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Quantum instruments represent the most general type of quantum measurement, as they incorporate
processes with both classical and quantum outputs. In many scenarios, it may be desirable to have some
“on-demand” device that is capable of implementing one of many possible instruments whenever the
experimenter desires. We refer to such objects as programmable instrument devices (PIDs), and this paper
studies PIDs from a resource-theoretic perspective. A physically important class of PIDs are those that
do not require quantum memories to implement, and these are naturally “free” in this resource theory.
Additionally, these free objects correspond precisely to the class of unsteerable channel assemblages in
the study of channel steering. The traditional notion of measurement incompatibility emerges as a resource
in this theory since any PID controlling an incompatible family of instruments requires a quantum memory
to build. We identify an incompatibility preorder between PIDs based on whether one can be transformed
into another using processes that do not require additional quantum memories. Necessary and sufficient
conditions are derived for when such transformations are possible based on how well certain guessing
games can be played using a given PID. Ultimately our results provide an operational characterization of
incompatibility, and they offer semi-device-independent tests for incompatibility in the most general types
of quantum instruments.
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I. INTRODUCTION

Incompatibility is a quintessential feature of quantum
mechanics. Unlike classical systems in which conjugate
variables have definite values at each moment in time,
quantum systems are dictated by celebrated uncertainty
relations, which place sharp restrictions on how well the
measurement outcomes of two (or more) noncommuting
observables can be predicted [1]. The incompatibility of
noncommuting observables has wide-ranging applications
in quantum information science from quantum cryptog-
raphy [2,3] to entanglement detection [4] to quantum
error correction [5]. For more general types of measure-
ments beyond textbook observables, commutation rela-
tions are no longer sufficient to characterize measurement
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incompatibility. One instead considers the property of joint
measurability, which means that a joint probability distri-
bution can be defined for the given collection of measure-
ment devices, each being described by a positive operator-
valued measure (POVM) [6–8]. Incompatibility between
POVMs in this sense means that such joint measurability
is not possible.

Whereas POVMs characterize the classical output of
a quantum measurement, a more general description of
the measurement process also includes the quantum out-
put. Here, one typically invokes the theory of quantum
instruments [9], with an instrument formally being defined
as a family of completely positive (CP) maps {�x1}x1
such that

∑
x1

�x1 is trace preserving (TP). When per-
forming an instrument on a quantum state ρ, a classical
outcome x1 is observed with probability px1 = Tr[�x1 [ρ]],
and the postmeasurement state is then given by �x1[ρ]/px1 .
Note that POVMs are a special type of instrument for
which �x1[ρ] = Tr[Mx1ρ] for some collection of positive
semidefinite operators {Mx1}x1 with

∑
x1

Mx1 = 1. Like-
wise, a quantum channel (i.e., a CPTP map) is also a type
of quantum instrument, having just a single classical out-
come. The notion of incompatibility can also be extended
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into the domain of channels and instruments [8,10–12].
Similar to the case of POVMs, a family of instruments
{�x1|x0}x0,x1 is compatible if all the constituent instruments
can be simulated using a single instrument combined with
classical postprocessing; incompatible instruments lack
this property.

Extensive work has recently been conducted to cap-
ture incompatibility as a physical resource in quantum
information processing [13–21]. This can be accomplished
using the formal structure of a resource theory [22–26],
in which objects are characterized as being either free or
resourceful. Additionally, only a restricted set of physi-
cal operations can be performed by the experimenter, and
these are unable to create resourceful objects from free
ones. In the case of quantum incompatibility, the free
objects are compatible families of POVMs or instruments,
and the incompatible ones are resourceful.

By adopting a resource-theoretic perspective, one can
establish operationally meaningful measures of incom-
patibility such as its robustness to noise [14,18,27–30].
The incompatibility in one family of POVMs or instru-
ments can then be quantitatively compared to another.
Resource theories also provide tools for detecting or “wit-
nessing” the incompatibility present in general measure-
ment devices [29,31–34]. This certification can also be
done in a semi-device-independent way [13,18–20,25,35–
37]. In other words, by attaining a certain score on some
type of quantum measurement game, the experimenter
can rest assured that he or she is controlling some fam-
ily of incompatible POVMs or instruments without having
full trust in the inner workings of the device. Crucially,
the largest achievable score using some device cannot be
increased using the allowed operations of the resource
theory, and the scores therefore represent resource mono-
tones. In many cases, these games define a complete set
of monotones whose values provide necessary and suffi-
cient conditions for convertibility of one object to another
by the allowed operations [20,34,38–42]. We show in Sec.
V that the same holds true for the guessing games con-
sidered in this paper, and furthermore the advantage of
using an incompatible device in these games can be quan-
titatively characterized by the aforementioned robustness
measure. However, the general idea of relating convert-
ibility to guessing games can be traced back to the original
work of Blackwell on statistical comparisons [43] (see Ref.
[38] for more discussions).

A. From programmability to nonsignaling

Our analysis of quantum incompatibility is motivated
by the idea of “programmable” quantum instruments.
Consider a generic controllable measurement device as
depicted in Fig. 1, which is capable of implementing some
family of instruments {�x1|x0}x0,x1 . The classical program
is the input value x0, which dictates that the instrument

FIG. 1. A general controllable quantum device applies an
instrument {�x1|x0}x1 to the quantum input whenever a particu-
lar program x0 is chosen. The characteristic time �tD := t1 − t0
is known as the quantum delay time of the device, and it mea-
sures how quickly the device functions as a q-to-q channel. The
device is said to be fully programmable if the program is free
to arrive at any time t2, even outside the interval [t0, t1), and
we refer to such a device as a programmable instrument device.
Given that classical memories are freely available, the full pro-
grammability of a PID is essentially its ability to withstand an
arbitrarily late arrival of the program, termed the late-program
assumption. In the framework of Ref. [44], a PID represents a
so-called “multiprocess.”

{�x1|x0}x1 be performed on the quantum input. We consider
these devices to be modules in nature so that the classical
or quantum output from one device can be connected to
a classical or quantum input of another. This introduces a
critical consideration of time: for the devices to function
together properly, the outputs of one device must arrive
at a time when the next device is ready to receive them.
In practice, every physical device will have a character-
istic quantum delay time [44], which measures how fast
the device generates a quantum output when given a quan-
tum input, and it corresponds to �tD := t1 − t0 in Fig. 1.
How about the timing of the classical program? As typi-
cally demanded by devices with multiple inputs, one would
expect that the program be synchronized with the quan-
tum input, or at least be within the finite window [t0, t1).
However, if the quantum delay time �tD appears to be
short, such a hard constraint on timing can be unrealistic
in practice, and therefore we have a particular interest in
devices that give the experimenter full temporal freedom
over when he or she can submit the program, a capabil-
ity called programmability in Ref. [20]. As a consequence
of programmability, the timing of the classical and quan-
tum inputs need not be synchronized, and the classical
program can arrive significantly before t0 or after t1. With-
out loss of generality, we need only to assume that the
program arrives after the quantum output time t1, which
we refer to as the late-program assumption, and this is
because an early arriving program can always be buffered
in a classical memory before the quantum input arrives.
Clearly, not every controllable quantum device can work
through the late-program assumption, and a device can do
so if and only if the quantum output is independent of
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the classical input after coarse-graining the classical out-
put (see Sec. II B). Formally, this constraint is known as
nonsignaling, which requires that

∑

x1

�x1|x0 =
∑

x1

�x1|x′
0

=: � ∀x0, x′
0. (1)

In other words, all the instruments in the family
{�x1|x0}x0,x1 sum up to the same channel �. Since the
nonsignaling constraint in Eq. (1) is necessary and suffi-
cient for programmability, we naturally refer to devices
satisfying this constraint as programmable instrument
devices (PIDs).

While the quantum output at t1 for a PID is independent
of the classical program, the classical output will gen-
erally depend on the quantum input at t0 (and certainly
also on the classical input at t2). Hence under the late-
program assumption, the internal quantum memory of the
PID might need to store quantum information for an indefi-
nite amount of time until the experimenter chooses to issue
a program. However, there is a special class of PIDs for
which the quantum memory can be perfectly substituted
with classical memory. These are called simple PIDs, and
they represent the “free” objects in the resource theory.
Remarkably, simple PIDs are precisely those in which the
family of instruments being implemented is compatible. In
contrast, nonsimple PIDs, i.e., PIDs that are not simple,
require quantum memories with an indefinite lifetime to
support full programmability, and thus they are resources,
demonstrating incompatibility. Of course, an indefinite
lifetime of a quantum memory is an idealization and hence
so is full programmability. In practice, every realizable PID
will have a quantum memory with some finite lifetime
�tQM < ∞. To pinpoint the differing demands on quan-
tum memories for programmability, throughout the paper,
we may as well assume that every PID satisfies �tD ≈ 0
and that the internal quantum memory of any nonsimple
PID satisfies �tQM � �tD. These assumptions are in line
with our identification of only simple PIDs as being free.

There is an alternative justification for imposing the
nonsignaling constraint in Eq. (1) not directly related to
programmability. One could imagine that the device in
Fig. 1 is a bipartite channel shared between spatially sepa-
rated parties, with Evan controlling the classical input and
output and Alice controlling the quantum input and out-
put, as depicted in Fig. 2. Alice may be unaware of the
existence of the eavesdropping party Evan, and she thinks
of her quantum input and output as being connected by
a local channel. She would then expect that the quantum
delay time of her channel should be extremely short, lim-
ited only by the local inner workings of her device, which
implies that the information from Evan’s control signal
should not have enough time to propagate across space-
time and influence her channel output. Thus Alice’s output
would be spacelike separated from the choice of Evan’s

FIG. 2. The control device could also be split between spa-
tially separated parties Alice and Evan. The nonsignaling con-
straint from Evan’s control signal to Alice’s channel output
naturally arises if the spatial separation is so large that Evan’s
signal propagation time exceeds the anticipated quantum delay
time between Alice’s local input and output.

control signal, and the nonsignaling condition (from Evan
to Alice) would hold, as in Eq. (1). Note that this reflects
a scenario known as channel steering [45], as Evan is
remotely manipulating Alice’s channel with his control
signal without letting her detect him due to the nonsignal-
ing constraint. Apart from being useful for better under-
standing quantum incompatibility, the scenario of channel
steering is also relevant for cryptographic applications and
one-sided device-independent testing of coherent channel
extensions [45]. In fact, steerability and incompatibility are
equivalent concepts when defined on nonsignaling families
of instruments (see Sec. IV A), and so the resource the-
ory of PID nonsimplicity that we develop in this paper is
equivalently a resource theory of channel steering.

B. Organization of the paper

With this background and motivation in hand, we
now conduct our resource-theoretic analysis of instrument
incompatibility in terms of nonsimplicity of PIDs in more
detail. The rest of the paper is organized as follows.

In Secs. II and III, we establish the basic pieces of our
resource theory. We first review the traditional concept
of measurement incompatibility and its resource theory in
Secs. II A and III A. Then we extend the present theory
to incorporate the more general concept of incompatibil-
ity between quantum instruments. Specifically, we for-
mally introduce simple (i.e., free) versus nonsimple (i.e.,
resourceful) PIDs and the physical distinction between
them in Sec. II B. We then propose a class of free trans-
formations between PIDs, which is incompatibility-non-
increasing and has a clear operational meaning, in Sec.
III B.

In Sec. IV, we focus on discussing and discovering
the relationships between PID nonsimplicity, steering, and
traditional measurement incompatibility. We explicate the
spatiotemporal correspondence between channel steering
and PIDs in Sec. IV A. Then we generalize the concept of
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steering-equivalent observables to the scenario of channel
steering in Sec. IV B, and in doing so we derive a mono-
tonicity theorem that signifies a fundamental connection
between the resource theory of PID nonsimplicity and that
of measurement incompatibility.

Finally, in Sec. V, we provide a semi-device-
independent characterization for PID nonsimplicity by
designing a class of so-called “nontransient” guessing
games as a temporal analog to the well-studied nonlocal
games. In particular, nontransient guessing games can be
used to characterize the incompatibility preorder between
PIDs by providing necessary and sufficient conditions for
convertibility from one PID to another under the afore-
mentioned free transformations, as shown in Sec. V A.
We further show in Sec. V B that the operational advan-
tage of a given PID over simple PIDs in these games is
tightly bounded from above by the PID’s robustness of
incompatibility against noise. In Sec. V C, we discuss the
experimental setup of nontransient guessing games and put
forward a variant class of games that lowers the experi-
mental requirement while also faithfully characterizing the
incompatibility preorder between PIDs.

II. PROGRAMMABLE QUANTUM DEVICES

In this section, we first review the traditional concept
of measurement incompatibility formulated as a resource
for programmable measurement devices [20]. Then we
extend the traditional framework by incorporating pro-
grammable instrument devices and a generalized concept
of incompatibility for such devices.

A. Programmable measurement devices

A programmable measurement device (PMD) [20], alias
a multimeter [46], is a quantum measurement device capa-
ble of implementing a family of POVMs conditioned on a
classical control signal. A PMD M is mathematically rep-
resented by a collection of positive semidefinite operators
M ≡ {Mx1|x0}x0,x1 such that

∑
x1

Mx1|x0 = 1 for all x0. The
classical input x0 is known as the program, which indi-
cates the particular POVM {Mx1|x0}x1 to be performed on
the quantum input. The classical output x1 labels the mea-
surement outcome of the POVM. PMDs represent the most
general qc-to-c CPTP maps.

A PMD M is said to be simple whenever it can be
simulated with a “mother” POVM followed by some (con-
trollable) classical postprocessing; namely, it implements
a compatible family of POVMs admitting the following
decomposition:

Mx1|x0 =
∑

g

px1|x0,gGg ∀x0, x1, (2)

where {Gg}g is a POVM and {px1|x0,g}x0,x1,g is a classi-
cal channel (i.e., a conditional probability distribution). A

PMD not decomposable in the form of Eq. (2) is nonsim-
ple, as the family of POVM it implements is incompatible.

An advantage of studying quantum measurements in
terms of PMDs is that it links measurement incompati-
bility and quantum memories in a physically motivated
way. As discussed in Sec. I A, a practical conception of
programmability should take into account the unavoid-
able asynchronicity between the quantum input and the
classical program, and so programmable devices should
(ideally) allow the experimenter to issue the program at
any desirable time [20]. This temporal freedom can be sim-
ply captured by the late-program assumption, which we
regard as a basic principle in the programmability context.
For a PMD to function as a qc-to-c box under this assump-
tion, an internal quantum memory is generally needed to
store the quantum input until the program is submitted to
the classical system X0. However, if the PMD is control-
ling a compatible family of measurements, i.e., the PMD
being simple, then no quantum memory is needed. Instead,
the “mother” POVM {Gg}g can be performed as soon as
the quantum input arrives, and the outcome g is stored in
a classical memory until the program arrives. Thus, the
requirement of a quantum memory to implement a PMD
is another way of characterizing measurement incompati-
bility. It is then natural to identify simple PMDs as being
“free” objects since they do not require quantum memories
to implement, and a resource theory of PMD nonsimplicity
is physically well justified.

