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In this paper, we present a superpolynomial improvement in the precision scaling of quantum sim-
ulations for coupled quantum-classical systems. Such systems are found in, e.g., molecular-dynamics
simulations within the Born-Oppenheimer approximation. By employing a framework based on the Koop-
man–von Neumann formulation of classical mechanics, we express the Liouville equation of motion as
unitary dynamics and utilize phase kickback from a dynamical quantum simulation to calculate the quan-
tum forces acting on classical particles. This approach allows us to simulate the dynamics of these classical
particles without the overheads associated with measuring gradients and solving the equations of motion
on a classical computer, resulting in a superpolynomial advantage at the price of increased space com-
plexity. We demonstrate that these simulations can be performed in both microcanonical and canonical
ensembles, enabling the estimation of thermodynamic properties from the prepared probability density.
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I. INTRODUCTION

We are accustomed to thinking of nature in terms of
binaries. Specifically, we often speak of dynamics as if
they were either purely quantum or purely classical. In
reality, many models of physical interest actually share
features with both quantum and classical matter. As a
particular example, molecular dynamics (MD) is often for-
mulated in this way, wherein the nuclei are assumed to
follow Newton’s equations but the electrons follow the
Schrödinger equation. In other cases, we may treat an
electromagnetic field as a time-dependent classical field
and the particles interacting with it as quantum. In both
cases, neither a fully quantum model nor a fully classi-
cal model can be used to address the problem efficiently.
Quantum computers have long been known to provide,
under reasonable complexity-theoretic conjectures, expo-
nential advantages for simulating certain quantum systems
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[1–4]. Recently, this has been extended to show that quan-
tum computers can offer exponential advantages even for
systems that are classical [5]. However, when examining
systems that straddle this line, such as the MD example
considered above, the situation is not as clear, because such
simulation methods are comparatively underexplored.

Descriptions within the Born-Oppenheimer (BO)
approximation, where the wave functions of the nuclei can
be considered independent of the wave functions of the
electrons, play an important role in the chemical and phar-
maceutical industries. These are often used to compute
thermodynamic quantities of the chemical systems under
study, such as the entropy or the free energy [6–10]. In
fact, in classical computational chemistry, thermodynamic
averages can be obtained by combining MD simulations
with the use of thermostats to go beyond microcanoni-
cal ensembles [11–13]. MD simulations introduce another
approximation on top of the BO approximation by treating
the nuclei as classical particles but retaining the quantum
description of the electrons. Recent works have explored
the study of MD on fault-tolerant quantum computers,
e.g., via force calculations, to update the coordinates of
the classical nuclei [14–20]. Some of these works go
beyond the Born-Oppenheimer approximation. In contrast
to approaches where the full system is treated quantum
mechanically, BO models have some advantages, namely,
that the scale of the quantum and the classical dynamics
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are naturally separated and that classical noise and external
forces can be easily applied to the system without needing
an expensive fully quantum description.

Recent work [20,21] has analyzed the cost of comput-
ing interatomic forces on quantum computers, which can
be used to update the classical nuclear positions on a clas-
sical computer iteratively. In those works, the cost of an
ε-approximate gradient evaluation has been found to scale
with the error tolerance ε as O(1/ε). This approach is even
less practical if we consider that, for many practical appli-
cations, we need to compute the properties of the chemical
systems in the canonical ensemble [8,10,11,22]. A key
problem in simulating MD in the canonical ensemble is
to prepare the classical distribution of the nuclei (their
probability density function) according to the Boltzmann
distribution at a certain temperature. Current quantum
computing methods do not allow for efficient encoding
and evolution of the probability density of the classical
degrees of freedom on the quantum computer. In the 1930s,
Koopman and von Neumann (KvN) proposed an empiri-
cal formulation of classical mechanics that incorporated a
Hilbert space consisting of complex and square-integrable
wave functions ψKvN(q, p), which depend on the position
q and momentum p of the particle [23]. These wave func-
tions were understood as probability densities, ρ(p , q) =
ψ∗

KvNψKvN, of finding the particle in a specific configura-
tion (p , q) of the phase space [24]. Both ρ andψKvN evolve
according to the Liouville equation,

∂tρ = −iLρ, (1)

where L is a Hermitian operator called the Liouvillian
operator. This gives a natural encoding (and subsequent
evolution) of classical probability densities into quantum
states that follow Hamiltonian dynamics.

The KvN formalism has recently been exploited to
propose new algorithms for simulating classical systems
on quantum computers and for solving nonlinear partial
differential equations [25,26]. In this work, we do not
use quantum linear systems algorithms but we explicitly
evolve the positions and momenta in time. We provide a
specific procedure for the time propagation along with the
cost of the block encodings involved, as well as a method
for obtaining ensemble averages from our final state.

We implement the time evolution of a hybrid quantum-
classical system by propagating the discretized phase-
space density of N classical nuclei that interact with Ñ
electrons, which are treated quantumly using the first-
quantized simulation method of Refs. [27,28]. We present
this result for the microcanonical ensemble [11], where the
number of particles Ntot = N + Ñ , the volume V, and the
energy E are conserved. By adding a thermostat to the evo-
lution, which couples the nuclear phase-space density to a
classical heat bath, we can impose a constant temperature

T, allowing us to perform the simulation in the canoni-
cal ensemble [12]. The asymptotic gate complexity of the
Liouvillian simulation algorithm is in

Õ
(

Ntotμ
2+o(1)t1+o(1)

γ̃ δ̃ εo(1)
log
(

1
ξ

))
, (2)

where μ is an upper bound on the spectral norm of the
Liouvillian operator, t is the evolution time, γ̃ is a lower
bound on the spectral gap of the electronic Hamiltonian
over all configurations visited during the simulation, δ̃
is a lower bound on the overlap of the initial electronic
state with the target electronic state over all configurations
visited during the simulation, ε is the desired simulation
precision, and ξ is an upper bound on the failure probabil-
ity. Our result provides superpolynomially better scaling
with ε than the existing approach of Ref. [20], which in
turn suggests that the road blocks previously identified for
MD therein may not be the obstacles that they were pre-
viously believed to be. Additionally, the asymptotic space
complexity of the Liouvillian simulation algorithm is mod-
erate, scaling linearly in Ntot and logarithmically in all
other simulation parameters, including the grid spacing as
well as the precision ε.

To tackle the problem of computing thermodynamic
quantities, we introduce a second algorithm, which, given
a quantum state encoding the discretized phase-space den-
sity of the system together with the heat bath (e.g., obtained
using the first algorithm), can output an estimate of the
free energy of the system. In contrast to classical methods
and previous approaches for MD simulations on quantum
computers [15–18], our approach exploits a fully coherent
state preparation of the classical probability density in the
canonical ensemble, avoiding sampling and enabling the
direct estimation of thermodynamic properties [10,20].

The paper is structured as follows. In Sec. II, we intro-
duce the main concepts for coupled quantum-classical
dynamics in the Liouvillian picture. We show that a ther-
mostat can be used to prepare the canonical ensemble and
that we can implement this simulation on a quantum com-
puter by discretizing the phase space. Our main results are
presented in Sec. III, which includes precise statements
of the computational problems as well as the asymptotic
gate complexity of our algorithms to solve these problems.
In Sec. IV, we give an overview of our quantum algo-
rithms for simulating Liouvillian dynamics and estimating
the free energy of a quantum-classical system. We con-
clude with a brief discussion in Sec. V. The proofs of the
theorems and lemmas presented in the main text are given
in the Appendices A–E.

II. PRELIMINARIES

In this section, we provide an overview of the funda-
mental definitions, from the Liouvillian formalism to the
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mappings into qubit registers and the microcanonical and
canonical ensembles, that are essential for the definition of
the computational problems and the implementation of the
algorithms.

A. Liouvillian formalism

The trajectories of N classical particles in three dimen-
sions are governed by Newton’s equations of motion:

Fn,j = mnẍn,j , n ∈ {1, 2, . . . , N }, j ∈ {1, 2, 3}, (3)

where Fn,j is the j th component of the force on the nth par-
ticle, ẍn,j is its acceleration, and mn is its mass. In general,
these differential equations are nonlinear and nonunitary,
meaning that the time evolution of the positions of the par-
ticles cannot be directly implemented on a quantum com-
puter. The Born-Oppenheimer approximation in MD turns
the Hamiltonian problem of jointly evolving nuclei and
electrons into an example of such a nonlinear and nonuni-
tary time evolution. We overcome the issue by working
with the Liouvillian formulation of classical mechanics
instead, which is centered around the phase-space proba-
bility density ρ ({xn}, {pn}, t) of the classical particles. The
probability density depends on the positions xn ∈ R

3 and
momenta pn ∈ R

3 of the particles as well as on time t. It is
normalized according to

∫
R6N ρ ({xn}, {pn}, t) d{xn}d{pn} =

1 and satisfies the following equation of motion:

∂ρ

∂t
= −iLρ, (4)

where L is the Liouvillian operator, defined as

L := −i
N∑

n=1

3∑
j =1

(
∂H
∂pn,j

∂xn,j − ∂H
∂xn,j

∂pn,j

)
. (5)

Here, H is the classical Hamiltonian of the system and ∂xn,j
(∂pn,j ) denotes the partial derivative with respect to the j th
position (momentum) component of the nth particle.

The formal solution to Eq. (4) reads

ρ(t) = e−iLtρ(0). (6)

Note that L is Hermitian, which implies that e−iLt is unitary.
The similarities to quantum mechanics become even more
apparent when employing the KvN formulation of classical
mechanics [24]. The idea is to introduce a complex wave
function, ψKvN ({xn}, {pn}, t), which evolves according to
the Liouville equation just like ρ ({xn}, {pn}, t):

∂ψKvN

∂t
= −iLψKvN. (7)

The phase-space density can then be recovered via the
relation ρ = ψ∗

KvNψKvN, which resembles the quantum

mechanical calculation of probabilities from amplitudes.
This works out because the Liouvillian contains only first-
order derivatives, ∂xn,j and ∂pn,j , meaning that the prod-
uct of two wave functions, each satisfying the Liouville
equation, also satisfies the Liouville equation. In contrast,
the Schrödinger equation of quantum mechanics generi-
cally contains second-order derivatives, ∂2

xn,j
, implying that

the product of two solutions does not necessarily satisfy the
Schrödinger equation.

Consideration of the KvN wave function ψKvN rather
than the phase-space density ρ has one significant advan-
tage: ψKvN can be easily encoded on a quantum computer,
since it has the same properties as a “true” quantum wave
function. For example, while ρ needs to be real valued
and positive, ψKvN can take on complex values. Further-
more, ψKvN is normalized according to the 2-norm, i.e.,∫

R6N |ψKvN|2d{xn}d{pn} = 1, in contrast to ρ, which is
normalized according to the 1-norm.

While the Liouvillian formalism can be applied to any
classical system governed by a Hamiltonian, we will focus
on MD within the Born-Oppenheimer approximation. In
this setting, the nuclei are treated as classical particles,
whereas the electrons are treated quantumly. More specif-
ically, solving the electronic Schrödinger equation as a
function of the nuclear positions yields potential-energy
surfaces that determine the dynamics of the classical
nuclei. We consider MD simulations in the microcanonical
and the canonical ensemble, as discussed in the following
subsections.

B. Evolution in the microcanonical (NVE) ensemble

The microcanonical (NVE) ensemble is a thermody-
namic ensemble in which the number of nuclei N , the vol-
ume V, and the total energy E of the system are constants
of motion. In order to prevent potential misunderstandings,
let us recall that the phase-space representation of an NVE
ensemble is usually considered to be a time-independent
phase-space density ρNVE that is constant over all config-
urations with energy E and zero otherwise. This is often
written in terms of a Dirac delta distribution:

ρNVE ({xn}, {pn}) ∝ δ (H ({xn}, {pn})− E) . (8)

In the following, we will not assume that the phase-
space density is given by ρNVE ({xn}, {pn}) when we talk
about simulations in the NVE ensemble. Rather, we refer
to constant-energy dynamics of a generic time-dependent
phase-space density, which evolves according to Eq. (6).

The classical Hamiltonian of the nuclei in the NVE
ensemble takes the following form:

H (NVE)
nuc := H (NVE)

class ({xn}, {pn})+ Eel ({xn}) , (9)
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where

H (NVE)
class :=

N∑
n=1

3∑
j =1

p2
n,j

2mn
+

N−1∑
k=1

N∑
n>k

ZnZk

‖xn − xk‖ (10)

is the classical Hamiltonian of the nuclei without any elec-
tronic contributions. The mass and the atomic number of
the nth nucleus are denoted by mn and Zn, respectively.
Unless stated otherwise, we will use ‖·‖ to refer to the
(induced) 2-norm. H (NVE)

nuc also depends on Eel ({xn}), the
ground-state energy of the following quantum Hamiltonian
governing the dynamics of the electrons for fixed nuclear
positions:

Hel := −
Ñ∑

n=1

3∑
j =1

∇2
n,j

2
+

Ñ∑
n>k

1
‖x̃n − x̃k‖ −

Ñ ,N∑
k,n=1

Zn

‖x̃k − xn‖ ,

(11)

where Ñ is the number of electrons, x̃n ∈ R
3 denotes the

position of the nth electron, and ∇n,j := ∂x̃n,j is the partial
derivative operator with respect to the j th coordinate of
the nth electron. Note that the total number of particles,
Ntot := N + Ñ , is also conserved in the NVE ensemble (the
same is true for the NVT ensemble discussed in Sec. II C).

So far, we have worked with continuous position and
momentum variables that can take on any real value. How-
ever, to simulate the time evolution of the phase-space
density according to Eq. (6) on a quantum computer, we
need to consider a finite discretized phase space. The idea
is to restrict each position and momentum component of
the nuclei to a finite set of

gx := xmax

hx
∈ N, (12)

gp := pmax

hp
∈ N (13)

values, respectively, where xmax (pmax) is the maximum
attainable value of any xn,j (pn,j ) and hx (hp ) is the
grid spacing. The choice of grid spacing depends on the
smoothness of the phase-space density. A detailed error
analysis regarding the grid spacing for real-space simula-
tions can be found in Ref. [29]. Further bounds on the grid
spacing and numerical results are presented in Ref. [20].
Since we are considering a finite simulation box, we must
also specify the boundary conditions. For simplicity, we
choose periodic boundary conditions.

Each grid point of the discretized phase space corre-
sponds to a computational basis state of the form

|{xn,j }, {pn,j }〉 :=
⊗
n,j

(
|xn,j 〉 ⊗ |pn,j 〉

)
, (14)

where xn,j ∈ [gx] and pn,j ∈ [gp ] are integers such that
xn,j = xn,j hx − xmax/2 and pn,j = pn,j hp − pmax/2. Thus,
|xn,j 〉 is a computational basis state on log gx qubits spec-
ifying the value of the j th discrete position coordinate of
the nth nucleus and analogously for |pn,j 〉. The mapping to
qubits to obtain the computational basis is shown in Fig. 1.

Given a classical
(

g3N
x g3N

p

)
-dimensional probability

vector 	ρ0 encoding the discretized initial phase-space den-
sity ρ0, the kth amplitude of the initial quantum state
representing the associated KvN wave function can simply
be chosen to be

√
( 	ρ0)k. In other words, the quantum regis-

ter is initially prepared in the state |ρ0〉 :=∑k

√
( 	ρ0)k|k〉,

where k ∈ [g3N
x g3N

p ] enumerates the points of the dis-
cretized phase space. Note that this is just a convenient
relabeling of the computational basis states {|{xn,j }, {pn,j }〉}
introduced before. Depending on the choice of the ini-
tial phase-space density of the classical particles, one can
use a number of different general-purpose state-preparation
methods to prepare a quantum state encoding the initial
phase-space density. For example, if the initial phase-space
density is efficiently integrable, one can use the Grover-
Rudolph algorithm to prepare the corresponding quantum
state [30]. For sparse quantum states, this method scales
quadratically with the number of qubits [31]. Another
option is to use the approach developed in Ref. [32], based
on quantum singular-value transformation (QSVT). The
authors’ method provides a qubit-efficient way of encod-
ing functions with a well-behaved polynomial or Fourier
expansion in the amplitudes of a quantum state.

In order to evolve the discretized quantum state that
encodes our system on a quantum computer, we also need
to discretize the Liouvillian operator defined in Eq. (5).
This requires us to define discrete versions of the derivative
operators appearing in the Liouvillian operator. Central-
finite-difference schemes are a popular tool for discretizing
derivatives [33]. In the quantum setting, the corresponding
discrete operator can be defined as follows.

Definition 1 (Discrete derivative operator). Let {|y〉}
denote a complete set of computational basis states, repre-
senting the variable with respect to the derivative operator
is applied, e.g., xn,j or pn,j . The discrete derivative operator
Dy of order 2d is defined as follows:

Dy := 1
h

∑
y

d∑
k=−d

cd,k|y − k〉〈y|, (15)

where h is the user-specified grid spacing and the coeffi-
cients {cd,k} are given by [33]

cd,k :=

⎧⎪⎨
⎪⎩

(−1)k+1(d!)2

k(d − k)!(d + k)!
, if k �= 0

0, else.
(16)
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(a)

(c)

(b)

nth particle

jth coordinate Amplitude

Real space (1D) Phase space

FIG. 1. Mapping from real space to phase space and to qubit registers for a one-dimensional (1D) problem. (a) Each configuration
is stored as a point in the phase space. (b) Each point of the discretized phase space is associated with a computational basis state
on the quantum computer. The computational basis states can be written as the tensor product of the states encoding the discretized
positions and momenta of the individual particles. The amplitude of a computational basis state defines the corresponding probability
for that point in the probability density function. (c) An example encoding of the discretized phase density of one particle in one spatial
dimension.

In general, the higher the order 2d of the finite-difference
scheme, the better is the error scaling with respect to the
grid spacing (for more details, see Lemma 8 or Ref. [20]).

We are now ready to define the discretized Liouvillian
operator in the NVE ensemble.

Definition 2 (Discretized Liouvillian operator for BO
MD in the NVE ensemble). Let H (NVE)

nuc be the BO Hamil-
tonian from Eq. (9). The discretized Liouvillian for simu-
lations in the NVE ensemble is given by

LNVE :=−i
N∑

n=1

3∑
j =1

(
Dxn,j ⊗ ∂H (NVE)

nuc

∂pn,j
− ∂H (NVE)

nuc

∂xn,j
⊗ Dpn,j

)
,

(17)

where

∂H (NVE)
nuc

∂pn,j
=
∑
pn,j

pn,j

mn
|pn,j 〉〈pn,j | (18)

∂H (NVE)
nuc

∂xn,j
=
∑
n′ �=n

∑
xn

∑
xn′

−ZnZn′(‖xn − xn′‖2 +	2
)3/2

× (xn,j − xn′,j )|xn〉〈xn| ⊗ |xn′ 〉〈xn′ | + D el
n,j
(19)

are now diagonal matrices of dimension g3N
x g3N

p . 	 is a
gap parameter introduced to regularize the Coulomb inter-
action and to avoid infinities in the simulation. Dxn,j is
a discrete derivative operator of order 2dx and Dpn,j is a
discrete derivative operator of order 2dp . Furthermore,

D el
n,j := 1

hx

de∑
k=−de

∑
(n′,j ′) �=(n,j )

∑
xn′ ,j ′

∑
xn,j

cde,k

× Eel
({xn′,j ′ }, xn,j + khx

) |xn′,j ′ 〉〈xn′,j ′ | ⊗ |xn,j 〉〈xn,j |
(20)

is a central-finite-difference approximation of order 2de to
∂Eel/∂xn,j . Note that we only show the quantum registers
that are acted on in a nontrivial manner. For example,

∑
p1,1

|p1,1〉〈p1,1| ≡
⎛
⎝1x1,1 ⊗

∑
p1,1

|p1,1〉〈p1,1|
⎞
⎠

⊗ (1x1,2 ⊗ 1p1,2

)⊗ (1x1,3 ⊗ 1p1,3

)
N ,3⊗

n=2,j =1

(
1xn,j ⊗ 1pn,j

)
. (21)
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The reason for introducing D el
n,j in the above definition

is that we generally do not have an analytic expression for
∂Eel/∂xn,j .

In Appendix C, we show that the spectral norm of LNVE
is upper bounded by μNVE , which is defined as follows:

μNVE := 3N
pmax

mmin

2 (ln dx + 1)
hx

+ 6N 2 2Z2
maxxmax

	3

2
(
ln dp + 1

)
hp

+ 3Nλ
2 ln(de + 1)

hxhp
, (22)

where λ is an upper bound on the spectral norm of the dis-
cretized electronic Hamiltonian, as discussed in Lemma 3.

Since the discrete Liouvillian LNVE is still Hermitian,
we can use tools from Hamiltonian simulation [34,35] to
efficiently implement the unitary UNVE := e−iLNVEt on a
quantum computer to simulate the time evolution of the
discretized phase-space density. Our quantum simulation
algorithm is discussed in more detail in Sec. IV.

C. Evolution in the canonical (NVT) ensemble

By default, MD simulations are performed in the NVE
ensemble. However, it is often desirable to perform sim-
ulations in the canonical (NVT) ensemble, where the tem-
perature T rather than the energy is held constant. This is
especially true when performing conformational searches
of molecules, such as those required in drug design [36].

The Nosé-Hoover thermostat is a common choice in
classical MD calculations to simulate dynamics in the
NVT ensemble [37,38]. This thermostat is based on non-
Hamiltonian equations of motion, meaning that there does
not exist an underlying Hamiltonian governing the dynam-
ics of the system. Therefore, it cannot be straightforwardly
incorporated into the Liouvillian framework.

In contrast, the original Nosé thermostat is compati-
ble with the Liouvillian framework, since the equations of
motion can be derived from an extended-system Hamilto-
nian [12]. The idea is to introduce additional terms to the
classical Hamiltonian that involve an extra degree of free-
dom, s, representing a heat bath. This effectively allows
the kinetic energy of the nuclei to be exchanged with the
energy of the bath, so that the system can be equilibrated
to a user-specified temperature T. The extended-system
Hamiltonian is defined as follows:

H (NVT)
nuc := H (NVT)

class

({xn}, {p ′
n}, s, ps

)+ Eel ({xn}) , (23)

where

H (NVT)
class :=

N∑
n=1

3∑
j =1

p ′2
n,j

2mns2 +
N−1∑
k=1

N∑
n>k

ZnZk

‖xn − xk‖2 + p2
s

2Q

+ Nf kBT ln (s) . (24)

Here, ps is the momentum variable conjugate to s and Q
is an effective mass of s, which controls the coupling of
the system to the heat bath. kB is the Boltzmann constant
and Nf = 3N − K is equal to the number of degrees of
freedom of the system, with K being the number of con-
straints. The heat bath modifies the kinetic energy term
of the nuclei, while the Coulomb-potential term remains
unaffected. In particular, p ′

n,j is the conjugate momentum
variable to xn,j in the extended system. It is often called a
“virtual” momentum variable and it is related to the real
momentum variable pn,j of the physical system via the
equation

pn,j = p ′
n,j

s
. (25)

The third term of H (NVT)
class represents the kinetic energy of

the heat bath, while the last term represents the poten-
tial energy of the heat bath. This potential-energy term
ensures that the partition function Z associated with a
microcanonical ensemble in the extended system gives rise
to a canonical partition function when restricted to the real
system [37,39]:

Z ∝
∫

d{xn}
∫

d{p ′
n}

×
∫

ds
∫

dps δ
(
H (NVT)

nuc

({xn}, {p ′
n}, s, ps

)− Eext
)

∝
∫

d{xn}
∫

d{pn}e−H (NVE)
nuc ({xn},{pn})/(kBT), (26)

where Eext is the conserved energy of the extended system.
To avoid confusion later on, let us briefly mention here

that the phase-space version of an NVT ensemble is usually
considered to be a time-independent phase-space density
ρNVT that has the form of a Boltzmann distribution:

ρNVT ({xn}, {pn}) ∝ e−E({xn},{pn})/(kbT), (27)

where E is the energy of the system (nuclei) for a given
configuration. In the following, we will not assume that
the phase-space density is given by ρNVT ({xn}, {pn}) when
we talk about simulations in the NVT ensemble. Rather,
we will refer to the constant-temperature dynamics of a
generic time-dependent phase-space density obtained by
evolving the joined probability density of the system and
heat bath according to Eq. (6) and then integrating out
the heat bath. However, if the dynamics of the extended
system are ergodic, then we can mimic the behavior of
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ρNVT ({xn}, {pn}) in the sense that we can estimate thermo-
dynamic properties such as the free energy of the system
via coherent time averaging, as explained in more detail in
Sec. IV A.

As with the NVE ensemble, we need to discretize
the (now (6N + 2)-dimensional) phase space to sim-
ulate the time evolution of the phase-space density
ρ
({xn}, {p ′

n}, s, ps
)

according to Eq. (6) on a quantum com-
puter. We do so by restricting each position and virtual
momentum component of the nuclei as well as the bath
variables s and ps to a finite set of

gx = xmax

hx
∈ N (28)

gp ′ := p ′
max

hp ′
∈ N (29)

gs := smax

hs
∈ N (30)

gps := ps,max

hps

∈ N (31)

values, respectively, where xmax is the maximum attainable
value of xn,j and hx is the position grid spacing as before.
Similarly, p ′

max, smax and ps,max are the maximum attain-
able values of p ′

n,j , s, and ps and hp ′ , hs, and hps are the
respective grid spacings. Since we are considering a finite
simulation box, we also need to specify the boundary con-
ditions. For simplicity, we again choose periodic boundary
conditions.

The computational basis states in the NVT ensemble are
of the form

|{xn,j }, {p ′
n,j }, s, ps〉 :=

⊗
n,j

(
|xn,j 〉 ⊗ |p ′

n,j 〉
)

⊗ |s〉 ⊗ |ps〉,

(32)

where xn,j ∈ [gx], p ′
n,j ∈ [gp ′], s ∈ [gs] and ps ∈ [gps] are

integers such that xn,j = xn,j hx − xmax/2, p ′
n,j = p ′

n,j hp ′
− p ′

max/2, s = shs and ps = pshps − ps,max/2.
We again employ the KvN formalism to encode the

(discretized) phase-space density in a quantum state on a
quantum computer.

The discretized Liouvillian in the NVT ensemble is then
defined as follows.

Definition 3 (Discretized Liouvillian operator for BO
MD in the NVT ensemble). Let H (NVT)

nuc be the NVT Hamil-
tonian as defined in Eq. (23). The discretized Liouvillian
for simulations in the NVT ensemble is given by

LNVT := −i
N∑

n=1

3∑
j =1

(
Dxn,j ⊗ ∂H (NVT)

nuc

∂p ′
n,j

− ∂H (NVT)
nuc

∂xn,j
⊗ Dp ′

n,j

)

− i
(

Ds ⊗ ∂H (NVT)
nuc

∂ps

− ∂H (NVT)
nuc

∂s
⊗ Dps

)
, (33)

where

∂H (NVT)
nuc

∂p ′
n,j

=
∑
p ′

n,j

∑
s

p ′
n,j

mn (s + smin)
2 |p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s|,

(34)

∂H (NVT)
nuc

∂xn,j
=
∑
n′ �=n

∑
xn

∑
xn′

−ZnZn′(‖xn − xn′‖2 +	2
)3/2

× (xn,j − xn′,j )|xn〉〈xn| ⊗ |xn′ 〉〈xn′ | + D el
n,j ,

(35)

∂H (NVT)
nuc

∂ps
=
∑

ps

ps

Q
|ps〉〈ps|, (36)

∂H (NVT)
nuc

∂s
= −

∑
pn,j

∑
s

2p ′2
n,j

mn (s + smin)
3 |pn,j 〉〈pn,j | ⊗ |s〉〈s|

+
∑

s

Nf kBT
s + smin

|s〉〈s| (37)

are now diagonal matrices of dimension η := g3N
x g3N

p ′ gsgps .
As with the NVE Liouvillian, 	 is a gap parameter intro-
duced to regularize the Coulomb interaction and to avoid
infinities in the simulation. The bath variable cutoff smin
is introduced for the same reason. Dxn,j is a discrete
derivative operator of order 2dx, Dp ′

n,j
is a discrete deriva-

tive operator of order 2dp ′ , Ds is a discrete derivative
operator of order 2ds, and Dps is a discrete derivative
operator of order 2dps . They are constructed according to
Definition 1. D el

n,j is again the finite-difference approxima-
tion to ∂Eel/∂xn,j . Note that we only show the quantum
registers that are acted on in a nontrivial manner.

In Appendix C, we show that the spectral norm of LNVT
is upper bounded by μNVT, which is defined as follows:

μNVT := 3N
pmax

mmins2
min

2 (ln dx + 1)
hx

+ 6N 2 2Z2
maxxmax

	3

2
(
ln dp + 1

)
hp

+ 3Nλ
2 ln (de + 1)

hxhp

+ ps,max

Q
2 (ln ds + 1)

hs

+ 3N
2p2

max

mmins3
min

2
(
ln dps + 1

)
hps

+ Nf kBT
smin

2
(
ln dps + 1

)
hps

. (38)

010343-7



SOPHIA SIMON et al. PRX QUANTUM 5, 010343 (2024)

III. MAIN RESULTS

Our main result is an efficient quantum algorithm for
simulating the time evolution of the discretized phase-
space density of N nuclei within the Born-Oppenheimer
approximation. The formal problem can be stated as fol-
lows.

