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It has been a long-standing open problem to construct a general framework for relating the spectra of
dual theories to each other. Here, we solve this problem for the case of one-dimensional quantum lattice
models with symmetry-twisted boundary conditions. In Ref. [PRX Quantum 4, 020357], dualities are
defined between (categorically) symmetric models that only differ in a choice of module category. Using
matrix product operators, we construct from the data of module functors explicit symmetry operators
preserving boundary conditions as well as intertwiners mapping topological sectors of dual models onto
one another. We illustrate our construction with a family of examples that are in the duality class of the
spin-% Heisenberg XXZ model. One model has symmetry operators forming the fusion category Rep(S;)
of representations of the group S;. We find that the mapping between its topological sectors and those
of the XXZ model is associated with the nontrivial braided autoequivalence of the Drinfel’d center of

Rep(S;).
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I. INTRODUCTION

Over the past few years, tremendous progress has been
achieved in our understanding of quantum theories by
interpreting symmetries in terms of topological opera-
tors. More specifically, correlation functions of the theories
including symmetry operators are insensitive to topology-
preserving deformations of the submanifolds supporting
the operators, unless they pass through charged opera-
tors [1]. In this context, ordinary global symmetries are
generated by codimension-one invertible operators, which
together with the requirements that symmetry operators
can be fused, implies that these furnish a representation
of a group. This new approach has led to generalizations
of the notion of symmetry, whereby operators are not
necessarily supported on one-codimensional submanifolds
and/or are not necessarily invertible. This paper is con-
cerned with such generalized symmetries in the context
of translation invariant one-dimensional quantum lattice
models.
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Relaxing the invertibility condition leads to symmetry
operators the properties of which are encoded into abstract
higher mathematical structures known as spherical fusion
categories [2,3]. These so-called categorical symmetries
have been under intense scrutiny in recent years [4—15].
Crucially, the corresponding operators are typically non-
local, in the sense that they cannot be written as ten-
sor products of local operators and are realized instead
by matrix product operators (MPOs) [16-22]. Although
exotic, such categorical symmetries are not uncommon in
one-dimensional quantum models and are typically related
to rational conformal field theories (CFTs) [21,23-28]. For
instance, the Kramers-Wannier duality defect of the Ising
CFT provides such a categorical symmetry operator for
the critical transverse-field Ising model [29]. Moreover, a
large family of lattice models known as anyonic chains that
commute with symmetry operators organized into fusion
categories can be readily constructed [30—37], including
spin systems with quantum group symmetries [38,39].

In virtue of their topological nature, any categorically
symmetric model in (1+1)D can be lifted to a (gapped)
boundary condition of the Turaev-Viro-Barrett-Westbury
topological quantum field theory (TQFT) [40,41] with,
as input datum, the corresponding spherical fusion cat-
egory [4,5,42]. Mathematically, gapped boundary condi-
tions admit a classification in terms of module categories
over the input category [43—47], the case of pure gauge
theories having received special attention [48—55]. This
holographic viewpoint on symmetries has also garnered a
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lot of interest [6—8,56,57]. Crucially, the bulk TQFT can
be reconstructed from any choice of gapped boundary con-
dition, so that bulk topological lines are encoded into the
Drinfel’d center of the corresponding spherical fusion cat-
egory of (boundary) topological lines [47]. This suggests
a notion of duality between models canonically associated
with distinct boundary conditions of the same bounding
TQFT.

Inspired by these developments, we have initiated
in Ref. [58] a systematic study of dualities in one-
dimensional quantum lattice models from the viewpoint of
their (categorical) symmetries. One merit of our approach
is to make very concrete the concepts and results alluded to
above—which are often formal and abstract otherwise—as
well as demonstrate that this approach to dualities agrees
and extends traditional ones [59]. Within our framework,
an equivalence class of dual models is given by a choice
of input (spherical) fusion category together with an alge-
bra of local operators. A representative of such a class then
corresponds to a specific lattice realization of the under-
lying theory. Choosing a lattice realization loosely boils
down to picking a collection of degrees of freedom, which
happen to be encoded into a choice of module category
over the input fusion category. This means that models that
only differ in a choice of module category are dual to one
another. Importantly, dualities thus defined are such that
any symmetric local operator is mapped to a dual sym-
metric local operator, whereas nonsymmetric local oper-
ators in one theory are mapped to nonlocal nonsymmetric
operators in the dual theory. Generally speaking, we can
interpret such dualities as arising from some generalized
gauging procedure of the categorical symmetry [60—70].
It follows from our construction that duality transforma-
tions are naturally associated with maps between module
categories.

In practice, given a known one-dimensional quantum
lattice model, a suitable choice of input fusion category can
be extracted from a detailed understanding of its symme-
tries—which are typically generated by nonlocal operators.
The Hamiltonian itself is then built from linear combina-
tions of symmetric local operators obtained from the data
of a module category over the input fusion category. The
algebra entering the characterization of the equivalence
class of dual models is that generated by the set of local
operators. Keeping the same linear combination of sym-
metric operators but choosing a different realization via a
choice of module category yields a dual model [58].

A key technical novelty of our approach is our ability to
explicitly write down, in the form of matrix product oper-
ators [71—73], the nonlocal lattice operators generating the
symmetries of a given family of dual models. Similarly,
we are able to implement a duality relation via MPOs that
transmute the local operators of a given Hamiltonian into
those of one of its duals [58]. The main teaching of the
present paper is that these MPOs can be further exploited

so as to construct isometries relating the full spectra of dual
models. A crucial aspect of such a mapping is the deli-
cate interplay between duality relations and sectors of the
models that come into play.

Indeed, the study of sectors cannot be dissociated from
the constructions of duality mappings. Consider, e.g.,
the Kramers-Wannier duality of the transverse field Ising
model [29]. Given a closed chain, one formulation of this
duality identifies the simultaneous action of two Pauli-
Z operators on qubits located at neighbouring vertices
with that of a single Pauli-Z operator on a qubit located
along the edge bounding these vertices, and vice versa
for Pauli-X operators. It turns out that such a duality
mapping imposes kinematical constraints for both the orig-
inal Hamiltonian and its dual. Indeed, it follows from the
definition that acting simultaneously on all qubits with
Pauli-X' or Pauli-Z operators, respectively, must leave
every state invariant. In other words, these kinematical
constraints force both models into the even-charge sectors
of their respective 7, symmetry. This means, in partic-
ular, that the symmetry cannot be spontaneously broken
on either side of the duality [74,75]. Accessing the odd-
charge sector of the original model requires locally altering
the duality mapping, which in turn modifies the boundary
condition of the dual model from periodic to antiperiodic.
As such, it is not possible to define a mapping of local
operators without addressing the mapping of sectors.

The purpose of the present paper is to completely
address the fate of sectors upon dualizing for the case of
closed boundary conditions. Here, closed boundary condi-
tions include the familiar case of periodic boundary con-
ditions but, more generally, also contain symmetry-twisted
boundary conditions [76,77]. These boundary conditions
are special in the sense that while they do break invariance
with respect to the original translation operator, they do so
in a way allowing us to define a twisted translation opera-
tor, together with corresponding twisted momentum, with
respect to which invariance is preserved. For these kinds of
boundary conditions, sectors are labeled by combinations
of fluxes given by symmetry twists and symmetry charges
that decompose the remaining twisted symmetry. Borrow-
ing terminology from the study of topological order, we
refer to these superselection sectors labeled by symmetry-
twisted boundary conditions and twisted-symmetry sectors
as topological sectors [27,28,42,78].

There has recently been renewed interest in the physical
realization of duality transformations and their applica-
tions in quantum technologies. In the context of quantum
simulation, the fact that dualities typically change the
phase of the states on which they act can be exploited
to efficiently prepare states in a given phase [79-82]. A
prototypical example is the case of the Kramers-Wannier
duality, where the duality MPO generates a long-range
entangled Greenberger-Horne-Zeilinger (GHZ) state from
a trivially entangled product state. The same duality
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TABLE 1. The dictionary between categorical concepts and
their role in this work.

Fusion category D Abstract algebra of operators

D-module category M
D-module functors
‘D-module endofunctors
Drinfel’d center

Degrees of freedom
Duality operators

Symmetry operators
Topological sectors

transformations can also be used to generate quantum cir-
cuits that permute the anyons of a topologically ordered
state [83], which has applications in the construction of
topological quantum memories [84]. Both of these appli-
cations ultimately rely on an understanding of the non-
trivial action of a duality on the topological sectors of
a model, as well as the explicit realization of operators
that implement these transformations. The framework we
present in this paper provides both of these features and
we expect the duality operators that we construct here
to guide the physical realization of more general duality
transformations.

We will make use of several categorical concepts,
which for convenience are summarized in Table I, together
with their physical meaning in this work. Concretely, our
construction goes as follows. We begin by choosing an
input fusion category D, from which we can construct an
(abstract) algebra of local operators referred to as the bond
algebra [59,85]. At this stage, these local operators do not
yet admit an explicit matrix representation on a Hilbert
space. Instead, they are written in terms of string diagrams,
which allows us to compute their operator products using
the diagrammatic manipulations of the input category. A
particular equivalence class of dual models is then built by
taking certain linear combinations of such local operators.
The choice of these operators completely determines the
spectrum of these models and in this sense captures the
physical properties that can be directly inferred from the
spectrum. The next step is to find explicit matrix represen-
tations of the local operators that build up these models,
which then specify the Hilbert space and the Hamiltonian.
These are classified by different choices of module cate-
gories M over the input category D. The choice of module
category therefore provides a particular physical realiza-
tion of the physical properties captured in the spectrum
associated with an equivalence class of dual models.