B. Programmable instrument devices

Next we extend the theory of programmability to quan-
tum instruments. A quantum instrument is a general-
ized version of measurement that incorporates a quan-
tum output representing the postmeasurement state. The
most straightforward generalization of a PMD is a multi-
instrument [46], a device capable of implementing a col-
lection of quantum instruments conditioned on a classical
control signal. A multi-instrument Λ is mathematically
represented by a collection of completely positive (CP)
maps Λ ≡ {�x1|x0}x0,x1 such that

∑
x1

�x1|x0 is trace pre-
serving (TP) for all x0. To make the quantum input and
output systems A0 and A1 explicit, we sometimes write
Λ ≡ {�A0→A1

x1|x0
}x0,x1 .

Multi-instruments represent the most general qc-to-qc
CPTP maps. However, according to our conception of pro-
grammability, general multi-instruments are not suitable
models for abstracting “programmable” quantum instru-
ments. As discussed in Sec. I A generally and in Sec.
II A for PMDs, practical programmable instruments should
withstand the late-program assumption; they should func-
tion while the classical program is free to arrive at X0
anytime after the quantum input arrives at A0. By the same
assumption, the program could even arrive after the device
is scheduled to dispense some quantum output at A1. For a
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A general PID.

A general PID.

A simple PID.

(b)

(a)

(c)

FIG. 3. Decomposition of a general PID [(a) and (b)] and that of a simple PID [(c)]. Solid arrows stand for quantum systems and
hollow arrows for classical systems. Time flows from left to right. The opaque rips indicate that the quantum (left) and classical (right)
parts of the devices are temporally separated under the late-program assumption. (a) A general PID Λ can be realized by connecting
one output system E of a broadcast channel EA0→A1E to a PMD M using a quantum memory channel idE . As such, the inner working
of the PID can be understood as a process of channel steering (see Sec. IV A). (b) The general PID can be represented in a different
configuration, with the system A1 displaced downwards and the quantum memory channel subsumed within the PMD M. (c) A simple
PID can be realized with a “mother” instrument G and a classical channel p . In “steering” terms, the simple PID implements an
unsteerable channel assemblage. Note that the simple PID has the same quantum delay time �tD ≈ 0 between A0 and A1 as the general
PID does. However, the quantum memory of the general PID needs a much longer lifetime �tQM � �tD in general to accept a late
arriving classical program x0, unlike the simple PID.

device to be physically realizable in such a circumstance,
there must be no signaling from the classical input X0
to the quantum output A1. This motivates the following
definition.

Definition 1.—A multi-instrument Λ ≡ {�x1|x0}x0,x1 is
called a programmable instrument device whenever it
is nonsignaling from the classical input to the quantum
output; namely, there exists a quantum channel � such that

∑

x1

�x1|x0 = � ∀x0. (3)

We say that the PID Λ is simple (and otherwise nonsimple)
whenever there exists a quantum instrument G ≡ {Gg}g
and a classical channel p ≡ {px1|x0,g}x0,x1,g such that

�x1|x0 =
∑

g

px1|x0,gGg ∀x0, x1. (4)

The above definition of a programmable instrument
device generalizes the definition of a PMD in a way that
respects the late-program assumption. Likewise, the con-
cept of incompatibility in terms of device nonsimplicity is
extended from POVMs to instruments. Following an anal-
ogous argument that previously applies to PMDs, one can
find that the difference between a nonsimple PID and a
simple PID is precisely captured by whether the device
needs a quantum memory with a non-negligible lifetime
�tQM � �tD ≈ 0 to implement. Accordingly, it is natural
to identify nonsimple PIDs as resources in our theory of

programmable instruments, whereas simple PIDs are free
objects.

While our formulation of PIDs is motivated by the
notion of programmability, the bipartite picture shown in
Fig. 2 can be helpful in understanding the internal structure
of such devices. We envision that Alice has the quantum
input and output in her laboratory while Evan controls
the classical input and output. The nonsignaling condition
(from Evan to Alice) condition in the definition of a PID is
also known as “semicausality” [47]. It has been proved that
every semicausal map is “semilocalizable” [48], meaning
that the map can be decomposed into local operations by
Alice and Evan individually combined with one-way quan-
tum communication from Alice to Evan, as shown in Fig.
3(a). Simple PIDs are then precisely those in which the
one-way quantum communication can be replaced with
one-way classical communication, as shown in Fig. 3(c).
In Secs. IV A and IV B, we provide a more formal state-
ment (Proposition 1) and related discussions regarding the
internal structure of a PID.

III. FREE SIMULATIONS OF PROGRAMMABLE
DEVICES

In this section, we complete the construction of the
resource theory of PID nonsimplicity by proposing a set of
free transformations between PIDs. Hereafter, we will refer
to free transformations applied to programmable devices
(either PIDs or PMDs) as free simulations of the devices.
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FIG. 4. The free simulation (blue) of a PMD N (green) using
another PMD M (yellow) according to Eq. (5). It has been
shown that nonsimple PMDs cannot be freely simulated by sim-
ple PMDs [20]. Simulations in this form are precisely those that
can be realized without additional quantum memories under the
late-program assumption.

A. Free simulations of PMDs

Before we introduce what constitutes a free simulation
of PIDs, we first recall the free simulations of PMDs in the
resource theory of PMD nonsimplicity [20]. Later as we
define the free simulations of PIDs, we must ensure that
they reduce to the predefined simulations of PMDs when
both the source PID and the target PID are PMDs.

Definition 2 ([20]).—Let M ≡ {Mx1|x0}x0,x1 and N ≡
{Ny1|y0}y0,y1 be two PMDs. We say that M can freely simu-
late N, denoted by M �M N, whenever there exists a quan-
tum instrument K ≡ {Kk}k and two classical channels
p ≡ {px0,l|y0,k}x0,y0,k,l and q ≡ {qy1|x1,l}x1,y1,l such that

Ny1|y0 =
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kK†
k

[
Mx1|x0

] ∀y0, y1, (5)

where (·)† denotes adjunction. We call the transformation
M 	→ N a free simulation of PMDs.

The operational significance of Definition 2 is demon-
strated by the fact that M �M N if and only if M can
be physically transformed (i.e., via a quantum superchan-
nel [49,50]) into N using no additional quantum memory
[20], as represented in Fig. 4. Meanwhile, free simulations
of PMDs have been shown to possess essential resource-
theoretic properties, including preserving PMD simplicity
and being able to generate the entire set of simple PMDs
[20]. Thus they are formally qualified as the free transfor-
mations in a resource theory of PMD nonsimplicity, and
the relation �M is a legitimate incompatibility preorder on
the set of PMDs.

B. Free simulations of PIDs

Now we are ready to propose the free simulations for the
resource theory of PID nonsimplicity. In what follows, we
first identify the complete class of PID transformations that
do not require quantum memories to implement, and then
we demonstrate its legitimacy as the set of free transfor-
mations from a resource-theoretic standpoint. Since PIDs

FIG. 5. The free simulation (blue) of a PID Γ (green) using
another PID Λ (yellow) according to Eq. (6). The simulation is
composed of (i) pre-, post-, and side processing of the quan-
tum part, (ii) pre-, post-, and side processing of the classical
part, and (iii) an external classical memory connecting the quan-
tum and classical parts. Under the late-program assumption, free
simulations of PIDs represent the most general transformations
given that using any quantum memory with a lifetime exceed-
ing �tD ≈ 0 is forbidden. This figure reduces to Fig. 4 when the
quantum output systems A1 and B1 are trivial.

are semicausal quantum channels (i.e., quantum 2-combs),
transformations between them are supposed to be quantum
4-combs [51].

Programmability of PIDs highlights the temporal sepa-
ration between its quantum systems and classical systems,
as displayed in Fig. 3. So quantum memories across this
separation are the only resource that should be forbid-
den when simulating PIDs. As a result, the experimenter
should have the full ability to (i) have any physical pro-
cess concatenated in sequence or appended in parallel to
the quantum part or the classical part “locally,” and (ii)
feed any side information generated by the quantum part
into the classical part, as long as this information is stored
in a classical memory before the classical program arrives,
as represented in Fig. 5. Note that the quantum delay time
�tD between the quantum systems A0 and A1 is assumed
negligible and not regarded as a resource compared to the
internal quantum memory lifetime �tQM. Hence, the side
channel parallel to the quantum part need not be classical.
The formal definition of a free simulation of PIDs is given
as follows.

Definition 3.—Let Λ ≡ {�x1|x0}x0,x1 and Γ ≡ {�y1|y0}y0,y1
be two PIDs. We say that Λ can freely simulate Γ, denoted
by Λ �I Γ, whenever there exists a quantum channel
F , a quantum instrument K ≡ {Kk}k, and two classical
channels p ≡ {px0,l|y0,k}x0,y0,k,l and q ≡ {qy1|x1,l}x1,y1,l such
that

�y1|y0 =
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKk ◦ (
�x1|x0 ⊗ id

) ◦ F

∀y0, y1. (6)

We call the transformation Λ 	→ Γ a free simulation of
PIDs.
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As can be recognized from Eq. (6) or Fig. 5, free
simulations of PIDs preserve the classical-to-quantum
nonsignaling constraint, and thus they always map PIDs
to PIDs. One can conveniently verify that Definition 3
reduces to Definition 2 (free simulations of PMDs) when
the quantum output systems of both Λ and Γ are trivial (i.e.,
1 dimensional).

The following theorem demonstrates the legitimacy of
identifying the free simulations of PIDs as the free trans-
formations for PID nonsimplicity. This implies that the
relation �I is an incompatibility preorder on the set of
PIDs.

Theorem 1.—For fixed index sets where x0, x1, y0, y1
belong, the free simulations of PIDs have the following
properties.

(1) Simplicity: a simple PID cannot freely simulate any
nonsimple PIDs.

(2) Reachability: any PID can freely simulate any sim-
ple PID.

(3) Composability: the sequential or parallel composi-
tion of free simulations is a free simulation.

(4) Closedness: the limit of a sequence of free simula-
tions (if exists) is a free simulation.

(5) Convexity: the probabilistic mixture of free simula-
tions is a free simulation.

The proof of Theorem 1 is in Appendix A.
Theorem 1(1) and (2) and the sequential composabil-

ity in Theorem 1(3) guarantee that the free simulations
meet the minimal requirements for qualifying as the free
transformations for PID nonsimplicity [24]. The parallel
composability in Theorem 1(3) implies that the result-
ing resource theory admits a tensor-product structure [24].
Crucially, Theorem 1(4) and (5) indicate that the resource
theory of PID nonsimplicity has the nice mathemati-
cal property of being closed and convex. Operationally,
convexity means that the definition of free simulations
of PIDs has implicitly included the use of shared ran-
domness among the constituent physical units of a free
simulation.

Before closing this section, we remark that our free
simulations of PIDs constitute the complete set of physi-
cal transformations that do not exploit quantum memories
whose lifetime exceeds �tD ≈ 0. This fact can be demon-
strated by invoking the theory of quantum networks [51],
combined with the observation that all input and output
systems of Λ and Γ must be put in the present causal
order in Fig. 5 (see Ref. [51, Theorem 8 and Fig. 11]).
However, we leave it as an open question whether the set
of free simulations considered here is the maximal set of
transformations that do not generate PID nonsimplicity, or
conversely, whether there exists a completely simplicity-
preserving comb [24] that requires a quantum side memory
with a non-negligible lifetime to implement.

IV. RELATIONSHIP WITH STEERING AND
MEASUREMENT INCOMPATIBILITY

In this section, we expand on the relationship between
PID nonsimplicity, steering, and PMD nonsimplicity. We
first clarify that each PID can be implemented through
a process of channel steering and vice versa, and so a
resource theory of the former implies that of the latter.
Persisting with the steering viewpoint, we then unfold
some underlying connections between nonsimplicity of
PIDs and of PMDs, or equivalently, between channel
steering and measurement incompatibility, and ultimately
we demonstrate that PMDs themselves can be cast as a
measure of nonsimplicity for PIDs.

A. PIDs as assemblages in channel steering

As a dynamical generalization of the celebrated phe-
nomenon of EPR steering [53–55], channel steering [45]
provides a natural and effective way of understanding the
internal structure of PIDs. Referencing the bipartite picture
in Fig. 2, the scenario of channel steering is described as
follows. Consider a broadcast channel EA0→A1E with the
systems A0 and A1 held by Alice and the system E leaked
to Evan. Without any proactive interference, Evan can
remotely “steer” the subchannel decomposition of Alice’s
marginal channel �A0→A1 := TrE ◦ EA0→A1E by directing
his system E to a PMD M ≡ {Mx1|x0}x0,x1 . This steering pro-
cess would lead to a family of instruments Λ ≡ {�x1|x0}x0,x1
on Alice’s side, typically known as a channel assemblage
[45], defined by

�
A0→A1
x1|x0

[·] := TrE

[(
1A1 ⊗ M E

x1|x0

)
EA0→A1E [·]

]
∀x0, x1.

(7)

The assemblage Λ is said to be unsteerable whenever it
can be realized following Eq. (7) with EA0→A1E being an
incoherent extension of its marginal channel �A0→A1 [45],
namely, whenever there exists a quantum instrument G ≡
{Gg}g and states εg for all g such that

EA0→A1E =
∑

g

GA0→A1
g ⊗ εE

g . (8)

It follows as an observation that if the PMD M is simple,
then the channel assemblage Λ induced by Eq. (7) must
be unsteerable regardless of EA0→A1E [45]. We introduce
the following shorthand to denote a channel assemblage
generated via steering.

Definition 4.—Let Λ ≡ {�x1|x0}x0,x1 be a channel assem-
blage, EA0→A1E a broadcast channel, and M ≡ {Mx1|x0}x0,x1
a PMD. We say that (E , M) is a steering decomposition of
Λ, denoted by Λ � (E , M), whenever Eq. (7) is satisfied,
i.e., whenever Λ can be induced by a process of channel
steering featuring E and M.
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TABLE I. A comparison between programmable devices (i.e., general objects) and simple devices (i.e., free objects) in the resource
theories of nonsimplicity of programmable source, measurement, and instrument devices (PSDs, PMDs, and PIDs, respectively). Our
resource theory of PID nonsimplicity, equivalently a resource theory of channel steering, is a generalized theory unifying both the
resource theory of PSD nonsimplicity (i.e., EPR steering [52]) and that of PMD nonsimplicity [20] (i.e., measurement incompatibility
[13]). Specifically, PID nonsimplicity reduces to PSD nonsimplicity when the quantum input is trivial, and it reduces to PMD non-
simplicity when the quantum output is trivial. Programmable devices in these theories are all subject to the nonsignaling constraint,
and simple devices all implement compatible assemblages. The compatibility in these free objects can universally be viewed as a
consequence of the classicality of the internal memory (hollow red arrows), which should in general be a quantum memory (solid red
arrows).