Problem 1 (Simulating Liouvillian dynamics within the
Born-Oppenheimer approximation). Let L ∈ {LNVE , LNVT}
be the discretized Liouvillian governing the dynamics of
the discretized phase-space density associated with N clas-
sical nuclei in the NVE ensemble (Definition 2) or the
NVT ensemble (Definition 3). Given a quantum state |ρ0〉
encoding the initial discretized phase-space density, out-
put a quantum state that is ε-close in �2 distance to |ρt〉 :=
e−iLt|ρ0〉.

Our algorithm requires access to an initial electronic
state-preparation oracle ŨI , the precise definition of which
is given later in Definition 9. The main feature of ŨI
is that it prepares an initial electronic state |φ0{xn}〉 that
has nontrivial overlap with the ground state |ψ̃0{xn}〉 of
a discretized version of the electronic Hamiltonian from
Eq. (11). To be more specific, let 0 < δ̃ ≤ 1. Then,

ŨI |{xn}〉|0〉 = |{xn}〉|φ0{xn}〉, (39)

where
∣∣〈ψ̃0{xn}|φ0{xn}〉

∣∣ ≥ δ̃ for all nuclear configurations
visited during the simulation. In other words, δ̃ is a lower
bound on the overlap of the initial electronic state with
the true electronic ground state over all nuclear grid points
associated with a nonzero amplitude at some point during
the simulation.

Unless stated otherwise, we use “log” to refer to the
binary logarithm. Furthermore, we write O

(
zo(1)
)

to indi-
cate subpolynomial scaling with respect to the parameter z
and we use the Õ notation to hide subdominant logarithmic
factors. With this in mind, we present our first result below.

Theorem 1 (Complexity of Born-Oppenheimer Liouvil-
lian simulation). There exists a quantum algorithm that
solves Problem 1 with success probability ≥ 1 − ξ using

Õ
(

Ntot dμ2+o(1)t1+o(1)

γ̃ δ̃ εo(1)
log
(

1
ξ

))

Toffoli gates, where d is the maximum order of the finite-
difference schemes used, μ ∈ {μNVE ,μNVT} is an upper
bound on the spectral norm of the discretized Liouvillian
L ∈ {LNVE , LNVT}, and γ̃ is a lower bound on the spec-
tral gap of the discretized electronic Hamiltonian over
all phase-space grid points that are associated with a
nonzero amplitude at some point during the simulation.
Additionally,

Õ
(

Ndμ1+o(1)t1+o(1)

δ̃ εo(1)
log
(

1
ξ

))

queries to the initial electronic state-preparation oracle ŨI
are needed.

Theorem 1 is proved in Appendix C. In comparison
to gradient-based approaches [20], which, in the worst
case scale exponentially with the evolution time (see
Appendix E), our approach scales polynomially in time t
and subpolynomially with error ε.

We also show how to use our Liouvillian simulation
algorithm to estimate the free energy of the nuclei in
the NVT ensemble, assuming that the dynamics of the
extended system are ergodic. Usually, we are interested
in the free energy when the system reaches equilibrium.
The thermostat allows us to reach thermal equilibrium and
then estimate thermodynamic properties such as the free
energy of the classical system. A conceptual challenge that
arises in the computation of the free energy is the definition
of macrostates in the probability distribution. Specifically,
we envision these microstates to be hypercubes in phase
space and we define the probability of finding the entire
system within this hypercube to be pi. With this in mind,
the definition of the discrete free energy is given below.

Definition 4 (Free energy). Let pi denote the probability
of a classical system being in the ith (discrete) microstate
and let Ei be the energy associated with the ith microstate.
Let

SG := −kB

∑
j

pj ln pj (40)

be the Gibbs entropy of the system, where kB is the
Boltzmann constant. Furthermore, let

U :=
∑

j

pj Ej (41)

be the internal energy of the system. The free energy F of
the system is then given by

F := U − TSG, (42)

where T is the temperature of the system.
In our case, the energies {Ei} are the eigenvalues of

Hnuc := Hkin + Hpot + HEel , where

Hkin :=
∑
n,j

∑
p ′

n,j

∑
s

p ′2
n,j

mn(s + smin)2
|p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s|,

(43)

Hpot :=
∑
n′ �=n

∑
xn

∑
xn′

ZnZn′(‖xn − xn′‖2 +	2
)1/2 |xn〉〈xn|

× ⊗|xn′ 〉〈xn′ |, (44)

HEel :=
∑
{xn}

Eel ({xn}) |{xn}〉〈{xn}|. (45)
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In Appendix D, we show that the spectral norm of Hnuc is
upper bounded by αnuc, which is defined as follows:

αnuc := 3N
p ′2

max

mmins2
min

+ N 2 Z2
max

	
+ λ. (46)

We now give a formal definition of the free-energy-
estimation problem.

Problem 2 (Estimation of the free energy of a phase-s-
pace distribution). Let LNVT be the discretized Liouvillian
operator in the NVT ensemble as in Definition 3. Given a
quantum state |ρ0〉 encoding the initial discretized phase-
space density of the system and the heat bath, output an
ε-precise estimate of the free energy F of the system after
time t, i.e., estimate F associated with

ρsys(t) := Trbath
(
e−iLNVTt|ρ0〉〈ρ0|eiLNVT

)
. (47)

Note that the above problem description allows the free
energy to be a time-dependent quantity. If the dynamics
of the extended system (nuclei + heat bath) are ergodic,
then we can obtain an estimate of the equilibrium free
energy via coherent time averaging (for more details, see
Sec. IV A).

The next theorem provides upper bounds on the com-
plexity of estimating the free energy associated with the
nuclear phase-space density.

Theorem 2 (Estimation of the free energy). Let η :=
g3N

x g3N
p ′ gsgps be the number of grid points of the discretized

phase space and assume that log
(
η2/ε
) ≤ η. Then there

exists a quantum algorithm that solves Problem 2 with
success probability at least 1 − ξ using

Õ

((
ηo(1)Ntotdμ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1+o(1)

(
αnuc + η(kbT)1.5+o(1)

√
ε

)

+ Ntotαnucλ

ε2

)
log
(

1
ξ

))

Toffoli gates. Additionally,

Õ

(
ηo(1)Ndμ1+o(1)

NVT t1+o(1)

δ̃ ε1+o(1)
log
(

1
ξ

)(
αnuc + η(kbT)1.5+o(1)

√
ε

))

queries to the initial electronic state-preparation oracle ŨI
are needed.

Theorem 2 is proved in Appendix D. Although the scal-
ing with η may seem challenging at first, as it implies,
in the worst case, exponential scaling with the number of
nuclei, this is actually a reasonable expectation, because
estimation of the free energy is an NP-hard problem
[40]. However, for many practical problems, the phase
space can be coarse grained, which reduces the complexity
considerably and makes the problem more manageable.

IV. OVERVIEW OF THE ALGORITHM

As mentioned before, the (discretized) Liouvillian L is
Hermitian, meaning that the time-evolution operator e−iLt

of the (discretized) phase-space density is unitary. Hence,
we can use Hamiltonian simulation algorithms to imple-
ment e−iLt on a quantum computer [34,35,41,42]. The main
idea is to split the overall Liouvillian L = Lclass + Lel into
a classical electron-independent part and an electronic part
as defined below.

Definition 5 (Electronic Liouvillian). Let D el
n,j be

the finite-difference approximation to ∂Eel/∂xn,j as in
Definition 2. In the NVE ensemble, the electronic Liou-
villian acting on the nuclei is given by

L(NVE)
el := i

N∑
n=1

3∑
j =1

D el
n,j ⊗ D1

pn,j
, (48)

where D1
pn,j

is a second-order discrete derivative approx-
imation to ∂pn,j . In the NVT ensemble, the electronic
Liouvillian acting on the nuclei is given by

L(NVT)
el := i

N∑
n=1

3∑
j =1

D el
n,j ⊗ D1

p ′
n,j

, (49)

where D1
p ′

n,j
is a second-order discrete derivative approxi-

mation to ∂p ′
n,j

.
The reason for restricting Dpn,j and Dp ′

n,j
to be second-

order discrete derivatives in the above definition is related
to their implementation, as explained in more detail in
Appendix B.

Definition 6 (Classical Liouvillian). Let L ∈ {LNVE ,
LNVT} be the discretized Liouvillian in the NVE ensem-
ble (Definition 2) or the NVT ensemble (Definition 3).
Let Lel ∈ {L(NVE)

el , L(NVT)
el } be the electronic Liouvillian from

Definition 5. The classical Liouvillian is then given by

Lclass := L − Lel. (50)

We simulate ULclass := e−iLclasst and ULel := e−iLelt sepa-
rately and then recombine them using a 2kth-order Trotter-
Suzuki product formula [34,41,42].

Definition 7 (2kth-order Trotter-Suzuki product for-
mula). Let L =∑�

γ=1 Lγ be an operator consisting of �
Hermitian summands and t ≥ 0. Then, the following recur-
sion defines S2k(t), the Trotter-Suzuki product formula of
order 2k:

S2(t) := eL1
t
2 · · · eL� t

2 eL� t
2 · · · eL1

t
2 (51)

S2k(t) := S2
2k−2(ukt)S2k−2((1 − 4uk)t)S2

2k−2(ukt), (52)
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where

1
3

≤ uk := 1(
4 − 4

1
2k−1

) ≤ 1
2

∀ k ∈ N, k ≥ 2. (53)

Using results from Ref. [34], we show in Appendix C
that the cost of our algorithm depends on the spectral norm
of the nested commutator of Lclass and Lel. We derive upper
bounds μ′

NVE and μ′
NVT on the nested commutator in the

NVE and the NVT ensemble that provide better scaling
with respect to the number of nuclei N thanμNVE [Eq. (22)]
and μNVT [Eq. (38)]. However, we use the looser bounds
μNVE andμNVT in the main theorems to keep the statements
as simple as possible.

Our algorithm requires several different quantum regis-
ters. In the NVE ensemble, we use two types of registers.
First, we have a nuclear register for encoding the nuclear
phase-space density. The basis states of this register are
given in Eq. (14). The simulation of ULel requires a second
register, which we call the electronic register, as it is used
to encode the electronic wave function. This register can
be treated like an ancilla register in the sense that it is only
used to compute D el

n,j during the simulation of ULel . At the
end of the algorithm, the electronic register is uncomputed.

In the NVT ensemble, we have a third register for the bath
variables s and ps. The computational basis states of the
nuclear register together with the bath register are given in
Eq. (32).

Figure 2 summarizes our quantum algorithm for NVE
and NVT Liouvillian simulations. The corresponding pseu-
docode is presented in Algorithm 1. The subroutines
for evolving the phase-space density under the classical
Liouvillian Lclass and the electronic Liouvillian Lel are
summarized in Algorithms 2 and 3, respectively.

Let us now explain these subroutines in more detail. To
implement ULclass , we first construct a block encoding of
Lclass according to the following definition.

Definition 8 (Block encoding ([35], Definition 24)). Let
A be an s-qubit operator, α ∈ R a normalization constant,
ε ∈ R the allowable error, and a ∈ N the number of ancilla
qubits. Then, we define that the (s + a)-qubit unitary U is
an (α, a, ε) block encoding of A if

∥∥A − α
(〈0|⊗a ⊗ 1

)
U
(|0〉⊗a ⊗ 1

)∥∥ ≤ ε. (54)

In other words, we embed Lclass inside a larger unitary
matrix. If

(〈0|⊗a ⊗ 1
)

U
(|0〉⊗a ⊗ 1

)
is Hermitian, then we

call U a Hermitian block encoding.

Electronic
 Liouvillian
     step
(Hamiltonian
simulation)

Nuclear evolution under 
nuclear potential

Nuclear evolution under electronic potential

Electronic registers

Nuclear registers

Coherent loop of double-step integration
on a quantum computer

Electronic
block 

encoding

Initialize

Measurement

Optional

Electronic
Liouvillian
evolution

Classical
Liouvillian

step
(Hamiltonian
simulation)

Nuclear
block

encoding
and

thermostat
Ground-state
preperation

Classical
Liouvillian
evolution

FIG. 2. The Liouvillian algorithm scheme. The red arrows represent the nuclear registers, while the electronic registers are in blue.
After initializing the registers into the chosen initial conditions, the time evolution is carried out by iterating a two-step integration.
The double-step integration originates from alternating the classical nuclear Liouvillian evolution (ti + 1) with the electronic one
(ti + 2). In the classical nuclear Liouvillian evolution, the classical nuclear block encoding is used to implement the evolution under
the classical NVE or NVT Liouvillians. The electronic Liouvillian-evolution step takes care of the implementation of the electronic
block encodings, preparing the electronic ground state given the updated nuclear coordinates and applying the nuclear evolution due
to the electronic wave-function contribution. After the required number of integration steps is achieved, one can decide whether to
measure the output states, use them for other computations, or, for the nuclear register, use it for the estimation of the free energy.
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ALGORITHM 1. Liouvillian MD simulation.

Input: Quantum state |ρ0〉 encoding initial phase space density of nuclei (+ heat bath for NV T ensemble).
Input parameters for constructing the Liouvillian operator:
t, ε, ξ, k, N, Ñ , {mn}N

n=1, {Zn}N
n=1, xmax, pmax/p′

max, hx, hp/hp′ , dx, dp/dp′ , de, Δ, B, hel, δ̃, γ̃, χ.
Simulations in the NV T ensemble require additional input parameters: Nf , T, Q, smin, hs, hps , ds, dps .

Output: An ε-precise approximation to e−iLt|ρ0〉 with success probability ≥ 1 − ξ.

1. Compute a set of time steps {ti}Nexp
i=1 using the recursive definition of higher-order Trotter product formulas with

Nexp = 2 × 5k−1 + 1 being the total number of Trotter exponentials [34, 42]. Additionally, determine the set of
indices Iclass for which ti corresponds to evolutions under the classical Liouvillian;

2. Initialize the nuclear position and momentum registers (and the bath register for NV T simulations), the
electronic register, as well as an ancilla register;

3. ε′ ← ε/Nexp;

4. ξ′ ← ξ/Nexp;

for 1 ≤ i ≤ Nexp do
if i ∈ Iclass then

Apply ClassLiouvillianEv ti, ε
′, ξ′, N, {mn}N

n=1, {Zn}N
n=1, xmax, pmax/p′

max, hx, hp/hp′ , dx, dp/dp′ , Δ
)

to
the nuclear position and momentum registers (and the bath register in the case of NV T simulations), as
well an ancilla register. Simulations in the NV T ensemble also take Nf , T, Q, smin, hs, hps , ds, dps as
input;

else
Apply
ElectronicLiouvillianEv

(
ti, ε

′, ξ′, N, Ñ , {Zn}N
n=1, xmax, pmax/p′

max, hx, hp/hp′ , de, Δ, B, hel, δ̃, γ̃, χ
)

to

the nuclear position and momentum registers, the electronic register and an ancilla register;
end

end

The following two lemmas show that we can block
encode Lclass efficiently. Both lemmas are proved in
Appendix A.

Lemma 1 (Block encoding of the discretized classical
NVE Liouvillian). There exists an (αNVE , aNVE , ε) block
encoding of the discretized classical Liouvillian L(NVE)

class
with normalization constant

αNVE ∈ O
(

N
pmax

mmin

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp

hp

)

and a number of ancilla qubits

aNVE ∈ O
(

log
(αNVE

ε

)
+ log d

)
,

where d := max{dx, dp}. This block encoding can be
implemented using

Õ
(

N log
(gαNVE

ε

)
+ loglog 3

(αNVE

ε

)
+ d log g

)

Toffoli gates, where g := max{gx, gp}.
Lemma 2 (Block encoding of the discretized classical

NVT Liouvillian). There exists an (αNVT, aNVT, ε) block
encoding of the discretized classical Liouvillian L(NVT)

class

with normalization constant

αNVT ∈ O
(

N
p ′

max

mmins2
min

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp ′

hp ′

+ ps,max

Q
ln ds

hs
+
(

N
p ′2

max

mmins3
min

+ Nf kBT
smin

)
ln dps

hps

)

and a number of ancilla qubits

aNVT ∈ O
(

log
(αNVT

ε

)
+ log d

)
,

where d := max{dx, dp ′ , ds, dps}. This block encoding can
be implemented using

Õ
(

N log
(gαNVT

ε

)
+ loglog 3

(αNVT

ε

)
+ d log g

)

Toffoli gates, where g := max{gx, gp ′ , gs, gps}.
We then apply QSVT to the block encoding of Lclass to

efficiently approximate the exponential e−iLclasst [35]. The
idea behind QSVT is to perform polynomial transforma-
tions of the singular values of a block-encoded matrix.
In our case, we implement polynomial approximations
of cos(Lclass) and −i sin(Lclass) that can then be added to
simulate e−iLclasst.
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ALGORITHM 2. ClassLiouvillianEv: Evolution under the classical Liouvillian.

Input: t, ε, ξ, N, {mn}N
n=1, {Zn}N

n=1, xmax, pmax/p′
max, hx, hp/hp′ , dx, dp/dp′ , Δ.

Simulations in the NV T ensemble require additional input parameters: Nf , T, Q, smin, hs, hps , ds, dps .
Output: An ε-precise approximation to e−iLclasst with success probability ≥ 1 − ξ.
1. Construct an ε/(2t)-precise block-encoding of Lclass as shown in Appendix A;

2. Apply the QSVT based Hamiltonian simulation algorithm from [35] to the block-encoding of Lclass to obtain an
ε-precise block-encoding of e−iLclasst;

3. Use O
(
log

(
1
ξ

))
rounds of fixed-point amplitude amplification to boost the success probability to at least 1 − ξ;

The implementation of ULel is more difficult because we
do not generally have an analytic expression for Eel ({xn}),
which would be required for constructing a block encod-
ing of Lel and subsequently using QSVT. In principle,
one could use quantum phase estimation on the elec-
tronic Hamiltonian Hel to extract the ground-state ener-
gies at the different nuclear positions and construct a
block encoding of D el

n,j from these (numerical) values.

However, the associated computational cost is in O (1/ε),
where ε is the desired precision of the simulation. The
computational cost of our algorithm, on the other hand,
is only in O

(
1/εo(1)

)
, which provides a superpolynomial

improvement over O (1/ε) scaling.
One important feature of the electronic Liouvillian Lel is

that all summands commute with each other. The evolution
operator associated with Lel can thus be decomposed as

ALGORITHM 3. ElectronicLiouvillianEv: Evolution under the electronic Liouvillian.

Input: t, ε, ξ, N, Ñ , {Zn}N
n=1, xmax, pmax/p′

max, hx, hp/hp′ , de, Δ, B, hel, δ, γ, χ.
Output: An ε-precise approximation to e−iLelt with success probability ≥ 1 − ξ.
Initialize the electronic register in the |0〉 state;
for 1 ≤ n ≤ N do

for 1 ≤ j ≤ 3 do
Fourier transform the quantum register of the j-th momentum coordinate of the n-th nucleus:

QFT|pn,j〉 =
1√
gp

∑
ln,j

e2πipn,j ln,j/gp |ln,j〉

|xn,j〉 ← |xn,j − de〉;
for −de ≤ k ≤ de do

tcde,k,ln,j ← cde,k

hx

sin (2πln,j/gp)
hp

t

Apply the state preparation oracle UI from Definition 15 to the entire nuclear positions register
|{xn}〉 and the electronic register:

UI |{xn}〉|0〉 = |{xn}〉|φ0{xn}〉
Apply the ground state preparation algorithm from [43] to |{xn}〉|φ0{xn}〉 using a block-encoding of
Hel ({xn});
Apply exp −iHel ({xn}) tcde,k,ln,j

)
to the electronic register;

Uncompute the (approximate) electronic ground state;
|xn,j〉 ← |xn,j + 1〉;

end
|xn,j〉 ← |xn,j − de〉;
Apply QFT−1 to the Fourier transformed momentum register to switch back to the |pn,j〉 basis;

end
end

Use O
(
log

(
1
ξ

))
rounds of fixed-point amplitude amplification to boost the success probability to at least 1 − ξ;
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follows:

e−iLelt = e−i
(

i
∑N

n=1
∑3

j =1 D el
n,j ⊗D1

pn,j

)
t

=
∏
n,j

eD el
n,j ⊗D1

pn,j t. (55)

For simplicity, we use pn,j to refer to either a real or
a virtual-momentum variable. Let us now explain how
to implement a single exponential appearing in Eq. (55).
First, we diagonalize the discrete (virtual) momentum
derivative operator D1

pn,j
by applying the quantum Fourier

transform (QFT) to the |pn,j 〉 register. Next, we shift
the quantum register associated with the nuclear-position
coordinate xn,j according to the finite-difference scheme
of D el

n,j and prepare the electronic ground state controlled
by the entire nuclear-positions register. The electronic
ground states are prepared using techniques from Ref. [43]
together with the following initial-state-preparation oracle.

Definition 9 (Initial electronic state-preparation ora-
cle). Let UHel{xn} be a Hermitian block encoding of
Hel ({xn}) for fixed nuclear positions and let |ψ̃0{xn}〉 be the
ground state of (〈0| ⊗ 1)UHel{xn} (|0〉 ⊗ 1). Furthermore,
let 0 < δ ≤ 1. The electronic state-preparation oracle UI
is defined via its action on the nuclear-positions register
|{xn}〉:

UI |{xn}〉|0〉 = |{xn}〉|φ0{xn}〉, (56)

where |φ0{xn}〉 is an initial electronic state that is promised
to satisfy

∣∣〈ψ̃0{xn}|φ0{xn}〉
∣∣ ≥ δ for all nuclear configura-

tions. We write ŨI to refer to a variant of the initial elec-
tronic state-preparation oracle where

∣∣〈ψ̃0{xn}|φ0{xn}〉
∣∣ ≥

δ̃ with δ̃ ≥ δ for all nuclear configurations visited during
the simulation. This means that ŨI depends implicitly on
the initial nuclear phase-space density.

While numerous strategies exist for addressing over-
lap problems in quantum algorithms for the electronic
structure problem (see, e.g., Refs. [44–46]), the overlap
issues remain a fundamental problem facing all quantum
algorithms within the space and remain an active area of
research. Providing an explicit implementation of the ini-
tial electronic state-preparation oracle is hence beyond the
scope of this work.

Controlled by the entire nuclear-positions register as
well as the Fourier transformed momentum register, we
then apply exp

(−iHel{xn}tck ,ln,j

)
to the electronic register

holding the corresponding electronic ground state, where

tck ,ln,j := cde,k

hx

sin
(
2π ln,j /gp

)
hp

t (57)

is a rescaled time variable depending on the finite-
difference coefficients {cde,k} of D el

n,j and the Fourier

transform variables {ln,j }, as explained in more detail in
Appendix B. Next, we uncompute the Fourier-transformed
momentum register as well as the electronic register and
repeat the above procedure for each stencil point of the
finite-difference formula of D el

n,j .
The above method requires access to a discretized elec-

tronic Hamiltonian. Instead of utilizing a grid discretiza-
tion as for the nuclei, we use a finite set of basis functions
to discretize the Hilbert space of the electrons. In particu-
lar, we choose B plane waves as basis functions, which take
the following form in (three-dimensional) position space:

φb(r) := 1√
�

e−ikb·r. (58)

r is a vector in position space and kb = 2πb/�1/3

is a wave vector in reciprocal space, where b is
a vector in Z

3 constrained to the cube G := [−
(B1/3 − 1)/2, (B1/3 − 1)/2

]3. Furthermore, � ∈ � (B h3
el

)
is the computational cell volume, where 1/hel is the grid
spacing in reciprocal space.

The electronic basis states in first quantization can then
be written as |b0〉|b1〉 · · · |bÑ−1〉, where each |bj 〉 is a
qubit register of size �log B� specifying the index b ∈ [B]
of the basis function occupied by electron j . The main
advantage of using a plane-wave expansion of the elec-
tronic Hamiltonian is that all terms in the Hamiltonian
can be obtained from the nuclear-position registers and the
plane-wave momenta through coherent arithmetic on the
quantum computer. It is shown in Ref. [28] that the first-
quantized electronic Hamiltonian in the plane-wave basis
takes the following form:

H (pw)
el ({xn}) :=

Ñ∑
j =1

∑
b∈G

‖kb‖2

2
|b〉〈b|j

− 4π
�

N∑
n=1

Ñ∑
j =1

∑
b,c∈G
b�=c

(
Zn

eikc−b·xn

‖kb−c‖2

)
|b〉〈c|j

+ 2π
�

Ñ∑
ineqj =1

∑
b,c∈G

∑
ν∈G0

(b+ν)∈G
(c−ν)∈G

1
‖kν‖2

× |b + ν〉〈b|i|c − ν〉〈c|j , (59)

where |b〉〈b|j acts nontrivially only on the register associ-
ated with electron j and similarly for the other terms. Fur-
thermore, G0 := [− B1/3, B1/3

]3 ⊂ Z
3\{(0, 0, 0}. Unless

stated otherwise, we will write Hel to refer to H (pw)
el in the

following.
The next lemma shows that Hel can be efficiently block

encoded.
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Lemma 3 (Block encoding the electronic Hamiltonian
([28], Lemma 1 rephrased)). There exists a Hermitian
(λ, ael, ε) block encoding of the discretized electronic
Hamiltonian Hel with normalization constant

λ ∈ O

(
Ñ
h2

el
+ NÑZmax

hel
+ Ñ 2

hel

)
(60)

and a number of ancilla qubits

ael ∈ O

(
log

(
NÑB
ε

))
. (61)

This block encoding can be implemented using

O
(

N + Ñ + log
(

B
ε

))
(62)

Toffoli gates.
Let us briefly discuss the space complexity of the Liou-

villian simulation algorithm. On the one hand, we need
O
(
N log

(
gxgp
))

qubits to represent the phase-space den-
sity of the nuclei. We need another O

(
Ñ log(B)

)
qubits to

represent the wave function of the electrons. On the other
hand, we require a certain number of ancilla qubits for the
various block encodings described above. Since Hamilto-
nian simulation via QSVT requires only an additional two

ancilla qubits (see Lemma 4), we find that the overall space
complexity is in

O
(

N log (g)+ Ñ log(B)+ log
(α
ε

)
+ log(d)

)
, (63)

where g = max{gx, gp ′ , gs, gps}, α ∈ {αNVE ,αNVT}, and d =
max{dx, dp ′ , ds, dps}. This scaling is very moderate given
that it is linear in the total particle number and logarithmic
in all other simulation parameters.

The complexity of our algorithm depends on sev-
eral user-supplied parameters, which are summarized in
Table I.

A. Estimation of the free energy

Let us now discuss how to estimate the free energy of
the nuclei after time t (see Definition 4) using our Liouvil-
lian simulation algorithm. At this stage, we do not assume
that the nuclei are in thermal equilibrium. First, we apply
ULNVT to the initial discretized phase-space density of the
nuclei and the heat bath to evolve them for time t. The
main idea is to estimate the Gibbs entropy and the inter-
nal energy associated with |ρt〉 = e−iLNVTt|ρ0〉 separately
and then add the results classically to estimate the free
energy. This means that we require at least two separate
simulations. In Appendix D, we show how to reduce the
problem of estimating the Gibbs entropy of the nuclei to
that of estimating the von Neumann entropy of a density

TABLE I. The input parameters that determine the complexity of our quantum algorithm for simulating NVE and NVT Liouvillian
dynamics in the Born-Oppenheimer approximation.

Description NVE NVT

Evolution time t t
Desired precision ε ε

Failure probability ξ ξ

Order of the Trotter product formula k k
Number of nuclei and electrons N , Ñ N , Ñ
Mass of the lightest nucleus mmin mmin
Maximum atomic number over all nuclei Zmax Zmax
Maximum value of a component of the nuclear-position vectors xmax xmax
Maximum value of a component of the (virtual) momentum vectors pmax p ′

max
Grid spacing for a component of the discretized variables hx, hp hx, hp ′ , hs, hps
Order of the finite-difference scheme used for approximating derivatives dx, dp , de dx, dp ′ , ds, dps , de
Gap parameter to regularize the Coulomb potential 	 	

Number of plane-wave basis functions in the electronic Hamiltonian B B
Inverse grid spacing for a component of the electronic wave number hel hel
Lower bound on the overlap of the initial and true electronic ground state δ̃ δ̃

Lower bound on the spectral gap of Hel during the simulation γ̃ γ̃

Upper bound on the higher-order derivatives of the electronic energy χ χ

Number of phase-space grid points . . . η

Number of degrees of freedom of the physical system . . . Nf
Temperature of the heat bath . . . T
Mass parameter associated with the heat bath . . . Q
Minimum value of the bath position variable . . . smin
Maximum value of the bath momentum variable . . . ps,max
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matrix ρ ′
sys obtained from |ρt〉 by tracing out the bath regis-

ter and removing the off-diagonal elements. This allows us
to employ Theorem 13 of Ref. [47]. The authors’ algorithm
requires access to a purification of the density matrix of the
system, which in our case is essentially just |ρt〉. From that
purification, we first construct a block encoding of ρ ′

sys and
then use QSVT to transform the singular values ρi of ρ ′

sys
via a polynomial approximation to ln (1/ρi). The resulting
operator is then applied to the purification of ρ ′

sys. Lastly,
we use amplitude estimation to obtain an estimate of

SG = −kb Tr
(
ρ ′

sys ln ρ ′
sys

)
. (64)

Next, let us discuss how to estimate the internal energy
associated with |ρt〉. First, note that a classical system can
be described by a density matrix ρ and a Hamiltonian H ,
both of which are diagonal in the computational basis. The
internal energy of a classical system can thus be computed
as follows:

U = Tr (ρH) . (65)

In our case, we have that ρ ≡ ρ ′
sys and H ≡ Hnuc =

Hkin + Hpot + HEel . In Appendix D, we show how to effi-
ciently block encode each of the three terms as given in
Eqs. (43)–(45). The idea is then to use the Hadamard test
to estimate Tr

(
ρ ′

sysHkin

)
, Tr
(
ρ ′

sysHpot

)
, and Tr

(
ρ ′

sysHEel

)
individually and combine the results classically.