Ignoring boundary conditions by considering infinite
chains, one can construct operators that intertwine between
dual representations of the local operators determined by
different choices of (indecomposable) module categories
M and V. Explicitly, such an operator can be written in
terms of an MPO intertwiner that acts as a map between
module categories; the consistency conditions on this MPO
intertwiner are equivalent to those of a so-called D-module
functor M — N in Funp(M,N). In the special case

where the module categories are the same on both sides,
we interpret the MPO as a symmetry, which is labeled by
a D-module endofunctor in Funp (M, M). Importantly,
the composition of D-module endofunctors endows the
category of endofunctors with the structure of a fusion cat-
egory. This fusion category is denoted as D, , and referred
to as the Morita dual of D with respect to M it describes
the symmetries of the Hamiltonian associated with the
specific choice of module category M.

As alluded to above, in order to realize these dualities
as explicit isometries, one needs to carefully consider the
boundary conditions. In our setup, the symmetry-twisted
boundary conditions discussed above are given by an end-
ofunctor of the module category, which tells us the way
in which the degrees of freedom at either end of the chain
have to be glued together. The additional condition that
translation invariance is preserved up to a local unitary
transformation is satisfied by requiring this endofunctor to
possess a D-module structure. As expected, these are orga-
nized into the same fusion category D', , that describes the
symmetries; hence the name. The symmetries of a model
interact with these boundary conditions and typically one
is left with less symmetry in the presence of a nontriv-
ial symmetry twist. In general, this can be understood
using “tubes,” which are modifications of the usual peri-
odic MPOs to include the action on the symmetry twist.
The topological sectors of the model are then character-
ized as irreducible representations of the category of tubes,
which are well known to be in correspondence with sim-
ple objects in the Drinfel’d center Z(D ) [6,27,42,86,87].
We confirm this directly on the lattice and explicitly com-
pute the projectors onto the various topological sectors.

Importantly, the symmetry fusion categories D’ for
different choices of M are all Morita equivalent [88,89]. It
is well known that this guarantees that the centers Z (D3 ()
are equivalent as categories, which guarantees that the
topological sectors of dual models can be mapped to one
another. By generalizing the MPO intertwiners constructed
for the infinite case to accommodate the twisted boundary
conditions, we can explicitly compute these maps and con-
struct the isometries that relate the full set of eigenvectors
of one model to those of any of its dual models.

We illustrate our construction with a family of dual
models the fusion categories of the symmetry operators
of which are in the Morita class of the fusion category
Rep(S;) of representations of the symmetric group S;.
We distinguish four models associated with the four inde-
composable module categories over Rep(S3). One of them
is the spin-1/2 Heisenberg XXZ model. In the infinite
case, the Hamiltonian commutes in particular with nonlo-
cal operators labeled by group elements in S3. Similarly,
equivalence classes of boundary conditions that preserve
the translation invariance of the model are shown to be
labeled by conjugacy classes of S;. Given a conjugacy
class and one of its representatives, the corresponding
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boundary condition is such that the resulting Hamiltonian
only commutes with operators labeled by group elements
in the centralizer of the representative. It follows that this
Hamiltonian decomposes into twisted-symmetry sectors
indexed by irreducible representations of the centralizer.
Putting everything together, we find eight topological sec-
tors, which are in one-to-one correspondence with simple
objects in the Drinfel’d center Z(Vecs,) of the fusion
category Vecs, of Sz-graded vector spaces or, equiva-
lently, irreducible representations of the quantum double
D(S3). These simple objects also encode elementary any-
onic excitations in Hamiltonian realizations of the S;
Dijkgraaf-Witten theory. As evoked above, this is no mere
coincidence and it confirms the fact that the spin-1/2
Heisenberg XXZ model can indeed arise as effective the-
ory on the boundary of a (2+1)D topological model with
Z(Vecs,) topological order.

By construction, Hamiltonian models that only differ
from the spin-1/2 Heisenberg XXZ model in the choice
of module category over Rep(S;) are dual to it and
also dual to one another. We explore these dual models
within our framework. We highlight in particular a model
the Hamiltonian of which commutes in the infinite case
with nonlocal symmetry operators labeled by irreducible
representations of S3, as opposed to group elements. Cor-
respondingly, the boundary conditions are also labeled
by irreducible representations. We explicitly construct the
boundary terms as well as the lattice symmetry opera-
tors that preserve the boundary conditions. The symmetry
charge sectors decomposing the corresponding Hamilto-
nians are presented in detail. As for the Heisenberg XXZ
model, we find a total of eight topological sectors, which
are now in one-to-one correspondence with simple objects
of the Drinfel’d center Z(Rep(S3)). Duality is then guar-
anteed by the Morita equivalence between Vecs, and
Rep(S;). Furthermore, we study in detail how topological
sectors of this model are mapped to those of the Heisen-
berg XXZ model upon duality. We show in particular how
the two-dimensional charge sector of the Heisenberg XXZ
model with periodic boundary conditions is mapped onto
the trivial charge sector of the dual model with a non-
Abelian boundary condition. This is a concrete physical
realization of the nontrivial permutation of anyons tak-
ing place at the only nontrivial invertible domain wall
between topological orders described by Z(Vecs,) and
Z(Rep(S3)), respectively.

The paper is organized as follows. We begin by review-
ing in Sec. II the case of infinite chains with an emphasis
on the lattice duality operators transmuting local symmet-
ric operators into one another. This section is also the
opportunity to introduce the relevant technical prelimi-
naries together with the graphical calculus that is used
throughout our work. The characterization of topological
sectors is presented in Sec. III, together with the opera-
tors mapping sectors of dual models onto one another, as

well as the isometries realizing the dualities between the
Hamiltonians. Finally, we present in Sec. IV several exam-
ples that illustrate the various results obtained in this work.
Our paper is complemented by Appendixes A and B, in
which we compile numerous results regarding categori-
cal Morita equivalence and the quantum double of a finite
group, respectively.

I1. INFINITE CHAINS

After introducing some technical definitions, in this
section we review our systematic and constructive
approach to symmetry and duality operators for infinite
one-dimensional lattice models.

A. Technical preliminaries

We consider in this paper families of one-dimensional
quantum lattice models that are dual to one another. These
dual models are characterized by distinct lattice realiza-
tions of a (categorical) symmetry generated by operators
that are organized into a (spherical) fusion category. We
like to think of choosing a fusion category as picking
a backbone that supports the various theories. Lattice
realizations are then obtained by choosing collections of
physical degrees of freedom that are compatible with the
backbone. Mathematically, a choice of lattice realization
is associated with a module category over the input fusion
category. In this context, a map between distinct module
categories amounts to a duality operator, whereas a map
from a module category to itself amounts to a symmetry
operator. This is the program that has been presented in
Ref. [58] in the case of infinite one-dimensional lattices.
The purpose of the present paper is to continue this system-
atic study and explain the subtle interplay between duality
relations, boundary conditions, and topological sectors. Let
us first briefly review the infinite case.

We set the stage by introducing the technical ingre-
dients alluded to above. We encourage the reader to
consult Ref. [3] for details. Succinctly, a fusion cate-
gory D encodes a collection of objects interpreted as
(possibly nonelementary) topological charges that can be
fused to one another. Throughout this paper, we denote
representatives of isomorphism classes of simple objects
in D by Y1,Ys,... € Ip and their respective quantum
dimensions by dy,,dy,,... € C. The fusion of objects
is encoded into the monoidal structure (Q,1,F) of D
consisting of a product rule ® : D x D — D, a dis-
tinguished object 1, referred to as the trivial charge
or vacuum, and a (natural) isomorphism F : (— ® —) ®
— 5 — ® (— ® —) satisfying a coherence relation known
as a “pentagon axiom.” The isomorphism F will be
referred to as the monoidal associator and its compo-
nents written as F'12%5 . (1, @ ) Q¥ > V1 @ (1, ®
Y3) for all Yi,Y,,Y; € Ip. Introducing the notation
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HY1Y2 := Homp (Y] ® V>, Y3) 3 |Y1 Y, Y3,i) for the vector
space of maps from the (typically not simple) object
Y1 ® Y, to Y3 known as hom-spaces, we have ¥} ® ¥, >~
Dy, NYYsz Y3, where N;?Yz = dim¢ H;?Yz € N. It follows
that the monoidal associator boils down to a collection of
complex matrices

YYY
1 e @H nr ®HY5Y3 = @HY2Y3 YIYG’ (D)

the actions of which can be conveniently depicted in terms
of string diagrams as

Yy Y Ys
. l

YleYd YeJJ
/ SEETNEL N\ A

Ys 7,1 |

: v @)

where the indices i, j, k, and / label basis vectors in
the hom-spaces HYI Yy> HYI Yoo H)}%Yy and H,Y/gy3, respec-
tively. Henceforth, we refer to the entries of these complex
matrices as the F symbols.