Resource theories of
nonsimple
programmability Programmable devices (nonsignaling assemblages) Simple devices (compatible assemblages)

PSD nonsimplicity
(EPR steering [52])

{ρx1|x0}x0,x1 :
∑

x1
ρx1|x0 = ρ ∀x0 {ρx1|x0}x0,x1 : ρx1|x0 = ∑

g px1|x0,gηg ∀x0, x1

PMD nonsimplicity
[20] (measurement
incompatibility
[13])

{Mx1|x0}x0,x1 :
∑

x1
Mx1|x0 = 1 ∀x0 {Mx1|x0}x0,x1 : Mx1|x0 = ∑

g px1|x0,gGg ∀x0, x1

PID nonsimplicity
(channel steering)
[this paper]

{�x1|x0}x0,x1 :
∑

x1
�x1|x0 = � ∀x0 {�x1|x0}x0,x1 : �x1|x0 = ∑

g px1|x0,gGg ∀x0, x1

Clearly, each channel assemblage Λ � (E , M) can be
regarded as a PID, since by Eq. (7) the nonsignaling con-
straint in Eq. (3) is satisfied. Conversely, as we argued in
Sec. II B, due to the equivalence between semicausality
and semilocalizability [48], each PID Λ admits a steering
decomposition Λ � (E , M), and therefore we can envi-
sion a process of channel steering going on within each
PID, as shown in Fig. 3(a). Then we can observe from
Fig. 3(c) that simple PIDs are precisely those that imple-
ment unsteerable channel assemblages. Likewise, the free
simulations of PIDs in Definition 3 correspond to trans-
formations of channel assemblages that are realizable via
Alice-to-Evan one-way local operations and classical com-
munication (one-way LOCC). In this way, the resource
theory of PID nonsimplicity that we developed in Secs.
II B and III B can be equivalently interpreted as a resource
theory of channel steering.

The scenario of channel steering reduces to that of EPR
steering when the quantum input system A0 is trivial [54,
55]. In this case, when Evan feeds his part of a bipartite
state ξA1E into a PMD M, a state assemblage {ρx1|x0}x0,x1 is
generated on Alice’s side:

ρ
A1
x1|x0

:= TrE

[(
1A1 ⊗ M E

x1|x0

)
ξA1E

]
∀x0, x1. (9)

Accordingly, the assemblage {ρx1|x0}x0,x1 is unsteerable
when it can be induced by a bipartite state ξA1E being

separable:

ξA1E =
∑

g

ηA1
g ⊗ εE

g , (10)

where {ηg}g is a state ensemble and εg is a state for all
g. In parallel to Eq. (4), an unsteerable state assemblage
{ρx1|x0}x0,x1 demonstrates compatibility by admitting a so-
called “local-hidden-state” model [54]:

ρ
A1
x1|x0

=
∑

g

px1|x0,gη
A1
g ∀x0, x1, (11)

where {px1|x0,g}x0,x1,g is a classical channel. As in channel
steering, if the PMD M is simple, then the induced state
assemblage must be unsteerable. Conversely, it has also
been proved that all nonsimple PMDs are useful to gener-
ate steerable state assemblages when ξA1E is a pure state
of maximum Schmidt rank [56,57].

As a special case of channel steering, EPR steering
can also be understood as a theory of nonsimplicity of
programmable source devices (PSDs) (alias nonsignal-
ing multisources [46]) in the programmability framework,
and simple PSDs are those implementing unsteerable state
assemblages. As a result, our resource theory of PID non-
simplicity subsumes the existing resource theory of EPR
steering with one-way LOCC as free operations [52]. A
comparison between resource theories of nonsimplicity of
different types of programmable devices is provided in
Table I.
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B. Steering-equivalence mapping

The concept of “steering-equivalent observables” (SEO)
plays an essential role in studying the relationship between
EPR steering and measurement incompatibility [58]. Now
we generalize this concept from state assemblages to PIDs
(i.e., to channel assemblages), so as to connect PID non-
simplicity (i.e., channel steering) with PMD nonsimplic-
ity (i.e., measurement incompatibility). Given a PID Λ ≡
{�A0→A1

x1|x0
}x0,x1 , the nonsignaling constraint guarantees the

existence of the following channel:

�A0→A1 :=
∑

x1

�
A0→A1
x1|x0

∀x0. (12)

The Choi operator of �
A0→A1
x1|x0

is given by

J A0A1
�x1|x0

:=
(

idA0 ⊗ �
Ã0→A1
x1|x0

) [
φ

A0Ã0+
]

∀x0, x1, (13)

where Ã0 is a system isomorphic to A0 and φ
A0Ã0+ ≡∑

i,j |i〉〈j |A0 ⊗ |i〉〈j |Ã0 . The Choi operator of �A0→A1 is
given by

J A0A1
� :=

∑

x1

J A0A1
�x1|x0

∀x0. (14)

Let A∗ be a quantum system such that its associated
Hilbert space, denoted by HA∗

, is isomorphic to the
support of J A0A1

� . In other words, it satisfies HA∗ ∼=
supp(J A0A1

� ) ⊆ HA0A1 , where HA0A1 ≡ HA0 ⊗ HA1 is the
composite Hilbert space associated with the systems A0

and A1. By Choi’s theorem, J A0A1
�x1|x0

is positive semidefi-

nite since �
A0→A1
x1|x0

is CP for all x0, x1. By Eq. (14), this

implies supp(J A0A1
�x1|x0

) ⊆ supp(J A0A1
� ) ∼= HA∗

, and therefore

the image of J A0A1
�x1|x0

in the system A∗, denoted by J A∗
�x1|x0

,
is well defined for all x0, x1. The following definition gen-
eralizes the steering-equivalent observes (SEO) defined on
state assemblages to PIDs.

Definition 5.—The steering-equivalence mapping,
denoted by SEM, is a mapping from the set of PIDs to
the set of PMDs, and it sends a PID Λ ≡ {�A0→A1

x1|x0
}x0,x1 to

a PMD SEM(Λ) ≡ {SA∗
x1|x0

}x0,x1 where

SA∗
x1|x0

:= (J A∗
� )−

1
2 J A∗

�x1|x0
(J A∗

� )−
1
2 ∀x0, x1. (15)

It can be conveniently verified that SEM(Λ) is a valid
PMD given any PID Λ. It is also apparent from Definition
5 that, by the Choi–Jamiołkowski isomorphism, a PID Λ is
nonsimple if and only if the PMD SEM(Λ) is nonsimple.
That is to say, the membership problem of steerable chan-
nel assemblages can be reduced to the membership prob-
lem of incompatible families of POVMs through SEM.
This generalizes Theorem 1 of Ref. [58], which addresses
the membership problem of steerable state assemblages via
the SEO. The SEO of a state assemblage has been shown
to possess an operational interpretation as the transposed
PMD that induces the state assemblage from a minimal
state extension [58]. We show in the following proposi-
tion that this type of operational interpretation remains
effective for SEM in the generalized scenario of channel
steering.

Proposition 1.—Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 be a PID, and
let S ≡ {SA∗

x1|x0
}x0,x1 be a PMD such that S = SEM(Λ).

Then there exists an isometric channel VA0→A1A∗
such

that

�
A0→A1
x1|x0

[·] = TrA∗
[(

1A1 ⊗ (S�
x1|x0

)A∗)VA0→A1A∗
[·]

]

∀x0, x1, (16)

where (·)� denotes transposition under a fixed orthonormal
basis.

The proof of Proposition 1 is in Appendix B 1.
Proposition 1 indicates that given any PID Λ, there

exists a broadcast channel VA0→A1A∗
such that the

steering decomposition Λ � (V , SEM(Λ)�) holds, where
VA0→A1A∗

is an isometric dilation of �A0→A1 and
SEM(Λ)� is the elementwise transpose of the PMD
SEM(Λ). In particular, this provides a formal and
independent demonstration for the internal structure of a
general PID as depicted in Fig. 3(a), which we previously
argued by invoking the equivalence between semicausality
and semilocalizability.

On the other hand, the existence of a steering decom-
position for any PID does not imply that such a decompo-
sition is unique, and in fact it is not unique. Despite this,
there is a close relation between any steering decomposi-
tion of a given PID and the “canonical” steering decompo-
sition specified in Proposition 1, as given by the following
proposition.

Proposition 2.—Let Λ be a PID, EA0→A1E a broad-
cast channel, and M ≡ {Mx1|x0}x0,x1 a PMD such that Λ �
(E , M). Then we have M� �M SEM(Λ), where M� ≡
{M�

x1|x0
}x0,x1 .

The proof of Proposition 2 is in Appendix B 2.
Proposition 2 indicates that SEM(Λ)� is the least

resourceful PMD that can be used to compose a given
PID Λ, because every other PMD M that suffices to do
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so must be convertible to SEM(Λ)� via free simula-
tions. This is the reason why we refer to the decomposi-
tion Λ � (V , SEM(Λ)�) in Proposition 1 as the “canon-
ical” or “minimal” decomposition for Λ. To understand
this physically, we can think of any PID decomposition
Λ � (E , M) as having a configuration as depicted in
Fig. 3(b), and the nonsimplicity of Λ is essentially
attributed to the PMD M, since that is where the quantum
memory with a lifetime �tQM � �tD ≈ 0 resides. Then
Proposition 2 implies that when the decomposition Λ �
(E , M) is canonical, namely, when EA0→A1E = VA0→A1A∗

is
the minimal isometric dilation (i.e., the maximally coher-
ent channel extension [45]), the physical resource within M
is best utilized.

Built on the aforementioned results, we conclude this
section with the following theorem. We show that the
mapping SEM behaves as a nonsimplicity monotone of
PIDs (equivalently, a steering monotone of channel assem-
blages), in the sense that it preserves the incompatibility
preorder specified by the free simulations of programmable
devices. This means that the nonsimplicity of SEM(Λ) is
not only an indicator, but also a measure of the nonsim-
plicity of Λ.

Theorem 2.—The mapping SEM is a faithful nonsim-
plicity monotone. Formally, it has the following proper-
ties.

(1) Faithfulness: Λ is a simple PID if and only if
SEM(Λ) is a simple PMD.

(2) Monotonicity: if Λ �I Γ, then SEM(Λ) �M
SEM(Γ).

The proof of Theorem 2 is detailed in Appendices B 3
and B 4. It is a proof by construction based on Propositions
1 and 2.

Conventionally, by “resource monotones” we allude to
real-valued functions that are nonincreasing under free
transformations [24]. In Theorem 2, however, the term
has a broader meaning of order-preserving mappings under
free transformations, and such mappings can in general be
between objects, as SEM is. A direct application of such
generalized monotones is to convert resource monotones
in one resource theory to resource monotones in another
resource theory. For instance, given any resource mono-
tone f for PMD nonsimplicity (i.e., measurement incom-
patibility), we immediately obtain an induced resource
monotone f ◦ SEM for PID nonsimplicity (i.e., channel
steering), regardless of what f is and whether f is real
valued or not.

On the other hand, we remark that object-valued mono-
tones like SEM are also interesting in their own rights,
since they reveal fundamental connections between two
different resource theories and may trigger insights into
the physical nature of the resources involved. As for
SEM, with its operational interpretation established in

Proposition 1, Theorem 2 indicates that a more resourceful
PID must have a more resourceful internal PMD under the
“canonical” steering decomposition. This certainly sup-
ports our previous viewpoint of attributing the physical
resource (i.e., a quantum memory with a non-negligible
lifetime) in a PID to its internal PMD [as in Fig. 3(b)].

V. SEMI-DEVICE-INDEPENDENT
CHARACTERIZATION WITH NONTRANSIENT

GUESSING GAMES

In this section, we demonstrate the operational signif-
icance of PID nonsimplicity in the scenario of guessing
games. We propose a class of guessing games with double
temporal stages, and we call them nontransient guessing
games. Just as nonlocal games feature spatial separa-
tion between different parties [39,59], nontransient games
feature temporal separation between different stages, and
therefore they are a suitable setting for characterizing cor-
relations that exist across time, such as memory effect
[41] and programmability [20]. We show that the winning
probabilities of PIDs in the nontransient guessing games
compose a complete set of incompatibility monotones,
fully characterizing the incompatibility preorder between
PIDs. This also implies that every nonsimple PID provides
a nontrivial advantage over simple PIDs in some guess-
ing game. Furthermore, we prove that this advantage is
bounded from above by the robustness of incompatibility
of the PID and that this bound is tight. Finally, we com-
ment on the limitations of nontransient guessing games in
terms of experimental difficulties, and we propose a variant
class of guessing games that overcomes such difficulties
while also giving rise to a complete set of incompatibility
monotones.

A. A complete set of incompatibility monotones

A nontransient guessing game is a parametrized inter-
active protocol between a player and a referee. Although
such a game will be utilized to test the player’s PID, the
game itself is actually “semi-device-independent.” That
is, it requires that the referee’s operations be faithfully
executed, but does not make any assumptions about the
player’s device or strategy.

Definition 6.—A nontransient guessing game between
Alice (the player) and Bob (the referee) is specified by
a bipartite POVM M ≡ {Mm,n}m,n, and it has two stages
separated by a time interval �t � �tD ≈ 0.

(1) In the first stage, Bob sends Alice one half of a max-
imally entangled state ϕ+ ≡ 1/d

∑
i,j |i〉〈j | ⊗ |i〉〈j |,

and then he asks Alice to submit a quantum sys-
tem back to him. Bob measures Alice’s submitted
system and the other half of ϕ+ jointly according
to the POVM M and obtains a tuple (m, n) as the
outcome.
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(2) In the second stage (after �t has passed), Bob
announces the index m to Alice, and then he asks
Alice to make a guess n′ at the other index n. Alice
wins the game whenever she guesses correctly, i.e.,
whenever n′ = n.

Throughout the game, Alice has no access to quantum
memories with a lifetime larger than �tD ≈ 0.

We note that in Definition 6, Alice’s device and strategy
are both uncharacterized. To serve the purpose of test-
ing PIDs, we now assume that Alice holds a PID Λ ≡
{�x1|x0}x0,x1 in hand, which may count as an additional
resource for her in the game. It is also convenient for us
to assume that the quantum delay time of Λ is no greater
than the �tD specified in Definition 6.

We note that from Alice’s perspective, the setting she is
dealing with perfectly satisfies the late-program assump-
tion; namely, the classical signal m does not arrive until a
significant time interval �t � �tD ≈ 0 after her quantum
output is released. Therefore, the most general strategy for
Alice to follow is to use her PID Λ to simulate whatever
PID Λ′ she can and to insert Λ′ into the open slots of the
game, as illustrated in Fig. 6. In addition, given that the
quantum delay time of Λ is within �tD and that no quan-
tum memory with a lifetime exceeding �tD is accessible
(see Definition 6), we can rest assured that Alice’s simu-
lation of Λ′ using Λ is a free simulation, i.e., Λ �I Λ′ (see
Definition 3). As a result, Alice’s maximum winning prob-
ability in the nontransient guessing game specified by the
POVM M is given by

Pguess(Λ; M ) := max
Λ′ : Λ�IΛ′

∑

m,n

Tr
[
Mm,n

(
id ⊗ �′

n|m
)

[ϕ+]
]

.