Let us now assume that the dynamics of the extended
system (nuclei plus heat bath) are ergodic, i.e., that the
extended system samples all phase-space points associated
with energy Eext. This allows us to estimate the equilibrium
free energy via coherent time averaging. More specifi-
cally, we first prepare the following time-averaged density
matrix:

ρ := 1
t

∫ t

0
e−iLNVTτ |ρ0〉〈ρ0|eiLNVTτdτ , (66)

where |ρ0〉 is an initial phase-space density of the extended
system that has support only on configurations with energy
Eext. Operationally speaking, the above density matrix can
be prepared by sampling t′ ∈ [0, t] uniformly at random
and applying e−iLNVTt′ to |ρ0〉. If t is sufficiently large, then
expectation values of observables estimated with ρ are
approximately equal to expectation values computed with
ρNVT [48].

Note that having access to an initial phase-space den-
sity describing a microcanonical ensemble in the extended
system, i.e., ρ0 ∝ δ

(
H (NVT)

nuc − Eext
)
, allows us to directly

prepare the corresponding Boltzmann distribution over the
nuclear variables by tracing out the bath variables (see
Eq. (26)). This implies that we could estimate the free
energy as an ensemble average without having to perform
any time evolution.

V. CONCLUSIONS

Our main achievement is a new approach for efficiently
simulating coupled quantum-classical dynamics on fault-
tolerant quantum computers that provides a superpolyno-
mial improvement in the precision scaling over previous
work. The upper bounds on the computational costs of our
algorithm for the evolution of a classical phase-space den-
sity scale polynomially with the 1-norm of the Liouvillian
and with the simulation time t. This is in stark contrast
to earlier gradient-based approaches [20], which, as we
show in Appendix E, can scale under worst-case assump-
tions exponentially with the evolution time. The presented
Liouvillian simulation algorithm illustrates the value of
incorporating classical dynamics into quantum simulations
coherently on fault-tolerant quantum computers and paves
the way for simulating coupled quantum-classical systems.
We apply the approach to the simulation of molecular sys-
tems in both the microcanonical and canonical ensembles
and to the estimation of thermodynamic quantities, such as
the free energy.

To make our algorithms applicable to practical prob-
lems, challenges and limitations remain. For example,
preparing the classical system in the canonical ensemble
requires it to thermalize. In classical simulations, it is pos-
sible to have clear indicators of thermalization [49–51],
while it is unclear how to estimate those indicators within
our approach without sampling. Also, the computational
cost of the free-energy estimation scales exponentially
with the number of particles because of the growth of the
phase space [40]. Another challenge is the preparation of a
quantum state encoding the initial phase-space density of
the classical particles, since preparing an arbitrary quan-
tum state can take time that scales exponentially with the
number of qubits in the worst case. Additionally, artifacts
affecting classical simulation [52] will likely influence our
simulation methodology.

Compared to state-of-the-art classical MD, where many
refinements have been developed over the years, our
approach is still rudimentary. Several solutions could be
explored for solving the above issues and adapted to
complement our approach; e.g., exploiting adaptive time
steps to improve the computational costs or using multiple
coupled thermostats to allow correct thermalization [53].

Future work must optimize our resource scalings, which
are based on loose bounds. In terms of quantum circuit
design, numerous improvements are possible. One exam-
ple is the extensive use of products of block encodings to
simulate the parts of the Liouvillian. These costs could
likely be brought down by designing a specific block
encoding in a single step. Similarly, it is an open question
whether combining the classical and electronic Liouvil-
lians in a higher-order Trotter formula is the most efficient
choice. Exploiting the fractional query model [54] or mul-
tiproduct formulas may lead to polylogarithmic scaling
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with the error tolerance rather than the subpolynomial scal-
ings obtained using high-order Trotter formulas. Another
important task is the identification of a first potential
application, along with assessing its run time and qubit
count. This will aid in pinpointing bottlenecks within the
proposed algorithm, as well as enable a comparison with
alternative approaches. It would also be interesting to
move beyond the Born-Oppenheimer approximation by
adapting our algorithm to include excited electronic states.

Looking forward, a larger question emerges about the
role that quantum computers may play in the simula-
tion of classical or quantum-classical dynamics. While our
research strengthens our understanding of the advantages
that quantum may provide for simulating such hybrid
dynamics, it is still necessary to fully explore the nature of
the limitations and opportunities that quantum computers
face or provide when simulating both types of dynami-
cal systems [5,25,26,55]. Our belief is that further study
of such applications will unveil a host of new use cases
for quantum computers that lie outside of purely quantum
simulations and, in turn, will reveal that quantum compu-
tation is much more broadly applicable to simulation than
previously thought.
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APPENDIX A: EVOLUTION UNDER THE
CLASSICAL LIOUVILLIAN

We simulate e−iLclasst using qubitization and/or QSVT
[35,56], which requires us to prepare a block encoding
of Lclass according to Definition 8. These block encodings
are implemented using the linear-combination-of-unitaries
(LCU) framework [57]. First, for an arbitrary matrix A,
we decompose it into an LCU, A =∑2a−1

j =0 αj Uj , where
αj ≥ 0 ∀j . This linear combination can then be imple-
mented using the following two unitary operations, defined

via their action on an ancilla register initialized to |0〉⊗a and
some quantum state |ψ〉:

PREP|0〉⊗a|ψ〉 :=
∑

j

√
αj

α
|j 〉|ψ〉, (A1)

SEL|j 〉|ψ〉 := |j 〉Uj |ψ〉, (A2)

where α :=∑j αj is a normalization constant. This allows
us to implement A probabilistically in the sense that

A
α

= (〈0|a ⊗ 1
)

PREP†·SEL · PREP
(|0〉a ⊗ 1

)
. (A3)

Once we have such a block encoding of the classical
Liouvillian Lclass, we can use QSVT to construct a poly-
nomial approximation of e−iLclasst [35,56]. The correspond-
ing query complexity of block-Hamiltonian—or in our
case, block-Liouvillian—simulation based on qubitization
and/or QSVT is stated below.

Lemma 4 (Robust block-Hamiltonian simulation [35,
58]). Let t ∈ R≥0, ε ∈ (0, 1) and let U be an (α, a, ε/2t)
block encoding of the Hamiltonian H . Then, we can imple-
ment an ε-precise Hamiltonian simulation unitary V that is
an (1, a + 2, ε) block encoding of eiHt, with probability of
success at least 1 − ξ , with

O
(

log
(

1
ξ

)(
αt + log

(
1
ε

)))
(A4)

uses of U or its inverse and three uses of controlled-U or its
inverse, using O (log (1/ξ) (aαt + a log (1/ε))) two-qubit
gates and using O(1) ancilla qubits.

A proof of Lemma 4 with constant success probability
is given in Ref. [35]. Using (fixed-point) amplitude ampli-
fication, we can boost the success probability to 1 − ξ at
the expense of a multiplicative factor of log (1/ξ) [58].

The following lemma bounds the error propagation of
the PREP subroutine, which will be useful for our discus-
sion of the overall block-encoding error of the classical
Liouvillian.

Lemma 5 (Error propagation of PREP). Let A =∑2a−1
j =0 αj Uj be an LCU with αj ≥ 0 ∀j . Let |PREP〉 :=∑
j

√
αj /α|j 〉 with α :=∑j αj be the quantum state pre-

pared by the PREP subroutine as defined in Eq. (A1). Let
|P̃REP〉 :=∑j cj |j 〉 be an ε/(2α

√
2a)-precise approxima-

tion to |PREP〉 prepared by P̃REP such that ‖|P̃REP〉 − |PREP〉‖
≤ ε/(2α

√
2a). Given access to the unitary SEL :=∑

j |j 〉〈j | ⊗ Uj , we can implement an ε-precise block
encoding of A.
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Proof. First, recall that for any v ∈ C
2a

, it holds that ‖v‖1 =∑2a−1
j =0 |vj | ≤ √

2a ‖v‖2 ≡ √
2a ‖v‖. Using this inequality

and the triangle inequality, one finds that∥∥∥α (〈0|a ⊗ 1
)

P̃REP†·SEL · P̃REP
(|0〉a ⊗ 1

)− A
∥∥∥

=
∥∥∥α (〈0|a ⊗ 1

)
P̃REP†·SEL · P̃REP

(|0〉a ⊗ 1
)− α

(〈0|a ⊗ 1
)

PREP†·SEL · PREP
(|0〉a ⊗ 1

)∥∥∥
= α

∥∥∥∥∥∥
∑

j

cj c∗
j Uj −

∑
j

αj

α
Uj

∥∥∥∥∥∥ ≤ α
∑

j

∣∣∣∣cj c∗
j − cj

√
αj

α
+ cj

√
αj

α
− αj

α

∣∣∣∣ ∥∥Uj
∥∥

≤ α
∑

j

∣∣cj
∣∣ ∣∣∣∣c∗

j −
√
αj

α

∣∣∣∣+ α
∑

j

∣∣∣∣
√
αj

α

∣∣∣∣
∣∣∣∣cj −

√
αj

α

∣∣∣∣ ≤ 2α
∑

j

∣∣∣∣cj −
√
αj

α

∣∣∣∣
≤ 2α

√
2a

√√√√∑
j

∣∣∣∣cj −
√
αj

α

∣∣∣∣
2

= 2α
√

2a ‖|P̃REP〉 − |PREP〉‖ ≤ ε. (A5)

�

Lemmas 1 and 2 provide upper bounds on the complex-
ity of block encoding the classical Liouvillian in the NVE
and NVT ensemble, respectively. We prove these lemmas
by explicitly constructing a block encoding of the relevant
Lclass. The general idea is to block encode each term of
Lclass separately and then combine all the smaller block
encodings to obtain a block encoding of the overall classi-
cal Liouvillian. To do so, we need to know how to multiply
two block encodings.

Lemma 6 (Product of block-encoded matrices ([35],
Lemma 30)). If U is an (α, a, δ) block encoding of an s-
qubit operator A and V is a (β, b, ε) block encoding of an
s-qubit operator B, then (Ia ⊗ U)(Ib ⊗ V) is an (αβ, a +
b,αε + βδ) block encoding of AB.

A linear combination of block encodings can be con-
structed using the concept of a state-preparation pair.

Definition 10 (State-preparation pair ([35], Definition
28)). Let y ∈ C

m and ‖y‖1 ≤ β. The pair of unitaries
(PL, PR) is called a (β, b, ε)-state-preparation pair if

PL|0〉⊗b =∑2b−1
j =0 cj |j 〉 and PR|0〉⊗b =∑2b−1

j =0 dj |j 〉 such

that
∑m−1

j =0

∣∣∣βc∗
j dj − yj

∣∣∣ ≤ ε and for all j ∈ {m, . . . , 2b −
1} we have c∗

j dj = 0.
Note that b in the above definition is chosen such that

2b ≥ m. This is necessary to accommodate all m entries of
y. In general, m does not need to be a power of 2. The
condition c∗

j dj = 0 for all j ∈ {m, . . . , 2b − 1} ensures that
we are limited to an m-dimensional subspace of the 2b-
dimensional space of the b register.

For our purposes, it will always be true that PL = PR in
which case we call PL a state-preparation unitary.

Lemma 7 (Linear combination of block-encoded matri-
ces (improved version of Lemma 29, which has appeared

in Ref. [35])). Let A =∑m−1
j =0 yj Aj be an s-qubit operator

and ε ∈ R>0. Suppose that (PL, PR) is a (β, b, ε1)-state-
preparation pair for y, W =∑m−1

j =0 |j 〉〈j | ⊗ Uj + ((I −∑m−1
j =0 |j 〉〈j |)⊗ Ia ⊗ Is is an (s + a + b)-qubit unitary such

that ∀j ∈ {0, 1, . . . , m − 1} we have that Uj is an (α, a, ε2)

block encoding of Aj . Then, we can implement an (αβ, a +
b,αε1 + βε2) block encoding of A, with a single use of W,
PR, and P†

L.
Proof. We adapt the proof from Ref. [35] by showing

that W̃ :=
(

P†
L ⊗ Ia ⊗ Is

)
W (PR ⊗ Ia ⊗ Is) is an (αβ, a +

b, αε1 + βε2) block encoding of A:∥∥A − αβ
(〈0|⊗b ⊗ 〈0|⊗a ⊗ I

)
W̃
(|0〉⊗b ⊗ |0〉⊗a ⊗ I

)∥∥
=
∥∥∥∥∥∥A − α

m−1∑
j =0

β
(

c∗
j dj

) (〈0|⊗a ⊗ I
)

Uj
(|0〉⊗a ⊗ I

)∥∥∥∥∥∥
≤ αε1 +

∥∥∥∥∥∥A − α

m−1∑
j =0

yj
(〈0|⊗a ⊗ I

)
Uj
(|0〉⊗a ⊗ I

)∥∥∥∥∥∥
≤ αε1 +

m−1∑
j =0

yj
∥∥Aj − α

(〈0|⊗a ⊗ I
)

Uj
(|0〉⊗a ⊗ I

)∥∥

≤ αε1 +
m−1∑
j =0

yj ε2

≤ αε1 + βε2. �

Additionally, we require a bound on the coefficients of
higher-order central-finite-difference approximations aris-
ing from the discretized derivative operators Dx and Dp
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for the NVE ensemble and Dx, Dp ′ , Ds, and Dps for the
NVT ensemble. The following result provides a higher-
order bound on centered-difference formulas that can be
used for our purposes.

Lemma 8 (Higher-order central-finite-difference
approximation [33]). Let d be an integer and let {xk} with
k ∈ {−d, −d + 1, . . . , d − 1, d} be a set of equally spaced
points on the interval [a, b], i.e.,

xk = x0 + h, (A6)

for some h > 0. Furthermore, let f ∈ C2d+1[a, b] be a
function on the interval [a, b] that is 2d + 1 times con-
tinuously differentiable. Then, one can use a linear com-
bination of f (xk) to construct a central-finite-difference
formula of order 2d to approximate f (1)(x0) = f ′(x0), i.e.,

f ′(x0) = 1
h

d∑
k=−d

cd,kf (xk)+ Rd(x0), (A7)

where

cd,k :=

⎧⎪⎨
⎪⎩

(−1)k+1(d!)2

k(d − k)!(d + k)!
, if k �= 0,

0, else.
(A8)

The remainder term can be bounded as follows:

Rd(x0) ∈ O

(
max

x∈[a,b]

∣∣f (2d+1)(x)
∣∣ (eh

2

)2d
)

. (A9)

In order to provide the cost of block encoding the result,
we need to identify the sum of the coefficients for the finite-
difference formula. Such a bound is given in the following
lemma.

Lemma 9. The coefficients cd,k of the central-finite-
difference formula as defined in Lemma 8 satisfy

d∑
k=−d

|cd,k| ≤ 2 (ln d + 1) . (A10)

Proof. First, note that for k �= 0, we have

(d!)2

(d − k)!(d + k)!

= d × (d − 1)× · · · × (d − k + 1)
(d + k)× (d + k − 1)× · · · × (d + 1)

< 1.

(A11)

Thus,

|cd,k| =
∣∣∣∣ (−1)k+1

k
(d!)2

(d − k)!(d + k)!

∣∣∣∣ ≤
∣∣∣∣1k
∣∣∣∣ . (A12)

This implies that

d∑
k=−d

|cd,k| ≤
d∑

k=−d
i�=0

∣∣∣1
k

∣∣∣ = 2
d∑

k=1

1
k

≤ 2 (ln d + 1) . (A13)

�
Finally, let us show how to construct a general

inequality-testing circuit, which will be used repeatedly as
a subroutine for block encoding Lclass.

Lemma 10 (Inequality testing). Let a and b be arbitrary
bit strings of length n. Using n + 2 additional qubits and
5n − 2 Toffoli gates, one can construct a quantum circuit
that outputs “0” if and only if a ≤ b and “1” otherwise.

Proof. Consider the circuit shown in Fig. 3, with bit
strings a and b as inputs. The general strategy is to perform
bit-wise comparisons starting with the most significant
bits and to store the result in an additional qubit |r〉. To
avoid overwriting the result of the previous bit compari-
son, we use an additional n qubits, |c0〉, . . . , |cn−1〉, as a
clock register. Furthermore, we need one ancilla qubit to
implement triply-controlled-NOT (triple-CNOT) gates from
Toffoli gates. Note that this ancilla qubit is not shown in
the circuit diagram. We need one additional qubit to store
the result of the inequality test. The state of that qubit is
denoted |r〉 in Fig. 3. The circuit first compares the most
significant bits, a0 and b0, using a CNOT gate. The second
(triple-CNOT) gate fires only if, initially, a0 = 1 and b0 = 0,
i.e., if a0 > b0. In this case, the last qubit, |r〉, which stores
the result of the inequality test, gets flipped to |1〉. None
of the remaining triple-CNOT gates fire, since the indicator
state of the clock register, |c0〉 = |1〉, does not get trans-
ferred to the next clock qubit |c1〉. The same is true for the
case a0 < b0, i.e., if a0 = 0 and b0 = 1. However, in this
case, not even the first triple-CNOT gate fires. The indica-
tor state of the clock register gets swapped to |c1〉 if and
only if a0 = b0. This is repeated until aj �= bj for some
j ∈ [n]. In the worst case, j = n. At the end of the inequal-
ity test, we uncompute intermediate results by applying all
gates except for the triple-CNOT gates in reverse. Using the
fact that a single triple-CNOT gate can be implemented with
three Toffoli gates, we then find that the overall Toffoli
count is equal to 5n − 2. �

Now, we are ready to prove Lemmas 1 and 2.

1. Proof of Lemma 1

For convenience, let us restate Lemma 1 here.
Lemma 1 (Block encoding of the discretized classical

NVE Liouvillian). There exists an (αNVE , aNVE , ε) block
encoding of the discretized classical Liouvillian L(NVE)

class
with normalization constant

αNVE ∈ O
(

N
pmax

mmin

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp

hp

)
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|a0〉 • • . . .

Uncompute

|a1〉 • • . . .

...
. . .

|an−1〉 . . . • •

|b0〉 • . . .

|b1〉 • . . .

...
. . .

|bn−1〉 . . . •

|c0〉 = |1〉 • • • . . .

|c1〉 = |0〉 • • • • . . .

|c2〉 = |0〉 • . . .

...
. . .

|cn−1〉 = |0〉 . . . •

|r〉 = |0〉 . . .

FIG. 3. The inequality-testing circuit U≤. The basic idea behind this circuit is to perform bit-by-bit comparison and use an ancillary
qubit, |r〉, in which the outcome of the comparison is stored. The additional n-qubit register |c〉 is used to avoid overwriting the results
of the other bit-comparison results. The “Uncompute” part consists of all previous gates applied in reverse except for the triple-CNOT
gates, which are not uncomputed. If a ≤ b, then the final output is |r〉 = |0〉. Otherwise, |r〉 = |1〉.

and a number of ancilla qubits

aNVE ∈ O
(

log
(αNVE

ε

)
+ log d

)
,

where d := max{dx, dp}. This block encoding can be
implemented using

Õ
(

N log
(gαNVE

ε

)
+ loglog 3

(αNVE

ε

)
+ d log g

)
Toffoli gates, where g := max{gx, gp}.

Proof. We block encode L(NVE)
class via several layers of

“smaller” block encodings, which can be thought of as a
block-encoding hierarchy. More precisely, we apply dif-
ferent PREP and SEL operations in a nested fashion as
summarized in Fig. 4. Let us first give an overview of all
the levels of the hierarchy before discussing the gate and
space complexity.

At the lowest level, we have four types of block
encodings:

(1) Upn,j , an
(
αp , ap , εp

)
block encoding of

∑gp −1
pn,j =0 pn,j

|pn,j 〉〈pn,j |

(2) UDxn,j
, an
(
αDx , aDx , εDx

)
block encoding of Dxn,j

(3) UVn,n′ ,j , an (αV, aV, εV) block encoding of

gx−1∑
xn,j =0

[(xn,j − xn′,j )/
(‖xn − xn′‖2 +	2)3/2]|xn,j 〉〈xn,j |

(4) UDpn,j
, an
(
αDp , aDp , εDp

)
block encoding of Dpn,j

Using Lemma 6, we combine Upn,j and UDxn,j
as well as

UVn,n′ ,j and UDpn,j
to construct

(a) U(pDx)n,j , an
(
αpαDx , ap + aDx ,αpεDx + αDxεp

)
block

encoding of
∑gp −1

pn,j =0 pn,j |pn,j 〉〈pn,j | ⊗ Dxn,j

(b) U(VDp )n,n′ ,j , an
(
αVαDp , aV + aDp ,αVεDp + αDp εV

)
block encoding of

gx−1∑
xn,j =0

(xn,j − xn′,j )(‖xn − xn′‖2 +	2
)3/2 |xn,j 〉〈xn,j | ⊗ Dpn,j

The next level of the hierarchy involves two different state-
preparation unitaries:
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FIG. 4. The circuit diagram of the block-encoding hierarchy used for implementing a block encoding of L(NVE)
class .

(a) PREPm, an (αm, am, εm) state-preparation unitary that
encodes the nuclear masses

(b) PREPZ , an (αZ , aZ , εZ) state-preparation unitary that
encodes the atomic numbers of the nuclei

Application of Lemma 7 to PREPm and
{
U(pDx)n,j

}
as well

as to PREPZ and
{

U(VDp )n,n′ ,j

}
yields

(a) UL(NVE)
kin

, an
(
α
(NVE)
kin , a(NVE)

kin , ε(NVE)
kin

)
block encod-

ing of −i
∑N

n=1
∑3

j =1
∑gp −1

pn,j =0(pn,j /mn)|pn,j 〉〈pn,j | ⊗
Dxn,j , where

α
(NVE)
kin = αmαpαDx , (A14)

a(NVE)
kin = am + ap + aDx , (A15)

ε
(NVE)
kin = αm(αpεDx + αDxεp)+ αpαDxεm (A16)

(b) UL(NVE)
pot

, an
(
α
(NVE)
pot , a(NVE)

pot , ε(NVE)
pot

)
block encoding

of

i
N∑

n=1

∑
n′>n

3∑
j =1

gx−1∑
xn,j =0

[ZnZn′(xn,j − xn′,j )/

× (‖xn − xn′‖2 +	2)3/2]|xn,j 〉〈xn,j | ⊗ Dpn,j ,

where

α
(NVE)
pot = αZαVαDp , (A17)

a(NVE)
pot = aZ + aV + aDp , (A18)

ε
(NVE)
pot = αZ(αVεDp + αDp εV)+ αVαDp εZ (A19)

Note that 7 requires all block encodings of the linear com-
bination to have the same block-encoding normalization
constant, which is true in both cases discussed above. More
specifically, all

{
U(pDx)n,j

}
terms have the same normaliza-

tion constant. Similarly, all
{

U(VDp )n,n′ ,j

}
terms have the

same normalization constant.
Lastly, we use Lemma 7 once more to combine UL(NVE)

kin
and UL(NVE)

pot
. Since they have different normalization con-

stants, we first need to renormalize both block encodings.
The idea is as follows: if U is an (α, a, ε) block encoding of
some matrix A, then U is also an (αβ, a,βε) block encod-
ing of the scaled matrix βA. This follows straight from
Definition 8. Thus, UL(NVE)

kin
can also be viewed as an

(
α
(NVE)
kin + α

(NVE)
pot , a(NVE)

kin + a(NVE)
pot ,

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ε
(NVE)
kin

+α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

ε
(NVE)
pot

)
(A20)
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block encoding of

−i
α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

N∑
n=1

3∑
j =1

gp −1∑
pn,j =0

pn,j

mn
|pn,j 〉〈pn,j | ⊗ Dxn,j

(A21)

and UL(NVE)
pot

can be viewed as an

(
α
(NVE)
kin + α

(NVE)
pot , a(NVE)

kin + a(NVE)
pot ,

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ε
(NVE)
kin

+α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

ε
(NVE)
pot

)
(A22)

block encoding of

i
α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

N∑
n=1

∑
n′>n

3∑
j =1

gx−1∑
xn,j =0

ZnZn′(xn,j − xn′,j )(‖xn − xn′‖2 +	2
)3/2

× |xn,j 〉〈xn,j | ⊗ Dpn,j . (A23)

The following state-preparation unitary is used to recover
the appropriate weighting of the two block encodings:

(a) PREPout, an (αout, aout, εout) state-preparation unitary,

which prepares the state
√
α
(NVE)
kin /(α

(NVE)
kin +α(NVE)

pot )

|0〉 +
√
α
(NVE)
pot /(α

(NVE)
kin + α

(NVE)
pot )|1〉. Note that αout

= 1 and aout = 1.

Using PREPout together with UL(NVE)
kin

and UL(NVE)
pot

, we can

construct UL(NVE)
class

, an (αNVE , aNVE , εNVE) block encoding of

L(NVE)
class , where

αNVE = α
(NVE)
kin + α

(NVE)
pot , (A24)

aNVE = a(NVE)
kin + a(NVE)

pot + 1, (A25)

εNVE = α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ε
(NVE)
kin + α

(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

ε
(NVE)
pot

+
(
α
(NVE)
kin + α

(NVE)
pot

)
εout. (A26)

We have εNVE ≤ ε if

ε
(NVE)
kin ≤ α

(NVE)
kin

α
(NVE)
kin + α

(NVE)
pot

ε

3
, (A27)

ε
(NVE)
pot ≤ α

(NVE)
pot

α
(NVE)
kin + α

(NVE)
pot

ε

3
, (A28)

εout ≤ 1

α
(NVE)
kin + α

(NVE)
pot

ε

3
. (A29)

It follows from Eqs. (A16) and (A19) that the above error
bounds can be achieved by ensuring that

εp ≤ 1
αmαDx

α
(NVE)
kin

α
(NVE)
kin + α

(NVE)
pot

ε

9
, (A30)

εDx ≤ 1
αmαp

α
(NVE)
kin

α
(NVE)
kin + α

(NVE)
pot

ε

9
, (A31)

εm ≤ 1
αpαDx

α
(NVE)
kin

α
(NVE)
kin + α

(NVE)
pot

ε

9
, (A32)

εV ≤ 1
αZαDp

α
(NVE)
pot

α
(NVE)
kin + α

(NVE)
pot

ε

9
, (A33)

εDp ≤ 1
αZαV

α
(NVE)
pot

α
(NVE)
kin + α

(NVE)
pot

ε

9
, (A34)

εZ ≤ 1
αVαDp

α
(NVE)
pot

α
(NVE)
kin + α

(NVE)
pot

ε

9
. (A35)

Let us now show how to implement the four basic block
encodings, starting with Upn,j . Since this is a block encod-
ing of a diagonal matrix, we can use the simplest form of
the alternating-sign trick [54]. To explain this trick in more
detail, let us consider a single computational basis state
associated with the momentum variable pn,j . We require
two additional ancilla registers to implement this trick. The
overall input state can then be written as |0〉⊗ap |pn,j 〉|0〉,
with all remaining quantum registers being suppressed for
ease of notation. Let U≤ be the inequality-testing unitary
from Lemma 10 (see Fig. 3). The circuit in Fig. 5 then
evolves the initial state as follows:
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|0〉

PREP PREPp

U≤ U†
≤

†
p

|0〉
...

|0〉 •

|p0〉
...

|p�log gp�〉

|0〉 Z

FIG. 5. The circuit for implementing the alternating-sign trick.
PREPp prepares a uniform superposition over all computational
basis states |j 〉 of the ancilla register where j ∈ [2ap ]. The
inequality test U≤ from Fig. 3 is applied to the ancilla register
and the input variable |p〉 expressed in binary. The result of the
inequality test is stored in the bottom qubit (“1” if j > p and
“0” otherwise). Next, we apply a Z gate controlled by the least
significant qubit of the ancilla register to the output qubit of the
inequality test. As long as j ≤ p , the controlled-Z (CZ) gate acts
as the identity gate. However, when j > p , the CZ gate introduces
a minus sign for every second computational basis state of the
ancilla register. This creates an alternating sequence of ±1 such
that the contributions of all j > p cancel each other out. Finally,
we uncompute the ancilla qubits.

|0〉|pn,j 〉|0〉
PREPp−−−−→ 1√

2ap

2ap −1∑
j =0

|j 〉|pn,j 〉|0〉

U≤−→ 1√
2ap

⎛
⎝∑

j ≤pn,j

|j 〉|pn,j 〉|0〉 +
∑

j>pn,j

|j 〉|pn,j 〉|1〉
⎞
⎠

CZ−→ 1√
2ap

⎛
⎝∑

j ≤pn,j

|j 〉|pn,j 〉|0〉+
∑

j>pn,j

(−1)j |j 〉|pn,j 〉|1〉
⎞
⎠

U†
≤−→ 1√

2ap

⎛
⎝∑

j ≤pn,j

|j 〉 +
∑

j>pn,j

(−1)j |j 〉
⎞
⎠ |pn,j 〉|0〉

PREP†
p−−−−→ 1

2ap

∑
k

⎛
⎝∑

j ≤pn,j

(−1)k·j +
∑

j>pn,j

(−1)j (−1)k·j

⎞
⎠

× |k〉|pn,j 〉|0〉.

