved:

[⊗m+1
i=1 Ai, ⊗m+1

i=1 Bi
] = ⊗m+1

i=1 AiBi − ⊗m+1
i=1 BiAi

= A1B1 ⊗
m+1⊗
i=2

AiBi − B1A1 ⊗
m+1⊗
i=2

AiBi + B1A1 ⊗
m+1⊗
i=2

AiBi − B1A1 ⊗
m+1⊗
i=2

BiAi

= [A1, B1 − B1A1] ⊗
m+1⊗
i=2

AiBi + B1A1 ⊗ (⊗m+1
i=2 AiBi − ⊗m+1

i=2 BiAi
)

= [A1, B1] ⊗
m+1⊗
i=2

AiBi + B1A1 ⊗
((

m+1∑
k=2

k−1⊗
i=2

BiAi ⊗ [Ak, Bk] ⊗
m+1⊗

i=k+1

AiBi

))

=
m+1∑
k=1

(
k−1⊗
i=1

BiAi ⊗ [Ak, Bk] ⊗
m+1⊗

i=k+1

AiBi

)
. �

Fact 1. For p + 1 matrices A1, A2, . . . , Ap+1, we have

adAp+1adAp . . . adA2A1 ≤ 2p‖Ap+1‖‖Ap‖ . . . ‖A2‖‖A1‖.
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APPENDIX F: LCU DECOMPOSITION OF
OPERATORS

Efficient decomposition of operators as a linear combi-
nation of unitaries is an important step in many simulation
algorithms, such as those in Refs. [4,5,7,8]. For a Hamilto-
nian H , if H = ∑

j hj Uj is a decomposition into unitaries
Uj , then we denote by

∑
j |hj | the �1 norm of the decompo-

sition, which serves as an upper bound on the spectral norm
of H . This factor determines the complexity of LCU-based
simulation algorithms. The number of unitaries in the
decomposition determines the gate and ancilla complexity.

We begin this appendix by describing some general
results that pertain to the decomposition of diagonal matri-
ces over the complex field, as a sum of unitaries—identity
and signature matrices. A matrix the diagonal elements of
which are 0 or 1 is referred to as a diagonal binary matrix
and a matrix the diagonal elements of which are 1 and −1
is referred to as a signature matrix (unitary). Existing simu-
lation methods do employ such decompositions but we use
a slightly more formal presentation for ease of reference.
For integer diagonal matrices, we give a decomposition
with exponentially fewer unitaries.

As an example for how the idea of the signature matrix
decomposition works, let us first consider the matrix M01,
which is a diagonal binary matrix, and, without loss of gen-
erality, assume that the basis is chosen such that the zero
entries are sorted before the 1 entries:

M01 = diag(0, . . . , 0, 1, . . . , 1)

= 1
2
(diag(1, . . . , 1, 1, . . . , 1)

− diag(1, . . . , 1, −1, . . . , −1)) . (F1)

This shows that by subtracting an appropriate pattern of
positive and negative numbers, any binary diagonal matrix
can be formed by a difference between two signature
matrices. In general, however, we will wish to deal with
diagonal matrices that are nonbinary.

Lemma 10. Let M be a N × N diagonal matrix, such that
there are N ′ distinct diagonal elements, m1 < m2 < . . . <

mN ′ = mmax. (The subscripts do not indicate the posi-
tion of the element along the diagonal.) Then, M can be
written as M = c0I +∑N ′−1

i=1 ciDi, where the Di are signa-
ture matrices and

∑N ′−1
i=0 |ci| = |m1| + ∑N ′

i=2 |mi − mi−1|.
Specifically, if every mi ≥ 0, then the sum is mmax.

Proof. Let Bmi be the diagonal binary matrix, derived
from M , such that Bmi[j , j ] = 1 if M [j , j ] ≥ mi; else it is 0:

M = m1Bm1 + (m2 − m1)Bm2−m1 + (m3 − m2)Bm3−m2

+ · · · + (mN ′ − mN ′−1)BmN ′−mN ′−1
.

Each of the diagonal binary matrices can be decomposed
as a sum of an identity and a signature matrix, as shown

before in Eq. (F1). In this way, we decompose M as a sum
of I and N ′ − 1 signature matrices:

|c0| +
N ′−1∑
i=1

|ci| =
⎛
⎝|m1| + 1

2

N ′∑
i=2

|mi − mi−1|
⎞
⎠

+ 1
2

N ′∑
i=2

|mi − mi−1|

= |m1| +
N ′∑
i=2

|mi − mi−1|

= mN ′ , if each mi > 0. �

Lemma 11. Let MI = diag(m1, . . . , mN ) be a N × N
matrix, each entry of which is a non-negative integer, and
let mmax = maxi mi. Then, M = c0I +∑N ′

i=1 ciDi, where
the Di are signature matrices and N ′ ≤ 
log2(mmax +
1)� = ζ . Also,

∑N ′
i=0 |ci| ≤ 2ζ − 1.

Proof. The number of qubits required to implement
mmax is 
log2(mmax + 1)� = ζ . We represent each diagonal
integer in the binary representation. Thus the ith element is
as follows:

mi = b(i)0 20 + b(i)1 21 + b(i)2 22 + · · · + b(i)ζ−12ζ−1.

Thus, MI can be written as follows:

MI = 20diag(b(1)0 , b(2)0 , . . . , b(N )0 )

+ 21diag(b(1)1 , b(2)1 , . . . , b(N )1 )

+ · · · + 2ζ−1diag(b(1)ζ−1, b(2)ζ−1, . . . , b(N )ζ−1).

We can use Eq. (F1) to decompose each diagonal binary
matrix as a sum of I and one signature matrix. This proves
the first decomposition part of the lemma. For the second
part, we have the following:

∑
i

|ci| = 1
2

ζ−1∑
i=0

2i + 1
2

ζ−1∑
i=0

2i = 2ζ − 1. �

If a diagonal matrix has both positive and negative real
values, then we can have the following decompositions.
These can be especially useful to reduce the �1 norm of the
coefficients, if the negative entries are quite large. First, we
give a decomposition for the case when the entries are not
necessarily integers.

Lemma 12. Let M be a N × N diagonal real matrix, such
that there are N ′ distinct nonzero positive elements and
N ′′ distinct (nonzero) negative elements. Then, M can be
written as M = c0I +∑N ′+N ′′

i=1 ciDi, where the Di are sig-
nature matrices and

∑N ′+N ′′
i=0 |ci| = mmax, where mmax is the

largest positive diagonal entry.
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Proof. We split M as the difference of two matrices,
M = M ′ − M ′′, where M ′[i, i] = M [i, i] if M [i, i] > 0; else
M ′[i, i] = 0—while M ′′[i, i] = |M [i, i]| if M [i, i] < 0; else
M ′′[i, i] = 0. So, both M ′ and M ′′ are positive diagonal
matrices. Let us order the elements (including 0) of M ′ and
M ′′, respectively, as follows: m′

0 < m′
1 < · · · < m′

N ′ and
m′′

0 < m′′
1 < · · · < m′′

N ′′ . (We note that the subscripts here
do not reflect the position of the element along the diago-
nal.) For both matrices, m′

0 = m′′
0 = 0. We can use Lemma

10 and decompose the matrices as a sum of identity and
signature matrices,

M ′ =
⎛
⎝m′

0 + 1
2

N ′∑
i=1

(m′
i − m′

i−1)

⎞
⎠ I + 1

2

N ′∑
i=1

(m′
i − m′

i−1)D
′
i,

M ′′ =
⎛
⎝m′′

0 + 1
2

N ′′∑
i=1

(m′′
i − m′′

i−1)

⎞
⎠ I

+ 1
2

N ′′∑
i=1

(m′′
i − m′′

i−1)D
′′
i ,

where D′
i and D′′

i are signature matrices. Therefore,

M =
⎛
⎝1

2

N ′∑
i=1

(m′
i − m′

i−1)− 1
2

N ′′∑
i=1

(m′′
i − m′′

i−1)

⎞
⎠ I

+ 1
2

N ′∑
i=1

(m′
i − m′

i−1)D
′
i − 1

2

N ′′∑
i=1

(m′′
i − m′′

i−1)D
′′
i ,

since m′
0 = m′′

0 = 0 and hence the sum of the absolute
values of the coefficients is

⎛
⎝1

2

N ′∑
i=1

(m′
i − m′

i−1)− 1
2

N ′′∑
i=1

(m′′
i − m′′

i−1)

⎞
⎠

+ 1
2

N ′∑
i=1

(m′
i − m′

i−1)+ 1
2

N ′′∑
i=1

(m′′
i − m′′

i−1)

=
N ′∑
i=1

(m′
i − m′

i−1) = mN ′ = mmax. (F2)

�
We can have a similar result when the entries are both

positive and negative integers, including 0.
Lemma 13. Let MI be a N × N diagonal integer matrix,

which has N ′ positive integers, the maximum value
of which is m′

max, and N ′′ negative integers such that
m′′

max = maxi{|MI [i, i]| : MI [i, i] < 0}. Then, M = c0I +∑N ′+N ′′
i=1 ciDi, where the Di are signature matrices and N ′ ≤


log2(m
′
max + 1)� = ζ ′ and N ′′ ≤ 
log2(m

′′
max + 1)� = ζ ′′.

Also,
∑N ′+N ′′

i=0 |ci| ≤ 2ζ
′ − 1.

Now, we consider some particular matrices that are
relevant for the operators that appear in this paper. We
give some decompositions as a sum of some fundamental
quantum gates.

1. LCU decomposition of A and A2

First, consider the operator A described as

A = 1
i�

F
(

2π i
d

C′
)
F†, (F3)

where C′ = diag(0, 1, 2, . . . , d − 1).
Lemma 14. Let U = I(ζ ) ⊗ . . .⊗ I(�+1) ⊗ Z(�) ⊗

I(�−1) ⊗ . . .⊗ I(1) is a tensor product of ζ single-qubit uni-
taries, where Z is applied on qubit � and I on the rest. Then,
U is a diagonal matrix of the following form:

Uj ,j = 1 if j = 2�k, 2�k + 1, . . . 2�k + 2�−1 − 1

= −1 if j = 2�k + 2�−1, 2�k + 2�−1

+ 1, . . . 2�k + 2� − 1,

where k = 0, 1, . . . , 2ζ−� − 1.
Proof. I(�−1) ⊗ . . .⊗ I(1) = I2�−1 is a 2�−1 × 2�−1 iden-

tity matrix.
For any matrix M , Z ⊗ M gives a block diagonal matrix

with +M in the first or upper block and −M in the sec-
ond or lower block. Thus, Z(�) ⊗

(
I(�−1) ⊗ . . .⊗ I(1)

) =
Z ⊗ I2�−1 is a diagonal matrix with +I2�−1 in the first block
and −I2�−1 in the second block. This implies that it has +1
in the first 2�−1 diagonal entries and −1 in the remaining
2�−1 entries.

I(ζ ) ⊗ . . .⊗ I(�+1) = I2ζ−� is a 2ζ−� × 2ζ−� identity
matrix.

For any matrix M ′, I2ζ−� ⊗ M ′ is a block diagonal matrix
with M ′ embedded along the diagonal. Thus U = I2ζ−� ⊗(
Z ⊗ I2�−1

)
is a 2ζ × 2ζ matrix with

(
Z ⊗ I2�−1

)
2�×2�

repeating 2ζ−� times along the diagonal. This explains the
range of the index k in the statement of the lemma. Since
in each block the first 2�−1 entries are +1 and the remain-
ing ones are −1, we obtain the above-mentioned range of
values of the index j . �

Lemma 15. Let C′ = diag(0, 1, 2, 3, . . . , d − 1). Then,
assuming that d = 2ζ ,

C′ = 2ζ − 1
2

I − 1
2

ζ−1∑
i=0

2iZ(i+1),

where Z(i+1) = I(ζ ) ⊗ . . .⊗ I(i+2) ⊗ Z(i+1) ⊗ I(i) ⊗ . . .⊗
I(1).