(17)

By the transitivity of the incompatibility preorder �I
[i.e., the sequential composability of free simulations in

FIG. 6. A nontransient guessing game between Alice (the
player) and Bob (the referee). The setting of the game is spec-
ified by Bob’s POVM M ≡ {Mm,n}m,n. Alice’s strategy to the
game is represented by a PID Λ′ (green), which is freely sim-
ulated by an actual PID Λ held in her hand. She wins the
game whenever she makes a correct guess at one of Bob’s
outcome indices n given the other index m, i.e., whenever
n′ = n.

Theorem 1(3)], we can observe that Alice’s winning
probability Pguess(Λ; M ) is a nonsimplicity monotone
with respect to Λ given any POVM M . The follow-
ing theorem states that when considering all different
POVMs, the winning probabilities {Pguess(Λ; M )}M com-
pose a complete set of nonsimplicity monotones, which
faithfully reflects convertibility between PIDs under free
simulations.

Theorem 3.—Let Λ ≡ {�x1|x0}x0,x1 and Γ ≡ {�y1|y0}y0,y1
be two PIDs. Then Λ �I Γ if and only if Pguess(Λ; M ) ≥
Pguess(Γ; M ) for every bipartite POVM M ≡ {Mm,n}m,n.

The “only if” part of Theorem 3 is evident from the
monotonicity of winning probabilities as argued before.
The proof of the “if” part is detailed in Appendix C 1.
It is a proof by construction, utilizing the closedness and
convexity of the resource theory [Theorem 1(4) and (5)],
the hyperplane separation theorem [60], and a technique
employed in Refs. [27,61].

A prominent implication of Theorem 3 is that each non-
transient guessing game can be used as a certification of
nonsimplicity of a PID, and the combination of all such
certifications is sufficient to compose a faithful criterion
for deciding nonsimplicity. Specifically, since all simple
PIDs are interconvertible via free simulations [Theorem
1(2)], Theorem 3 implies that all simple PIDs give rise
to the same winning probability in any fixed nontransient
guessing game specified by M , which equals

Psimple
guess (M ) := max

Ω : simple
Pguess(Ω; M ) (18)

= max
Ω : simple

∑

m,n

Tr
[
Mm,n

(
id ⊗ �n|m

)
[ϕ+]

]
.

(19)

Therefore, as long as Alice’s winning probability in this
game is observed to be greater than Psimple

guess (M ), we can
conclude with certainty that Alice holds some device that
functions as a nonsimple PID. Conversely, if Alice holds a
nonsimple PID Λ and always follows an optimal strategy
while playing the games, then there must exist a specific
game that certifies the nonsimplicity of her device, i.e., a
POVM M̂ such that Pguess(Λ; M̂ ) > Psimple

guess (M̂ ).

B. Robustness of incompatibility as the supremum of
game advantage

The robustness of resource [62,63] is a well-studied
resource measure that reflects how tolerant a resource is
to an admixture of generic noise. It is universally well
defined in any resource theory, and it possesses many
desirable properties as a resource measure, including faith-
fulness, monotonicity, and resource-dependent convexity
(i.e., being a convex function when the set of free objects is
convex) [24]. For the resource theory of PID nonsimplicity,
the robustness measure can be defined as follows.
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Definition 7.—The robustness of incompatibility of a
PID Λ ≡ {�x1|x0}x0,x1 , denoted by RoI(Λ), is defined as

RoI(Λ) := min
r≥0

r (20a)

subject to:
{

�x1|x0 + rϒx1|x0

1 + r

}

x0,x1

is a simple PID,

(20b)
{
ϒx1|x0

}
x0,x1

is a PID. (20c)

As we discussed before, Theorem 3 implies that every
nonsimple PID can provide a nontrivial operational advan-
tage over simple PIDs in some nontransient guessing
game. The following theorem shows that this advantage
can be quantitatively characterized by the robustness of
incompatibility of the PID.

Theorem 4.—Let Λ ≡ {�x1|x0}x0,x1 be a PID. Then

sup
M≡{Mm,n}m,n

Pguess(Λ; M )

Psimple
guess (M )

= 1 + RoI(Λ), (21)

where the supremum is over all bipartite POVMs.
The proof of Theorem 4 is detailed in Appendix C 2. It

consists of two parts, following a similar structure to the
proofs of comparable results in Refs. [18,20,25,27]. The
first part proves that the advantage provided by any PID
Λ in any nontransient guessing game, in terms of the ratio
Pguess(Λ; M )/Psimple

guess (M ), can never exceed 1 + RoI(Λ).
This is done via a slight reformulation of Eq. (20). The
second part explicitly constructs a sequence of games
(specified by a sequence of POVMs) that approaches the
aforementioned robustness upper bound on the advantage
arbitrarily close, thus showing that this upper bound is
tight. This is done by utilizing the dual conic program of
Eq. (20). It is worth mentioning that while the construc-
tion of the sequence of POVMs may require an unbounded
number of measurement outcomes, the dimensionality of
the quantum systems to be measured is bounded. We also
note that the convexity of the resource theory of PID non-
simplicity [Theorem 1(5)] plays a crucial role here, as it
guarantees strong duality between the conic programs for
the robustness of incompatibility.

C. Constructing experimentally friendly
incompatibility tests

We now take a closer look at the experimental setup
of using nontransient guessing games to test PID non-
simplicity. According to Definition 6 and as illustrated in
Fig. 6, throughout the game procedure, no quantum mem-
ory with a lifetime larger than �tD ≈ 0 is ever needed by
Alice or Bob. In this sense, nontransient guessing games
are resource efficient, as they do not consume any physi-
cal resource they are actually testing. On the other hand,

testing PID nonsimplicity or convertibility following the
scheme proposed in Theorem 3 can still be costly to exper-
iment. This is because the scheme requires Bob to be able
to implement infinitely many different POVMs reliably,
which is hard to achieve in realistic settings. Therefore,
we are motivated to design nonsimplicity tests that are
experimentally friendlier. In what follows, we propose a
new class of guessing games that also gives rise to a
complete set of incompatibility monotones. We call such
games postinformation guessing games, as they general-
ize the games after the same name in Ref. [20] for testing
incompatibility between POVMs. Compared to nontran-
sient guessing games, postinformation guessing games are
experimentally more convenient to realize.

Definition 8.—A postinformation guessing game between
Alice (the player) and Bob (the referee) is specified by a
state ensemble ς ≡ {σm,n,l}m,n,l and a POVM L ≡ {Ll′ }l′ ,
and it has two stages separated by a time interval �t �
�tD ≈ 0.

(1) In the first stage, Bob generates an index triple
(m, n, l) with probability Tr[σm,n,l] and sends the
state σm,n,l/Tr[σm,n,l] to Alice without announcing
(m, n, l). Then Bob asks Alice to submit a quantum
system back to him. Bob measures Alice’s submit-
ted system according to the POVM L and obtains
an outcome l′.

(2) In the second stage (after �t has passed), Bob
announces the index j to Alice, and then he asks
Alice to make a guess n′ at the index n. Alice wins
the game whenever she guesses correctly and in the
meantime does not alter the index l, i.e., whenever
n′ = n and l′ = l.

Throughout the game, Alice has no access to quantum
memories with a lifetime larger than �tD ≈ 0.

We note that Definition 8 is also semi-device-
independent in the sense that Alice’s device and strategy
are uncharacterized. As before, we now assume that Alice
is assisted by a PID Λ ≡ {�x1|x0}x0,x1 while playing the
game, and that the quantum delay time of Λ is no greater
than the �tD specified in Definition 8. Since Alice has
no access to quantum memories with a lifetime exceed-
ing �tD, her most general strategy is described by a PID
Λ′ such that Λ′ �I Λ, as illustrated in Fig. 7. As a result,
Alice’s maximum winning probability in the postinforma-
tion guessing game specified by the state ensemble ς and
the POVM L is given by

P′
guess(Λ; ς , L ) := max

Λ′ : Λ�IΛ′

∑

m,n,l

Tr
[
Ll�

′
n|m

[
σm,n,l

]]
. (22)

The following proposition states that for a certain
POVM L , the winning probabilities {P′

guess(Λ; ς , L )}ς
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FIG. 7. A postinformation guessing game between Alice (the
player) and Bob (the referee). The setting of the game is specified
by Bob’s state ensemble ς ≡ {σm,n,l}m,n,l and POVM L ≡ {Ll′ }l′ .
Alice’s strategy to the game is represented by a PID Λ′ (green),
which is freely simulated by an actual PID Λ held in her hand.
She wins the game whenever she makes a correct guess at one of
Bob’s indices n while not altering the index l given the index m,
i.e., whenever n′ = n and l′ = l.

compose a complete set of nonsimplicity monotones with
respect to Λ when considering different sources ensembles.

Proposition 3.—Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 and Γ ≡
{�B0→B1

y1|y0
}y0∈Y0,y1∈Y1 be two PIDs, and let L ≡ {LB1

l′ }l′∈L be
an informationally complete POVM. Then Λ �I Γ if and
only if P′

guess(Λ; ς , L ) ≥ P′
guess(Γ; ς , L ) for every state

ensemble ς ≡ {σ B0
m,n,l}m∈Y0,n∈Y1,l∈L.

The proof of Proposition 3 is in Appendix C 3.
Proposition 3 generalizes Ref. [20, Theorem 1] in the

sense that it reduces to the latter when the index l and
Alice’s quantum output are trivial. Compared to Theorem
3, Proposition 3 enables faithful tests of convertibility
between PIDs under free simulations (and thus of non-
simplicity of a PID) with a much lower experimental
requirement. First, unlike in Theorem 3, the tests in Propo-
sition 3 do not demand infinitely many different POVMs
on Bob’s side. Besides, only single-system operations are
involved to carry out such tests, while entanglement dis-
tribution and bipartite measurement are avoided, reducing
the experimental difficulty to a further extent. Although
Proposition 3 still requires an infinitude of different source
ensembles, it is also true that one can bypass this challenge
by using a single tomographically complete state ensemble
and classical postprocessing to simulate all different source
ensembles in these tests. As a result, while implement-
ing the tests in Proposition 3, Bob can reuse his quantum
hardware over and over again and only vary his classical
postprocessing when the game parameters differ between
tests.

VI. CONCLUSIONS AND DISCUSSIONS

A. Summary of results

In this paper, we have conducted a resource-theoretic
analysis of incompatibility between quantum instruments
in terms of nonsimple programmability of quantum
devices. We have been physically motivated by the notion
of programmability, which envisions certain quantum
devices as objects that can be programmed at any time, i.e.,

regardless of when the quantum input arrives. This nat-
urally restricts the investigation to programmable instru-
ment devices, which are classically controlled mechanisms
that implement nonsignaling multi-instruments (Definition
1). Every PID possesses two characteristic time intervals:
(i) the quantum delay time �tD, which quantifies how
quickly the device produces its quantum output, and (ii)
the lifetime of the internal quantum memory �tQM, which
quantifies how long the device is able to store some form
of quantum information to influence the classical output.
To provide the experimenter with full temporal freedom
on when the program can be issued, simple PIDs can
have �tsimple

QM ≤ �tD, whereas nonsimple PIDs must satisfy
�tQM � �tD. Quantum memories are thus the resource
that enables nonsimple programmability. To isolate the dif-
ferent memory demands between simple and nonsimple
PIDs, we have assumed �tD ≈ 0 for all PIDs, so that only
nonsimple PIDs require a built-in quantum memory with a
non-negligible lifetime to implement.

In the resource theory of PID nonsimplicity, the experi-
menter is allowed to perform arbitrary auxiliary processing
that does not depend on quantum memories with a non-
negligible lifetime. This restricts the allowable transfor-
mations between PIDs to a set of quantum combs called
free simulations (Definition 3). As nonsimplicity of PIDs
is mathematically captured by incompatibility of the fam-
ily of instruments being implemented, the ability of one
PID to freely simulate another identifies an incompatibility
preorder between these devices (Theorem 1).

Every PID can be understood as a channel assemblage
produced through a process of channel steering, and simple
PIDs correspond to unsteerable channel assemblages. So
yet another way to frame this work is as a resource theory
of channel steering. From a practical point of view, channel
steering offers a way of investigating properties of a given
broadcast channel when the measurement device of one
receiver is untrusted [13,27]. We have deepened the con-
nections between PID nonsimplicity and channel steering
by deriving for every PID a unique steering decomposi-
tion (Propositions 1) and showing that this decomposition
is “canonical” (Proposition 2). An essential ingredient of
this decomposition, called the steering-equivalence map-
ping (Definition 5), has subsequently been identified as
an object-valued incompatibility monotone (Theorem 2).
This monotonicity result reflects a fundamental connec-
tion between the resource theory of PID nonsimplicity and
that of measurement incompatibility, and consequently,
any measure of incompatibility between POVMs previ-
ously studied in the literature [14,16–18] can now be used
to quantify incompatibility between quantum instruments.

We have also proposed operational schemes for measur-
ing and benchmarking nonsimplicity of PIDs by design-
ing a class of games, called nontransient guessing games
(Definition 6). These games have temporally separated
stages in a way that resembles the spatially separated
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parties in nonlocal games, and therefore they are adept
at characterizing correlations that exist across time. We
have shown that the maximum winning probability in any
nontransient guessing game is a nonsimplicity monotone
with respect to the player’s PID, and the collection of all
such winning probabilities under different game settings
provides a complete criterion for judging whether a given
PID can freely simulate another (Theorem 3). Since no
assumption needs to be made about the player’s device or
strategy, nontransient guessing games also provide semi-
device-independent certifications for PID nonsimplicity.
We have also established a tight upper bound on the oper-
ational advantage of a given PID over simple PIDs in
nontransient guessing games in terms of a well-studied
resource measure, namely the robustness against noise
(Theorem 4). This result endows the robustness of incom-
patibility with a clear operational meaning. Considering
the fact that testing PID convertibility using nontransient
guessing games can be experimentally costly to imple-
ment, we have provided an alternative but experimen-
tally friendlier scheme for such tests based on a class of
so-called postinformation guessing games (Proposition 3).

B. Outlook

Our work leads to several directions for future research.
First, we have treated PID nonsimplicity as a dynamical
resource distributed over quantum networks [51] rather
than carried by quantum channels [64,65]. The difference
here is that, PIDs are quantum 2-combs (i.e., quantum net-
works with two vertices), and so they can be manipulated
by quantum 4-combs [51], whereas generic quantum chan-
nels can only be manipulated by quantum superchannels
[49,50]. A potential direction is to generalize the concept
of incompatibility and its resource theory to more com-
plex network layouts. It would also be interesting to study
resources other than incompatibility in the network setting
[66,67], and a generic framework for studying resources in
networks has been lacking.