As usual with block encodings, we postselect on |k〉 = |0〉.
If pn,j is even, this yields the following (unnormalized)

state:

pn,j

2ap
|0〉|pn,j 〉|0〉, (A36)

as desired. If pn,j is odd, then we obtain

pn,j + 1

2ap
|0〉|pn,j 〉|0〉. (A37)

The number of PREP ancilla qubits ap determines the
precision, εp , of Upn,j . In particular,∥∥∥∥∥∥Upn,j − 1

αp

∑
pn,j

pn,j |pn,j 〉〈pn,j |
∥∥∥∥∥∥ ≤ 1

2ap
. (A38)

Note that ap should be equal to the number of qubits
used to represent a single momentum variable (otherwise,
the inequality test does not work). Increasing ap there-
fore requires us to (temporarily) blow up the momentum
values as well. The above calculation shows that Upn,j :=
PREP

†
p · SELp · PREPp , where

PREPp |0〉 :=
2ap −1∑

j =0

1√
2ap

|j 〉, (A39)

SELp := U†
≤·CZ · U≤, (A40)

provides an
(
αp , ap , εp

)
block encoding of

∑gp −1
pn,j =0 pn,j

|pn,j 〉〈pn,j |, in which αp ∈ O (pmax) and ap ∈ O (log (pmax/

εp
))

. The precision, εp , is determined by the overall error
tolerance ε, as shown in Eq. (A30), which implies that

ap ∈ O

(
log

(
αmαDx

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

pmax

ε

))
. (A41)

Since PREPp only requires Hadamard gates but no Tof-
foli gates, the Toffoli complexity of Upn,j is equal to the
Toffoli complexity of SELp , which is in O

(
ap
)

due to the
inequality testing.

The implementation of UVn,n′ ,j , an (αV, aV, εV) block
encoding of

gx−1∑
xn,j =0

(xn,j − xn′,j )(‖xn − xn′‖2 +	2
)3/2 |xn,j 〉〈xn,j |, (A42)

is also based on the alternating-sign trick. Using
PREPV|0〉 :=∑2aV−1

l=0 (1/
√

2aV)|l〉, we test the following
inequality:

l2
(
‖xn − xn′‖2 +	

2
)3

≤ (xn,j − xn′,j )
2, (A43)

where 	 ∈ N such that 	 = 	hx. Note that αV ∈
O
(
xmax/	

3
)
. The number of ancilla qubits aV is again
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determined by the allowable error. More specifically, aV ∈
O
(
log
(
xmax/	

3εV
))

. The precision εV is determined by
the overall error tolerance ε as shown in Eq. (A33), which
implies that

aV ∈ O

(
log

(
αZαDp

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

xmax

	3ε

))
. (A44)

To determine the correct sign, we also need to test xn,j ≤
xn′,j , which has Toffoli complexity in O (log (gx)). The
advantage of testing Eq. (A43) rather than

l ≤ (xn,j − xn′,j )(
‖xn − xn′‖2 +	

2
)3/2 (A45)

directly is that we do not have to calculate fractions
containing square roots. However, the inequality test in
Eq. (A43) does require us first to compute the left-
and right-hand sides of the inequality using O(1) quan-
tum Karatsuba multiplications. This can be done using
O
(
(aV)

log 3) Toffoli gates, whereas the inequality test itself
requires only O (aV) Toffolis [59].

Next, let us explain how to construct a block encoding
UDxn,j

of the discrete derivative operator Dxn,j of order 2dx.
The idea is to apply a linear combination of 2dx unitary
adders to the |xn,j 〉 register as shown in Fig. 6.

Let

PREPDx |0〉 :=
dx∑

k=−dx

√
cdx ,k

cdx

|k〉, (A46)

SELDx :=
dx∑

k=−dx

|k〉〈k| ⊗
∑

x

|x − k〉〈x|, (A47)

where {cdx ,k} are the finite-difference coefficients as given
in Lemma 8 and cdx :=∑dx

k=−dx
|cdx ,k|. Then, UDxn,j

:=
PREP

†
Dx

SELDx PREPDx is an
(
αDx , aDx , εDx

)
block encoding of

Dxn,j , where

αDx = cdx

hx
≤ 2 (ln dx + 1)

hx
(A48)

(see Lemma 9) and aDx ∈ O (log (dx)). The error εDx stems
solely from the state-preparation error associated with
PREPDx . Lemma 5 implies that we need to prepare the state
PREPDx |0〉 within error

εDx

αDx

√
dx

∈ O
(

hxεDx

ln (dx)
√

dx

)
. (A49)

Such a general quantum state preparation has Toffoli cost
in O
(
dx log

(
ln (dx)

√
dx/hxεDx

))
. By Eq. (A31), this is in

O

(
dx log

(
αmαp

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ln (dx)
√

dx

hx

1
ε

))
.

(A50)

A single unitary adder requires O (log (gx)) Toffolis where
gx is again the number of grid points for a single posi-
tion coordinate. Additionally, we need O (log dx) Toffolis
to implement a controlled version of the adder controlled
by the PREPd register.

|0〉

PREP PREPd

• . . . •

†
d

|0〉 . . . •

...
...

...
. . .

...

|0〉 . . . •

|xn,j,0〉

ADD−dx ADD− dx + 1

. . .

ADD +dx

|xn,j,1〉 . . .

...
. . .

|xn,j,�log gx�〉 . . .

FIG. 6. The circuit for implementing a central-finite-difference operator of order 2dx. ADD + j , with j being an integer, is a unitary
adder of the form

∑
x |x − j 〉〈x|.
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In total, we therefore require

O

(
dx

(
log dx + log gx

+ log

(
αmαp

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ln (dx)
√

dx

hx

1
ε

)))
(A51)

Toffolis to implement UDxn,j
.

We implement UDpn,j
, an
(
αDp , aDp , εDp

)
block encoding

of the discrete derivative operator Dpn,j of order 2dp , using
exactly the same strategy as for UDxn,j

. This implies that

αDp ≤ 2
(
ln dp + 1

)
hp

(A52)

and aDp ∈ O
(
log
(
dp
))

. As before, the error εDp stems
solely from the state-preparation error of PREPDp . The Tof-
foli cost associated with preparing the state PREPDp |0〉
within sufficiently small error is then in

O

(
dp log

(
αZαV

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

ln (dp)
√

dp

hp

1
ε

))
.

(A53)

In total, we then require

O

(
dp

(
log dp + log gp

+ log

(
αZαV

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

ln (dp)
√

dp

hp

1
ε

)))
(A54)

Toffolis to implement UDpn,j
.

Now that we have shown how to implement the four
basic block encodings, Upn,j , UDxn,j

, UVn,n′ ,j , and UDpn,j
, we

can combine them. More specifically, we multiply Upn,j
and UDxn,j

to obtain U(pDx)n,j . This can be done at no extra
Toffoli cost by simply keeping the ancilla qubits separate
and applying the two block encodings consecutively. The
same is true when multiplying UVn,n′ ,j and UDpn,j

to obtain
U(VDp )n,n′ ,j .

Next, let us explain how to implement PREPm, an
(αm, am, εm) state-preparation unitary, which we define as

follows:

PREPm|0〉 :=
N∑

n=1

√
1/mn

αm
|n〉 ⊗ 1√

3

3∑
j =1

|j 〉, (A55)

where

αm =
∑
n,j

1
mn

≤ 3N
mmin

. (A56)

The above definition implies that am = �log N� + �log 3�.
It follows from Lemma 5 that we need to prepare PREPm|0〉
within error

εm

αm
√

N
∈ O
(

mminεm

N
√

N

)
. (A57)

Such a general quantum state preparation has Toffoli cost
in Ref. [60]

O
(

N log
(

N
mminεm

))
. (A58)

By Eq. (A32), this is in

O

(
N log

(
αpαDx

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
kin

N
mmin

1
ε

))
. (A59)

We use PREPm together with U(pDx)n,j to implement UL(NVE)
kin

.
This can be done efficiently with the help of two addi-
tional ancilla registers, which we call “SWAP registers”
[28]. Controlled by the PREPm register, we swap the appro-
priate position and momentum variables into the two SWAP
registers. This allows us to apply the block encodings
Upn,j and UDxn,j

only once (to the SWAP registers hold-
ing the appropriate position and momentum variables)
rather than 3N times (to each individual position and
momentum variable). However, we do require a total of
O (N log (g)) SWAP operations, where g = max{gx, gp},
implying O (N log (g)) Toffolis.

UL(NVE)
pot

can be implemented following the same strategy.

We have

PREPZ |0〉 :=
N∑

n=1

√
Zn

Z
|n〉 ⊗

N∑
n′=1

√
Z ′

n

Z
|n′〉 ⊗ 1√

3

3∑
j =1

|j 〉,

(A60)

an (αZ , aZ , εZ) state-preparation unitary with

αZ =
∑
n,n′,j

ZnZn′ ≤ 3N 2Z2
max. (A61)

The above definition implies that aZ = 2�log N� +
�log 3�. Importantly, it is a product state, meaning that
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∑N
n=1

√
Zn/Z|n〉, ∑N

n′=1

√
Z ′

n/Z|n′〉, and
∑3

j =1 |j 〉 can be
prepared individually. It follows from Lemma 5 that we
need to prepare PREPZ |0〉 within error

εZ

αZN
∈ O
(

εZ

N 3Z2
max

)
. (A62)

Preparation of such a product state has Toffoli cost in
O (N log (NZmax/εZ)). By Eq. (A35), this is in

O

(
N log

(
αVαDp

α
(NVE)
kin + α

(NVE)
pot

α
(NVE)
pot

NZmax

ε

))
. (A63)

We use PREPZ together with U(VDp )n,j to implement UL(NVE)
pot

.

This can be done efficiently with the help of seven SWAP
registers, six for the six nuclear-position variables appear-
ing in (xn,j − xn′,j )/

(‖xn − xn′‖2 +	2
)3/2

and one for the
nuclear-momentum variable of Dpn,j . As before, this allows
us to apply the block encodings UVn,n′ ,j and UDpn,j

only
once (to the SWAP registers holding the appropriate posi-
tion and momentum variables) rather than 3N 2 times and
3N times, respectively. However, we again require a total
of O (N log (g)) SWAP operations, implying O (N log (g))
Toffolis. To ensure that we exclude terms where the nuclei
are the same, i.e., n = n′, and also avoid double counting,
we perform an inequality test on |n〉 and |n′〉 and store the
result in an ancilla qubit. The corresponding Toffoli cost is
in O (log N ).

Lastly, we use the (αout, aout, εout) state-preparation uni-
tary

PREPout|0〉 :=
√√√√ α

(NVE)
kin

α
(NVE)
kin + α

(NVE)
pot

|0〉

+
√√√√ α

(NVE)
pot

α
(NVE)
kin + α

(NVE)
pot

|1〉 (A64)

together with UL(NVE)
kin

and UL(NVE)
pot

to construct UL(NVE)
class

, an

(αNVE , aNVE , εNVE) block encoding of L(NVE)
class . As mentioned

before, αout = 1 and aout = 1. It follows from Lemma 5
that we need to prepare PREPout|0〉 within error εout. Such a
general quantum state preparation on one qubit has Toffoli
cost in O (log (1/εout)). By Eq. (A29), this is in

O

(
log

(
α
(NVE)
kin + α

(NVE)
pot

ε

))
. (A65)

Combining all of the previous results, we find that

αNVE ∈ O
(

N
pmax

mmin

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp

hp

)
. (A66)

Furthermore, ensuring εNVE ≤ ε requires

aNVE = ap + aV + aDx + aDp + am + aZ + 1

∈ O
(
log
(αNVE

ε

)
+ log (dx)+ log

(
dp
)+ log (N )

)

∈ O
(

log
(

N
pmax

mmin

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp

hp

)

+ log
(

d
ε

))
(A67)

block-encoding ancilla qubits, where d := max{dx, dp},
and

Õ
(

N log
(gαNVE

ε

)
+ loglog 3

(αNVE

ε

)
+ d log (g)

)
(A68)

Toffoli gates. �

2. Proof of Lemma 2

For convenience, let us restate Lemma 2 here.
Lemma 2 (Block encoding of the discretized classical

NVT Liouvillian). There exists an (αNVT, aNVT, ε) block
encoding of the discretized classical Liouvillian L(NVT)

class
with normalization constant

αNVT ∈ O
(

N
p ′

max

mmins2
min

ln dx

hx
+ N 2 Z2

maxxmax

	3

ln dp ′

hp ′

+ ps,max

Q
ln ds

hs

+
(

N
p ′2

max

mmins3
min

+ Nf kBT
smin

)
ln dps

hps

)

and a number of ancilla qubits

aNVT ∈ O
(

log
(αNVT

ε

)
+ log d

)
,

where d := max{dx, dp ′ , ds, dps}. This block encoding can
be implemented using

Õ
(

N log
(gαNVT

ε

)
+ loglog 3

(αNVT

ε

)
+ d log g

)
Toffoli gates, where g := max{gx, gp ′ , gs, gps}.

Proof. Lemma 2 can be proved analogously to Lemma
1 via a modified block-encoding hierarchy. Here, we only
give a brief summary of the construction. At the lowest
level, we now have nine types of block encodings that
we can express as functions of αNVT. Note that the result-
ing upper bounds on the individual block encodings are
somewhat looser than the corresponding bounds used in
the proof of Lemma 1. However, this does not affect the
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overall Toffoli or ancilla complexity. With this in mind, we
list the lowest-level block encodings below:

(1) Up ′
n,j

, an
(
αp ′ , ap ′ , εp ′

)
block encoding of

∑gp ′−1
pn,j =0∑gs−1

s=0 (p
′
n,j /(s + smin)

2)|p ′
n,j 〉〈p ′

n,j | ⊗ |s〉〈s|, where

αp ′ ∈ O
(

p ′
max

mmins2
min

)
, (A69)

ap ′ ∈ O
(

log
(αNVT

ε

))
, (A70)

εp ′ ∈ O
(

ε

αNVT

)
. (A71)

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The resulting Toffoli cost is
in O

((
ap ′
)log 3
)

, which is dominated by the cost
of implementing quantum Karatsuba multiplication
with ap ′ qubits [59].

(2) UDxn,j
, an

(
αDx , aDx , εDx

)
block encoding of Dxn,j ,

where

αDx ∈ O
(

ln dx

hx

)
, (A72)

aDx ∈ O (log dx) , (A73)

εDx ∈ O
(

ε

αNVT

)
. (A74)

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

Õ
(

dx

(
log dx + log gx + log

(αNVT

ε

)))
, (A75)

which includes the cost of implementing a
controlled-unitary adder on log gx qubits and the
cost of preparing a state encoding the 2dx coef-
ficients of the central-finite-difference formula of
order 2dx.

(3) UVn,n′ ,j , an (αV, aV, εV) block encoding of
∑gx−1

xn,j =0

(xn,j − xn′,j )/
(‖xn − xn′‖2 +	2

)3/2|xn,j 〉〈xn,j |, where

αV ∈ O
(xmax

	3

)
, (A76)

aV ∈ O
(

log
(αNVT

ε

))
, (A77)

εV ∈ O
(

ε

αNVT

)
. (A78)

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is

in O
(
(aV)

log 3), which is dominated by the cost
of implementing quantum Karatsuba multiplication
with aV qubits.

(4) UDp ′
n,j

, an
(
αDp ′ , aDp ′ , εDp ′

)
block encoding of Dp ′

n,j
,

where

αDp ′ ∈ O
(

ln dp ′

hp ′

)
, (A79)

aDp ′ ∈ O
(
log dp ′

)
, (A80)

εDp ′ ∈ O
(

ε

αNVT

)
. (A81)

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

Õ
(

dp ′
(

log dp ′ + log gp ′ + log
(αNVT

ε

)))
, (A82)

which includes the cost of implementing a
controlled-unitary adder on log gp ′ qubits and the
cost of preparing a state encoding the 2dp ′ coef-
ficients of the central-finite-difference formula of
order 2dp ′ .

(5) Ups , an
(
αps , aps , εps

)
block encoding of

∑
ps

ps|ps〉
〈ps|, where

αps ∈ O
(
ps,max

)
, (A83)

aps ∈ O
(

log
(αNVT

ε

))
, (A84)

εps ∈ O
(

ε

αNVT

)
. (A85)

It can be efficiently implemented using the
alternating-sign trick. The associated Toffoli cost is
in O
(
aps

)
.

(6) UDs , an
(
αDs , aDs , εDs

)
block encoding of Ds, where

αDs ∈ O
(

ln ds

hs

)
, (A86)

aDs ∈ O (log ds) , (A87)

εDs ∈ O
(

ε

αNVT

)
. (A88)

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

Õ
(

ds

(
log ds + log gs + log

(αNVT

ε

)))
, (A89)

which includes the cost of implementing a
controlled-unitary adder on log gs qubits and the
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cost of preparing a state encoding the 2ds coef-
ficients of the central-finite-difference formula of
order 2ds.

(7) Us,n,j , an (αs, as, εs) block encoding of −∑gp −1
pn,j =0∑gs−1

s=0 2p2
n,j /(s + smin)

3|pn,j 〉〈pn,j | ⊗ |s〉〈s|, where

αs ∈ O
(

p2
max

mmins3
min

)
, (A90)

as ∈ O
(

log
(αNVT

ε

))
, (A91)

εs ∈ O
(

ε

αNVT

)
. (A92)

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is
in O

(
(as)

log 3), which is dominated by the cost
of implementing quantum Karatsuba multiplication
with as qubits.

(8) U1/s, an
(
α1/s, a1/s, ε1/s

)
block encoding of

∑gs−1
s=0

(1/s + smin)|s〉〈s|, where

α1/s ∈ O
(

1
smin

)
, (A93)

a1/s ∈ O
(

log
(αNVT

ε

))
, (A94)

ε1/s ∈ O
(

ε

αNVT

)
. (A95)

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is
in O

((
a1/s
)log 3
)

, which is dominated by the cost
of implementing quantum Karatsuba multiplication
with a1/s qubits.

(9) UDps , an
(
αDps , aDps , εDps

)
block encoding of Dps ,

where

αDps ∈ O
(

ln dps

hps

)
, (A96)

aDps ∈ O
(
log dps

)
, (A97)

εDps ∈ O
(

ε

αNVT

)
. (A98)

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

Õ
(

dps

(
log dps + log gps + log

(αNVT

ε

)))
, (A99)

which includes the cost of implementing a
controlled-unitary adder on log gps qubits and the

cost of preparing a state encoding the 2dps coef-
ficients of the central-finite-difference formula of
order 2dps .

We then use Lemmas 6 and 7 to combine the above block
encodings. This requires the following state-preparation
unitaries:

(a) PREPm, an (αm, am, εm) state-preparation unitary that
encodes the nuclear masses, where

αm ∈ O
(

N
mmin

)
, (A100)

am ∈ O (log N ) , (A101)

εm ∈ O
(

ε

αNVT

)
. (A102)

The Toffoli cost of this state-preparation unitary is in

O
(

N log
(αNVT

ε

))
. (A103)

(b) PREPZ , an (αZ , aZ , εZ) state-preparation unitary that
encodes the atomic numbers of the nuclei, where

αZ ∈ O
(
N 2Z2

max

)
, (A104)

aZ ∈ O (log N ) , (A105)

εZ ∈ O
(

ε

αNVT

)
. (A106)

The Toffoli cost of this state-preparation unitary is in

O
(

N log
(αNVT

ε

))
. (A107)

(c) PREPNVT
out , an (αout, aout, εout) state-preparation uni-

tary that is used to combine all terms of the NVT
Liouvillian, where

αout ∈ O (1) , (A108)

aout ∈ O (1) , (A109)

εout ∈ O
(

ε

αNVT

)
. (A110)

The Toffoli cost of this state-preparation unitary is in

O
(

log
(αNVT

ε

))
. (A111)

As before, we utilize O(1) SWAP registers to com-
bine the individual block encodings efficiently. Con-
trolled by the PREPm or PREPZ register, we swap the
appropriate nuclear-position and -momentum variables
into the SWAP registers. This allows us to apply the
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nine basic block encodings only once to the SWAP reg-
isters holding the appropriate position and momentum
variables rather than O (N ) or O

(
N 2
)

times to each
individual position or momentum variable. However,
we do require a total of O

(
N log

(
g′)) SWAP opera-

tions, where g′ = max{gx, gp ′ } ≤ g = max{gx, gp ′ , gs, gps},
implying O (N log g) Toffolis.

Going through the same analysis as for the clas-
sical NVE Liouvillian yields the desired complexity
bounds. �

APPENDIX B: EVOLUTION UNDER THE
ELECTRONIC LIOUVILLIAN

As an analytic expression for the electronic ground-
state energy Eel is unavailable, we cannot follow the same
strategy as described in Appendix A for the nuclear part
to implement e−iLelt. In particular, we somehow need to
approximate the derivative ∂Eel/∂xn,j , which we do via a
central-finite-difference formula of order 2de. Recall from
Eq. (20) that the resulting approximate operator is given by

D el
n,j = 1

hx

de∑
k=−de

∑
(n′,j ′) �=(n,j )

∑
xn′ ,j ′

∑
xn,j

cde,k

× Eel
({xn′,j ′ }, xn,j + khx

) |xn′,j ′ 〉〈xn′,j ′ | ⊗ |xn,j 〉〈xn,j |,
(B1)

where the coefficients {cde,k} are as in Definition 1.
We prove the following lemma, which upper bounds the

complexity of simulating e−iLelt.
Lemma 11 (Complexity of simulating e−iLelt). Assume

the following:

(1) Let ε ∈ (0, 1) and t ∈ R≥0.
(2) Let UHel be a Hermitian

(
λ, ael, hxhpε/36Ndet

)
block encoding of the electronic Hamiltonian
Hel ({xn}).

(3) Let γ be a lower bound on the spectral gap of the
block-encoded operator H̃el ({xn}) over all phase-
space grid points.

(4) For any de ∈ N+, it holds that maxx∗∈[−xmax,xmax]3N∣∣∣(∂(2de+1)Eel/∂x(2de+1)
n,j )(x∗)

∣∣∣ ≤ χu2de+1 for some
constant χ with units of energy and u with units of
inverse length.

(5) Let UI be the initial-state-preparation oracle from
Definition 9 and let δ be a lower bound on the initial
overlap with the true electronic ground state of H̃el.

In order to implement an ε-precise Liouvillian simulation
unitary ULel of e−iLelt with success probability at least 1 − ξ

it is sufficient to query UHel a total number of times

O
(

Nde log
(

Nde

ξ

)(
λt

hxhp
+ log

(
Nλ ln (de)t

hxhpε

)

× log

⎛
⎝Nde log

(
Nλ ln (de)t

hxhp ε

)
ε

⎞
⎠

+ λ

γ δ
log
(

Nde

δε

)))
, (B2)

where

de ∈ O

⎛
⎝ log

(
Nχut
hp ε

)
log
(

1
uhx

)
⎞
⎠ . (B3)

Furthermore, we require

O
(

Nde

δ
log
(

Nde

ξ

)
log
(

Nde

δε

))
(B4)

queries to the initial-state-preparation oracle UI from
Definition 9.

As mentioned in the main text, one important feature of
the electronic Liouvillian Lel is that all summands com-
mute with each other (see Definition 5). The evolution
operator associated with Lel can thus be decomposed as
follows:

e−iLelt = e−i
(

i
∑N

n=1
∑3

j =1 D el
n,j ⊗D1

pn,j

)
t

=
∏
n,j

eD el
n,j ⊗D1

pn,j t, (B5)

where we use pn,j to denote either a real or virtual momen-
tum variable.

Let us now explain how to implement a single expo-
nential appearing in Eq. (B5). Note that D el

n,j ⊗ D1
pn,j

acts
nontrivially on the nuclear-momentum register. We deal
with the discrete nuclear-momentum derivative D1

pn,j
via

a quantum Fourier transform (QFT) the action of which on
the nuclear-momentum register is defined as follows:

QFT|p〉 := 1√gp

∑
l

e2π ipl/gp |l〉. (B6)

Here, we have dropped the n, j indices of the integer
momentum variable p for ease of notation. The quantum
Fourier transform diagonalizes finite-difference operators.
Recall that D1 is a first-order finite-difference operator of
the form D1 := 1/2hp

∑
p (|p − 1〉〈p| − |p〉〈p − 1|). Thus,
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D1 = (QFT QFT−1)D1
(

QFT QFT−1) = QFT
(

QFT−1D1QFT
)

QFT−1

= QFT

⎛
⎝ 1√gp

∑
p

∑
l,k

∑
l′,k′

e−2π ilk/gp e2π il′k′/gp |l〉〈k| |p − 1〉〈p| − |p〉〈p − 1|
2hp

|l′〉〈k′|
⎞
⎠QFT−1

= QFT

⎛
⎝ 1√gp

∑
p

∑
l,k′

e−2π il(p−1)/gp e2π ipk′/gp − e−2π ilp/gp e2π i(p−1)k′/gp

2hp
|l〉〈k′|

⎞
⎠QFT−1

= QFT

⎛
⎝∑

l,k′

e2π il/gp − e−2π ik′/gp

2hp
|l〉〈k′|

⎞
⎠
⎛
⎝∑

p

e2π ip(k′−l)/gp

⎞
⎠QFT−1

= QFT

(
i
∑

l

sin
(
2π l/gp

)
hp

|l〉〈l|
)

QFT−1. (B7)

The above calculation shows that QFT does indeed diago-
nalize D1. Higher-order finite-difference operators can also
be diagonalized via QFT but will have different eigenval-
ues. For simplicity, we only consider a first-order finite-
difference operator here. A single exponential of Eq. (B5)
can then be expressed as follows:

eD el
n,j D1

pn,j t ≡ eD el
n,j ⊗D1

pn,j t

= (1 ⊗ QFT) e
iD el

n,j ⊗
∑

l
sin(2π l/gp)

hp
|l〉〈l|t

× (1 ⊗ QFT−1)
= (1 ⊗ QFT)

∏
l

e
iD el

n,j ⊗
sin(2π l/gp)

hp
|l〉〈l|t

× (1 ⊗ QFT−1) , (B8)

where we have used the fact that UeAU† = eUAU†
for any

square matrix A and unitary matrix U of the same dimen-
sion. The following lemma allows us to simplify the above
expression.

Lemma 12 (Projector exponential). Let {Al}M
l=1 with Al ∈

C
M×M be a set of M matrices and let {Pl}M

l=1 with Pl ∈
C

M×M and P2
l = Pl for all l ∈ [M ] be a set of M orthogonal

projectors that satisfy
∑

l Pl = 1. Then, it holds that

∏
l

eAl⊗Pl =
∑

l

eAl ⊗ Pl. (B9)

Proof. Using the Taylor-series expansion of a matrix
exponential and the fact that P2

l = Pl, PkPl = 0 if k �= l

and
∑

l Pl = 1, we obtain

∏
l

eAl⊗Pl =
∏

l

∞∑
k=0

(Al ⊗ Pl)
k

k!

=
∏

l

(
1 ⊗ 1 + (eAl − 1

)⊗ Pl
)

= 1 ⊗ 1 +
∑

l

(
eAl − 1

)⊗ Pl = 1 ⊗ 1

+
∑

l

eAl ⊗ Pl − 1 ⊗
∑

l

Pl

=
∑

l

eAl ⊗ Pl. (B10)

�
Lemma 12 implies that

eD el
n,j Dpn,j t = (1 ⊗ QFT)

∑
l

e
iD el

n,j
sin(2π l/gp)

hp
t

⊗ |l〉〈l| (1 ⊗ QFT−1) . (B11)

Recalling that D el
n,j = 1/hx

∑de
k=−de

∑
xn,j

cde,kEel(xn,j

+ khx)|xn,j 〉〈xn,j |, we obtain the following equality:

eD el
n,j ⊗D1

pn,j t

= (1 ⊗ QFT)
∑
xn,j

∑
l

∏
k

e
icde ,k

Eel(xn,j +khx)
hx

sin(2π l/gp)
hp

t

× |xn,j 〉〈xn,j | ⊗ |l〉〈l| (1 ⊗ QFT−1) . (B12)

We implement the above expression via controlled Hamil-
tonian simulation.
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Definition 11 (Controlled Hamiltonian simulation ([61],
Definition 51)). Let M = 2J for some J ∈ N, γ ∈ R and
ε ≥ 0. We say that the unitary

W :=
M∑

m=−M

|m〉〈m| ⊗ eimγH (B13)

implements a controlled (M , γ ) simulation of the Hamil-
tonian H , where |m〉 denotes a (signed) bit string
|bJ bJ−1 . . . b0〉 such that m = −bJ 2J +∑J−1

j =0 bj 2j .
Lemma 13 (Complexity of controlled Hamiltonian sim-

ulation ([61], Lemma 52)). Let M = 2J for some J ∈ N,
γ ∈ R and ε ≥ 0. Suppose that U is an (α, a, ε/|8(J +
1)2Mγ |) block encoding of the Hamiltonian H . Then,
we can implement a (1, a + 2, ε) block encoding of a
controlled (M , γ ) simulation of the Hamiltonian H with

O (|αMγ | + J log (J/ε)) (B14)

uses of controlled-U or its inverse and with O (a|αMγ | +
aJ log (J/ε)) two-qubit gates.

