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In this paper, we present a superpolynomial improvement in the precision scaling of quantum sim-
ulations for coupled quantum-classical systems. Such systems are found in, e.g., molecular-dynamics
simulations within the Born-Oppenheimer approximation. By employing a framework based on the Koop-
man—von Neumann formulation of classical mechanics, we express the Liouville equation of motion as
unitary dynamics and utilize phase kickback from a dynamical quantum simulation to calculate the quan-
tum forces acting on classical particles. This approach allows us to simulate the dynamics of these classical
particles without the overheads associated with measuring gradients and solving the equations of motion
on a classical computer, resulting in a superpolynomial advantage at the price of increased space com-
plexity. We demonstrate that these simulations can be performed in both microcanonical and canonical
ensembles, enabling the estimation of thermodynamic properties from the prepared probability density.
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I. INTRODUCTION

We are accustomed to thinking of nature in terms of
binaries. Specifically, we often speak of dynamics as if
they were either purely quantum or purely classical. In
reality, many models of physical interest actually share
features with both quantum and classical matter. As a
particular example, molecular dynamics (MD) is often for-
mulated in this way, wherein the nuclei are assumed to
follow Newton’s equations but the electrons follow the
Schrodinger equation. In other cases, we may treat an
electromagnetic field as a time-dependent classical field
and the particles interacting with it as quantum. In both
cases, neither a fully quantum model nor a fully classi-
cal model can be used to address the problem efficiently.
Quantum computers have long been known to provide,
under reasonable complexity-theoretic conjectures, expo-
nential advantages for simulating certain quantum systems
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[1-4]. Recently, this has been extended to show that quan-
tum computers can offer exponential advantages even for
systems that are classical [5]. However, when examining
systems that straddle this line, such as the MD example
considered above, the situation is not as clear, because such
simulation methods are comparatively underexplored.
Descriptions within the Born-Oppenheimer (BO)
approximation, where the wave functions of the nuclei can
be considered independent of the wave functions of the
electrons, play an important role in the chemical and phar-
maceutical industries. These are often used to compute
thermodynamic quantities of the chemical systems under
study, such as the entropy or the free energy [6—10]. In
fact, in classical computational chemistry, thermodynamic
averages can be obtained by combining MD simulations
with the use of thermostats to go beyond microcanoni-
cal ensembles [11—13]. MD simulations introduce another
approximation on top of the BO approximation by treating
the nuclei as classical particles but retaining the quantum
description of the electrons. Recent works have explored
the study of MD on fault-tolerant quantum computers,
e.g., via force calculations, to update the coordinates of
the classical nuclei [14-20]. Some of these works go
beyond the Born-Oppenheimer approximation. In contrast
to approaches where the full system is treated quantum
mechanically, BO models have some advantages, namely,
that the scale of the quantum and the classical dynamics
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are naturally separated and that classical noise and external
forces can be easily applied to the system without needing
an expensive fully quantum description.

Recent work [20,21] has analyzed the cost of comput-
ing interatomic forces on quantum computers, which can
be used to update the classical nuclear positions on a clas-
sical computer iteratively. In those works, the cost of an
e-approximate gradient evaluation has been found to scale
with the error tolerance € as O(1/¢€). This approach is even
less practical if we consider that, for many practical appli-
cations, we need to compute the properties of the chemical
systems in the canonical ensemble [8,10,11,22]. A key
problem in simulating MD in the canonical ensemble is
to prepare the classical distribution of the nuclei (their
probability density function) according to the Boltzmann
distribution at a certain temperature. Current quantum
computing methods do not allow for efficient encoding
and evolution of the probability density of the classical
degrees of freedom on the quantum computer. In the 1930s,
Koopman and von Neumann (KvN) proposed an empiri-
cal formulation of classical mechanics that incorporated a
Hilbert space consisting of complex and square-integrable
wave functions ¥xyn (g, p), which depend on the position
q and momentum p of the particle [23]. These wave func-
tions were understood as probability densities, p(p,q) =
Ygn¥kw, of finding the particle in a specific configura-
tion (p, g) of the phase space [24]. Both p and Yk evolve
according to the Liouville equation,

where L is a Hermitian operator called the Liouvillian
operator. This gives a natural encoding (and subsequent
evolution) of classical probability densities into quantum
states that follow Hamiltonian dynamics.

The KvN formalism has recently been exploited to
propose new algorithms for simulating classical systems
on quantum computers and for solving nonlinear partial
differential equations [25,26]. In this work, we do not
use quantum linear systems algorithms but we explicitly
evolve the positions and momenta in time. We provide a
specific procedure for the time propagation along with the
cost of the block encodings involved, as well as a method
for obtaining ensemble averages from our final state.

We implement the time evolution of a hybrid quantum-
classical system by propagating the discretized phase-
space density of N classical nuclei that interact with N
electrons, which are treated quantumly using the first-
quantized simulation method of Refs. [27,28]. We present
this result for the microcanonical ensemble [11], where the
number of particles Ny = N + N, the volume ¥, and the
energy E are conserved. By adding a thermostat to the evo-
lution, which couples the nuclear phase-space density to a
classical heat bath, we can impose a constant temperature

T, allowing us to perform the simulation in the canoni-
cal ensemble [12]. The asymptotic gate complexity of the
Liouvillian simulation algorithm is in

[ N 210 fl+o(1) 1
0 (’i~— log (—)) : @)
73 oD 3

where p is an upper bound on the spectral norm of the
Liouvillian operator, ¢ is the evolution time, ¥ is a lower
bound on the spectral gap of the electronic Hamiltonian
over all configurations visited during the simulation, §
is a lower bound on the overlap of the initial electronic
state with the target electronic state over all configurations
visited during the simulation, € is the desired simulation
precision, and & is an upper bound on the failure probabil-
ity. Our result provides superpolynomially better scaling
with € than the existing approach of Ref. [20], which in
turn suggests that the road blocks previously identified for
MD therein may not be the obstacles that they were pre-
viously believed to be. Additionally, the asymptotic space
complexity of the Liouvillian simulation algorithm is mod-
erate, scaling linearly in Ny and logarithmically in all
other simulation parameters, including the grid spacing as
well as the precision €.

To tackle the problem of computing thermodynamic
quantities, we introduce a second algorithm, which, given
a quantum state encoding the discretized phase-space den-
sity of the system together with the heat bath (e.g., obtained
using the first algorithm), can output an estimate of the
free energy of the system. In contrast to classical methods
and previous approaches for MD simulations on quantum
computers [15—18], our approach exploits a fully coherent
state preparation of the classical probability density in the
canonical ensemble, avoiding sampling and enabling the
direct estimation of thermodynamic properties [10,20].

The paper is structured as follows. In Sec. II, we intro-
duce the main concepts for coupled quantum-classical
dynamics in the Liouvillian picture. We show that a ther-
mostat can be used to prepare the canonical ensemble and
that we can implement this simulation on a quantum com-
puter by discretizing the phase space. Our main results are
presented in Sec. III, which includes precise statements
of the computational problems as well as the asymptotic
gate complexity of our algorithms to solve these problems.
In Sec. IV, we give an overview of our quantum algo-
rithms for simulating Liouvillian dynamics and estimating
the free energy of a quantum-classical system. We con-
clude with a brief discussion in Sec. V. The proofs of the
theorems and lemmas presented in the main text are given
in the Appendices A—E.

II. PRELIMINARIES

In this section, we provide an overview of the funda-
mental definitions, from the Liouvillian formalism to the
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mappings into qubit registers and the microcanonical and
canonical ensembles, that are essential for the definition of
the computational problems and the implementation of the
algorithms.

A. Liouvillian formalism

The trajectories of N classical particles in three dimen-
sions are governed by Newton’s equations of motion:
Fpj=mx,;, nef{l,2,...,N},je{l,2,3}, ()
where F, ; is the j th component of the force on the nth par-
ticle, X,,; is its acceleration, and m,, is its mass. In general,
these differential equations are nonlinear and nonunitary,
meaning that the time evolution of the positions of the par-
ticles cannot be directly implemented on a quantum com-
puter. The Born-Oppenheimer approximation in MD turns
the Hamiltonian problem of jointly evolving nuclei and
electrons into an example of such a nonlinear and nonuni-
tary time evolution. We overcome the issue by working
with the Liouvillian formulation of classical mechanics
instead, which is centered around the phase-space proba-
bility density p ({x,}, {p.}, ?) of the classical particles. The
probability density depends on the positions x, € R and
momenta p, € R? of the particles as well as on time . It is
normalized according to beN o ({xn}, {pn}, O dix,}d{p,} =
1 and satisfies the following equation of motion:

dp
= = —iLp, 4
a7 iLp 4)

where L is the Liouvillian operator, defined as

N 3

OH OH
L= —iZZ( O,y — ax”a%). (5)

0 .
i1 j=1 \OPmj

Here, H is the classical Hamiltonian of the system and 9,
(0p,,) denotes the partial derivative with respect to the j th
position (momentum) component of the nth particle.

The formal solution to Eq. (4) reads

p(t) = e p(0). (6)
Note that L is Hermitian, which implies that e =%/ is unitary.
The similarities to quantum mechanics become even more
apparent when employing the KvN formulation of classical
mechanics [24]. The idea is to introduce a complex wave
function, Yo ({x,}, {pn}, ), which evolves according to
the Liouville equation just like p ({x,}, {p.},?):

OVYKWN
ot

= —iLygN. (7)

The phase-space density can then be recovered via the
relation p = g Ve, Which resembles the quantum

mechanical calculation of probabilities from amplitudes.
This works out because the Liouvillian contains only first-
order derivatives, Ox,; and Opy; » meaning that the prod-
uct of two wave functions, each satisfying the Liouville
equation, also satisfies the Liouville equation. In contrast,
the Schrodinger equation of quantum mechanics generi-
cally contains second-order derivatives, afw, , implying that
the product of two solutions does not necessarily satisfy the
Schrédinger equation.

Consideration of the KvN wave function vgyN rather
than the phase-space density p has one significant advan-
tage: Yy~ can be easily encoded on a quantum computer,
since it has the same properties as a “true” quantum wave
function. For example, while p needs to be real valued
and positive, {¥g,n can take on complex values. Further-
more, Yxyn 1S normalized according to the 2-norm, i.e.,
Jeov [Wuwl?d{x,}d{p,} =1, in contrast to p, which is
normalized according to the 1-norm.

While the Liouvillian formalism can be applied to any
classical system governed by a Hamiltonian, we will focus
on MD within the Born-Oppenheimer approximation. In
this setting, the nuclei are treated as classical particles,
whereas the electrons are treated quantumly. More specif-
ically, solving the electronic Schrédinger equation as a
function of the nuclear positions yields potential-energy
surfaces that determine the dynamics of the classical
nuclei. We consider MD simulations in the microcanonical
and the canonical ensemble, as discussed in the following
subsections.

B. Evolution in the microcanonical (NVE) ensemble

The microcanonical (NVE) ensemble is a thermody-
namic ensemble in which the number of nuclei N, the vol-
ume V, and the total energy E of the system are constants
of motion. In order to prevent potential misunderstandings,
let us recall that the phase-space representation of an NVE
ensemble is usually considered to be a time-independent
phase-space density pyyg that is constant over all config-
urations with energy £ and zero otherwise. This is often
written in terms of a Dirac delta distribution:

onve (X} pn}) o< 8 (H ({x,}, {pa}) — E) . (8

In the following, we will not assume that the phase-
space density is given by pnye ({x,}, {p»}) when we talk
about simulations in the NVE ensemble. Rather, we refer
to constant-energy dynamics of a generic time-dependent
phase-space density, which evolves according to Eq. (6).

The classical Hamiltonian of the nuclei in the NVE
ensemble takes the following form:

HYE = HYD (o), pa)) + Ea (), 9)

nuc class
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where

p2. Y zz
HNVE) . Snj oy _ Itk 10
class Z Z 2mn Z ||x,, — Xk“ ( )

k=1 n>k

is the classical Hamiltonian of the nuclei without any elec-
tronic contributions. The mass and the atomic number of
the nth nucleus are denoted by m, and Z,, respectively.
Unless stated otherwise, we will use ||-|| to refer to the
(induced) 2-norm. H{NVE) also depends on E¢ ({x,}), the
ground-state energy of the following quantum Hamiltonian
governing the dynamics of the electrons for fixed nuclear

positions:

N 3 2 N NN
3 vnj 1 Zn
Ha==2 0 5 4 D o=l ™ 2 ol
n=1 j=I n>k n k,n=1 n

an

where N is the number of electrons, %, € R? denotes the
position of the nth electron, and V,,; := 9%, is the partial
derivative operator with respect to the jth coordinate of
the nth electron. Note that the total number of particles,
Niot := N + N, is also conserved in the NVE ensemble (the
same is true for the NV'T ensemble discussed in Sec. I1C).

So far, we have worked with continuous position and
momentum variables that can take on any real value. How-
ever, to simulate the time evolution of the phase-space
density according to Eq. (6) on a quantum computer, we
need to consider a finite discretized phase space. The idea
is to restrict each position and momentum component of
the nuclei to a finite set of

g = X o (12)
h

g =" e N (13)
hp

values, respectively, where Xgax (Pmax) 1S the maximum
attainable value of any x,; (p.;) and A, (h,) is the
grid spacing. The choice of grid spacing depends on the
smoothness of the phase-space density. A detailed error
analysis regarding the grid spacing for real-space simula-
tions can be found in Ref. [29]. Further bounds on the grid
spacing and numerical results are presented in Ref. [20].
Since we are considering a finite simulation box, we must
also specify the boundary conditions. For simplicity, we
choose periodic boundary conditions.

Each grid point of the discretized phase space corre-
sponds to a computational basis state of the form

i) 7)) = @ (Fu) @17,)),  (14)

n,j

where X,,; € [g¢] and p,,; € [g,] are integers such that
Xpj = Xpjhy — Xmax/2 and p,; =]7nJhp — Pmax/2. Thus,
|X.;) is a computational basis state on log g, qubits spec-
ifying the value of the jth discrete position coordinate of
the nth nucleus and analogously for |p,, ;). The mapping to
qubits to obtain the computational basis is shown in Fig. 1.

3N ;3N

Given a classical (g)C g, )-dimensional probability

vector pg encoding the discretized initial phase-space den-
sity pg, the kth amplitude of the initial quantum state
representing the associated KvN wave function can simply
be chosen to be /(o). In other words, the quantum regis-
ter is initially prepared in the state |pg) 1= >, /(00)ilk),
where k € [g}¥gV] enumerates the points of the dis-
cretized phase space. Note that this is just a convenient
relabeling of the computational basis states {|{X,, }, {P,, J hl
introduced before. Depending on the choice of the ini-
tial phase-space density of the classical particles, one can
use a number of different general-purpose state-preparation
methods to prepare a quantum state encoding the initial
phase-space density. For example, if the initial phase-space
density is efficiently integrable, one can use the Grover-
Rudolph algorithm to prepare the corresponding quantum
state [30]. For sparse quantum states, this method scales
quadratically with the number of qubits [31]. Another
option is to use the approach developed in Ref. [32], based
on quantum singular-value transformation (QSVT). The
authors’ method provides a qubit-efficient way of encod-
ing functions with a well-behaved polynomial or Fourier
expansion in the amplitudes of a quantum state.

In order to evolve the discretized quantum state that
encodes our system on a quantum computer, we also need
to discretize the Liouvillian operator defined in Eq. (5).
This requires us to define discrete versions of the derivative
operators appearing in the Liouvillian operator. Central-
finite-difference schemes are a popular tool for discretizing
derivatives [33]. In the quantum setting, the corresponding
discrete operator can be defined as follows.

Definition 1 (Discrete derivative operator). Let {|y)}
denote a complete set of computational basis states, repre-
senting the variable with respect to the derivative operator
is applied, e.g., x,; or p,;. The discrete derivative operator
D, of order 2d is defined as follows:

1 d
D=2 33 el — B, (15)

y k=—d

where /4 is the user-specified grid spacing and the coeffi-
cients {cy} are given by [33]

(—1)k+l(d!)2
Kd—mid+or TFEO

0, else.

(16)

Cdj ‘=
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P11 . . .
0 1 2 3 4 5: 6 7 8 9 10 3\\ ‘-T'il.l>4> ‘0"'0010> fin Coorlnate AmplitUde
P2,1 — —
0 1 2 3 4 5 6 7 8 9 10 2 b hd ‘7)11>4) ‘0 o 0000> |$TI7]> po
B . [p2.1)— 0...0001) T
) 1 2 3 4 5 6 7 8 9 10 M-
5 K_// /" iy ps.1)— [0...0010) i i
1 = /p1]...00 > [...00 > + + /p3l...00 > |...10 >
(c)

N

FIG. 1. Mapping from real space to phase space and to qubit registers for a one-dimensional (1D) problem. (a) Each configuration
is stored as a point in the phase space. (b) Each point of the discretized phase space is associated with a computational basis state
on the quantum computer. The computational basis states can be written as the tensor product of the states encoding the discretized
positions and momenta of the individual particles. The amplitude of a computational basis state defines the corresponding probability
for that point in the probability density function. (¢) An example encoding of the discretized phase density of one particle in one spatial
dimension.

In general, the higher the order 2d of the finite-difference  are now diagonal matrices of dimension g*¥ g;N Aisa
scheme, the better is the error scaling with respect to the  gap parameter introduced to regularize the Coulomb inter-

grid spacing (for more details, see Lemma 8 or Ref. [20]).  action and to avoid infinities in the simulation. D, . is
We are now ready to define the discretized Liouvillian  a discrete derivative operator of order 2d, and D, pj 18 @
operator in the NVE ensemble. discrete derivative operator of order 2d,,. Furthermore,

Definition 2 (Discretized Liouvillian operator for BO
MD in the NVE ensemble). Let HNVE) be the BO Hamil-

tonian from Eq. (9). The discretized Liouvillian for simu- D;}] ;: —_ Z Z Z Z Cdpk
lations in the NVE ensemble is given by hy k=—de (0} )2£0)) %y 1 g
3 FJ(NVE) K FJ(NVE) X Ee ({1}, X0 + khx) X j XX 7| @ X WX |
Lyyg :=—i Z Z Y e ==—®D,, | (20)
nyj ) . ox Pny
i1 =1 'Dn.j n,j
(17)  1is a central-finite-difference approximation of order 2d, to
0E¢/0x,,. Note that we only show the quantum registers
where that are acted on in a nontrivial manner. For example,
aHéﬁQVE) Z pn,] _ | (18)
- n,/ n,/ _ _ _ —
9Pnj By Z P ol =1, ® Z 1 XPal
aHéﬁ/CVE) —ZnZn/ P11 P11
0y Z; ; XX: (It — w1 + A2)3/2 ® (Lr1, ® Ipyy) ® (L3 ® L)
N3
X (g — Xt ) %)% ® [X WX | + DY QX (1, ®1L,,). 1)
(19) n=2;=I
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The reason for introducing D;}/ in the above definition
is that we generally do not have an analytic expression for
0Fc1 /0%, .

In Appendix C, we show that the spectral norm of Lyyg
is upper bounded by wyye, which is defined as follows:

Pmax 2 (Indy + 1)

:=3N
UNVE o I
P 272 Xmax 2 (Ind, + 1)
A3 hy,
2In(d, + 1
+ 3NA&, (22)
hyhy,

where A is an upper bound on the spectral norm of the dis-
cretized electronic Hamiltonian, as discussed in Lemma 3.

Since the discrete Liouvillian Lyyg is still Hermitian,
we can use tools from Hamiltonian simulation [34,35] to
efficiently implement the unitary Uyyz := e “ME! on a
quantum computer to simulate the time evolution of the
discretized phase-space density. Our quantum simulation
algorithm is discussed in more detail in Sec. I'V.

C. Evolution in the canonical (VV'T) ensemble

By default, MD simulations are performed in the NVE
ensemble. However, it is often desirable to perform sim-
ulations in the canonical (NVT) ensemble, where the tem-
perature 7T rather than the energy is held constant. This is
especially true when performing conformational searches
of molecules, such as those required in drug design [36].

The Nosé-Hoover thermostat is a common choice in
classical MD calculations to simulate dynamics in the
NVT ensemble [37,38]. This thermostat is based on non-
Hamiltonian equations of motion, meaning that there does
not exist an underlying Hamiltonian governing the dynam-
ics of the system. Therefore, it cannot be straightforwardly
incorporated into the Liouvillian framework.

In contrast, the original Nosé thermostat is compati-
ble with the Liouvillian framework, since the equations of
motion can be derived from an extended-system Hamilto-
nian [12]. The idea is to introduce additional terms to the
classical Hamiltonian that involve an extra degree of free-
dom, s, representing a heat bath. This effectively allows
the kinetic energy of the nuclei to be exchanged with the
energy of the bath, so that the system can be equilibrated
to a user-specified temperature 7. The extended-system
Hamiltonian is defined as follows:

HND = HOVD (6,0, {po), 5,ps) + Eea (162)), (23)

where

2 N—-1 N P
i Z,7,
HWID . ZZ P i Z k Ps
class : P 2
n=1 j=I 2m,,s k=1 n>k ”x —Xk” 2Q
+ Ny kpTIn (s) . (24)

Here, p, is the momentum variable conjugate to s and QO
is an effective mass of s, which controls the coupling of
the system to the heat bath. &z is the Boltzmann constant
and Ny = 3N — K is equal to the number of degrees of
freedom of the system, with K being the number of con-
straints. The heat bath modifies the kinetic energy term
of the nuclei, while the Coulomb-potential term remains
unaffected. In particular, p, ; is the conjugate momentum
variable to x,; in the extended system. It is often called a
“virtual” momentum variable and it is related to the real
momentum variable p,; of the physical system via the
equation

Pnj = . (25)
S
The third term of HC(lalss represents the kinetic energy of
the heat bath, while the last term represents the poten-
tial energy of the heat bath. This potential-energy term
ensures that the partition function Z associated with a
microcanonical ensemble in the extended system gives rise
to a canonical partition function when restricted to the real
system [37,39]:

2o [ dw) [ di)
/ds/dps

O(/d{xn}/d{pn}e_Hnuc ({Xn}ﬂ?n})/(kBT)’ (26)

HIEuNcVT) {xn}’ {P;}»S,Ps) - Eext)

where Eey; is the conserved energy of the extended system.

To avoid confusion later on, let us briefly mention here
that the phase-space version of an NV'T ensemble is usually
considered to be a time-independent phase-space density
oyt that has the form of a Boltzmann distribution:

prvr (1}, {pa}) oc e FEnkipnh/ (D), @27

where E is the energy of the system (nuclei) for a given
configuration. In the following, we will not assume that
the phase-space density is given by pyyr ({x,}, {p»}) when
we talk about simulations in the NVT ensemble. Rather,
we will refer to the constant-temperature dynamics of a
generic time-dependent phase-space density obtained by
evolving the joined probability density of the system and
heat bath according to Eq. (6) and then integrating out
the heat bath. However, if the dynamics of the extended
system are ergodic, then we can mimic the behavior of
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onvr ({x,}, {pn}) in the sense that we can estimate thermo-
dynamic properties such as the free energy of the system
via coherent time averaging, as explained in more detail in
Sec. IV A.

As with the NVE ensemble, we need to discretize
the (now (6N + 2)-dimensional) phase space to sim-
ulate the time evolution of the phase-space density
0 ({xn}, P}, s, ps) according to Eq. (6) on a quantum com-
puter. We do so by restricting each position and virtual
momentum component of the nuclei as well as the bath
variables s and p; to a finite set of

g = x;;ax eN (28)
g 1= 2N (29)
hy
Smax
g =" N (30)
2 = phﬂ eN 31)

Ps

values, respectively, where X,y 1s the maximum attainable
value of x,,; and A, is the position grid spacing as before.
Similarly, p; .., Smax and psmax are the maximum attain-
able values ofp,;’i, s, and p, and h,, hy, and h, are the
respective grid spacings. Since we are considering a finite
simulation box, we also need to specify the boundary con-
ditions. For simplicity, we again choose periodic boundary
conditions.

The computational basis states in the NV'T ensemble are
of the form

(G ), By 1,500 = @) () @ 15,)) @ ) @ 15,
nyj

(32)

where X,,; € [g.], P,; € [gy], 5 € [g] and p € [gp,] are
integers such that x,; = X,/ — Xmax/2, Py, =ﬁ;,jhp/
— Pmax/2> $ = 5hy and p; = p hy, — Psmax /2.

We again employ the KvN formalism to encode the
(discretized) phase-space density in a quantum state on a
quantum computer.