Second, we have investigated the relationships between
a number of quantum correlations (see Table I), and we
have clarified that the presence of quantum memories (i.e.,
entanglement-nonbreaking channels) is a precondition for

any of these correlations. This is a qualitative remark, and
one can continue to conduct a quantitative analysis on the
pivotal role of quantum memories by asking what is the
limit of nonclassicality in quantum correlations generated
by unideal quantum memories (i.e., nonidentity channels).
Following this line, one may further expect that a universal
framework for studying various quantum correlations can
be established based on the resource theory of quantum
memories [41].

Finally, as we mentioned before, PIDs are quantum two
combs with the second vertex being classical, and thus
they can also be interpreted as quantum superchannels
transforming one POVM to another. Interestingly, despite
simple PIDs being a proper subset of general PIDs, any
conversion between two single-party POVMs via gen-
eral PIDs can always be realized via simple PIDs. This
indicates a vanishing operational distinction between gen-
eral and simple PIDs in terms of converting single-party
POVMs. However, the distinction between general and
simple PIDs becomes conspicuous when we consider con-
vertibility between bipartite POVMs via partial action of
these PIDs. This is well demonstrated by the nontransient
guessing games, where a PID Λ′ acts on one part of a
bipartite POVM M (see Fig. 6), and the performance gap
between general and simple PIDs is nontrivial (Theorem
3). This kind of interplay between simple PIDs and (single-
party and bipartite) POVMs is somehow reminiscent of
that between entanglement-breaking channels and (single-
party and bipartite) states. As for the latter, convertibility
between single-party states via general channels is equiva-
lent to convertibility via entanglement-breaking channels,
whereas convertibility between bipartite states via partial
action of general channels does not imply convertibility
via partial action of entanglement-breaking channels. Par-
tial action of PIDs on bipartite POVMs is still not fully
understood, and we leave the exploration for future work.
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APPENDIX A: PROPERTIES OF FREE SIMULATIONS

In this Appendix, we demonstrate resource-theoretic properties possessed by free simulations of PIDs. These prop-
erties include simplicity [Theorem 1(1)], reachability [Theorem 1(2)], composability [Theorem 1(3)], closedness
[Theorem 1(4)], and convexity [Theorem 1(5)].

1. Proof of Theorem 1(1)

Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 be a simple PID. By Definition 1, there exists a quantum instrument {GA0→A1
g }g and a

classical channel (i.e., a conditional probability distribution) {px1|x0,g}x0,x1,g such that
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�
A0→A1
x1|x0

=
∑

g

px1|x0,gGA0→A1
g ∀x0, x1. (A1)

Let Γ ≡ {�B0→B1
y1|y0

}y0,y1 be a PID such that Λ �I Γ. By Definition 3, there exists a quantum channel F ′B0→A0D, a quantum

instrument {K′A1D→B1
k }k, and two classical channels {p ′

x0,l|y0,k}x0,y0,k,l and {q′
y1|x1,l}x1,y1,l such that

�
B0→B1
y1|y0

=
∑

x0,x1,k,l

q′
y1|x1,lp

′
x0,l|y0,kK′A1D→B1

k ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ F ′B0→A0D (A2)

=
∑

x0,x1,g,k,l

q′
y1|x1,lpx1|x0,gp ′

x0,l|y0,kK′A1D→B1
k ◦

(
GA0→A1

g ⊗ idD
)

◦ F ′B0→A0D ∀y0, y1. (A3)

Define a quantum instrument {G ′B0→B1
g,k }g,k and a classical channel {p ′′

y1|y0,g,k}y0,y1,g,k as follows:

G ′B0→B1
g,k := K′A1D→B1

k ◦
(
GA0→A1

g ⊗ idD
)

◦ F ′B0→A0D ∀g, k, (A4)

p ′′
y1|y0,g,k :=

∑

x0,x1,l

q′
y1|x1,lpx1|x0,gp ′

x0,l|y0,k ∀y0, y1, g, k. (A5)

Then it follows from Eqs. (A3)–(A5) that

∑

g,k

p ′′
y1|y0,g,kG ′B0→B1

g,k =
∑

x0,x1,g,k,l

q′
y1|x1,lpx1|x0,gp ′

x0,l|y0,kK′A1D→B1
k ◦

(
GA0→A1

g ⊗ idD
)

◦ F ′B0→A0D (A6)

= �
B0→B1
y1|y0

∀y0, y1. (A7)

By Definition 1, this shows that the simulated PID Γ is simple. This concludes the proof of Theorem 1(1).

2. Proof of Theorem 1(2)

Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 be a PID, and let Γ ≡ {�B0→B1
y1|y0

}y0,y1 be a simple PID. By Definition 1, there exists a quantum
instrument {GB0→B1

g }g and a classical channel {py1|y0,g}y0,y1,g such that

�
B0→B1
y1|y0

=
∑

g

py1|y0,gGB0→B1
g ∀y0, y1. (A8)

Let δ denote the classical identity channel, which satisfies δb|a := 1 if a = b and δb|a := 0 if a �= b. Define a quantum
channel F ′B0→A0D, a quantum instrument {K′A1D→B1

g }g , and two classical channels {p ′
x0,l|y0,g}x0,y0,g,l and {q′

y1|x1,l}x1,y1,s as
follows:

F ′B0→A0D := |0〉〈0|A0 ⊗ idB0→D, (A9)

K′A1D→B1
g := GD→B1

g ◦ TrA1 ∀g, (A10)

p ′
x0,l|y0,g := δx0|0pl|y0,g ∀x0, y0, g, l, (A11)

q′
y1|x1,l := δy1|l ∀x1, y1, l. (A12)
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Then it follows from Eqs. (A8)–(A12) that

∑

x0,x1,g,l

q′
y1|x1,lp

′
x0,l|y0,gK′A1D→B1

g ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ F ′B0→A0D

=
∑

x0,x1,g,l

δy1|lδx0|0pl|y0,gGD→B1
g ◦ TrA1 ◦

(
�

A0→A1
x1|x0

[|0〉〈0|A0
] ⊗ idB0→D

)
(A13)

=
∑

g

py1|y0,gGB0→B1
g (A14)

= �
B0→B1
y1|y0

∀y0, y1. (A15)

By Definition 3, this shows Λ �I Γ. This concludes the proof of Theorem 1(2).

3. Proof of Theorem 1(3)

First, we prove sequential composability. Consider a free simulation Λ 	→ Γ, where Λ ≡ {�A0→A1
x1|x0

}x0,x1 and Γ ≡
{�B0→B1

y1|y0
}y0,y1 are two PIDs. By Definition 3, the free simulation can be represented by a quantum channel FB0→A0D,

a quantum instrument {KA1D→B1
k }k, and two classical channels {px0,l|y0,k}x0,y0,k,l and {qy1|x1,l}x1,y1,l such that

�
B0→B1
y1|y0

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D ∀y0, y1. (A16)

Consider another free simulation Γ 	→ Ψ, where Ψ ≡ {�C0→C1
z1|z0

}z0,z1 is a PID. By Definition 3, this free simulation

can be represented by a quantum channel F ′C0→B0E , a quantum instrument {K′B1E→C1
k′ }k′ , and two classical channels

{p ′
y0,l′|z0,k′ }y0,z0,k′,l′ and {q′

z1|y1,l′ }y1,z1,l′ such that

�
C0→C1
z1|z0

=
∑

y0,y1,k′,l′
q′

z1|y1,l′p
′
y0,l′|z0,k′K′B1E→C1

k′ ◦
(
�

B0→B1
y1|y0

⊗ idE
)

◦ F ′C0→B0E ∀z0, z1. (A17)

Combining Eqs. (A16) and (A17), the sequential composition of the above two free simulations can be described as
Λ 	→ Ψ such that

�
C0→C1
z1|z0

=
∑

x0,x1,y0,y1,k,k′,l,l′
q′

z1|y1,l′qy1|x1,lpx0,l|y0,kp ′
y0,l′|z0,k′K′B1E→C1

k′ ◦
(
KA1D→B1

k ⊗ idE
)

◦
(
�

A0→A1
x1|x0

⊗ idDE
)

◦ (FB0→A0D ⊗ idE) ◦ F ′C0→B0E ∀z0, z1. (A18)

Define a quantum channel F ′′C0→A0DE , a quantum instrument {K′′A1DE→C1
k,k′ }k,k′ , and two classical channels

{p ′′
x0,l,l′|z0,k,k′ }x0,z0,k,k′,l,l′ and {q′′

z1|x1,l,l′ }x1,z1,l,l′ as follows:

F ′′C0→A0DE := (FB0→A0D ⊗ idE) ◦ F ′C0→B0E , (A19)

K′′A1DE→C1
k,k′ := K′B1E→C1

k′ ◦
(
KA1D→B1

k ⊗ idE
)

∀k, k′, (A20)

p ′′
x0,l,l′|z0,k,k′ :=

∑

y0

px0,l|y0,kp ′
y0,l′|z0,k′ ∀x0, z0, k, k′, l, l′, (A21)

q′′
z1|x1,l,l′ :=

∑

y1

q′
z1|y1,l′qy1|x1,l ∀x1, z1, l, l′. (A22)
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Then it follows from Eqs. (A18)–(A22) that

∑

x0,x1,k,k′,l,l′
q′′

z1|x1,l,l′p
′′
x0,l,l′|z0,k,k′K′′A1DE→C1

k,k′ ◦
(
�

A0→A1
x1|x0

⊗ idDE
)

◦ F ′′C0→A0DE

=
∑

x0,x1,y0,y1,k,k′,l,l′
q′

z1|y1,l′qy1|x1,lpx0,l|y0,kp ′
y0,l′|z0,k′K′B1E→C1

k′

◦
(
KA1D→B1

k ⊗ idE
)

◦
(
�

A0→A1
x1|x0

⊗ idDE
)

◦ (FB0→A0D ⊗ idE) ◦ F ′C0→B0E (A23)

= �
C0→C1
z1|z0

∀z0, z1. (A24)

By Definition 3, this shows that the sequential composition Λ 	→ Ψ of the two free simulations is a free simulation.
Next, we prove parallel composability. Consider a free simulation Λ 	→ Γ, where Λ ≡ {�A0→A1

x1|x0
}x0,x1 and Γ ≡

{�B0→B1
y1|y0

}y0,y1 are two PIDs. By Definition 3, the free simulation can be represented by a quantum channel FB0→A0D,

a quantum instrument {KA1D→B1
k }k, and two classical channels {px0,l|y0,k}x0,y0,k,l and {qy1|x1,l}x1,y1,l such that

�
B0→B1
y1|y0

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D ∀y0, y1. (A25)

Consider another free simulation Λ′ 	→ Γ′, where Λ′ ≡ {�′A′
0→A′

1
x′

1|x′
0

}x′
0,x′

1
and Γ′ ≡ {�′B′

0→B′
1

y ′
1|y ′

0
}y ′

0,y ′
1

are two PIDs. By Definition

3, this free simulation can be represented by a quantum channel F ′B′
0→A′

0D′
, a quantum instrument {K′B′

1D′→A′
1

k′ }k′ , and two
classical channels {p ′

x′
0,l′|y ′

0,k′ }x′
0,y ′

0,k′,l′ and {q′
y ′

1|x′
1,l′ }x′

1,y ′
1,l′ such that

�
′B′

0→B′
1

y ′
1|y ′

0
=

∑

x′
0,x′

1,k′,l′
q′

y ′
1|x′

1,l′p
′
x′

0,l′|y ′
0,k′K′A′

1D′→B′
1

k′ ◦
(
�

′A′
0→A′

1
x′

1|x′
0

⊗ idD′) ◦ F ′B′
0→A′

0D′ ∀y ′
0, y ′

1. (A26)

Combining Eqs. (A25) and (A26), the parallel composition of the above two free simulations can be described as Λ′′ 	→
Γ′′, where Λ′′ ≡ {�′′A0A′

0→A1A′
1

x1,x′
1|x0,x′

0
}x0,x′

0,x1,x′
1

and Γ′′ ≡ {�′′B0B′
0→B1B′

1
y1,y ′

1|y0,y ′
0

}y0,y ′
0,y1,y ′

1
are two PIDs, such that

�
′′B0B′

0→B1B′
1

y1,y ′
1|y0,y ′

0
=

∑

x0,x′
0,x1,x′

1,k,k′,l,l′
qy1|x1,lq′

y ′
1|x′

1,l′px0,l|y0,kp ′
x′

0,l′|y ′
0,k′

(
KA1D→B1

k ⊗ K′A′
1D′→B′

1
k′

)

◦
(
�

′′A0A′
0→A1A′

1
x1,x′

1|x0,x′
0

⊗ idDD′) ◦
(
FB0→A0D ⊗ F ′B′

0→A′
0D′) ∀y0, y ′

0, y1, y ′
1. (A27)

Define a quantum channel F ′′B0B′
0→A0DA′

0D′
, a quantum instrument {K′′A1A′

1DD′→B1B′
1

k,k′ }k,k′ , and two classical channels
{p ′′

x0,x′
0,l,l′|y0,y ′

0,k,k′ }x0,x′
0,y0,y ′

0,k,k′,l,l′ and {q′′
y1,y ′

1|x1,x′
1,l,l′ }x1,x′

1,y1,y ′
1,l,l′ as follows:

F ′′B0B′
0→A0A′

0DD′
:= FB0→A0D ⊗ F ′B′

0→A′
0D′

, (A28)

K′′A1A′
1DD′→B1B′

1
k,k′ := KA1D→B1

k ⊗ K′A′
1D′→B′

1
k′ ∀k, k′, (A29)

p ′′
x0,x′

0,l,l′|y0,y ′
0,k,k′ := px0,l|y0,kp ′

x′
0,l′|y ′

0,k′ ∀x0, x′
0, y0, y ′

0, k, k′, l, l′, (A30)

q′′
y1,y ′

1|x1,x′
1,l,l′ := qy1|x1,lq′

y ′
1|x′

1,l′ ∀x1, x′
1, y1, y ′

1, l, l′. (A31)
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Then it follows from Eqs. (A27)–(A31) that

∑

x0,x1,k,k′,l,l′
q′′

y1,y ′
1|x1,x′

1,l,l′p
′′
x0,x′

0,l,l′|y0,y ′
0,k,k′K′′A1A′

1DD′→B1B′
1

k,k′ ◦
(
�

′′A0A′
0→A1A′

1
x1,x′

1|x0,x′
0

⊗ idDD′) ◦ F ′′B0B′
0→A0A′

0DD′

=
∑

x0,x′
0,x1,x′

1,k,k′,l,l′
qy1|x1,lq′

y ′
1|x′

1,l′px0,l|y0,kp ′
x′

0,l′|y ′
0,k′

(
KA1D→B1

k ⊗ K′A′
1D′→B′

1
k′

)
(A32)

◦
(
�

′′A0A′
0→A1A′

1
x1,x′

1|x0,x′
0

⊗ idDD′) ◦
(
FB0→A0D ⊗ F ′B′

0→A′
0D′)

= �
′′B0B′

0→B1B′
1

y1,y ′
1|y0,y ′

0
∀y0, y ′

0, y1, y ′
1. (A33)

By Definition 3, this shows that the parallel composition Λ′′ 	→ Γ′′ of the two free simulations is a free simulation. This
concludes the proof of Theorem 1(3).