Before applying the above lemma, we first use coher-
ent quantum arithmetic to compute an εsin-precise binary
approximation of sin

(
2π l/gp

)
in an ancilla register con-

trolled by the |l〉 register. This can be done using a trun-
cated Taylor-series expansion of the sine function and has
Toffoli cost in O (log (1/εsin)) since the error of the trunca-
tion vanishes exponentially quickly. The size of the ancilla
register is also in O (log (1/εsin)).

Controlled by this sin
(
2π l/gp

)
ancilla register, we then

simulate exp
(−iHel ({xn}) tck ,l

)
using UHel , a Hermitian

(λ, ael, εbe) block encoding of Hel, where

tck ,l := cde,k

hx

sin
(
2π l/gp

)
hp

t (B15)

is a rescaled time variable depending on the finite-
difference coefficients {cde,k} of D el

n,j . For convenience,
let H̃el := λ (〈0| ⊗ 1)UHel (|0〉 ⊗ 1) denote the Hermi-
tian matrix that UHel block encodes. This implies that∥∥Hel − H̃el

∥∥ ≤ εbe.
Note that Lemma 13 applies to integer values of m,

which translates to integer values of sin
(
2π l/gp

)
in

our case. Hence, we need to “blow up” the values of
sin
(
2π l/gp

)
by a factor of O (1/εsin). This then entails

a renormalization of the exponent by a factor of O (εsin),
which can be done via a rescaling of the form γ → ε′γ for
an appropriate ε′ ∈ O (εsin).

The general strategy is first to shift the nuclear-position
register of a single nuclear-position variable xn,j accord-
ing to the finite-difference scheme of order 2de. This is
done using a unitary adder. Then, we (approximately) pre-
pare the ground state |ψ̃{xn}〉 of H̃el, controlled by the
entire nuclear-position register |{xn,j }〉, in the electronic
register. Next, controlled by the entire nuclear-position
register |{xn,j }〉 and the Fourier-transformed momentum
register associated with the one-dimensional (1D) momen-
tum variable pn,j , |l〉, we apply exp

(−iHel ({xn}) tck ,l
)

to
the electronic register. This generates states of the form

e
icde ,k

Eel(xn,j +khx)
hx

sin(2π l/gp)
hp

t|xn,j + k〉|l〉. (B16)

Finally, we uncompute the electronic ground state. Now
we simply repeat the above procedure for each stencil point
of the finite-difference scheme. More precisely, we shift the
nuclear-position register of the 1D nuclear-position vari-
able of interest, xn,j , to the next stencil point, prepare the
electronic ground state for that nuclear configuration, and
then apply exp

(−iHel ({xn}) tck ,l
)

to the electronic register.
In the last step, we shift the position register corresponding
to xn,j back to the original state to obtain the desired phase
factor,

∏
k

e
icde ,k

Eel(xn,j +khx)
hx

sin(2π l/gp)
hp

t|xn,j 〉|l〉. (B17)

The overall procedure for simulating e−iLelt is summarized
in Algorithm 3 as well as Fig. 7.

One might consider using the gradient-computation
algorithm developed in Ref. [62] to compute D el

n,j in the
exponent. The hope is that O

(
N 1/2
)

rather than O (N )
evaluations of the electronic ground-state energy are suf-
ficient. However, a straightforward application fails in our
case, since we have to compute the gradient in super-
position over all nuclear positions. This is problematic

|0〉
W

e
−iHeltc−1,l

W −1 W

e−iHeltc1,l

W −1

|x1,1〉 −1 +2 −1

|p1,1〉 QFT QFT−1

FIG. 7. The circuit for implementing the evolution under the electronic Liouvillian for a single nucleus in 1D. The top register
corresponds to the electronic register. “−1” denotes a unitary adder of the form

∑
x |x + 1〉〈x| and, similarly, “+2” denotes a unitary

adder of the form
∑

x |x − 2〉〈x|.
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because the gradient-computation algorithm produces dif-
ferent global phases for different nuclear positions, i.e., the
global phases become local phases that cannot simply be
ignored. Uncomputing these local phases is nontrivial and
is left for future work.

Both the simulation of exp
(−iHel ({xn}) tck ,l

)
and the

electronic ground-state preparation require access to UHtel ,
a block encoding of Hel ({xn}) as given in Definition 11.
For the ground-state preparation, it is important that UHtel
is a Hermitian block encoding, meaning that H̃el is Hermi-
tian. This is discussed in more detail in the proof of Lemma
11. Note that the only way in which the nuclear positions
{xn} enter the electronic Hamiltonian is via the phase fac-
tors of the electron-nucleus interaction terms. In Ref. [28],
the nuclear positions are accessed via a quantum random
access memory (QROM). The phase kc−b · xn is computed
in an ancilla register, which is then hit with a phase gra-
dient to produce the phase factor exp (ikc−b · xn). In our
case, instead of using a QROM to access xn, we swap the
nuclear-position register |xn〉 into an ancilla register and
compute kc−b · xn. The swap is controlled by the ancilla
register preparing the state

∑N−1
n=0

√
Zn/Z|n〉 that is needed

for block encoding the electron-nucleus interaction terms.
The Toffoli cost associated with the controlled SWAP gates
is in O(N ), which matches the complexity of the original
QROM model. Apart from accessing the nuclear positions
differently, we can employ exactly the same techniques as
presented in Ref. [28] to block encode Hel ({xn}), which
leads to the complexity expressions of Lemma 3.

Let us now discuss the electronic ground-state prepara-
tion in more detail.

Definition 12 (Fidelity). Let |x〉, |y〉 ∈ C
2n×2n

be two
quantum states. The fidelity F(x, y) between |x〉 and |y〉
is given by

F(x, y) := |〈x|y〉|. (B18)

Lemma 14 (Ground-state preparation with a priori
ground-state energy bound ([43], Theorem 6, refor-
mulated)). Suppose that we have a Hamiltonian H̃ =∑

k Ẽk|ψ̃k〉〈ψ̃k| ∈ C
N×N , where Ẽk ≤ Ẽk+1, which is given

through its (λ, m, 0) block encoding UH . Also suppose that
we have an initial state |φ0〉, prepared by a unitary UI ,
together with a lower bound on the overlap |〈ψ̃0|φ0〉| ≥
δ. Furthermore, we require the following bound on the
ground-state energy and the spectral gap: Ẽ0 ≤ μ− γ /2 <
μ+ γ /2 ≤ Ẽ1, where μ is an upper bound on the ground-
state energy and γ is a lower bound on the spectral gap
of H̃ . Then, the ground state |ψ̃0〉 can be prepared with
fidelity at least 1 − εprep using

O
(
λ

γ δ
log
(

1
δεprep

))
(B19)

queries to UH and

O
(

1
δ

)
(B20)

queries to UI .
We are now ready to prove Lemma 11, which pro-

vides an upper bound on the complexity of simulating the
evolution under the electronic Liouvillian.

Proof of Lemma 11. The error in approximating e−iLelt

consists of two parts. On the one hand, there is the
simulation error εsim, which arises from approximately
preparing the exact ground state |ψ̃0〉 of H̃el and approx-
imately implementing exp

(−iHel ({xn}) tck ,l
)
. On the other

hand, we have the discretization error εdisc associated
with the finite-difference matrix D el

n,j of the derivatives of
the electronic ground-state energy and the finite binary
representation of sin

(
2π l/gp

)
. Let L̃el denote the approx-

imate discrete electronic Liouvillian. Then, the overall
error associated with simulating e−iLelt is upper bounded
as follows:

∥∥(〈0| ⊗ 1)ULel (|0〉 ⊗ 1)− e−iLelt
∥∥

≤
∥∥∥(〈0| ⊗ 1)ULel (|0〉 ⊗ 1)− e−iL̃elt

∥∥∥
+
∥∥∥e−iL̃elt − e−iLelt

∥∥∥
≤ εsim + ∥∥L̃el − Lel

∥∥ t

≤ εsim + εdisct, (B21)

where we have used Duhamel’s formula in going from the
second to the third line. The overall error is less or equal
to ε if we ensure that εsim ≤ ε/2 and εdisc ≤ ε/(2t). Recall
that Lel is a sum of 3N commuting terms and that each term
involves a central-finite-difference formula of order 2de.
Thus, a total of 6Nde exponentials need to be implemented.
We first discuss the simulation error εsim,1 of a single expo-
nential. By the triangle inequality, if εsim,1 ≤ ε/(12Nde),
then εsim ≤ ε/2. Let W denote the unitary that prepares an
approximate ground state of H̃el for fixed nuclear positions
according to Lemma 14, i.e.,

W|{xn,j }〉|0〉 = |{xn,j }〉|φ̃0
(
, {xn,j }

)〉 (B22)

with

|〈ψ̃0
({xn,j }

) |φ̃0
({xn,j }

)〉| ≥ 1 − εprep. (B23)

Note that we can view UHel as an exact block encoding of
H̃el, which allows us to use Lemma 14 directly without fur-
ther error propagation. In the following discussion, we will
refrain from writing out the

({xn,j }
)

dependence explicitly.
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Now, it holds that

|φ̃0〉 = eiα
(

1 − ε′
prep

)
|ψ̃0〉 + β|ψ̃⊥

0 〉 (B24)

for some angle α ∈ [0, 2π), 0 ≤ ε′
prep ≤ εprep and |β|2 =

2ε′
prep −

(
ε′

prep

)2
≤ 2ε′

prep. Letting

|ψ ′
0〉 := eiα|ψ̃0〉 (B25)

we thus have that∥∥|φ̃0〉 − |ψ ′
0〉
∥∥ ≤ √2εprep. (B26)

Let Ue,el be an εe,el-precise block encoding of∑
{xn},l

|{xn}〉〈{xn}| ⊗ | sin
(
2π l/gp

)〉〈sin
(
2π l/gp

)| ⊗ e−iHeltck ,l

(B27)

and let Ũe,el := (〈0| ⊗ 1)Ue,el (|0〉 ⊗ 1) denote the block-
encoded approximation to the above operator. Our goal
is to bound the error of the phase factors obtained via
phase kickback from the electronic register, i.e., we wish
to bound

εsim,1 :=
∥∥∥∥∥∥(1 ⊗ 〈0|)W−1Ũe,elW (1 ⊗ |0〉)

−
∑
{xn}

e−iEel({xn,j })tck ,l |{xn}〉〈{xn}|
∥∥∥∥∥∥ , (B28)

for fixed tck ,l. Note that the above definition implies that
the electronic register is projected out to the |0〉 state at the
end of the simulation. In other words, the error εsim,1 is only
measured within the Hilbert space of the nuclear-position
and -momentum registers but not the electronic register.
Importantly, the error matrix

Esim,1 := (〈0| ⊗ 1)W−1Ũe,elW (|0〉 ⊗ 1)

−
∑
{xn}

e−iEel({xn,j })tck ,l |{xn}〉〈{xn}| (B29)

is diagonal in the nuclear-position and -momentum basis,
since W and Ũe,el act trivially on the nuclear-position and
-momentum register. Hence, εsim,1 is simply the largest
value on the diagonal of Esim,1. This allows us to consider
the phase error for each nuclear computational basis state
separately. Let

Ũe,el
({xn}, tck ,l

)
:= (〈{xn}|〈sin

(
2π l/gp

)| ⊗ 1
)

Ũe,el

× (|{xn}〉| sin
(
2π l/gp

)〉 ⊗ 1
)

(B30)

denote a single exponential of Ũe,el for fixed nuclear posi-
tions {xn} and Fourier parameter l. Similarly, let W ({xn})

denote the electronic ground-state-preparation unitary for
fixed nuclear positions {xn}. Then, we have that

εsim,1 = max
{xn},l

∣∣∣〈0|W−1 ({xn}) Ũe,el
({xn}, tck ,l

)
W ({xn}) |0〉

− e−iEeltck ,l({xn})
∣∣∣

≤ max
{xn},l

∥∥∥W−1 ({xn}) Ũe,el
({xn}, tck ,l

)
W ({xn}) |0〉

− e−iEeltck ,l({xn})|0〉
∥∥∥ . (B31)

In the following, we will not write out the {xn} and
l dependence explicitly. Applying the triangle inequal-
ity repeatedly and using the submultiplicativity of the
induced 2-norm, one finds the following upper bound on
the approximation error for a single exponential:

εsim,1 ≤ ∥∥W−1Ũe,elW|0〉 − e−iEeltck |0〉∥∥
≤ ∥∥W−1Ũe,elW|0〉 − W−1Ũe,el|ψ ′

0〉
∥∥

+ ∥∥W−1Ũe,el|ψ ′
0〉 − e−iEeltck |0〉∥∥

≤ ∥∥|φ̃0〉 − |ψ ′
0〉
∥∥

+
∥∥∥W−1Ũe,el|ψ ′

0〉 − W−1e−ĩEeltck |ψ ′
0〉
∥∥∥

+
∥∥∥W−1e−ĩEeltck |ψ ′

0〉 − e−iEeltck |0〉
∥∥∥

≤ √2εprep +
∥∥∥Ũe,el|ψ ′

0〉 − e−ĩEeltck |ψ ′
0〉
∥∥∥

+
∥∥∥W−1e−ĩEeltck |ψ ′

0〉 − W−1e−iEeltck |ψ ′
0〉
∥∥∥

+ ∥∥W−1e−iEeltck |ψ ′
0〉 − e−iEeltck |0〉∥∥ . (B32)

The second term is upper bounded by the block-encoding
error εe,el of Ue,el. Duhamel’s formula can be used to upper
bound the third term:

∥∥∥W−1e−ĩEeltck |ψ ′
0〉 − W−1e−iEeltck |ψ ′

0〉
∥∥∥

≤
∣∣∣e−ĩEeltck − e−iEeltck

∣∣∣ ≤ ∣∣Ẽeltck − Eeltck

∣∣
≤ ∣∣Ẽel − Eel

∣∣ t
hxhp

. (B33)

Now recall that
∥∥H̃el − Hel

∥∥ ≤ εbe. Eigenvalue perturba-
tion theory then tells us that [63]

∣∣Ẽel − Eel
∣∣ ≤ εbe. (B34)
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For the last term, note that

∥∥W−1|ψ ′
0〉 − |0〉∥∥ = ∥∥W−1|ψ ′

0〉 − W−1W|0〉∥∥
≤ ∥∥W−1

∥∥ ∥∥|ψ ′
0〉 − W|0〉∥∥

= ∥∥|ψ ′
0〉 − |φ̃0〉

∥∥
≤ √2εprep. (B35)

Putting it all together, we find that

εsim,1 ≤ 2
√

2εprep + εe,el + t
hxhp

εbe. (B36)

To achieve εsim,1 ≤ ε/12Nde, it suffices to have

εprep ≤ 1
2

(
ε

72Nde

)2

, (B37)

εe,el ≤ ε

36Nde
, (B38)

εbe ≤ hxhpε

36Ndet
. (B39)

Next, let us discuss the discretization error εdisc,1 of a single
term of Lel. Let εD el

n,j
denote the error tolerance associated

with approximating
∑

xn,j
∂Eel/∂xn,j |xn,j 〉〈xn,j | with D el

n,j ,
i.e.,

∥∥∥∥∥∥D el
n,j −

∑
xn,j

∂Eel

∂xn,j
|xn,j 〉〈xn,j |

∥∥∥∥∥∥ ≤ εD el
n,j

. (B40)

Furthermore, let s̃in
(
2π l/gp

)
denote an approximation to

sin
(
2π l/gp

)
satisfying

|s̃in
(
2π l/gp

)− sin
(
2π l/gp

)| ≤ εsin (B41)

for all l ∈ [gp ]. By the triangle inequality, we then have
that

εdisc,1 =
∥∥∥∥∥∥D el

n,j
s̃in
(
2π l/gp

)
hp

−
∑
xn,j

∂Eel

∂xn,j
|xn,j 〉〈xn,j |

sin
(
2π l/gp

)
hp

∥∥∥∥∥∥

≤
∥∥∥∥∥D el

n,j
s̃in
(
2π l/gp

)
hp

− D el
n,j

sin
(
2π l/gp

)
hp

∥∥∥∥∥
+
∥∥∥∥∥∥D el

n,j
sin
(
2π l/gp

)
hp

−
∑
xn,j

∂Eel

∂xn,j
|xn,j 〉〈xn,j |

sin
(
2π l/gp

)
hp

∥∥∥∥∥∥
≤

∥∥∥D el
n,j

∥∥∥
hp

εsin + 1
hp
εD el

n,j
. (B42)

We obtain εdisc ≤ ε/2t if εdisc,1 ≤ ε/6Nt. This can be
achieved by ensuring that

εsin ≤ hpε

12N
∥∥∥D el

n,j

∥∥∥ t
, (B43)

εD el
n,j

≤ hpε

12Nt
. (B44)

From Lemma 9, it follows that∥∥∥D el
n,j

∥∥∥ ≤ λ
2 ln (de + 1)

hx
. (B45)

The size of the ancilla register used for representing
sin
(
2π l/gp

)
is thus in

O
(

log
(

1
εsin

))
⊆ O
(

log
(

Nλ ln (de)t
hxhpε

))
. (B46)

The order of the finite-difference approximation, de, is
constrained by

εD el
n,j

≤ hpε

12Nt
. (B47)

Lemma 8 implies that

εD el
n,j

∈ O

(
max

x∗∈[−xmax,xmax]3N

∣∣∣∣∣∂
(2de+1)Eel

∂x(2de+1)
n,j

(x∗)

∣∣∣∣∣
(

ehx

2

)2de
)

.

(B48)

By assumption,

max
x∗∈[−xmax,xmax]3N

∣∣∣∣∣∂
(2de+1)Eel

∂x(2de+1)
n,j

(x∗)

∣∣∣∣∣ ≤ χu2de+1. (B49)

We can satisfy the constraint in Eq. (B47) by choosing

de ∈ O

⎛
⎝ log

(
hp ε

Nχut

)
log (uhx)

⎞
⎠ = O

⎛
⎝ log

(
Nχut
hp ε

)
log
(

1
uhx

)
⎞
⎠ . (B50)
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By Lemma 14, the 6Nde electronic ground-state prepara-
tions require

O
(

Nde
λ

γ δ
log
(

Nde

δε

))
(B51)

queries to UHel and

O
(

Nde

δ
log
(

Nde

δε

))
(B52)

queries to the initial-state-preparation oracle from
Definition 9. Furthermore, by Lemma 13, we need

O

⎛
⎝Nde

⎛
⎝ λt

hxhp
+ log

(
Nλ ln (de)t

hxhpε

)

× log

⎛
⎝Nde log

(
Nλ ln (de)t

hxhp ε

)
ε

⎞
⎠
⎞
⎠
⎞
⎠ (B53)

queries to UHel for the 6Nde controlled simulations of
e−iHeltck ,l .

Lastly, note that the simulation of each of the 6Nde expo-
nentials is associated with a certain failure probability due
to the probabilistic nature of block encodings. By the union
bound, we can ensure an overall success probability of at
least 1 − ξ if the failure probability of a single exponential
is in O (ξ/(Nde)). This can be achieved via (fixed-point)
amplitude amplification at the expense of a multiplicative
factor of log (Nde/ξ) to the query complexities of UHel and
UI .

Combining all of the results yields the complexity
expressions stated in Lemma 11. �

APPENDIX C: IMPLEMENTATION OF THE
OVERALL LIOUVILLIAN-EVOLUTION

OPERATOR

The main goal of this appendix is to prove Theorem
1, which upper bounds the complexity of simulating
e−iLt. Let us first discuss some intermediate results.
As explained previously, we implement the overall
Liouvillian-evolution operator e−iLt via a (2k)th-order
Trotter product formula combining e−iLclasst and e−iLelt. The
following lemma provides an upper bound on the query
complexity of simulating Liouvillian dynamics in the NVE
and NVT ensemble.

Lemma 15 (Query complexity of Born-Oppenheimer
Liouvillian simulation). Let L = Lclass + Lel be the dis-
crete Liouvillian operator either in the NVE ensemble
(Definition 2) or the NVT ensemble (Definition 3). Let k ∈
N+. An ε-precise approximation to the evolution operator

UL = e−iLt can be implemented with success probability
≥ 1 − ξ using

Õ

(
5kt

(
α log

(
μ′

εξ

)
+ μ′

(
μ′t
ε

)1/2k

log
(

1
ξ

)))

queries to an
(
α, −, ε/5kt

)
block encoding of the clas-

sical Liouvillian Lclass, where α ∈ {αNVE ,αNVT} and μ′ ∈
{μ′

NVE(2k),μ′
NVT(2k)} is an upper bound on the spectral

norm of the nested commutator of Lclass and Lel as given
in Definition 14. An additional

Õ

(
5kNde

λ

γ δ

(
μ′t
)1+1/(2k)

ε1/(2k) log
(

1
ξ

))

queries to a Hermitian
(
λ, −, hxhpε/5k36Ndet

)
block

encoding of the electronic Hamiltonian Hel are needed.
Lastly, we require

Õ

(
5kNde

δ

(
μ′t
)1+1/(2k)

ε1/(2k) log
(

1
ξ

))

queries to the initial electronic state-preparation oracle UI
from Definition 9.

To prove Lemma 15, we first need to discuss the com-
plexity of quantum simulation via a higher-order Trotter
product formula.

Lemma 16 (Trotter error with commutator scaling ([34],
Theorem 6, Corollary 7)). Let L =∑�

γ=1 Lγ be an operator
consisting of � Hermitian summands and t ≥ 0. Let

S�(t) =
ϒ∏
υ=1

�∏
γ=1

e−ia(υ,γ )Lπυ (γ )t (C1)

be an �th-order product formula with � ∈ N+. Define

α̃c(�) :=
�∑

γ1,γ2,...,γ�+1

∥∥[Lγ�+1 , . . . [Lγ2 , Lγ1] . . .]
∥∥ . (C2)

Then, the additive Trotter error, defined by S(t) = e−iLt +
A(t), can be asymptotically bounded as

‖A(t)‖ ∈ O(α̃ct�+1). (C3)

We have
∥∥Sr

�(t/r)− e−iLt
∥∥ ∈ O(ε) if

r ∈ O

(
α̃

1/�
c t1+1/�

ε1/�

)
. (C4)

Note that α̃c(�) ≤
(

2
∑�

γ=1

∥∥Lγ∥∥)�+1
. We can establish

a tighter bound, as shown below.
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The following definition will simplify the subsequent
discussion of bounding α̃c(�) for Liouvillian simulations
in the Born-Oppenheimer approximation.

Definition 13 (Terms of the Liouvillian). Let L be the
discrete Liouvillian operator either in the NVE ensemble
(Definition 2) or the NVT ensemble (Definition 3). Then,
we define

K (NVE)
n,j := ∂H (NVE)

class

∂pn,j
Dxn,j =

∑
pn,j

Dxn,j ⊗ pn,j

mn
|pn,j 〉〈pn,j |,

(C5)

K (NVT)
n,j := ∂H (NVT)

class

∂pn,j
Dxn,j

=
∑
pn,j

∑
s

Dxn,j ⊗ pn,j

mn(s + smin)2
|pn,j 〉〈pn,j | ⊗ |s〉〈s|,

(C6)

Vclass
n,n′,j :=

(
∂H (NVE/NVT)

class

∂xn,j

)
n′

Dpn,j

=
∑

xn

∑
xn′

ZnZn′(xn,j − xn′,j )(‖xn − xn′‖2 +	2
)3/2

× |xn〉〈xn| ⊗ |xn′ 〉〈xn′ | ⊗ Dpn,j , (C7)

Vel
n,j := D el

n,j ⊗ D1
pn,j

, (C8)

Kbath := ∂H (NVT)
class

∂ps

Ds =
∑

ps

Ds ⊗ ps

Q
|ps〉〈ps|, (C9)

Vbath
n,j :=

(
∂H (NVT)

class

∂s
Dps

)
n,j

= −
∑
pn,j

∑
s

2p2
n,j

mn(s + smin)3
|pn,j 〉〈pn,j |

⊗ |s〉〈s| ⊗ Dps , (C10)

Vbath
T :=

(
∂H (NVT)

class

∂s
Dps

)
T

=
∑

s

Nf kBT
s + smin

|s〉〈s| ⊗ Dps .

(C11)

With these terms defined, we can then compute the spectral
norms of each of the Liouvillian terms. These norms are
needed to compute the bounds on the Trotter errors, which
dominate the scaling given in Theorem 1.

Lemma 17 (Spectral norm of Liouvillian terms). The
spectral norm of the Liouvillian terms from Definition 13
can be upper bounded as follows:

∥∥∥K (NVE)
n,j

∥∥∥ ≤ pmax

mmin

2 (ln dx + 1)
hx

, (C12)

∥∥∥K (NVT)
n,j

∥∥∥ ≤ pmax

mmins2
min

2 (ln dx + 1)
hx

, (C13)

∥∥∥Vclass
n,n′,j

∥∥∥ ≤ 2Z2
maxxmax

	3

2
(
ln dp + 1

)
hp

, (C14)

∥∥∥Vel
n,j

∥∥∥ ≤ λ
2(ln de + 1)

hxhp
, (C15)

∥∥Kbath
∥∥ ≤ ps,max

Q
2 (ln ds + 1)

hs
, (C16)

∥∥∥Vbath
n,j

∥∥∥ ≤ 2p2
max

mmins3
min

2
(
ln dps + 1

)
hps

, (C17)

∥∥Vbath
T

∥∥ ≤ Nf kBT
smin

2
(
ln dps + 1

)
hps

. (C18)

Proof. First, recall that for any two matrices A and
B, it holds that ‖A ⊗ B‖ = ‖A‖ ‖B‖. Next, note that the
above terms are all of the form Adiag ⊗ D, where Adiag is a
diagonal matrix and D is a central-finite-difference matrix.

Specifically, consider first the quantity ‖Dxn,j ‖. We have
from Definition 1 that

‖Dxn,j ‖ = 1
hx

‖
∑

x

d∑
k=−d

cd,k|x − k〉〈x|‖ ≤
∑d

k=−d |cd,k|
hx

.

(C19)

We then have from Lemma 9 that

‖Dxn,j ‖ ≤ 2 (ln d + 1)
hx

. (C20)

As mn ≥ mmin and |pn,j | ≤ pmax, we then have that

∥∥∥∥∥∥
∑
pn,j

Dxn,j ⊗ pn,j

mn
|pn,j 〉〈pn,j |

∥∥∥∥∥∥ ≤ 2pmax(ln dx + 1)
mminhx

. (C21)

This validates the claim in Eq. (C11). The claim of
Eq. (C12) immediately follows from the same reasoning
and the fact that s ≥ smin.

The result of Eq. (C13) also follows from the above
bound on ‖D‖ and the fact that

∥∥∥∥∥∥
∑

xn

∑
xn′

ZnZn′(xn,j − xn′,j )(‖xn − xn′‖2 +	2
)3/2 |xn〉〈xn| ⊗ |xn′ 〉〈xn′ |

∥∥∥∥∥∥
≤ Z2

max max |xn,j − xn′,j |
min
(‖xn − xn′‖2 +	2

)3/2 ≤ 2Z2
maxxmax

	3 . (C22)

The momentum derivative expression is exactly the same
as previous, except that the grid spacing is hp rather than
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hx. Putting this observation together with Eq. (C21) yields

∥∥∥Vclass
n,n′,j

∥∥∥ ≤ 2Z2
maxxmax

	3 ‖Dp ,nj ‖ ≤ 2Z2
maxxmax

	3

2
(
ln dp + 1

)
hp

.

(C23)

Next, note that D1 is defined to be the centered-difference
formula, which has a coefficient sum of 1. This observation
then yields

‖D el
n,j ‖ = 1

hx
‖

de∑
k=−de

∑
(n′,j ′) �=(n,j )

∑
xn′ ,j ′

∑
xn,j

cde,k

× Eel
({xn′,j ′ }, xn,j + khx

) |xn′,j ′ 〉〈xn′,j ′ |
⊗ |xn,j 〉〈xn,j |‖

≤ max(Eel)
∑

k |cde,k|
hx

≤ λ

hx
. (C24)

Next, using the bound of Eq. (C19) with the substitution of
x → p , we find that∥∥∥Vel

n,j

∥∥∥ ≤ λ
2(ln de + 1)

hxhp
. (C25)

The remaining bounds then follow precisely from the
above bound techniques for D and noting the minimum
values of s and maximum values of p . �

Definition 14 (Commutator spectral norm of the Liou-
villian). Let L be the discretized Liouvillian in the NVE or
NVT ensemble and let � ∈ N+. Then, we define

μ′
NVE(�) := 3N

∥∥∥K (NVE)
n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
(C26)

and

μ′
NVT(�) := 3N

∥∥∥K (NVT)
n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
+ ∥∥Kbath

∥∥+ �

∥∥∥Vbath
n,j

∥∥∥+ ∥∥Vbath
T

∥∥ . (C27)

Lemma 18 (Upper bound on α̃c(�) for Liouvillian sim-
ulations in the Born-Oppenheimer approximation). Let
α̃c(�) be defined as in Lemma 16. Let L = Lclass + Lel be
the discrete Liouvillian operator for the NVE ensemble
(Definition 2). Then, α̃c(�) associated with approximating
e−iLt with an �th-order product formula involving e−iLclasst

and e−iLelt is upper bounded as follows:

α̃(NVE)
c (�) ≤ 2�

(
μ′

NVE

)�+1 . (C28)

For Liouvillian simulations in the NVT ensemble
(Definition 3), we have that

α̃(NVE)
c (�) ≤ 2�

(
μ′

NVT

)�+1 . (C29)

Proof. We prove Lemma 18 via induction on �. The first-
order formula with � = 1 constitutes the base case. The
only nonzero commutator at this level is [Lclass, Lel], since
[Lclass, Lclass] = [Lel, Lel] = 0. Note that all Vclass

n,n′,j terms,
Kbath and Vbath

T commute with all terms Vel
n,j of Lel. Hence,

we only need to upper bound commutators of the follow-
ing types:

[
K (NVE/NVT)

n,j , Vel
n′,j ′
]

and
[
Vbath

n,j , Vel
n′,j ′
]
. Generally,[

K (NVE/NVT)
n,j , Vel

n′,j ′
]

�= 0, since D el
n,j depends on all nuclear-

position variables {xn}. In particular,
[
Dxn,j , Del

n′,j ′
]

�= 0 in
general. We upper bound these commutators by the prod-
uct of the norms of the individual operators, resulting
in

∥∥∥[K (NVE/NVT)
n,j , Vel

n′,j ′
]∥∥∥ ≤ 2

∥∥∥K (NVE/NVT)
n,j

∥∥∥ ∥∥∥Vel
n′,j ′
∥∥∥ . (C30)

There are a total of 3N × 3N = 9N 2 commutators of the
above form.