010345-34



QUANTUM SIMULATION OF THE FIRST-QUANTIZED. . . PRX QUANTUM 5, 010345 (2024)

Proof. Using Lemma 11, we can decompose C′ as fol-
lows:

C′ =
ζ−1∑
i=0

2idiag
(

b(0)i , b(1)i , . . . , b(d−1)
i

)
,

where b(j )i is the ith bit occurring in the binary expan-
sion of j . Using Eq. (F1), we can further decompose
each diag

(
b(0)i , b(1)i , . . . , b(d−1)

i

)
as a sum of an identity

and a signature matrix. Now, if we follow the binary
decomposition of consecutive integers, then we see that
diag

(
b(0)0 , b(1)0 , . . . , b(d−1)

0

)
has alternative 0 and 1, which

leads to a signature matrix with alternating +1 and −1.
diag

(
b(0)1 , b(1)1 , . . . , b(d−1)

1

)
has two 0s, the next two 1s,

and so on. This yields a signature matrix with two
+1s, then next two −1s, and so on. To generalize,
diag

(
b(0)i , b(1)i , . . . , b(d−1)

i

)
has the first 2i+1 entries as 0,

while the next 2i+1 entries are 1, and so on, and we obtain
the corresponding pattern in the signature matrix. Thus,

using Lemma 14, we can write

diag
(

b(0)i , b(1)i , . . . , b(d−1)
i

)
= 1

2

⎛
⎝

ζ⊗
j =1

I(j ) − Z(i+1)

⎞
⎠

and hence the lemma follows. �
As a corollary, we can have the following LCU decom-

position of A.
Corollary 1. Let d = 2ζ . Then, we can write

A = 2π
d�

(
2ζ − 1

2
I − F

(
ζ−1∑
i=0

2i−1Z(i+1)

)
F†

)
.

It can be easily shown that this decomposition not only
has the same number of unitaries but also the same �1
norm, compared to the decomposition obtained by using
Lemma 11. The additional advantage is the fact that in this
case, we have specified the unitaries in terms of funda-
mental gates. The following result also follows from the
previous corollary.

Corollary 2. Let d = 2ζ . Then, we can write

A2 = π2

d2�2F

⎛
⎝
(

c2
0 +

ζ−1∑
i=0

22i

)
I − 2c0

ζ−1∑
i=0

2iZ(i+1) + 2
ζ−2∑
i=0

ζ−1∑
j =i+1

2i+j Z(i+1)Z(j +1)

⎞
⎠F†.

It can be shown that compared to Lemma 11, this decomposition has the same �1 norm, i.e.,

π2

d2�2

⎛
⎝c2

0 +
ζ−1∑
i=0

22i + 2c0

ζ−1∑
i=0

2i + 2
ζ−2∑
i=0

2i
ζ−1∑

j =i+1

2j

⎞
⎠

= π2

d2�2

⎛
⎝c2

0 + 4ζ − 1
3

+ 2c0(2ζ − 1)+ 2
ζ−2∑
i=0

2i+i+1
(ζ−1)−(i+1)∑

j =0

2j

⎞
⎠

= π2

d2�2

(
c2

0 + d2 − 1
3

+ 2c0(d − 1)+ 2
ζ−3∑
i=0

2i+i+1(2ζ−(i+1) − 1)+ 2 × 2(ζ−2)+(ζ−1)

)

= π2

d2�2

(
c2

0 + d2 − 1
3

+ 2c0(d − 1)+ 2ζ+1
ζ−3∑
i=0

2i + 22ζ−2 − 4
ζ−3∑
i=0

4i

)

= π2

d2�2

(
c2

0 + d2 − 1
3

+ 2c0(d − 1)+ 2ζ+1(2ζ−2 − 1)+ 4ζ

4
− 4

4ζ−2 − 1
3

)

= π2

d2�2

(
d2
(

3 + 1
3

+ 1
2

+ 1
4

− 1
12

)
− 8d + 4

)
= 4π2(d − 1)2

d2�2 ≤ 4π2

�2 ,

but the number of unitaries, i.e.,

1 + (ζ − 1)+ ((ζ − 1)+ (ζ − 2)+ · · · + 1) = ζ(ζ + 1)
2

= log2
2 d + log2 d

2
(F4)
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is slightly greater. Nonetheless, the advantage is the fact
that we have a decomposition in terms of very fundamental
quantum gates.

2. LCU decomposition of ∇ and ∇2

We approximate these differential operators with (2a +
1)-point central-difference formulas, by which we obtain
decompositions as a sum of adders. In general, the approx-
imation error is given by the following lemma.

Lemma 16 ([13,78]).

∇2
μψ(x) = 1

h2

a∑
k=−a

d2a+1,kψ(x + khêμ)+ R2a+1,

where êμ is the unit vector along the μth component of x,
(x + khêμ) is evaluated modulo the grid length L, R2a+1 ∈
O(h2a−1), and

d2a+1,k �=0 = 2(−1)a+k+1(a!)2

(a + k)!(a − k)!k2 d2a+1,k=0

= −
a∑

k=−a,k �=0

d2a+1,k.

More specific bounds can be made on the truncation
error for these central-difference formulas through the use
of Taylor’s remainder theorem. Also, the bounds on the 1-
norm of the coefficients for the adder decomposition are
summarized in the following lemma.

Lemma 17 (Theorem 7 and Lemma 6 in Ref. [13]). Let
ψ(x) ∈ C

2a+1 on x ∈ R for a ∈ Z+. Then, the error in
the (2a + 1)-point centered difference formula for the sec-
ond derivative of ψ(x) evaluated on a uniform mesh with
spacing h is at most

|R2a+1| ≤ π3/2

9
e2a[1−ln 2]h2a−1 max

x

∣∣ψ(2a+1)(x)
∣∣ .

Also, the sum of the norms of the coefficients is bounded
from above as follows:

a∑
k=−a,k �=0

∣∣d2a+1,k
∣∣ ≤ 2π2

3
.

Thus ∇2 is approximated by a sum of 2a + 1 adders and
the �1 norm of the coefficients is at most 4π2/3h2.

Next, we need a similar expression for the gradient, so
that we can understand how to block encode the result as
a function of the number of points used in the decom-
position. The first result stems from earlier work by Li
[78], which gives a high-order derivative expression using
centered differences:

Lemma 18 ([78]).

∇μψ(x) = 1
h

a∑
k=−a

d′
2a+1,kψ(x + khêμ)+ R′

2a+1,

where êμ is the unit vector along the μth component of
x, (xμ + khêμ) is evaluated modulo the grid length L,
|R′

2a+1| ∈ O(h2a), and

d′
2a+1,k = (−1)k+1(a!)2

j (a − k)!(a + k)!
, d′

2a+1,0 = 0.

Next, we need to bound the 1-norm of this formula, the
bound for which is given in the following lemma.

Lemma 19. The sum of the norms of the coefficients
in the (2a + 1)-point centered finite-difference formula is
bounded from above as follows:

a∑
k=−a,k �=0

∣∣d′
2a+1,k

∣∣

≤ 2 ln a + γ , where γ ≈ 0.577 is the Euler-

Mascheroni constant

≤ ln 2a2, when a ≥ √
e ≈ 1.4.

Proof.

a∑
k=−a,k �=0

∣∣d′
2a+1,k

∣∣ =
a∑

k=−a,k �=0

(a!)2

|k|(a − k)!(a + k)!

≤
a∑

k=−a,k �=0

1
|k| , for |k| ≤ a when a ≥ 1

= 2
a∑

k=1

1
|k| = 2 ln a + γ ,

where γ ≈ 0.577 is the Euler-Mascheroni constant. �
Finally, for completeness, we prove a specific trunca-

tion bound on the finite-difference approximation to the
gradient.

Lemma 20. Let ψ(x) ∈ C
2a+1 on x ∈ R for a ∈ Z+.

Then, the error in the (2a + 1)-point centered difference
formula for the first derivative of ψ(x) evaluated on a
uniform mesh with spacing h is at most

∣∣R′
2a+1

∣∣ ≤ (2 ln a + γ )

6
√
π

e2a[1−ln 2]h2a+1 max
x

∣∣ψ(2a+1)(x)
∣∣ .
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Proof. Using Ref. [78, Corollary 2.1] and the triangle
inequality, we have the following:

∣∣R′
2a+1

∣∣ ≤ h2a+1

(2a + 1)!
max

x

∣∣ψ(2a+1)(x)
∣∣

×
a∑

k=−a,�=0

|d2a+1,k||k|2a+1

≤ h2a+1a2a+1

(2a + 1)!
max

x

∣∣ψ(2a+1)(x)
∣∣

a∑
k=−a,�=0

|d2a+1,k|

<
(2 ln a + γ )h2a+1a2a+1

(2a + 1)!
max

x

∣∣ψ(2a+1)(x)
∣∣

× [using Lemma 19]. (F5)

Using Stirling’s approximation and the fact that a ≥ 1, we
have the following:

a2a+1

(2a + 1)!
≤

√
ae2a[1−ln 2]

2(2a + 1)
√
π

≤ e2a[1−ln 2]

6
√
π

.

The lemma is proved by substituting the above inequality
into Eq. (F5). �

Thus ∇ can be written as a sum of 2a unitaries, which
are adders, and the �1 norm of the coefficients is at most
2 ln a + γ ≤ ln(2a2).

As a final note, we see here that the accuracy of the dis-
crete derivatives considered increases as we increase the
number of points used in the formula provided that the
underlying wave function is sufficiently smooth. For our
purposes, we will not discuss in detail the specific value
of a that is optimal and we will assume that it is a con-
stant. This is because it is, in general, difficult to provide
bounds on the values of the higher-order derivatives of the
wave function as a function of the evolution time. While, in
principle, high-order formulas can be valuable to address
accuracy concerns, we need such guarantees in order to
understand the optimal order to take for a particular evolu-
tion. This is especially relevant since the initial state is not
necessarily in C∞ and thus the asymptotic advantages may
disappear for classes of functions that are not sufficiently
smooth. For these reasons, we leave detailed discussion of
the truncation error to subsequent work and focus on the
case in which a is a constant.

3. LCU decomposition of E2

In the electric link basis, E2
�,μ = ∑�−1

ε=−� ε
2 |ε〉 〈ε|�,μ is

a diagonal positive integer matrix and so we can use
Lemma 11 to express it as a linear combination of at most
1 + 
log2(�

2 + 1)� ≈ 2 log2� unitaries and the �1 norm
of the coefficients is at most �2. Alternatively, E2 can be
expressed as a linear combination of slightly more number

of Z operators but with the same �1 norm [24]:

E2 = 1
6
(
22ζ−1 + 1

)
I +

ζ−1∑
j =0

2j −1Zj +
ζ−2∑
j =0

ζ−1∑
k>j

2j +k−1Zj Zk,

(F6)

where ζ = log2�.

4. LCU decomposition of U

We know that U = ∑�−1
ε=−� |ε + 1〉 〈ε| = exp(i�A) =

FCF†, where C is the Sylvester’s “clock” matrix, defined
as

C =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1

⎞
⎟⎟⎟⎟⎠

,

where ω = e2π i/d and d is the dimension of C.

Lemma 21. Let R(2k) =
[

1 0
0 ω2k

]
be a rotation gate.

Then,

R(2x)⊗ · · · ⊗ R(21)⊗ R(20)

=
x⊗

k=0

R(2k) = diag(1,ω, . . . ,ω2x+1−1). (F7)

Proof. We prove by induction. For the base case, we
have

R(21)⊗ R(20)

= diag(1,ω2)⊗ diag(1,ω) = diag(1,ω,ω2,ω3).

Let the lemma hold when k = m − 1, i.e.,

m−1⊗
k=0

R(2k) = diag(1,ω, . . . ,ω2m−1).

Then,

m⊗
k=0

R(2k)

= R(2m)⊗
(

m−1⊗
k=0

R(2k)

)

= diag(1,ω2m
)⊗ diag(1,ω, . . . ,ω2m−1)

= diag(1,ω, . . . ,ω2m−1,ω2m
,ω2m+1, . . . ,ω2m+1−1)

and the lemma follows. �
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Setting d = 2x+1, we can have the following decompo-
sition of U and hence the �1 norm of U is 1.

Corollary 3. Let R(2k) =
[

1 0
0 ω2k

]
be a rotation gate.

Then, U = F
(⊗log2 d−1

k=0 R(2k)
)
F†.