4. Proof of Theorem 1(4)

Consider a free simulation Λ 	→ Γ, where Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 and Γ ≡ {�B0→B1
y1|y0

}y0∈Y0,y1∈Y1 are two PIDs. By

Definition 3, the free simulation can be represented by a quantum channel FB0→A0D, a quantum instrument {KA1D→B1
k }k,

and two classical channels {px0,l|y0,k}x0,y0,k,l and {qy1|x1,l}x1,y1,l such that

�
B0→B1
y1|y0

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D ∀y0, y1. (A34)

By Ref. [50, Theorem 1(4)], the dimensionality of the system D can be bounded by the product of the dimensionalities
of the systems A0 and B0. Since every classical channel can be decomposed into a probabilistic mixture of deterministic
classical channels, there exists a conditional probability distribution {q′

l′|l}l,l′ such that

qy1|x1,l =
∑

l′∈L′
δy1|l′(x1)q′

l′|l ∀x1, y1, l, (A35)

where L′ := YX1
1 is the finite set of all functions from X1 to Y1. Define a classical channel {p ′

x0,l′|y0,k}x0,y0,k,l′ as follows:

p ′
x0,l′|y0,k :=

∑

l

q′
l′|lpx0|y0,k ∀x0, y0, k, l′. (A36)

Likewise, there exists a conditional probability distribution {p ′′
k′|k}k,k′ such that

p ′
x0,l′|y0,k =

∑

k′∈K′
δx0,l′|k′(y0)p ′′

k′|k ∀x0, y0, k, l′, (A37)

where K′ := (X0 ⊗ L′)Y0 is the finite set of all functions from Y0 to X0 ⊗ L′. Define a quantum instrument {K′A1D→B1
k′ }k′

and two classical channels {p ′′′
x0,l′|y0,k′ }x0,y0,k′,l′ and {q′′

y1|x1,l′ }x1,y1,l′ as follows:

K′A1D→B1
k′ :=

∑

k

p ′′
k′|kKA1D→B1

k ∀k′, (A38)

p ′′′
x0,l′|y0,k′ := δx0,l′|k′(y0) ∀x0, y0, k′, l′, (A39)

q′′
y1|x1,l′ := δy1|l′(x1) ∀x1, y1, l′. (A40)
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Then it follows from Eqs. (A34)–(A40) that
∑

x0,x1,k′,l′
q′′

y1|x1,l′p
′′′
x0,l′|y0,k′K′A1D→B1

k′ ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A41)

=
∑

x0,x1,k′,l′
δy1|l′(x1)δx0,l′|k′(y0)K′A1D→B1

k′ ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A42)

=
∑

x0,x1,k,k′,l′
δy1|l′(x1)δx0,l′|k′(y0)p ′′

k′|kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A43)

=
∑

x0,x1,k,l′
δy1|l′(x1)p ′

x0,l′|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A44)

=
∑

x0,x1,k,l,l′
δy1|l′(x1)q′

l′|lpx0|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A45)

=
∑

x0,x1,k,l

qy1|x1,lpx0|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D (A46)

= �
B0→B1
y1|y0

∀y0, y1. (A47)

By Definition 3, this shows that every free simulation can be realized using side channels of bounded size, and therefore
the set of free simulations is closed. This concludes the proof of Theorem 1(4).

5. Proof of Theorem 1(5)

Consider an ensemble of free simulations labeled by a random index i. The ith free simulation is applied with probabil-
ity pi ≥ 0 such that

∑
i pi = 1. By Definition 3, the ith free simulation can be represented by a quantum channel F ′B0→A0D

(i) ,
a quantum instrument {K′A1D→B1

k|i }k, and two classical channels {p ′
x0,l|y0,k,i}x0,y0,k,l and {q′

y1|x1,l,i}x1,y1,l. The probabilistic mix-

ture of these free simulations is then described by Λ 	→ Γ, where Λ ≡ {�A0→A1
x1|x0

}x0,x1 and Γ ≡ {�B0→B1
y1|y0

}y0,y1 are two PIDs,
such that

�
B0→B1
y1|y0

=
∑

i

pi

∑

x0,x1,k,l

q′
y1|x1,l,ip

′
x0,l|y0,k,iK′A1D→B1

k|i ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ F ′B0→A0D
(i) ∀y0, y1. (A48)

Define a quantum channel F ′′B0→A0DK , a quantum instrument {K′′A1DK→B1
k,k′ }k,k′ , and a classical channel

{p ′′
x0,l,l′|y0,k,k′ }x0,y0,k,l,k′,l′ as follows:

F ′′B0→A0DK :=
∑

i

piF ′B0→A0D
(i) ⊗ |i〉〈i|K , (A49)

K′′A1DK→B1
k,k′ [·] := K′A1D→B1

k|k′
[(

1A1D ⊗ 〈k′|K) [·] (1A1D ⊗ |k′〉K)] ∀k, k′, (A50)

p ′′
x0,l,l′|y0,k,k′ := p ′

x0,l|y0,k,k′δl′|k′ ∀x0, y0, k, l, k′, l′. (A51)

Then it follows from Eqs. (A48)–(A51) that
∑

x0,x1,k,l,k′,l′
q′

y1|x1,l,l′p
′′
x0,l,l′|y0,k,k′K′′A1DK→B1

k,k′ ◦
(
�

A0→A1
x1|x0

⊗ idDK
)

◦ F ′′B0→A0DK

=
∑

x0,x1,k,l,k′,l′
q′

y1|x1,l,l′p
′
x0,s|y0,k,k′δl′|k′K′′A1DK→B1

k|k′ ◦
(
�

A0→A1
x1|x0

⊗ idDK
)

◦
(
∑

i

piF ′B0→A0D
(i) ⊗ 〈k′|i〉〈i|k′〉K

)
(A52)

=
∑

i

pi

∑

x0,x1,k,l

q′
y1|x1,l,ip

′
x0,l|y0,k,iK′A1D→B1

k|i ◦
(
�

A0→A1
x1|x0

⊗ idD
)

◦ F ′B0→A0D
(i) (A53)

= �
B0→B1
y1|y0

∀y0, y1. (A54)
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By Definition 3, this shows that the probabilistic mixture Λ 	→ Ψ of the ensemble of free simulations is a free simulation.
This concludes the proof of Theorem 1(5).

APPENDIX B: PROPERTIES OF THE STEERING-EQUIVALENCE MAPPING

In this Appendix, we demonstrate useful properties possessed by the steering-equivalence mapping. These proper-
ties include an operational interpretation (Proposition 1), canonicity (Proposition 2), faithfulness [Theorem 2(1)], and
monotonicity [Theorem 2(2)].

1. Proof of Proposition 1

Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 be a PID. Let �A0→A1 := ∑
x1

�
A0→A1
x1|x0

be the marginal channel of Λ from A0 to A1. Let r :=
rank(J A0A1

� ). The Choi operator J A0A1
� has a spectral decomposition as follows:

J A0A1
� =

r−1∑

i=0

ai|αi〉〈αi|A0A1 , (B1)

where ai > 0 is a positive real number for all i and {|αi〉A0A1}i is an orthonormal set of vectors. Let A∗ be a system such
that HA∗ ∼= supp(J A0A1

� ) ⊆ HA0A1 . Let |αi〉A∗
be the image of |αi〉A0A1 in A∗. Let |αi〉A∗

be the complex conjugate of |αi〉A∗

under a fixed orthonormal basis. Then {|αi〉A∗}i is an orthonormal basis of HA∗
. By Ref. [68, Eq. (2.2.36)], there exists an

operator VA0→A1A∗
such that

(
1A0 ⊗ VÃ0→A1A∗) |φ+〉A0Ã0 =

r−1∑

i=0

√
ai|αi〉A0A1 |αi〉A∗

. (B2)

Define a linear map VA0→A1A∗
as follows:

VA0→A1A∗
[·] := VA0→A1A∗

[·] (V†)A1A∗→A0 . (B3)

We note that VA0→A1A∗
is an isometric dilation of �A0→A1 , as can be verified by marginalizing its Choi operator J A0A1A∗

V :

TrA∗
[
J A0A1A∗
V

]
= TrA∗

[(
1A0 ⊗ VÃ0→A1A∗)

φ
A0Ã0+

(
1A0 ⊗ (V†)A1A∗→Ã0

)]
(B4)

= TrA∗

⎡

⎣
r−1∑

i,j =0

√
aiaj |αi〉〈αj |A0A1 ⊗ |αi〉〈αj |A∗

⎤

⎦ (B5)

=
r−1∑

i=0

ai|αi〉〈αi|A0A1 (B6)

= J A0A1
� . (B7)

Let S ≡ {SA∗
x1|x0

}x0,x1 be a PMD such that S = SEM(Λ). By Definition 5,

SA∗
x1|x0

= (J A∗
� )−

1
2 J A∗

�x1|x0
(J A∗

� )−
1
2 ∀x0, x1. (B8)

Define an isometric channel WA∗→A0A1 as follows:

WA∗→A0A1 [·] :=
r−1∑

i,j =0

〈αi| [·] |αj 〉A∗ |αi〉〈αj |A0A1 . (B9)
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It follows that

TrA∗
[(

1A0A1 ⊗ (S�
x1|x0

)A∗)
J A0A1A∗
V

]
=

r−1∑

i,j =0

√
aiaj 〈αj |S�

x1|x0
|αi〉A∗ |αi〉〈αj |A0A1 (B10)

=
r−1∑

i,j =0

√
aiaj 〈αi|Sx1|x0 |αj 〉A∗ |αi〉〈αj |A0A1 (B11)

=
(

r−1∑

i=0

√
ai|αi〉A0A1〈αi|A∗

)
SA∗

x1|x0

⎛

⎝
r−1∑

j =0

√
aj |αj 〉A∗〈αj |A0A1

⎞

⎠ (B12)

= WA∗→A0A1
[
(J A∗

� )
1
2 SA∗

x1|x0
(J A∗

� )
1
2

]
(B13)

= WA∗→A0A1
[
J A∗
�x1|x0

]
(B14)

= J A0A1
�x1|x0

∀x0, x1. (B15)

By the Choi–Jamiołkowski isomorphism, we can conclude that

�
A0→A1
x1|x0

[·] = TrA∗
[(

1A1 ⊗ (S�
x1|x0

)A∗)VA0→A1A∗
[·]

]
∀x0, x1. (B16)

This concludes the proof of Proposition 1.

2. Proof of Proposition 2

Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 be a PID. Let �A0→A1 := ∑
x1

�
A0→A1
x1|x0

be the marginal channel of Λ from A0 to A1. Let EA0→A1E

be a broadcast channel, and let M ≡ {M E
x1|x0

}x0,x1 be a PMD such that Λ � (E , M). By Definition 4,

�
A0→A1
x1|x0

[·] = TrE

[(
1A1 ⊗ M E

x1|x0

)
EA0→A1E [·]

]
∀x0, x1. (B17)

Let VA0→A1EF be an isometric dilation of EA0→A1E . Let VA0→A1EF be the isometry operator such that

VA0→A1EF [·] := VA0→A1EF [·] (V†)A1EF→A0 . (B18)

Define a PMD N ≡ {N EF
x1|x0

}x0,x1 as follows:

N EF
x1|x0

:= M E
x1|x0

⊗ 1F ∀x0, x1. (B19)

It follows from Eqs. (B17) and (B19) that

TrEF

[(
1A1 ⊗ N EF

x1|x0

)
VA0→A1EF [·]

]
= TrE

[(
1A1 ⊗ M E

x1|x0

)
TrF ◦ VA0→A1EF [·]

]
(B20)

= TrE

[(
1A1 ⊗ M E

x1|x0

)
EA0→A1E [·]

]
(B21)

= �
A0→A1
x1|x0

[·] ∀x0, x1. (B22)

The vector (1A0 ⊗ VÃ0→A1EF)|φ+〉A0Ã0 has a Schmidt decomposition as follows:

(
1A0 ⊗ VÃ0→A1EF

)
|φ+〉A0Ã0 =

r−1∑

i=0

√
ai|αi〉A0A1 |βi〉EF , (B23)

where ai > 0 is a positive real number for all i and {|αi〉A0A1}i and {|βi〉EF}i are two orthonormal sets of vectors. Let A∗ be
a system such that HA∗ ∼= supp(J A0A1

� ) ⊆ HA0A1 . Let |αi〉A∗
be the image of |αi〉A0A1 in A∗. Then {|αi〉A∗}i is an orthonormal
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basis of HA∗
. Let |βi〉EF be the complex conjugate of |βi〉EF under a fixed orthonormal basis. Define an isometric channel

WA∗→EF as follows:

WA∗→EF [·] =
r−1∑

i,j =0

〈αi| [·] |αj 〉A∗ |βi〉〈βj |EF . (B24)

Let J A∗EF
V denote the image of the Choi operator J A0A1EF

V of VA0→A1EF in the composite system A∗EF . Then

(J A∗
� )

1
2 (W†)EF→A∗ [

(N�
x1|x0

)EF
]
(J A∗

� )
1
2 =

r−1∑

i,j =0

√
aiaj |αi〉〈αi|A∗

(W†)EF→A∗ [
(N�

x1|x0
)EF

]
|αj 〉〈αj |A∗

(B25)

=
r−1∑

i,j =0

√
aiaj 〈βi|N�

x1|x0
|βj 〉EF |αi〉〈αj |A∗

(B26)

=
r−1∑

i,j =0

√
aiaj 〈βj |Nx1|x0 |βi〉EF |αi〉〈αj |A∗

(B27)

= TrEF

⎡

⎣
(
1A∗ ⊗ (

Nx1|x0

)EF
)
⎛

⎝
r−1∑

i,j =0

√
aiaj |αi〉〈αj |A∗ ⊗ |βi〉〈βj |EF

⎞

⎠

⎤

⎦ (B28)

= TrEF

[(
1A∗ ⊗ N EF

x1|x0

)
J A∗EF
V

]
(B29)

= J A∗
�x1|x0

∀x0, x1. (B30)

Here Eq. (B29) follows from Eq. (B23) and the isomorphism between HA∗
and supp(J A0A1

� ); Eq. (B30) follows from Eq.
(B22) and the same isomorphism. It follows that

(J A∗
� )−

1
2 J A∗

�x1|x0
(J A∗

� )−
1
2 = (W†)EF→A∗ [

(N�
x1|x0

)EF
]

∀x0, x1. (B31)

By Definitions 2 and 5, this implies N� �M SEM(Λ). Since Eq. (B19) implies M� �M N�, by the transitivity of the
preorder �M [20], we have M� �M SEM(Λ). This concludes the proof of Proposition 2.