On the other hand,
[
Vbath

n,j , Vel
n′,j ′
]

can only be nonzero if
n = n′ and j = j ′. In that case, we obtain

∥∥∥[Vbath
n,j , Vel

n,j

]∥∥∥ ≤ 2
∥∥∥Vbath

n,j

∥∥∥ ∥∥∥Vel
n,j

∥∥∥ . (C31)

There are a total of 3N commutators of the above form.
For the NVE ensemble, we therefore have that, for � = 1,

α̃(NVE)
c (1) ≤ 18N 2

∥∥∥K (NVE)
n,j

∥∥∥ ∥∥∥Vel
n,j

∥∥∥
≤ 2
(

3N
∥∥∥K (NVE)

n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥
+ 3N

∥∥∥Vel
n,j

∥∥∥)2
. (C32)

Similarly, we find, for � = 1, the following for the NVT
ensemble:

α̃(NVT)
c (1)

≤ 18N 2
∥∥∥K (NVT)

n,j

∥∥∥ ∥∥∥Vel
n,j

∥∥∥+ 6N
∥∥∥Vbath

n,j

∥∥∥ ∥∥∥Vel
n,j

∥∥∥
≤ 2
(

3N
∥∥∥K (NVT)

n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
+ ∥∥Kbath

∥∥+ �

∥∥∥Vbath
n,j

∥∥∥+ ∥∥Vbath
T

∥∥)2
. (C33)

This establishes the � = 1 base case.
Let us now discuss the induction step for the NVE

ensemble. By assumption, assume that there exists a value

010343-36



IMPROVED PRECISION SCALING... PRX QUANTUM 5, 010343 (2024)

of � ≥ 1 such that

α̃(NVE)
c (�)

≤ 2�
(

3N
∥∥∥K (NVE)

n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥)�+1
.

(C34)

A single summand of the nested commutator of
α̃(NVE)

c (�) is then a string S�+1 of �+ 1 operators Oa ∈{
K (NVE)

n,j , Vclass
n,n′,j , Vel

n,j

}
, where a ∈ {1, 2, . . . , �+ 1}. Impor-

tantly, only certain combinations of operators yield “non-
trivial” strings, i.e., strings that have a nonzero contribu-
tion to the nested commutator. An example of a trivial
string would be a string containing the same operator �+
1 times. An alternating sequence of two noncommuting
operators, such as K (NVE)

n,j and Vel
n,j , would be an example

of a nontrivial string.
For the induction step, we now add an (�+ 2)th operator

O�+2 to S�+1 to construct nontrivial strings of length �+ 2
(S�+2) as needed for an (�+ 1)th-order product formula.
First, let us try adding a K (NVE)

n,j term to some fixed non-
trivial string S�+1. If S�+1 contains at least one Vel

n,j term,
then the resulting string S�+2 will be nontrivial. Given
some fixed Vel

n,j , there are 3N choices for K (NVE)
n,j to create a

nontrivial string S�+2 from S�+1.
Next, let us try adding a Vclass

n,n′,j term to some fixed
nontrivial string S�+1. In the worst case, S�+1 contains
up to �+ 1 different K (NVE)

n,j terms. Given some fixed
K (NVE)

n,j , there are 6(N − 1) different Vclass
n,n′,j terms that would

yield a nonzero commutator. Hence, for any given string
S�+1, there are at most 6N (�+ 1) possibilities to create a
nontrivial string S�+2 via addition of a Vclass

n,n′,j term.
Lastly, let us try adding a Vel

n,j term to some fixed non-
trivial string S�+1. If S�+1 contain at least one K (NVE)

n,j term,
then the resulting string S�+1 will be nontrivial. Hence,
there are 3N choices for Vel

n,j to create a nontrivial string
S�+2 from S�+1.

Putting everything together, we therefore obtain the
following recursion:

α̃(NVE)
c (�+ 1) ≤ 2

(
3N
∥∥∥K (NVE)

n,j

∥∥∥+ 6N (�+ 1)
∥∥∥Vclass

n,n′,j

∥∥∥
+ 3N

∥∥∥Vel
n,j

∥∥∥) α̃(NVE)
c (�). (C35)

Using the hypothesis [Eq. (C33)], we arrive at

α̃(NVE)
c (�+ 1) ≤ 2�+1

(
3N
∥∥∥K (NVE)

n,j

∥∥∥+ 6N (�+ 1)
∥∥∥Vclass

n,n′,j

∥∥∥
+ 3N

∥∥∥Vel
n,j

∥∥∥)�+2
, (C36)

as desired. This demonstrates the inductive step and our
proof then follows trivially by induction, using the fact that

the base case of � = 1 has already been demonstrated in
Eq. (C31).

Let us now turn to the induction step for the NVT ensem-
ble. We use the same strategy as for the NVE ensemble.
As an induction hypothesis, assume that there exists � ≥ 1
such that

α̃(NVT)
c (�) ≤ 2�

(
3N
∥∥∥K (NVT)

n,j

∥∥∥+ 6N�
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
+ ∥∥Kbath

∥∥+ �

∥∥∥Vbath
n,j

∥∥∥+ ∥∥Vbath
T

∥∥)�+1
.

(C37)

A single summand of the nested commutator of
α̃(NVT)

c (�) is now a string S�+1 of �+ 1 operators

Oa ∈
{

K (NVT)
n,j , Vclass

n,n′,j , Vel
n,j , Kbath, Vbath

n,j , Vbath
T

}
, where a ∈

{1, 2, . . . , �+ 1}.
For the induction step, we now add an (�+ 2)th operator

O�+2 to S�+1 to construct nontrivial strings of length �+ 2
(S�+2) as needed for an (�+ 1)th-order product formula.
First, let us try adding a K (NVT)

n,j term to some fixed non-
trivial string S�+1. If S�+1 contains at least one Vel

n,j term,
then the resulting string S�+2 will be nontrivial. Given
some fixed Vel

n,j , there are 3N choices for K (NVT)
n,j to create a

nontrivial string S�+2 from S�+1.
Next, let us try adding a Vclass

n,n′,j term to some fixed
nontrivial string S�+1. In the worst case, S�+1 contains
up to �+ 1 different K (NVT)

n,j terms. Given some fixed
K (NVT)

n,j there are 6(N − 1) different Vclass
n,n′,j terms that would

yield a nonzero commutator. Hence, for any given string
S�+1, there are at most 6N (�+ 1) possibilities to create a
nontrivial string S�+2 via addition of a Vclass

n,n′,j term.
Let us now try adding a Vel

n,j term to some fixed nontriv-
ial string S�+1. If S�+1 contain at least one K (NVT)

n,j term, then
the resulting string S�+1 will be nontrivial. Hence, there are
3N choices for Vel

n,j to create a nontrivial string S�+2 from
S�+1.

The Kbath term does not commute with K (NVT)
n,j , Vbath

n,j

or Vbath
T . Hence, we can create a nontrivial string S�+2 by

adding Kbath to S�+1 if S�+1 contains K (NVT)
n,j , Vbath

n,j or Vbath
T .

Next, let us try adding a Vbath
n,j term to some fixed nontriv-

ial string S�+1. In the worst case, S�+1 contains up to �+ 1
different K (NVT)

n,j terms. Hence, for any given string S�+1
there are at most �+ 1 possibilities to create a nontrivial
string S�+2 via addition of a Vbath

n,j term.
Lastly, let us try adding the Vbath

T term to some fixed non-
trivial string S�+1. We can create a nontrivial string S�+2 if
S�+1 contains the Kbath term.
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Putting everything together, we therefore obtain the
following recursion:

α̃(NVT)
c (�+ 1)

≤ 2
(

3N
∥∥∥K (NVT)

n,j

∥∥∥+ 6N (�+ 1)
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
+ ∥∥Kbath

∥∥+ (�+ 1)
∥∥∥Vbath

n,j

∥∥∥+ ∥∥Vbath
T

∥∥ )α̃(NVT)
c (�).

(C38)

Using the hypothesis [Eq. (C36)], we arrive at

α̃(NVT)
c (�+ 1) ≤ 2(�+1)

(
3N
∥∥∥K (NVT)

n,j

∥∥∥ + 6N (�+ 1)
∥∥∥Vclass

n,n′,j

∥∥∥
+ 3N

∥∥∥Vel
n,j

∥∥∥+ ∥∥Kbath
∥∥

+ (�+ 1)
∥∥∥Vbath

n,j

∥∥∥+ ∥∥Vbath
T

∥∥ )�+2
,

(C39)

as desired. The bound then immediately follows by induc-
tion, given that the � = 1 base case has already been
demonstrated in Eq. (C32) �

The bounds in Lemma 18 exploit the commutator struc-
ture of L = Lclass + Lel. Not taking the commutator struc-
ture into account, one obtains the following bounds on
α̃
(NVE/NVT)
c (�) (Lemma 1 of Ref. [34]):

α̃(NVE)
c (�)

≤ 2�
(

3N
∥∥∥K (NVE)

n,j

∥∥∥+ 6N 2
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥)�+1
,

α̃(NVT)
c (�)

≤ 2�
(

3N
∥∥∥K (NVT)

n,j

∥∥∥+ 6N 2
∥∥∥Vclass

n,n′,j

∥∥∥+ 3N
∥∥∥Vel

n,j

∥∥∥
+ ∥∥Kbath

∥∥+ 3N
∥∥∥Vbath

n,j

∥∥∥+ ∥∥Vbath
T

∥∥)�+1
.

The main improvement of Lemma 18 over these bounds
lies in the reduction of the coefficients of

∥∥∥Vclass
n,n′,j

∥∥∥ and∥∥∥Vbath
n,j

∥∥∥ from 6N 2 to 6N� and from 3N to �, respectively.
While the above results apply to general product for-

mulas, we will only be using 2kth-order Trotter-Suzuki
product formulas for our simulation. Hence, we have � =
2k with k ∈ N+ in the following discussion.

Before proving Theorem 1, it will also be useful to
bound the total evolution time associated with a 2kth-order
product formula. The total evolution time is the sum of the
absolute values of the evolution time of each segment for
a fixed operator.

Lemma 19 (Total evolution time of a higher-order prod-
uct formula). Let t ≥ 0 be the desired evolution time of
the simulation. The total evolution time of a 2kth-order

product formula is

T2k ≤ 5k−1t ∈ O
(
5kt
)

. (C40)

Proof. Recall the following recursive definition of the
2kth-order product formula S2k(t) from Definition 7:

S2(t) := eL1
t
2 · · · eL� t

2 eL� t
2 · · · eL1

t
2 , (C41)

S2k(t) := S2
2k−2(ukt)S2k−2((1 − 4uk)t)S2

2k−2(ukt), (C42)

where

1
3

≤ uk := 1(
4 − 4

1
2k−1

) ≤ 1
2

∀k ∈ N, k ≥ 2. (C43)

Hence,

T2k(t) = 4T2k−2(ukt)+ |T2k−2((1 − 4uk)t)| ≤ 5T2k−2(t).
(C44)

Together with the base case, T2 = t, this implies that

T2k(t) ≤ 5k−1t. (C45)

�
The number of exponentials for a 2kth-order product

formula with � summands is given by [42]

Nexp = 2(� − 1) 5k−1 + 1. (C46)

In our case, � = 2 (Lclass and Lel), so Nexp = 2 × 5k−1 +
1 ∈ O(5k).

We are now ready to prove Lemma 15.
Proof of Lemma 15. As explained earlier, the discretized

Liouvillian L is split into a classical part, Lclass (Definition
6), and an electronic part, Lel (Definition 5). We then use
a 2kth-order product formula to recombine the two parts.
The time evolution is divided into r time steps, resulting
in a total number of O

(
r5k
)

exponentials, with r chosen
according to Lemma 16. Each exponential is then imple-
mented using qubitization [56]. By the triangle inequality,
we can achieve overall simulation error ≤ ε if the error
of a single exponential is in O

(
ε/(r5k)

)
. Furthermore,

recall that each exponential is simulated using a QSVT-
based method, meaning that each exponential comes with
a certain failure probability. Invoking the union bound,
we can ensure an overall success probability of at least
1 − ξ if the failure probability of a single exponential is in
O
(
ξ/(r5k)

)
. This can be achieved via amplitude amplifica-

tion at the expense of a multiplicative factor of log
(
r5k/ξ

)
to the query complexities. The evolution under the classi-
cal Liouvillian Lclass is simulated using qubitization and the
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QSVT (Lemma 4) with a total evolution time as in Lemma
19, resulting in

O
(

log
(

r5k

ξ

)(
α5kt + r5k log

(
r5k

ε

)))
(C47)

queries to the block encoding of Lclass, where α = αNVE
for simulations in the NVE ensemble (Lemma 1) and α =
αNVT for simulations in the NVT ensemble (Lemma 2).

From Lemma 16, we have that r ∈ O
(
α̃

1/2k
c t1+1/2k/ε1/2k

)
and from Lemma 18, we have that α̃c(2k) ≤ 22k(μ′)2k+1,
where μ′ ∈ {μ′

NVE ,μ′
NVT}. The number of queries to a

block encoding of Lclass is then in

Õ

(
5kt

(
α log

(
μ′

εξ

)
+ μ′

(
μ′t
ε

)1/2k

log
(

1
ξ

)))
.

(C48)

The evolution under the electronic Liouvillian Lel is simu-
lated according to Lemma 11 with a total evolution time as
in Lemma 19, resulting in

O
(

5kNde log
(

r5kNde

ξ

)(
λt

hxhp
+ r log

(
r5kNλ ln (de)t

hxhpε

)

× log

⎛
⎝r5kNde log

(
r5kNλ ln (de)t

hxhp ε

)
ε

⎞
⎠
⎞
⎠

+r5kNde
λ

γ δ
log
(

r5kNde

δε

)
log
(

r5kNde

ξ

))
(C49)

queries to a block encoding of Hel, where de ∈
O
(
log
(
Nr5kχ t/hpε

)
/log (1/hx)

)
. Furthermore,

O
(

r5kNde

δ
log
(

r5kNde

ξ

))
(C50)

queries to the state-preparation oracle UI are needed.
Using

r ∈ O

(
α̃

1/2k
c t1+1/2k

ε1/2k

)
, (C51)

α̃c(2k) ≤ 22k(μ′)2k+1, (C52)

λ

hxhp
≤ μ′, (C53)

we find that

Õ

(
5kNdet

(
λ

hxhp
log
(
α̃c

εξ

)
+
(
α̃ct
ε

)1/(2k)

×
(

log
(

λ

hxhp

)
+ λ

γ δ

)
log
(

1
ξ

)))

⊆ Õ

(
5kNde

λ

γ δ

(
μ′t
)1+1/(2k)

ε1/(2k) log
(

1
ξ

))
(C54)

queries to the block encoding of Hel and

Õ

(
5kNde

δ

(
μ′t
)1+1/(2k)

ε1/(2k) log
(

1
ξ

))
(C55)

queries to the state-preparation oracle UI are suffi-
cient. �

1. Proof of Theorem 1

The previous results now give us the tools that we need
to prove Theorem 1, which provides upper bounds on the
Toffoli complexity of simulating Liouvillian dynamics. We
restate it here for convenience.

Theorem 1 (Complexity of Born-Oppenheimer Liouvil-
lian simulation). There exists a quantum algorithm that
solves Problem 1 with success probability ≥ 1 − ξ using

Õ
(

Ntot dμ2+o(1)t1+o(1)

γ̃ δ̃ εo(1)
log
(

1
ξ

))

Toffoli gates, where d is the maximum order of the finite-
difference schemes used, μ ∈ {μNVE ,μNVT} is an upper
bound on the spectral norm of the discretized Liouvillian
L ∈ {LNVE , LNVT}, and γ̃ is a lower bound on the spec-
tral gap of the discretized electronic Hamiltonian over
all phase-space grid points that are associated with a
nonzero amplitude at some point during the simulation.
Additionally,

Õ
(

Ndμ1+o(1)t1+o(1)

δ̃ εo(1)
log
(

1
ξ

))

queries to the initial electronic state-preparation oracle ŨI
are needed.

Proof. The upper bound on the number of queries to
ŨI follows from Lemma 15. Note that Lemma 15 deals
with errors between operators, i.e., the complexity bounds
hold for the worst-case input state. Problem 1, on the other
hand, is formulated in terms of the simulation error for
a fixed input state. This means that here we only need a
good initial electronic state for grid points associated with
a nonzero amplitude at some point during the simulation,
because any simulation errors that occur on grid points that
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are associated with zero amplitude throughout the simula-
tion do not contribute to the error of the final state. Hence,
we can use ŨI instead of UI .

Realizing that μ′ ≤ μ and choosing

k = round

[√
1
2

log5 (μt/ε)+ 1

]
, (C56)

we then find that the query complexity for ŨI is in

Õ
(

5
√

2 log5(μt/ε)Ndeμt
δ̃

log
(

1
ξ

))

⊆ Õ
(

Ndeμ
1+o(1)t1+o(1)

δ̃ εo(1)
log
(

1
ξ

))
, (C57)

which is subpolynomial in 1/ε and almost linear in μ and
t. The above heuristic choice for k can be obtained by bal-
ancing the factor 5k with (μt/ε)1/2k to minimize the overall
complexity with respect to k [42].

Next, let us discuss the overall Toffoli complexity, which
follows from multiplying the query complexities of the
block encodings with their respective Toffoli complexity.
More specifically, from Lemma 15, we have that

Õ

(
5kt

(
α log

(
μ′

εξ

)
+ μ′

(
μ′t
ε

)1/2k

log
(

1
ξ

)))

⊆ Õ
(

5kμ
1+1/2kt1+1/2k

ε1/2k log
(

1
ξ

))
(C58)

queries to an ε/(5kt)-precise block encoding of the classi-
cal Liouvillian Lclass are sufficient. Lemmas 1 and 2 imply
that such a block encoding requires

Õ
(

N log
(

gα5kt
ε

)
+ loglog 3

(
α5kt
ε

)
+ d log(g)

)

⊆ Õ
(
(N + d) loglog 3

(
μ5kt
ε

))
(C59)

Toffoli gates, where d is the maximum order of the finite-
difference schemes. Choosing k as in Eq. (C55), we find
that the Toffoli complexity associated with simulating the
classical Liouvillian is in

Õ
(
(N + d)

μ1+o(1)t1+o(1)

εo(1) log
(

1
ξ

))
. (C60)

According to Lemma 15, we also need

Õ

(
5kNde

λ

γ δ

(
μ′t
)1+1/(2k)

ε1/(2k) log
(

1
ξ

))

⊆ Õ
(

5kde
μ2+1/2kt1+1/2k

γ δ ε1/2k log
(

1
ξ

))

⊆ Õ
(

de
μ2+o(1)t1+o(1)

γ δ εo(1) log
(

1
ξ

))
(C61)

queries to an hxhpε/5k36Ndet-precise block encoding of
the electronic Hamiltonian Hel. Lemma 3 implies that such
a block encoding has Toffoli cost in

O
(

N + Ñ + log
(

B5k36Ndet
hxhpε

))
. (C62)

The Toffoli cost associated with simulating the electronic
Liouvillian is then in

Õ
(

Ntotde
μ2+o(1)t1+o(1)

γ δ εo(1) log
(

1
ξ

))
. (C63)

Combining all of the results, we find that the overall Toffoli
complexity of simulating e−iLt is in

Õ
(

Ntotdμ2+o(1)t1+o(1)

γ δ εo(1) log
(

1
ξ

))
. (C64)

Note that the above statements are independent of the ini-
tial quantum state encoding the initial phase-space density.
In particular, γ is a lower bound on the spectral gap of
the block-encoded operator H̃el ({xn}) over all phase-space
grid points. Similarly, δ is a lower bound on the overlap of
the initial electronic state with the true electronic ground
state over all phase-space grid points. However, if we are
dealing with a fixed initial state as in Problem 1, we only
need to consider the spectral gap and the electronic ground
state of the grid points associated with a nonzero amplitude
at some point during the simulation, because any simula-
tion errors that occur on grid points that are associated with
zero amplitude throughout the simulation do not contribute
to the error of the final state. Let γ̃ ≥ γ be a lower bound
on the spectral gap of H̃el ({xn}) over that subset of grid
points. Likewise, let δ̃ ≥ δ be a lower bound on the overlap
of the initial electronic state with the true electronic ground
state over the same subset of grid points. Then, Problem 1
can be solved using only O

(
1/γ̃ δ̃

)
rather than O (1/γ δ)

Toffoli gates. �
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APPENDIX D: DETAILS ON ESTIMATING THE
FREE ENERGY

Recall from Definition 4 that the free energy is given by

F = U − TSG, (D1)

where U is the internal energy of the system and SG is the
Gibbs entropy of the system. The concept of Gibbs entropy
can be extended to the quantum world in the form of the
von Neumann entropy, as follows.

Definition 15 (Von Neumann entropy). Let ρ ∈ C
η×η be

a density matrix. Then,

SN := −Tr (ρ ln ρ) (D2)

is the von Neumann entropy associated with ρ.
Note that SN = 0 for a pure state. The idea is to esti-

mate the Gibbs entropy and the internal energy of our
system separately and add the results to estimate the free
energy. This means that our algorithm requires at least two
separate simulations. Before we show how to obtain the
Gibbs entropy from a quantum algorithm for estimation
of the von Neumann entropy, let us explain the usage of
the Nosé thermostat within the Liouvillian framework in
a little more detail. The main difference compared to plain
Liouvillian dynamics in the NVE ensemble is the new vari-
able for the heat bath, s, and its associated momentum
variable, ps. Furthermore, the momenta {p ′

n} appearing in
the NVT Hamiltonian HNVT from Definition 23 are virtual
momenta of the extended system. They are related to the
real momenta {pn} of the physical system via the relation
pn = p ′

n/s. In the discretized setting, we introduce a cutoff
smin to avoid infinities in the simulation.

In the following, we will drop the particle index of the
position and momentum variables for ease of notation. As
mentioned in the main text, for continuous variables it can
be shown that the microcanonical partition function Z of
the extended system gives rise to the canonical partition
function when restricted to the real system [37,39]. More
specifically, it can be proven, via a change of variables, that

Z ∝
∫

d{x}
∫

d{p ′}
∫

ds

×
∫

dps δ
(
HNVT

({x}, {p ′}, s, ps
)− Eext

)
∝
∫

d{x}
∫

d{p}e−HNVE({x},{p})/(kBT), (D3)

where Eext is the conserved energy of the extended system
and HNVE is the NVE Hamiltonian from Eq. (9).

In terms of our quantum algorithm, we now have three
types of quantum registers representing classical variables:
the nuclear-positions register |{x}〉, the nuclear (virtual)

momentum register |{p ′}〉, and the bath register

|S〉 := |s〉|ps〉. (D4)

Let

|ψ0〉 :=
∑
x,p ′,S

cx,p ′,S(0)|{x}〉|{p ′}〉|S〉 (D5)

be a quantum state encoding the initial KvN wave function
of the system plus bath, where the {cx,p ′,S(0)} are complex
amplitudes. We time evolve |ψ0〉 according to the NVT
Liouvillian from Definition 3, resulting in

|ψt〉 := ULNVT |ψ0〉 =
∑
x,p ′,S

cx,p ′,S(t)|{x}〉|{p ′}〉|S〉, (D6)

where

ULNVT := e−iLNVTt (D7)

is the unitary that implements the Liouvillian time evo-
lution of the system plus bath. The discrete analogue of
integrating out the bath variables as done in Eq. (26) would
be to trace out the bath register |S〉. However, at this stage,
we cannot simply trace out |S〉 since we would lose all
information of |s〉, which is needed to compute the real
momenta {p}. In other words, we first need to perform a
discrete analog of the change of variables p ′ → p ′/s = p .
We do so by duplicating the |s〉 register via a unitary Udup
to obtain

|�t〉 := Udup|ψt〉|0〉 =
∑
x,p ′,S

cx,p ′,S(t)|{x}〉|{p ′}〉|S〉|s〉

=
∑

x,p ′,s,ps

cx,p ′,s,ps(t)|{x}〉|{p ′}〉|s〉|ps〉|s〉. (D8)

Note that Udup can be implemented using O (log gs) CNOT
gates. More specifically, we apply a single CNOT to each
qubit of the |s〉 register, where each CNOT has a different
target qubit in the duplication ancilla register.

The above quantum state |�t〉 can be regarded as
a purification of the following density matrix, which
describes the dynamics of the nuclei under the influence
of the heat bath:

ρsys(t) := TrS (|�t〉〈�t|)
=
∑
x,p ′,S
x′,p ′′

cx,p ′,S(t)c∗
x′,p ′′,S(t)|{x}〉|{p ′}, s〉〈{x′}|〈{p ′′}, s|

=
∑

x,p ′,s,ps
x′,p ′′

cx,p ′,s,ps(t)c
∗
x′,p ′′,s,ps

(t)|{x}〉|{p ′}, s〉〈{x′}|

× 〈{p ′′}, s|. (D9)

010343-41



SOPHIA SIMON et al. PRX QUANTUM 5, 010343 (2024)

Note that the combined register |{p ′}, s〉 can be regarded as
the real momentum register. It is effectively just a different
representation of |{p ′/s}〉. The dimension of ρsys(t) is

η = g3N
x g3N

p ′ gs (D10)

and the probability of finding the nuclei in a particular
configuration |{x∗, p ′∗, s∗}〉 is given by

〈{x∗, p ′∗, s∗}|ρsys(t)|{x∗, p ′∗, s∗}〉
=
∑

S

|cx∗,p ′∗,S(t)|2 =: bx∗,p ′∗,s∗(t). (D11)

Using the above ideas, we can reduce the problem of
estimating the Gibbs entropy associated with ρsys(t) to
the problem of estimating the von Neumann entropy of
a modified density matrix. The reason for requiring a
modified density matrix is that in contrast to the von Neu-
mann entropy, the Gibbs entropy associated with ρsys(t)
depends only on the diagonal elements of ρsys(t), since
these represent the classical probabilities of the different
microstates [see Eq. (D11)]. We can eliminate the off-
diagonal elements by applying controlled phase gradients
to the purification |�t〉, as we will now explain in more
detail.

Let |j 〉 denote a computational basis state of a log (ηv)-
qubit ancilla register, where

ηv := g3N
x g3N

p ′ . (D12)

Furthermore, let |n〉 denote a ηv-dimensional computa-
tional basis state obtained by considering all the nuclear-
position and virtual momentum variables as a single regis-
ter, i.e.,

|n〉 ≡ |{x}〉|{p ′}〉. (D13)

This change in perspective simplifies the implementation
of the controlled phase gradients [64]. Preparation of a
uniform superposition over the |j 〉 register and applying
controlled phase gradients then yields

1√
ηv

∑
j

|�t〉|j 〉 = 1√
ηv

∑
n,S,j

cn,S(t)|n〉|S〉|s〉|j 〉

Upg−−→ 1√
ηv

∑
n,S,j

cn,S(t)e
−2π in j

ηv |n〉|S〉|s〉|j 〉

=: |� ′
t 〉 =: U′

LNVT
|ψ0〉|0〉|0〉, (D14)

where Upg denotes the controlled phase-gradient unitary
and

U′
LNVT

:= Upg · (Udup ⊗ 1
) · (ULNVT ⊗ 1 ⊗ 1

) ∈ C
ηpur×ηpur ,

(D15)

with

ηpur := g6N
x g6N

p ′ g2
s gps . (D16)

Let us now check that this gives the correct density matrix
after tracing out the |S〉 and |j 〉 registers. First, note that
the purification state |� ′

t 〉 can be written in density-matrix
notation as

|� ′
t 〉〈� ′

t | = 1
ηv

∑
n,S,j

n′,S′,j ′

cn,S(t)c∗
n′,S′(t)e−2π i nj −n′j ′

ηv

× |n〉|S〉|s〉|j 〉〈n′|〈S′|〈s′|〈j ′|. (D17)

Tracing out the |j 〉 register results in

Trj
(|� ′

t 〉〈� ′
t |
) =
∑
n,S

n′,S′

cn,S(t)c∗
n′,S′(t)

⎛
⎝ 1
ηv

∑
j

e−2π ij n−n′
ηv

⎞
⎠

× |n〉|S〉|s〉〈n′|〈S′|〈s′|
=
∑
n,S

n′,S′

cn,S(t)c∗
n′,S′(t)δn,n′ |n〉|S〉|s〉〈n′|〈S′|〈s′|

=
∑
n,S,S′

cn,S(t)c∗
n,S′(t)|n〉|S〉|s〉〈n|〈S′|〈s′|

(D18)

and tracing out the bath register |S〉 yields

ρ ′
sys(t) :=

∑
n,S

|cn,S(t)|2|n〉|s〉〈n|〈s|

=
∑

x,p ′,s,ps

|cx,p ′,s,ps(t)|2|{x}〉|{p ′}, s〉〈{x}|〈{p ′}, s|,

(D19)

which consists only of the diagonal elements of ρsys(t), as
desired. Note that an alternative method of eliminating the
off-diagonal elements of ρsys(t) consists of duplicating the
entire nuclear register |{x}〉|{p ′}〉 and then tracing out the
duplicated register, similarly to what was done with the |s〉
register earlier on. In terms of complexity, this duplication
approach is essentially equivalent to the phase-gradient
approach. Algorithm 4 summarizes the key steps of our
free-energy-estimation protocol.