5. LCU decomposition of the fragment Hamiltonians

We can decompose the fragment Hamiltonians appear-
ing in this paper [Eq. (20)] as a sum of unitaries, using the
LCU decomposition of the above operators and Lemma
10. We briefly describe the decompositions in the points
below:

(1) Hs = −1/c
∑η

j =1
∑N

q=1
∑3

μ�=ν �=ξ=1 σj ,μ ⊗ I ⊗ (∇ν

Aq,ξ − ∇ξAq,ν
)
. Using the LCU decompositions

of ∇ (Lemma 18) and A (Corollary 1), we can
write it as a sum of 2 × 3η × N (2a + 1)(
log2 d� +
1) ≈ 12ηNa log2 d unitaries and using the trian-
gle inequality (Appendix E), we obtain the �1
norm as ≤ (1/c)3ηN × 2 × ln(2a2)/h × 2π/� =
12πηN ln(2a2)/ch�.

(2) HVee = 1/�
∑η

k<j
∑N

q,r

(
I ⊗ 1/‖q − r‖2 |q〉 〈q|k |r〉

〈r|j ⊗ I
)
. Here,

∑N
q,r |q〉 〈q|k ⊗ |r〉 〈r|j is a diag-

onal operator. Using Lemma 10, we can express∑
q,r 1/‖q − r‖2 |q〉 〈q|i ⊗ |r〉 〈r|j as a sum of I

and N − 1 signature matrices and the �1 norm
of the decomposition is (1/‖q − r‖2)max = 1/�.
Hence, HVee can be decomposed as a sum of at
most η(η − 1)N/2 unitaries with �1 norm at most
η(η − 1)/2�2. Since � = �1/3/N 1/3, the depen-
dence on N is sort of implicit in the norm.

(3) HVne = −1/�
∑η

j
∑K

κ

∑N
q (I ⊗ Zκ/‖q − Rκ‖2 |q〉

〈q|j ⊗ I
)
. Here,

∑N
q |q〉 〈q| is a diagonal operator.

The number of distinct values of Zκ/‖q − Rκ‖2,
for a particular value of κ , is at most N . So, using
Lemma 10, we can decompose

∑
q Zκ/‖q − Rκ‖2

|q〉 〈q| as a sum of I and at most N − 1 signa-
ture matrices and the �1 norm is at most Zκ/dmin,
where dmin = (‖q − Rκ‖2)min = �. Hence HVne can
be decomposed as a sum of at most ηKN unitaries
and the �1 norm is at most ηZsum/�

2, where Zsum =∑K
κ=1 |Zκ |. Here too, the dependence of the norm on

N is implied due to �.
(4) Hf1 = ∑N

q
∑3

μ I ⊗ I ⊗ 1
2 E2

q,μ. Since E2
q,μ is a diag-

onal positive integer matrix, we can use Lemma 11.
Thus Hf 1 can be decomposed as a sum of at
most 3N

(
1 + 
log2

(
�2 + 1

)�) ≈ 6N log2� uni-
taries with �1 norm at most 3N�2/2.

(5) Hf2 = −∑N
q
∑3

μ�=ν I ⊗ I ⊗
(

W2
q,μ,ν + H.c.

)
. Using

Corollary 3 and the definition of W2 [Eq. (9)], we
can decompose Hf 2 as a sum of 6N unitaries, with
�1 norm at most 6N .

(6) H1π = − 1
2

∑η
j
∑N

q
∑3

μ I ⊗ ∇2
j ,μ ⊗ I. Using Lemma

16, we can express it as a sum of at most 6aηN uni-
taries and the �1 norm is at most 6ηN (4π2/3h2) =
8π2ηN/h2.

(7) H2π = 1/c
∑η

j
∑N

q
∑3

μ I ⊗ (i∇j ,μ)⊗ Aq,μ. Using
Lemma 18 and Corollary 1, we have a decom-
position with a sum of at most 6aηN log2 d uni-
taries and using Lemma 19, the �1 norm is at most
12πηN ln(2a2)/ch�.

(8) H3π = 1/2c2 ∑η
j
∑N

q
∑3

μ I ⊗ I ⊗ A2
q,μ. We use

Lemma 11 to decompose diag
(
02, 12, 22, . . . ,

(d − 1)2
)

and hence A2, as a sum of at most

log2(d − 1)2 + 1� + 1 � 2 log2 d unitaries. Thus
H3π can be expressed as a sum of at most
6ηN log2 d unitaries and the �1 norm is at most
3ηN (4π2/c2�2) = 12π2ηN/c2�2.

In Table II, we summarize the number of unitaries in the
LCU decomposition of various operators and Hamiltoni-
ans and also mention an upper bound on the �1 norm.

APPENDIX G: CIRCUIT DECOMPOSITIONS FOR
SIMULATION CIRCUITS

The following four subsections describe the algorithms
to simulate the exponential of the four Hamiltonian terms
that comprise our Hamiltonian, depicted as leaves in
Fig. 2, thus proving Lemma 2–6. As mentioned before,
we describe the circuits in terms of Clifford+T and
(controlled)-rotation gates.

1. Algorithm to simulate

e−iH12τ1 = eiτ1
∑N

q=1
∑3

μ�=ν=1 I⊗I⊗W2
q,μ,ν

In this section, we prove the complexity of simulating
e−iH12τ1 using qubitization, thus proving Lemma 2. We
know that H12 = Hf 2 [Eq. (22)], which corresponds to the
plaquette terms in the dynamics of the system. In Corollary
3, we show that the raising operator Uq,μ (defined in
Eq. (8)) is as follows:

Uq,μ = Fq,μ

⎛
⎝

log2 d−1⊗
k=1

Rz(θk)

⎞
⎠

q,μ

F†
q,μ, (G1)

where θk = 2π
d 2k and F is the Fourier transform.

This shows that an individual Uq,μ can be implemented
using log2(d) single-qubit rotations. The plaquette opera-
tor Wq,μ,ν can be implemented using four such terms and
thus W2

q,μ,ν [Eq. (9)] can be implemented by a layer of
at most 4 log2 d parallel rotations, conjugated by Fourier
transformation. The ancilla-preparation subroutine does
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the following:

PREPf 2 |0〉∗ =
⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠

⊗
⎛
⎝ 1√

6

3∑
μ�=ν=1

1∑
k=0

|μ〉 |ν〉 |k〉
⎞
⎠ . (G2)

First, we have the log2 N -qubit electric link index reg-
ister that stores the N electric link indices in equal

superposition. Next, we have the (4 + 1)-qubit spin-index
register. The first four qubits store the value of μ, ν. The
last qubit indicates whether we apply the H.c. If μ = ν or
μ, ν > 3, then we discard. Throughout this paper, by “dis-
carding” we mean unfollowing a computation path. This
is indicated by an ancilla qubit, which when set to |1〉,
we only apply I. All the registers are in equal superposi-
tion and so we require 5 + log2 N H gates. Comparing the
constraints on μ and ν takes O(1) extra gates and ancillas.

The unitary-selection subroutine does the following:

SELECTf 2 : |q〉 |μ, ν, 0〉
⎛
⎝

N⊗
q=1

3⊗

μ′=1

|fe = 0〉
⎞
⎠ |φ〉

�→ |q〉 |μ, ν, 0〉
(
|1〉q,μ |1〉q+1μ,ν |1〉q+1ν ,μ |1〉q,ν

)
F

⎛
⎝

log2 d−1⊗
k=1

Rz(θk)

⎞
⎠

q,μ

⎛
⎝

log2 d−1⊗
k=1

Rz(θk)

⎞
⎠

q+1μ,ν

×
⎛
⎝

log2 d−1⊗
k=1

Rz(−θk)

⎞
⎠

q+1ν ,μ

⎛
⎝

log2 d−1⊗
k=1

Rz(−θk)

⎞
⎠

q,ν

F† |φ〉 . (G3)

Throughout this paper, for an operator U and subspace indexed by some letter q, we write (U)q to imply identity acts on
the remaining subspaces. The above selection operator can also be expressed as

SELECTf 2 =
N∑

q=1

3∑
μ�=ν=1

1∑
k=0

|q,μ, ν, 0〉 〈q,μ, ν, 0| ⊗ Uq,μUq+1μ,νUq+1ν ,μUq,ν

+
N∑

q=1

3∑
μ�=ν=1

1∑
k=0

|q,μ, ν, 1〉 〈q,μ, ν, 1| ⊗ U†
q,νU

†
q+1ν ,μU†

q+1μ,νU
†
q,μ,

by which we can conveniently prove that

〈0| PREP
†
f 2 · SELECTf 2 · PREPf 2 |0〉 = Hf 2

6N
,

providing a (6N , ., 0) block encoding if Hf 2 and we also
observe that ‖Hf 2‖ ≤ 6N , from Table II. In the follow-
ing sections, we have preferred to follow the format of
Eq. (G3), for convenience in explaining the transforma-
tions of the states of the registers, including some ancilla
qubits. This also helps in explaining the number of controls
in some multicontrolled gates.

In each of the 3N subspaces, we allocate one ancilla fe,
initialized to |0〉 for selection. We use N Clog2 N X gates,
controlled on the link-index register to select a link sub-
space. We use 3N C5X gates to select spin subspaces. The
four controls are on the spin register and the last one is

controlled on the target qubits of the Clog2 N X gates. In
short, |fe〉 is flipped to |1〉 if both the link-register state |q〉
and the spin-register state |μ〉 match. The remaining oper-
ations are all controlled on the state of fe. We use the same
set of gates at the end of the operations for uncomputing.
We use the optimization technique of Theorem 2 to synthe-
size the NClog2 N X gates. If we split the ancillas into Mf 2
sets, such that the ith set contains log2 N/ri qubits, then
the total number of pairs of multicontrolled-X gates that
we require is

Mf 2∑
i=1

N
1
ri C

log2 N
ri X + NCMf 2X + 3NC5X . (G4)

In each of the 3N subspaces, we apply rotation gates
controlled on |fe = 1〉 and the third qubit in the spin
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register. If the latter is |0〉, then the angles are as
shown in Eq. (G3); else we apply the H.c., i.e., the
negative of these angles. Thus, in each subspace, we
have two multicontrolled-rotation gates. These rotation
gates are conjugated by log2 d-qubits QFT. If we use
the approximate quantum Fourier transform (AQFT)
[79], then we incur a T-gate cost of about 2 ×
3N

(
8(log2 d)(log2 log2 d − 2)+ 1.2 log2

2(log2 d)
)

and an
H-gate cost of about 2 × 3N log2 d.

Thus, for one block encoding of Hf 2
6N , the number of

controlled-rotation gates required is

Gr
1 = 6N (G5)

and the number of T gates required is

G t
1 ≤ 48N (log2 d)(log2 log2 d)+ 7.2N log2

2(log2 d)

+ 4
Mf 2∑
i=1

N
1
ri

log2 N
ri

+ 4NMf 2 + 48N , (G6)

while the number of CNOT gates required is

Gc
1 ≤ 4

Mf 2∑
i=1

N
1
ri

log2 N
ri

+ 4NMf 2 + 51N . (G7)

Counting the H gates, the total number of gates required
for the block encoding of H12/6N is

G ′
1 ≤ 6N log2 d + log2 N + 5 + 105N

+ 8
Mf 2∑
i=1

N
1
ri

log2 N
ri

+ 8NMf 2

∈ O
(
N log2 d

)
when

1
ri

≤ 1
2

, (G8)

assuming the Mf 2 is a constant. Using Ref. [8, Corollary
60], we need

O
(

Nτ1 + log(1/δ12)

log log(1/δ12)

)
(G9)

calls to the SELECTf 2 and PREPf 2 oracles that define the
block encoding of Hf 2/6N in order to implement a δ1-
precise block encoding of e−iHf 2τ1 . Thus the number of
gates required for simulating e−iHf 2τ1 is as follows:

G1 ∈ O
(

N 2τ1 log d + log(1/δ12)

log log(1/δ12)
N log d

)
. (G10)

2. Algorithm to simulate

e−iH21τ2 = e−iτ2
∑N

q=1
∑3

μ=1 I⊗I⊗ 1
2 E2

q,μ

We know that H21 = Hf 1 [Eq. (22)] and since
[E2
�,μ, E2

q,ν] = 0, if � �= q, then e−iHf 1τ2 = ∏N
q=1

∏3
μ=1 I ⊗

I ⊗ e−i(1/2)E2
q,μτ2 . If ζ = 1 + log2�, then E2 can be written

as a sum of Z operators, as shown below, and we simulate
e−iHf 1τ2 by Trotterization, as done in Ref. [24]:

E2 = 1
6
(
22ζ−1 + 1

)
I +

ζ−1∑
j =0

2j −1Zj +
ζ−2∑
j =0

ζ−1∑
k>j

2j +k−1Zj Zk.