The discretized Liouvillian in the NV'T ensemble is then
defined as follows.

Definition 3 (Discretized Liouvillian operator for BO
MD in the NVT ensemble). Let HN'D be the NV'T Hamil-
tonian as defined in Eq. (23). The discretized Liouvillian
for simulations in the NV'T ensemble is given by

N
QHWVD aH(NVT)
Lwri==i) ) | D, ® =53¢ e D,
P 0xpj !

n=1 j=1
IHG D dHG)D
— l (DS ® nuc nuc ® Dpy) , (33)
81’3‘ 83

where
AHND )2 P
—— = 2, )P, | ® [5)(51,
apn,j Z Z My, (S + Smin )2 / /
(34)
OHO!ID —ZoZyy

nuc —

3/2
|xn _xn’”2 + Az) /

X (Xnj — xmb—cnxm ® [T )% | + DS,
35)
IHG " Ps
nu — s )P, 36
S Z Q|p.s><pﬁ| (36)
AHNVD 2p'y;
Znue 2 p Ll ®[s
o ngmn(sﬂmm)g 7 NP0 | © [5)S]
nyj
NksT

are now diagonal matrices of dimension n := g2V g;N 258p,-

As with the NVE Liouvillian, A is a gap parameter intro-
duced to regularize the Coulomb interaction and to avoid
infinities in the simulation. The bath variable cutoff sy,
is introduced for the same reason. D, " is a discrete
derivative operator of order 2d,, D o is a discrete deriva-

tive operator of order 2d,/, D, is a discrete derivative
operator of order 2d,, and D, is a discrete derivative
operator of order 2d, . They are constructed according to
Definition 1. D,ZIJ. is again the finite-difference approxima-
tion to 0E,/0x,;. Note that we only show the quantum
registers that are acted on in a nontrivial manner.

In Appendix C, we show that the spectral norm of Lyyp
is upper bounded by wyyr, which is defined as follows:

Pmax 2 (Indy + 1)
mminsrznin h
P 272 Xmax 2 (Ind, + 1)

A3 Iy
2In(d, + 1)
hyh,

Ps,max 2(Inds + 1)

0 hs
2pr%1ax 2 (11’1 dPs + 1)

MminSi; hps

NykpT2 (Ind,, + 1)
+ .
Smin hps

wnyr == 3N

+3NA

+ 3N

(38
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II1. MAIN RESULTS

Our main result is an efficient quantum algorithm for
simulating the time evolution of the discretized phase-
space density of N nuclei within the Born-Oppenheimer
approximation. The formal problem can be stated as fol-
lows.

Problem 1 (Simulating Liouvillian dynamics within the
Born-Oppenheimer approximation). Let L € {Lyyg, Lyyr}
be the discretized Liouvillian governing the dynamics of
the discretized phase-space density associated with N clas-
sical nuclei in the NVE ensemble (Definition 2) or the
NVT ensemble (Definition 3). Given a quantum state |p)
encoding the initial discretized phase-space density, out-
put a quantum state that is e-close in £2 distance to |p;) :=
e ™M po).

Our algorithm requires access to an initial electronic
state-preparation oracle Uy, the precise definition of which
is given later in Definition 9. The main feature of U;
is that it prepares an initial electronic state |¢o{x,}) that
has nontrivial overlap with the ground state |Y{x,}) of
a discretized version of the electronic Hamiltonian from
Eq. (11). To be more specific, let 0 < § < 1. Then,

Url{xa1)10) = [{xa})|do{xn}), (39)
where \(1}0 {xn}do {xn})| > § for all nuclear configurations
visited during the simulation. In other words, 5 is a lower
bound on the overlap of the initial electronic state with
the true electronic ground state over all nuclear grid points
associated with a nonzero amplitude at some point during
the simulation.

Unless stated otherwise, we use “log” to refer to the
binary logarithm. Furthermore, we write O (z°") to indi-
cate subpolynomial scaling with respect to the parameter z
and we use the O notation to hide subdominant logarithmic
factors. With this in mind, we present our first result below.

Theorem 1 (Complexity of Born-Oppenheimer Liouvil-
lian simulation). There exists a quantum algorithm that
solves Problem 1 with success probability > 1 — & using

- Ntoth2+O(l)tl+o(l) 1
o —= log | -
(e (e))

Toffoli gates, where d is the maximum order of the finite-
difference schemes used, w € {unve, unyr} i an upper
bound on the spectral norm of the discretized Liouvillian
L € {Lyyg, Lyyr), and ¥ is a lower bound on the spec-
tral gap of the discretized electronic Hamiltonian over
all phase-space grid points that are associated with a
nonzero amplitude at some point during the simulation.
Additionally,

- Ndu1+a(1)t1+a(l) 1
O| —=——log| -
5 o £

queries to the initial electronic state-preparation oracle U;
are needed.

Theorem 1 is proved in Appendix C. In comparison
to gradient-based approaches [20], which, in the worst
case scale exponentially with the evolution time (see
Appendix E), our approach scales polynomially in time ¢
and subpolynomially with error €.

We also show how to use our Liouvillian simulation
algorithm to estimate the free energy of the nuclei in
the NVT ensemble, assuming that the dynamics of the
extended system are ergodic. Usually, we are interested
in the free energy when the system reaches equilibrium.
The thermostat allows us to reach thermal equilibrium and
then estimate thermodynamic properties such as the free
energy of the classical system. A conceptual challenge that
arises in the computation of the free energy is the definition
of macrostates in the probability distribution. Specifically,
we envision these microstates to be hypercubes in phase
space and we define the probability of finding the entire
system within this hypercube to be p;. With this in mind,
the definition of the discrete free energy is given below.

Definition 4 (Free energy). Let p; denote the probability
of a classical system being in the ith (discrete) microstate
and let £; be the energy associated with the ith microstate.
Let

Sg = —ks Y pilnp; (40)

J

be the Gibbs entropy of the system, where kp is the
Boltzmann constant. Furthermore, let

U:=Y pE (41)
J
be the internal energy of the system. The free energy F' of
the system is then given by
F=U- TSG, (42)

where T is the temperature of the system.
In our case, the energies {E;} are the eigenvalues of
Hyye := Hyin + Hyor + Hg,, where

P n — =
Hign = Z Z Z s +J 51,01 ® ),
,/ (43)
ZnZn’ — =
ot 1= 1% )%
e ;ZZ (b — P+ 89
X @y )| (44)
Hgy =Y Ea ({xa}) [N (E). (45)
xn}
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In Appendix D, we show that the spectral norm of Hy, is
upper bounded by oy, which is defined as follows:

p/ ZZ
Onye o= 3N —22— 4 N2 4 (46)
MminS A

min

We now give a formal definition of the free-energy-
estimation problem.

Problem 2 (Estimation of the free energy of a phase-s-
pace distribution). Let Lyyr be the discretized Liouvillian
operator in the NV'T ensemble as in Definition 3. Given a
quantum state |pg) encoding the initial discretized phase-
space density of the system and the heat bath, output an
e-precise estimate of the free energy J of the system after
time ¢, i.e., estimate F associated with

Psys(#) := Trpamn (e_iLNVTt|/OO><pO|eiLNVT) . (47)

Note that the above problem description allows the free
energy to be a time-dependent quantity. If the dynamics
of the extended system (nuclei + heat bath) are ergodic,
then we can obtain an estimate of the equilibrium free
energy via coherent time averaging (for more details, see
Sec. IV A).

The next theorem provides upper bounds on the com-
plexity of estimating the free energy associated with the
nuclear phase-space density.

Theorem 2 (Estimation of the free energy). Let n :=

N g3N 28y, be the number of grid points of the discretized

phase space and assume that log (n2 / e) < 7. Then there
exists a quantum algorithm that solves Problem 2 with
success probability at least 1 — & using

2 1
no(l)MothN;;( )tl+0(1) 77(ka)l.5+o(1)
; 1+o(1) e
yde Je

Niot@nucA 1
- L10)

Toffoli gates. Additionally,

5 no(l)Ndu}v':;OT(l)tlJro(l) o l . +,7(kbn1.5+o(1)
5 el+o() g £ nue NG

queries to the initial electronic state-preparation oracle U,
are needed.

Theorem 2 is proved in Appendix D. Although the scal-
ing with n may seem challenging at first, as it implies,
in the worst case, exponential scaling with the number of
nuclei, this is actually a reasonable expectation, because
estimation of the free energy is an NP-hard problem
[40]. However, for many practical problems, the phase
space can be coarse grained, which reduces the complexity
considerably and makes the problem more manageable.

IV. OVERVIEW OF THE ALGORITHM

As mentioned before, the (discretized) Liouvillian L is
Hermitian, meaning that the time-evolution operator e~/
of the (discretized) phase-space density is unitary. Hence,
we can use Hamiltonian simulation algorithms to imple-
ment e "’ on a quantum computer [34,35,41,42]. The main
idea is to split the overall Liouvillian L = Lj,ss + Ley into
a classical electron-independent part and an electronic part
as defined below.

Definition 5 (Electronic Liouwvillian). Let D,‘Zl] be
the finite-difference approximation to 9E./dx,; as in
Definition 2. In the NVE ensemble, the electronic Liou-
villian acting on the nuclei is given by

L(NVE) — ZZ ZDGI ®D117n’/; (48)

n=1 j=1

where Dl ; is a second-order discrete derivative approx-

imation to 0 e In the NVT ensemble, the electronic
Liouvillian actmg on the nuclei is given by

N 3
WVD . __ el 1
Ly" =iy > "Dy ® D, , (49)
n=1 j=1
where D!, is a second-order discrete derivative approxi-
n,j
mation to 8 L

and D,

order discrete derivatives in the above deﬁnltlon is related
to their implementation, as explained in more detail in
Appendix B.

Definition 6 (Classical Liouvillian). Let L € {Lyyg,
Lyyr} be the discretized Liouvillian in the NVE ensem-
ble (Definition 2) or the NVT ensemble (Definition 3).
LetL € {LgWE) L(NVT)} be the electronic Liouvillian from

> Hel
Definition 5. The classical Liouvillian is then given by

The reason for restricting D, ; to be second-

Lejass := L — L. (50)

We simulate Uy, := e e’ and Uy, := e "l sepa-
rately and then recombine them using a 24th-order Trotter-
Suzuki product formula [34,41,42].

Definition 7 (2kth-order Trotter-Suzuki product for-
mula). Let L = 2521 L, be an operator consisting of I"
Hermitian summands and # > 0. Then, the following recur-
sion defines Sy (f), the Trotter-Suzuki product formula of
order 2k:

S (1) == eLI%...eLF%eLF%.”eLIZ 1)
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where

1 1

<= <=
(4—4213*—1) 2

Using results from Ref. [34], we show in Appendix C
that the cost of our algorithm depends on the spectral norm
of the nested commutator of Lj,ss and L. We derive upper
bounds pt}y,; and p),, on the nested commutator in the
NVE and the NVT ensemble that provide better scaling
with respect to the number of nuclei N than uyyz [Eq. (22)]
and uyyr [Eq. (38)]. However, we use the looser bounds
unve and pyyr in the main theorems to keep the statements
as simple as possible.

Our algorithm requires several different quantum regis-
ters. In the NVE ensemble, we use two types of registers.
First, we have a nuclear register for encoding the nuclear
phase-space density. The basis states of this register are
given in Eq. (14). The simulation of Up, requires a second
register, which we call the electronic register, as it is used
to encode the electronic wave function. This register can
be treated like an ancilla register in the sense that it is only
used to compute D:b during the simulation of U . At the
end of the algorithm, the electronic register is uncomputed.

VieNk>2 (53)

In the NV'T ensemble, we have a third register for the bath
variables s and p;. The computational basis states of the
nuclear register together with the bath register are given in
Eq. (32).

Figure 2 summarizes our quantum algorithm for NVE
and NVT Liouvillian simulations. The corresponding pseu-
docode is presented in Algorithm 1. The subroutines
for evolving the phase-space density under the classical
Liouvillian L., and the electronic Liouvillian L. are
summarized in Algorithms 2 and 3, respectively.

Let us now explain these subroutines in more detail. To
implement U; ., we first construct a block encoding of
Le1ass according to the following definition.

Definition 8 (Block encoding ([35], Definition 24)). Let
A be an s-qubit operator, « € R a normalization constant,
€ € R the allowable error, and a € N the number of ancilla
qubits. Then, we define that the (s 4+ a)-qubit unitary U is
an («, a, €) block encoding of 4 if

[4—((0®e1)U(I0*®1)| <e. (54

In other words, we embed L,ss inside a larger unitary
matrix. If ((0|®* ® 1) U(]0)®* ® 1) is Hermitian, then we
call U a Hermitian block encoding.

Coherent loop of double-step integration

on a quantum computer

Nuclear register:
uclear registers Initialize

Electronic registers

Nuclear evolution under
nuclear potential

p(t:) ptit1)
—

|
.

Measurement
Electronic
Liouvillian —>»{x
evolution

===~

] :
1“-% 1 Optional
-

Nuclear evolution under electronic potential

Electronic Elechoni p(tivo)
Liouvillian
—>» block ————> step
encoding G - (Hamiltonian
L, broundsiale  gimylation)

preperation

FIG. 2. The Liouvillian algorithm scheme. The red arrows represent the nuclear registers, while the electronic registers are in blue.
After initializing the registers into the chosen initial conditions, the time evolution is carried out by iterating a two-step integration.
The double-step integration originates from alternating the classical nuclear Liouvillian evolution (#; + 1) with the electronic one
(t; + 2). In the classical nuclear Liouvillian evolution, the classical nuclear block encoding is used to implement the evolution under
the classical NVE or NVT Liouvillians. The electronic Liouvillian-evolution step takes care of the implementation of the electronic
block encodings, preparing the electronic ground state given the updated nuclear coordinates and applying the nuclear evolution due
to the electronic wave-function contribution. After the required number of integration steps is achieved, one can decide whether to
measure the output states, use them for other computations, or, for the nuclear register, use it for the estimation of the free energy.
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ALGORITHM 1.

Liouvillian MD simulation.

Input: Quantum state |po) encoding initial phase space density of nuclei (+ heat bath for NVT ensemble).
Input parameters for constructing the Liouvillian operator:
t,6& kN, N’ {m"}ﬁ]:h {ZTL}WJ:]:M wmax,pmax/p;naxy ha, hp/hp’7 da, dp/dp’ yde, A, B, hey, 57 ¥ X-
Simulations in the NVT ensemble require additional input parameters: N¢, T, Q, Smin, bs, hp,, ds, dp, .
Output: An e-precise approximation to e~*“*|pg) with success probability > 1 — £.

1. Compute a set of time steps {tl}f\rji‘p

using the recursive definition of higher-order Trotter product formulas with

Nexp =2 X 5%~! + 1 being the total number of Trotter exponentials [34, 42]. Additionally, determine the set of
indices I¢lass for which ¢; corresponds to evolutions under the classical Liouvillian;

2. Initialize the nuclear position and momentum registers (and the bath register for NV simulations), the

electronic register, as well as an ancilla register;
3. € < €/Nexp;
4. &  &/Nexp;

for 1 <4 < Neyy do
if 7 € I 455 then

input;
else
Apply

end
end

Apply ClassLiouvillianEv (ti, €, ¢ N, {mn}ivzl, {Zn}le, Tmax, Pmax/Pmaxs s hyp /by, de, dp/dy, A) to
the nuclear position and momentum registers (and the bath register in the case of NVT simulations), as
well an ancilla register. Simulations in the NVT ensemble also take N¢, T, Q, Smin, s, hp,,ds, dp, as

ElectronicLiouvillianEv (ti, € &' N, N, {Zn}2_1, Tmax, Pmax/Piaxs Dy p/hyr s dey A, B, hei, 5,9, X) to

the nuclear position and momentum registers, the electronic register and an ancilla register;

The following two lemmas show that we can block
encode L, efficiently. Both lemmas are proved in
Appendix A.

Lemma 1 (Block encoding of the discretized classical
NVE Liouvillian). There exists an (ayye, ayye,€) block
encoding of the discretized classical Liouvillian Liﬁ:f)
with normalization constant

Npmax Ind, n N2 Zﬁlaxxmax In dp )

e O
ONVE ( P A hy

and a number of ancilla qubits

ONVE

ayve € O (log( ) + logd),

where d := max{d,,d,}. This block encoding can be
implemented using

0 (1o () () s

Toffoli gates, where g := max{g,, g,}.

Lemma 2 (Block encoding of the discretized classical
NVT Liouvillian). There exists an (ayyr, anyr, €) block
encoding of the discretized classical Liouvillian

with normalization constant

anyr € O <N Pmax Inds N? Z—‘zna");max Indy
mminsmin hx A hp/
2
n Ps.max Indg N p ma; L NrkpT \ Ind,,
Q hS MminS iy Smin hps

and a number of ancilla qubits

anyr € O (log (@) + log d) ,

where d := max{d.,d,,d,,d,}. This block encoding can
be implemented using

0 (N log (gOZWT> + loge? (O[NVT) + dlogg)

€

Toffoli gates, where g := max{g., g, g5, g, }-

We then apply QSVT to the block encoding of L s to
efficiently approximate the exponential e~Lclass’ [35]. The
idea behind QSVT is to perform polynomial transforma-
tions of the singular values of a block-encoded matrix.
In our case, we implement polynomial approximations
of cos(Le¢jass) and —isin(Ljass) that can then be added to
simulate e~ elass’,
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ALGORITHM 2. cClassLiouvillianEv: Evolution under the classical Liouvillian.

Input: t,e,& N, {mu}h_1, {Zn} 1, Zmax, Dmax/Pinasx> has P/t s daoy dpp [ dyyr , A
Simulations in the NVT' ensemble require additional input parameters: Ny, T, Q, Smin, hs, hp,, ds, dp, .
Output: An e-precise approximation to e *Lelasst with success probability > 1 — &.

1. Construct an €/(2t)-precise block-encoding of Lciass as shown in Appendix A;

2. Apply the QSVT based Hamiltonian simulation algorithm from [35] to the block-encoding of Liass to obtain an

e-precise block-encoding of e~ ¢Eelasst,

3. Use O (log (é)) rounds of fixed-point amplitude amplification to boost the success probability to at least 1 — &;

The implementation of U;, is more difficult because we
do not generally have an analytic expression for E¢; ({x,}),
which would be required for constructing a block encod-
ing of L and subsequently using QSVT. In principle,
one could use quantum phase estimation on the elec-
tronic Hamiltonian H to extract the ground-state ener-
gies at the different nuclear positions and construct a
block encoding of D,f}] from these (numerical) values.

ALGORITHM 3.

However, the associated computational cost is in O (1/¢),
where € is the desired precision of the simulation. The
computational cost of our algorithm, on the other hand,
is only in O (1 /e"(l)), which provides a superpolynomial
improvement over O (1/¢) scaling.

One important feature of the electronic Liouvillian L is
that all summands commute with each other. The evolution
operator associated with L can thus be decomposed as

ElectronicLiouvillianEv: Evolution under the electronic Liouvillian.

Input: ta €, 67 N7 N? {Zn}g:h Imax,pmax/p;ax7 hz7 hp/hp’v d€7 A7 B7 hel7 57 ’77 X

—iLgt

Output: An e-precise approximation to e
Initialize the electronic register in the |0) state;

for 1 <n <N do

for 1 <j<3do

Fourier transform the quantum register of the j-th momentum coordinate of the n-th nucleus:

1 7Dy il
D S

with success probability > 1 — £.

QFTlﬁn,j> =
o j
|Zn,j) < [Tn,j — de);
for —d. < k <d. do
Cd kSN (27l j/ gp)
hx hp

Apply the state preparation oracle U from Definition 15 to the entire nuclear positions register
[{z»}) and the electronic register:

t t

Cde kiln,j

Url{zn})10) = {za})|¢o{zn})

Apply the ground state preparation algorithm from [43] to [{z,})|¢o{zn}) using a block-encoding of
Her ({xn});

Apply exp (—iHo ({&n}) te, ;.1,.;) to the electronic register;

Uncompute the (approximate) electronic ground state;

Tnj) = [Ty +1);

end

|Zn,s) <= [Tn,; — de);

Apply orr™! to the Fourier transformed momentum register to switch back to the \pjh j> basis;
end

end

Use O (log (%)) rounds of fixed-point amplitude amplification to boost the success probability to at least 1 — &;
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follows:

3 1
oiLat — o (P T T )

Dpn])t
Del
. L (55)
nyj

For simplicity, we use p,; to refer to either a real or
a virtual-momentum variable. Let us now explain how
to implement a single exponential appearing in Eq. (55).
First, we diagonalize the discrete (virtual) momentum
derivative operator D}W by applying the quantum Fourier
transform (QFT) to the |p,;) register. Next, we shift
the quantum register associated with the nuclear-position
coordinate x,; according to the finite-difference scheme
of DelA and prepare the electronic ground state controlled
by the entire nuclear-positions register. The electronic
ground states are prepared using techniques from Ref. [43]
together with the following initial-state-preparation oracle.

Definition 9 (Initial electronic state-preparation ora-
cle). Let Uy, be a Hermitian block encoding of

He ({x,}) for fixed nuclear positions and let |J0 {x,}) be the
ground state of ({(0| ® 1) Up,x,) (10) ® 1). Furthermore,
let 0 < 6 < 1. The electronic state-preparation oracle U;
is defined via its action on the nuclear-positions register

1{xa}):
Url{xa110) = [{xa})Po{xa}), (56)

where |¢o{x,}) is an initial electronic state that is promised
to satisfy | wo{xn}|¢o{xn})| > § for all nuclear configura-
tions. We write U, to refer to a variant of the initial elec-
tronic state-preparation oracle where |(1//0{x,,}|¢0{x,,})| >
§ with & > § for all nuclear conﬁgurations visited during
the simulation. This means that U; depends implicitly on
the initial nuclear phase-space density.

While numerous strategies exist for addressing over-
lap problems in quantum algorithms for the electronic
structure problem (see, e.g., Refs. [44-46]), the overlap
issues remain a fundamental problem facing all quantum
algorithms within the space and remain an active area of
research. Providing an explicit implementation of the ini-
tial electronic state-preparation oracle is hence beyond the
scope of this work.

Controlled by the entire nuclear-positions register as
well as the Fourier transformed momentum register, we
then apply exp (_iHel{xn}tck,l,,’/) to the electronic register
holding the corresponding electronic ground state, where

Cd,k Sin (2l /g
tepdny = e %t (57)

is a rescaled time variable depending on the finite-
difference coefficients {cq,x} of be and the Fourier

transform variables {/,;}, as explained in more detail in
Appendix B. Next, we uncompute the Fourier-transformed
momentum register as well as the electronic register and
repeat the above procedure for each stencil point of the
finite-difference formula of D,f}j .

The above method requires access to a discretized elec-
tronic Hamiltonian. Instead of utilizing a grid discretiza-
tion as for the nuclei, we use a finite set of basis functions
to discretize the Hilbert space of the electrons. In particu-
lar, we choose B plane waves as basis functions, which take
the following form in (three-dimensional) position space:

1 )
$p(r) i= —=e 107
VQ

r is a vector in position space and k, = 2mb/Q/?
is a wave vector in reciprocal space, where b is
a vector in Z3 constrained to the cube G := [—

(B'3 —1)/2,(B'3 — 1)/2]3. Furthermore, € © (B /)
is the computational cell volume, where 1/A is the grid
spacing in reciprocal space.

The electronic basis states in first quantization can then
be written as |bo)|by) - - - |b5_,), where each |b;) is a
qubit register of size [log B specifying the index b € [B]
of the basis function occupied by electron j. The main
advantage of using a plane-wave expansion of the elec-
tronic Hamiltonian is that all terms in the Hamiltonian
can be obtained from the nuclear-position registers and the
plane-wave momenta through coherent arithmetic on the
quantum computer. It is shown in Ref. [28] that the first-
quantized electronic Hamiltonian in the plane-wave basis
takes the following form:

(58

¥
AR
H™ (x ZZ L 1bYbl;

4 L& eke—bn
"ol (Z” ||kb_c||2>'b><c'f

n=1 j=I1 b,ceG

b#c
N
27r
ineqj =1 b,ceG veGy ”k ”
(b+v)eG
(c—v)eG

X |b+v)blilc — v)cl;, (59)
where |b)(b|; acts nontrivially only on the register associ-
ated with electron j and similarly for the other terms. Fur-

— B3, B3]’ C Z3\{(0,0,0}. Unless
stated otherwise, we will write H, to refer to Héf ™) in the
following.