1. Estimation of the Gibbs entropy

Let us now explain how to estimate the Gibbs entropy of
our system. First, note that, in general, we cannot imple-
ment the Liouvillian-evolution operator ULNVT exactly.
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ALGORITHM 4. Free-energy estimation.

Input: Quantum state |ψ0〉 =
∑

x,p′,S cx,p′,S(0)|{x}〉|{p′}〉|S〉 encoding initial KvN wavefunction of the system
together with the heat bath.
Further input parameters:
t, ε, ξ, k, N, Ñ , {mn}N

n=1, {Zn}N
n=1, xmax, p′

max, hx, hp′ , dx, dp, de, Δ, B, hel, δ, γ̃, χ, Nf , T, Q, smin, hs, hps , ds, dps .
Output: With success probability ≥ 1 − ξ an ε-precise estimate of the free energy associated with the phase

space density after time t.
1. Apply the NV T Liouvillian simulation algorithm as summarized in Algorithm 1 to |ψ0〉 to obtain

|ψt〉 = ULNV T |ψ0〉 =
∑

x,p′,S

cx,p′,S(t)|{x}〉|{p′}〉|S〉.

2. Duplicate the |s〉 register of the bath using Udup to retain the information of s. This yields |Ψt〉 which is a
purification of the density matrix ρsys(t) for which we want to estimate the von Neumann entropy;

3. Eliminate the off-diagonal elements of ρsys(t) via controlled phase gradients between an ancillary register |j〉 and
|Ψt〉;

4. Tracing out the ancillary register |j〉 and the bath register |S〉 but not the duplicated |s〉 register, we obtain a
reduced phase space density over the nuclear position and momentum registers |{xn}〉|{pn}〉;

5. Use the algorithm associated with Theorem 13 of [47] to estimate the Gibbs entropy of ρsys(t) within error
ε/(2kBT );

6. Apply the Hadamard test to each of the three internal energy components Hkin, Hpot and HEel to estimate their
expectation values within error ε/6;

7. Classically add the estimates of the Gibbs entropy and the internal energy components to obtain an ε-precise
estimate of the free energy F ;

However, Theorem 1 shows that we can efficiently con-
struct an approximation ŨLNVT such that∥∥ŨLNVT − ULNVT

∥∥ ≤ ε (D20)

for any ε ∈ (0, 1). Let us assume that Upg and Udup can
be implemented with negligible error. Then, the resulting
approximation Ũ′

LNVT
of U′

LNVT
satisfies∥∥Ũ′

LNVT
− U′

LNVT

∥∥ ≤ ε. (D21)

We denote the corresponding approximate density matrix
of the system by ρ̃ ′

sys(t). The following inequality will be
useful for upper bounding the difference in the von Neu-
mann entropy associated with ρ ′

sys(t) and ρ̃ ′
sys(t) in terms

of their trace distance.
Definition 16 (Trace distance). Let ρ, σ ∈ C

η×η be den-
sity matrices. Then, their trace distance is given by

T (ρ, σ) := 1
2

‖ρ − σ‖1 = 1
2

Tr
(√

(ρ − σ)† (ρ − σ)

)

= 1
2

η∑
j =1

∣∣λj
∣∣ , (D22)

where λj ∈ R is the j th eigenvalue of ρ − σ .
In the following, we will use ‖·‖1 to refer to the trace

norm (i.e., the Schatten 1-norm). As before, ‖·‖ denotes
the (induced) 2-norm.

Lemma 20 (Fannes inequality [65,66]). Let ρ and σ be
η-dimensional density matrices. If T (ρ, σ) ≤ 1/(2e), then

|SN (ρ)− SN (σ )| ≤ 2T log2 (η)− 2T log2 (2T ) .
(D23)

We now show how to estimate the Gibbs entropy SG of
our system.

Lemma 21 (Estimation of the Gibbs entropy). Let ε ∈
(0, 1) and let ρ ′

sys(t) be the η-dimensional diagonal density
matrix of the system as defined in Eq. (D19), where η ≥ 6.
Let ηpur be the dimension of U′

LNVT
as defined in Eq. (D15).

Furthermore, let Ũ′
LNVT

be an
(
ε/4ηpur log (η/ν)

)
-precise

approximation to U′
LNVT

, where ν ∈ (0, 1) is a lower bound

on 2T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

and

ε ≤ 2 log (η/ν)
e

. (D24)

There exists a quantum algorithm that outputs an estimate
of the Gibbs entropy associated with ρsys(t) within error ε
with success probability ≥ 1 − ξ using

Õ
(
η

ε1.5 log
(

1
ξ

))
(D25)

queries to Ũ′
LNVT

.
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Proof. By construction, estimation of the Gibbs entropy
of ρsys(t) is equivalent to estimation of the von Neumann
entropy of ρ ′

sys(t), since ρ ′
sys(t) consists only of the diag-

onal elements of ρsys(t). However, we only have access
to Ũ′

LNVT
, an εU-precise approximation of U′

LNVT
in �2-

distance. We will show that εU needs to be upper bounded
by

εU ≤ ε

4ηpur log (η/ν)
. (D26)

This gives rise to an approximation ρ̃ ′
sys(t) of ρ ′

sys(t). The
idea is then to use Theorem 13 of Ref. [47] to obtain an εest-
precise estimate S̃

(
ρ̃ ′

sys(t)
)

of the von Neumann entropy
of ρ̃ ′

sys(t), where εest ∈ (0, 1). The algorithm of Ref. [47]
requires access to a purification of the density matrix,
which in our case is simply |� ′

t 〉. The work of Ref. [35]
shows that a polynomial of degree Õ

(√
η/εest

)
to approx-

imate log
(
1/̃bx,p ′,s(t)

)
within error εest, where {̃bx,p ′,s(t)}

are the (diagonal) elements of ρ̃ ′
sys(t). This implies that

quantum amplitude estimation [67] can be used to learn
S̃
(
ρ̃ ′

sys(t)
)

with constant success probability within error

εest using Õ
(
η/ε1.5

est

)
queries to Ũ′

LNVT
. The Chernoff bound

implies that we can achieve a success probability ≥ 1 − ξ

with log (1/ξ) repetitions of the algorithm. Next, let us dis-
cuss the required block-encoding precision of U′

LNVT
. By

the triangle inequality, we have that∣∣∣̃S (ρ̃ ′
sys(t)
)

− S
(
ρ ′

sys(t)
)∣∣∣

≤
∣∣∣̃S (ρ̃ ′

sys(t)
)

− S
(
ρ̃ ′

sys(t)
)∣∣∣

+
∣∣∣S (ρ̃ ′

sys(t)
)

− S
(
ρ ′

sys(t)
)∣∣∣

≤ εest + εFan, (D27)

where εFan is determined by the Fannes inequality (Lemma
20). To achieve overall error ≤ ε, it suffices to ensure that
εest ≤ ε/2 and εFan ≤ ε/2. Let us now bound εFan in terms
of εU and ν. For simplicity, let

|�0〉 := |ψ0〉|0〉|0〉. (D28)

Then, we have that∥∥∥Ũ′
LNVT

|�0〉〈�0|Ũ′†
LNVT

− U′
LNVT

|�0〉〈�0|U′†
LNVT

∥∥∥
≤
∥∥∥Ũ′

LNVT
|�0〉〈�0|Ũ′†

LNVT
− Ũ′

LNVT
|�0〉〈�0|U′†

LNVT

∥∥∥
+
∥∥∥Ũ′

LNVT
|�0〉〈�0|U′†

LNVT
− U′

LNVT
|�0〉〈�0|U′†

LNVT

∥∥∥
≤
∥∥∥Ũ′†

LNVT
− U′†

LNVT

∥∥∥+ ∥∥Ũ′
LNVT

− U′
LNVT

∥∥
≤ 2εU. (D29)

It follows from Definition 16 that

1
2

∥∥∥Ũ′
LNVT

|�0〉〈�0|Ũ′†
LNVT

− U′
LNVT

|�0〉〈�0|U′†
LNVT

∥∥∥
1

≤ ηpurεU, (D30)

where ηpur is the dimension of U′
LNVT

(or, equivalently,
of |�0〉). Since the trace distance is contractive under the
partial trace, we obtain the following bound:

T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

≤ ηpurεU. (D31)

By Lemma 20, we then have that

εFan =
∣∣∣S (ρ̃ ′

sys(t)
)

− S
(
ρ ′

sys(t)
)∣∣∣

≤ 2ηpurεU (log(η)− log (ν)) (D32)

as long as T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

∈ [ν/2, 1/2e]. If

εU ≤ ε

4ηpur log (η/ν)
≤ 1

2ηpure
, (D33)

then εFan ≤ ε/2, as desired. Note that this requires ε ≤
2 log (η/ν)/e. In our case, we always have η ≥ 6, since the
phase space is at least six dimensional. This implies that
2 log (η/ν)/e ≥ 1 for any ν ∈ (0, 1). Demanding ε ∈ (0, 1)
is thus a sufficiently restrictive criterion. �

A challenge facing this algorithm arises from its scaling
with the dimension of the space. In general, it scales expo-
nentially with the number of qubits and hence we cannot
compute the entropy directly. An alternative approach is
to coarse grain the position and momentum variables of
the nuclei, e.g., by tracing out the l least significant qubits
associated with each position or momentum variable. This
effectively reduces the dimension of the density matrices
ρsys(t) and ρ ′

sys(t) from

η = 23N
(

log gx+log gp ′
)
+log(gs) (D34)

to

η′ = 23N
(

log gx+log gp ′−2l
)
+log(gs) (D35)

and accordingly only Õ
(
η′/ε1.5 log (1/ξ)

)
queries to Ũ′

LNVT
are required. The exact entropy can then be estimated by
extrapolating the entropy in the limit where the coarse
graining tends to zero.

2. Estimation of the internal energy

Next, let us discuss how to estimate the internal energy
U of our system. First, note that a classical system can
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be described by a density matrix ρ and a Hamiltonian H ,
both of which are diagonal in the computational basis. The
internal energy of a classical system can thus be computed
as follows:

U = Tr (ρH) . (D36)

In our case, we can identify ρ ≡ ρ ′
sys(t) and H ≡ Hnuc.

Recall from Sec. II that

Hnuc = Hkin + Hpot + HEel , (D37)

where

Hkin =
∑
n,j

∑
p ′

n,j

∑
s

p ′2
n,j

mn(s + smin)2
|p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s|,

Hpot =
∑
n′ �=n

∑
xn

∑
xn′

ZnZn′(‖xn − xn′‖2 +	2
)1/2 |xn〉〈xn|

⊗ |xn′ 〉〈xn′ |,
HEel =

∑
{xn}

Eel ({xn}) |{xn}〉〈{xn}|.

The idea is then to block encode each of the three terms
of Hnuc, use the Hadamard test to estimate the expectation
value of each term individually, and then add the results
classically.

Note that Hnuc is diagonal in the nuclear-position and
-momentum basis. Since the block encoding of Hnuc will
also be diagonal in the nuclear-position and -momentum
basis, we technically do not need to worry about getting
rid of the off-diagonal elements of ρsys(t), since

Tr
(
ρsys(t)Hnuc

) = Tr
(
ρ ′

sys(t)Hnuc

)
. (D38)

However, we will use ρ ′
sys(t) to be consistent with the

previous discussion on estimation of the Gibbs entropy.
The following three lemmas provide upper bounds on

the cost of block encoding the three terms of Hnuc.
Lemma 22 (Block encoding of Hkin). There exists an

(αkin, akin, ε) block encoding of Hkin with normalization
constant

αkin ∈ O

(
N

p ′2
max

mmins2
min

)
(D39)

and a number of ancilla qubits

akin ∈ O
(

log
(αkin

ε

))
(D40)

that can be implemented using

O
(

N log
(gp ′αkin

ε

)
+ loglog 3

(αkin

ε

))
(D41)

Toffoli gates.

Proof. The proof of Lemma 22 proceeds along the same
lines as the proof of Lemma 1. In particular, we use the
alternating-sign trick [28,54] to block encode a single sum-
mand of Hkin and then use Lemma 7 to combine the block
encodings of all 3N terms. More specifically, we use the
alternating-sign trick to construct Upn,j , which provides an(
αp , ap , εp

)
block encoding of

∑
p ′

n,j

∑
s

p ′2
n,j

(s + smin)2
|p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s|. (D42)

We then use the following to prepare the distribution of
coefficients for the masses of each particle in the system
under the assumption of three-dimensional dynamics:

PREPm|0〉 :=
N∑

n=1

√
1/mn

αm
|n〉 ⊗ 1√

3

3∑
j =1

|j 〉, (D43)

where

αm =
∑
n,j

1
mn

≤ 3N
mmin

. (D44)

The above definition implies that am = �log N� + �log 3�.
Let us now explain how to use the alternating-sign

trick to implement Upn,j . The idea is to prepare an ancilla
register consisting of ap qubits in the state

PREPp |0〉 :=
2ap −1∑

l=0

1√
2ap

|l〉 (D45)

and then use the inequality-testing circuit from Fig. 3 to
test the following inequality:

l (s + smin)
2 ≤ p ′

n,j
2, (D46)

where smin ∈ N such that smin = sminhs. As long as l sat-
isfies the above inequality, the coefficient of |l〉 is set to
+1, as is done in existing work involving LCU or qubiti-
zation for general-purpose simulations [28,54]. For larger
l, the coefficient of |l〉 is set to alternate between ±1. To
test the inequality, we first use O(1) quantum Karatsuba
multiplications [59] to compute the left- and right-hand
sides of Eq. (D46). This can be done using O

(
alog 3

p

)
Toffoli gates, whereas the inequality test itself requires
only O

(
ap
)

Toffolis (see Lemma 10). We then have
that Upn,j = PREP

†
p · SELp · PREPp , where SELp includes the

quantum Karatsuba multiplications, the inequality testing,
and a CZ gate to obtain the desired alternating sequence of
±1. Figure 5 shows a circuit diagram of the alternating-
sign trick for the slightly simpler case of block encoding
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∑gp −1
pn,j =0 pn,j |pn,j 〉〈pn,j |. The number of ancilla qubits, ap ,

determines the precision εp of Upn,j . In particular,

∥∥∥∥∥∥∥(〈0| ⊗ 1)Upn,j (|0〉 ⊗ 1)

− 1
αp

∑
p ′

n,j

∑
s

p ′2
n,j

(s + smin)2
|p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s|

∥∥∥∥∥∥∥ ≤ 1
2ap

.

(D47)

Note that αp ∈ O
(

p ′2
max/s

2
min

)
. We can ensure that

(〈0| ⊗ I)Upn,j (|0〉 ⊗ I) is an εp -precise approximation to∑
p ′

n,j

∑
s p ′2

n,j /(s + smin)
2|p ′

n,j 〉〈p ′
n,j | ⊗ |s〉〈s| by choosing

ap ∈ � (log
(
αp/εp

))
.

Instead of constructing 3N different block encoding for
each of the 3N terms, we use an additional ancilla register
that we call a “SWAP register” [28]. The SEL operation can
then be modified to swap the appropriate (virtual) momen-
tum variable into the SWAP register controlled by the PREPm
register. This allows us to apply the block encoding Upn,j
only once (to the SWAP register holding the appropriate
momentum variable) rather than 3N times (to each individ-
ual momentum variable). However, we do require a total of
O
(
N log

(
gp ′
))

SWAP operations, implying O
(
N log

(
gp ′
))

Toffolis.
Application of Lemma 7 to PREPm and

{
Upn,j

}
yields

an
(
αmαp , am + ap ,αpεm + αmεp

)
block encoding of Hkin.

This implies that

αkin = αmαp ∈ O

(
Np ′2

max

mmins2
min

)
. (D48)

To achieve overall block-encoding error ≤ ε, it suffices to
ensure that εm ≤ ε/2αp and εp ≤ ε/2αm. Thus,

akin = am + ap ∈ O
(

log
(αkin

ε

))
. (D49)

It follows from Lemma 5 that we need to prepare the state
PREPm|0〉 within error εm/αm

√
N . Such a general quantum

state preparation has Toffoli cost in

O

(
N log

(
αm

√
N

εm

))
⊆ O
(

N log
(αkin

ε

))
, (D50)

where we have used the assumption that we choose the
uncertainty to saturate εm = ε/2αp . We require another

O
(

alog 3
p

)
⊆ O
(

alog 3
kin

)
⊆ O
(

loglog 3
(αkin

ε

))
(D51)

Toffolis for the quantum Karatsuba multiplications [59]
used in the comparison test given in Eq. (D46). Addition
can be performed in linear time and thus the cost of per-
forming the entire comparison test is given by the cost
of multiplication. This cost is additive to the cost of the
state preparation given in Eq. (D50). Combining all of the
results yields the desired complexity expressions. �

Lemma 23 (Block encoding of Hpot). There exists an
(αpot, apot, ε) block encoding of Hpot with normalization
constant

αpot ∈ O
(

N 2 Z2
max

	

)
(D52)

and a number of ancilla qubits

apot ∈ O
(

log
(αpot

ε

))
. (D53)

This block encoding can be implemented using

O
(

N log
(gxαpot

ε

)
+ loglog 3

(αpot

ε

))
(D54)

Toffoli gates, where gx is the number of discrete positions
considered in the classical part of the Liouvillian.

Proof. We use the same strategy as in the proof of
Lemma 22. In particular, we use the alternating-sign trick
[54] to block encode a single summand of Hpot and then
use Lemma 7 to combine the block encodings of all O

(
N 2
)

terms. More specifically, we use the alternating-sign trick
to construct UVn,n′ ,j , an (αV, aV, εV) block encoding of

∑
xn

∑
xn′

1(‖xn − xn′‖2 +	2
)1/2 |xn〉〈xn| ⊗ |xn′ 〉〈xn′ |. (D55)

We then use the following PREP to attach the atomic
numbers {Zn}:

PREPZ |0〉 := 1√
αZ

N∑
n=1

√
ZN |n〉 ⊗

N∑
n′=1

√
Zn′ ⊗

3∑
j =1

|j 〉,

(D56)

where αZ =∑n,n′,j ZnZn′ ≤ 3N 2Z2
max. The above definition

implies that

aZ = 2�log N� + �log 3�. (D57)

Importantly, the resultant state is a product state, mean-
ing that

∑N
n=1

√
Zn|n〉, ∑N

n′=1
√

Zn′ |n′〉, and
∑3

j =1 |j 〉 can
be prepared individually.

Let us now explain the construction of UVn,n′ ,j . Using

PREPV|0〉 :=∑2aV−1
l=0 1/

√
2aV |l〉, we test the following
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inequality:

l2
(
‖xn − xn′‖2 +	

2
)

≤ 1, (D58)

where 	 ∈ N such that 	 = 	hx. As long as l satisfies
the above inequality, the coefficient of |l〉 is set to +1. For
larger l, the coefficient of |l〉 is set to alternate between
±1. To determine the correct sign, we also need to test
xn,j ≤ xn′,j , which has Toffoli complexity in O (log (gx)).
The advantage of testing Eq. (A43) rather than

l ≤ 1(
‖xn − xn′‖2 +	

2
)1/2 (D59)

directly is that we do not have to calculate fractions
containing square roots. However, the inequality test in
Eq. (D58) does require us first to compute the left-
and right-hand sides of the inequality using O(1) quan-
tum Karatsuba multiplications. This can be done using
O
(
(aV)

log 3) Toffoli gates [59], whereas the inequality test
itself requires only O (aV) Toffolis [59].

The number of ancilla qubits aV determines the precision
εV of UVn,n′ ,j . In particular,

∥∥∥∥∥∥(〈0| ⊗ 1)UVn,n′ ,j (|0〉 ⊗ 1)

− 1
αV

∑
xn

∑
xn′

1(‖xn − xn′‖2 +	2
)1/2 |xn〉〈xn| ⊗ |xn′ 〉〈xn′ |

∥∥∥∥∥∥
≤ 1

2aV
. (D60)

Note that αV ∈ O (1/	). We can ensure that UVn,n′ ,j is an
εV-precise approximation by choosing

aV ∈ �
(

log
(
αV

εV

))
. (D61)

Instead of constructing O
(
N 2
)

different block encodings
for each of the O

(
N 2
)

terms of Hpot, we use six SWAP
registers for the six nuclear-position variables appearing
in 1/

(‖xn − xn′‖2 +	2
)1/2

. Here, the factor of 6 occurs
because we assume that we are interested in dynamics in
three spatial dimensions. Controlled by the PREPZ regis-
ter, we swap the appropriate position variables into the
SWAP registers. This allows us to apply the block encoding
UVn,n′ ,j only once (to the SWAP registers holding the appro-
priate position variables) rather than O

(
N 2
)

times (for
each individual term). However, we do require a total of
O (N log (gx)) SWAP operations, resulting in O (N log (gx))

Toffolis.

Application of Lemma 7 to PREPZ and
{

UVn,n′ ,j

}
yields

an (αZαV, aZ + aV,αVεZ + αZεV) block encoding of Hpot.
This implies that

αpot = αZαV ∈ O
(

N 2Z2
max

	

)
. (D62)

To achieve overall block-encoding error ≤ ε, it suffices
to ensure that εZ ≤ ε/2αV and εV ≤ ε/2αZ . Thus the total
number of qubits required for the block encoding of the
potential operator is

apot = aZ + aV ∈ O
(

log
(αpot

ε

))
, (D63)

where the latter asymptotic bound follows from substi-
tuting into Eq. (D61). It follows from Lemma 5 that we
need to prepare the state PREPZ |0〉 within error εZ/NαZ .
Preparation of such a product state has Toffoli cost in

O
(

N log
(
αZN
εZ

))
⊆ O
(

N log
(αpot

ε

))
. (D64)

We require another

O
(

alog 3
Z

)
⊆ O
(

alog 3
pot

)
⊆ O
(

loglog 3
(αpot

ε

))
(D65)

Toffolis for the quantum Karatsuba multiplications. Com-
bining all of the results yields the desired complexity
expressions. �

Lemma 24 (Block encoding of HEel). There exists an(
αEel , aEel , ε

)
block encoding of HEel with normalization

constant

αEel ∈ O (λ) (D66)

and a number of ancilla qubits

aEel ∈ O
(

log
(
λ

ε

))
. (D67)

This block encoding can be implemented using

Õ

(
λ

(
N + Ñ + log (B)

ε

+ N + Ñ + log (B)+ log2 (1/ε)
γ δ

))
(D68)

Toffoli gates and

O
(

1
δ

)
(D69)

queries to the initial electronic state-preparation oracle UI
from Definition 9.
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Proof. The main strategy is to prepare the electronic
ground states in superposition over all nuclear configu-
rations and then use qubitization together with quantum
phase estimation (QPE) to obtain estimates of the ground-
state energies of Hel in superposition over all nuclear
configurations. We then use the alternating-sign trick to
construct a block encoding of HEel . Let us now discuss the
different subroutines and their errors in more detail.

First, we require access to a block encoding of
the electronic Hamiltonian Hel. Reference [28] provides
explicit PREPel and SELel subroutines for obtaining UHel ,
a (λ, ael, εel) block encoding of Hel. Let H̃el denote the
block-encoded operator satisfying∥∥H̃el − Hel

∥∥ ≤ εel. (D70)

Since Hel and H̃el are both Hermitian, we can use
eigenvalue perturbation theory [63] to conclude that∣∣Ẽel − Eel

∣∣ ≤ εel for all {xn}, where Ẽel is the ground-state
energy of the block-encoded operator H̃el. It then holds that∥∥H̃Eel − HEel

∥∥ ≤ εel, (D71)

where

H̃Eel :=
∑
{xn}

Ẽel ({xn}) |{xn}〉〈{xn}|. (D72)

Next, we explain the electronic ground-state preparation.
Let W denote the unitary that prepares an approximate
ground state of H̃el for fixed nuclear positions according
to Lemma 14, i.e.,

W|{xn}〉|0〉 = |{xn}〉|φ̃0
({xn,j }

)〉, (D73)

with

|〈ψ̃0
({xn,j }

) |φ̃0
({xn,j }

)〉| ≥ 1 − εprep. (D74)

Note that we can view UHel as an exact block encoding
of H̃el, which allows us to use Lemma 14 directly without
further error propagation. This means that we can prepare
|φ̃0
({xn,j }

)〉 using

O
(
λ

γ δ
log
(

1
δεprep

))
(D75)

queries to UHel and

O
(

1
δ

)
(D76)

queries to UI . In the following discussion, we will mostly
refrain from writing out the

({xn,j }
)

dependence explicitly

unless needed for clarity. Now, it holds that

|φ̃0〉 = eiα
(

1 − ε′
prep

)
|ψ̃0〉 + β|ψ̃⊥

0 〉 (D77)

for some angle α ∈ [0, 2π), 0 ≤ ε′
prep ≤ εprep and |β|2 =

2ε′
prep −

(
ε′

prep

)2
≤ 2ε′

prep. Letting

|ψ ′
0〉 := eiα|ψ̃0〉 (D78)

we thus have that

∥∥W|{xn}〉|0〉 − |{xn}〉|ψ ′
0〉
∥∥ = ∥∥|{xn}〉|φ̃0〉 − |{xn}〉|ψ ′

0〉
∥∥

≤ √2εprep. (D79)

Next, we apply QPE with the following qubitization oper-
ator to the electronic register holding the electronic ground
states:

Q := (2|0〉〈0| − 1) · PREP
†
el·SELel · PREPel. (D80)

The work of Ref. [27] shows that Q has eigenvalues
e±i cos−1 (Ẽk/λ). QPE allows us to obtain the state |ψẼ′

el
〉,

which encodes an εQPE-precise estimate Ẽ′
el of the ground-

state energy Ẽel of H̃el for fixed nuclear positions, with
success probability ≥ 1 − ξQPE using

O
(

λ

εQPE
log
(

1
ξQPE

))
(D81)

queries to Q. In other words,

|ψẼ′
el
〉 =
√

1 − ξ ′
QPE |̃E′

el〉 +
√
ξ ′

QPE |̃E⊥
el 〉 (D82)

for some 0 ≤ ξ ′
QPE ≤ ξQPE . We refer to the corresponding

unitary that prepares |ψẼ′
el
〉 as UQ, i.e.,

UQ|{xn}〉|ψ ′
0〉|0〉 =

√
1 − ξ ′

QPE|{xn}〉|ψ ′
0〉|̃E′

el〉

+
√
ξ ′

QPE|{xn}〉|ψ ′
0〉|̃E⊥

el 〉. (D83)

Lastly, we apply the alternating-sign trick, which is
explained in detail in the proof of Lemma 1, to the |ψẼ′

el
〉
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register to obtain Ualt, an εalt-precise block encoding of

HẼ′
el

:=
∑
{xn}

Ẽ′
el ({xn}) |{xn}〉〈{xn}|. (D84)

The overall block-encoding error εEel of HEel is then given
by

εEel :=
∥∥∥αEel (〈0| ⊗ 1 ⊗ 〈0| ⊗ 〈0|)W−1U−1

Q Ualt

× UQW (|0〉 ⊗ 1 ⊗ |0〉 ⊗ |0〉)− HEel

∥∥∥ , (D85)

where the first register in the expression (|0〉 ⊗ 1 ⊗ |0〉
⊗ |0〉) consists of the block-encoding ancilla qubits for the
alternating-sign trick, the second register is the nuclear-
position and -momentum register, the third register is
the electronic register, and the last register is the phase-
estimation register. Note that the above definition implies

that the electronic register as well as the phase-estimation
register are uncomputed and projected out to the |0〉 state
at the end of the simulation. In other words, the error εEel
is only measured within the Hilbert space of the nuclear-
position and -momentum registers. Importantly, the error
matrix

αEel (〈0| ⊗ 1 ⊗ 〈0| ⊗ 〈0|)W−1U−1
Q UaltUQW

× (|0〉 ⊗ 1 ⊗ |0〉 ⊗ |0〉)− HEel (D86)

is diagonal in the nuclear-position and -momentum basis,
since W, ŨQ, Ualt, and HEel are all diagonal in the nuclear-
position and -momentum basis. Hence, εEel is simply the
largest value on the diagonal of EEel . This allows us to
consider the block-encoding error for each nuclear com-
putational basis state separately. It also implies that αEel ∈
O (λ). Suppressing the nuclear-momentum register, we
then obtain the following:

εEel = max
{xn}

‖αEel (〈0| ⊗ 1 ⊗ 〈0| ⊗ 〈0|)W−1U−1
Q UaltUQW (|0〉 ⊗ 1 ⊗ |0〉 ⊗ |0〉) |{xn}〉 − HEel |{xn}〉‖