(G11)

Lemma 22 (Lemma 2 in Ref. [24]). There exists a circuit
that implements e−iE2τ2 on ζ qubits exactly, up to an (effi-
ciently computable) global phase, using (ζ + 2)(ζ − 1)/2
CNOT operations and ζ(ζ + 1)/2 single-qubit rotations.
Here, ζ = 1 + log2�.

Since E2 is expressed as a sum of Pauli operators, we
can use the algorithm in Ref. [61] to optimize the rota-
tion gates at the cost of a small increase in the number
of Toffoli gates, which has T-count 7 [80] or 4 [81], if
using classical measurements. Then, the number of (con-
trolled) rotations is equal to the number of nonzero distinct
eigenvalues (ignoring the sign) of E2, which is �. This
can give fewer rotation gates up to ζ = 4. Since Toffolis
are exactly implementable, this can even lead to fewer T
gates, especially for the low-synthesis-error regime. The
number of CNOT gates can be further optimized using algo-
rithms such as those in Refs. [82,83], with or without using
connectivity constraints.

Since the product terms of e−iHf 1τ2 mutually commute,
there is no error introduced in the simulation of this Hamil-
tonian and the total number of rotation gates for one Trotter
step is

Gr
2 ≤ 3N

(1 + log2�)(2 + log2�)

2
, (G12)

while the number of CNOT gates is

Gc
2 ≤ 3N

log2�(3 + log2�)

2
. (G13)

Thus the number of gates required to implement e−iHf 1τ2 is

G2 = Gr
2 + Gc

2 ≤ 3N
(
log2

2�+ 3 log2�+ 1
)

∈ O
(
N log2

2�
)

. (G14)

Alternatively, we can use qubitization to simulate e−iH21τ2 .
Algorithm II, described in Sec. II D, applies qubitization on
the entire Hamiltonian ĤPF and for this we need to block
encode H21 and that is the main motivation for explaining
this here.
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The ancilla-preparation subroutine is defined as follows:

PREPf 1 |0〉∗ =
⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠⊗

⎛
⎝ 1√

3

3∑
μ=1

|μ〉
⎞
⎠

⊗

⎛
⎜⎝

log2(2�)+log(2�)+2
2∑

k=1

√
wk∑
k wk

|k〉

⎞
⎟⎠ . (G15)

Here, the wk are the weights of the unitaries in the
LCU decomposition of E2, as given in Eq. (G11). In
the first log2 N -qubit electric link index register, we store
the N electric link indices in equal superposition, using
log2 N H gates. In the next two-qubit spin-index reg-
ister, we store the values of μ, using two H gates.
Since E2 is a sum of (log2

2(2�)+ log2(2�)+ 2)/2 =
(log2

2�+ 3 log2�+ 4)/2 unitaries [Eq. (G11)], the last
register of log2

(
log2

2�+ 3 log2�+ 4
)− 1 qubits stores

the indices of the unitaries in a superposition, weighted
according to Eq. (G11). To obtain proper weighting of
the basis states, we can use any arbitrary state-preparation
algorithm (see, e.g., Refs. [74,75,84]), so we require
at most log2

(
log2

2�+ 3 log2�+ 4
)

H gates, log2
2�+

3 log2�+ 3 log2
(
log2

2�+ 3 log2�+ 4
)

CNOT gates, and
log2

2�+ 3 log2�+ 2 rotation gates.
The unitary-selection subroutine does the following:

SELECTf 1 : |q〉 |μ〉 |k〉
⎛
⎝

N⊗
q=1

3⊗

μ′=1

|fe = 0〉q,μ′

⎞
⎠ |φ〉

�→ |q〉 |μ〉 |k〉 (|1〉)q,μ
(
E2

k

)
q,μ |φ〉 (G16)

and it follows in a straightforward manner that

〈0| PREP
†
f 1 · SELECTf 1 · PREPf 1 |0〉 = Hf 1

3N�2/2
;

here too we keep in mind that ‖Hf 1‖ ≤ 3N�2/2, from
Table II. In each of the 3N subspaces, we allocate an
ancilla fe, initialized to |0〉 for selection. Using N Clog2 N X
gates controlled on the link index register, a link subspace
is selected. We use 3N C3X gates to select the spin sub-
spaces. The two controls are on the spin register and the
last one is controlled on the target qubits of the Clog2 N X
gates. In short, |fe〉 is flipped to |1〉 if both the link-register
state |q〉 and the spin-register state |μ〉 match. The remain-
ing operations are all controlled on the state of fe. The same
set of gates is used at the end of the operations for uncom-
puting. We use the optimization technique of Theorem 2 to
synthesize the NClog2 N X gates. If we split the ancillas into
Mf 1 sets, such that the ith set has log2 N/ri qubits, then the

total number of multicontrolled-X gates that we require is

Mf 1∑
i=1

N
1
ri C

log2 N
ri X + NCMf 1X + 3NC3X . (G17)

In each of the 3N subspaces, we use (log2
2�+ 3 log2

�+ 4)/2 Clog2 (log2 �+3 log�+4)/2X gates to select and apply
the unitaries in the decomposition of E2, i.e., log2

2(2�)
controlled-Z (CZ) gates. Using the optimization technique
of Theorem 2, the number of multicontrolled-X gates that
we require is

M ′
f 1∑

i=1

(
log2�+ 3 log�+ 4

2

) 1
ri

C
log(log2 �+3 log�+4)−1

ri X

+ log2�+ 3 log�+ 4
2

CM ′
f 1X , (G18)

where M ′
f 1 is a constant. Thus, for one block encoding of

Hf 1, the number of rotation gates required is

Gr′
2 ≤ log2

2�+ 3 log2�+ 2; (G19)

the number of T gates required is

G t′
2 ≤ 4

Mf 1∑
i=1

N
1
ri

log2 N
ri

+ 4NMf 1

+ 12N

M ′
f 1∑

i=1

(
log2

2�+ 3 log2�+ 4
2

) 1
ri

× log
(
log2

2�+ 3 log2�+ 4
)

+ 6NM ′
f 1

(
log2

2�+ 3 log2�+ 4
)

; (G20)

the number of CNOT gates required is asymptotically the
same as for the T gates; and so counting the H and CZ gates,
the total number of gates required for (3N�2/2, ., 0) block
encoding of H21 is

G ′
2 ∈ O

(
N log2

2�
)

, (G21)

assuming that Mf 1 and M ′
f 1 are constants. We have delib-

erately skipped the middle argument while specifying the
block-encoding constant of H21. This argument basically
denotes the number of extra ancillas that we require in the
PREPf 1 subroutine and we do not need this for our gate
complexity. So, for simplicity and convenience, we have
dropped it and we will do so henceforth. Sometimes, we
will be even more crisp and simply say “block encoding of
H21/3N�2/2.” So we require

O
(

N�2τ2 + log(1/δ21)

log log(1/δ21)

)
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calls to the PREPf 1 and SELECTf 1 oracles in order to implement a δ21-precise block encoding of e−iH21τ2 . Thus the number
of gates required for simulating e−iH21τ2 is

G21 ∈ O
(

N 2�2 log2�τ2 + log(1/δ21)

log log(1/δ21)
N log2�

)
.

3. Algorithm to simulate e−iH31τ3

We block encode H31 = Hs + H3π in a recursive manner, using Theorem 1 repeatedly:

Let H j ,q
s = −

3∑
μ�=ν �=ξ=1

(
σj ,μ ⊗ I

)⊗ (∇νAq,ξ − ∇ξAq,ν
)

=
3∑

μ�=ν �=ξ=1

(
σj ,μ ⊗ I

)⊗ (∇ξAq,ν − ∇νAq,ξ
)

and H j ,q
3π =

3∑
μ=1

I ⊗ I ⊗ A2
q,μ,

such that H j ,q
31 = 1

c
H j ,q

s + 1
2c2 H j ,q

3π , H j
31 =

N∑
q=1

H j ,q
31 , H31 =

η∑
j =1

H j
31. (G22)

a. Block encoding of H j ,q
s

The ancilla-preparation subroutine, denoted by PREP
j ,q
s

does the following:

PREPj ,q
s |0〉∗ =

⎛
⎝ 1√

6

3∑
μ�=ν �=ξ

1∑
b=0

|μ〉 |ν〉 |ξ〉 |b〉
⎞
⎠

⊗
(

a∑
k=−a

√
|d′

2a+1,k|∑
k |d′

2a+1,k|
|k + a〉

)

⊗
⎛
⎝

log2 d∑

k′=1

√
w′

k′∑
k′ w′

k′
|k′〉

⎞
⎠ . (G23)

The first (2 × 3 + 1) = 7-qubit spin-index register stores
directions or spins in equal superposition and we need
seven H gates for this. If μ, ν, and ξ are not unequal
or any of them is greater than 3, then we discard the
computational path. The last qubit of this register selects
between ∇νAq,ξ and ∇ξAq,ν . The second and third reg-
isters, with log2(2a) and log2 log2 d qubits, respectively,
indicate which adder to apply or on which qubit the
Z gate should be applied. These are unitaries obtained
in the LCU decomposition of ∇ (Lemma 18) and A
(Corollary 1) in Appendix F. To obtain proper weight-
ing of the basis states, we require at most 2a + log2 d − 4
rotation gates, 2a + log2 d + 3 log2(2a log2 d)− 14 CNOT
gates, and log2(2a log2 d) H gates [75].

We denote the next subroutine by SELECT
j ,q
s , which is

described as follows:

SELECTj ,q
s : |μ, ν, ξ , 0〉 |k′′〉 |k′〉 |φ〉

�→ |μ, ν, ξ , 0〉 |k′′〉 |k′〉 (σμ ⊗ I
)

j (∇k′′)q,ν (Ak′)q,ξ |φ〉 .
(G24)

Controlled on |μ〉, we apply σμ on the spin subspace of
the j th particle. Controlled on |ν, ξ〉, we select spin sub-
spaces of the qth link register. This step require O(1) gates.
Controlled on |k′′〉 and |k′〉, we apply the k′′th and k′th
unitaries in the LCU decompositions of ∇ and A, respec-
tively. If the third qubit in the spin register is |1〉, then we
apply ∇ξ and Aν . All the unitaries in the decomposition of
∇ and A act on log2 d qubits and they are controlled on
log2(2a) and log2 log2 d qubits, respectively. A is a sum of
log2 d Z gates; thus to select and implement these unitaries,
we require log2 d compute-uncompute pairs of Clog2 log2 dX
gates and log2 d CZ gates. Similarly, we can use 2a pairs of
Clog2(2a)X gates and 2a single-controlled adders to select
and implement the unitaries in the LCU decomposition of
∇. Using Theorem 2, we find that the number of pairs of
multicontrolled-X gates that we require is

Ms1∑
i=1

(log2 d)
1
ri C

log2 log2 d
ri X + log2 dCMs1X

+
Ms2∑
i=1

(2a)
1
ri C

log2(2a)
ri X + (2a)CMs2X , (G25)
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where we have split the log2 log2 d control qubits for A into
Ms1 sets and the log2(2a) control qubits for ∇ into Ms2 sets.