Given a fusion category D, a module category M
over it is, roughly speaking, a collection of representa-
tives of simple objects My, M,,... € T, that are acted
upon by the objects in D. More concretely, a right mod-
ule category M over D is a triple (M, <, F) that con-
sists of a category M, an action <: M x D — M and
a (natural) isomorphism ¥ : (—<—)<— S —a-®-)
satisfying a “pentagon axiom” involving the monoidal
associator F' of D. The isomorphism F will be referred
to as the (right) module associator and its components
written as FMNY2 . (M aY)) <Y, > M <(Y; ® Y,) for all
Y1,Y, € Ip and M € I ,,. For instance, every fusion cat-
egory D has the structure of a module category over itself
via its monoidal structure known as the regular module
category, whereby the module associator ¥ is provided
by the monoidal associator F. Introducing the notation
Virty i= Hom (My <Y, My) > [MYM,, i) for the vector
space of maps from the (typically not simple) object M; <Y
to M,, we have M| <Y ~ @Mz NAAZZYMZ, where NAAﬁY =

dim¢ Vj‘jfy € N. It follows that the module associator boils
down to a collection of complex matrices

M 1Yy, Mz
FMz @ M1Y1 M3Y2 - @HYle

M1Y3’

)

the actions of which can be depicted in terms of string
diagrams as

M1 Y1 Y, M1 Y1 Y,

Y.l l
M3 ZZ <1FM1Y1Y2 ]V;Sjk j/Yg 7

| YS]I |

My Mz (4)

where the indices i, j, k, and / label basis vectors in
the hom-spaces Vﬁfyl, Vﬁfh, VM3 y,» and HY y,» Tespec-
tively. Henceforth, we refer to the entries of these complex
matrices as F symbols.

Mirroring the above concepts, we can define a notion of
a left module category (M, >,"F). Combining the notions
of the left- and right-module category then yields the
concept of a bimodule category. Concretely, a (C,D)-
bimodule category is a sextuple (M, >, <,"F, F,”F) such
that the triples (M, >,"F) and (M, <, F) define left C- and
right D-module categories, respectively, and where *F :
(—>p—)a— > —p(—<—)isa (natural) isomorphism sat-
isfying two “pentagon axioms” involving either ¥ or °F.
The isomorphism *¥ will be referred to as the bimod-
ule associator and its components written as “FAMY
X M) <Y > X (M <Y) forall X € Z¢, Y € Ip and
M, € T . As before, the bimodule associator boils down
to a collection of complex matrices

s XM Y | M- M, ~ M,
i D Vi, ® Vigy > @ Viry ® Vi, 9)
M-

My

the actions of which can be depicted in terms of string
diagrams as

X My X M,

My,lj
]\43 / ZZ MFXZ\/Ily 4, i |M4 ,
J

My 5,1 |

I\/[g M- (6)

where the indices 1,7, k, [ label basis vectors in the hom-
spaces V%Zl VXM4, VM3 y» and VAA//,Ify, respectively. Hence-
forth, we refer to the entries of these complex matrices as
>F symbols.

The final ingredient that we require is the notion of
a structure-preserving map between module categories
over the same fusion category. Given two (right) module
D-categories (M, <, F) and (N, <, F), we define a D-
module functor between them as a pair (§, w) that consists
of a functor §: M — N and a (natural) isomorphism

w: F(—<—) > F(—)«— satisfying a “pentagon axiom”
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involving both ¥ and “F. Components of the isomorphism
o will be written as 1Y : F(M, <« Y) > F(M;) « Y for all
Y € Ip and M; € T, and boil to a collection of complex
matrices

MY Ny
Oy @ VMI Nz Y @ Mz ’ )
N

where VY := Homyx (F(M),N). Such module functors
form a category denoted by Funp(M,N). Through-
out this paper, we denote representatives of isomorphism
classes of simple objects in such categories of module
functors by X1, X, . ... Moreover, we will typically refer to
a given module functor as an object X in the corresponding
category, in which case the actual functor will be denoted
by ¥F and the module structure by “w. In other words, we
employ the shorthand notation X = (*§F,*w). Keeping this
convention in mind, the action of the matrices given in Eq.
(7) can also be depicted in terms of string diagrams as

X M X M
X M Y Ma,lj
Ny |/ Z Nzl N ik |, Mz,
My 5,0 J|
; N (®)

where the indices i, j k, ! label basis vectors in the hom-
spaces VMI, VMz’ VN1 y» and Vﬁfy, respectively. Hence-
forth, we refer to the entries of these complex matrices
as *o symbols. Note that we are performing a slight
abuse of notation so as to have string diagrams akin to
those associated with bimodule associators. The reason is
the following. We shall often consider D-module endo-
functors in categories D}, := Funp (M, M). But every
category D’ can be equipped with a monoidal structure
via the composition of module functors. In fact, since we
shall focus on cases where M is indecomposable, D,
even has the structure of a fusion category [3]. Moreover,
the category M is naturally endowed with the structure
of a left module category over D7,. Indeed, note that
every D-module functor in Funp (D, M) is of the form
(—<M,FM=~) with M any object in M, establishing
the equivalence M = Funp (D, M). But Funp (D, M)
has the structure of a left D’ -module category via
the composition D%, x Funpy (D, M) — Funp (D, M)
of D-module functors. It follows that M has the structure
of a (D* ,, D)-bimodule category. In this context, the mod-
ule functor structure “w ™~ of an object X in D% , coincides
with the bimodule associator *F¥ ~~ of M as an invertible
(D?,, D)-bimodule category.

Given three (right) module D-categories M, N, and
O, D-module functors in Funpy (N, O) and Funpy (M, N)
can be composed so as to yield module functors in

Funp (M, O). Given representatives X, and X, of iso-
morphism classes of simple objects in Funp (N, O) and
Funp (M, N), respectively, composition yields a new
functor F(*2F(—)) in Funp(M, ) with the obvious
module structure. Crucially, even though X; and X, are
simple, the composite of the corresponding module func-
tors is typically not a simple object in Funp(M, O).
Therefore, there exist a collection of complex matrices the
entries of which can be defined graphically following the
convention of Eq. (8) as

|
°© o

where the indices i,/ , k, [ label basis vectors in the hom-
spaces Vy'y, := Homrung (v.0) (MFC2F (), 55 (), VY,
V9 and VY, respectively. Henceforth, we refer to the
entries of these complex matrices as SF symbols. All the
symbols introduced so far fulfill consistency conditions
descending from the pentagon axioms satisfied by the
corresponding isomorphisms. Writing an analogous con-
sistency condition for the composition of module functors
in terms of these SF symbols would require the intro-
duction of yet another set of symbols referred to as °F
symbols, thereby defining these new symbols in terms of
SF symbols. With our notation, we would have

Xl Xg X3 M Xl X2 X3 M

\ N
;\ Xe,lj \| Xo

D) b

J
i PN
m

)

Ead
I
slagl

so that the °F symbols encode the associativity condi-
tion for the composition of module functors. But such a
consistency condition may not exist in general. In other
words, there may be an obstruction for the composition
of module functors to be associative up to an isomor-
phism [90]. That being said, such obstructions do not occur
within our construction due to the specific compositions
of module functors considered. In addition to this pen-
tagon axiom defining the associativity of the composition
of module functors, note that the SF symbols are involved
in a coherence relation involving ~w symbols [see Eq.
(19)].

In this section, we have defined seven sets of sym-
bols, namely, F-, °F-, ¥F-, *F-, “w-, 5F-, and °F symbols.
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Note that, in general, there are neither explicit formulas
nor direct ways to compute these various symbols. Rather,
they are obtained by solving the consistency conditions
that they are required to satisfy. This implies in particular
that these symbols are typically defined up to basis choices
for the various hom-spaces. The results presented in this
paper hold regardless of these choices and as such we will
implicitly choose them so as to simplify the values of the
symbols considered [92]. Besides, it is not necessary to
solve for all these symbols individually. Indeed, it is possi-
ble to deduce the *F-, "F-, ~w-, SF-, and °F symbols from
the knowledge of the - and F symbols for every possible
choice of indecomposable (right) module category over D.
We include these data for the example considered below,
where D = Rep(S3), as Supplemental Material [91].

B. Tensor networks

A key aspect of our construction is the use of ten-
sor networks [73], as a way to parametrize lattice models
as well as their symmetry and duality operators. As we
will emphasize, this language is not only very natural but
quickly becomes necessary as we consider nonelemen-
tary models and translating the tensor networks into more
explicit or familiar objects often turns out be a tedious
exercise. We hope that the new results presented in Sec.
IV will convince the most skeptical readers of the benefits
of this approach.

The types of tensor networks we consider build upon the
graphical calculus of string diagrams, which was briefly
employed above. First, the ¥ symbols associated with a
(right) D-module category M can be depicted as

-
b \{rp
Y . (<1FA11Y1YQ Ya,lj
M\ 4 (M. Mo Jst,lk
Y3
1
J (FMlYle Ya,lj M Y’* Mo
Ma IUJ ik x .
)/

(11)

where we should think of the first diagram as the pasting
of the string diagrams appearing on the left- and right-
hand sides of Eq. (8) into a tetrahedron. By convention,
F symbols for which the fusion rules are not everywhere
satisfied vanish. We can now construct tensors the nonva-
nishing entries of which are provided by these ¥ symbols.
We shall do so graphically. Let us first introduce a couple
of graphical conventions. Unlabeled purple strings denote
the following morphism:

— =3

MeZm

€ Endp (@D M),

MeZm

(12)

where the relevant module category will always be clear
from the context. In the same spirit, unlabeled gray patches
denote the following formal vectors:

M,

M MY Mo, d)

M _ Z M

i

Mo Z M,y

i

!