3. Proof of Theorem 2(1)

By the Choi–Jamiołkowski isomorphism, a PID Λ ≡ {�A0→A1
x1|x0

}x0,x1 is simple if and only if its corresponding assem-

blage of Choi states
{
J A0A1
�x1|x0

/dA0

}
x0,x1

is an unsteerable state assemblage [45]. The state assemblage
{
J A0A1
�x1|x0

/dA0

}
x0,x1

is
unsteerable if and only if its steering-equivalent observables are compatible [58, Theorem 1]. By Definition 5 and Ref.
[58, Eq. (5)], SEM(Λ) is the steering-equivalent observables of the state assemblage

{
J A0A1
�x1|x0

/dA0

}
x0,x1

. Therefore, Λ is
simple if and only if SEM(Λ) is simple. This concludes the proof of Theorem 2(1).

4. Proof of Theorem 2(2)

Let Λ ≡ {�A0→A1
x1|x0

}x0,x1 and Γ ≡ {�B0→B1
y1|y0

}y0,y1 be two PIDs such that Λ �I Γ. By Definition 3, there exists a quantum

channel FB0→A0D, a quantum instrument {KA1D→B1
k }k, and two classical channels {px0,l|y0,k}x0,y0,k,l and {qy1|x1,l}x1,y1,l such

that

�
B0→B1
y1|y0

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idC
)

◦ FB0→A0D ∀y0, y1. (B32)

Let �A0→A1 := ∑
x1

�
A0→A1
x1|x0

be the marginal channel of Λ from A0 to A1. Let A∗ be a system such that HA∗ ∼=
supp(J A0A1

� ) ⊆ HA0A1 . Let S ≡ {SA∗
x1|x0

} be a PMD such that S = SEM(Λ). By Proposition 1, there exists an isometric
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channel VA0→A1A∗
such that

�
A0→A1
x1|x0

[·] = TrA∗
[(

1A1 ⊗ (S�
x1|x0

)A∗)VA0→A1A∗
[·]

]
∀x0, x1. (B33)

Define a quantum channel EB0→B1A∗K as follows:

EB0→B1A∗K =
∑

k

(
KA1D→B1

k ⊗ idA∗) ◦
(
VA0→A1A∗ ⊗ idD

)
◦ FB0→A0D ⊗ |k〉〈k|K . (B34)

Define a quantum instrument K ′ ≡ {K′A∗K→A∗
k′ }k′ as follows:

K′A∗K→A∗
k′ [·] =

(
1A∗ ⊗ 〈k′|K

)
[·]

(
1A∗ ⊗ |k′〉K

)
∀k′. (B35)

Define a PMD N ≡ {N A∗K
y1|y0

}y0,y1 as follows:

N A∗K
y1|y0

:=
∑

x0,x1,k′,l
qy1|x1,lpx0,l|y0,k′(K′†

k′)
A∗→A∗K

[
SA∗

x1|x0

]
(B36)

=
∑

x0,x1,k′,l
qy1|x1,lpx0,l|y0,k′SA∗

x1|x0
⊗ |k′〉〈k′|K ∀y0, y1. (B37)

By Definition 2, Eq. (B36) implies S �M N. It follows from Eqs. (B32)–(B34), and (B37) that

TrA∗K

[(
1B1 ⊗ (N�

y1|y0
)A∗K

)
EB0→B1A∗K [·]

]

=
∑

x0,x1,k,l,k′
qy1|x1,lpx0,l|y0,k′TrA∗

[(
1B1 ⊗ (S�

x1|x0
)A∗) (

KA1D→B1
k ⊗ idA∗)

◦
(
VA0→A1A∗ ⊗ idD

)
◦ FB0→A0D [·] ⊗ 〈k′|k〉〈k|k′〉K

]
(B38)

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦ TrA∗

[(
1A1D ⊗ (S�

x1|x0
)A∗) (

VA0→A1A∗ ⊗ idD
)

◦ FB0→A0D [·]
]

(B39)

=
∑

x0,x1,k,l

qy1|x1,lpx0,l|y0,kKA1D→B1
k ◦

(
�

A0→A1
x1|x0

⊗ idD
)

◦ FB0→A0D [·] (B40)

= �
B0→B1
y1|y0

[·] ∀y0, y1. (B41)

By Definition 4, this implies Γ � (E , N�), where N� ≡ {(N�
y1|y0

)A∗K}y0,y1 . Then by Proposition 2, we have N �M
SEM(Γ). Since SEM(Λ) = S �M N, by the transitivity of the preorder �M [20], we have SEM(Λ) �M SEM(Γ). This
concludes the proof of Theorem 2(2).

APPENDIX C: SEMI-DEVICE-INDEPENDENT CHARACTERIZATION

In this Appendix, we demonstrate the semi-device-independent characterization of PID nonsimplicity with guessing
games. This includes providing a complete set of incompatibility monotones (Theorem 3) and an operational interpretation
of the robustness of incompatibility (Theorem 4) based on nontransient guessing games, as well as a complete set of
incompatibility monotones (Proposition 3) based on postinformation guessing games.
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1. Proof of Theorem 3

Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 be a PID. Let M ≡ {M C0C1
m,n }m∈M,n∈N be a bipartite POVM. By Eq. (17), Alice’s maximum

winning probability in the nontransient guessing game specified by M equals

Pguess(Λ; M ) := 1
dC0

max
Λ′ : Λ�IΛ′

∑

m∈M,n∈N
Tr

[
M C0C1

m,n

(
idC0 ⊗ �

′C̃0→C1
n|m

) [
φ

C0C̃0+
]]

(C1)

= 1
dC0

max
Λ′ : Λ�IΛ′

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�′

n|m

]
. (C2)

First, we prove the necessity of the convertibility conditions in Theorem 3. Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 and Γ ≡
{�B0→B1

y1|y0
}y0∈Y0,y1∈Y1 be two PIDs such that Λ �I Γ. Let M ≡ {M C0C1

m,n }m∈M,n∈N be a bipartite POVM. By Theorem 1(3),
the preorder �I is transitive, thus

Pguess(Λ; M ) = 1
dC0

max
Λ′ : Λ�IΛ′

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�′

n|m

]
(C3)

≥ 1
dC0

max
Λ′ : Γ�IΛ′

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�′

n|m

]
(C4)

= Pguess(Γ; M ). (C5)

Next, we prove the sufficiency of the convertibility conditions in Theorem 3 by contradiction. Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1

and Γ ≡ {�B0→B1
y1|y0

}y0∈Y0,y1∈Y1 be two PIDs such that Pguess(Λ; M ) ≥ Pguess(Γ; M ) for every bipartite POVM

M ≡ {M C0C1
m,n }m∈M,n∈N. We assume Λ ��I Γ. This means that

Γ /∈
{
Λ′ ≡

{
�

′B0→B1
y1|y0

}

y0∈Y0,y1∈Y1
: Λ �I Λ′

}
. (C6)

By Theorem 1 (4) and (5), the set of PIDs on the right-hand side of Eq. (C6) is closed and convex. By the hyperplane
separation theorem [60], there exists a set of Hermiticity-preserving linear maps {OB0→B1

y0,y1 }y0∈Y0,y1∈Y1 and a positive real
number ε > 0 such that

〈{
OB0→B1

y0,y1

}

y0∈Y0,y1∈Y1
,
{
�

B0→B1
y1|y0

}

y0∈Y0,y1∈Y1

〉
> max

Λ′ : Λ�IΛ′

〈{
OB0→B1

y0,y1

}

y0∈Y0,y1∈Y1
,
{
�

′B0→B1
y1|y0

}

y0∈Y0,y1∈Y1

〉
+ ε. (C7)

The above equation can be interpreted based on the Hilbert–Schmidt inner product as follows:

∑

y0∈Y0,y1∈Y1

Tr
[
J B0B1
Oy0,y1

J B0B1
�y1|y0

]
> max

Λ′ : Λ�IΛ′

∑

y0∈Y0,y1∈Y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
+ ε. (C8)

Let c := maxy0∈Y0,y1∈Y1 ‖J B0B1
Oy0,y1

‖∞. Define a bipartite POVM M̂ ≡ {M̂ B0B1
m,n }m∈Y0,n∈N such that N ⊃ Y1 as follows:

M̂ B0B1
m,n :=

⎧
⎪⎪⎨

⎪⎪⎩

1
2c |Y0| |Y1|

(
J B0B1
Om,n

+ c1B0B1
)

∀m ∈ Y0, n ∈ Y1,

1
|Y0| (|N| − |Y1|)

(
1B0B1 − ∑

y0∈Y0,y1∈Y1
M̂ B0B1

y0,y1

)
∀m ∈ Y0, n ∈ N \ Y1.

(C9)
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It can be verified that M̂ is a valid POVM, as M̂ B0B1
m,n ≥ 0 for all m ∈ Y0, n ∈ N and

∑
m∈Y0,n∈N M̂ B0B1

m,n = 1B0B1 . Then

Pguess(Γ; M̂ ) = 1
dB0

max
Γ′ : Γ�IΓ′

∑

m∈Y0,n∈N
Tr

[
M̂ B0B1

m,n J B0B1
�′

n|m

]
(C10)

≥ 1
dB0

∑

y0∈Y0,y1∈Y1

Tr
[
M̂ B0B1

y0,y1
J B0B1
�y1|y0

]
(C11)

= 1
2cdB0 |Y0| |Y1|

⎛

⎝
∑

y0∈Y0,y1∈Y1

Tr
[
J B0B1
Oy0,y1

J B0B1
�y1|y0

]
+ c

∑

y0∈Y0,y1∈Y1

Tr
[
J B0B1
�y1|y0

]
⎞

⎠ (C12)

= 1
2cdB0 |Y0| |Y1|

∑

y0∈Y0,y1∈Y1

Tr
[
J B0B1
Oy0,y1

J B0B1
�y1|y0

]
+ 1

2 |Y1| (C13)

>
1

2cdB0 |Y0| |Y1|

⎛

⎝ max
Λ′ : Λ�IΛ′

∑

y0∈Y0,y1∈Y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
+ ε

⎞

⎠ + 1
2 |Y1| (C14)

= 1
2cdB0 |Y0| |Y1| max

Λ′ : Λ�IΛ′

⎛

⎝
∑

y0∈Y0,y1∈Y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
+ c

∑

y0∈Y0,y1∈Y1

Tr
[

J B0B1
�′

y1|y0

]⎞

⎠ + ε

2cdB0 |Y0| |Y1|
(C15)

= 1
dB0

max
Λ′ : Λ�IΛ′

∑

y0∈Y0,y1∈Y1

Tr
[

M̂ B0B1
y0,y1

J B0B1
�′

y1|y0

]
+ ε

2cdB0 |Y0| |Y1| (C16)

≥ 1
dB0

max
Λ′′ : Λ�IΛ′′

∑

m∈Y0,n∈Y1

Tr
[

M̂ B0B1
m,n J B0B1

�′′
n|m

]
+ ε

2cdB0 |Y0| |Y1| (C17)

= 1
dB0

max
Λ′′ : Λ�IΛ′′

⎛

⎝
∑

m∈Y0,n∈N
Tr

[
M̂ B0B1

m,n J B0B1
�′′

n|m

]
−

∑

m∈Y0,n∈N\Y1

Tr
[

M̂ B0B1
m,n J B0B1

�′′
n|m

]⎞

⎠ + ε

2cdB0 |Y0| |Y1| (C18)

≥ 1
dB0

max
Λ′′ : Λ�IΛ′′

⎛

⎝
∑

m∈Y0,n∈N
Tr

[
M̂ B0B1

m,n J B0B1
�′′

n|m

]
− 1

|Y0| (|N| − |Y1|)
∑

m∈Y0,n∈N\Y1

Tr
[

J B0B1
�′′

n|m

]⎞

⎠ + ε

2cdB0 |Y0| |Y1|
(C19)

≥ 1
dB0

max
Λ′′ : Λ�IΛ′′

⎛

⎝
∑

m∈Y0,n∈N
Tr

[
M̂ B0B1

m,n J B0B1
�′′

n|m

]
− 1

|Y0| (|N| − |Y1|)
∑

m∈Y0,n∈N
Tr

[
J B0B1
�′′

n|m

]⎞

⎠ + ε

2cdB0 |Y0| |Y1|
(C20)

= 1
dB0

max
Λ′′ : Λ�IΛ′′

∑

m∈Y0,n∈N
Tr

[
M̂ B0B1

m,n J B0B1
�′′

n|m

]
− 1

|N| − |Y1| + ε

2cdB0 |Y0| |Y1| (C21)

= Pguess(Λ; M̂ ) − 1
|N| − |Y1| + ε

2cdB0 |Y0| |Y1| . (C22)

Here Eqs. (C12), (C16), and (C19) follow from Eq. (C9); Ineq. (C14) follows from Ineq. (C8). Note that the PID in
Ineq. (C17) has the form Λ′′ ≡ {�′′B0→B1

n|m }m∈Y0,n∈N in contrast to the PID Λ′ ≡ {�′B0→B1
y1|y0

}y0∈Y0,y1∈Y1 in Eq. (C16), and Ineq.
(C17) follows from the fact that the freedom to make a guess n outside the set of target outcomes Y1 does not increase the
maximum winning probability. Choose N ⊇ Y1 to be an arbitrary index set such that

|N| > |Y1| + 2cdB0 |Y0| |Y1|
ε

. (C23)
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Then Eq. (C22) implies Pguess(Λ; M̂ ) < Pguess(Γ; M̂ ), which contradicts the assumption that Pguess(Λ; M ) ≥
Pguess(Γ; M ) for every M . Therefore, we must have Λ �I Γ. This concludes the proof of Theorem 3.