It follows that

〈0| PREPj ,q†
s · SELECTj ,q

s · PREPj ,q
s |0〉 = H j ,q

s

12π ln 2a2/h�
,

and thus we have a (12π ln 2a2/h�, ., 0) block encoding of
H j ,q

s .

b. Block encoding of H j ,q
3π

The first ancilla-preparation subroutine is described as
follows:

PREP
j ,q
3π |0〉∗ =

⎛
⎝ 1√

3

3∑

μ′=1

|μ′〉
⎞
⎠

⊗

⎛
⎜⎝

log2 d+log d
2∑

k=1

√
w′

k∑
k w′

k
|k〉

⎞
⎟⎠ . (G26)

The first two-qubit register is the spin-index register. Since
A2 is a sum of (log2

2 d + log2 d)/2 unitaries (Table II),
we prepare a log2

[
(log2

2 d + log2 d)/2
]
-qubit register in a

superposition weighted according to the LCU decompo-
sition of A2 (Corollary 2 in Sec. F) and this can be done
with log2 (log2

2 d + log2 d)/2 H gates, log2
2 d + log2 d +

3 log2
[
(log2

2 d + log2 d)/2
]− 7 CNOT gates, and log2

2 d +
log2 d − 2 rotation gates.

The next subroutine is described as follows:

SELECT
j ,q
3π : |μ′〉 |k〉 |φ〉 �→ |k〉 (A2

k

)
q,μ′ |φ〉 . (G27)

To implement A2, controlled on the |k〉 register, we
require (log2

2 d + log2 d)/2 pairs of Clog2[(log2 d+log d)/2]X
and log2 d + 2[(log2 d − 1) log2 d/2] = log2

2 d CZ gates.
For the latter, we have taken into account single Z gates
and ZZ operators, appearing in the LCU decomposition of
A2 (Corollary 2). Using Theorem 2, we find that the num-
ber of pairs of multicontrolled-X gates that we require is

M3π∑
i=1

(
log2

2 d + log2 d
2

) 1
ri

C
log2

log2
2 d+log2 d

2
ri X

+ log2
2 d + log2 d

2
CM3πX , (G28)

where we have split the log2 (log2
2 d + log2 d)/2 control

qubits into M3π sets.
It follows that

〈0| PREP
j ,q†
3π · SELECT

j ,q
3π · PREP

j ,q
3π |0〉 = H j ,q

3π

24π2/�2

and thus we have a (24π2/�2, ., 0) block encoding of H j ,q
3π .

c. Block encoding of H31

We use Theorem 1 repeatedly. First, we block encode
H j ,q

31 = (1/c)H j ,q
s + (1/2c2)H j ,q

3π , with O(1) extra gate
cost. Next, we consider H j

31 = ∑N
q=1 H j ,q

31 , where each of
the summand Hamiltonians acts on a separate link regis-
ter. So we can prepare log2 N ancilla qubits in an equal
superposition of all the link indices using log2 N H gates.
Similarly, for H31 = ∑η

j =1 H j
31, we prepare log2 η qubits

in an equal superposition of all the η indices with log2 η H
gates. Thus the overall ancilla-preparation subroutine is

PREP31 |0〉∗ =
⎛
⎝ 1√

η

η∑
j =1

|j 〉
⎞
⎠⊗

⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠

⊗
(√

λs

cA |0〉 +
√
λ3π

2c2A |1〉
)

⊗ PREPj ,q
s ⊗ PREP

j ,q
3π , (G29)

where λs = ‖H j ,q
s ‖ = 12π ln 2a2/h�, λ3π = ‖H j ,q

3π ‖ =
24π2/�2, and A = (λs/c)+ (λ3π/2c2). The overall
unitary-selection subroutine is as follows:

SELECT31 : |j , q, 0〉 |μ, ν, ξ , b, k′′, k′〉 |μ′, k〉 |φ〉
�→ |j , q, 0〉 |μ′, k〉 SELECTj ,q

s

(|μ, ν, ξ , b, k′′, k′〉 |φ〉) ,

SELECT31 : |j , q, 1〉 |μ, ν, ξ , b, k′′, k′〉 |μ′, k〉 |φ〉
�→ |j , q, 1〉 |μ, ν, ξ , b, k′′, k′〉 SELECT

j ,q
3π

(|μ′, k〉 |φ〉) .

It is straightforward to check that

〈0| PREP
†
31 · SELECT31 · PREP31 |0〉 = H31

ηNA ,

where ηNA = (12πηN ln 2a2/ch�)+ (12π2ηN/c2�2),
which is also the sum of the norms of the Hamiltonians
Hs and H3π in Table II. Thus we have a (ηNA, ., 0) block
encoding of H31.

Using η pairs of Clog2 ηX gates, we select a particle reg-
ister by flipping a qubit initialized to |0〉. Also, using N
pairs of Clog2 N X gates, we select a link register by flip-
ping another qubit. Thus, using Theorem 2, we find that the
number of pairs of multicontrolled-X gates that we require
is

M31∑
i=1

N
1
ri C

log2 N
ri X + NCM31X +

M ′
31∑

i=1

η
1
ri C

log2 η
ri X + ηCM ′

31X ,

(G30)

where we have split the log2 N and log2 η control qubits
into M31 and M ′

31 sets, respectively. In this case, the
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unitaries in the decomposition of ∇, A, A2 have three con-
trols and they are applied on each of the 3N link sub-
spaces. σ , with three controls, are applied on each of
the η-particle subspaces. Overall, we require 3N × 2a =
6aN three-qubit-controlled log2 d-qubit adders, which can
be decomposed as 6aN one-qubit-controlled adders and
12aN Toffoli pairs. Using the construction in Ref. [68],
we require 6aN × 4(log2 d − 1) controlled-T gates and
6aN × (5 log2 d − 4) controlled-CNOT gates to implement
the controlled adders. There are other constructions of
adders (see, e.g., Refs. [85–87]) and usually there are
trade-offs between these constructions. We have taken the

estimates from Ref. [68], because of the better bound on
the T-gate cost. We also require 3N × (log2 d + log2

2 d) Z
gates (for A, A2), each controlled on three qubits. Each of
these can be decomposed as a CZ and two Toffoli pairs.
Also, we require 3η Paulis, each controlled on three qubits.

Hence, for block encoding of H31/ηNA, the number of
controlled rotations required is

Gr
31 ≤ 2a + 2 log2 d + log2

2 d, (G31)

the number of T gates required is

G t
31 ≤ 4

M31∑
i=1

N
1
ri

log2 N
ri

+ 4NM31 + 4
M ′

31∑
i=1

η
1
ri

log2 η

ri
+ 4ηM31

+ 12N
Ms1∑
i=1

(log2 d)
1
ri

log2 log2 d
ri

+ 12N log2 dMs1 + 12N
Ms2∑
i=1

(2a)
1
ri

log2(2a)
ri

+ 24aNMs2

+ 12N
M3π∑
i=1

(
log2

2 d + log2 d
2

) 1
ri log2

log2
2 d+log2 d

2

ri
+ 6N

(
log2

2 d + log2 d
)

M3π

+ 24aN log2 d − 24aN + 24aN + 12N (log2 d + log2
2 d)+ 6aN (5 log2 d − 4), (G32)

while the number of CNOT gates required is some constant
times G t

31. Counting the rotation, H, CZ, and other gates,
the total number of gates required for the block encoding
of H31/ηNA is

G ′
31 ∈ O

(
η + N (a + log2 d) log2 d

)
, (G33)

assuming that Ms1, Ms2, M3π , M31, and M ′
31 are constants

and that each 1/ri ≤ 1
2 . From Table II,

‖H31‖ ≤ 12π2ηN
c2�2 + 12πηN ln(2a2)

ch�

= 12πηN
c�2

(
π

c
+ � ln(2a2)

h

)

≤ K31ηN ln(2a2)

�2 [K31 = constant], (G34)

where we have assumed that h ≤ Kh�, for some constant
Kh. So we need

R31 ∈ O
(
ηN ln(2a2)

�2 τ3 + log(1/δ31)

log log(1/δ31)

)
(G35)

calls to the block encoding of H31/ηNA in order to imple-
ment a δ31-precise block encoding of e−iH31τ3 [8]. Thus the

number of gates required for simulating e−iH31τ3 is

G31 ∈ O(R31 · G ′
31)

∈ O
(
η2N ln(2a2)

�2 τ3 + ηN 2 ln(2a2) log d
�2 (a + log d)τ3

+ log(1/δ31)

log log(1/δ31)
(η + N (a + log d) log d)

)
.

(G36)

4. Algorithm to simulate e−iH32τ3

We know that H32 = HV + H1π + H2π and here also we
use Theorem 1 to block encode in a recursive manner. We
define the following:

H j ,q,μ
1π = −I ⊗ ∇2

j ,μ ⊗ I, H j ,q,μ
2π = I ⊗ (

i∇j ,μ
)⊗ Aq,μ,

H j ,q,μ
12π = 1

2
H j ,q,μ

1π + 1
c

H j ,q,μ
2π , H12π =

η∑
j =1

N∑
q=1

3∑
μ=1

H j ,q,μ
12π .
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a. Block encoding of H12π

As in the case of H31, we first block encode H j ,q,μ
1π

and H j ,q,μ
2π separately, using the ancilla-preparation subrou-

tines PREP
j ,q,μ
1π and PREP

j ,q,μ
2π , respectively, followed by the

unitary-selection subroutines SELECT
j ,q,μ
1π and SELECT

j ,q,μ
2π ,

respectively. Then, we block encode H j ,q,μ
12π and H12π , as

discussed in Theorem 1. Whenever the same Hamiltonian
is applied on disjoint spaces, we apply the optimiza-
tion described in Remark 1. Thus, our overall ancilla-
preparation subroutine is as follows:

PREP12π |0〉∗ =
⎛
⎝ 1√

η

η∑
j =1

|j 〉
⎞
⎠⊗

⎛
⎝ 1√

N

N∑
q=1

|q〉
⎞
⎠

⊗
⎛
⎝ 1√

3

3∑
μ=1

|μ〉
⎞
⎠

⊗
(√

λ1

2A′ |0〉 +
√
λ2

cA′ |1〉
)

⊗ PREP
j ,q,μ
1π ⊗ PREP

j ,q,μ
2π , (G37)

where λ1 = ‖2H1π‖, λ2 = ‖cH2π‖, A′ = (λ1/2)+
(λ2/c) = (8π2ηN/h2)+ (12πηN ln 2a2/ch�), and

PREP
j ,q,μ
1π |0〉∗ =

(
a∑

k=−a

√
|d2a+1,k|∑
k |d2a+1,k| |k + a〉

)
, (G38)

PREP
j ,q,μ
2π |0〉∗ =

⎛
⎝

a∑
k1=−a

√
|d′′

2a+1,k1
|∑

k1
|d′′

2a+1,k1
| |k1 + a〉

⎞
⎠

⊗
⎛
⎝

log2 d∑
k2=1

√
wk2∑
k2

wk2

|k2〉
⎞
⎠ . (G39)

We use log2 η, log2 N , and two H gates to prepare an
equal superposition of η-particle indices, N link indices,
and three spins in the first, second, and third regis-
ter, respectively. In the fourth register, we require two
rotations. PREP

j ,q,μ
1π acts on the approximately log2(2a)-

qubit fifth register, where we store the indices of the
adders in the decomposition of ∇2 (Lemma 16) with
appropriate weights. This can be done using log2(2a) H
gates, 4a + 3 log2(2a)− 7 CNOT gates, and 4a − 2 rota-
tion gates. PREP

j ,q,μ
2π acts on the last two registers. The

second last one has log2(2a) qubits and stores the indices
of the adders in the LCU decomposition of ∇ (Lemma
18). We observe that we work with i∇ because it is
Hermitian and this factor is adjusted in the weights.
The last register has log2 log2 d qubits and stores the
indices of the Z gates occurring in the LCU decomposi-
tion of A (Corollary 1). To prepare these superpositions,

we require log2(2a)+ log2 log2 d = log2(2a log2 d) H
gates, (4a + 3 log2(2a)− 7)+ (2 log2 d + 3 log2 log2 d −
7) = 4a + 2 log2 d + 3 log2(2a log2 d)− 14 CNOT gates,
and (4a − 2)+ (2 log2 d − 2) = 4a + 2 log2 d − 4 rota-
tion gates.