The next lemma shows that H can be efficiently block
encoded.

thermore, Gy := [
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Lemma 3 (Block encoding the electronic Hamiltonian
([28], Lemma [ rephrased)). There exists a Hermitian
(A, ae,€) block encoding of the discretized electronic
Hamiltonian H,; with normalization constant

LeO N + NN Z + 2 (60)
hé hel hel

and a number of ancilla qubits

aq €0 <log (@)) . (61)

This block encoding can be implemented using

- B
(0] (N + N +log (—)) (62)
€
Toffoli gates.

Let us briefly discuss the space complexity of the Liou-
villian simulation algorithm. On the one hand, we need
o (N log (gxgp)) qubits to represent the phase-space den-
sity of the nuclei. We need another O (N log(B)) qubsits to
represent the wave function of the electrons. On the other
hand, we require a certain number of ancilla qubits for the
various block encodings described above. Since Hamilto-
nian simulation via QSVT requires only an additional two

ancilla qubits (see Lemma 4), we find that the overall space
complexity is in

o
€

(0] (N log (g) + N log(B) + log ( ) + log(d)) , (63)

where g = max{g,,g,’,&s, &y}, € {anye,ayyr}, andd =
max{d,,d,,dy,d,}. This scaling is very moderate given
that it is linear in the total particle number and logarithmic
in all other simulation parameters.

The complexity of our algorithm depends on sev-
eral user-supplied parameters, which are summarized in
Table L.

A. Estimation of the free energy

Let us now discuss how to estimate the free energy of
the nuclei after time ¢ (see Definition 4) using our Liouvil-
lian simulation algorithm. At this stage, we do not assume
that the nuclei are in thermal equilibrium. First, we apply
Uy, to the initial discretized phase-space density of the
nuclei and the heat bath to evolve them for time ¢. The
main idea is to estimate the Gibbs entropy and the inter-
nal energy associated with |p,) = e "IV/T!| po) separately
and then add the results classically to estimate the free
energy. This means that we require at least two separate
simulations. In Appendix D, we show how to reduce the
problem of estimating the Gibbs entropy of the nuclei to
that of estimating the von Neumann entropy of a density

TABLE I. The input parameters that determine the complexity of our quantum algorithm for simulating NVE and NVT Liouvillian
dynamics in the Born-Oppenheimer approximation.

Description NVE NVT
Evolution time t t
Desired precision € €
Failure probability & &
Order of the Trotter product formula k k
Number of nuclei and electrons N,N N,N
Mass of the lightest nucleus Mmin Mmin
Maximum atomic number over all nuclei Zmax Zmax
Maximum value of a component of the nuclear-position vectors Xmax Xmax
Maximum value of a component of the (virtual) momentum vectors Pmax Proax
Grid spacing for a component of the discretized variables hy, hy, hy, hyry b, By
Order of the finite-difference scheme used for approximating derivatives d,, d,, d, dy,dy, d, d,, d.
Gap parameter to regularize the Coulomb potential A A
Number of plane-wave basis functions in the electronic Hamiltonian B B
Inverse grid spacing for a component of the electronic wave number hel /B
Lower bound on the overlap of the initial and true electronic ground state 5 5
Lower bound on the spectral gap of H during the simulation y y
Upper bound on the higher-order derivatives of the electronic energy X X
Number of phase-space grid points e n
Number of degrees of freedom of the physical system Ny
Temperature of the heat bath T
Mass parameter associated with the heat bath 0
Minimum value of the bath position variable Stmin
Maximum value of the bath momentum variable Ps.max
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matrix p;ys obtained from |p,) by tracing out the bath regis-
ter and removing the off-diagonal elements. This allows us
to employ Theorem 13 of Ref. [47]. The authors’ algorithm
requires access to a purification of the density matrix of the
system, which in our case is essentially just | p;). From that
purification, we first construct a block encoding of py,, and
then use QSVT to transform the singular values p; of p;ys
via a polynomial approximation to In (1/p;). The resulting
operator is then applied to the purification of p;ys. Lastly,
we use amplitude estimation to obtain an estimate of

&:—@n@%m%g. (64)

Next, let us discuss how to estimate the internal energy
associated with |p;). First, note that a classical system can
be described by a density matrix p and a Hamiltonian H,
both of which are diagonal in the computational basis. The
internal energy of a classical system can thus be computed
as follows:

U =Tr(pH). (65)

In our case, we have that p = p;ys and H = Hy =
Hyin + Hpot + H,,. In Appendix D, we show how to effi-
ciently block encode each of the three terms as given in
Egs. (43)+45). The idea is then to use the Hadamard test
to estimate Tr (p;ysHkin), Tr (pgysHp0t>, and Tr (p;ysHEd)
individually and combine the results classically.

Let us now assume that the dynamics of the extended
system (nuclei plus heat bath) are ergodic, i.e., that the
extended system samples all phase-space points associated
with energy Eex. This allows us to estimate the equilibrium
free energy via coherent time averaging. More specifi-
cally, we first prepare the following time-averaged density
matrix:

t
pi=- f e VT po X pole™ N T dT, (66)
0

where |pg) is an initial phase-space density of the extended
system that has support only on configurations with energy
Ey. Operationally speaking, the above density matrix can
be prepared by sampling ¢ € [0, ] uniformly at random
and applying e~ ZV17 to | p). If ¢ is sufficiently large, then
expectation values of observables estimated with p are
approximately equal to expectation values computed with
onvr [48].

Note that having access to an initial phase-space den-
sity describing a microcanonical ensemble in the extended
system, i.c., pg & 8 (HD — Eey), allows us to directly
prepare the corresponding Boltzmann distribution over the
nuclear variables by tracing out the bath variables (see
Eq. (26)). This implies that we could estimate the free
energy as an ensemble average without having to perform
any time evolution.

V. CONCLUSIONS

Our main achievement is a new approach for efficiently
simulating coupled quantum-classical dynamics on fault-
tolerant quantum computers that provides a superpolyno-
mial improvement in the precision scaling over previous
work. The upper bounds on the computational costs of our
algorithm for the evolution of a classical phase-space den-
sity scale polynomially with the 1-norm of the Liouvillian
and with the simulation time ¢. This is in stark contrast
to earlier gradient-based approaches [20], which, as we
show in Appendix E, can scale under worst-case assump-
tions exponentially with the evolution time. The presented
Liouvillian simulation algorithm illustrates the value of
incorporating classical dynamics into quantum simulations
coherently on fault-tolerant quantum computers and paves
the way for simulating coupled quantum-classical systems.
We apply the approach to the simulation of molecular sys-
tems in both the microcanonical and canonical ensembles
and to the estimation of thermodynamic quantities, such as
the free energy.

To make our algorithms applicable to practical prob-
lems, challenges and limitations remain. For example,
preparing the classical system in the canonical ensemble
requires it to thermalize. In classical simulations, it is pos-
sible to have clear indicators of thermalization [49-51],
while it is unclear how to estimate those indicators within
our approach without sampling. Also, the computational
cost of the free-energy estimation scales exponentially
with the number of particles because of the growth of the
phase space [40]. Another challenge is the preparation of a
quantum state encoding the initial phase-space density of
the classical particles, since preparing an arbitrary quan-
tum state can take time that scales exponentially with the
number of qubits in the worst case. Additionally, artifacts
affecting classical simulation [52] will likely influence our
simulation methodology.

Compared to state-of-the-art classical MD, where many
refinements have been developed over the years, our
approach is still rudimentary. Several solutions could be
explored for solving the above issues and adapted to
complement our approach; e.g., exploiting adaptive time
steps to improve the computational costs or using multiple
coupled thermostats to allow correct thermalization [53].

Future work must optimize our resource scalings, which
are based on loose bounds. In terms of quantum circuit
design, numerous improvements are possible. One exam-
ple is the extensive use of products of block encodings to
simulate the parts of the Liouvillian. These costs could
likely be brought down by designing a specific block
encoding in a single step. Similarly, it is an open question
whether combining the classical and electronic Liouvil-
lians in a higher-order Trotter formula is the most efficient
choice. Exploiting the fractional query model [54] or mul-
tiproduct formulas may lead to polylogarithmic scaling
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with the error tolerance rather than the subpolynomial scal-
ings obtained using high-order Trotter formulas. Another
important task is the identification of a first potential
application, along with assessing its run time and qubit
count. This will aid in pinpointing bottlenecks within the
proposed algorithm, as well as enable a comparison with
alternative approaches. It would also be interesting to
move beyond the Born-Oppenheimer approximation by
adapting our algorithm to include excited electronic states.

Looking forward, a larger question emerges about the
role that quantum computers may play in the simula-
tion of classical or quantum-classical dynamics. While our
research strengthens our understanding of the advantages
that quantum may provide for simulating such hybrid
dynamics, it is still necessary to fully explore the nature of
the limitations and opportunities that quantum computers
face or provide when simulating both types of dynami-
cal systems [5,25,26,55]. Our belief is that further study
of such applications will unveil a host of new use cases
for quantum computers that lie outside of purely quantum
simulations and, in turn, will reveal that quantum compu-
tation is much more broadly applicable to simulation than
previously thought.

ACKNOWLEDGMENTS

S.S. acknowledges support from a Research Award
from Google Inc. and Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grants,
as well as support from Boehringer Ingelheim. N.W.’s
work on this project was supported by the “Embedding
Quantum Computing into Many-Body Frameworks for
Strongly Correlated Molecular and Materials Systems”
project, which is funded by the U.S. Department of Energy
(DOE), Office of Science, Office of Basic Energy Sci-
ences, the Division of Chemical Sciences, Geosciences,
and Biosciences. We thank Benjamin Ries, Aniket Mag-
arkar, Thomas Fox, and Rodrigo Ochoa for their insights
and stimulating discussions on MD applications. We thank
Christofer Tautermann and Clemens Utschig-Utschig for
useful discussions and feedback. Additionally, we thank
Ryan Babbush and Tom O’Brien for their comments on
the manuscript.

APPENDIX A: EVOLUTION UNDER THE
CLASSICAL LIOUVILLIAN

We simulate e~"Lelass! using qubitization and/or QSVT
[35,56], which requires us to prepare a block encoding
of Ljass according to Definition 8. These block encodings
are implemented using the linear-combination-of-unitaries
(LCU) framework [57]. First, for an arbitrary matrix A4,
we decompose it into an LCU, 4 = ija:_ol a; U;, where
a; > 0 Vj. This linear combination can then be imple-
mented using the following two unitary operations, defined

via their action on an ancilla register initialized to |0)®“ and
some quantum state |y ):

PREPIO)Y) = ) \[ZLhlw), (Al
J
SELL) W) = 1)Uy 1), (A2)

where v 1= ) ; @ 1s anormalization constant. This allows
us to implement A probabilistically in the sense that

A .
— = ((0]“® 1) pREPT-SEL - PREP (|0)* ® 1) . (A3)
o

Once we have such a block encoding of the classical
Liouvillian L, we can use QSVT to construct a poly-
nomial approximation of e~¢lass’ [35,56]. The correspond-
ing query complexity of block-Hamiltonian—or in our
case, block-Liouvillian—simulation based on qubitization
and/or QSVT is stated below.

Lemma 4 (Robust block-Hamiltonian simulation [35,
58]). Let t € Rsg, € € (0,1) and let U be an («, a,€/2t)
block encoding of the Hamiltonian A. Then, we can imple-
ment an e-precise Hamiltonian simulation unitary V that is
an (1,a + 2, €) block encoding of ¢/, with probability of
success at least 1 — &, with

(v (g) (v (2))

uses of U or its inverse and three uses of controlled-U or its
inverse, using O (log (1/&) (aat 4 alog(1/€))) two-qubit
gates and using O(1) ancilla qubits.

A proof of Lemma 4 with constant success probability
is given in Ref. [35]. Using (fixed-point) amplitude ampli-
fication, we can boost the success probability to 1 — & at
the expense of a multiplicative factor of log (1/&) [58].

The following lemma bounds the error propagation of
the PREP subroutine, which will be useful for our discus-
sion of the overall block-encoding error of the classical
Liouvillian.

Lemma 5 (Error propagation of PREP). Let A =

> o U; be an LCU with o > 0 Vj. Let [PREP) :=

> Ve /alj) with o == Zf o, be the quantum state pre-
pared by the PREP subroutine as defined in Eq. (A1). Let
|PREP) := Zj ¢jlj) be an €/ (Zaﬁ)—precise approxima-
tion to |PREP) prepared by PREP such that |||[PREP) — |PREP) ||
< €/(2a~/29). Given access to the unitary SEL :=
>, U)il®U;, we can implement an e-precise block
encoding of 4.

(A4)

010343-16



IMPROVED PRECISION SCALING...

PRX QUANTUM 5, 010343 (2024)

Proof. First, recall that for any v € C?, it holds that vl = 22 . [v;| < ~/29||vll; = ~/29 ||v]|. Using this inequality

and the triangle inequality, one finds that

| (1017 @ 1) PRE" e REP (10)7 @ 1) — 4]

= Ha ({01 ® 1) PREP'-SEL - PREP (|0)* ® 1) — o ({0 ® 1) PREPT-SEL - PREP (|0)* ® 1) H

— chcU Z’U <aZ

<eXlolfs _\/7‘
cj_@

2
5201@ Z

J

Lemmas 1 and 2 provide upper bounds on the complex-
ity of block encoding the classical Liouvillian in the NVE
and NVT ensemble, respectively. We prove these lemmas
by explicitly constructing a block encoding of the relevant
Leass- The general idea is to block encode each term of
Lelass separately and then combine all the smaller block
encodings to obtain a block encoding of the overall classi-
cal Liouvillian. To do so, we need to know how to multiply
two block encodings.

Lemma 6 (Product of block-encoded matrices ([35],
Lemma 30)). If U is an («,a, §) block encoding of an s-
qubit operator 4 and V'is a (B, b, €) block encoding of an
s-qubit operator B, then (I, ® U)(I, ® V) is an (aB,a +
b,ae + B6) block encoding of 4B.

A linear combination of block encodings can be con-
structed using the concept of a state-preparation pair.

Definition 10 (State-preparation pair ([35], Definition
28)). Let y € C™ and |y|l; < B. The pair of unitaries
(Pr,Pg) is called a (B,b,¢)-state-preparation pair if
PLI0)® = Y21 ¢1j) and Prl0)®* = Y2 d|j) such
that 37, ! ‘ﬂc d; —yj‘ <eand forall j € {m,...,2" —
1} we have c*d =0.

Note that b in the above definition is chosen such that
22 > m. This is necessary to accommodate all m entries of
v. In general, m does not need to be a power of 2. The
condition cj*dj =0 forallj e {m,...,2° — 1} ensures that
we are limited to an m-dimensional subspace of the 2°-
dimensional space of the b register.

For our purposes, it will always be true that P, = Py in
which case we call P; a state-preparation unitary.

Lemma 7 (Linear combination of block-encoded matri-
ces (improved version of Lemma 29, which has appeared

C/

= 20+/2¢ || |PREP) —

offenfi-2
\/% 5201; cj—\/%

[l

[PREP) || < €. (AS5)

in Ref. [35])). Let A = Z —0 y,A be an s-qubit operator
and € € R.y. Suppose that (P, Pgr) is a (B, b, €;)-state-
preparation pair for y, W=} " 01 VI U + (-
Z;”;Ol YD ®I, ®Iis an (s + a + b)-qubit unitary such
that Vj € {0, 1,...,m — 1} we have that U; is an (a, a, €2)
block encoding of 4;. Then, we can implement an (a8, a +
b,ae; + Bey) block encoding of A, with a single use of ¥,

Pp, and Pz.

Proof. We adapt the proof from Ref. [35] by showing
that 7 := (PZ QL ® IS> WPr® L, ® 1) is an (af,a +
b, ae; + Be;) block encoding of A4:

|4 — B (101%2 ® (0% @ 1) W (10)**  [0)* @ 1)

m—1
=|4—aY B (cd) (01 1)U (10> ®1)
j=0

m—1

<ae + ||4 —aZyj ((01* ®1)
j=0

U (10 @1)

m—1

< we + ny ||Aj -« ((O|®“ ®1)
j=0

U (10 1)

m—1

< wae; + E i€
Jj=0

< ae; + Be. [ |
Additionally, we require a bound on the coefficients of

higher-order central-finite-difference approximations aris-
ing from the discretized derivative operators D, and D,
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for the NVE ensemble and D,, D,/, D,, and D, for the
NVT ensemble. The following result provides a higher-
order bound on centered-difference formulas that can be
used for our purposes.

Lemma 8 (Higher-order central-finite-difference
approximation [33]). Let d be an integer and let {x;} with
ke{—-d,—d+1,...,d —1,d} be a set of equally spaced
points on the interval [a, b], i.e.,

X = X0 + h, (A6)
for some % > 0. Furthermore, let f € C***![a,b] be a
function on the interval [a, b] that is 2d + 1 times con-
tinuously differentiable. Then, one can use a linear com-
bination of f (x;) to construct a central-finite-difference
formula of order 2d to approximate /' (V (xo) = "/ (xo), i.e.,

1<
f/(XO) = }_1 k:Z_d Cd,kf (xr) + Rai(xp), (A7)
where
(=D*@n? .
curi= | Kd—rd+ oy 7Y (AS)
0, else.

The remainder term can be bounded as follows:

2d
Ri(xp) € O (xlg[%] [f(2d+1)(x)| (%) ) ) (A9)

In order to provide the cost of block encoding the result,
we need to identify the sum of the coefficients for the finite-
difference formula. Such a bound is given in the following
lemma.

Lemma 9. The coefficients c,; of the central-finite-
difference formula as defined in Lemma 8 satisfy

d

> leaxl <2(nd+1).
k=—d

(A10)

Proof. First, note that for £ 7% 0, we have

(d"?
d—kNd+ k)
dxd—1) x---x(d—k+1)

Tl x@rk—Dx-xd+D
(A11)

Thus,

(_1)k+1 (d|)2
kK (d—RId+k)!

lcaxl =

1
—|. Al2
slk’ (A12)

This implies that

d d d
ETEDD ‘%) =2Z% <2(nd+1). (Al13)
k=—d k=1

k=—d
i#0

|

Finally, let us show how to construct a general
inequality-testing circuit, which will be used repeatedly as
a subroutine for block encoding Lass.

Lemma 10 (Inequality testing). Let a and b be arbitrary
bit strings of length n. Using n + 2 additional qubits and
5n — 2 Toffoli gates, one can construct a quantum circuit
that outputs “0” if and only if @ < b and “1” otherwise.

Proof. Consider the circuit shown in Fig. 3, with bit
strings a and b as inputs. The general strategy is to perform
bit-wise comparisons starting with the most significant
bits and to store the result in an additional qubit |r). To
avoid overwriting the result of the previous bit compari-
son, we use an additional n qubits, |cp),...,|cu—1), as a
clock register. Furthermore, we need one ancilla qubit to
implement triply-controlled-NOT (triple-CNOT) gates from
Toffoli gates. Note that this ancilla qubit is not shown in
the circuit diagram. We need one additional qubit to store
the result of the inequality test. The state of that qubit is
denoted |7) in Fig. 3. The circuit first compares the most
significant bits, ag and by, using a CNOT gate. The second
(triple-CNOT) gate fires only if, initially, ap = 1 and by = 0,
i.e.,if ay > by. In this case, the last qubit, |r), which stores
the result of the inequality test, gets flipped to |1). None
of the remaining triple-CNOT gates fire, since the indicator
state of the clock register, |co) = |1), does not get trans-
ferred to the next clock qubit |c¢;). The same is true for the
case ag < by, 1.e., if ay = 0 and by = 1. However, in this
case, not even the first triple-CNOT gate fires. The indica-
tor state of the clock register gets swapped to |c;) if and
only if ag = by. This is repeated until a; # b; for some
j € [n]. In the worst case, j = n. At the end of the inequal-
ity test, we uncompute intermediate results by applying all
gates except for the triple-CNOT gates in reverse. Using the
fact that a single triple-CNOT gate can be implemented with
three Toffoli gates, we then find that the overall Toffoli
count is equal to 5Sn — 2. |

Now, we are ready to prove Lemmas 1 and 2.

1. Proof of Lemma 1

For convenience, let us restate Lemma 1 here.

Lemma 1 (Block encoding of the discretized classical
NVE Liouvillian). There exists an (oyyg, ayve, €) block
encoding of the discretized classical Liouvillian Liﬁ:f)
with normalization constant

Npmax Ind, n N2 anaxxmax In dp )

eO
QONVE ( — Y A3 hp

010343-18



IMPROVED PRECISION SCALING...

PRX QUANTUM 5, 010343 (2024)

Uncompute

o
"y

VAR
N>

o
'
o
'

|ao)
|ax)
|an—1)
|bo) >
|b1) Y
|brn—1)
lco) = [1) D
le1) = 10) © S5
|c2) = 10)
len—1) = [0)
r) = 0) < &

FIG. 3.

o
'

The inequality-testing circuit U<. The basic idea behind this circuit is to perform bit-by-bit comparison and use an ancillary

qubit, |r), in which the outcome of the comparison is stored. The additional n-qubit register |c) is used to avoid overwriting the results
of the other bit-comparison results. The “Uncompute” part consists of all previous gates applied in reverse except for the triple-CNOT
gates, which are not uncomputed. If a < b, then the final output is |) = |0). Otherwise, |r) = |1).

and a number of ancilla qubits

ONVE

avve € O (1og( ) + logd),

where d := max{d,,d,}. This block encoding can be
implemented using

0 (N log (gaﬂ> + log'°e3 (O[Ni> + dlogg)
€ €

Toffoli gates, where g := max{gy, g,}.

Proof. We block encode LEﬁZSE) via several layers of
“smaller” block encodings, which can be thought of as a
block-encoding hierarchy. More precisely, we apply dif-
ferent PREP and SEL operations in a nested fashion as
summarized in Fig. 4. Let us first give an overview of all
the levels of the hierarchy before discussing the gate and
space complexity.

At the lowest level, we have four types of block
encodings:

(1) Up,,;»an (&, a,,€,) block encoding of Z?;;o Pnj
|]7n,j > @n,} |

) UDXW- ,an (ocDx, ap,, er) block encoding of Dan
3) Uy, o a0 (ay, ay, €y) block encoding of

ax—1
3/2,, —
D " 1Gony = xw )/ (1w — x4 A2) 1% Mo |

En,j =0
4) UDPW_ , an (osz, ap, er) block encoding of Dpw,

Using Lemma 6, we combine U,
Uy, and Up, — to construct

and UDx,,J- as well as

nj

(@) Ugpy),,;»an (@, ap + ap,, apep, + ap,€,) block
. gp—1 — —
encoding of Zp];/. —0PnjPujXPyjl ® Dy,
(b) Uuny,,,;» an (avap,,ay + ap,,avep, + ap,€p)

block encoding of

gx—1
. (xn,j - xn’,j)

2
nj =0 (”xn — x|+ Az)

3/2 |-’_Cn,/‘ )(f}’l,} | ® Dpn,/

The next level of the hierarchy involves two different state-
preparation unitaries:
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10) PREPu; . PREP,
|0)ar PREP,, | SEL,, H PREP],
10} PREP. | SEL. |— PREP!
|0)*p=  — PREPp, |-[SELp, | PREP}, /
|0yar | PREP,, H SEL,, | PREP],
|ay)

n
lap,) PREPp, [ SELp, | PREP],
|‘T’L,j> ELDr

] SEL,
zn,5)
[Pn.s) [SELy | [SELD, |
UD:r, ) Upy U'u ’ ( r/)‘
n,j v, n,n',j !