(13)

Y
| 4 vy (MY Mo, il

e i T S

Putting these graphical conventions together, we define the
following collection of tensors labeled by simple objects in
D and a choice of basis vector:

l
w}?( M}kayé(

X [M1Y1 M3,1) @ | M3Ys Moy, k)
® (M1Y3 My, j1,
(14)

the entries of which are provided by F symbols. As
we will recall below, these tensors play a crucial role
within our framework, as they can be exploited to gen-
erate algebras of (categorically) symmetric operators. For
this reason, we refer to them as symmetric tensors for the
remainder of this paper.

Let us now introduce another type of tensor that evalu-
ates to the module structure of functors between D-module
categories. Let us first provide a graphical representation
for the entries of the matrices specifying the module struc-
ture * of a D-module functor XF associated with an object

X in Funp (M, N):

)Tl

A —<—X— J 5—(

T(MT

X JWlY)M’z-,lj
No ) Ny, ik’

where we should think of the diagram as the pasting of the
string diagrams appearing on the left- and right-hand sides
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of Eq. (8). Adapting the conventions introduced above, we
define the following collection of tensors labeled by simple
objects in D and Funp (M, N):

JL JL

2—4—X—]

M} i,g,k,l
Riial A
X |MiX Ny, i) (M2 X Na, j

® |N1Y Ny, k) (MY Mo, 1| .
(16)

As mentioned above, in the case of module endofunctors
in D7 ,, we can think of the corresponding tensors as eval-
uating to the ™F symbols of M as a (D%, D)-bimodule
category. Contracting two such tensors the labeling objects
of which match is accomplished by concatenating them,
horizontally or vertically, identifying the objects labeling
the module strings, and tracing over the basis vectors along
which the contraction takes place. Given our diagrammatic
conventions, we have, e.g.,

JILJIL P gL
Rt i Taat T

Tensor networks of this kind are referred to as matrix
product operators (MPOs).

Finally, we require another family of tensors the non-
vanishing entries of which evaluate to the SF symbols
associated with a triple (M, N, Q) or right D-module
categories. Specifically, we define

T
i FpX1Xo M\ N:lj
. =(Fo )
O\ x, (M 3, b
+ 1
X3
k (3’FX1XQJVI)NIJ . (@) + M
Xs,ik L ’
.va& ’Pe\
SN
a7

and the corresponding tensor is constructed following
the same steps as for symmetric tensors. Tensors of this
kind will be referred to as fusion tensors, as they locally
implement the fusion of MPOs.

We have mentioned above that the various isomor-
phisms entering the definitions of module categories and

module functors must satisfy some “pentagon axioms”
ensuring the self-consistency of the constructions. In terms
of tensors defined in this section, these axioms translate
into “pulling-through conditions,” whereby MPOs built
out of tensors of the form given in Eq. (16) are pulled
through symmetric tensors of the form given in Eq. (14).
Concretely, the pentagon axiom fulfilled by the mod-
ule structure of a D-module functor X in Funp(M,N)
translates into

N3
X k\Vl
A el
I~ -
k\ /l m
WSXE e
; ~.. 7 i
M- + Mo ;] ——X— ]
s M (Mg
n n
(18)

which is true for any labeling of the various strings and
basis vectors. Note that as we pull the MPO encod-
ing the D-module functor X through the symmetric ten-
sor that evaluates to the F symbols of M, it trans-
forms into a new symmetric tensor that evaluates to
the F symbols of N. Making specific choices for the
D-module categories M and N yields the pulling-
through conditions associated with all the other pen-
tagon axioms mentioned so far. Specializing to the case
M =N, we find the pentagon axiom satisfied by the
bimodule associator ¥ and the (right) module associ-
ator F. Choosing M =D and N arbitrary yields the
pentagon axiom fulfilled by the module associator ¥
that involves the monoidal associator F. Finally, when
M = N = D, the pulling-through condition amounts to
the pentagon axiom satisfied by the monoidal associator
F. As we will review below, these various pulling-through
conditions encode the action of symmetry and duality
operators.

Another family of tensor-network relations will play
a crucial role in the following. These encode the com-
position rule of module functors. We mentioned earlier
that given two representatives X; and X, of isomorphism
classes of simple objects in categories Funp (M, ) and
Funp (W, O), respectively, these could be composed so
as to yield a D-module functor between M and O that
decomposes into simple objects of Funp (M, O). Graph-
ically, this translates into the composition of the corre-
sponding MPO tensors by means of the fusion tensors that
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evaluate to the SF symbols introduced previously:

)Tl

v X3 o N2,
| x b
i M (MQ_\‘I.
U J
M, | Mo
n
(19)

which is true for any labeling of the various strings and
basis vectors. Specializing to the case M = N, the com-
position of D-module functors provides the monoidal
structure of D’ so that the fusion tensor evaluates to
the "F" symbols of the left D’ ,-module category M. The
above diagrammatic relation then provides the fusion of
the corresponding MPOs symmetries.

C. Symmetric Hamiltonians and dualities

Let us now put together the ingredients presented ear-
lier into a recipe for constructing symmetric Hamiltonians
on infinite one-dimensional lattices and duality relations
between them [58]. First, we need to pick a microscopic
Hilbert space. Let D be a fusion category and M a (right)
indecomposable module category over it. We consider the
C-linear span

[Mz“}MlJJ\MJTL%q

(20)

over {M € Z,},{Y € Ip} and basis vectors {i} in the hom-
spaces defined following the convention of Eq. (13). Note
that this Hilbert space is typically not a tensor product of
local Hilbert spaces. We then define /ocal operators acting
on this microscopic Hilbert space via matrix multiplication
of the form [93]

{Y} ik Y,

4
b = S b (Y} 4. F) i—yi_._

21)

obtained by taking linear combinations of contractions of
two symmetric tensors as defined in Eq. (11). Any com-
binations of such local operators can then be organized
into a local Hamiltonian H* = 37, 3" /. Note that the
definition of the local operators fixes certain combina-
tions of objects and morphisms in D, thereby imposing
kinematical constraints on the genuine physical degrees

of freedom of the model, which are provided by object
and morphisms in M. This implies in particular that we
can often consider a subspace of the microscopic Hilbert
defined above when dealing with a specific Hamiltonian.
Crucially, any such Hamiltonian H™ remains invariant
under the action of symmetry operators. Indeed, it fol-
lows immediately from the pulling-through condition in
Eq. (18) that the MPO symmetry

Jk J+k J+L

T

(22)

labeled by a simple object X in D%, = Funp(M, M)
commutes with the Hamiltonian H*. We remark that this
symmetry condition relies solely on the local operators
being constructed out of symmetric tensors evaluating to
the F symbols of M and is oblivious to the specific def-
initions of these local operators, i.e., choices of objects
and morphisms in D as well as complex coefficients b,;.
Importantly, for any D-module category M that we con-
sider in this paper, the fusion category D7, is found to be
Morita equivalent to D (see Appendix A). The physical
implications of this mathematical result are discussed in
Sec. I1I.

If symmetry operators are labeled by objects in D%,
duality operators are labeled by objects in Funp (M, N)
with V' a D-module category distinct from M. These
duality operators have exactly the same form as the sym-
metry operators in Eq. (22) with the difference that the top
purple strings are now labeled by objects in A/ and the ten-
sor evaluates to *w symbols, i.e., entries of the matrices
specifying the module structure *w of the module functor
X corresponding to the simple object X in Funp (M, N).
Denoting such an intertwining MPO by ‘Ij\(/” A from the
pulling-through conditions in Eq. (18) the commutation
relation

T o HM =HY o T4 (23)
follows, where HV := 3,3 [bN and b are defined
exactly as in Eq. (21) but with respect to N It follows
immediately from our construction that the Hamiltonian
HV thus constructed remains invariant under the action of
symmetry operators labeled by objects in the Morita dual
D3, of D with respect to V.

The duality operator performs the transmutations of the
local operators defining the Hamiltonians H™ and HV.
However, the knowledge of this operator is not quite suf-
ficient to write down a set of isometric transformations
mapping models to one another. Obtaining such trans-
formations indeed requires an analysis of the topological
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sectors of the corresponding models. This is the main
teaching of this paper and the purpose of the following
sections.

D. Illustration

Before concluding this section, let us consider an illus-
trative example, namely, the transverse-field Ising model.
We encourage the reader to consult Ref. [58] for additional
examples. Let D be the fusion category Vecz, of Z,-
graded vector spaces. This fusion category has two simple
objects, which we denote by 1 and m. The fusion rules read
11l ~l>m@mand 1l ® m ~ m >~ m Q 1. Given any
Vecz,-module category M, we consider the Hamiltonian

HM _—JZ[bff—JgZ[bf; (24)
with local operators given by
1y [
[bf{l =1 —m——1 |+ | 1 —m—
OV L )
P ] Ly
i pny
T T i 1 @5)
and
v ] Ly
YO I et ) B S
OV )
5 L J o - 5
= =
T 1 T T 26)

By definition, only hom-spaces for which the correspond-
ing objects satisfy the fusion rules are nonvanishing, which
is the case of all the hom-spaces appearing above. Since
the outcome of the fusion of two objects is uniquely
determined, hom-spaces are necessarily one dimensional
and we have labeled the corresponding unique basis vec-
tors using 1. Let us now choose specific Vecz,-module
categories.