The overall unitary-selection subroutine is as follows:

SELECT
j ,q,μ
1π : |k′〉 |φ〉 �→ |k′〉 (I ⊗ ∇2

k′
)

j ,μ |φ〉 , (G40)

SELECT
j ,q,μ
2π : |k′

1〉 |k′
2〉 |φ〉 �→ |k′

1〉 |k′
2〉
(
∇k′

1

)
j ,μ

(
Ak′

2

)
q,μ

|φ〉 ,

(G41)

SELECT12π : |j , q,μ, 0〉 |k′〉 |k′
1, k′

2〉 |φ〉
�→ |j , q,μ, 0〉 |k′

1, k′
2〉 SELECT

j ,q,μ
1π

(|k′〉 |φ〉) ,

SELECT12π : |j , q,μ, 1〉 |k′〉 |k′
1, k′

2〉 |φ〉
�→ |j , q,μ, 1〉 |k′〉 SELECT

j ,q,μ
2π

(|k′
1, k′

2〉 |φ〉) .

Using η pairs of Clog2 ηX gates and three pairs of C2X
gates, we select a particle-spin register by flipping a qubit
initialized to |0〉. Using N pairs of Clog2 N X gates, we
select a link subspace by flipping another qubit. Due to
H1π , in each of the 3η registers, we apply a controlled-
∇2 operator [Eq. (G40)], which is a sum of approximately
2a adders, each acting on log2 N 1/3 = 1

3 log2 N qubits,
controlled on log2(2a) qubits. Thus we require approx-
imately 3η × 2a pairs of Clog2(2a) X gates and 3η × 2a
controlled adders. Due to H2π , we apply controlled-∇
and controlled-A operators [Eq. (G41)] in each of the
3η and 3N particle and link registers, respectively. ∇
is a sum of 2a adders, each acting on 1

3 log2 N qubits,
controlled on log2(2a) qubits. A is a sum of log2 d Z
gates, each controlled on log2 d log2 d qubits. So, here we
require 3η × 2a pairs of Clog2(2a)X gates, 3η × 2a con-
trolled adders, 3N × log2 d pairs of Clog2 log2 d X gates, and
3N × log2 d CZ gates. We can implement the controlled
adders using 12ηa × 4( 1

3 log2 N − 1) controlled-T gates
and 12ηa × ( 5

3 log2 N − 4) controlled-CNOT gates.
Using Theorem 2, we find that the number of pairs of

multicontrolled-X gates that we require is

M1∑
i=1

N
1
ri C

log2 N
ri X + NCM1X +

M2∑
i=1

η
1
ri C

log2 η
ri X

+ ηCM2X + 3C2X

+ 3η

( M3∑
i=1

(2a)
1
ri C

log2(2a)
ri X + 2aCM3X

)

+ 3N

( M4∑
i=1

(log2 d)
1
ri C

log2 log2 d
ri X + log2 dCM4X

)
.
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It can be verified in a straightforward manner that

〈0| PREP
†
12π · SELECT12π · PREP12π |0〉 = H12π

A′ ,

where A′ = (8π2ηN/h2)+ (12πηN ln 2a2/ch�), which
is also the sum of the norms of H1π and H2π (Table II).

So, for block encoding of H12π/A′, the number of
rotation gates required is

Gr
12π ≤ 8a + 2 log2 d (G42)

and the number of T gates required is

G t
12π ≤ 4

M1∑
i=1

N
1
ri

log2 N
ri

+ 4NM1

+ 4
M2∑
i=1

η
1
ri

log2 η

ri
+ 4ηM2

+ 12η

( M3∑
i=1

(2a)
1
ri

log2(2a)
ri

+ 2aM3

)

+ 12N

( M4∑
i=1

(log2 d)
1
ri

log2 log2 d
ri

+ log2 dM4

)

+ 16ηa log2 N (G43)

while the number of CNOT gates is a constant times Gc
12π

and hence the total number of gates is

G ′
12π ∈ O

(
ηa log2 N + N log2 d

)
, (G44)

where we have assumed that each 1/ri ≤ 1
2 and that M1,

M2, M3, and M4 are constants.

b. Block encoding of HV

We know that HV = HVee + HVne and we block encode
it, following the approach taken in Refs. [18,20], with
some modifications and incorporating the optimizations
in Theorem 2. The ancilla-preparation subroutine is as
follows:

PREPV |1〉 |0〉∗

∝ |0〉
η∑

i<j

N 1/3∑

vx ,vy ,vz=−N 1/3

1
‖v‖2

|i〉 |j 〉 |vx, vy , vz〉

− |1〉
η∑

i=1

K∑
κ=1

N 1/3∑

vx ,vy ,vz=−N 1/3

√
Zκ

‖v‖2
|i〉 |κ〉 |vx, vy , vz〉 .

(G45)

We apply an H gate on the first ancilla, initialized to |1〉.
The resulting state 1√

2
(|0〉 − |1〉) is used to select between

the two Hamiltonians, |0〉 for HVee and |1s〉 for HVne . Also,
the −1 phase of HVne is taken care of at this stage. Next,
we have a log2 η-qubit register, where we store the par-
ticle indices in equal superposition using log2 η H gates.
The next register is also of log2 η qubits (assuming that
K ≤ η). If the first particle-index register is |0〉, then we
prepare the second register in equal superposition over
the particle indices and this requires log2 η H gates. We
impose the constraint i ≥ j by flagging a qubit, in which
case we discard the computational path. If the first qubit is
|1〉, then we prepare the second register in a superposition
over |κ〉 (positions of neutrons), weighted by nuclear

√
Zκ ,

the nuclear charge. This is given by a classical database
with complexity O(K). We can use the QROM and sub-
sampling strategies, discussed in Ref. [19]. We assume
that K ≤ η. For a material, in practice, there will be a
limited number of nuclear charges with nuclei in a reg-
ular array, so this complexity will instead be O(log2 K).
We follow the state-preparation procedure, described in
Ref. [18], to prepare

∑N 1/3

vx ,vy ,vz=−N 1/3(1/‖v‖2) |v〉. This is
described in Appendix I. The overall complexity obtained
is O

(
log2 N log2(N/δ

′)+ log2 η
)
, where δ′ is an upper

bound on the tolerable error for the block encoding of
HV. If a full classical database for the nuclei is required,
then the complexity will have an additional factor of
O
(
K log 1/δ′′), where δ′′ is the relative precision with

which the positions of the nuclei are specified.
The unitary-selection subroutine is described as follows:

SELECTV : |0〉 |i〉 |j 〉 |v〉 |q1, . . . , qi, . . . , qj , . . . , qη〉 |0〉
�→ |0〉 |i〉 |j 〉 |v〉 |q1, . . . , qi, . . . , qj , . . . , qη〉 |qi − qj 〉 ,

SELECTV : |1〉 |i〉 |κ〉 |v〉 |q1, . . . , qi, . . . , qη〉 |0〉
�→ |1〉 |i〉 |κ〉 v |q1, . . . , qi, . . . , qη〉 |Rκ − qi〉

(G46)

If the first qubit is |0〉, we discard if qi − qj �= v, i.e., we
flag this state as failure and perform identity along this
computational path. Since for each pair of qi and qj , only
one value of v survives, the probability distribution is unaf-
fected. We can use η pairs of Clog2 ηX gates to select the
particle registers. It takes O(log2 N ) gates for comparing
and calculating the difference in the position coordinates.

If the first register is |1〉, then we do the following. We
use a classical database to access Rκ and this has com-
plexity O (K). With η pairs of Clog2 ηX gates, we select the
particle, controlled on the particle-index register. We take
the difference Rκ − qi and discard the computational path
if it is not equal to v. This step has complexity O(log2 N ).

Thus we obtain a block encoding of HV/λV, where
λV = ‖HV‖ = (η(η − 1)/2�2)+ (ηZsum/�

2), and incor-
porating the optimizations of Theorem 2, the total number
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of gates required is

G ′
V ∈ O

(
η + log2 N log2

N
δ′ + K log2

1
δ′′

)
. (G47)

c. Block encoding of H32

Since HV has a probabilistic ancilla-preparation subrou-
tine, we can block encode H32 = HV + H12π using the pro-
cedure described in Ref. [20], by repeating the PREPV sub-
routine a constant number of times. This does not change
the asymptotic gate complexity. Thus the total number of
gates required to encode H32/λ32, where λ32 = ‖HV‖ +
‖H12π‖ = (η(η − 1)/2�2)+ (ηZsum/�

2)+ (8π2ηN/h2)

+ (12πηN ln 2a2/ch�), is

G ′
32 ∈ O

(
ηa log2 N + N log2 d + log2 N log2

N
δ′

+ K log2
1
δ′′

)
. (G48)

Now, we can bound the sum of the �1 norm of HV, H1π ,
and H2π , (and hence λ32) as follows:

12πηN ln(2a2)

ch�
+ 8π2ηN

h2 + η(η − 1)
2�2 + ηZsum

�2

≤ ηN
�2

(
12π ln(2a2)

c
× �

h
+ 8π�2

h2 +
(
η + 2Zsum

2N

))

� K32
ηN
�2

(
1 + ηs

N

)
,

where K32 is a constant, ηs = η + 2Zsum, and Zsum =∑K
κ=1 |Zκ |. Thus, to obtain a δ32-precise implementation

of e−i(HV+H1π+H2π )τ3 , we need to repeat the block encoding
of the Hamiltonian

R32 ∈ O
(
ηN
�2

(
1 + ηs

N

)
τ3 + log(1/δ32)

log log(1/δ32)

)
(G49)

times and hence the gate complexity is

G32 ∈ O(R32 · G ′
32)

∈ O
(
ηN
�2

(
1 + ηs

N

)
τ3 (ηa log N + N log d

+ log N log
N
δ′ + K log

1
δ′

)

+ log(1/δ32)

log log(1/δ32)
(ηa log N + N log d

+ log N log
N
δ′ + K log

1
δ′

))
. (G50)

APPENDIX H: TROTTER ERROR AND
COMMUTATORS

Let H = ∑�
γ=1 Hγ be a time-independent operator and

let the evolution generated by H be e−it
∑�
γ=1 Hγ . Such evo-

lutions can be approximated by a product of exponentials,
using product formulas such as the first-order Lie-Trotter
formula:

S1(t) = etH� . . . etH1 (H1)

and higher-order Suzuki formulas [57] defined recursively
via

S2(t) = e
t
2 H1 . . . e

t
2 H�e

t
2 H� . . . e

t
2 H1 ,

S2k(t) = S 2
2k−2(ukt)S2k−2((1 − 4uk)t)S 2

2k−2(ukt),
(H2)

where uk = 1/4 − 41/(2k−1). Quite a few bounds on the
Trotter error have been derived before [17,88,89] but we
use the one in Ref. [58], which shows the dependence on
nested commutators. Specifically, the authors show that
for a pth-order Trotter-Suzuki formula, Sp(t) = e−itH +
A (t), where

‖A (t)‖ ∈ O
(̃
αcommtp+1) , (H3)

if the Hγ are Hermitian. Also, in the above,

α̃comm =
�∑

γ1,γ2,...,γp+1=1

‖[Hγp+1 , . . . [Hγ2 , Hγ1 ]]‖. (H4)

Lemma 23. Consider the following sum of nested com-
mutators, obtained from distinct Hamiltonians from the set
{H1, . . . , Hk}. Let H ′

1, H ′
2, . . . , H ′

p ′ be p ′ + 1 Hamiltonians
that may or may not belong to the set:

Hnest =
k∑

γ1,...,γp−p ′=1

[
Hγp−p ′ , [Hγp−p ′−1

, [. . . [Hγ1 , [H ′
p ′+1,

[. . . [H ′
3, [H ′

2, H ′
1]] . . .]]] . . .]

]
.

Then,

‖Hnest‖ ≤ 2p−(p ′+1)‖[H ′
p ′+1, [. . . [H ′

3, [H ′
2, H ′

1]] . . .]]‖

×
(

k∑
i=1

‖Hi‖
)p−p ′

.
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Proof. Consider one group of summands as follows. Among Hγ1 , . . . , Hγp−p ′ , the number of occurrences of H1 is 0 ≤
i1 ≤ p − p ′, the number of occurrences of H2 is 0 ≤ i2 ≤ p − p ′ − i1, the number of occurrences of H3 is 0 ≤ i3 ≤ p −
p ′ − i1 − i2, and so on, i.e., the number of occurrences of Hk is 0 ≤ ik ≤ p − p ′ − i1 − i2 − · · · − ik−1. Using Fact 1, we
can upper bound the norm of the sum of this group of summands as follows:

‖[H ′
p ′+1, [. . . [H ′

3, [H ′
2, H ′

1]] . . .]]‖2p−(p ′+1)
(

p − p ′

i1

)
‖H1‖i1

(
p − p ′ − i1

i2

)
‖H2‖i2

. . .