FIG. 4. The circuit diagram of the block-encoding hierarchy used for implementing a block encoding of L

(a) PREP,, an (o, an, €,) State-preparation unitary that
encodes the nuclear masses

(b) PREPZ, an (az,ayz, €z) state-preparation unitary that
encodes the atomic numbers of the nuclei

Application of Lemma 7 to PREP,, and {U(pr)n,j } as well
as to PREPz and {U(VD,,),, g } yields

(NVE)

(NVE)
Oyin

(a) ULI({{VVE), an ( s Qi
m

. N 3 gp—1
ingof —i}, >, ZﬁZJ:O nj

(NVE)

» €xin ) block encod-

/mn)lﬁn,ﬂ(ﬁn’jl &

Dy, where
NVE
ozliin ) = Ap0pAp,, (A14)
i = am+a, +ap,, (A15)
NVE
e]Em ) = an(oy€ep, +ap.€p) +apap.€, (Al6)

(NVE)
pot

(NVE)

(NVE)
> Apot

> €pot

(b) UL(NVE), an (Ol
pot
of

) block encoding

gx—1

N 3
IZ Z Z Z [ZnZn’ (xn,/' - xn’,j)/

n=1n'>nj=1X%,;=0

3/20— o\ —
X (I1xn = % 1> 4+ A%) 1%, ¥ | ® D,

nj >

010343-

(NVE)
class *

where

(NVE)
pot

(NVE)
pot

(NVE)
pot

o = azoyap,, (A17)

a =az +ay+ap,, (A18)

€ = az(ayep, +ap,€y) +ayap, ez (Al9)
Note that 7 requires all block encodings of the linear com-
bination to have the same block-encoding normalization
constant, which is true in both cases discussed above. More
specifically, all {U(pr)nJ. } terms have the same normaliza-

tion constant. Similarly, all {U(VD,,),, n/,j} terms have the

same normalization constant.
Lastly, we use Lemma 7 once more to combine UL(NVE)
kin
and U VB Since they have different normalization con-
pot

stants, we first need to renormalize both block encodings.
The idea is as follows: if Uis an («, a, €) block encoding of
some matrix 4, then U is also an (a8, a, B€) block encod-
ing of the scaled matrix fA4. This follows straight from
Definition 8. Thus, U L (E) can also be viewed as an

kin
(NVE) | (NVE)
(NVE) | _(NVE) (NVE) , (NVE) %in T %ot (WVE)
Xin T %ot »%n T dpot s (NVE) €xin
kin
(NVE) | (NVE)
Qin T %ot wE) (A20)
(NVE) pot
pot

20
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block encoding of

a(NVE) +a (NVE) N gp—1 »
kin pOt ”J
L7 — ZZ Z |an {1 ® Dy,
kin n=1 j=1 an—O
(A21)
and U o) can be viewed as an
pot
(NVE) (NVE)
(NVE) (NVE) _(NVE) wvE) Yin T pot (NVE)
olkm + c(pot akm +a pot s (NVE) kin
O[km
NV ta (NVE)
Oyin Xpot (NVE)
+ (NVE) pot ) (A22)
Upot
block encoding of
(NVE) (NVE) N g—1
it Sy e
- _WNVE) 5 \3/2
Xin n=1p'>n j=1 %, ;=0 ”xn_xn -+ A )
X X WX j | @ Dy, . (A23)

The following state-preparation unitary is used to recover
the appropriate weighting of the two block encodings:

(a) PREPyyt, an (Qout, dout> €out) State-preparation unitary,

which prepares the state aliﬁVE) /( éﬁVE) I(,ZVE))

NVE NVE NVE
0) + o /(P + N P)]1). Note that oo
= 1 and agy = 1

Using PREP,,; together with
kin
construct U L oE), an (anvE, anve, €nve) block encoding of

class

U wvey and U, ey, we can
L L

(NVE)
L. > Where
NVE NVE
anve = apy )+ o, (A24)
NVE NVE
ayve = ag D +al D + 1, (A25)

(NVE) (NVE) (NVE) (NVE)
Xin T %ot~ wE) |, %in T %ot (wwE)
ENVE = (NVE) €kin (NVE) €pot
kin Olpot
NVE NVE
+ (™ + ™) cou. (A26)
We have eypg < € if
o OVE) B
(NVE) kin
€&in < = “awm NVE) 3 (A27)
akm + apot
o NVE) .
(NVE) pot
€pot = 7D NVE) 3° (A28)
Oyin +a pot
1 € A2
€out =< (NVE) +a (NVE) g ( 9)
Okin pot

It follows from Egs. (A16) and (A19) that the above error
bounds can be achieved by ensuring that

1 o VVE)

kin €
€y = -, (A30)
amep, a ) + sl 9
1 ) B
kin
€n, = NVE) , (NVE) g (A31)
Emp o‘km +o Opot 9’
1 (NVE) c
kin
€m = NVE NVE) O (A32)
OlpOle O[IEm : + 1()0t ) 9
1 (NVE) .
pot
€y < -, (A33)
ozap, alg\rflVE) + agtVE) 9
(NVE)
e, = ——— S (a34)
OlZOlVOtkm + o pot 9
(NVE)
1 o €
pot
€z = NVE NVE) Q° (A35)
OlVOle O[]im : + algot ) 9

Let us now show how to implement the four basic block
encodings, starting with U, ;. Since this is a block encod-
ing of a diagonal matrix, we can use the simplest form of
the alternating-sign trick [54]. To explain this trick in more
detail, let us consider a single computational basis state
associated with the momentum variable p, ;. We require
two additional ancilla registers to implement this trick. The
overall input state can then be written as |0)®% |p,, 110),
with all remaining quantum registers being suppressed for
ease of notation. Let U< be the inequality-testing unitary
from Lemma 10 (see Fig. 3). The circuit in Fig. 5 then
evolves the initial state as follows:
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|0) — — state:
10) mi 211 10y 7,100, (A36)
PREP;, PREP], 2p "
as desired. If p,, ; is odd, then we obtain
107 — o - D
Us Ul S 10) 7,,;)10). (A37)
Po)
The number of PREP ancilla qubits a, determines the
precision, €, of Uy, ;. In particular,
|pﬂog 9p 1 >
1
|0> % Uan - an,] |an (an | =< ZTP‘ (A38)
pn/

FIG. 5. The circuit for implementing the alternating-sign trick.
PREP, prepares a uniform superposition over all computational
basis states |j) of the ancilla register where j € [2%]. The
inequality test U< from Fig. 3 is applied to the ancilla register
and the input variable |p) expressed in binary. The result of the
inequality test is stored in the bottom qubit (“1” if j > p and
“0” otherwise). Next, we apply a Z gate controlled by the least
significant qubit of the ancilla register to the output qubit of the
inequality test. As long asj < p, the controlled-Z (Cz) gate acts
as the identity gate. However, whenj > p, the CZ gate introduces
a minus sign for every second computational basis state of the
ancilla register. This creates an alternating sequence of 1 such
that the contributions of all j > p cancel each other out. Finally,
we uncompute the ancilla qubits.

10)|p,,)10)
PREP, 1 2ap—1lj>|_ )10}
— = P,
2% e

s

= nj ]>an

1
Nz (Z B 0) + Y )P, )10
J
1

cZ
= — | X 10+ Y ) E, I

2p (/<pn,/' ’ J>an ’
vl 1
= — X W+ X W | 1,010

2% (Jf n,j />pn/ /
By D e+ Y ey
AVE Y J>Pnj
x |k)[p,,,;)10)

As usual with block encodings, we postselect on |k) = |0).
If p,; is even, this yields the following (unnormalized)

Note that a, should be equal to the number of qubits
used to represent a single momentum variable (otherwise,
the inequality test does not work). Increasing a, there-
fore requires us to (temporarily) blow up the momentum
values as well. The above calculation shows that U, . 1=

PREP; - SEL,, - PREP,, where
-1
PREP, |0) := 2 \/2717[]'), (A39)
SEL, := UL.cz- U, (A40)
provides an (o, a,,€,) block encoding of Z __0 Dnj

[P XP |, inwhich ), € O (pmax) and ), € O (log (pmax/
Gp)). The precision, €,, is determined by the overall error
tolerance €, as shown in Eq. (A30), which implies that

) (NVE)

+
a, €0 <log (oemoer kin (NVE)pOt pmax)) . (A41)
Okin €

Since PREP, only requires Hadamard gates but no Tof-
foli gates, the Toffoli complexity of U, is equal to the
Toffoli complexity of SEL,, which is in O (ap) due to the
inequality testing.

The implementation of Uy, yjo A0 (ay,ay,€y) block
encoding of ’

gx—1
. (xn,j - xn’,j)

%, =0 (Ilxn — x> 4+ A2)

3/2 |)_Cn,] )(3_6}’!,] |’ (A42)

is also based on the alternating-sign trick. Using
PREPy|0) := 2 . 1(1/\/2‘”’)|l we test the following
inequality:
—\3
P(I%0 =%l +87) < Gy =) (A3)

where A € N such that A = Ah,. Note that ay €
O(Xmax / A3). The number of ancilla qubits ay is again
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determined by the allowable error. More specifically, ay €
o (log (xmax/ A36V)). The precision €y is determined by
the overall error tolerance € as shown in Eq. (A33), which
implies that

(NVE) + o (NVE)
coll kin Opot  Xmax ) Add
ay ( 0g <O!ZOZD,, o V7B Ade (A44)

pot

To determine the correct sign, we also need to test x,,; <
Xy j, which has Toffoli complexity in O (log (gy)). The
advantage of testing Eq. (A43) rather than

(J_Cn,j _)_Cn’,j)
_ _ —\3/2
(I = 5wl +87)

directly is that we do not have to calculate fractions
containing square roots. However, the inequality test in
Eq. (A43) does require us first to compute the left-
and right-hand sides of the inequality using O(1) quan-
tum Karatsuba multiplications. This can be done using
O ((a V)1°g3) Toffoli gates, whereas the inequality test itself
requires only O (ay) Toffolis [59].

Next, let us explain how to construct a block encoding
UDw of the discrete derivative operator DXW. of order 2d,.
The idea is to apply a linear combination of 2d, unitary
adders to the |x,;) register as shown in Fig. 6.

Let

1<

(A45)

where {cy4, «} are the finite-difference coefficients as given
: R —
in Lemma 8 and cq, := ) ;" , lca k|- Then, Up,,, =

PREPEX SELp, PREPp, is an (ap,, ap,, €p, ) block encoding of

Dy, ;, where

n,

2(nd, +1
ap, = b < (Ind, +1)

.= A48
S (A48)

(see Lemma 9) and ap, € O (log (d,)). The error €p, stems
solely from the state-preparation error associated with
PREPp, . Lemma 5 implies that we need to prepare the state
PREPp_|0) within error

D ¢ 0( hxép, ) (A49)
Ole\/d_x In (dx)\/d_x .

Such a general quantum state preparation has Toffoli cost
in O (d; log (In (d\)v/dx/h.€p,)). By Eq. (A31), this is in

(NVE) (NVE)
o + o In (d)/d, 1
I9) (dx IOg (amap kin pot n (dy) _)) ‘

(NVE)
kin hx €

(A50)

A single unitary adder requires O (log (g,)) Toffolis where
g, 1s again the number of grid points for a single posi-
tion coordinate. Additionally, we need O (logd,) Toffolis
to implement a controlled version of the adder controlled
by the PREP, register.

—0—9

T
PREPd

PREPp, |0) : Z Cd" (A46)
k=—dy
SELp, : Z ) k|®Z|x— WX,  (A47)
k=—d,
|0> - ‘
|0> - ‘
PREPg
10) — T
[Znj0) ———————— —

[T, j1) ——————— —
ADD —d

|Tn,j Mo 91) ——————————— —

ADD—d, + 1

ADD +d.

FIG. 6. The circuit for implementing a central-finite-difference operator of order 2d,. ADD + j, with j being an integer, is a unitary

adder of the form ) - [x — j }(x|.
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In total, we therefore require

(0] (dx (log dy + log g,

NVE NVE
| a4+ N n (d,)/d; 1
+ log | ana, ) P Z
X

kin

(A51)

Toffolis to implement U, Dy -
We implement Up,, »an (ap,,ap, , €p, ) block encoding

of the discrete derivative operator Dy, . of order 2d,, using
exactly the same strategy as for UDan- . This implies that

2 (Ind 1
ap, < (np+)

< A (A52)

and ap, € O (log(d,)). As before, the error €p, stems
solely from the state-preparation error of PREPp, . The Tof-
foli cost associated with preparing the state PREPp,|0)
within sufficiently small error is then in

(NVE) (NVE)
i’ + &l 1n () /d, 1
0 (d,, log <azaV Kin pr_ 1)V -)) :

(NVE)
kin hl’ €

(A53)

In total, we then require

(0] (dp <log d, +logg,

a]i]i\r/‘VE)+ar()](\J/tVE) ln(‘&)\/@l)))

(NVE)
O[pot ]’lp €

+ log (OlzolV

(A54)

Toffolis to implement UDp,./ .

Now that we have shown how to implement the four
basic block encodings, U,,W., UDXW- s UVn,n’,/ , and UDpn,; , We
can combine them. More specifically, we multiply U, .
and UDx,,J- to obtain Up,p,), ;. This can be done at no extra
Toffoli cost by simply keeping the ancilla qubits separate
and applying the two block encodings consecutively. The
same is true when multiplying U Vo s and UDp,,,,- to obtain
UDp), ;-

Next, let us explain how to implement PREP,, an
(ot am, €,1) State-preparation unitary, which we define as

follows
N m 1<
PREP,,|0) := Z ln) ® 5 Z i),  (AS5)
n=1 " j=1
where
1 3N
m = — A56
* Z my, Mmin ( )

The above definition implies that a,, = [log N + [log 37.
It follows from Lemma 5 that we need to prepare PREP,,|0)
within error

€m cO <mmin€m> (A57)
am«/ﬁ N\/N ’

Such a general quantum state preparation has Toffoli cost

in Ref. [60]
0] <N log (m ]YE )> . (A58)

By Eq. (A32), this is in

(NVE) (NVE)
Qyiy T N 1

O [ N log [ aop, =—0 ). @As9)
Qin Mmin €

We use PREP,, together with U,p,

)y to implement U L) -

This can be done efficiently with the help of two addi-
tional ancilla registers, which we call “SWAP registers”
[28]. Controlled by the PREP,, register, we swap the appro-
priate position and momentum variables into the two SWAP
registers. This allows us to apply the block encodings
Up,, and Up,,, only once (to the SWAP registers hold-
ing the appropriate position and momentum variables)
rather than 3N times (to each individual position and
momentum variable). However, we do require a total of
O (Nlog(g)) SWAP operations, where g = max{gy,g,},
implying O (N log (g)) Toffolis.

U () can be implemented following the same strategy.

po

L
We have
N N 3
[z, [7/ 1
PREP|0) = Z _|">®Z —"In’)®—ZU),
n=1 z n'=1 4 ﬁj:]
(A60)

an (az, az, €z) state-preparation unitary with

oy = Z Z,Zy < 3N*Z2,

n,n j

(A61)

ax*

The above definition implies that az = 2[logN] +
[log37. Importantly, it is a product state, meaning that
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S oot NZulZIn), Yoh_y JZ,/Z|n'), and Y3, |j) can be
prepared individually. It follows from Lemma 5 that we
need to prepare PREP,|0) within error

(A62)
Preparation of such a product state has Toffoli cost in
O (N log (NZunax/€2)). By Eq. (A35), this is in

(NVE)

(NVE)
Oy +a NZpax
0 (N log (aVaDp e )) (A63)
o

pot

We use PREP; together with Uwb,), ; to implement U | (NVE).
pot

This can be done efficiently with the help of seven SWAP
registers, six for the six nuclear-position variables appear-
ing in (x,; — xn/,,')/(||x,, — x>+ A2)3/2 and one for the
nuclear-momentum variable of D), . . As before, this allows
us to apply the block encodings UVn,n/j and UDp,,,,- only
once (to the SWAP registers holding the appropriate posi-
tion and momentum variables) rather than 3N? times and
3N times, respectively. However, we again require a total
of O (N log (g)) SWAP operations, implying O (N log (g))
Toffolis. To ensure that we exclude terms where the nuclei
are the same, i.e., n = n’, and also avoid double counting,
we perform an inequality test on |n) and |n’) and store the
result in an ancilla qubit. The corresponding Toffoli cost is
in O (logN).

Lastly, we use the (ctout, @out, €out) State-preparation uni-
tary

(NVE)
Oyin | 0)
(NVE (NVE)

PREP ¢ | 0) = —NVE) |, _(NVE)
Okin + O‘pot

(NVE)
pot

(NVE) (NVE) 1)

+ S <t
O(kin + apot

(A64)

together with UL(NVE) and UL(NVE) to construct UL(NVE), an

kin pot class
(oyvE, anve, €nve) block encoding of Léﬁ:f). As mentioned
before, oy = 1 and agy = 1. It follows from Lemma 5
that we need to prepare PREP,|0) within error €,,. Such a
general quantum state preparation on one qubit has Toffoli

cost in O (log (1/€ou)). By Eq. (A29), this is in

(NVE) (NVE)
Oy + o
0 (10g ( kin pot )) ) (A65)
€
Combining all of the previous results, we find that
Pmax Ind, ) Zrznaxxmax In dp
e O(N N . (A66
e ( o by T Ay, ) BO9)

Furthermore, ensuring ey < € requires

ayve = ap +ay+ap, +ap, + an +az+1

€0 (log (aZVE> + log (dy) + log (dp) + log (N))

Pmax Indyx 5 Zrz‘,laxxrmlx Ind,
cO|1 N N
( o8 ( Mmin * A3 hp

o)

block-encoding ancilla qubits, where d := max{d,,d,},
and

0 (N log (gaNVE) + log'e? (aﬂ) +dlog (g))
‘ ‘ (A68)

(A67)

Toffoli gates. |

2. Proof of Lemma 2

For convenience, let us restate Lemma 2 here.

Lemma 2 (Block encoding of the discretized classical
NVT Liouvillian). There exists an (ayyr, ayyr, €) block
encoding of the discretized classical Liouvillian Lgl\gsn
with normalization constant

aNVT c 0 (N pr/na); ln dx Nz Zrznax);max hl dp/
MminSpmin hy A hp/
Ps,max In ds
(O

2
P NpksT\ Ind,,
+ (N 'ma;( - + A 7
MminSyin Smin Ds

and a number of ancilla qubits

anyr € O (log (@) + 10gd> ,

where d := max{d,,d,,d,,d,}. This block encoding can
be implemented using

0 (N log (gOZWT) + log'e? (@) + dlogg)

Toffoli gates, where g := max{g,, g,’, g, p,}-

Proof. Lemma 2 can be proved analogously to Lemma
1 via a modified block-encoding hierarchy. Here, we only
give a brief summary of the construction. At the lowest
level, we now have nine types of block encodings that
we can express as functions of «yy7. Note that the result-
ing upper bounds on the individual block encodings are
somewhat looser than the corresponding bounds used in
the proof of Lemma 1. However, this does not affect the
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overall Toffoli or ancilla complexity. With this in mind, we
list the lowest-level block encodings below:

r—1
(1) Up’;’/, an (o, ay,€,) block encoding of Z;%J:o

& pr /(5 + Smin)?) P }P), | ® [8)], where

Prnax
oy € o <K§r2mn) , (A69)
ay €0 <1og (“NVT)) , (A70)
€
ep,e0< € ) (A71)
aNyT

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The resulting Toffoli cost is

in O ((ap/)1°g3), which is dominated by the cost
of implementing quantum Karatsuba multiplication
with a,,r qubits [59].

(2) Up,,,, an (apy ap,, €p,) block encoding of D

nj?

where
Ind,
ap, € 0( ; ) (A72)
ap, € O(logd,), (A73)
én. €O (L> . (A74)
ONYT

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
isin

o) (dx (logd. +logg, +log (“NT”») . (A75)

which includes the cost of implementing a
controlled-unitary adder on logg, qubits and the
cost of preparing a state encoding the 2d, coef-
ficients of the central-finite-difference formula of
order 2d,.

3) UVn!n,J,, an (ay,ay,€y) block encoding of >

32
(an - xn’,j)/(”xn - xn’||2 + Az)

gr—1
Xnj =0

X, XX, |, where

ay €0 (XZ§X) , (A76)
ay e 0 (1og (“’ZVT)) , (A77)
ey eO (a;V) . (A78)

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is

“)

®)

(6)

010343-26

in O ((ay)'*#?), which is dominated by the cost
of implementing quantum Karatsuba multiplication
with ap qubits.

Up, ,an <osz,, ap,» er/> block encoding opo;w,,

nJ

where
Ind,
ap, € 0< hpf ) , (A79)
ap,, € O (logd,), (A80)
GD/€O< ) (A81)
4 oaNyT

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

O (dy (logdy + logg, + log (“Z 7)) (as2)
which includes the cost of implementing a
controlled-unitary adder on logg, qubits and the
cost of preparing a state encoding the 2d, coef-
ficients of the central-finite-difference formula of
order 2d,,.

Up,»> an (ap,, p, €,,) block encoding of Y- ps[p,)
(p,|, where

p, € O (Pomax) » (A83)
a, €0 (1og (@)) , (A84)
€. €0 <a;w) . (A85)

It can be efficiently implemented using the
alternating-sign trick. The associated Toffoli cost is
in O (ay,).

Up,, an (ap,, ap,, €p,) block encoding of D, where

€0 Ind,
(07
Dy )

ap, € O(logd),

eDSeO< € ) (A88)
anyr

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
isin

) (ds (log d, + log g, + log (“Z VT))) . (A89)

(A86)

(A87)

which includes the cost of implementing a
controlled-unitary adder on logg, qubits and the
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(N

®)

)

cost of preparing a state encoding the 2d, coef-
ficients of the central-finite-difference formula of
order 2d;.

. gp—1
Usnj, an (as, ag, €5) block encoding of —

ﬁn,j =0
>0 292, /(5 + $min) [P, NPy | © [5)5], where

p2

o €0 (%) , (A90)
MminSyin

ay € 0(1og (“ZVT)), (A91)

6360< € ) (A92)
aNpT

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is
in O((as)1°g3), which is dominated by the cost
of implementing quantum Karatsuba multiplication
with ag qubits.

Uy, an (a1, ayys €1/5) block encoding of Zf;f)]
(l/S + Smin)|§><§|’ where

1
a1 € 0( ) (A93)
Smin
ay, €0 (1og (@)) , (A94)
el/seO< € ) (A95)
aNpT

It can be efficiently implemented using the
alternating-sign trick together with quantum Karat-
suba multiplication. The associated Toffoli cost is

in O ((a1/5)10g3
of implementing quantum Karatsuba multiplication

with ay /s qubits.

), which is dominated by the cost

Up,,, an (aDPs’aDPS’EDPS) block encoding of D, ,
where

Ind,

ap,, €0 ( - "‘) , (A96)
Ps

ap,, € O (logd,,), (A97)

en, €05 (A98)
e aNyT

It can be efficiently implemented via a linear combi-
nation of unitary adders. The associated Toffoli cost
is in

) (d,,s (1og d,. +logg,, + log (“Z VT))) , (A99)

which includes the cost of implementing a
controlled-unitary adder on logg, qubits and the

cost of preparing a state encoding the 2d, coef-
ficients of the central-finite-difference formula of
order 2d,,,.

We then use Lemmas 6 and 7 to combine the above block
encodings. This requires the following state-preparation
unitaries:

(@)

(b)

(©

PREP,,,, an (&, a,, €,) State-preparation unitary that
encodes the nuclear masses, where

()
o, €0 ,
Mmin

am € O(logN),

€ € 0( € ) (A102)
oNyT
The Toffoli cost of this state-preparation unitary is in
(0] <N log (aNVT>> .
€

PREPz, an (oz, az, €7) state-preparation unitary that
encodes the atomic numbers of the nuclei, where

(A100)

(A101)

(A103)

(A104)
(A105)

az € O(N*22,).,

max

az € O(logN),

GZ€O< € ) (A106)
aNyT

The Toffoli cost of this state-preparation unitary is in

(0] (N log (O”ZVT» .
pREPY/T

out > A (Qout, Aout, €out)  State-preparation uni-
tary that is used to combine all terms of the NVT
Liouvillian, where

(A107)

Oout € O(I)a
Aoyt € 0(1)9

eout60< € ) (A110)
aNyT

The Toffoli cost of this state-preparation unitary is in

0 (102 (%¢7)).

(A108)
(A109)

(A111)

As before, we utilize O(1) SWAP registers to com-
bine the individual block encodings efficiently. Con-
trolled by the PREP,, or PREP, register, we swap the
appropriate nuclear-position and -momentum variables
into the SWAP registers. This allows us to apply the

010343-27



SOPHIA SIMON et al.

PRX QUANTUM 5, 010343 (2024)

nine basic block encodings only once to the SWAP reg-
isters holding the appropriate position and momentum
variables rather than O (N) or O(Nz) times to each
individual position or momentum variable. However,
we do require a total of O (N log(g’)) SWAP opera-
tions, where g’ = max{g,, g} < g = max{gy. gy, & 8.
implying O (N log g) Toffolis.