Let M = Vecz, be the regular module category. Recall
that in this case the module associator ¥ boils down to
the monoidal associator /' of Vecz,, which happens to be
trivial. This means that the F symbols equal 1 whenever
all the fusion rules are satisfied and 0 otherwise. Consider
the microscopic Hilbert space in Eq. (20). It follows from
the fusion rules that objects in Zp are fully determined
by a choice of objects in Z 4. This means that the phys-
ical degrees of freedom are labeled by objects in Z, and
located in the “middles” of the corresponding strings, so
that the effective microscopic Hilbert spaces are isomor-

phic to ®; C2 with [ |. The operator b\t acts on this
Hilbert space as |1/m) + |m/1) on the site i, where we
identify |1) and |m) with the +1 and —1 eigenvectors of
the Pauli $* operator, respectively. The operator [bi‘z/l acts
as the identity operator whenever the degrees of freedom
at sites i and i+ 1 agree and minus the identity opera-
tor otherwise. Putting everything together, we find that the
Hamiltonian in Eq. (24) boils down to

oo = YOS+ eSS, @)
i

which we recognize as the transverse-field Ising model.
This model has a (global) Z, symmetry generated by
I1,5:.

Tllle fusion category Vecz, admits another (indecom-
posable) module category over it, namely, the category
M = Vec of vector spaces. This category has a unique
object, which we denote by 1, and the module structure is
provided by 1 <1 >~ 1 >~ 1 am. As for the previous case,
the module associator is trivial. For this example, the phys-
ical degrees of freedom are identified with the unique basis
vectors of the hom-spaces Homu, (1 <Yi_i;,) =~ C, with
Yi_1,2 € {1, m}, and thus the effective Hilbert space is still
isomorphic to ); C*. It readily follows from the definition
of the local operators that the Hamiltonian in Eq. (24) now
boils down to

Vec _ - x -
HVee = JZ(SF%SH% +gSi+%), (28)
I

which we recognize as the Kramers-Wannier dual of the
transverse-field Ising model. This model also has a 7,
symmetry, which is now generated by [[; 57, | L

Within our framework, obtaining two models that
are dual to one another is guaranteed by the fact that
they only differ by a choice of Vecz,-module cate-
gory. This implies that altering the definitions of the
local operators [\ and by} would still yield two
dual models and the resulting models would always
be invariant under the action of operators labeled by
objects in the fusion categories (Veczz)(,eCZZ = Vecz, and

(Vecz,)Vec = Rep(Z,), respectively, which are Morita
equivalent [58].
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Let us now explicitly construct the duality operator
transmuting the Hamiltonians H'*°Z2 and He¢ into one
another. Applying the recipe presented above, this duality
operator can be written as an MPO labeled by the unique
simple object in Funyec, (Vecz,,Vec) = Vec such that
the individual tensors evaluate to the module structure of
the corresponding functor Vecz, — Vec, which happens
to be trivial. Graphically, it reads

{Yéb} .Yil%. .Yii%. .Yiig« |
j ' ' ' F (29)

where the dotted strings are labeled by the unique simple
object Vec that we have been notating via 1. This duality
operator should be interpreted as a map from any symmet-
ric operator associated with Vecz, to a symmetric operator
associated with Vec. Concretely, it follows from the fusion
rules in Vecyz, that this operator maps states |¥;) ® |Yi1) at
the bottom to states |Y; + Y, ;) associated with site i + 1/2
at the top; hence S7'S7, | SiZH/2 and S Sf_l/sz‘+l/2, as
expected.

III. TOPOLOGICAL SECTORS AND DUALITIES

Building upon the above constructions, in this section
we introduce the notion of the twisted boundary condition
and present a characterization of topological sectors. We
subsequently explain a method to compute the mapping of
topological sectors under a duality relation.

A. Boundary conditions and tube category

Given an input fusion category D, in Sec. II we have
reviewed a recipe to construct dual local operators asso-
ciated with choices of module categories over D. These
operators are invariant under the action of symmetry oper-
ators labeled by objects in fusion categories that are Morita
equivalent. Duality operators can then be constructed from
the data of module functors between module categories
[58]. However, this is not enough to fully establish a
duality relation between Hamiltonian models. Indeed, it
is further required to establish how the mappings of sym-
metric operators interact with the topological sectors of the
models.

Let us consider a (finite) spin chain of length L + 1 with
total Hilbert space H™ given by

Y L L (U]

i
Y, YL+% Y

w0

=
[N

over {M € Ty}, {Y € Ip} and basis vectors {i} in the
hom-spaces defined following the convention of Eq. (13).

Note that we have left the boundary condition unspecified.
Loosely speaking, choosing a boundary condition amounts
to picking a relation, or a map, between degrees of free-
dom at sites L+ 1 and 1 so as to close the chain. For
instance, periodic boundary conditions would be obtained
by enforcing My, = M,. Within our formalism, such a
map between degrees of freedom is provided by an end-
ofunctor of M in Fun(M, M). But the corresponding
(possibly twisted) boundary conditions should not break
the translation invariance of a Hamiltonian acting on this
Hilbert space. In other words, given a choice of boundary
condition, there should still be an isomorphism between
vector spaces related by a translation by one site. This
requires the action of the endofunctor to commute with
the module action of D on M up to a natural isomor-
phism, i.e., it must be equipped with a D-module structure.
Therefore, we consider boundary conditions classified by
D3 = Funp(M, M). This is also the fusion category
that describes the symmetry of the model and, as such,
these boundary conditions are referred to as symmetry-
twisted boundary conditions.

As mentioned in Sec. Il A, the category D, is equipped
with a monoidal structure provided by the composition of
‘D-module endofunctors. We have further commented that
M is naturally endowed with the structure of a left-module
category over D’ ; and, as such, we can employ the same
graphical calculus for objects in D’ as that for objects
in D. Specifically, we consider microscopic Hilbert spaces
HM of the form

a:[ ﬁgﬁétﬁ““)? k My J

L+

o

e ]

(30)

N\c:< -

over {M € Ty}, {Y € Ip} and basis vectors {i} in the
hom-spaces defined following the convention of Eq. (13)
and where {4 € IDRA} are representatives of isomorphism
classes of simple objects in D3}, encoding choices of
boundary conditions. A couple of important remarks fol-
low. First, the boundary conditions are promoted within
our approach to genuine degrees of freedom of the model,
which implies in particular that they can be acted upon.
Second, given an arbitrary boundary condition, the effec-
tive number of sites may not be L—as would be the case
for, e.g., periodic boundary conditions—but rather L + 1.
This may seem somewhat paradoxical but as we shall see,
this is a characteristic feature of non-Abelian boundary
conditions.

Given a choice of D-module category M, let us study
the decomposition of the Hilbert space ™ into superse-
lection sectors of the symmetry. In order to perform such a
decomposition, we consider tensor networks g%ﬁx’,kﬁ
that describe the action of the symmetry in the presence of
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twisted boundary conditions. These are of the form

wpla) s o JL

kX~ k/ —<—X—~~-

|
{YeI } Vi1
ndiemny Mo T M

€2))

where 4,4',X,X" € Ips,, while k and k' label basis
vectors in the hom-spaces HOij\A X', 4 ®X) and
Homp+ (X ® 4,X’), respectively. We distinguish two
types of tensors in this expression. On the one hand, we
have the same MPO tensors as in Eq. (22), which evaluate
to the *F symbols of M as a (D’ ,, D)-bimodule category.
On the other hand, we have two fusion tensors of the form
given in Eq. (11), which evaluate to the °F symbols of M
as left module category over D .

Given the geometry of such tensor networks, we will
henceforth refer to them as “tubes.” It follows from our
graphical calculus that these symmetry tubes can be inter-
preted as linear maps HM — HM. Let us now demon-
strate that the subspace of linear maps spanned by the
symmetry tubes is closed under multiplication. Graphi-
cally, multiplication of symmetry tubes is obtained by
stacking them on top of one another and contracting the
indices along which the stacking takes place, i.e.,

) j— -

kQ -<-X2 k}, Xz—

; |
Y, 1 Y, 1 ’

{YEID} 2 2
k1 <Xk ———— X —

Bllaantalie

where we are using the convention defined in Eq. (12).
Note that this contraction is accompanied with the iden-
tifications of objects in D as well as in D’ ,. At this point,
we can use the fusion of MPO tensors defined in Eq. (19)
together with the recoupling theory of fusion tensors to
express this stacking as a complex linear combination of
tubes. Recoupling fusion tensors amounts to changing the
contraction patterns of a given collection of tensors, which
is rendered possible due to the coherence relations satis-
fied by the ¥ symbols to which these tensors evaluate
[22]. Concretely, the fusion tensors satisfy graphical iden-
tities of the form of Eq. (2), where the F' symbols would
be those of D’ ;. These recoupling moves can be explicitly
found in Ref. [58]. Putting everything together, we obtain
the following multiplication rule:

TA,A/,Xl,X{,kl,kﬂ ) Tél/,A”,Xz,Xz',kz,kQ
MM MM

_ Z (FA”XQXI)X3JII€3 (FXZA/Xl )X kij3
X; Xy doja N X5 X ko)

X3.X5

k3 K,

{/}

(FX2X1A)X [K3 A" X3, X Je3 Ky (32)
X{ Xk TMIM ’

where it follows from the definition of the F symbols
that, in particular, the first sum is over simple objects X3
appearing in the decomposition of the monoidal product
X ®X.