(
p − p ′ − i1 − · · · − ik−2

ik−1

)
‖Hk−1‖ik−1‖Hk‖p−p ′−···−ik−1 .

Thus the total sum can be upper bounded as follows.

‖Hnest‖ ≤ 2p−(p ′+1)‖[H ′
p ′+1, [. . . [H ′

3, [H ′
2, H ′

1]] . . .]]‖

×
p−p ′∑
i1=0

p−p ′−i1∑
i2=0

. . .

p−p ′−···−ik−2∑
ik−1=0

(
p − p ′

i1

)
. . .

(
p − p ′ − · · · − ik−2

ik−1

)
‖H1‖i1 . . . ‖Hk‖p−p ′−···−ik−1

= 2p−(p ′+1)‖[H ′
p ′+1, [. . . [H ′

3, [H ′
2, H ′

1]] . . .]]‖
(

k∑
i=1

‖Hi‖
)p−p ′

.

�
Thus we immediately prove Lemma 7, which we are restating here for completeness.
Lemma 24. Let H = ∑�

γ=1 Hγ and α̃comm = ∑�
γ1,γ2,...,γp+1=1 ‖[Hγp+1 , . . . [Hγ2 , Hγ1 ]]‖. Then, for any integer

1 ≤ p ′ ≤ p ,

α̃comm ≤ 2p−(p ′+1)
∑

γi1 ,γi2 ,...,γip ′+1

‖[Hγp ′+1
, [. . . [Hγ3 , [Hγ2 , Hγ1 ]] . . .]]‖

⎛
⎝

�∑
γ=1

‖Hγ ‖
⎞
⎠

p−p ′

.

Ideally, we would want to compute tight bounds for the
nested commutators, preferably by exploiting some struc-
ture or properties of the Hamiltonians. The use of norms
does not always give tight bounds. But suppose that we
can compute such tight bounds up to level p ′ of nesting,
while we want a bound up to level p . Then, these results
can be very useful because we can look at them as though
we have combined the tighter analysis up to level p ′ with
a less tight analysis for the rest of the levels of nesting.
In fact, we observe that in Lemma 24, we actually group
the terms with the same inner commutators up to level p ′
and then apply Lemma 23 to bound the sum of each such
group, absolutely independent of the other groups. So, we
can vary p ′ for each group and vary the groupings appro-
priately in order to apply Lemma 23. This can make the
bound tighter for many applications. In this sense, we have
some flexibility.

We have explained before how we compute the �1 norm.
Now, we explain how we calculate the innermost pair-
wise commutators. For all the pairs, the bounds have been
derived by expanding the commutators using Lemmas 8
and 9 and then using the triangle inequality (Appendix E).

For [Hπ , HVee] and [Hπ , HVne], we use the following addi-
tional lemma. So first, we explain these two cases.

Similarly to the particle configuration considered in this
paper, let S be a 3D cubic lattice each side of which
is of length L. Each side has N 1/3 points and thus the
interpoint spacing is � = L/N 1/3. So we can say that the
cube is subdivided into N unit-cells, each of length �.
For any two points q = (qx, qy , qz) and r = (rx, ry .rz) in
the lattice, let the distance between them be denoted by
dqr = ‖q − r‖2 = √

(qx − rx)2 + (qy − ry)2 + (qz − rz)2.
Lemma 25. Assume that S consists of at least N = 1 unit

cells and has side length � > 0. Then,

∑
q�=r

1
dqr

≤ 2 × N 5/3

�
.

Proof. Consider the points on a two-dimensional (2D)
lattice, i.e., when qz − rz = 0. We assume that all points
within the lattice have positive coordinates and that one
corner is (0, 0, .). Let us fix q to be this corner. We ignore
the third coordinate, because it is not relevant in the 2D
plane.
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We divide the points of the lattice into different sets and
then compute the sum of the inverse of the distances of q
from the points within each set. First, consider the points
within the square with length �, cornered at q. We include
these points in set S1. Apart from q, there are 2 × 1 points
at distance �

√
12 + 02 from q there is and one point at

distance �
√

12 + 12 from q. The sum of the inverses of
these distances is

2
1

�
√

12 + 02
+ 1

�
√

12 + 12
.

Next, we build the set S2, that includes all points within a
square of sides 2�, cornered at q, but not those in S0. There
are 2 × 2 points at distances �

√
22 + 02,�

√
22 + 12 and

it is straightforward to see that for each distance, there
are two points, one translated in the X and the other in
the Y direction. There is one point at the corner, which is
at distance �

√
22 + 22. The sum of the inverses of these

distances is

1
�

[
2
(

1√
22 + 02

+ 1√
22 + 12

)
+ 1√

22 + 22

]
.

Similarly, we consider the set S3 = {points within a square
of side 3�, cornered at q} \ (S2

⋃S1
)
. There are 2 × 3

points, at distances �
√

32 + 02,�
√

32 + 12,�
√

32 + 22

from q; and one corner point at distance �
√

32 + 32. The
sum of the inverse is

1
�

[
2
(

1√
32 + 02

+ 1√
32 + 12

+ 1√
32 + 22

)

+ 1√
32 + 32

]
.

We go on in this way until we build the last set:

SN 1/3 = {
points within a square of side N 1/3�,

cornered at q
} \

⎛
⎝

N 1/3−1⋃
i=1

Si

⎞
⎠ .

There are 2 × N 1/3 points, at distances

�
√

N 2/3 + 02,�
√

N 2/3 + 12,�
√

N 2/3 + 22, . . . ,

�
√

N 2/3 + (N 1/3 − 1)2

from q; and one corner point at distance �
√

N 2/3 + N 2/3.
The sum of the inverse of these distances is

1
�

[
2

(
1√

N 2/3 + 02
· · · + 1√

N 2/3 + (N 1/3 − 1)2

)

+ 1√
N 2/3 + N 2/3

]
.

We claim that

f (k) = 2
k−1∑
i=0

(
1√

k2 + i2

)
+ 1√

k2 + k2
≤ 2 (H5)

when k > 4. This is because f (k) is continuous and differ-
entiable in [1, N ′], where N ′ is finite. Also,

f ′(k) = −2
k−1∑
i=0

k(k2 + i2)−3/2 − 1√
2k2

< 0

in this finite interval and hence the function f (k) is mono-
tonically decreasing. Since f (k) ≤ 2 when k ≥ 4, our
claim follows.

Thus, for one particular 2D plane, the sum of the inverse
of the distances is at most 2 × N 1/3/�.

Now, a 3D cubic lattice can be generated by transla-
tions of this 2D square lattice along the z direction. Now,
as we translate along the Z direction, qz − rz > 0, so the
distances from q = (0, 0, 0) increase and hence the sum
of the inverse of these distances can again be bounded
by 2 × N 1/3/�. Since a cube is generated by N 1/3 such
translations,

∑
r

1
d0r

≤ 2 × N 2/3

�
.

Hence
∑

q�=r
∑

r 1/dqr ≤ N (2 × N 2/3/�) and the lemma
follows. �

Given this result, we can turn our attention to bounding
the commutators of all remaining terms in the Hamiltonian.
We proceed in the following to enumerate each possible
commutator that can emerge in the error bound. These
bounds will be used in our Trotter-error-bound estimates.
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I. ‖[Hπ , HVee]‖ and ‖[Hπ , HVne]‖
We know that

Hπ = 1
2

η∑
j =1

3∑
μ=1

N∑
q=1

(
−I ⊗ ∇2

j ,μ ⊗ I + i
2
c
I ⊗ ∇j ,μ ⊗ Aq,μ + 1

c2 I ⊗ I ⊗ A2
q,μ

)
,

HVee = 1
�

η∑

j ′<k=1

N∑
x1,x2=1

I ⊗ 1
‖x1 − x2‖2

(|x1〉 〈x1|j ′ ⊗ |x2〉 〈x2|k)⊗ I,

HVne = − 1
�

η∑

j ′=1

K∑
κ=1

N∑
x=1

I ⊗ Zκ
‖x − Rκ‖2

|x〉 〈x|j ⊗ I.

Let ‖x1 − x2‖2 = dx1x2 and ‖x − Rκ‖2 = dxκ . Using Lemmas 8 and 9 and the fact that [A2, I] = 0, we obtain

[Hπ , HVee] = − 1
2�

∑

j =j ′ or k
μ,q,x1,x2

I ⊗ 1
dx1x2

[∇2
j ,μ, |x1〉 〈x1|j ′ |x2〉 〈x2|k] ⊗ I

+ i2
c�

∑

j =j ′ or k
μ,q,x1,x2

I ⊗ 1
dx1x2

[∇j ,μ, |x1〉 〈x1|j ′ |x2〉 〈x2|k] ⊗ Aq,μ.

From Lemma 25, we know that
∑

x1x2 1/dx1x2 ≤ 2N 5/3/�. The spectral norm of the commutator is bounded as follows:

‖[Hπ , HVee]‖ ≤ 2

(
1

2�
2 × 3η(η − 1)N

2
‖∇2

j ‖
∑
x1,x2

1
dx1x2

+ 2
c�

2 × 3η(η − 1)N
2

‖∇j ‖‖Aμ‖
∑
x1,x2

1
dx1x2

)

≤ 3η(η − 1)N
�

4π2

3h2

N 5/3

�
+ 12η(η − 1)N

c�
ln(2a2)

h
2π
�

N 5/3

�

≤ 4πη(η − 1)N 8/3

h2�2

(
π + 6h ln(2a2)

c�

)
.

With similar arguments, we can prove that

‖[Hπ , HVne]‖ ≤ 4πηN 5/3KZmax

h2�2

(
π + 6h ln(2a2)

c�

)
, (H6)

where (Zκ)max = Zmax. In this case, we have
∑

κ Zκ
∑

x 1/dxκ ≤ Zmax
∑

κ ,x 1/dxκ . Similarly to Lemma 25, we can prove
that

∑
x 1/dκr ≤ N 2/3/�, for some fixed κ . Hence

∑
κx 1/dxκ ≤ KN 2/3/�. Here, we make another observation, which

has been important in the groupings that we make. If Hπ = H1π + H2π + H3π as defined in Eq. (21), then [H3π , HVee] =
[H3π , HVne] = 0.

II. ‖[Hs, Hπ ]‖
We know that

Hs = −1
c

η∑
j =1

N∑
q=1

3∑
μ�=ν �=ξ=1

σj ,μ ⊗ I ⊗ (∇νAq,ξ − ∇ξAq,ν
)

.
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Using Lemmas 8 and 9 and the facts that [(∇νAq,ξ − ∇ξAq,ν), Aq′,μ′] = [(∇νAq,ξ − ∇ξAq,ν), A2
q′,μ′] = if q �= q′ and μ′ �=

ν, ξ , we have

[Hs, Hπ ] = i
1
c2

∑

j ,j ′,q
μ�=ν �=ξ
μ′=ν or ξ

σj ,μ ⊗ ∇j ′,μ′ ⊗ [(∇νAq,ξ − ∇ξAq,ν), Aq,μ′]

+ 1
2c3

∑

j ,j ′,q
μ�=ν �=ξ
μ′=ν or ξ

σj ,μ ⊗ I ⊗ [(∇νAq,ξ − ∇ξAq,ν), A2
q,μ′]

and hence

‖[Hs, Hπ ]‖ ≤ 2
(

1
c2 6Nη2‖∇j ′,μ′‖‖(∇νAq,ξ − ∇ξAq,ν)‖‖Aq,μ′‖ + 1

2c3 6Nη2‖(∇νAq,ξ − ∇ξAq,ν)‖‖A2
q,μ′‖

)

≤ 6η2N
c2

(
2

2 ln a + γ

h
4π(2 ln a + γ )

h�
2π
�

+ 1
c

4π(2 ln a + γ )

h�
4π2

�2

)

= 96π2η2N (2 ln a + γ )

hc2�2

(
2 ln a + γ

h
+ π

c�

)

≤ 96π2η2N ln(2a2)

hc2�2

(
ln(2a2)

h
+ π

c�

)
. (H7)

III. ‖[Hs, HVee]‖ and ‖[Hs, HVne]‖
Expanding, using Lemmas 8 and 9, we find that both of these commutators are 0.

IV. ‖[Hf, HVee]‖ and ‖[Hf, HVne]‖
We know that

Hf 1 = 1
2

N∑

q′=1

3∑

μ′=1

I ⊗ I ⊗ E2
q′,μ′ ,

Hf 2 = −
N∑

q′=1

3∑

μ′ �=ν′=1

I ⊗ I ⊗ W2
q′,μ′,ν′ .