Going through the same analysis as for the clas-
sical NVE Liouvillian yields the desired complexity
bounds. ]

APPENDIX B: EVOLUTION UNDER THE
ELECTRONIC LIOUVILLIAN

As an analytic expression for the electronic ground-
state energy E, is unavailable, we cannot follow the same
strategy as described in Appendix A for the nuclear part
to implement e’ In particular, we somehow need to
approximate the derivative dE/dx,;, which we do via a
central-finite-difference formula of order 2d,. Recall from
Eq. (20) that the resulting approximate operator is given by

| K
oLy Y Y Y

¥ k=—de (' j)#E()) Xy i1 Ty

x Eg ({xn’,j/}a Xp; + khx) |)_Cn/,/"><)_cn’,/"| X |)_CnJ ><-fnJ [,
(B1)

where the coefficients {c4, } are as in Definition 1.

We prove the following lemma, which upper bounds the
complexity of simulating e~"e!’,

Lemma 11 (Complexity of simulating e
the following:

—ilal) - Assume

(1) Lete € (0,1) and f € R,.

(2) Let Uy, be a Hermitian (A, del, hihy€/36Nd,1)
block encoding of the electronic Hamiltonian
He ({xn}).

(3) Let y be a lower bound on the spectral gap of the
block-encoded operator H ({x,}) over all phase-
space grid points.

(4) For any d, € N4, it holds that max «g_, . sy

‘(3(2de+l)Eel/3x$,"e+”)(x*) < yxu?4*tl for some

constant x with units of energy and u with units of
inverse length.

(5) Let U; be the initial-state-preparation oracle from
Definition 9 and let § be a lower bound on the initial
overlap with the true electronic ground state of Hy.

In order to implement an e-precise Liouvillian simulation
unitary Uy, of e~"<i with success probability at least 1 — &

it is sufficient to query Uy, a total number of times

Nd,\ [ it Niln (d,)t
O Nd,.1 1 _
( Og( £ )(hxhp * °g( e )

Nd, log (N—?,f;[fi“)’)

x log
€
A Nd,
| B2
+y8 og((Se))), (B2)
where
log N yut
d, €0 M (B3)
log (u_/lu)
Furthermore, we require
Nd, Nd, Nd,
0 1 1 B4
(e (F)(5e))

queries to the initial-state-preparation oracle U; from
Definition 9.

As mentioned in the main text, one important feature of
the electronic Liouvillian L is that all summands com-
mute with each other (see Definition 5). The evolution
operator associated with L, can thus be decomposed as
follows:
~i(i X0, S D@D}, )

—iLeit — Pnj

e e

DeLoDpl ¢
=[]e" " (B5)
nj

where we use p,; to denote either a real or virtual momen-
tum variable.

Let us now explain how to implement a single expo-
nential appearing in Eq. (B5). Note that D,fj ® Dzlm,/ acts
nontrivially on the nuclear-momentum register. We deal
with the discrete nuclear-momentum derivative Dll,w_ via
a quantum Fourier transform (QFT) the action of which on
the nuclear-momentum register is defined as follows:

1 _
QFT|p) := —— § :ezﬂlpl/gpu). (B6)
V& 5

Here, we have dropped the n,j indices of the integer
momentum variable p for ease of notation. The quantum
Fourier transform diagonalizes finite-difference operators.
Recall that D! is a first-order finite-difference operator of
the form D' := 1/2h, > 5 (p = 1)pl = [p)p — 10). Thus,
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D' = (QFT QFT ') Dy (QFT QFT ')

= QFT (QFT™'D;QFT) QFT~

1

_ 2ilk/gy 2milK /g |P Ll = p)p - 11, 1
=QFT | — 4 v |1 I'XK| | QFT
Q ZZZ@ e |I)k| o, Ik | @
P Lk UK
1 e~ 2l p=1)/gp 2nIPK [gp _ o=2milp/gp 2niP-DK [gp _
=QFT| ——=) > o DK ] QFr™!
A P
eZnil/gp _ e—2nik’/gp .
— OFT Ji kl 2mip(k'=1)/gp FTfl
Q %, e | 2 e Q
LK iz
sin (27‘[1 / gp) .
=QFT|i )y ———=|I{I||QFT . B7
( ; o (B7)
[
The above calculation shows that QFT does indeed diago-  and )", P, = 1, we obtain
nalize D'. Higher-order finite-difference operators can also
be diagonalized via QFT but will have different eigenval- 4 ® P
ues. For simplicity, we only consider a first-order finite- 1_[ NP = 1_[ Z r "
difference operator here. A single exponential of Eq. (B5) [ k=0
can then be expressed as follows: _ l—[ (]l &1+ ( A 1) ® Pz)
Db, _ pien), i _IL®IL+Z —1)®P=18®1
g oy, O] iy AP —1 P
— @ @arn T + "er—10) P
1 I
x (1 ® QFT™!
( ) =Y e gPp. (B10)
el ®sm (271//gp) e ]
= (1 ® QFT) H e
|
x(1® QFT_I) , (BY) Lemma 12 implies that
1 l sin (ZJTI/gp)
I eDnl pn7/ (]L ® QFT) Z nJ hp
where we have used the fact that Ue? U = YY" for any
square matrix 4 and unitary matrix U of the same dimen- N 1
sion. The following lemma allows us to simplify the above ® [IX1] (1 ® QFT ) : (BID)
expression. . | J
Lemma 12 (Projector exponential). Let {A;}}1, with 4; € ~ Recalling that Dy, =1/hc Y2, > o ; Cdo kel (Xn,

CM>M be a set of M matrices and let {P/}}, with P; €
CM>M and P} = P, forall ] € [M]be aset of M orthogonal
projectors that satisfy ), P; = 1. Then, it holds that

(B9)

[[¢er =Y " er,
/ i

Proof. Using the Taylor-series expansion of a matrix
exponential and the fact that P,2 =P, PP =0if k#£1

+ kh,)|X,; )X, |, we obtain the following equality:

De' D!

® Pn,}t

Eg) (xp j +khx) sin (2711/gp)

= (1 ®QFT) Y Z [Te e ™ T

Xnj k

|(1®QFT™').

X (% Yy | ® |11 (B12)

We implement the above expression via controlled Hamil-
tonian simulation.
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Definition 11 (Controlled Hamiltonian simulation ([61],
Definition 51)). Let M =2’/ for some J € N, y € R and
€ > 0. We say that the unitary

M
W= Z |m)(m| @ ™1

m=—M

(B13)

implements a controlled (M, y) simulation of the Hamil-
tonian H, where |m) denotes a (signed) bit string
|bsby_i ...bo) suchthatm = —b,2’ + /20 b; 7.

Lemma 13 (Complexity of controlled Hamiltonian sim-
ulation ([61], Lemma 52)). Let M =2’ for some J € N,
y € R and € > 0. Suppose that U is an («,a,€/|8(J +
1)>My|) block encoding of the Hamiltonian H. Then,
we can implement a (1,a + 2,¢€) block encoding of a
controlled (M, y) simulation of the Hamiltonian H with

O (laMy|+Jlog(J/e€)) (B14)
uses of controlled-U or its inverse and with O (alaMy| +
aJ log (J /€)) two-qubit gates.

Before applying the above lemma, we first use coher-
ent quantum arithmetic to compute an egp,-precise binary
approximation of sin (27//g,) in an ancilla register con-
trolled by the |/) register. This can be done using a trun-
cated Taylor-series expansion of the sine function and has
Toffoli cost in O (log (1/€si,)) since the error of the trunca-
tion vanishes exponentially quickly. The size of the ancilla
register is also in O (log (1/¢€4n)).

Controlled by this sin (27//g,) ancilla register, we then
simulate exp (—iHel ({x. D) fck,z) using Up,, a Hermitian
(X, ael, €ve) block encoding of H,j, where

sin (27!
lo = cde”‘Mz (B15)
. hy h,

is a rescaled time variable depending on the finite-
difference coefficients {cy4, i} of DZ]/ For convenience,
let He =2 ({0] ® 1) Uy, (|0) ® 1) denote the Hermi-
tian matrix that Uy, block encodes. This implies that
”Hel - Hel” = €pe-

Note that Lemma 13 applies to integer values of m,
which translates to integer values of sin (27Tl/gp) in

our case. Hence, we need to “blow up” the values of
sin (2yrl/gp) by a factor of O (1/€sy,). This then entails
a renormalization of the exponent by a factor of O (egy),
which can be done via a rescaling of the form y — €’y for
an appropriate € € O (&n).

The general strategy is first to shift the nuclear-position
register of a single nuclear-position variable X,; accord-
ing to the finite-difference scheme of order 2d,. This is
done using a unitary adder. Then, we (approximately) pre-
pare the ground state |y {x,}) of H, controlled by the
entire nuclear-position register |{x,;}), in the electronic
register. Next, controlled by the entire nuclear-position
register |{x,;}) and the Fourier-transformed momentum
register associated with the one-dimensional (1D) momen-
tum variable p,,;, /), we apply exp (—iHe ({x,}) fe,.) to
the electronic register. This generates states of the form

Eq) (¥ j +khx) sin (271/gp)
k hx Tip

icy,
e e

%y + R, (B16)
Finally, we uncompute the electronic ground state. Now
we simply repeat the above procedure for each stencil point
of the finite-difference scheme. More precisely, we shift the
nuclear-position register of the 1D nuclear-position vari-
able of interest, x,;, to the next stencil point, prepare the
electronic ground state for that nuclear configuration, and
then apply exp (—iHe ({x,}) ch,l) to the electronic register.
In the last step, we shift the position register corresponding
to x,,; back to the original state to obtain the desired phase
factor,

Eg) (enj +Khx) sin (271/gp) ,
”x X))

1—[ eicde,k

k

(B17)

—iLet jg summarized

The overall procedure for simulating e
in Algorithm 3 as well as Fig. 7.
One might consider using the gradient-computation

algorithm developed in Ref. [62] to compute Dne} in the

exponent. The hope is that O(N 1/2) rather than O (V)
evaluations of the electronic ground-state energy are suf-
ficient. However, a straightforward application fails in our
case, since we have to compute the gradient in super-
position over all nuclear positions. This is problematic

w w1

| eiHater 1 [

0) —— H .

w w1
|Z1,1) ] e Hette_ 11 [
‘ﬁl,l) QFT

FIG. 7.

The circuit for implementing the evolution under the electronic Liouvillian for a single nucleus in 1D. The top register

corresponds to the electronic register. “—1” denotes a unitary adder of the form ) - |x 4+ 1)X| and, similarly, “42” denotes a unitary

adder of the form ) - [x — 2)(X|.
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because the gradient-computation algorithm produces dif-
ferent global phases for different nuclear positions, i.e., the
global phases become local phases that cannot simply be
ignored. Uncomputing these local phases is nontrivial and
is left for future work.

Both the simulation of exp (—iHel ({x. D) tck,,) and the
electronic ground-state preparation require access to Uy, ,,
a block encoding of H ({x,}) as given in Definition 11.
For the ground-state preparation, it is important that Uy,
is a Hermitian block encoding, meaning that H.; is Hermi-
tian. This is discussed in more detail in the proof of Lemma
11. Note that the only way in which the nuclear positions
{x,} enter the electronic Hamiltonian is via the phase fac-
tors of the electron-nucleus interaction terms. In Ref. [28],
the nuclear positions are accessed via a quantum random
access memory (QROM). The phase k. - X, is computed
in an ancilla register, which is then hit with a phase gra-
dient to produce the phase factor exp (ik.—p - x,). In our
case, instead of using a QROM to access x,, we swap the
nuclear-position register |x,) into an ancilla register and
compute k._; - X,. The swap is controlled by the ancilla
register preparing the state ZnNz_ol ~/Z,/Z|n) that is needed
for block encoding the electron-nucleus interaction terms.
The Toffoli cost associated with the controlled SWAP gates
is in O(N), which matches the complexity of the original
QROM model. Apart from accessing the nuclear positions
differently, we can employ exactly the same techniques as
presented in Ref. [28] to block encode Hy ({x,}), which
leads to the complexity expressions of Lemma 3.

Let us now discuss the electronic ground-state prepara-
tion in more detail.

Definition 12 (Fidelity). Let |x),|y) € C*'**" be two
quantum states. The fidelity F(x,y) between |x) and |y)
is given by

Fx,y) == [(xy)]. (B18)

Lemma 14 (Ground-state preparation with a priori
ground-state energy bound ([43], Theorem 6, refor-
mulated)). Suppose that we have a Hamiltonian H =
> Exli )Xk | € CV*N where Ey < Ej41, which is given
through its (A, m, 0) block encoding Uy . Also suppose that
we have an initial state |¢o), prepared by a unitary Uy,
together with a lower bound on the overlap |[{Y¥o|¢o)| >
8. Furthermore, we require the following bound on the
ground-state energy and the spectral gap: £o < u — y/2 <
®+y/2 < E,, where u is an upper bound on the ground-
state energy and y is a lower bound on the spectral gap
of H. Then, the ground state |y) can be prepared with
fidelity at least 1 — €pyep using

A 1
O —log
yé 8€prep

(B19)

queries to Uy and
(B20)

queries to Uj.

We are now ready to prove Lemma 11, which pro-
vides an upper bound on the complexity of simulating the
evolution under the electronic Liouvillian.

Proof of Lemma 11. The error in approximating e
consists of two parts. On the one hand, there is the
simulation error €, which arises from_approximately
preparing the exact ground state |y) of He and approx-
imately implementing exp (—iHel ({x}) t%;). On the other
hand, we have the discretization error €4 associated
with the finite-difference matrix D,f; of the derivatives of
the electronic ground-state energy and the finite binary
representation of sin (27r//g, ). Let L¢ denote the approx-
imate discrete electronic Liouvillian. Then, the overall
error associated with simulating e~Z¢!’ is upper bounded
as follows:

—iLet

||(<0| QL) Up, (10)® 1) — e—iLe1t||
< |01 Uy, (10) & 1) — e

+ He—zi;]t _ oiLet

< €sim T+ ||ZV61 - Lel“ t

< €sim T €discl, (B21)

where we have used Duhamel’s formula in going from the
second to the third line. The overall error is less or equal
to € if we ensure that €5, < €/2 and €g4i5c < €/(2f). Recall
that L. is a sum of 3N commuting terms and that each term
involves a central-finite-difference formula of order 2d,.
Thus, a total of 6Nd, exponentials need to be implemented.
We first discuss the simulation error €, ; of a single expo-
nential. By the triangle inequality, if €gm; < €/(12Nd,),
then €4y, < €/2. Let W denote the unitary that prepares an
approximate ground state of H,, for fixed nuclear positions
according to Lemma 14, i.e.,

W% 110) = %0y Do (, (1) (B22)

with

|<JO ({an }) |$O ({xn,j })>| >1- €prep- (B23)
Note that we can view Up,, as an exact block encoding of
H,;, which allows us to use Lemma 14 directly without fur-
ther error propagation. In the following discussion, we will
refrain from writing out the ({x,, J }) dependence explicitly.
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Now, it holds that

B0 = (1= epp) [T} + BTG (B24)

for some angle o € [0,27), 0 <€ . < €prp and 18> =

prep —
2
/ / / :
2650, — <eprep) < 2€,, Letting

W) := € [10) (B25)
we thus have that

Né0) — 190) | < v/2€prep-

Let Ue ¢ be an €. ¢ -precise block encoding of

(B26)

Z [ I0{Xa} ® | sin (271/g,) Xsin (271/g, )| @ e~ et
(xnh!
(B27)

and let U := ((0] ® 1) Uer (|0) ® 1) denote the block-
encoded approximation to the above operator. Our goal
is to bound the error of the phase factors obtained via
phase kickback from the electronic register, i.e., we wish
to bound

€sim1 = (1 ® (O) W' UeaW (1 ® 10))

B Ze—iEel({Xn,/ })tfk'll{)_cn}X{)_Cn}l )

{xn}

(B28)

for fixed 7, ;. Note that the above definition implies that
the electronic register is projected out to the |0) state at the
end of the simulation. In other words, the error €, 1 is only
measured within the Hilbert space of the nuclear-position
and -momentum registers but not the electronic register.
Importantly, the error matrix

Eim1 = (0] @ 1) W' U W (10) ® 1)

_ Z e—iEel({xn,j })t"kvl | {)_Cn}><{)_cn}|
{Xn}

(B29)

is diagonal in the nuclear-position and -momentum basis,
since W and U, act trivially on the nuclear-position and
-momentum register. Hence, € is simply the largest
value on the diagonal of &, ;. This allows us to consider
the phase error for each nuclear computational basis state
separately. Let

AUe,el ({xn}s tck,l) = (<{)_Cn}|<51n (ZNZ/gp)| ® ]l) ZJ]e,el
x (1{x.})|sin (271/g,)) ® 1)  (B30)

denote a single exponential of l~/e,e1 for fixed nuclear posi-
tions {x,} and Fourier parameter /. Similarly, let W ({x,})

denote the electronic ground-state-preparation unitary for
fixed nuclear positions {x,}. Then, we have that

€sim, = max O (o) Ter (1 ) W (2} 10)

_iEeltck,l({xn )

— e

< mas |7 () Do (30}, 1) 7 (L) 10

_ e*iEelfck,l({xn})lo) H ) (B31)

In the following, we will not write out the {x,} and
[ dependence explicitly. Applying the triangle inequal-
ity repeatedly and using the submultiplicativity of the
induced 2-norm, one finds the following upper bound on
the approximation error for a single exponential:

€im1 < [ UeaW)0) — el |0) |
< W Tea®0) = W' Uearl¥rg) |
+ |7 Uil g) — e et 0) |
< [l1g0) — 1¥9) |
| W Tl prg) — Wt Beter )

+ Wilefiieltck |w(/)> _ efiEeltCk |0> H
< Ve + | Veatliy) — e By

4 W—l e—iEeltck |‘//6) _ W_le_iEeltCk hlf(/))

+ || te e [y — e Ekj0) | (B32)

The second term is upper bounded by the block-encoding
error € ¢ of Ue ;. Duhamel’s formula can be used to upper
bound the third term:

1 ,—iE, —1 —iEelc
[ rte Fae gy — w1ty

< ‘e*iEcllck _ e*iEcllck

=< |§eltck

- Eeltck|

~ t
= |Eel - Eel| 7

. B33
i (B33)

Now recall that ||F161 — Hel” < €pe. Eigenvalue perturba-
tion theory then tells us that [63]

|Eel - Eel\ =< €be- (B34)
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For the last term, note that

|7 wg) — 10) | = | wgy — w0y
< W [1we) = moy||
= [l1w6) — 190) |
< V2¢€pmep- (B35)

Putting it all together, we find that

it < 2y 26 + et + ﬁebe (B36)
To achieve €gm 1 < €/12Nd,, it suffices to have
1 € 2
e =3 (72Nde) ’ (B37)
ol S S (B38)
€be = 3h6]}\l/d€t (B39)

Next, let us discuss the discretization error €4isc 1 of a single
term of L. Let EDel denote the error tolerance associated

; OBt/ 81X Ny | With D¢l

ny?2

with approx1mat1ng Z
ie.,

d0E,
Dfy = Y = [ N | (B40)

< €pel .
0xp Dy

Xn,/'

Furthermore, let 5;1(2771 / gp) denote an approximation to
sin (2711 / gp) satisfying

|sin(271/g,) — sin (271/g,)| < €in (B41)

for all / € [g,]. By the triangle inequality, we then have
that

_ o sin(2nl/gp)
€dise,l = ||y, —
D

oFE, sin (27!
- Z 1 |an )(xn,/ |M
Xn,j hy

x,,/

ol ﬁfl(an/gp) e S0 (27i/gy)

nJj hp nJj hp

Dl sin (2nl/gp)
nyj hp

B Z dEq . sin (271/g,)
N

|xn,j> hp
Xnj
1
P o (B42)
= hp €sin h EDe,ll

We obtain €gisc < €/2t if €gisc1 < €/6Nt. This can be
achieved by ensuring that

h
€ < — 2 (B43)
12N | DS} | ¢
< Jwe (B44)
€ne
DY = 12Nt
From Lemma 9, it follows that
2In(d, + 1
HDel < % (B45)

The size of the ancilla register used for representing
sin (2711/ gp) is thus in

o <10g (})) cOo <log (%)) . (B406)
sin xp

The order of the finite-difference approximation, d., is
constrained by

€pel < . B47
Dy = 12Nt (B47)
Lemma 8 implies that
JCLVEy | (eh %

eD'il/' €0 (X*€[_x§133§max]3N 8xr(lsze+1) g ) <7> '

(B43)
By assumption,

9+ "
e+1

We can satisfy the constraint in Eq. (B47) by choosing

oz (5) \ _ ("o (5)
log (uh,) - log (uTL)

d, €0 (B50)
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By Lemma 14, the 6/Nd, electronic ground-state prepara-
tions require

A Nd,
O | Nd,— log (B51)
¥4 de
queries to Uy, and
Nd, Nd,
(0] log (B52)
8 3

queries to the initial-state-preparation oracle from
Definition 9. Furthermore, by Lemma 13, we need

Mt NAln (d,)t
0| Na, [ 2L +10g [ 22041
Iy Og( hehye )
NXlIn (de
Nd, log (25
x log (B53)

€

queries to Uy, for the 6Nd, controlled simulations of
o Helley
Lastly, note that the simulation of each of the 6 Nd, expo-
nentials is associated with a certain failure probability due
to the probabilistic nature of block encodings. By the union
bound, we can ensure an overall success probability of at
least 1 — £ if the failure probability of a single exponential
is in O (£/(Nd,)). This can be achieved via (fixed-point)
amplitude amplification at the expense of a multiplicative
factor of log (Nd, /§) to the query complexities of Uy, and
U;.
Combining all of the results yields the complexity
expressions stated in Lemma 11. |

APPENDIX C: IMPLEMENTATION OF THE
OVERALL LIOUVILLIAN-EVOLUTION
OPERATOR

The main goal of this appendix is to prove Theorem
1, which upper bounds the complexity of simulating
e ™M Let us first discuss some intermediate results.
As explained previously, we implement the overall
Liouvillian-evolution operator e™’ via a (2k)th-order
Trotter product formula combining e~Lelass’ and e "¢l The
following lemma provides an upper bound on the query
complexity of simulating Liouvillian dynamics in the NVE
and NVT ensemble.

Lemma 15 (Query complexity of Born-Oppenheimer
Liowvillian simulation). Let L = L¢ass + Loy be the dis-
crete Liouvillian operator either in the NVE ensemble
(Definition 2) or the NV'T ensemble (Definition 3). Let k €
N,. An e-precise approximation to the evolution operator

U; = e~ can be implemented with success probability
> 1— & using

0 (5’% (a log (%) + <M?Z> - toe (é)»

queries to an (a, —,€/5%%) block encoding of the clas-
sical Liouvillian L, Where a € {ayye, ayyr) and p' €
{yyE (2K), 1y r(2k)} is an upper bound on the spectral
norm of the nested commutator of L, and Le as given
in Definition 14. An additional
1
log [ —
g(s))

queries to a Hermitian (A,—,hxhpe/5k36Ndet) block
encoding of the electronic Hamiltonian H, are needed.
Lastly, we require

14+1/(2k
)

s c1/@h) £
queries to the initial electronic state-preparation oracle Uj
from Definition 9.

To prove Lemma 15, we first need to discuss the com-
plexity of quantum simulation via a higher-order Trotter
product formula.

Lemma 16 (Trotter error with commutator scaling ({34],

Theorem 6, Corollary 7). Let L = Z£:1 L, be an operator
consisting of I' Hermitian summands and ¢ > 0. Let

T T
Si(t) = 1_[ 1_[ e~ 1aw.y)Lay (!

1+1/(2k)
~ A ('t
0 SkNde— (M)—
)/5 el/2k)

(CI)
v=1y=1
be an £th-order product formula with £ € N . Define
r
G =Y |y LyeLy]. Q] (C2)
Y15¥25--5YVe+1

Then, the additive Trotter error, defined by S(¢) = e~/ +
A(f), can be asymptotically bounded as

IA®] € O@1*). (C3)
We have || S;(t/r) — 7| € O(e) if
Gl

o1
Note that &.(£) < (2 Z)I::l ||Ly ||> . We can establish

a tighter bound, as shown below.
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The following definition will simplify the subsequent
discussion of bounding &.(¢) for Liouvillian simulations
in the Born-Oppenheimer approximation.