We exploit the results obtained above to introduce the
tube category Tube(D?,,), the objects of which are objects
A4 and A" in D’ ; and the hom-spaces HomTube(Dj\A)(A,A’)

are vector spaces spanned by tubes Tf\’/ﬁ/j’;{**’* as defined
previously [94,95]. The composition rule is then pro-
vided by the multiplication rule in Eq. (32). It follows
that the Hilbert space H™ defines a representation in
Fun(Tube (D), Vec) and thus admits a decomposition

= P HM)y
%

into superselection sectors labeled by irreducible represen-
tations ) of Tube(D?,). Henceforth, we refer to these
superselection sectors as fopological sectors. Crucially,
there is a well-known equivalence between the category
of representations of the tube category and the Drinfel’d
center Z(D7,) [88,89,96-98] (see Appendix A 2), [99] so
that topological sectors of H* can be labeled by simple
objects Z in Z(D’,,). In fact, simple objects in Z(D’, ) are
often obtained by computing the minimal idempotent tubes
with respect to the multiplication defined in Eq. (32). Such
a simple object encodes a (possibly not simple) twisted
boundary condition as well as a symmetry charge that
decomposes the action of the tubes leaving the boundary
condition invariant.

By considering the space of all tubes and introducing
the convention that tubes with mismatching objects multi-
ply to zero, we can consider the fube algebra of all tubes.
In addition to being closed under multiplication, the tube
algebra is closed under Hermitian conjugation according
to

(33)

(Tﬁﬁx’ kk’)T _Z (FXXX)Jl 11 (FA’XX)]l 11

111 X' ki
l,lJ,j
X//
XAX\X "t XX\ AL
< e )
LAX X" j
X ‘ZM‘M (34)

This closure under Hermitian conjugation equips the tube
algebra with the structure of a *-algebra. In virtue of its
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finiteness, it follows that the tube algebra is block diagonal
in the topological sectors, so we can define a new basis

ZA 4]
exum =Hz ) dx @
X X' ke k!

Z,AA

AA X X' J K
XX, kk/ T

MM >

Z,4;,4" ZA’A

(exnnt )T = €piim > (35)

where Z labels a simple object of Z(D’,,), and 4; = (4, 1)
runs over all simple objects A4 of D7, decomposing Z as
an object of D7, as well as the corresponding degeneracy
labels i. The normalization factor is chosen to be #; :=
£(Z)/FPdim(D), where £(Z) corresponds to the number
of simple objects appearing in the decomposition of Z
and FPdim(D) is the Frobenius-Perron dimension of D
[3]. These new basis elements behave like matrix units
under the tube multiplication, i.e., they diagonalize the
multiplication:

ZAp A, 7' A} A 5,8 ZApAf
eM\M eM\M = ZZ/lkeM\M’

Zaidy _ g
Yo =1
7A;

(36)

where 1 denotes the identity operator on H*. This
means that for 4; = A4}, they define a complete set of idem-
potents that project onto states within a certain topological
sector Z with boundary condition 4 and degeneracy i.
Consequently, for A4; # A}, they define isometries, which,
within a topological sector Z, map between states with
boundary condition 4 and degeneracy i and states with
boundary condition 4" and degeneracy ;.

B. Symmetric operators

Given a D-module category M and a choice of bound-
ary condition 4 € ID}\A’ let us now construct local oper-
ators that are invariant under the action of symmetry
operators. We have already explained in Sec. II C how to
construct D’ .-symmetric operators away from the bound-
ary in terms of tensors evaluating to the ¥ symbols of
M. Local operators involving the boundary conditions are

L JM JJ

[bnM’AEan({Y}vjv k) JI >

T

where in addition to symmetric tensors evaluating to the F
symbols of M, we now require an MPO tensor evaluating
to the ™F symbols of M as a (D%, D)-bimodule cate-
gory. Note that such a definition allows for very general

(37)

types of boundary conditions. It immediately follows from
the pulling-through conditions translating the pentagon
axioms of the bimodule associator ¥ of M involving, on
the one hand, the right-module associator F of M and on
the other, that involving the left-module associator "F of
M as a module category over D7 ,, that these local opera-
tors can be pulled through the tubes defined previously [see
Eq. (31)]. By considering arbitrary linear combinations
of local operators given in Egs. (21) and (37), we con-
struct families of Hamiltonians associated with boundary
condition 4:

L
HMA =Y b+ > b
n i=2 n

We have already established that away from the boundary,
the local operators commute with the tubes. An arbi-
trary tube would, however, modify the boundary condition
provided by 4:

(38)

TA,A,XX,H&J [HM’A

_opmA AA" X X' J K

(39)
This means that only a subset of tubes of the form
‘I’j\;‘f‘ 'vi  would leave the boundary condition invari-
ant and, as such, commute with the Hamiltonian H*. In
practice, this means that, in general, the symmetry oper-
ators leaving H* invariant are not organized into D%,
as is the case in the infinite-chain scenario. The symmetry
charge sectors decomposing the action of these tubes com-
muting with H* then provide topological sectors that
are in one-to-one correspondence with simple objects of
Z(D},). Note that, in general, a given simple object of
Z(D3,,) is not necessarily associated with a simple bound-
ary condition and, conversely, the same topological sector
can be found in the decomposition of Hamiltonians with
boundary conditions provided by different simple objects
in D’ ;. As alluded to above, this is the statement that, as
an obJect inD* . a s1mple object Z in Z(D3 () decomposes
over simple objects in D’ . We shall provide concrete
examples of these statements in Sec. IV.

Let us refine the above statements using the matrix unit
basis considered above. A given Hamiltonian H*4 can be
decomposed into topological sectors as

,A:Z [HZ,A,

ZAjAi M, A Z,AiA;
= eyim H ENtiM >

(40)
I]_IM A

where the sum is over all topological sectors Z, such that
A appears in the decomposition of Z as an object of D},
and degeneracy labels i. The Hamiltonians [H7 Zl can be
thought of as the elementary building blocks of a Hamil-
tonian with a given boundary condition. Importantly, all
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these elementary Hamiltonians within a given topological
sector Z have the same spectrum, since they can be related
by the isometry

MA ZAANT g ZAA]
Hz; <M|M) [Hzl eMIM

(41)

As pointed out above, this implies that a given topological
sector Z can be found in Hamiltonians H** for different
choices of 4, as long as the boundary condition 4 appears
in the decomposition of Z into simple objects of D’ .

C. Intertwining tubes and dualities

Given an input fusion category D and a pair (M, N)
of (right) D-module categories, we have explained in Sec.
IT C how MPOs [see Eq. (22)] labeled by simple objects in
Funp (M, N) perform the transmutations of local oper-
ators [bM into [bIN , which only differ by the choice of
D- module categories. Let us now explain how these map-
pings of local operators interact with the topological
sectors characterized above.

In order to account for boundary conditions, the inter-

twining MPOs [see Eq. (22)] need to be promoted to

intertwining tubes Sﬁ,ﬁ’j)\(f’( ol

J@LJL

k <X~ k’ —q—X_m.

of the form

|
{NEIN}

(42)

where 4 € Ips , B € Ipy. and X and X " represent iso-
morphism classes of simple objects in Funp(M,N),
while k& and &’ label basis vectors in the hom-spaces
HOIIlFunD(M,N) (X/, B I>X) and HOl’nFunD(M’N) (X <1A,X/).
As before, we distinguish two types of tensors entering the
definition of these intertwining tubes. One the one hand,
we have MPO tensors evaluating to @ symbols. On the
other, we have two fusion tensors of the form given in Eq.
(17), which evaluates to the SF symbols associated with
the triples (M, M, N) and (M, N, N) of right D-module
categories, respectively. Note that in virtue of the compo-
sition of D-module functors, Funpy (M, N) is equipped
with a (D3, D} )-bimodule structure; hence the above
definition of the hom-spaces.

It follows from the various pulling-through conditions
that descend from the coherence axioms involving module
associators, bimodule associators, module functors, and
the composition of bimodule functors that these intertwin-
ing tubes can be pulled through local operators of the form
given in Eq. (37). This operation gives rise to commutation

relations of the form

A,BX X' kK
T X

N o [HM,A

— VB :Ijl\,/ﬁ,f/,)(’,k,la‘ @3)
Note, however, that there is no guarantee that there will
exist nonvanishing intertwining tubes associated with any
pair (4,B) of boundary conditions. Indeed, not every
boundary condition of a model associated with the D-
module category N\ is compatible with a given boundary
condition of a dual model associated with the D-module
category M. In order to obtain the mapping of topological
sectors associated with the duality provided by D-module
functors in Funp(M,N) further requires us to project
HMA and HV-8 onto specific symmetry charges. This is
done via the symmetry-tube idempotents with respect to
the multiplication rule in Eq. (32). Given an intertwining
tube associated with a pair (4,B) of boundary condi-
tions, if acting on both side with such charge projectors
yields a nontrivial tensor, then the corresponding topolog-
ical sectors are mapped onto one another by the duality.
Repeating this process for every combination of boundary
conditions and the corresponding symmetry charges pro-
vides the mapping of all the topological sectors realizing
an equivalence Z(D},) 5 Z(Dy /\/) Mathematically, the
existence of such an equivalence is guaranteed by the fact
that D7, and D}, are Morita equivalent (see Appendix A).