≤ max
{xn}

‖αEel (〈0| ⊗ 1 ⊗ 1 ⊗ 1)W−1U−1
Q UaltUQW (|0〉 ⊗ 1 ⊗ 1 ⊗ 1) |{xn}〉|0〉|0〉 − HEel ⊗ 1 ⊗ 1|{xn}〉|0〉|0〉‖

≤ max
{xn}

‖αEelW
−1U−1

Q (〈0| ⊗ 1 ⊗ 1 ⊗ 1)Ualt (|0〉 ⊗ 1 ⊗ 1 ⊗ 1)UQW|{xn}〉|0〉|0〉 − HEel ⊗ 1 ⊗ 1|{xn}〉|0〉|0〉‖,

(D87)

where we have used the fact that |0〉〈0| ⊗ 1 ⊗ 1 ⊗ 1 commutes with W and UQ, since W and UQ act trivially on the first
register. In the following discussion, we will drop the “⊗1” for ease of notation. The general strategy now is to apply
the triangle inequality repeatedly to “peel off” the errors stemming from different subroutines layer by layer. First, we
will isolate the error associated with W:

εEel ≤ max
{xn}

‖αEelW
−1U−1

Q (〈0|Ualt|0〉)UQW|{xn}〉|0〉|0〉 − αEelW
−1U−1

Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′
0〉|0〉‖

+ max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′
0〉|0〉 − HEel |{xn}〉|0〉|0〉

∥∥∥ . (D88)

By definition, the spectral norm is subordinate to the �2-norm. Furthermore, we have that ‖U‖ = 1 for any unitary U.
With this in mind, we can bound the first term on the right-hand side of the above inequality as follows:

max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉)UQW|{xn}〉|0〉|0〉 − αEelW
−1U−1

Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′
0〉|0〉
∥∥∥

≤ max
{xn}

αEel

∥∥W−1
∥∥ ∥∥∥U−1

Q

∥∥∥ ‖(〈0|Ualt|0〉)‖ ∥∥UQ
∥∥ ∥∥W|{xn}〉|0〉|0〉 − |{xn}〉|ψ ′

0〉|0〉∥∥ ≤ αEel

√
2εprep. (D89)

To bound the second term on the right-hand side of Eq. (D88), we use the triangle inequality again:

max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′
0〉|0〉 − HEel |{xn}〉|0〉|0〉

∥∥∥
≤ max

{xn}
‖αEelW

−1U−1
Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′

0〉|0〉 − αEelW
−1U−1

Q (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉‖

+ max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉 − HEel |{xn}〉|0〉|0〉
∥∥∥ . (D90)
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The first term on the right-hand side of the above inequality can be bounded as follows:

max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉)UQ|{xn}〉|ψ ′
0〉|0〉 − αEelW

−1U−1
Q (〈0|Ualt|0〉) |{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥

≤ max
{xn}

αEel

∥∥W−1
∥∥ ∥∥∥U−1

Q

∥∥∥ ‖(〈0|Ualt|0〉)‖ ∥∥UQ|{xn}〉|ψ ′
0〉|0〉 − |{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥ ≤ αEel

√
ξQPE . (D91)

Note that the failure probability ξQPE of the phase-estimation step is now part of the block-encoding error of HEel in
addition to the actual phase-estimation error εQPE . Before explaining how εQPE contributes to the block-encoding error
εEel , we first isolate the error εalt associated with the alternating-sign trick. This can be done by applying the triangle
inequality to the second term on the right-hand side of Eq. (D90):

max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉 − HEel |{xn}〉|0〉|0〉
∥∥∥

≤ max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉 − W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥

+ max
{xn}

∥∥∥W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉 − HEel |{xn}〉|0〉|0〉

∥∥∥ . (D92)

The first term on the right-hand side of the above inequality can then be bounded as follows:

max
{xn}

∥∥∥αEelW
−1U−1

Q (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉 − W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥

≤ max
{xn}
∥∥W−1

∥∥ ∥∥∥U−1
Q

∥∥∥ ∥∥∥αEel (〈0|Ualt|0〉) |{xn}〉|ψ ′
0〉|̃E′

el〉 − HẼ′
el
|{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥ ≤ εalt. (D93)

Application of the triangle inequality to the second term on the right-hand side of Eq. (D92) now allows us to isolate the
phase-estimation error εQPE:

max
{xn}

∥∥∥W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉 − HEel |{xn}〉|0〉|0〉

∥∥∥
≤ max

{xn}

∥∥∥W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉 − W−1U−1

Q HẼel
|{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥

+ max
{xn}

∥∥∥W−1U−1
Q HẼel

|{xn}〉|ψ ′
0〉|̃E′

el〉 − HEel |{xn}〉|0〉|0〉
∥∥∥ . (D94)

The first term on the right-hand side of the above inequality can be bounded as follows:

max
{xn}

∥∥∥W−1U−1
Q HẼ′

el
|{xn}〉|ψ ′

0〉|̃E′
el〉 − W−1U−1

Q HẼel
|{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥∥

≤ max
{xn}
∥∥W−1

∥∥ ∥∥∥U−1
Q

∥∥∥ ∥∥∥HẼ′
el
|{xn}〉|ψ ′

0〉|̃E′
el〉 − HẼel

|{xn}〉|ψ ′
0〉|̃E′

el〉
∥∥∥ ≤ εQPE. (D95)

Next, we isolate the block-encoding error εel of the electronic Hamiltonian by applying the triangle inequality to the
second term on the right-hand side of Eq. (D94):

max
{xn}

∥∥∥W−1U−1
Q HẼel

|{xn}〉|ψ ′
0〉|̃E′

el〉 − HEel |{xn}〉|0〉|0〉
∥∥∥

≤ max
{xn}

∥∥∥W−1U−1
Q HẼel

|{xn}〉|ψ ′
0〉|̃E′

el〉 − W−1U−1
Q HEel |{xn}〉|0〉|0〉

∥∥∥
+ max

{xn}

∥∥∥W−1U−1
Q HEel |{xn}〉|ψ ′

0〉|̃E′
el〉 − HEel |{xn}〉|0〉|0〉

∥∥∥ . (D96)

010343-50



IMPROVED PRECISION SCALING... PRX QUANTUM 5, 010343 (2024)

The first term on the right-hand side of the above inequality can then be bounded as follows:

max
{xn}

∥∥∥W−1U−1
Q HẼel

|{xn}〉|ψ ′
0〉|̃E′

el〉 − W−1U−1
Q HEel |{xn}〉|0〉|0〉

∥∥∥
≤ max

{xn}
∥∥W−1

∥∥ ∥∥∥U−1
Q

∥∥∥ ∥∥HẼel
|{xn}〉|ψ ′

0〉|̃E′
el〉 − HEel |{xn}〉|ψ ′

0〉|̃E′
el〉
∥∥ ≤ εel. (D97)

To bound the second term on the right-hand side of Eq. (D96) recall that HEel is diagonal in the |{xn}〉 basis, i.e.,
HẼel

|{xn}〉 = Eel (({xn})) |{xn}〉. Thus, we have that

max
{xn}

∥∥∥W−1U−1
Q HEel |{xn}〉|ψ ′

0〉|̃E′
el〉 − HEel |{xn}〉|0〉|0〉

∥∥∥
≤ max

{xn}
|Eel ({xn})|

∥∥∥W−1U−1
Q |{xn}〉|ψ ′

0〉|̃E′
el〉 − |{xn}〉|0〉|0〉

∥∥∥
≤ αEel

∥∥∥W−1U−1
Q |{xn}〉|ψ ′

0〉|̃E′
el〉 − W−1|{xn}〉|ψ ′

0〉|0〉
∥∥∥+ αEel

∥∥W−1|{xn}〉|ψ ′
0〉|0〉 − |{xn}〉|0〉|0〉∥∥ . (D98)

The first term on the right-hand side of the above
inequality can then be bounded as follows:

αEel

∥∥∥W−1U−1
Q |{xn}〉|ψ ′

0〉|̃E′
el〉 − W−1|{xn}〉|ψ ′

0〉|0〉
∥∥∥

≤ αEel

∥∥W−1
∥∥ ∥∥∥U−1

Q |{xn}〉|ψ ′
0〉|̃E′

el〉 − |{xn}〉|ψ ′
0〉|0〉
∥∥∥

≤ αEel

√
ξQPE . (D99)

Lastly, the second term on the right-hand side of Eq. (D98)
can be bounded in terms of εprep:

αEel

∥∥W−1|{xn}〉|ψ ′
0〉|0〉 − |{xn}〉|0〉|0〉∥∥ ≤ αEel

√
2εprep.
(D100)

Putting everything together, we find that

εEel ≤ αEel

(
2
√

2εprep + 2
√
ξQPE

)
+ εalt + εQPE + εel.

(D101)

We can ensure εEel ≤ ε by having

εprep ≤ 1
2

(
ε

10αEel

)2

, (D102)

ξQPE ≤
(

ε

10αEel

)2

, (D103)

εalt ≤ ε

5
, (D104)

εQPE ≤ ε

5
, (D105)

εel ≤ ε

5
. (D106)

The condition εprep ≤ 1
2

(
ε/10αEel

)2 can be satisfied by
using

O
(
λ

γ δ
log
(
λ

δε

))
(D107)

queries to UHel and

O
(

1
δ

)
(D108)

queries to UI . The conditions ξQPE ≤ (ε/10αEel

)2 and
εQPE ≤ ε/5 can be satisfied by using

O
(
λ

ε
log
(
λ

ε

))
(D109)

queries to Q (or, equivalently, UHel ). Next, the condition
εalt ≤ ε/5 can be satisfied by using

aEel ∈ O
(

log
(

max{xn} Ẽ′
el ({xn})
ε

))
∈ O
(

log
(
λ

ε

))
(D110)

ancilla qubits. The associated Toffoli cost is in O
(
aEel

)
due

to the inequality testing required for the alternating-sign
trick. Lastly, by Lemma 3, we need

O
(

N + Ñ + log
(

B
ε

))
(D111)

Toffoli gates to ensure that the block-encoding error εel of
Hel is at most ε/5.

The overall Toffoli complexity of block encoding HEel
is dominated by the number of Toffolis needed for all
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queries to the walk operator Q and the number of Toffo-
lis needed for the electronic ground-state preparation. In
either case, we multiply the respective query complexity
with the Toffoli cost of block encoding Hel to obtain the
desired complexity expression. �

Let us now prove the following lemma on the query
complexity of estimating the internal energy.

Lemma 25 (Query complexity of estimating the internal
energy). Let UHkin be an (αkin, akin, ε/9) block encoding of
Hkin, let UHpot be an

(
αpot, apot, ε/9

)
block encoding of Hpot,

and let UEel be an
(
αEel , aEel , ε/9

)
block encoding of HEel .

Furthermore, let Ũ′
LNVT

∈ C
ηpur×ηpur be an ε/

(
18ηpurαnuc

)
-

precise approximation to U′
LNVT

as defined in Eq. (D15),
where αnuc := αkin + αpot + αEel . There exists a quantum
algorithm for estimating the internal energy U associated
with ρ ′

sys(t) within error ε with probability at least 1 − ξ

using

O
(
αnuc

ε
log
(

1
ξ

))
(D112)

queries to Ũ′
LNVT

, UHkin , UHpot and UEel .
Proof. First, note that the internal energy U of the

system can be computed as follows:

U = Tr
(
ρ ′

sys(t)Hnuc

)
= Tr

(
ρ ′

sys(t)Hkin

)
+ Tr

(
ρ ′

sys(t)Hpot

)
+ Tr

(
ρ ′

sys(t)HEel

)
. (D113)

The idea is then to estimate each term individually within
error ε/3 using the Hadamard test as shown in Fig. 8. Then,
we add the results classically, which yields an ε-precise
estimate of U .

|0〉 H • H

|0〉 /

Ui

|{x}〉|{p′}〉|s〉

Ũ ′
LNV T

|S〉

|j〉

FIG. 8. The circuit for implementing the Hadamard test to esti-
mate the internal energy U of the nuclei, where Ũ′

LNVT
is an

approximation to the evolution operator from Eq. (D15) and
Ui ∈ {UHkin , UHpot , UEel}. The second register from the top is the
ancilla register needed for block encoding Hkin, Hpot or HEel .
The fact that Ui does not act on the bath register |S〉 or the
phase-gradient ancilla register |j 〉 can be understood as taking the
partial trace over those registers when computing the probability
of measuring the top qubit as 0.

Let

H̃i := αi (〈0| ⊗ 1)Ui (|0〉 ⊗ 1) (D114)

be the Hamiltonian term block encoded in Ui, where Ui ∈
{UHkin , UHpot , UEel}, and αi ∈ {αkin,αpot,αEel}. The proba-
bility of measuring the top qubit in Fig. 8 as 0 is given by

P′′
i (0) := 1

2

⎛
⎝1 +

Tr
(
ρ̃ ′

sys(t)H̃i

)
αi

⎞
⎠ , (D115)

where ρ̃ ′
sys(t) is the reduced density matrix of our sys-

tem obtained from Ũ′
LNVT

. Let P̂′′
i (0) denote our estimate

of P′′
i (0) based on the outcome of the Hadamard test.

Furthermore, let

P′
i(0) := 1

2

⎛
⎝1 +

Tr
(
ρ ′

sys(t)H̃i

)
αi

⎞
⎠ , (D116)

denote the success probability of the Hadamard test when
used with an error-free block encoding of U′

LNVT
. Lastly, let

Pi(0) := 1
2

⎛
⎝1 +

Tr
(
ρ ′

sys(t)Hi

)
αi

⎞
⎠ (D117)

denote the success probability of the Hadamard test when
applied to error-free block encodings of U′

LNVT
and Hi,

where Hi ∈ {Hkin, Hpot, HEel}. Estimation of Pi(0) within
error ε/6αi allows us to obtain an ε/3-precise estimate of
Tr
(
ρ ′

sys(t)Hi

)
.

By the triangle inequality, it holds that

|P̂′′
i (0)− Pi(0)| ≤ |P̂′′

i (0)− P′′
i (0)| + |P′′

i (0)− P′
i(0)|

+ |P′
i(0)− Pi(0)|. (D118)

We now show that each term on the right-hand side of
Eq. (D118) is upper bounded by ε/18αi, which implies that

|P̂′′
i (0)− Pi(0)| ≤ ε

6αi
, (D119)

as desired.
The error associated with the last term stems from the

block-encoding error of Hi. Let ρ ′
j denote the j th eigen-

value of ρ ′
sys(t) and let H−

i,j denote the j th eigenvalue of
H̃i − Hi. Using von Neumann’s trace inequality, we obtain
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the following bound:

|P′
i(0)− Pi(0)| = 1

2αi

∣∣∣Tr
(
ρ ′

sys(t)H̃i

)
− Tr

(
ρ ′

sys(t)Hi

)∣∣∣
= 1

2αi

∣∣∣Tr
(
ρ ′

sys(t)
(
H̃i − Hi

))∣∣∣
≤ 1

2αi

∑
j

∣∣∣ρ ′
j

∣∣∣ ∣∣∣H−
i,j

∣∣∣ ≤ ε

18αi

∑
j

∣∣∣ρ ′
j

∣∣∣
≤ ε

18αi
, (D120)

where we have used the fact that
∣∣∣H−

i,j

∣∣∣ ≤ ∥∥H̃i − Hi
∥∥ ≤ ε/9

by choice of the block-encoding precision.
The error associated with the second term on the right-

hand side of Eq. (D118) stems from the simulation error of
U′

LNVT
. By assumption,

∥∥Ũ′
LNVT

− U′
LNVT

∥∥ ≤ ε

18ηpurαnuc
. (D121)

This implies that

∥∥∥Ũ′
LNVT

|�0〉〈�0|Ũ′†
LNVT

− U′
LNVT

|�0〉〈�0|U′†
LNVT

∥∥∥
≤
∥∥∥Ũ′

LNVT
|�0〉〈�0|Ũ′†

LNVT
− Ũ′

LNVT
|�0〉〈�0|U′†

LNVT

∥∥∥
+
∥∥∥Ũ′

LNVT
|�0〉〈�0|U′†

LNVT
− U′

LNVT
|�0〉〈�0|U′†

LNVT

∥∥∥
≤
∥∥∥Ũ′†

LNVT
− U′†

LNVT

∥∥∥+ ∥∥Ũ′
LNVT

− U′
LNVT

∥∥
≤ 2ε

18ηpurαnuc
= ε

9ηpurαnuc
, (D122)

where, as before, |�0〉 is the initial state of the purification
of ρ ′

sys(t). It then follows from Definition 16 that

1
2

∥∥∥Ũ′
LNVT

|�0〉〈�0|Ũ′†
LNVT

− U′
LNVT

|�0〉〈�0|U′†
LNVT

∥∥∥
1

≤ ε

18αnuc
. (D123)

Since the trace distance is contractive under the partial
trace, we obtain the following bound:

T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

≤ ε

18αnuc
. (D124)

Let ρ−
j denote the j th eigenvalue of ρ̃ ′

sys(t)− ρ ′
sys(t) and let

H̃i,j denote the j th eigenvalue of H̃i. Using von Neumann’s

trace inequality, we then have that

|P′′
i (0)− P′

i(0)| = 1
2αi

∣∣∣Tr
(
ρ̃ ′

sys(t)H̃i

)
− Tr

(
ρ ′

sys(t)H̃i

)∣∣∣
= 1

2αi

∣∣∣Tr
((
ρ̃ ′

sys(t)− ρ ′
sys(t)
)

H̃i

)∣∣∣
≤ 1

2αi

∑
j

∣∣∣ρ−
j

∣∣∣ ∣∣H̃i,j
∣∣

≤ 1
αi
T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)
αi

≤ ε

18αnuc
≤ ε

18αi
. (D125)

Lastly, we need to ensure that |P̂′′
i (0)− P′′

i (0)| ≤ ε/18αi.
The idea is to use amplitude estimation to obtain an
ε/18αi-precise estimate P̂′′

i (0) of P′′
i (0) with constant suc-

cess probability. This requires

O
(αi

ε

)
⊆ O
(αnuc

ε

)
(D126)

applications of the Hadamard test, which is equivalent to
O
(
αnuc
ε

)
(controlled) applications of Ũ′

LNVT
and Ui.

By the union bound, we can obtain an ε-precise esti-
mate of U with success probability ≥ 1 − ξ by ensuring
that the failure probability associated with the estimation
of each term Tr

(
ρ ′

sys(t)Hi

)
is ≤ ξ/3. This can be achieved

via (fixed-point) amplitude amplification at the expense of
an additional multiplicative factor of log (1/ξ) to the query
complexities of Ũ′

LNVT
and Ui. �

3. Proof of Theorem 2

For convenience, let us restate Theorem 2 here.
Theorem 2 (Estimation of the free energy). Let η :=

g3N
x g3N

p ′ gsgps be the number of grid points of the discretized
phase space and assume that log

(
η2/ε
) ≤ η. Then there

exists a quantum algorithm that solves Problem 2 with
success probability at least 1 − ξ using

Õ

((
ηo(1)Ntotdμ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1+o(1)

(
αnuc + η(kbT)1.5+o(1)

√
ε

)

+ Ntotαnucλ

ε2

)
log

(
1
ξ

))

Toffoli gates. Additionally,

Õ

(
ηo(1)Ndμ1+o(1)

NVT t1+o(1)

δ̃ ε1+o(1)
log
(

1
ξ

)

×
(
αnuc + η(kbT)1.5+o(1)

√
ε

))
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queries to the initial electronic state-preparation oracle ŨI
are needed.

Proof. We use Lemma 21 to estimate the Gibbs entropy
associated with ρsys(t) within error ε/2kBT with failure
probability at most ξ/2. This requires

O
(
η(kBT)1.5

ε1.5 log (1/ξ)
)

(D127)

queries to an
(
ε/8ηpurkbT log (η/ν)

)
-precise approxima-

tion Ũ′
LNVT

to U′
LNVT

, where ν ∈ (0, 1) is again a lower

bound on 2T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

. For simplicity, we assume
that ν ∈ �(ε/η), which should be fairly easy to achieve.
The promise log

(
η2/ε
) ≤ η ensures that this choice of ν

does not exceed the upper bound on 2T
(
ρ̃ ′

sys(t), ρ
′
sys(t)
)

.
It then follows from Theorem 1 that estimation of the

entropy requires a total of

Õ

(
η1+o(1)Ntotd(kBT)1.5+o(1)μ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1.5+o(1)
log
(

1
ξ

))
(D128)

Toffoli gates and

Õ

(
η1+o(1)Nd(kBT)1.5+o(1)μ

1+o(1)
NVT t1+o(1)

δ̃ ε1.5+o(1)
log
(

1
ξ

))
(D129)

queries to the initial electronic state-preparation oracle ŨI .
Next, we use Lemma 25 to estimate the internal energy

U of the nuclei within error ε/2 with failure probability at
most ξ/2. This requires

O
(
αnuc

ε
log
(

1
ξ

))
(D130)

queries to an
(
ε/36ηpurαnuc

)
-precise approximation of

U′
LNVT

. By Theorem 1, the associated Toffoli complexity
is then in

Õ

(
ηo(1)Ntotd αnuc μ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1+o(1)
log
(

1
ξ

))
. (D131)

Furthermore, we need

Õ

(
ηo(1)Nd αnuc μ

1+o(1)
NVT t1+o(1)

δ̃ ε1+o(1)
log
(

1
ξ

))
(D132)

queries to the initial electronic state-preparation oracle ŨI .
According to Lemma 25, we also require

O
(
αnuc

ε
log
(

1
ξ

))
(D133)

queries to ε/18-precise block encodings of Hkin, Hpot and
HEel . Lemmas 22–24 imply that the combined Toffoli
complexity of all these queries is in

Õ
(
αnuc

ε
log
(

1
ξ

)(
N log

(gαnuc

ε

)
+ loglog 3

(αnuc

ε

)

+ Ntotλ

(
1
ε

+ 1
γ δ

)))

⊆ Õ
(

Ntotαnucλ log
(

1
ξ

)(
1
ε2 + 1

γ δε

))
. (D134)

Similarly to the spectral-gap argument used in the proof of
Theorem 1, we only need to provide a lower bound γ̃ on
the spectral gap of the electronic Hamiltonian over those
phase-space grid points that are associated with a nonzero
amplitude at some point during the simulation. Likewise,
we only need a lower bound δ̃ on the overlap of the ini-
tial electronic state with the true electronic ground state
over phase-space grid points that are visited at some point
during the simulation. The reason for this is that any sim-
ulation errors that occur on grid points that are associated
with zero amplitude throughout the simulation do not con-
tribute to the error of the final estimate. This means that
Problem 2 can be solved using only O

(
1/γ̃ δ̃

)
rather than

O (1/γ δ) Toffoli gates.
Combining the previous results, we find that the overall

Toffoli complexity associated with estimating F is in

Õ

((
ηo(1)Ntotd αnuc μ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1+o(1)

+ η1+o(1)Ntotd(kBT)1.5+o(1)μ
2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1.5+o(1)

+Ntotαnucλ

ε2

)
log
(

1
ξ

))
, (D135)

which can be simplified as follows:

Õ

((
ηo(1)Ntotdμ

2+o(1)
NVT t1+o(1)

γ̃ δ̃ ε1+o(1)

(
αnuc + η(kbT)1.5+o(1)

√
ε

)

+ Ntotαnucλ

ε2

)
log
(

1
ξ

))
. (D136)

Furthermore, the overall number of queries to ŨI is in

Õ

(
ηo(1)Nd αnuc μ

1+o(1)
NVT t1+o(1)

δ̃ ε1+o(1)
log
(

1
ξ

)

+η
1+o(1)Nd(kBT)1.5+o(1)μ

1+o(1)
NVT t1+o(1)

δ̃ ε1.5+o(1)
log
(

1
ξ

))
,

(D137)
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which can be rewritten as follows:

Õ

(
ηo(1)Ndμ1+o(1)

NVT t1+o(1)

δ̃ ε1+o(1)
log
(

1
ξ

)

×
(
αnuc + η(kbT)1.5+o(1)

√
ε

))
. (D138)

�

APPENDIX E: COMPUTATIONAL COST
SCALING OF FORWARD EULER INTEGRATION

The computational costs for the calculation of molecu-
lar forces on a fault-tolerant quantum computer are given
in Ref. [20]; however, the propagation of errors from an
individual gradient estimate to the updated particle posi-
tions is not bounded. In the following, we extend that result
by giving an upper bound on the run time of an MD sim-
ulation algorithm where the quantum computer is used to
compute the forces on the particles that are then used to
update the nuclear positions on a classical computer with
forward Euler’s method.

The goal of Euler’s forward method is to update the
value of a variable y(T) (e.g., the position of a nucleus)
at a time T + h using the derivative y ′(T) and the step h:

y(T + h) = y(T)+ hy ′(T). (E1)

We define y(j |y(j − 1)) as the value of the position after
j steps in the case of a perfect update (i.e., with the exact
derivative) given the same perfectly updated position at the
previous iteration. In contrast, we have ỹ(j |ỹ(j − 1)) and
ỹ(1) = ỹ(1|y(0)) in the case of updates with an approxi-
mate derivative (i.e., with some error δ in the derivative
calculation). Unless otherwise stated, we assume that

yj −1 = y(j − 1|yj −2),

yj −2 = y(j − 2|yj −3),

. . .

We now want to determine an upper bound on the error
performed in the update after N steps of updates with
approximate derivatives, defined as the difference between
this and the same updates computed with perfect deriva-
tives: |y(N |yN−1)− ỹ(N |ỹN−1)|. Additionally, we consider
the solutions to Newton’s equation of motion for the
updated variable y and the approximate variable ỹ: y =
eAty0 and ỹ = eÃty0, given the initial condition y0. We call
y(j ) = yj the value of our variable after j time steps. Fur-
thermore, we are assuming that the error on the derivatives
is such that

∥∥∥A − Ã
∥∥∥ ≤ KLips, where KLips is the Lips-

chitz constant, which is directly related to the norm of the
differential operator.

For a single integration step of size h, if starting from the
same previous value, we accumulate an error |y(j |yj −1)−
ỹ(j |yj −1)| that is upper bounded by the error on the
derivative estimation multiplied by the step:

|y(j |yj −1)− ỹ(j |yj −1)| ≤ δh,

ỹ(j |yj −1) ≤ eKLipshyj −1,

ỹ(j |ỹj −1) ≤ eKLipshỹj −1.

(E2)

Therefore, we have

|y(j |yj −1)− ỹ(j |ỹj −1)|
≤ |y(j |yj −1)− ỹ(j |yj −1)| + |ỹ(j |yj −1)− ỹ(j |ỹj −1)|
≤ δh + |ỹ(j |yj −1)− ỹ(j |ỹj −1)|
≤ δh + eKLipsh|yj −1 − ỹj −1|

≤ δh

(
1 +

j∑
n=1

enKLipsh

)
. (E3)

After N steps with N = T/h (where T is the total time) of
Euler’s forward method, we obtain

|y(N |yN−1)− ỹ(N |ỹN−1)|

≤ δh

(
1 +

N∑
n=1

enKLipsh

)
≤ δh

(
1 + eKLipsh(N+1) − 1

eKLipsh − 1

)

≤ δh
(

1 + eKLipsheKLipsT − 1
eKLipsh − 1

)

= δh
(

1 + eKLipsT − e−KLipsh

1 − e−KLipsh

)
≤ hδ(1 + 2eKLipsT) ≤ 3hδeKLipsT, (E4)

where we have chosen KLipsh ≤ ln(2) and N = T/h.
We want to make sure that the error is at most εMD:

hδ(1 + 2eKLipsT) ≤ 3hδeKLipsT ≤ εMD. (E5)

We choose the step size to be h = ln(2)/KLips, so we have
that our error on the single gradient estimation needs to be

δ ≤ εMDKLips

3eKLipsT ln(2)
. (E6)

We want to impose this error δ as the target error in the
single gradient estimation necessary to achieve an overall
simulation error εMD. From Table IV of Ref. [20] in the
case of first-quantized plane-waves, the time complexity is
Tgrad = N 7/2

a δ−1 (with the number of atoms Na considered
proportional to the number of orbitals). Therefore, the time
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complexity of a single gradient estimation to achieve the
target error is

ToffCountgrad ∈ O

⎛
⎝N

7
2

a eKLipsT

KLipsεMD

⎞
⎠ . (E7)

Since we need to perform N = T/h = KLipsT/ ln(2) steps,
the total time is given by

ToffCountMD ∈ O

⎛
⎝N

N
7
2

a eKLipsT

KLipsεMD

⎞
⎠ = O

⎛
⎝T

N
7
2

a eKLipsT

εMD

⎞
⎠ .

(E8)

This means that the time for simulating a system with
Euler’s integration method scales exponentially with the
simulation time T, while still scaling polynomially with the
other parameters.

It is worth noting that while the underlying trajecto-
ries are potentially unstable, the overall probability density
formed by an ensemble of such trajectories generically is
not. In particular, if we instead were to focus on the error
in phase-space density, then this scaling would become
polynomial if the shadowing-theorem conditions hold [68].
This suggests that the relative cost between this approach
and our own may be somewhat deceptive; however, it is
fair regardless to say, without assuming that we are inter-
ested in estimating a single-particle trajectory, that the
number of Toffoli gates needed for an accurate simula-
tion may scale exponentially with the evolution time in the
worst-case scenario.
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