Definition 13 (Terms of the Liouvillian). Let L be the
discrete Liouvillian operator either in the NVE ensemble
(Definition 2) or the NV'T ensemble (Definition 3). Then,
we define

8H(NVE) P
éf}’VE) — 8Cl(flSS ZDan ® :] Ipn1><pn1|
pn,j
pn/
(C5)
(NVT)
(NVT) — chlass .
n,j aan ny
= 0 S P @ S
Pnj S
(C6)
aH(NVE/NVT)
lass o class
Vfln J ( aan ,Dpn,j
_ Z Z ZnLy (xn,]' - xn’,/')
3/2
Xn Xy ”xn - xn/Hz + Az) !
X |xn><xn| ® |)_C,,/>()_C,,/| ®Dana (C7)
1 . 1 1
Ve =Dsi @D, (CB)
ath . OHinss
g = sl —ZD @GPl (©9)
Ps
(NVT)
Vbth - 8I_[class D
"o 05 A
nj
2p;
_ ny _ —
S 2ppp T B
Pnj S
® [s)s| ® Dy, (C10)
HNTD NykgT
Vbath — class D — f SE D, .
r 0s T XE:S‘FSmin| sl P
(C11)

With these terms defined, we can then compute the spectral
norms of each of the Liouvillian terms. These norms are
needed to compute the bounds on the Trotter errors, which
dominate the scaling given in Theorem 1.

Lemma 17 (Spectral norm of Liouvillian terms). The
spectral norm of the Liouvillian terms from Definition 13
can be upper bounded as follows:

K(NVE) H < Pmax 2 (lnd + 1), (C12)

ml’l’lll’l X

max 2 (Ind; + 1
k| < p " (Ind. + )’ (C13)
/ MminSmin hx
‘ Vclass < 2Zmaxxm?:lX 2 (ln dp + 1)’ (C14)
nn,/ A3 hp
2(Ind, + 1)
el | < a2~ 2, C15
) W= ey (€15
smax2 1 dS 1
| Koot < B (nd, + ), (C16)
0 hs
2p2  2(Ind, + 1
MminSin hpx
Ny kpT2 (Ind,, + 1
||Vl;ath|| < 2 ' ( hp ) (C18)
min Ds

Proof. First, recall that for any two matrices 4 and
B, it holds that ||[4 ® B|| = ||4]| ||B]|. Next, note that the
above terms are all of the form Agiag ® D, Where Agiag i @
diagonal matrix and D is a central-finite-difference matrix.

Specifically, consider first the quantity ||D,, ;[|. We have
from Definition 1 that

_alcaxl
||Z Z calX — R)E||| < L

1 Dx, Il =
¥ k=—d
(C19)
We then have from Lemma 9 that
2(nd+1)
1Dy jll < ————. (C20)
As my, > Mpyin and |p,;| < pmax, We then have that
n _ 2Pmax In dx +1
> D, @ 27, ), 1| < o 2O ( ) (21

Mmin hx
Dnj

This validates the claim in Eq. (CI1). The claim of
Eq. (C12) immediately follows from the same reasoning
and the fact that s > sp.

The result of Eq. (C13) also follows from the above
bound on ||D|| and the fact that

ZnZy Xn; — Xwi) =
R Wl © [ N |
Ixn — x| +A2)

L2

Xn X/

2 2
2 s MAX X, 27 i Xmax

max — Xnj |

= 3 = 3
min (|lx, — x| + A2) A

(C22)

The momentum derivative expression is exactly the same
as previous, except that the grid spacing is /4, rather than

010343-35



SOPHIA SIMON et al.

PRX QUANTUM 5, 010343 (2024)

h,. Putting this observation together with Eq. (C21) yields

Next, note that D! is defined to be the centered-difference
formula, which has a coefficient sum of 1. This observation
then yields

de
D=1 Y Y Y e

k=—de (n' j)#(ny) }n/:/’ Xn,j

< 2Z§1aXXmaX ||D || < ZZI%laXxmaX 2 (ln dp + 1)
Pnj —

Vclass
= Al A3 h,

nn' j

(C23)

X Ee ({xn’,j/}exn,j + khx) |)_Cn’,/"><)_cn’,j/|
& [, WXy [l

< max(Ee) Zk |Cde,k| < i
- hy by

(C24)

Next, using the bound of Eq. (C19) with the substitution of
x — p, we find that

The remaining bounds then follow precisely from the
above bound techniques for D and noting the minimum
values of s and maximum values of p. ]

Definition 14 (Commutator spectral norm of the Liou-
villian). Let L be the discretized Liouvillian in the NVE or
NVT ensemble and let £ € N . Then, we define

2(Ind, + 1)
heh,

Vel

nj

‘ < (C25)

Wapp (@) == 3N ‘K,ﬁff”) H + 6N ) peass | 43N ‘ 7 ‘
C26)
and
e (© = 3N K|+ ove | v | 43w | e |
S Ll 2 Vvl I 1 PR (&)

Lemma 18 (Upper bound on a.(£) for Liouvillian sim-
ulations in the Born-Oppenheimer approximation). Let
a.(£) be defined as in Lemma 16. Let L = L + Lo be
the discrete Liouvillian operator for the NVE ensemble
(Definition 2). Then, &.(£) associated with approximating
eI with an £th-order product formula involving e~ elass!
and e~'Le’ is upper bounded as follows:

- , 041
aMP ) < 2 ()" (C28)

For Liouvillian simulations in the NVT ensemble
(Definition 3), we have that

M () < 2° (1) (C29)

Proof. We prove Lemma 18 via induction on £. The first-
order formula with £ = 1 constitutes the base case. The
only nonzero commutator at this level is [Lcass, Lei], Since
[Letass, Letass] = [Let, Lai] = 0. Note that all V;{;‘;; terms,
K" and At commute with all terms V;f] of L. Hence,
we only need to upper bound commutators of the follow-

ing types: [K;ZIVE/ D, Vel J/] and [ng}th, Ve J/]. Generally,

(NVE/NVT) 1l : 1
[Kn J Vy J,] # 0, since D,;; depends on all nuclear-
position variables {x,}. In particular, [Dxn J,Dfll,’/.,] # 0 in
general. We upper bound these commutators by the prod-

uct of the norms of the individual operators, resulting
in

(NVEINVT) 1.l
|[& ey ]

| =2 ]|

v |

. (C30)

There are a total of 3N x 3N = 9N? commutators of the
above form.
On the other hand,

n=n"andj =j’. In that case, we obtain

There are a total of 3N commutators of the above form.
For the NVE ensemble, we therefore have that, for £ = 1,

K™ +6ne |

ath 1 :
[Vz o, VZ/,;”] can only be nonzero if

L] =2

ny °°" nyj

1
Vi

(C31)

&M (1) < 187 | v

(NVE)
K3 |

Vclass

' j

52(3N‘

v | ]) (C32)

1
Vi

Similarly, we find, for ¢ = 1, the following for the NVT
ensemble:

M (1)
< e ] v |2
<2 (3n |k +onve | vt | + 3w | s |
2
oo LS R Vvl Il R ()

This establishes the £ = 1 base case.
Let us now discuss the induction step for the NVE
ensemble. By assumption, assume that there exists a value
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of £ > 1 such that

&gNVE) 0)

< 2( (3N HK(NVE) H 4 6NY H Vclass

nn' j

Vfllil >/Z+1 .
)

(C34

A single summand of the nested commutator of
aMB)(¢) is then a string S;4; of £+ 1 operators O, €

{K(NVE) yrelass Vel } where a € {1,2,...,£ + 1}. Impor-

nn' j?
tantly, only certain combinations of operators yield “non-
trivial” strings, i.e., strings that have a nonzero contribu-
tion to the nested commutator. An example of a trivial
string would be a string containing the same operator £ +
1 times. An alternating sequence of two noncommuting
operators, such as K, ; WE) and VZIJ, would be an example
of a nontrivial strlng

For the induction step, we now add an (£ 4 2)th operator
Oy to Sy to construct nontrivial strings of length ¢ + 2
(S¢+2) as needed for an (£ 4 1)th-order product formula.
First, let us try adding a K,Y;]VE) term to some fixed non-

trivial string Syy;. If Sp4) contains at least one VzlJ term,
then the resulting string S,» will be nontrivial. Given
some fixed VZE/, there are 3N choices for K,(gVE) to create a
nontrivial string Sy1 5 from Sp 1.

Next, let us try adding a V;lfj; term to some fixed
nontrivial string S;.;. In the worst case, Syy; contains
up to £+ 1 different K,E;YVE) terms. Given some fixed

K,E]JYVE), there are 6(N — 1) different Vfll';‘ﬁj terms that would
yield a nonzero commutator. Hence, for any given string
Sey1, there are at most 6N (£ + 1) possibilities to create a
nontrivial string Sy, via addition of a Vf;l;‘j; term.

Lastly, let us try adding a V“’lA term to some fixed non-

trivial string Sp4;. If S¢41 contain at least one K, (NVE) term,

then the resulting string Sy, will be nontr1v1al. Hence,
there are 3N choices for Vf:/ to create a nontrivial string
Seyo from Sy ;.

Putting everything together, we therefore obtain the
following recursion:

g+ 1) <2

K|+ v e+ 1y | s

nn'
1 ~(NVE
e )ag ().

(C35)

Using the hypothesis [Eq. (C33)], we arrive at

&L{NVE)(K +1) <2t (

H LN+ 1) H pelass

nn' j

NGE:
wl)
as desired. This demonstrates the inductive step and our
proof then follows trivially by induction, using the fact that

+3N H

(C36)

the base case of £ = 1 has already been demonstrated in
Eq. (C31).

Let us now turn to the induction step for the NV'T ensem-
ble. We use the same strategy as for the NVE ensemble.
As an induction hypothesis, assume that there exists £ > 1
such that

(@) <2 (3 K77 + ve [t

nn' j

+3N HV"‘

{41
o] e ] + )

(C37)

A single summand of the nested commutator of
aMD(¢) is now a string S, of €+ 1 operators

0, c {K(NVT) Vclass pel. Kbath Vbath Vbath}7 where a €

nn' j nyj>
{1,2,...,£+1}.

For the induction step, we now add an (¢ + 2)th operator
Oy47 t0 Sy to construct nontrivial strings of length ¢ + 2
(Se42) as needed for an (¢ 4 1)th-order product formula.
First, let us try adding a K}g}v "D term to some fixed non-

trivial string Syy;. If Sp4) contains at least one Vfi/ term,
then the resulting string S,4» will be nontrivial. Given
some fixed Vf;fj, there are 3NV choices for K,ESWD to create a
nontrivial string Sy, from Sy ;.

Next, let us try adding a Vfll';‘jf] term to some fixed
nontrivial string Sy, ;. In the worst case, Syy; contains
up to £+ 1 different K,E]}Wn terms. Given some fixed

K,gf;”m there are 6(N — 1) different V;lfjj terms that would
yield a nonzero commutator. Hence, for any given string
S¢11, there are at most 6N (£ + 1) possibilities to create a
nontrivial string Sy, via addition of a Vfllfjj term.

Let us now try adding a Vf,lJ term to some fixed nontriv-

ial string S¢4 . If Sp4| contain at least one Kgm term, then
the resulting string S, will be nontrivial. Hence, there are
3N choices for VfllJ to create a nontrivial string Sy, , from
Se41-

The K" term does not commute with K, (NVD Vbath

or V% Hence, we can create a nontrivial strlng S[_;,_z by
adding K% to S, if S¢4; contains K,YJ\./VD, V“;lj-‘h or pbath,

Next, let us try adding a VZ;“‘ term to some fixed nontriv-
ial string Sy ;. In the worst case, Sy, contains up to £ + 1
different K,(,]IVD terms. Hence, for any given string Sy
there are at most £ + 1 possibilities to create a nontrivial
string Sy, via addition of a V;’?;h term.

Lastly, let us try adding the Vt}ath term to some fixed non-
trivial string S, ;. We can create a nontrivial string Sy, if
Sy11 contains the K term.
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Putting everything together, we therefore obtain the
following recursion:

a™D e +1)

< 2(3N ‘Krg}/VDH FONE+1) ‘ peims | 43y ‘ ) ‘
oo L RV vl R 1 )
(C38)

Using the hypothesis [Eq. (C36)], we arrive at

G+ 1) < 240 (3N K| +on e+ 1) s
+3n | |+ 1K
42
+ e+ v ) )
(C39)

as desired. The bound then immediately follows by induc-
tion, given that the £ =1 base case has already been
demonstrated in Eq. (C32) [ ]

The bounds in Lemma 18 exploit the commutator struc-
ture of L = Ljass + Lei. Not taking the commutator struc-
ture into account, one obtains the following bounds on
aMEMNTD gy (Lemma 1 of Ref. [34]):

&ENVE) (0)

l 1 1
<2 (3N | pelass v

41
)

k00| |

+3N‘

a™"n(p)

e 1 1
<2 (3N | pelass v,

K|+ 6n? |

+3N’

£+1
o S R o )

The main improvement of Lemma 18 over these bounds

lies in the reduction of the coefficients of H V;li‘ji and

‘ szth from 6N? to 6N ¢ and from 3N to £, respectively.

While the above results apply to general product for-
mulas, we will only be using 2kth-order Trotter-Suzuki
product formulas for our simulation. Hence, we have £ =
2k with k € N in the following discussion.

Before proving Theorem 1, it will also be useful to
bound the total evolution time associated with a 2kth-order
product formula. The total evolution time is the sum of the
absolute values of the evolution time of each segment for
a fixed operator.

Lemma 19 (Total evolution time of a higher-order prod-
uct formula). Let t > 0 be the desired evolution time of
the simulation. The total evolution time of a 2kth-order

product formula is
T <5 'te 0(5%). (C40)

Proof. Recall the following recursive definition of the
2kth-order product formula Sy, () from Definition 7:

et (C41)

NI~

Sy(f) i= €M7 .. celriehr

Su () = Sy (i) Sax—2 (1 — 4up)H S5, , (i), (C42)
where
Suypi=o—— <

VikeN,k>2. (C43)

W | —

Hence,

Toi() = 4Tok 2 (ut) + | Top—2((1 — dup) )| < 5Ta—2 ().
(C44)

Together with the base case, T, = f, this implies that

Tor(f) < 5511, (C45)

|

The number of exponentials for a 2kth-order product

formula with I" summands is given by [42]

Nexp = 2(0 = ) 5571 4 1. (C46)

In our case, I' = 2 (Lclass and Lej), S0 Neyp = 2 X sk=1 4
1 € O(5h.

We are now ready to prove Lemma 15.

Proof of Lemma 15. As explained earlier, the discretized
Liouvillian L is split into a classical part, Lcj,ss (Definition
6), and an electronic part, L, (Definition 5). We then use
a 2kth-order product formula to recombine the two parts.
The time evolution is divided into » time steps, resulting
in a total number of O (r5k) exponentials, with » chosen
according to Lemma 16. Each exponential is then imple-
mented using qubitization [56]. By the triangle inequality,
we can achieve overall simulation error < € if the error
of a single exponential is in O (e / (rSk)). Furthermore,
recall that each exponential is simulated using a QSVT-
based method, meaning that each exponential comes with
a certain failure probability. Invoking the union bound,
we can ensure an overall success probability of at least
1 — & if the failure probability of a single exponential is in
0] (S / (r5k)). This can be achieved via amplitude amplifica-
tion at the expense of a multiplicative factor of log (rSk /& )
to the query complexities. The evolution under the classi-
cal Liouvillian L, is simulated using qubitization and the
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QSVT (Lemma 4) with a total evolution time as in Lemma
19, resulting in

k k
0 (log <%> (oszt + r5Flog (%))) (C47)

queries to the block encoding of L, Where o = anypr
for simulations in the NVE ensemble (Lemma 1) and o =
ayyr for simulations in the NV'T ensemble (Lemma 2).

From Lemma 16, we have that 7 € O( SIRRAL/2k 112k

and from Lemma 18, we have that &.(2k) < 2% (u/)?*1,
where ©' € {iyyz, Wyyrt- The number of queries to a
block encoding of Ly, is then in

N o ANE. )
0 <5kt (a log (¥> + <?) log (g>)> )
(C48)

The evolution under the electronic Liouvillian L is simu-
lated according to Lemma 11 with a total evolution time as
in Lemma 19, resulting in

5KNd, At
O ( 5*Nd, log r
3 hyhy

SkNd, log (rSkNA In (dm)

ol rS*NA In (d,)t
r10 R —
B\ ke

x log ety
€
A 5*Nd, 5%Nd,
+r5°Nd, = log ( - log (C49)
yé b€ &

queries to a block encoding of H., where d, €
o (log (NrSkxt/hpe)/log (l/hx)). Furthermore,

r5*Nd, r5¥Nd,
1
o5 e (7))

queries to the state-preparation oracle U; are needed.

(C50)

Using
~1/2k 141/2k
a. "t
reo (W) , (CSl)
&C(zk) S 22k(ﬂ/)2k+1, (C52)
A
<u, C53
oy = (C53)

PRX QUANTUM 5, 010343 (2024)
we find that

(o & G\ /20
O | 5*Nd,t - —=
I h (es) " ( e )
1 A + A
x (1o —
E\h, ) " vs g
N A ( l+l/(2k)
co (SkNde— log( )) (C54)
queries to the block encoding of H and
SNd, ('t )1+1/(2k) {
0 ( 5 Y log <§) (C55)

queries to the state-preparation oracle U; are suffi-
cient. ]

el/(2k)

1. Proof of Theorem 1

The previous results now give us the tools that we need
to prove Theorem 1, which provides upper bounds on the
Toffoli complexity of simulating Liouvillian dynamics. We
restate it here for convenience.

Theorem 1 (Complexity of Born-Oppenheimer Liouvil-
lian simulation). There exists a quantum algorithm that
solves Problem 1 with success probability > 1 — & using

()

Toffoli gates, where d is the maximum order of the finite-
difference schemes used, w € {unve, unyr} is an upper
bound on the spectral norm of the discretized Liouvillian
L € {Lyye,Lyyr}, and ¥ is a lower bound on the spec-
tral gap of the discretized electronic Hamiltonian over
all phase-space grid points that are associated with a
nonzero amplitude at some point during the simulation.
Additionally,

- Ndu1+l’(1)tl+0(l) 1
o(Hrem—(:))
§ eo) &
queries to the initial electronic state-preparation oracle U;
are needed.

Proof. The upper bound on the number of queries to
l~]1 follows from Lemma 15. Note that Lemma 15 deals
with errors between operators, i.e., the complexity bounds
hold for the worst-case input state. Problem 1, on the other
hand, is formulated in terms of the simulation error for
a fixed input state. This means that here we only need a
good initial electronic state for grid points associated with
a nonzero amplitude at some point during the simulation,
because any simulation errors that occur on grid points that

~ ( Nigy dp o0 1+
0] -
( y deo®
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are associated with zero amplitude throughout the simula-
tion do not contribute to the error of the final state. Hence,
we can use f/[ instead of Uj.

Realizing that 4’ < u and choosing

k = round [\/% logs (ut/€) + 1] , (C56)

we then find that the query complexity for Uj is in
0O (5«/210g5(w/e)Ndfﬂt log (l))
8 3

- Nde 1+o(1)t1+0(1) 1
()
860(1) S

which is subpolynomial in 1/¢ and almost linear in x and
t. The above heuristic choice for & can be obtained by bal-
ancing the factor 5% with (ut/€) 1/2k to minimize the overall
complexity with respect to k [42].

Next, let us discuss the overall Toffoli complexity, which
follows from multiplying the query complexities of the
block encodings with their respective Toffoli complexity.
More specifically, from Lemma 15, we have that

_ / 1\ 12k 1
O 5| alog e +u i log [ —
€& € &
141 /2K 141/2k
~ Py t 1
<o+ o ve(())

queries to an €/ (5%¢)-precise block encoding of the classi-
cal Liouvillian L5 are sufficient. Lemmas 1 and 2 imply
that such a block encoding requires

~ 5kt 5kt
o (N log (gae ) + log'°e3 <ozT) + dlog(g))
~ w5k
€

Toffoli gates, where d is the maximum order of the finite-
difference schemes. Choosing & as in Eq. (C55), we find
that the Toffoli complexity associated with simulating the
classical Liouvillian is in

1+0(1) 41+0(1)
~ " t 1
0 ((N + d)T log (g)) .

(C57)

(C58)

(C59)

(C60)

According to Lemma 15, we also need

SN 1H1/2h)
- A (Wi 1
0 Skng—%log (—)
2 el/2k) £
- 24172k 1+1/2k
c0 <5kde% log (l)>
y el 3

- 2+o(1) fl+o(1) 1
co(a,f—L 1og(=
y 8 e §

queries to an hyh,e/5¥36Nd,t-precise block encoding of
the electronic Hamiltonian H. Lemma 3 implies that such
a block encoding has Toffoli cost in

(C61)

(C62)

- B5%36Nd,t
O[N+N+log| ———F) ).

hyhye

The Toffoli cost associated with simulating the electronic
Liouvillian is then in

- 240(1) fl+o(1) 1
O (Nt —L " 10g (=) ).
Y 5o :

Combining all of the results, we find that the overall Toffoli
complexity of simulating e~ is in

- Ntoth2+o(1)t1+o(1) 1
0 log| =1 ).
y 8 eo g

Note that the above statements are independent of the ini-
tial quantum state encoding the initial phase-space density.
In particular, y is a lower bound on the spectral gap of
the block-encoded operator H ({x,}) over all phase-space
grid points. Similarly, § is a lower bound on the overlap of
the initial electronic state with the true electronic ground
state over all phase-space grid points. However, if we are
dealing with a fixed initial state as in Problem 1, we only
need to consider the spectral gap and the electronic ground
state of the grid points associated with a nonzero amplitude
at some point during the simulation, because any simula-
tion errors that occur on grid points that are associated with
zero amplitude throughout the simulation do not contribute
to the error of the final state. Let y > y be a lower bound
on the spectral gap of H ({x,}) over that subset of grid
points. Likewise, let § > § be a lower bound on the overlap
of the initial electronic state with the true electronic ground
state over the same subset of grid points. Then, Problem 1
can be solved using only O (1/ y8) rather than O (1/y9)
Toffoli gates. n

(C63)

(C64)
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APPENDIX D: DETAILS ON ESTIMATING THE
FREE ENERGY

Recall from Definition 4 that the free energy is given by

F=U-TSg, (D1)
where U is the internal energy of the system and Sg is the
Gibbs entropy of the system. The concept of Gibbs entropy
can be extended to the quantum world in the form of the
von Neumann entropy, as follows.

Definition 15 (Von Neumann entropy). Let p € C"™" be
a density matrix. Then,

Sy := =Tr(plnp) (D2)
is the von Neumann entropy associated with p.

Note that Sy = 0 for a pure state. The idea is to esti-
mate the Gibbs entropy and the internal energy of our
system separately and add the results to estimate the free
energy. This means that our algorithm requires at least two
separate simulations. Before we show how to obtain the
Gibbs entropy from a quantum algorithm for estimation
of the von Neumann entropy, let us explain the usage of
the Nosé thermostat within the Liouvillian framework in
a little more detail. The main difference compared to plain
Liouvillian dynamics in the NVE ensemble is the new vari-
able for the heat bath, s, and its associated momentum
variable, p,. Furthermore, the momenta {p;} appearing in
the NVT Hamiltonian Hyy7 from Definition 23 are virtual
momenta of the extended system. They are related to the
real momenta {p,} of the physical system via the relation
pn = p,/s. In the discretized setting, we introduce a cutoff
Smin to avoid infinities in the simulation.

In the following, we will drop the particle index of the
position and momentum variables for ease of notation. As
mentioned in the main text, for continuous variables it can
be shown that the microcanonical partition function Z of
the extended system gives rise to the canonical partition
function when restricted to the real system [37,39]. More
specifically, it can be proven, via a change of variables, that

2o [aw [aw) [ as
X /dpSS (Hyvr (5}, 4"} 8.25) — Eext)

o /d{x}/d{p}eHNVE({X},{p})/(kBT)’ D3)

where E.y is the conserved energy of the extended system
and Hyyg is the NVE Hamiltonian from Eq. (9).

In terms of our quantum algorithm, we now have three
types of quantum registers representing classical variables:
the nuclear-positions register |{x}), the nuclear (virtual)

momentum register |{p’}), and the bath register
1S) == [5)|p,). (D4)
Let

Wo) =Y _ cepsOIENIENIS)

xp'.S

(D5)

be a quantum state encoding the initial KvN wave function
of the system plus bath, where the {c,, 5(0)} are complex
amplitudes. We time evolve |y) according to the NVT
Liouvillian from Definition 3, resulting in

W) o= ULy [00) = Y e sOIENIENIS),  (D6)

xp'.S
where

. —iLnyTt
ULNVT =e

(D7)

is the unitary that implements the Liouvillian time evo-
lution of the system plus bath. The discrete analogue of
integrating out the bath variables as done in Eq. (26) would
be to trace out the bath register |S). However, at this stage,
we cannot simply trace out |S) since we would lose all
information of |s), which is needed to compute the real
momenta {p}. In other words, we first need to perform a
discrete analog of the change of variables p’ — p’/s = p.
We do so by duplicating the [s) register via a unitary Ugyp
to obtain

W) := Uaupl¥0)|0) = Z e sOIENIHD N IS)S)
xp .S

= Y cpsp OIENIENIPIE).

ey ——
XP sSDg

(D8)

Note that Ug,, can be implemented using O (log g;) CNOT
gates. More specifically, we apply a single CNOT to each
qubit of the |s) register, where each CNOT has a different
target qubit in the duplication ancilla register.