Using Lemmas 8 and 9, we find that both of these commutators are 0.

V. ‖[Hf1, Hf2]‖
For a tighter bound on the commutator, we consider the following definitions of E2

q,μ and Uq,μ, as given in Sec. II A:

E2
q,μ =

�−1∑
ε=−�

ε2 |ε〉 〈ε|q,μ , (H8)

Uq,μ =
�−1∑
ε=−�

|ε + 1〉 〈ε|q,μ . (H9)
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The commutator between these two operators is

‖[E2
q,μ, Uq,μ]‖ = ‖E2

q,μUq,μ − Uq,μE2
q,μ‖

= ‖
�−1∑
ε=−�

(ε + 1)2 |ε + 1〉 〈ε| −
�−1∑
ε=−�

ε2 |ε + 1〉 〈ε| ‖

= ‖
�−1∑
ε=−�

(2ε + 1) |ε + 1〉 〈ε| ‖ = 2�− 1. (H10)

Now, from its definition, the plaquette operator W2
q′,μ′,ν′ is the product of four such U operators that act on the sides of a

plaquette. So E2
q,μ has a nonzero commutator with W2

q′,μ′,ν′ if and only if the link (q,μ) is any one of the four links of this
plaquette. Thus,

‖[Hf 1, Hf 2]‖ ≤ 3N × 2(2�− 1) ≤ 12N�. (H11)

VI. ‖[Hf, Hπ ]‖
Using similar arguments as before to obtain the indices for nonzero commutators, we have

[Hf , Hπ ] = − i
2c

∑
j ,μ,q

I ⊗ ∇j ,μ ⊗ [E2
q,μ, Aq,μ] + 1

2c2

∑
j ,μ,q

I ⊗ I ⊗ [E2
q,μ, A2

q,μ]

− i
2
c

∑
j ,μ�=ν,q

q′=q or q+1
μ′=μ or ν

I ⊗ ∇j ,μ′ ⊗ [W2
q,μ,ν , Aq′,μ′] − 1

c2

∑
j ,μ�=ν,q

q′=q or q+1
μ′=μ or ν

I ⊗ I ⊗ [W2
q,μ,ν , A2

q′,μ′]

and so

‖[Hf , Hπ ]‖ ≤ 2
(

3ηN
2c

‖∇jμ‖‖E2
qμ‖‖Aq,μ‖ + 3ηN

2c2 ‖E2
qμ‖‖A2

q,μ‖ + 24ηN
c

‖∇jμ′‖‖W2
q,μ,ν‖‖Aq′,μ′‖

+ 12ηN
c2 ‖W2

q,μ,ν‖‖A2
q′,μ′‖

)

≤ 3ηN
c

(
2 ln a + γ

h
�2 2π

�
+ 1

c
�2 4π2

�2 + 16
2 ln a + γ

h
2

2π
�

+ 8
c

2 × 4π2

�2

)

= 6πηN�2

c�

(
2 ln a + γ

h
+ 2π

c�

)
+ 198πηN

c�

(
2 ln a + γ

h
+ π

c�

)

≤ 6πηN
c�

((
ln(2a2)

h
+ 2π

c�

)
(�2 + 33)− 33π

c�

)
. (H12)

VII. ‖[Hs, Hf1]‖ and ‖[Hs, Hf2]‖
We know that

Hs = −1
c

η∑
j =1

N∑
q=1

3∑
μ�=ν �=ξ=1

σj ,μ ⊗ I ⊗ (∇νAq,ξ − ∇ξAq,ν
)

,

Hf 1 = 1
2

N∑

q′=1

3∑

μ′=1

I ⊗ I ⊗ E2
q′,μ′ ,

Hf 2 = −
N∑

q′=1

3∑

μ′ �=ν′=1

I ⊗ I ⊗ W2
q′,μ′,ν′ .
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[(∇νAq,ξ − ∇ξAq,ν), E2
q′,μ′] = 0 if q �= q′ and μ′ �= ξ , ν. Also, [(∇νAq,ξ − ∇ξAq,ν), Wq′,μ′,ν′] �= 0 if the link (q, ξ) or (q, ν)

is equal to any of the links (q′,μ′), (q′ + 1μ′ , ν ′), (q′ + 1ν′ ,μ′), or (q′, ν ′). This can happen if ν ′ (or μ′) is either ν or ξ
and the other one varies; and if ν ′ = ν (say), then (q, ν) = (q′, ν ′) or (q, ν) = (q′ + 1μ′ , ν ′). In the following equations,
we refer to the latter condition as q = q′ or q′ + 1, for brevity. Using Lemmas 8 and 9, we have the following:

[Hs, Hf 1] = − 1
2c

∑
q,j

μ�=ν �=ξ
μ′=ν or ξ

σj ,μ ⊗ I ⊗ [(∇νAq,ξ − ∇ξAq,ν), E2
q,μ′],

[
Hs, Hf 2

] = 1
c

∑
q,j

μ�=ν �=ξ ,μ′
�=q,q+1

σj ,μ ⊗ I ⊗ [(∇νAq,ξ − ∇ξAq,ν), W2
q,μ′ν].

We have used the following facts. Using the bounds in Table II, we have

‖[Hs, Hf 1]‖ ≤ 2
1
2c

6ηN‖∇νAq,ξ − ∇ξAq,ν)‖‖E2
qμ′‖ ≤ 24πηN�2 ln(2a2)

ch�
,

‖[Hs, Hf 2]‖ ≤ 2
1
c

18ηN‖∇νAq,ξ − ∇ξAq,ν)‖‖W2
q′,μ′,ν′‖ ≤ 288πηN ln(2a2)

ch�
.

In Table III, we summarize the bounds on all the necessary pairwise commutators that we have derived.

APPENDIX I: STATE-PREPARATION
ALGORITHM

In this appendix, we describe an algorithm to prepare a
state proportional to the following:

∑
�v∈G

1√‖�v‖ |�v〉 , where G = [−N 1/3, N 1/3]3 \ {0, 0, 0}.

(I1)

We follow the algorithm in Refs. [18,20], with appro-
priate changes to take care of the difference in weights.
The approach is to use a hierarachy of nested boxes in
G indexed by μ, each box being larger than the previ-
ous one by a factor of 2. For each box μ, we prepare
a set of �v values in that cube. We use eight registers
|μ〉 |vx〉 |vy〉 |vz〉 |m〉 |0〉 to hold this state. These subsys-
tems are used as follows:

(a) |μ〉 indexes the box used.
(b) |vx, vy , vz〉 are the three components of �v given as

signed integers.
(c) |m〉 is an ancilla in an equal superposition, used to

give the correct amplitude via an inequality test.
(d) |0〉 flags that the state preparation is successful.

There are four aspects due to which we have a failure
probability:

(1) The preparation of μ can fail.

(2) The signed integers can be negative zero, which is
not allowed.

(3) There is a failure probability associated with the test
of whether �v is inside a certain box.

(4) An inequality test made during the preparation also
introduces a probability of failing.

Let np = 1 + log2
(
N 1/3 + 1

)
be the number of qubits

required to represent vx, vy , and vz, i.e., each will give
numbers from −(2np −1 − 1) to 2np −1 − 1. The state-
preparation procedure can be summarized in the following
steps.

1. Step I

We prepare a superposition state

√
3

4n+1 − 16

np∑
μ=2

2μ |μ〉 , (I2)

which ensures that we obtain the correct weighting for each
cube. We use a unary encoding for |μ〉. We use a lad-
der of np controlled-H gates. More details can be found
in Ref. [20]. Each H gate can be implemented with two H
gate, two T gates, and one CNOT gate.

2. Step II

Controlled by μ, we apply an H gate on μ of the
qubits representing vx, vy , and vz to represent the values
from −(2μ−1 − 1) to 2μ−1 − 1. We require at most 3np
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controlled-H gates. We will flag a minus zero as a failure.
This can be done by checking each of |vx〉 , |vy〉, and |vz〉,
to determine whether the sign bit is 1 and the remaining
bits are 0. This requires three pairs of compute-uncompute
Cnp X gates. Decomposing these, we require 2(4np − 8) T
gates, 2(4np − 7) CNOT gates and np − 1 ancillas.

The total number of combinations before flagging the
failure is 23μ and so the squared amplitude is the inverse of
this. At this stage, the state is

√
3

4n+1 − 16

n∑
μ=2

2μ−1−1∑

vx ,vy ,vz=−(2μ−1−1)

2−μ/2 |μ〉 |vx, vy , vz〉 .

(I3)

3. Step III

We test whether |vx|, |vy |, |vz| < 2μ−2. If they are, then
the point is inside the box for the next lower value of μ
and we flag failure on the last ancilla qubit. For μ = 2,
this implies that we test whether �v = �0, which we exclude.
This requires testing whether all the three qubits for vx, vy ,
and vz are 0. Since the qubits tested are dependent on μ,
the complexity is O(np).

Let Bμ (for box μ) be the set of �v such that the absolute
values of vx, vy , and vz are less than 2μ−1, but let it not be
the case that they are all less than 2μ−2, i.e.,

Bμ =
{
�v : (0 ≤ |vx| < 2μ−1)

∧
(0 ≤ |vy | < 2μ−1)

∧
(0 ≤ |vz| < 2μ−1)

∧(
(|vx| ≥ 2μ−2)

∨(|vy | ≥ 2μ−2) ∨ (|vz| < 2μ−2)
) }

.

At this stage, the state, excluding the failures, is

√
3

4n+1 − 16

n∑
μ=2

∑
�v∈Bμ

1
2μ/2

|μ〉 |vx, vy , vz〉 . (I4)

4. Step IV

We prepare an ancilla register in an equal superposition
of |m〉 for m = 0 to M − 1, where M is a power of 2 and is
chosen to be large enough to provide a sufficiently accurate
approximation of the overall state preparation. This super-
position can be done entirely with H gates. Then, we test
the inequality

2μ−2

‖�v‖ >
m
M

.

The left-hand side can be as large as 1 in this region,
because we can have just one of vx, vy , and vz as large
as 2μ−2 and the other two equal to 0. That is, we are at the

center of a face of the inner cube. To avoid costly divisions,
we test the following equivalent inequality:

(
2μ−2 × M

)2
> m2

(
v2

x + v2
y + v2

z

)
.

The number of values of m satisfying the above inequal-
ity is Q = ⌈

M2μ−2/‖�v‖⌉. At this stage, the resulting state,
ignoring the part that fails, is

√
3

M (4n+1 − 16)

n∑
μ=2

∑
�v∈Bμ

Q−1∑
m=0

1
2μ/2

|μ〉 |vx, vy , vz〉 |m〉 .

(I5)

The square of the amplitude for each �v will then be

3
M2μ−2/‖�v‖�
M (4n+1 − 16)2μ

≈ 3
4(4n+1 − 16)

1
‖�v‖ (I6)

and hence the amplitude for each �v will be proportional to
1/
√‖�v‖.
Now, we consider the error in the state preparation due

to the finite value of M . The relevant quantity is the sum of
the errors in the squared amplitudes, as that gives the error
in the weightings of the operations applied to the target
state. That error is upper bounded by

3
M (4n+1 − 16)

n∑
μ=2

∑
�v∈Bμ

1
2μ

<
3

M (4n+1 − 16)

n∑
μ=2

22μ

= 1
M

. (I7)

If nM = 
log2 M�, then we require O(n2
p + np + nM np +

nM ) gates for this step [20]. If we take nM = log(1/δ′),
for some δ′ > 0, then the gate complexity for this state-
preparation procedure is in O

(
log N + log 1/δ′ + log2 N +

log N log 1/δ′) ∈ O
(
log N log N/δ′).
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