Similar to the symmetry tubes, one can define the mul-
tiplication of intertwining tubes via stacking and use the
recoupling theory of the fusion tensors given by the °F
symbols to express the result as a linear combination of
new intertwining tubes [100]. The computation parallels
that of the multiplication of symmetry tubes, yielding

TA JBLX1,X] Ky k] TB ,C. X, X, o ey
MIN N|O

I .
- X N e
X kaja 3 2:K2/2
X3,X3
k3 K,
i
o X X ANXT K3 A C.X3.X5 k3 K,
x (T )y Tilo . (44)

Additionally, the Hermitian conjugate of an intertwining
tube T can be expressed as a linear combination of
the opposite intertwining tubes C
ABX X' ki \T XXX \L11 (~Bx¥\1,11
(T ) =20 EE ) FF )
i7i/JJ
X//
XAXNX " (X xx"\B.A'j’
< (™ )™ o

x Thia (45)

Putting together symmetry tubes and intertwining tubes,
we can construct a finite *-algebra spanned by tubes
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{Trirs TN Tarims Taar} where incompatible tube
multiplications such as T - Tajn are defined to be
zero [83,101]. As before, this *-algebra is block diagonal in
the topological sectors and can be decomposed into matrix
units. The decomposition of the *-subalgebras spanned by
the symmetry tubes T v r¢ and T s n is unchanged, while
we also have

ZAZB o ZB, ABX X' kK
epmn | =tz ZdX XX o MI/\/ ’
X X' kK (46)
ZAZBiNT LB ZA;
(eMw ) =enmMm o

where Z and 4; are defined as before, Z denotes a simple
object of Z(D},) in the image of the topological sector
Z under the duality, and B; = (B,j) refers to the sim-
ple object B of D}, appearing in the decomposition into
simple objects of Z as an object of D}, with degener-
acy label i. The normalization factor is now chosen to be
#, 5= (Z(Z)Z(Z))I/Z/FPdim(D). These new matrix units
safisfy

ZA; A’ 74,7 B, 7' 4,7 B
eMIM eMIN =82z 8 kepn >
Z4;,7.8; 7 .By.B 55 Z4,2.B)
EMIN T NN T OZZ 9 kN s @7
ZAnZB;, 7 BiZ A P Z,A4;.4)
e/vtw Y =027 9 k€ pm>
ZB,ZA, AN WA 5 7.B,.B)
ENIM Tl MIN T OZZ Ok e -

Using these matrix units, one can construct explicit isome-
tries that relate a given Hamiltonian [H%’A in the topologi-

cal sector Z with degeneracy i to a dual Hamiltonian HY-B

in the dual topological sector Z with degeneracy j :

Z,A; ZB

Z,A; ZB
HY P = (enun ) e

N s (48)

thereby demonstrating that duality transformations do pre-
serve the spectrum.

D. Illustration

Let us illustrate the concepts presented in this section
with the case of the transverse-field Ising model. Start-
ing from the fusion category D = Vecz,, in Sec. 11D
we have constructed local symmetric operators associated
with a choice of module category M over Vecz,. We
have identified the model associated with M = Vecz, as
the transverse-field Ising model and that associated with
M = Vec as its Kramers-Wannier dual. Moreover, we
have provided an explicit lattice operator that transforms
symmetric operators of one model into symmetric oper-
ators of the other. Let us now examine the topological

sectors of these two models and their mappings under the
duality.

Let us first consider the case M = Vecz,. By construc-
tion, the boundary conditions are labeled by simple objects
in Fun\/eCZZ (Vecz,,Vecz,) = Vecz, and, by convention,
the site L + 2 is defined to be the site 1. In order to con-
struct the boundary operators as per Eq. (37), we require
the MPO tensors that evaluate to the F* symbols of Vecz,:

Wl e

—]l/m—>—1 =1= 1—]1/m—>—1 s
] [Ml ] [m@]\/ll
(49)

for any M,M, € IVeCZ2 such that the fusion rules are
everywhere satisfied. Let us focus for now on the Hamil-
tonian twisted by the identity object 1. By definition,
the Hamiltonian H"®°22'! acts on a Hilbert space con-
sisting of L 4+ 1 degrees of freedom. But the boundary
condition imposes the constraint M; ,; = M. Consider the
controlled-NOT (CNOT) gate cX;,1;: C?®C? - C* ®
C?, the target and controlled qubits of which are those at
sites L 4+ 1 and 1, respectively. Concretely, we have

X110 1) @ 1) = 1) @ [1)
1) ® |m) = |m) ® |m)
tm) @ |1) > |m) ® |m)

Im) @ |m) — |1) & |m).

)
) (50)

Applied to configurations where M, = M), this unitary
transformation amounts to fixing My, = 1, leaving an
effective total Hilbert space with L degrees of freedom. It
follows that the boundary terms associated with 1 are given
by

Vecz, ,1
X, by 2 eXprn = L)L S]
S (51)
Vecz, .1
X by 2 eXpgrg = S5 (S I (LD 1418

= sisi. (52)
leading to the Hamiltonian
N L
(:XLT+1 (HYe Tt X = T Z(Six +8SiSi)s
i=1

which is the original untwisted Hamiltonian on periodic
boundary conditions. This model enjoys a Z, symmetry

010338-15



LOOTENS, DELCAMP, and VERSTRAETE

PRX QUANTUM 5, 010338 (2024)

generated by ]_[IL: 1 8¢ and, as such, decomposes into two
charge sectors, which are even and odd with respect to
this symmetry operator, respectively. Let us denote the
corresponding topological sectors by ([1],0) and ([1], 1).

Considering now the Hamiltonian twisted by the sim-
ple object m in Vecyz,, the Hilbert space consists of L + 1
degrees of freedom subject to the constraint that m ®
My = M;. Applying the unitary of Eq. (50) to such con-
figurations amounts to fixing M| = m, again leaving an
effective total Hilbert space with L degrees of freedom.
Importantly, however, the 1 and m-twisted Hilbert spaces
are only effectively the same, but are in fact orthogonal.
The boundary terms associated with m are given by

Vecyz,,
CXLT—&-],I b, ‘ mCXL+1,1 = [1)(1]1415]
BN (53)
Vecz,,
CXLT+1,1 b, a2 cXr11 = S;(S%Im)(m|) 1415}

€

Rt (54)
leading to the Hamiltonian

cX,

Vecz., ,m
11 2" eXg

L
= —J(ST—gSiS) —J D) (ST +85,5).  (55)
i=2

referred to as the antiperiodic transverse-field Ising model.
The model retains the same Z,; symmetry as in the periodic
case and, as such, also decomposes into even- and odd-
charge sectors. We denote the corresponding topological
sectors by ([m],0) and ([m], 1).

Taking everything together, we find that the transverse-
field Ising model possesses four topological sectors,
namely, ([1],0), ([1], 1), ([m],0) and ([m], 1). These are
labeled by simple objects in Z(Vecz,) and are in one-to-
one correspondence with elementary anyonic excitations
of the (2+1)d toric code [102].

Let us now consider the case M = Vec. As per our
construction, boundary conditions for this dual model
are labeled by simple objects in Fun\/ecZz (Vec, Vec) =
Rep(Z,) (see Appendix A) and by convention the site 1,/2
is defined to be the site L + 1/2. The Hamiltonian bound-
ary terms defined as per Eq. (37) require MPO tensors
evaluating to "F symbols of Vec as a (Rep(Z,), Vecz,)-
bimodule category:

: 1 : 1
'i";ﬂ—.—t ‘‘‘‘ L =1=p(m) i—m——1,
...... : ‘|/ ‘|/
I I (56)

where V' = (V,p : Z, — End(}V)) is an irreducible repre-
sentation of Z,. Choosing V' to be the trivial representation
0 immediately yields

L
Vec,0 __ x x X
Vel — J;(Si_%SH; +eS ). 67)

i.e., the Kramers-Wannier dual of the transverse-field Ising
model with periodic boundarLy conditions. The Z, symme-
try is now generated by [[._, St P and the topological
sectors associated with the even- and odd-charge sectors
are denoted by ([1],0) and ([1], 1), respectively. Similarly,
choosing ¥ to be the sign representation 1 yields

L
Vec,l __ x X SQZN x x z
Yo = —J (5}, , S5 —25) J;(Si_%SH%-i-gSH%)
i=

and the corresponding topological sectors are denoted by
([m],0) and ([m], 1).