The above quantum state |\W,) can be regarded as
a purification of the following density matrix, which
describes the dynamics of the nuclei under the influence
of the heat bath:

Psys (1) = Trg (W, W)
= Z Cep sy sOUH P )UX (P}, 51

s
xp',S
=/ =/

x.p

= > Copan Oy, OIEN D) SNF

e —
X.P SPs
= =1

X.p

x ({p"}, 5. (D9)
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Note that the combined register |{p},5) can be regarded as
the real momentum register. It is effectively just a different
representation of |{p’/s}). The dimension of psys(?) is

3N 3N

n=g; 8 & (D10)

and the probability of finding the nuclei in a particular
configuration |{x*,p"*,5"}) is given by

(&, 0™, 5" Hpsys OI{X", P, 5"})

=Y lew pre s (O = by e o (0). (D11)
S

Using the above ideas, we can reduce the problem of
estimating the Gibbs entropy associated with pg(#) to
the problem of estimating the von Neumann entropy of
a modified density matrix. The reason for requiring a
modified density matrix is that in contrast to the von Neu-
mann entropy, the Gibbs entropy associated with pgy(?)
depends only on the diagonal elements of pgy(#), since
these represent the classical probabilities of the different
microstates [see Eq. (D11)]. We can eliminate the off-
diagonal elements by applying controlled phase gradients
to the purification |\W;), as we will now explain in more
detail.

Let |j) denote a computational basis state of a log (1,)-
qubit ancilla register, where

3N 3N

no=gg) . (D12)

Furthermore, let |n) denote a n,-dimensional computa-
tional basis state obtained by considering all the nuclear-
position and virtual momentum variables as a single regis-
ter, i.e.,

In) = [{xH I{p}). (D13)

This change in perspective simplifies the implementation
of the controlled phase gradients [64]. Preparation of a
uniform superposition over the |j) register and applying
controlled phase gradients then yields

1 1 _
W) = —— 3 ens@In) S )]
b 1 — m‘nL RS e
e, m%cn,s(t)e 2E 0y [S)I5) 1)

— W) = Uy, [$)[0)[0),  (D14)

where U, denotes the controlled phase-gradient unitary
and

U,

Lyyr *

= Upg - (Udup ® 1) ) (ULNVT ®Ll® ]l) € Clurripur,
(D15)

with

Npur == gSNgS{vgsz Eps-

(D16)
Let us now check that this gives the correct density matrix
after tracing out the |S) and |j) registers. First, note that
the purification state |W,) can be written in density-matrix
notation as

] 2 .n/'—n’j’
W = — Y enst)ch g (e m

v

nS,j
WS '
x |m)8)[5)17) (' |(S' 151 (D17)

Tracing out the |j) register results in

/ 1 S
Ty (1WX¥1) = 2 :Cn,S(f)C:’,S/(f) — E e T
l’l,§ 77“ j
w5

x ) |S)[5) (/| (S| (5
=Y Cns(OC g (8, 1) 1S)15) (| (S| (5|

n,S
w5
=Y cusc, 5 O1n)S)5) (n|(S'1(F

nSS

(D18)
and tracing out the bath register |S) yields
Pl =Y lensOPIn)[5) (n] (31
nS
= 3 Jepsn OPIENIE L SKENE).5,
Xp' 5Py

(D19)

which consists only of the diagonal elements of pgy(?), as
desired. Note that an alternative method of eliminating the
off-diagonal elements of pgy(#) consists of duplicating the
entire nuclear register |{x})|{p'}) and then tracing out the
duplicated register, similarly to what was done with the |5)
register earlier on. In terms of complexity, this duplication
approach is essentially equivalent to the phase-gradient
approach. Algorithm 4 summarizes the key steps of our
free-energy-estimation protocol.

1. Estimation of the Gibbs entropy

Let us now explain how to estimate the Gibbs entropy of
our system. First, note that, in general, we cannot imple-
ment the Liouvillian-evolution operator Uy,,, exactly.
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ALGORITHM 4. Free-energy estimation.

Input: Quantum state |1o) =
together with the heat bath.
Further input parameters:

=58 ap.s(0){Z1|{D'})|S) encoding initial KvN wavefunction of the system

t: 6, 57 k7 N7 N7 {mn}'y]:/:h {Z'IL}?]’Y:D wtllax7p;nax7 hx7 hp'7 d327 dlh de, A, B, h617 6> ﬁv X, Nf7 T: Q7 51!!1]’]7 h37 hl)37 d87 dpg N
Output: With success probability > 1 — £ an e-precise estimate of the free energy associated with the phase

space density after time t.

1. Apply the NVT Liouvillian simulation algorithm as summarized in Algorithm 1 to |10) to obtain

[¥0) = Uryyrltho) = D capr s(OHTHIHPDIS).-

z,p,S

2. Duplicate the |s) register of the bath using Uqyp to retain the information of s. This yields |¥;) which is a
purification of the density matrix psys(t) for which we want to estimate the von Neumann entropy;

3. Eliminate the off-diagonal elements of psys(t) via controlled phase gradients between an ancillary register |j) and

[T4);

4. Tracing out the ancillary register |j) and the bath register |\S) but not the duplicated |s) register, we obtain a
reduced phase space density over the nuclear position and momentum registers |{Z» })|{D,, });

5. Use the algorithm associated with Theorem 13 of [47] to estimate the Gibbs entropy of psys(t) within error

€/ (2kpT);

6. Apply the Hadamard test to each of the three internal energy components Hiyin, Hpot and Hg,, to estimate their

expectation values within error ¢/6;

7. Classically add the estimates of the Gibbs entropy and the internal energy components to obtain an e-precise

estimate of the free energy F;

However, Theorem 1 shows that we can efficiently con-
struct an approximation Uy, such that

” AULNVT - ULNVT” =€ (D20)

for any € € (0,1). Let us assume that U, and Ug,, can
be implemented with negligible error. Then, the resulting

approximation Uy~ of Uy satisfies

1T, <e. (D21)

wrll =

NVT Uy
We denote the corresponding approximate density matrix
of the system by oy (#). The following inequality will be
useful for upper bounding the difference in the von Neu-
mann entropy associated with p¢(7) and oy, (?) in terms
of their trace distance.

Definition 16 (Trace distance). Let p,o € C"™" be den-
sity matrices. Then, their trace distance is given by

1 1
To.0) =310 =ali =570 (o -0 (0 -a)
1 n

ZEZW

Jj=1

; (D22)

where A; € R is the j th eigenvalue of p — 0.

In the following, we will use ||-||; to refer to the trace
norm (i.e., the Schatten 1-norm). As before, ||-|| denotes
the (induced) 2-norm.

Lemma 20 (Fannes inequality [65,66]). Let p and o be
n-dimensional density matrices. If 7 (p,0) < 1/(2e), then

ISy (0) — Sw (0)] < 27 log, () — 27 log, 7).
(D23)

We now show how to estimate the Gibbs entropy S¢ of
our system.

Lemma 21 (Estimation of the Gibbs entropy). Let € €
(0,1) and let p;ys(t) be the n-dimensional diagonal density
matrix of the system as defined in Eq. (D19), where > 6.
Let npyr be the din}vension of Uy, as defined in Eq. (D15).
Furthermore, let Uy be an (e /4npur log (n/ v))-precise

approximation to ULNVT’ where v € (0, 1) is a lower bound

on27T (5§ys(t), ,ogys(t)) and

2oz (/)
e

(D24)

There exists a quantum algorithm that outputs an estimate
of the Gibbs entropy associated with pgys(#) within error €
with success probability > 1 — £ using

GE0)

(D25)

queries to Uy, .
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Proof. By construction, estimation of the Gibbs entropy
of psys(f) is equivalent to estimation of the von Neumann
entropy of p;ys(t), since ,0; <(#) consists only of the diag-
onal elements of ,osys(t) However we only have access
to U Jusa: €y-precise approximation of U in £2-
distance. We will show that €;; needs to be upper bounded
by

€

< D26
US Gplog (1/9) (D26)

This gives rise to an approximation pg(#) of pg (7). The
idea is then to use Theorem 13 of Ref. [47] to obtain an €4~

precise estimate S <,(~>;ys(t)) of the von Neumann entropy

of Zf;ys(t), where €t € (0, 1). The algorithm of Ref. [47]
requires access to a purification of the density matrix,
which in our case is simply |¥/). The work of Ref. [35]
shows that a polynomial of degree O (./ / eest) to approx-
imate log (1 /by () within error €cy, where {by (D)
are the (diagonal) elements of 0, Pgys (D). This implies that
quantum amplitude estimation [67] can be used to learn

S (ﬁ;ys(t)> with constant success probability within error

€cst USing O (n/€l?) queries to ULNVT‘ The Chernoff bound
implies that we can achieve a success probability > 1 — &
with log (1/&) repetitions of the algorithm. Next, let us dis-
cuss the required block-encoding precision of U, By

the triangle inequality, we have that

5 (7)) = 5 (pys®)|
= 8 (7:0) =5 (51 0)|
¢ I570) 5 (0)

< €est + €Fan,
where €, is determined by the Fannes inequality (Lemma
20). To achieve overall error < ¢, it suffices to ensure that
€est < €/2 and €p,, < €/2. Let us now bound €g,, in terms

of €y and v. For simplicity, let

NVT®

(D27)

|Wo) := [10)[0)0). (D28)
Then, we have that

T i
H LILNVT“IJO lIIONJJLNVT LNVT|\IJO qulleNVT

= LNVTNJO lIJO|U’LNVT LNVT|\I’0><\IIO| LTNVT

+ H ’(‘/LNVT|\IJ0><IIJO|U2NVT LNVT|\IJO><\IJO|L]2NVT
= H Lyyr — LNVT + ” U/LNVT - (]/LNVT “
< 2ey. (D29)

It follows from Definition 16 that

] R I |
< npureU: (D30)
where 1, is the dimension of UVLNVT (or, equivalently,

of |Wy)). Since the trace distance is contractive under the
partial trace, we obtain the following bound:

T (B, Plys®) < tpwev. (D31
By Lemma 20, we then have that
rn = |5 (5 ®) = 5 (00|
=< 2npurey (log(n) — log (v)) (D32)
as long as 7 (5;ys(z), p;ys(t)) € [v/2,1/2¢]. If
€ (D33)
4npur log (n/v) — 2npure

then €y, < €/2, as desired. Note that this requires € <
2log (n/v)/e. In our case, we always have > 6, since the
phase space is at least six dimensional. This implies that
2log(n/v)/e = 1foranyv € (0,1). Demanding € € (0, 1)
is thus a sufficiently restrictive criterion. |

A challenge facing this algorithm arises from its scaling
with the dimension of the space. In general, it scales expo-
nentially with the number of qubits and hence we cannot
compute the entropy directly. An alternative approach is
to coarse grain the position and momentum variables of
the nuclei, e.g., by tracing out the / least significant qubits
associated with each position or momentum variable. This
effectively reduces the dimension of the density matrices

Psys(f) and pg (1) from

n = 23N(loggx+10ggp/)+10g(g3) (D34)

to

T']/ _ 23N (loggx+loggp/ —2]) +log(gs) (D35)

and accordingly only 0 (77’/61'5 log (1/5)) queries to ULNVT
are required. The exact entropy can then be estimated by

extrapolating the entropy in the limit where the coarse
graining tends to zero.

2. Estimation of the internal energy

Next, let us discuss how to estimate the internal energy
U of our system. First, note that a classical system can
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be described by a density matrix p and a Hamiltonian H,
both of which are diagonal in the computational basis. The
internal energy of a classical system can thus be computed
as follows:

U =Tr(pH). (D36)

In our case, we can identify p = p;ys(t) and H = Hy,.
Recall from Sec. II that

Hyye = Hygn + Hpot + HEep (D37)

where

Pn,
e DY
7,7,
pm—ZZZ

n#En Xn o Xy ”xn _xn’||2+A2
® [ )T |,
Hpy =Y Eq ({5 }) [T} {E -

{xn}

S15,,)B,, 1 ® [5)3,

1% (X
)1/2

The idea is then to block encode each of the three terms
of Hy,, use the Hadamard test to estimate the expectation
value of each term individually, and then add the results
classically.

Note that H, is diagonal in the nuclear-position and
-momentum basis. Since the block encoding of Hp,, will
also be diagonal in the nuclear-position and -momentum
basis, we technically do not need to worry about getting
rid of the off-diagonal elements of pgy(7), since

Tr (/Osys (t)Hnuc) =Tr (P;ys (t)Hnuc> . (D33)
However, we will use p;ys(t) to be consistent with the
previous discussion on estimation of the Gibbs entropy.

The following three lemmas provide upper bounds on
the cost of block encoding the three terms of Hpy.

Lemma 22 (Block encoding of Hyi,). There exists an
(0tkin, dxin, €) block encoding of Hyy, with normalization

constant
e
Ukin € o <Nﬁ) (D39)
and a number of ancilla qubits
ayin € O (1og (“kin)) (D40)
€
that can be implemented using
oios(£22) 410 (%)) o

Toffoli gates.

Proof. The proof of Lemma 22 proceeds along the same
lines as the proof of Lemma 1. In particular, we use the
alternating-sign trick [28,54] to block encode a single sum-
mand of Hy;, and then use Lemma 7 to combine the block
encodings of all 3N terms. More specifically, we use the
alternating-sign trick to construct U, ;, which provides an

(ap.ap, €,) block encoding of

p”J —/
,,ZZ(S . 0 X1 © [S)S. (D42)

We then use the following to prepare the distribution of
coefficients for the masses of each particle in the system
under the assumption of three-dimensional dynamics:

N

1/m, 1 <
® — , (D43
D\ ﬁ;m (D43)

n=1

PREP,,|0) :=

where

(D44)

Ay = E __
my

nj

mmm

The above definition implies that a,, = [log N + [log 3].

Let us now explain how to use the alternating-sign
trick to implement U, ;. The idea is to prepare an ancilla
register consisting of a, qubits in the state

297 —1

1
PREP,[0) := ) mm

=0

(D45)

and then use the inequality-testing circuit from Fig. 3 to
test the following inequality:

15+ Smin)” <77 (D46)
where Sy, € N such that sy, = Spinks. As long as [ sat-
isfies the above inequality, the coefficient of |/) is set to
+1, as is done in existing work involving LCU or qubiti-
zation for general-purpose simulations [28,54]. For larger
1, the coefficient of |/) is set to alternate between 1. To
test the inequality, we first use O(1) quantum Karatsuba
multiplications [59] to compute the left- and right-hand

sides of Eq. (D46). This can be done using 0( 1°g3>

Toffoli gates, whereas the inequality test itself requires
only O(ap) Toffolis (see Lemma 10). We then have

that U, = PREPZ - SEL,, - PREP,, where SEL, includes the
quantum Karatsuba multiplications, the inequality testing,
and a CZ gate to obtain the desired alternating sequence of
+1. Figure 5 shows a circuit diagram of the alternating-
sign trick for the slightly simpler case of block encoding
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-1 _ . .
Zi‘z ;=0Pnj P X ;|- The number of ancilla qubits, a,,

determines the precision €, of U, .. In particular,

(0@ DHU,,; (10) ® 1)

1
< —.
= 5

- p”J —/ — —\/=
a 2 ZZ 1P @ B

(D47)

2
Smin

Note that o, € O(p max ) We can ensure that

{01 ®@ DU, (10) ® I) is an €,-precise approximation to
Sy Xsp'ay /5 + smn)* [P, NPy | © I5)S] by choosing

a, € O (log (ap/€p)).

Instead of constructing 3N different block encoding for
each of the 3N terms, we use an additional ancilla register
that we call a “SWAP register” [28]. The SEL operation can
then be modified to swap the appropriate (virtual) momen-
tum variable into the SWAP register controlled by the PREP,,
register. This allows us to apply the block encoding U, ,
only once (to the SWAP register holding the appropriate
momentum variable) rather than 3N times (to each individ-
ual momentum variable). However, we do require a total of
0] (N log (gp/)) SWAP operations, implying O (N log (gp/))
Toffolis.

Application of Lemma 7 to PREP, and {Ul’n,/} yields
an (owQp, @ + ap, dp€n + ape,) block encoding of Hygn.
This implies that

2
Np’
Qkin = 0yt € O <—m§x .
MminSyin

To achieve overall block-encoding error < €, it suffices to
ensure that €,, < €/2a), and €, < €/2a,,. Thus,

Qyin = Ay +a, € O (log (a:in» .

It follows from Lemma 5 that we need to prepare the state
PREP,,|0) within error €,,/a;,,~/N. Such a general quantum
state preparation has Toffoli cost in

0 (N log (“jN)) co (N log (“1;)) . (D50)

where we have used the assumption that we choose the
uncertainty to saturate €,, = €/2a,. We require another

0 <a;,°g3) co (a}j§3) co (1ogl°g3 (%)) (D51)

(D48)

(D49)

Toffolis for the quantum Karatsuba multiplications [59]
used in the comparison test given in Eq. (D46). Addition
can be performed in linear time and thus the cost of per-
forming the entire comparison test is given by the cost
of multiplication. This cost is additive to the cost of the
state preparation given in Eq. (D50). Combining all of the
results yields the desired complexity expressions. |

Lemma 23 (Block encoding of H,y). There exists an
(@pots Apot> €) block encoding of M, with normalization

constant
2 Zﬁqax
Apot € O (N —) (D52)
A
and a number of ancilla qubits
por € O (1og (“"‘”)) . (D53)
€
This block encoding can be implemented using
0<N log (gx P"t) + loge3 (@» (D54)
€ €

Toffoli gates, where g, is the number of discrete positions
considered in the classical part of the Liouvillian.

Proof. We use the same strategy as in the proof of
Lemma 22. In particular, we use the alternating-sign trick
[54] to block encode a single summand of Hj and then
use Lemma 7 to combine the block encodings of all O (N 2)
terms. More specifically, we use the alternating-sign trick
to construct UVn,n’j’ an (ay, ay, €y) block encoding of

W :

2
Xn X,y ”xn - )C,,/” + AZ)

12 X0 )(Xn| & X )X ] (DS5)

We then use the following PREP to attach the atomic
numbers {Z,}:

PREP,|0) _—Zmln ®Zf®2l}

(D56)

s ZyZy < 3N*Z?

n < ax- The above definition

where oz = )
implies that

az = 2[log N7 + [log 3]. (D57)

Importantly, the resultant state is a product state, mean-

ing that Y\, /Z,In), Yh_ v/ZyIn'), and Y}, |j) can
be prepared individually.
Let us now explain the construction of UV o

20112,

. Using

PREPy|0) := we test the followmg
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inequality:

P (I%) — %l +57) < 1, (DS8)
where A € N such that A = Ah,. As long as [ satisfies
the above inequality, the coefficient of |/) is set to +1. For
larger /, the coefficient of |/) is set to alternate between
+1. To determine the correct sign, we also need to test
Xnj < Xy, which has Toffoli complexity in O (log (gy)).
The advantage of testing Eq. (A43) rather than

1
l< (D59)

- _ _ — o\ 1/2
(%0 =%l + %)

directly is that we do not have to calculate fractions
containing square roots. However, the inequality test in
Eq. (D58) does require us first to compute the left-
and right-hand sides of the inequality using O(1) quan-
tum Karatsuba multiplications. This can be done using
o ((ay)l"g3 ) Toffoli gates [59], whereas the inequality test
itself requires only O (ay) Toffolis [59].

The number of ancilla qubits ay determines the precision
ey of U Vot In particular,

o

0@ HUy, ,.(10) @ 1)

nn' j

XY ——

Xn X, (”xn — Xp ”2 + Az)
1

< —.
—= 2“V

o Ea Tl © [T |

(D60)

Note that oy € O (1/A). We can ensure that Uy, "y is an
€p-precise approximation by choosing

o (oe(2))

Instead of constructing O (N?) different block encodings

for each of the O(Nz) terms of M, we use six SWAP
registers for the six nuclear-position variables appearing

in 1/(||x,, —xwl? + Az)l/z. Here, the factor of 6 occurs
because we assume that we are interested in dynamics in
three spatial dimensions. Controlled by the PREP; regis-
ter, we swap the appropriate position variables into the
SWAP registers. This allows us to apply the block encoding
U Vo s only once (to the SWAP registers holding the appro-

(D61)

priate position variables) rather than O(N 2) times (for
each individual term). However, we do require a total of
O (N log (gy)) SWAP operations, resulting in O (N log (gx))
Toffolis.

Application of Lemma 7 to PREP; and {UVn oy } yields

an (azay,az + ay,ayez + azey) block encoding of Hyo.
This implies that

max

N2Z2
T) . (D62)

Qpot = Az0Ay € 0(

To achieve overall block-encoding error < e, it suffices
to ensure that €, < €/2ay and €y < €/2a;. Thus the total
number of qubits required for the block encoding of the
potential operator is

apot = dz +ay € O (log (Olim)) s

(D63)

where the latter asymptotic bound follows from substi-
tuting into Eq. (D61). It follows from Lemma 5 that we
need to prepare the state PREP,|0) within error €;/Noy.
Preparation of such a product state has Toffoli cost in

0 (N log (%)) co (N log (“Zt)) .

We require another
0 (a‘;g3) co (a;‘;?) co <1og‘°g3 (%)) (D65)

Toffolis for the quantum Karatsuba multiplications. Com-
bining all of the results yields the desired complexity
expressions. ]

Lemma 24 (Block encoding of Hg,). There exists an
(aEel,aEel,e) block encoding of Hg, with normalization
constant

(D64)

ag, € O(A) (D66)
and a number of ancilla qubits
A
ag, € O (log (E)) . (D67)

This block encoding can be implemented using

~ N + log (B
O<A(N+N+ og (B)
€

N 2
N N+N+1og§/i)+log (1/e)>) (D6s)

Toffoli gates and
1
°(3)
)

queries to the initial electronic state-preparation oracle U;
from Definition 9.

(D69)
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Proof. The main strategy is to prepare the electronic
ground states in superposition over all nuclear configu-
rations and then use qubitization together with quantum
phase estimation (QPE) to obtain estimates of the ground-
state energies of H, in superposition over all nuclear
configurations. We then use the alternating-sign trick to
construct a block encoding of H,,. Let us now discuss the
different subroutines and their errors in more detail.