2. Proof of Theorem 4

Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 be a PID. By Definition 7, the robustness of incompatibility of Λ equals

RoI(Λ) := min
r≥0

r (C24a)

subject to:
{

�x1|x0 + rϒx1|x0

1 + r

}

x0,x1

is a simple PID, (C24b)

{
ϒx1|x0

}
x0,x1

is a PID. (C24c)

Since the set of simple PIDs is closed and convex and has a nonzero volume in the space of PIDs, the optimal solution
to Program (C24) exists. Let Υ̂ ≡ {ϒ̂A0→A1

x1|x0
}x0∈X0,x1∈X1 be an optimal solution to Program (C24), which is a PID. Define a

PID Ω̂ ≡ {�̂A0→A1
x1|x0

}x0∈X0,x1∈X1 as follows:

�̂
A0→A1
x1|x0

:= �
A0→A1
x1|x0

+ RoI(Λ)ϒ̂
A0→A1
x1|x0

1 + RoI(Λ)
∀x0, x1. (C25)

By Eq. (C24b), Ω̂ is simple. Let C denote the cone generated by the set of unsteerable state assemblages in A0A1:

C :=
{{

ω
A0A1
x1|x0

}

x0∈X0,x1∈X1
: ω

A0A1
x1|x0

=
∑

g

px1|x0,gη
A0A1
g , ηA0A1

g ≥ 0, px1|x0,g ≥ 0,
∑

x1

px1|x0,g = 1 ∀x0, x1, g

}
. (C26)

We note that the cone C is generating with respect to the space of state ensembles in A0A1. Let C∗ denote the dual cone
of C:

C∗ :=
⎧
⎨

⎩

{
κ

A0A1
x1|x0

}

x0∈X0,x1∈X1
:
∑

x0,x1

Tr
[
κ

A0A1
x1|x0

ω
A0A1
x1|x0

]
≥ 0 ∀

{
ω

A0A1
x1|x0

}

x0,x1
∈ cone(UA0A1)

⎫
⎬

⎭ . (C27)

Substituting ω
A0A1
x1|x0

for J A0A1
�x1|x0

+ rJ A0A1
ϒx1|x0

, Program (C24) can be reformulated as a conic program as follows:

RoI(Λ) = 1
dA0 |X0| min{

ω
A0A1
x1|x0

}

x0,x1

∑

x0,x1

Tr
[
ω

A0A1
x1|x0

]
− 1 (C28a)

subject to: ω
A0A1
x1|x0

− J A0A1
�x1|x0

≥ 0 ∀x0, x1, (C28b)

dA0

∑

x1

TrA1

[
ω

A0A1
x1|x0

]
=

∑

x1

Tr
[
ω

A0A1
x1|x0

]
1A0 ∀x0, (C28c)

{
ω

A0A1
x1|x0

}

x0,x1
∈ C. (C28d)

Invoking the theory of conic programming duality [60], since ω
A0A1
x1|x0

= 2dA01
A0A1 for all x0, x1 is a strictly feasible solution

to Program (C28), by Slater’s condition, strong duality holds, and the optimal solution to the dual program exists. The
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dual program of Program (C28) is given by

RoI(Λ) = 1
dA0 |X0| max{

α
A0A1
x1|x0

}

x0,x1

∑

x0,x1

Tr
[
α

A0A1
x1|x0

J A0A1
�x1|x0

]
− 1 (C29a)

subject to: α
A0A1
x1|x0

≥ 0 ∀x0, x1, (C29b)
∑

x0

Tr
[
βA0

x0

]
= dA0 |X0| , (C29c)

{
βA0

x0
⊗ 1A1 − α

A0A1
x1|x0

}

x0,x1
∈ C∗. (C29d)

Let {̂αA0A1
x1|x0

}x0,x1 , {β̂A0
x1|x0

}x0,x1 be an optimal solution to Program (C29). First, we prove an upper bound on the game

advantage in terms of the robustness of incompatibility. Let M ≡ {M C0C1
m,n }m∈M,n∈N be a bipartite POVM. Let Λ̂′ ≡

{�̂′C0→C1
n|m }m∈M,n∈N be an optimal solution to the maximization in Eq. (C2), namely, the PID simulated by Λ under Alice’s

optimal strategy. Let Υ̂′ ≡ {ϒ̂ ′C0→C1
n|m }m∈M,n∈N and Ω̂′ ≡ {�̂′C0→C1

n|m }m∈M,n∈N denote the PIDs obtained by applying the same
simulation strategy to Υ̂ and Ω̂, respectively. Then

Pguess(Λ; M ) = 1
dC0

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�̂′

n|m

]
(C30)

= 1
dC0

∑

m∈M,n∈N
Tr

[
M C0C1

m,n

(
(1 + RoI(Λ)) J C0C1

�̂′
n|m

− RoI(Λ)J C0C1
ϒ̂ ′

n|m

)]
(C31)

≤ 1 + RoI(Λ)

dC0

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�̂′

n|m

]
(C32)

≤ 1 + RoI(Λ)

dC0

max
Ω : Ω̂′�IΩ

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�n|m

]
(C33)

= 1 + RoI(Λ)

dC0

max
Ω : simple

∑

m∈M,n∈N
Tr

[
M C0C1

m,n J C0C1
�n|m

]
(C34)

= (1 + RoI(Λ)) Psimple
guess (M ). (C35)

Here Eq. (C31) follows from Eq. (C25) and the linearity of free simulations; Eq. (C34) follows from Ω̂′ being simple and
Theorem 1(1) and (2). This implies that

sup
M

Pguess(Λ; M )

Psimple
guess (M )

≤ 1 + RoI(Λ). (C36)

Next, we show that Ineq. (C36) can be equalized by an infinite sequence of POVMs on A0A1. Let c :=
‖∑

x0∈X0,x1∈X1
α̂

A0A1
x1|x0

‖∞. Define a bipartite POVM M̂ ≡ {M̂ A0A1
m,n }m∈X0,n∈N such that N ⊃ X1 as follows:

M̂ A0A1
m,n :=

⎧
⎪⎨

⎪⎩

1
c
α̂

A0A1
n|m ∀m ∈ X0, n ∈ X1,

1
|X0| (|N| − |X1|)

(
1A0A1 − ∑

x0∈X0,x1∈X1
M̂ A0A1

x0,x1

)
∀m ∈ X0, n ∈ N \ X1.

(C37)
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It can be verified that M̂ is a valid POVM, as M̂ A0A1
m,n ≥ 0 for all m ∈ X0, n ∈ N and

∑
m∈X0,n∈N M̂ A0A1

m,n = 1A0A1 . Then

Pguess(Λ, M̂ ) = 1
dA0

max
Λ′ : Λ�IΛ′

∑

m∈X0,n∈N
Tr

[
M̂ A0A1

m,n J A0A1
�′

n|m

]
(C38)

≥ 1
dA0

∑

x0∈X0,x1∈X1

Tr
[
M̂ A0A1

x0,x1
J A0A1
�x1|x0

]
(C39)

= 1
dA0c

∑

x0∈X0,x1∈X1

Tr
[
α̂

A0A1
x1|x0

J A0A1
�x1|x0

]
(C40)

= |X0| (1 + RoI(Λ))

c
. (C41)

Here Eq. (C41) is by the definition of {̂αA0A1
x1|x0

}x0,x1 and follows from Eq. (C29a). In addition,

Psimple
guess (M̂ ) = 1

dA0

max
Ω : simple

∑

m∈X0,n∈N
Tr

[
M̂ A0A1

m,n J A0A1
�n|m

]
(C42)

= 1
dA0

max
Ω : simple

⎛

⎝
∑

m∈X0,n∈X1

Tr
[
M̂ A0A1

m,n J A0A1
�n|m

]
+

∑

m∈X0,n∈N\X1

Tr
[
M̂ A0A1

m,n J A0A1
�n|m

]
⎞

⎠ (C43)

≤ 1
dA0

max
Ω : simple

⎛

⎝
∑

m∈X0,n∈X1

Tr
[
M̂ A0A1

m,n J A0A1
�n|m

]
+ 1

|X0| (|N| − |X1|)
∑

m∈X0,n∈N\X1

Tr
[
J A0A1
�n|m

]
⎞

⎠ (C44)

≤ 1
dA0

max
Ω : simple

⎛

⎝
∑

m∈X0,n∈X1

Tr
[
M̂ A0A1

m,n J A0A1
�n|m

]
+ 1

|X0| (|N| − |X1|)
∑

m∈X0,n∈N
Tr

[
J A0A1
�n|m

]
⎞

⎠ (C45)

= 1
dA0

max
Ω : simple

∑

m∈X0,n∈X1

Tr
[
M̂ A0A1

m,n J A0A1
�n|m

]
+ 1

|N| − |X1| (C46)

≤ 1
dA0

max
Ω′ : simple

∑

x0∈X0,x1∈X1

Tr
[

M̂ A0A1
x0,x1

J A0A1
�′

x1|x0

]
+ 1

|N| − |X1| (C47)

= 1
dA0c

max
Ω′ : simple

∑

x0∈X0,x1∈X1

Tr
[
α̂

A0A1
x1|x0

J A0A1
�′

x1|x0

]
+ 1

|N| − |X1| (C48)

= 1
dA0c

max
Ω′ : simple

∑

x0∈X0,x1∈X1

(
Tr

[(
β̂A0

x0
⊗ 1A1

)
J A0A1
�′

x1|x0

]
− Tr

[(
β̂A0

x0
⊗ 1A1 − α̂

A0A1
x1|x0

)
J A0A1
�′

x1|x0

])
+ 1

|N| − |X1|
(C49)

≤ 1
dA0c

max
Ω′ : simple

∑

x0∈X0,x1∈X1

Tr
[(

β̂A0
x0

⊗ 1A1
)

J A0A1
�′

x1|x0

]
+ 1

|N| − |X1| (C50)

= 1
dA0c

∑

x0∈X0

Tr
[
β̂A0

x0

]
+ 1

|N| − |X1| (C51)

= |X0|
c

+ 1
|N| − |X1| . (C52)

Here Eqs. (C44) and (C48) follow from Eq. (C37); Ineq. (C50) follows from Eq. (C29c); Eq. (C52) follows from
Eq. (C29d). Note that the PID in Ineq. (C47) has the form Ω′ ≡ {�′A0→A1

x1|x0
}x0∈X0,x1∈X1 in contrast to the PID Ω ≡
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{�A0→A1
n|m }m∈X0,n∈N in Eq. (C46), and Ineq. (C47) follows from the fact that the optimal strategy in Eq. (C46) necessarily

makes a guess n within the set of target outcomes Y1. Then it follows from Eqs. (C41) and (C52) that

sup
M

Pguess(Λ; M )

Psimple
guess (M )

≥ lim
|N|→∞

Pguess(Λ; M̂ )

Psimple
guess (M̂ )

(C53)

= lim
|N|→∞

1 + RoI(Λ)

1 + c
|X0|(|N|−|X1|)

(C54)

= 1 + RoI(Λ). (C55)

Combining Eqs. (C36) and (C55), we can conclude that

sup
M

Pguess(Λ; M )

Psimple
guess (M )

= 1 + RoI(Λ). (C56)

This concludes the proof of Theorem 4.

3. Proof of Proposition 3

First, we prove the necessity of the convertibility conditions in Proposition 3. Let Λ ≡ {�A0→A1
x1|x0

}x0∈X0,x1∈X1 and Γ ≡
{�A0→A1

y1|y0
}y0∈Y0,y1∈Y1 be two PIDs such that Λ �I Γ. Let L ≡ {LB1

l′ }l′∈L be a POVM, and let ς ≡ {σ B0
m,n,l}m∈Y0,n∈Y1,l∈L be a

state ensemble. By Theorem 1(3), the preorder �I is transitive, thus

P′
guess(Λ; ς , L ) = max

Λ′ : Λ�IΛ′

∑

m,n,l

Tr
[
LB1

l �
′B0→B1
n|m

[
σ

B0
m,n,l

]]
(C57)

≥ max
Λ′ : Γ�IΛ′

∑

m,n,l

Tr
[
LB1

l �
′B0→B1
n|m

[
σ

B0
m,n,l

]]
(C58)

= P′
guess(Γ; ς , L ). (C59)

Next, we prove the sufficiency of the convertibility conditions in Proposition 3 by contradiction. Let Λ ≡
{�A0→A1

x1|x0
}x0∈X0,x1∈X1 be two PIDs, and let L ≡ {LB1

l′ }l′∈L be an informationally complete POVM such that

P′
guess(Λ; ς , L ) ≥ P′

guess(Λ; ς , L ) for every state ensemble ς ≡ {σ B0
m,n,l}m∈Y0,n∈Y1,l∈L. We assume Λ ��I Γ. Following the

argument that leads to Eq. (C8), there exists a set of Hermiticity-preserving linear maps {OB0→B1
y0,y1 }y0∈Y0,y1∈Y1 such that

∑

y0,y1

Tr
[
J B0B1
Oy0,y1

J B0B1
�y1|y0

]
> max

Λ′ : Λ�IΛ′

∑

y0,y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
. (C60)

Since L is an informationally complete POVM, there exists a set of Hermitian operators {μB0
y0,y1,l′ }y0∈Y0,y1∈Y1,l′∈L such that

J B0B1
Oy0,y1

=
∑

l′
μ

B0
y0,y1,l′ ⊗ LB1

l′ ∀y0, y1. (C61)

Let c := maxy0∈Y0,y1∈Y1 ‖μB0
y0,y1‖∞ and c′ := ∑

m∈Y0,n∈Y1,l∈L Tr[μB0
m,n,l]. Define a state ensemble ς̂ ≡ {̂σ B0

m,n,l}m∈Y0,n∈Y1,l∈L as
follows:

σ̂
B0
m,n,l := 1

c′ + cdB0 |Y0| |Y1| |L|
(
(μ�

m,n,l)
B0 + c1B0

) ∀m, n, l. (C62)
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It can be verified that ς̂ is a valid state ensemble, as σ̂
B0
m,n,l ≥ 0 for all m ∈ Y0, n ∈ Y0, l ∈ L and

∑
m,n,l Tr[̂σ B0

m,n,l] = 1. Then

P′
guess(Λ; ς̂ , L ) = max

Λ′ : Λ�IΛ′

∑

m,n,l

Tr
[
LB1

l �
′B0→B1
n|m

[
σ̂

B0
m,n,l

]]
(C63)

= 1
c′ + cdB0 |Y0| |Y1| |L| max

Λ′ : Λ�IΛ′

⎛

⎝
∑

m,n,l

Tr
[
LB1

l �
′B0→B1
n|m

[
(μ�

m,n,l)
B0
]] + c

∑

m,n,l

Tr
[
LB1

l �
′B0→B1
n|m

[
1B0

]]
⎞

⎠

(C64)

= 1
c′ + cdB0 |Y0| |Y1| |L| max

Λ′ : Λ�IΛ′

⎛

⎝
∑

m,n,l

Tr
[(

μ
B0
m,n,l ⊗ LB1

l

) (
idB0 ⊗ �

′̃B0→B1
n|m

) [
φ

B0B̃0+
]]

+ cdB0 |Y0|
⎞

⎠

(C65)

= 1
c′ + cdB0 |Y0| |Y1| |L|

⎛

⎝ max
Λ′ : Λ�IΛ′

∑

y0,y1

Tr
[

J B0B1
Om,n

J B0B1
�′

y1|y0

]
+ cdB0 |Y0|

⎞

⎠ . (C66)

Here Eq. (C64) follows from Eq. (C62). It follows that

P′
guess(Γ; ς̂ , L ) = 1

c′ + cdB0 |Y0| |Y1| |L|

⎛

⎝ max
Γ′ : Γ�IΓ′

∑

y0,y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
+ cdB0 |Y0|

⎞

⎠ (C67)

≥ 1
c′ + cdB0 |Y0| |Y1| |L|

⎛

⎝
∑

y0,y1

Tr
[
J B0B1
Oy0,y1

J B0B1
�y1|y0

]
+ cdB0 |Y0|

⎞

⎠ (C68)

>
1

c′ + cdB0 |Y0| |Y1| |L|

⎛

⎝ max
Λ′ : Λ�IΛ′

∑

y0,y1

Tr
[

J B0B1
Oy0,y1

J B0B1
�′

y1|y0

]
+ cdB0 |Y0|

⎞

⎠ (C69)

= P′
guess(Λ; ς̂ , L ). (C70)

This contradicts the assumption that P′
guess(Λ; ς̂ , L ) ≥ P′

guess(Γ; ς̂ , L ) for every ς̂ . Therefore, we have Λ �I Γ. This
concludes the proof of Proposition 3.
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