First, we require access to a block encoding of
the electronic Hamiltonian H,). Reference [28] provides
explicit PREP and SEL subroutines for obtaining Up,,
a (A, ae, €e) block encoding of H.. Let H. denote the
block-encoded operator satisfying

”ﬁel — Hy| < e (D70)
Since H. and I~{e| are both Hermitian, we can use
eigenvalue perturbation theory [63] to conclude that
|Eel - Eel| < €q for all {x,}, where E is the ground-state
energy of the block-encoded operator ﬁel. It then holds that

|Hey — He, | < e, (D71
where
Hey =Y Ea(ta) I@NEN. (D72)

(xn}

Next, we explain the electronic ground-state preparation.
Let W denote the unitary that prepares an approximate
ground state of H, for fixed nuclear positions according
to Lemma 14, i.e.,

WIHENN0) = [Fa1) o (1)), (D73)

with
[P0 (beng ) 180 (Lo 1)) = 1= €prep- (D74)
Note that we can view Uy, as an exact block encoding

of ﬁel, which allows us to use Lemma 14 directly without
further error propagation. This means that we can prepare

|Bo ({x4,})) using

A 1
(75 (57))
¥4 Sé€prep

queries to Uy, and
(1>
ol =
)

queries to U;. In the following discussion, we will mostly
refrain from writing out the ({x,, J }) dependence explicitly

(D75)

(D76)

unless needed for clarity. Now, it holds that

1G0) = ¢ (1= epp) [F0) + BITT)  (DTD)

for some angle « € [0,27), 0 < €, < €prep and | B> =

2
26000 — (eérep) < 26y, Letting

[Wrg) = €| ) (D78)

we thus have that

[ WIEDI0) — 1D 1Y) | = [ 1D Ido) — HED 1¥g) |
< 26pmep- (D79)

Next, we apply QPE with the following qubitization oper-
ator to the electronic register holding the electronic ground
states:

0 = (2]0%X0] — 1) -PREPZI-SELel - PREP,. (D80)

The work of Ref. [27] shows that O has eigenvalues
e*icos™ (B/%)  QPE allows us to obtain the state Vi),
which encodes an egpg-precise estimate E ", of the ground-

state energy E of H for fixed nuclear positions, with
success probability > 1 — £opg using

A 1
0(—10g (—)) (D81)
€QPE éorE
queries to Q. In other words,
VE,) = m Ey) + \/&hpe Edh) (D82)

for some 0 < &/, < §ppp. We refer to the corresponding
unitary that prepares WE'1> as Up, i.e.,

UpHEaD 1010} = /1 — &p T D 1) | EL)

+ JEbpe TN W ES).  (D83)

Lastly, we apply the alternating-sign trick, which is
explained in detail in the proof of Lemma 1, to the |1ﬁ§/l)
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register to obtain Uy, an €,-precise block encoding of

HEé = Z

{Xn}

1 (0} [ (XA} (D84)

The overall block-encoding error €g, of Hg, is then given
by
rg = ar, (01 @ 1@ (0] @ (O) W' Ug' Un

x UpW(10) @ 1®10) ®10)) — Hg, |, (D85)

where the first register in the expression (|0) ® 1 ® |0)
® 10)) consists of the block-encoding ancilla qubits for the
alternating-sign trick, the second register is the nuclear-
position and -momentum register, the third register is
the electronic register, and the last register is the phase-
estimation register. Note that the above definition implies

J

€5y = max |lag, (01 ® L ® (0] (0) ™' Up' UaUp (10) ® L ® [0) ® [0)) I{X.))
< max flag, (/@ 1®1® 1) W' Ug' UaUpW (10) © 1 ® 1 ® 1) [{X,})]0)]0) — H,

< max oz, WU (0@ 1@ 1@ 1) Uai (10) ® 1 ® 1 ® 1) UpW|{%,})|0)|0)

that the electronic register as well as the phase-estimation
register are uncomputed and projected out to the |0) state
at the end of the simulation. In other words, the error €
is only measured within the Hilbert space of the nuclear-
position and -momentum registers. Importantly, the error
matrix

gy (01 @ 1 ® (0] ® (0)) W' Uy UnUgW

x(10)®1®10)®|0)) — He (D86)
is diagonal in the nuclear-position and -momentum basis,
since W, Up, Uy, and H,, are all diagonal in the nuclear-
position and -momentum basis. Hence, €, is simply the
largest value on the diagonal of &x,. This allows us to
consider the block-encoding error for each nuclear com-
putational basis state separately. It also implies that ag,, €
O (1). Suppressing the nuclear-momentum register, we
then obtain the following:

— He, IED
L ® 1.® 1]{%,1)[0)[0)]

— Hg, ® 1 ® 1[{x,})[0)|0) [,
(D87)

where we have used the fact that [0)(0| ® 1 ® 1 ® 1 commutes with /¥ and Up, since W and Uy act trivially on the first
register. In the following discussion, we will drop the “® 1” for ease of notation. The general strategy now is to apply
the triangle inequality repeatedly to “peel off” the errors stemming from different subroutines layer by layer. First, we
will isolate the error associated with -

er, < max lag, W' Up' (0]U]0)) UM I{E:1)10)10) — tey ™' U ((01Un]0)) Ul (XD W)

max ag, ' Ug' (01Uan]0) Uol (%, 115)10) — He, [EDI0)I0) (D88)

By definition, the spectral norm is subordinate to the £2-norm. Furthermore, we have that ||U|| = 1 for any unitary U.
With this in mind, we can bound the first term on the right-hand side of the above inequality as follows:

max oz, I Ug! ((01Uinl0)) Ug 1)) 10)10) — gy I Ug!

{xXn}

(01U 0)) Ul 11w7)10) |

< maxarg, ||| Ug! | 1CO1UaloD Il [ U]l [MIEDI010) = 1ED13)10)]| < ey 26y (DBO)
To bound the second term on the right-hand side of Eq. (D88), we use the triangle inequality again:
max |t U ((01Uan10)) Ul ) /0)10) — Hy | 6,1} 10310) |
< max [Ja, W UG ((01Ua|0)) Ul {%a}) 19610} — atey W~ Up' ({01 Uai0) HEu D [W0) | E)
o+ max ez, I Ug' (01Ul 0)) 15D 1) E4) = Hy (52110100 (D90)
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The first term on the right-hand side of the above inequality can be bounded as follows:

max |t W' Up' ((01Uan10)) Ul ) 1¥/3)10) — ez, 1" U (01Ul O)) D) Ely)

|

< maxa, | U5 | 1CCO1UlODI [ VoIt 19)10) = 1EDIWGHED) | <z, Egre. (DO

Note that the failure probability £ppr of the phase-estimation step is now part of the block-encoding error of Hg, in
addition to the actual phase-estimation error €ppg. Before explaining how €ppg contributes to the block-encoding error
€g,, we first isolate the error €, associated with the alternating-sign trick. This can be done by applying the triangle
inequality to the second term on the right-hand side of Eq. (D90):

max g, W' Up' ((01Uanl0)) 1.1 V) EL) — Hi [(5.1)10)10)|

< max oz, W~ Ug" (01 UatlO)) () 1)1 B — W~ U Hiz () 1) )

{Xn}

|

o+ max | WU Hag [N ) E) — Heg[F,1)10)10)] (D92)
The first term on the right-hand side of the above inequality can then be bounded as follows:

max e, I Ug' (01UalO)) 1D Ea) — W Ug Hi ) 1) )

{xXn}

= max || |0 | oz (010N 11 w9 L) — H, [ IW)IE:

\ < . (D93)

Application of the triangle inequality to the second term on the right-hand side of Eq. (D92) now allows us to isolate the
phase-estimation error €ppg:

ma | W1 Ug Hi, [ D13) Ed) = He 51010

<maxHW Uy Hy, 115 W) Er) — W UG H 1m0 9) L)

|

o max | I Ug" H | E) ) B — Hig | %) 10)10) (D94)

{Xn}

The first term on the right-hand side of the above inequality can be bounded as follows:

|

< max || |Ug | |z, D WOIEL - H, IEDIVGIESD

ma | W~ Ug' i | 5a)) 1) ) — WU Hi |G 1) B

] < eors. (D95)

Next, we isolate the block-encoding error €. of the electronic Hamiltonian by applying the triangle inequality to the
second term on the right-hand side of Eq. (D94):

max | I~ Ug' Ha, [EDIVIES) — He, | (5,110)10)
< max | U H | ) W) L) — ' U Hey [1%,0)10)10) |
o+ max | W U H |Gl 1) Bl — Hiy (511 10)10) (D96)

{Xn}
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The first term on the right-hand side of the above inequality can then be bounded as follows:

{Xn}

< max || |0 | [z, (D WOIED — HealEDIGED| < €a.

{xn

max | W Ug! H, | E o) Ea) = W U Hey | E) 10010}

(D97)

To bound the second term on the right-hand side of Eq. (D96) recall that Hg, is diagonal in the |{X,}) basis, i.e.,

Hg, [{Xa}) = Ea (({xn})) [{Xn}). Thus, we have that

{xn}

max | I Ug Hey |G 1) E) = Hey | Za))10)10) |

< max |Eq (b)) || W' Ug' 15 195) Ed) = 1E.110)10)|

=< QE,

The first term on the right-hand side of the above
inequality can then be bounded as follows:

W UG DI E) — W 1ED 910}
< g, || [ U5 1D WIELD — 1D

< ag,/éorE-

Lastly, the second term on the right-hand side of Eq. (D98)
can be bounded in terms of €pyep:

(D99)

WHE D W) 10) — [{FDI0)10) | < oty v/ 2€prep-
(D100)

aEel

Putting everything together, we find that

€py < ag, (2\/ 2€prep + 24/ $QPE) + €art + €gpE + €l

(D101)
We can ensure €;,, < € by having
1 € 2
T¢] == ) D102
Cprep 2(10%) (b102)
N

< , D103

Sope < (1 OaEel) ( )
€

€alt = 3 (D104)
€

€0PE < g, (DIOS)
€

€l = 3 (D106)

| UG GO E) = W ED 100 | + ey [ IEDIWRI0) = 1FDI0NO)]

(D98)

(

The condition €, < % (e/ lanel)z can be satisfied by

using
A A
O|—log|—
¥4 de

queries to Uy, and
(1)
ol -
)

queries to U;. The conditions &ppr < (e/ IOozEel)2 and
€ope < €/5 can be satisfied by using

o(iwe(2)

queries to Q (or, equivalently, Uy, ). Next, the condition
€t < €/5 can be satisfied by using

aEel c 0 (log <maX{xn}fél ({xn}))) c 0 <log (g))

(D110)

(D107)

(D108)

(D109)

ancilla qubits. The associated Toffoli cost is in O (ag,) due
to the inequality testing required for the alternating-sign
trick. Lastly, by Lemma 3, we need

o+ -1 (2))

Toffoli gates to ensure that the block-encoding error € of
Hy is at most €/5.

The overall Toffoli complexity of block encoding Hg,
is dominated by the number of Toffolis needed for all

(D111)
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queries to the walk operator Q and the number of Toffo-
lis needed for the electronic ground-state preparation. In
either case, we multiply the respective query complexity
with the Toffoli cost of block encoding H, to obtain the
desired complexity expression. |

Let us now prove the following lemma on the query
complexity of estimating the internal energy.

Lemma 25 (Query complexity of estimating the internal
energy). Let Uy, be an (ayin, akin, €/9) block encoding of
Hin, let Uy, be an (otpor, dpots €/9) block encoding of Hi,
and let Ug, be an (ag,, ag,,€/9) block encoding of Hp,,.
Furthermore, let AULNVT € Cpurxipur be an €/ (18npuranuc)—
precise approximation to Uy as defined in Eq. (D15),
where e 1= Qin + opot + g, There exists a quantum
algorithm for estimating the internal energy U/ associated
with pg, (#) within error € with probability at least 1 — &

using
0 Anuc lo 1
€ g &

queries to T/’LNW Uiy Uty and Uk,
Proof. First, note that the internal energy U of the
system can be computed as follows:

(D112)

U =Tr (plyy (e ) = Tr 0}y (D Hiin

+ Tt (s (OHpo ) + Tr (L (OHz,) - (D113)

The idea is then to estimate each term individually within
error € /3 using the Hadamard test as shown in Fig. 8. Then,
we add the results classically, which yields an e-precise
estimate of .

10) ——{H]——

|§> ] ﬁILNVT

FIG. 8. The circuit for implementing the Hadamard test to esti-
mate the internal energy U/ of the nuclei, where U;  is an
approximation to the evolution operator from Eq. (D15) and
Ui € {Unyy> Untyor» Uy} The second register from the top is the
ancilla register needed for block encoding Hyn, Hpor or H,.
The fact that U; does not act on the bath register |S) or the
phase-gradient ancilla register |j ) can be understood as taking the
partial trace over those registers when computing the probability
of measuring the top qubit as 0.

Let

H:=a; (0| ® 1) U; (|0) ® 1) (D114)

be the Hamiltonian term block encoded in U;, where U; €
{Ubiyin> Uttpors Ug,}, and o; € {ayin, opot, @£, }. The proba-
bility of measuring the top qubit in Fig. 8 as 0 is given by

POy =2 |1+ o <5;ys(t)E>
i o 2 o ’

(D115)

where 5;ys(t) is the reduced density matrix of our sys-

tem obtained from f]LNVT' Let 1314’(0) denote our estimate
of P/(0) based on the outcome of the Hadamard test.
Furthermore, let

o (e )
Pi0) = [ 14+ ———" .

(D116)

denote the success probability of the Hadamard test when
used with an error-free block encoding of U}, .. Lastly, let

L T (P

Pi(0) =5 | 1+ (D117)

o

denote the success probability of the Hadamard test when
applied to error-free block encodings of Uj, . and H;,
where H; € {Hyin, Hpot, HE, }. Estimation of P;(0) within
error € /6c; allows us to obtain an €/3-precise estimate of
Tr <p;ys(t)H,-).

By the triangle inequality, it holds that

|P(0) — Py(0)| < |P/(0) — P/ (0)| + P} (0) — P}(0)
+ |P,f(0) — P;(0)]. (D118)

We now show that each term on the right-hand side of
Eq. (D118) is upper bounded by €/18«;, which implies that

W@—mw§§y (D119)
a .

1

as desired.
The error associated with the last term stems from the
block-encoding error of H;. Let p; denote the jth eigen-

value of pg, (1) and let H;; denote the jth eigenvalue of
H; — H.. Using von Neumann'’s trace inequality, we obtain
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the following bound:

/ 1 / 7 /
P = PiO)] = 5 |Tr (i OH) = Tr (4 01|
= ZTOl,- Tr (p;ys(t) (Fll - Hi))‘
_ €
<
T 20y &
J
€
< Tsa (D120)

where we have used the fact that )Hl; ‘ < |H - H| <€/9

by choice of the block-encoding precision.

The error associated with the second term on the right-
hand side of Eq. (D118) stems from the simulation error of
Uy, - By assumption,

€

f — D121
|| Lyyr — LNVTH = 1877pur05nuc ( )
This implies that
H U}‘NVTNJ0 \polULNVT LNVTNJO lIJOHJLNVT
= LNVT [Wo)(Wol l/L'NVT LNVT [Wo)(Wol (/LNVT
+ HﬁLNVTNJO %'ULNVT ULy Wo) \I}0|ULNVT
= H Lyyr LNVT + ” l];JNVT - U,LNVT ”
€
= , (D122)
18 Npur®nuc 9npuranuc

where, as before, |Wy) is the initial state of the purification
of p;ys(t). It then follows from Definition 16 that

2 H LNVTNlO \IIOHJJLNVT LNVT|lIIO lIIO'ULNVT
€
. D123
~ 18y ( )

Since the trace distance is contractive under the partial
trace, we obtain the following bound:

T (P, plys(®)) = (D124)

- 18 l’lLlC

Let p;” denote the j th eigenvalue of oy, () — g (#) and let
Fliz,« denote the j th eigenvalue of H;. Using von Neumann’s

trace inequality, we then have that

1
[P} (0) — Pi(0)] = 2
o

Tr (5,0 F;) = Tr (o4 (0 )
2 [T (P40 = i 0) F)
el

—T (P, plys(®))

€ €
< —.
- 18051'

IA

IA

IA

D125
18O‘nuc ( )

Lastly, we need to ensure that |131// (0) — P/ (0)] < €/18a;.
The idea is to use amplitude estimation to obtain an
€/18a;-precise estimate IA’;’(O) of P/(0) with constant suc-
cess probability. This requires

o) co(%)
€ €
applications of the Hadamard test, which is equivalent to
o (‘%) (controlled) applications of U} and Uj.

By the union bound, we can obtain an e-precise esti-

mate of U with success probability > 1 — & by ensuring
that the failure probability associated with the estimation

of each term Tr (,ogys(t)Hi) is < &/3. This can be achieved

via (fixed-point) amplitude amplification at the expense of
an additional multiplicative factor of log (1/§) to the query
complexities of Uy and U;. [

(D126)

3. Proof of Theorem 2

For convenience, let us restate Theorem 2 here.
Theorem 2 (Estimation of the free energy). Let 7 :

N g3N 258y, be the number of grid points of the dlscretlzed

phase space and assume that log (n /e) < 7. Then there
exists a quantum algorithm that solves Problem 2 with
success probability at least 1 — & using

5 n()(l)Nmtdui;;%(l)tl+o(1) N n(ka)l.5+0(l)
)73€1+o(1) nue ﬁ

NiotCtnycA 1
e )

Toffoli gates. Additionally,

5 no(l)Ndu}v;(}(l)tl—b—o(l)l 1
’S/EIJra(l) 0g E

77(ka)l.S+o(1)
< (omr 22 5))
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queries to the initial electronic state-preparation oracle U;
are needed.

Proof. We use Lemma 21 to estimate the Gibbs entropy
associated with pg(#) within error €/2kpT with failure
probability at most £ /2. This requires

(77( 37)15

0 (D127)

(1/$)>
queries to an (6 /8npurky Tlog (n/ v))-precise approxima-

tion ULNVT to ULNVT’ where v € (0,1) is again a lower

bound on 27 (,osys(t), Piys (D)
that v € O (¢/n), which should be fairly easy to achieve.
The promise log (n%/€) < n ensures that this choice of v

). For simplicity, we assume

does not exceed the upper bound on 27 <ﬁ;ys(t), p;ys(t)>.

It then follows from Theorem 1 that estimation of the
entropy requires a total of

. 2+40(1)
5 (771+0(1)Ntotd(kBT)l 5+0(1)MNVOT o) log (l))

78 el sto() &
(D128)
Toffoli gates and
5 771+0(1)Nd(kBT)1'5+0(1)/L11\/_;(}(1)t1+0(1) N l
5 el5+o(l) g £
(D129)

queries to the initial electronic state-preparation oracle U;.

Next, we use Lemma 25 to estimate the internal energy
U of the nuclei within error €/2 with failure probability at
most £ /2. This requires

o ee(1)

queries to an (6/36npuranuc)—precise approximation of

(D130)

ULNW By Theorem 1, the associated Toffoli complexity
is then in
- o(l)N d 2+o(1)tl+o(1) 1
0 o e T log (—) . (D131)
y § elto 3

Furthermore, we need

- o(l)Nd . 1+o(1)ll+o(1) 1
0 ( Fnue My log (E) (D132)

361+o(l)

queries to the initial electronic state-preparation oracle U.
According to Lemma 25, we also require

o s (¢))

(D133)

queries to € /18-precise block encodings of Hyi,, Hpor and
Hg,. Lemmas 22-24 imply that the combined Toffoli
complexity of all these queries is in

~ [ Onyc 1 &Unuc log3 {¥nuc
O( . log<§> (Nlog( - >+10g (—6 )
1 1
+ Nioth | =+ —
€ yé
~ 1 1 1
- o Motanuc)" 10g rn -+ — . (D134)
£/ \e?  yée

Similarly to the spectral-gap argument used in the proof of
Theorem 1, we only need to provide a lower bound » on
the spectral gap of the electronic Hamiltonian over those
phase-space grid points that are associated with a nonzero
amplitude at some point during the simulation. Likewise,
we only need a lower bound § on the overlap of the ini-
tial electronic state with the true electronic ground state
over phase-space grid points that are visited at some point
during the simulation. The reason for this is that any sim-
ulation errors that occur on grid points that are associated
with zero amplitude throughout the simulation do not con-
tribute to the error of the final estimate. This means that
Problem 2 can be solved using only O (1/73) rather than
O (1/y$) Toffoli gates.

Combining the previous results, we find that the overall
Toffoli complexity associated with estimating F is in

o

2+4o(1
771+(}(1)]vtotd(k3n1'5+0(1)MNV(7)~( )t1+()(1)

2+o0(1
(I)Motdanuc MNV(Y)"( )t1+0(1)

)7’5“61+o(1)

J7361.5+o(1)

NiotCtnycA 1
g o ()

which can be simplified as follows:

2+0(1
no(l)]\]‘totdﬂ]\/—;—/?‘( )t1+o(1) n(ka)l.5+o(1)
C 5T o 1+o(1) Pnuc
yoe Ve

NiotCtnycA 1
) e

Furthermore, the overall number of queries to U is in

5 n()(l)Ndanuc M]lv'fl;l]’w(l)tlJra(l) o l
g€l+o(l) g g

+771+0(1)Nd(kBT)1'5+0(1)M}VT/0T(1)11+0(1) o l
5 el 5+o(l) g >

§
(D137)

(D135)
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which can be rewritten as follows:

~ oM N 1+0(1)t1+a(1) 1
(< ()

§€l+0(l)

n(ka)l,SJro(l)
- <a " T))

APPENDIX E: COMPUTATIONAL COST
SCALING OF FORWARD EULER INTEGRATION

(D138)

The computational costs for the calculation of molecu-
lar forces on a fault-tolerant quantum computer are given
in Ref. [20]; however, the propagation of errors from an
individual gradient estimate to the updated particle posi-
tions is not bounded. In the following, we extend that result
by giving an upper bound on the run time of an MD sim-
ulation algorithm where the quantum computer is used to
compute the forces on the particles that are then used to
update the nuclear positions on a classical computer with
forward Euler’s method.

The goal of Euler’s forward method is to update the
value of a variable y(7T) (e.g., the position of a nucleus)
at a time T + & using the derivative y'(7) and the step A:

y(T+h) =y + hy'(T). (E1)
We define y(j [y(j — 1)) as the value of the position after
J steps in the case of a perfect update (i.e., with the exact
derivative) given the same perfectly updated position at the
previous iteration. In contrast, we have y(j |y(j — 1)) and
y(1) = y(1]y(0)) in the case of updates with an approxi-
mate derivative (i.e., with some error § in the derivative
calculation). Unless otherwise stated, we assume that

Yi-1=y( — 1y -2),
Vie2=y( —2|y-3),

We now want to determine an upper bound on the error
performed in the update after N steps of updates with
approximate derivatives, defined as the difference between
this and the same updates computed with perfect deriva-
tives: [y(NV|yn—1) — y(N|yn—1)|. Additionally, we consider
the solutions to Newton’s equation of motion for the
updated variable y and the approximate variable y: y =
el'yy and j = et'yy, given the initial condition y,. We call
y(j) =y, the value of our variable after j time steps. Fur-
thermore, we are assuming that the error on the derivatives

is such that HA —;IH < Kiips, Where Kiiys is the Lips-

chitz constant, which is directly related to the norm of the
differential operator.

For a single integration step of size 4, if starting from the
same previous value, we accumulate an error |y (j [y;—1) —
Y lyj—1)| that is upper bounded by the error on the
derivative estimation multiplied by the step:

G lyi-1) —yG -1l < dh,
PG 1) < Xty

FG1F-1) < eMinty .

(E2)

Therefore, we have

G- =G ly-ol
< Gli-) =200l + G- —yGly-l
<Sh+ PG l-0) —yGly-ol
< 8h+ ey — 3]

J
< 8h (1 + Z e”KUPSh> .

n=1

(E3)

After N steps with N = T/h (where T is the total time) of
Euler’s forward method, we obtain

(N lyv-1) =y (Npv-1)
N Kl insh(N+1)
eKLips —1
< 8h (1 + Ze”KLipsh> < 8h <1 + —h>
— eKLlps —1
eKLipsheKLipsT — 1
eKLipsh —1 )

eKLipsT — eKLipsh)

§8h<1+

< h8(1 + 2&8uinsTy < 3psekLinsT (E4)
where we have chosen Ky jpsh < In(2) and N = T/h.

We want to make sure that the error is at most eyp:

h8(1 + 2e8tinsTy < 3psekiin? < ey, (E5)

We choose the step size to be & = In(2) /K1y, 50 we have

that our error on the single gradient estimation needs to be

- EKM.DfLips . (E6)
3e"Linst In(2)
We want to impose this error § as the target error in the
single gradient estimation necessary to achieve an overall
simulation error €yp. From Table IV of Ref. [20] in the
case of first-quantized plane-waves, the time complexity is
Torad = NZ 25-1 (with the number of atoms N, considered
proportional to the number of orbitals). Therefore, the time
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complexity of a single gradient estimation to achieve the
target error is

,
NieKLipsT

ToffCountgg € O [ —— | . (E7)
Kiipsemp

Since we need to perform N = T/h = Ky, T/ In(2) steps,
the total time is given by

7 7

Naj eKLipsT ]\]gj eKLipsT

ToffCountyp e O\ N———— | =0 | T———
Kiipsemp €MD

(E8)

This means that the time for simulating a system with
Euler’s integration method scales exponentially with the
simulation time 7, while still scaling polynomially with the
other parameters.

It is worth noting that while the underlying trajecto-
ries are potentially unstable, the overall probability density
formed by an ensemble of such trajectories generically is
not. In particular, if we instead were to focus on the error
in phase-space density, then this scaling would become
polynomial if the shadowing-theorem conditions hold [68].
This suggests that the relative cost between this approach
and our own may be somewhat deceptive; however, it is
fair regardless to say, without assuming that we are inter-
ested in estimating a single-particle trajectory, that the
number of Toffoli gates needed for an accurate simula-
tion may scale exponentially with the evolution time in the
worst-case scenario.
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