Let us now establish the mapping of topological sec-
tors under the duality associated with the unique simple
object in Funyec, (Vecz,,Vec) = Vec. We have already
presented in Sec. II D the MPO intertwiner that performs
the mapping of the local symmetric operators. In order to
account for boundary conditions. it needs to be promoted
to intertwining tubes of the form Eq. (42), which in turn
requires the introduction of the following tensors:

1 N
Y I
...... Vo SRR VAN
1| | 1 =1=p(m) 1 JIREREE il ,
1 m (58)
i| - i| Y- 1 =1= 1-- | Y 1

3 '
1/m) T (m/1 1/m) 1 (1/m
1 1 (59)

for any (V, p) € Zrep(z,)- Let us consider, e.g., the topo-
logical sector ([1],1), i.e., the odd sector of the peri-
odic transverse-field Ising model H"®°22:L. Selecting this
topological sector amounts to acting with the projec-

((ENA I 1,1,1,1,1,1 1,0,mm,1,1
tor eVeczz Vecz, — 1/2 (ZVecZ IVecz, ~ SVeczz [Vecz, ). It fol-
lows from Eq. (58) that when pulling this projector through
0,1,1,1,1 mo,11

the intertwining tube Sil/ it becomes e

ecz, |Vec® Vec|Vec

1/2(‘5%,’3(’3]?\’,]:;’1 + T\l,’elgr\}:’él’l). Performing analogous com-
putations for the other sectors confirms that under this
duality, the topological sectors ([1],1) and ([m],0) are
swapped, while the topological sectors ([1], 0) and ([m], 1)

remain unchanged.
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IV. EXAMPLES WITH Rep(S;) SYMMETRY

In this section, we present a series of examples that are
mathematically nontrivial and physically relevant, thereby
showcasing the potential and merits of our approach. The
examples that we consider all have symmetry operators
organized into fusion categories that are in the Morita class
of Rep(S;), namely, the category of (finite-dimensional)
representations of the symmetric group Ss.

A. Preamble

Before presenting the examples, let us mention a couple
of different ways in which the constructions presented in
this paper can be used in practice.

On the one hand, we can pick a module category M
over a given fusion category D, make a choice of boundary
condition and construct a lattice Hamiltonian by consider-
ing any linear combination of local operators as defined
in Eq. (21). The resulting Hamiltonian is guaranteed to be
symmetric with respect to operators organized into D% ,,
which is in the Morita class of D by definition. The same
linear combinations of local operators but for a different
choice of module category yields a dual-lattice Hamilto-
nian. The corresponding duality operator is then provided
by the intertwining tubes given in Eq. (42). This is the
recipe that we would typically follow when wishing to
define a new family of lattice Hamiltonians satisfying
certain symmetry conditions.

On the other hand, our method can be employed in order
to investigate new properties and duality relations of a
known lattice model. This first requires us to rewrite the
Hamiltonian of interest within our framework. To do so,
we must identify a suitable choice of input fusion cate-
gory D. Such an input fusion category can be chosen to
be any Morita dual of a subcategory of symmetry oper-
ators of the starting Hamiltonian. We then need to pick
the appropriate D-module category so that we can find
a linear combination of local operators [see Eq. (21)] so
as to recover the Hamiltonian. Concretely, let us consider,
e.g., a lattice Hamiltonian with a G symmetry so that the
category of symmetry operators is the category Vecg of G-
graded vector spaces. For any subgroup H of G, any Morita
dual of the fusion category Vecy is a valid choice of input
fusion category D, even though Vecy does not capture the
whole symmetry of the Hamiltonian. There will then be a
choice of module category over D such that there exists
a linear combination of local operators [see Eq. (21)] pro-
ducing the desired Hamiltonian. Module categories over
D then classify duals of this Hamiltonian with respect to
the (sub)symmetry encoded into Vecy. Indeed, any dual-
ity relation between two models is always with respect to
a given symmetry. This implies, in particular, that choos-
ing a small input fusion category reduces the number of
dual models that can be considered. The same reasoning

applies for any one-dimensional lattice model satisfying
some categorical symmetry.

This latter scenario is the one that we explore in this
section. Throughout, the input fusion category is chosen to
be the category D = Rep(S;) of finite-dimensional repre-
sentations of the symmetric group S;. For a specific choice
of Rep(S3)-module category, we show how to recover
the Heisenberg XXZ model within our framework. After
studying its topological sectors, we explore dual mod-
els associated with various choices of module categories
over Rep(S3) and construct the explicit lattice operators
performing the corresponding duality transformations.

B. Local operators

The input fusion category D of the models that we
consider is the category Rep(S;) of finite-dimensional
representations of the symmetric group S; = (r,s|r* =
1 = %, rsr = s%). Recall that this fusion category has three
simple objects provided by the irreducible representations
of the group. We denote these simple objects as 0, 1, and 2
and refer to them as the trivial, sign, and two-dimensional
irreducible representations, respectively. The fusion rules
read 0 ® Y~ ¥, with Y any simple object in Rep(S;),
1®1>~0,1®2~2,and2®2 >0 16 2 (for a brief
review of the element structure and representation theory
of S3, see Appendix B 4).

For every A C S; subgroup, the category Rep(4) is
a module category over Rep(S;) via the restriction
functor Res;93 : Rep(S;) — Rep(4) such that M <Y :=

MR Resj3(Y) for every M € Rep(4) and Y € Rep(S;).
Every Rep(S;3)-module category is of this form. Given a
Rep(S;)-module category M, we consider the Hamilto-
nian

HM =) bl =/ Y by (60)
i i
with local operators
4 4
2 2
[b{};‘, =|1—Y——1 |,
4 4
o
(61)

which are obtained by contracting symmetric tensors eval-
uating to F symbols of M. By construction, the Hamilto-
nian HM is left invariant by the action of MPOs [see Eq.
(22)] labeled by objects in D7, . In order to write down the
Hamiltonian and the symmetry operators more explicitly,
we now need to consider the different module categories
M separately.
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C. M = Vec

The first Rep(S;)-module category that we consider
is M = Vec, which amounts to choosing the trivial sub-
group of S;. We denote the unique simple object in Vec
by 1 >~ C such that 1 <Y >~ 1 for any Y € Zp. For this
example, the F symbols reduce to Clebsch-Gordan coef-
ficients of S3, i.e., basis vectors of hom-spaces of the form
Hompgep(s;) (Y1 ® Y2, ¥3):

i\l |1
(Fll )]l,ij - |:l]k

Y2|Y3]’ (62)

where i, j, and k label basis vectors in the vector spaces Y7,
Y,, and Y3 underlying the corresponding representations,
respectively. We review the definition of these Clebsch-
Gordan coefficients in Appendix B 4. Given the definition
of the local operators [see Eq. (61)], we only require the
following nonvanishing ¥’ symbols:

(FI2)H12 _ [2 QIZ]
; -

L= {112
= 1=[3] = i
e = [13%] =1 =-[133]
= —(F)s

= —(FH)

Let us consider the Hilbert space given in Eq. (30), with
no regard for the boundary conditions at the moment.
Since the module category Vec has a unique simple object
and the local operators [bi\;‘ constrain the D-strings to
be labeled by 2, the only physical degrees of freedom
are basis vectors in hom-spaces Hom (1 <2,1) ~ C? ~
C[|1),]2)]. Therefore, the effective microscopic Hilbert
space is isomorphic to K); C*. In other words, we are deal-
ing with a Hamiltonian acting on spin-1/2 particles located
at half-integer sites of the lattice. How does the local oper-
ator [bfz" act on this effective Hilbert space? Note first that
in virtue of the contraction of the symmetric tensors, the
local operator [bi\z/t is a sum of two terms. It then fol-
lows from the definition of the F symbols that it acts by
projecting out states for which the hom-space basis vec-
tors at sites i — 1/2 and i+ 1/2 agree and that it acts as
[1,2) — |2,1) or |2, 1) > |1,2) otherwise. Similarly, the
operator Ibi\f[ acts as the identity operator when the hom-
space basis vectors at sites i — 1/2 and i+ 1/2 agree and
minus the identity operator otherwise. Putting everything
together, we find that the Hamiltonian given in Eq. (60) in

the infinite-chain case boils down to

2 x x
[HVec — ? Z(Sl_%
i

WV 4 z z
i+1 t Si—%Si+%) +JLZSi—%Si+%
1

_ + — —_ ~+ Z 74
= JgZ(Si_%SH% +S7,S5) +JLZSF%SH1,
I |

2

where we have introduced the notation S* := 1/2(S* +
i$”). This is the spin-1/2 Heisenberg XXZ model.

What is the symmetry of the Hamiltonian HYe°? On the
one hand, there is a Z, symmetry generated by []; S, | /25
which acts in particular as S* > ST. On the other hand,
there is a Z3 symmetry generated by [];(¢ 2)iy12 with
w = *™/3, which acts in particular as S* > w*'S*. Cru-
cially, these symmetry operators do not commute so that
we have an overall Z, x 73 ~ S; symmetry, whereby 7,
acts on Z3 by complex conjugation. Let us confirm that this
is indeed what our general theory predicts. By construc-
tion, we know that the Hamiltonian HYe¢ is left invariant
by symmetry operators organized into the fusion category
(Rep(S53))yec- But as a fusion category, (Rep(S53))y, is
equivalent to Vecs, (see Appendix A), which means that
[HVe is left invariant by symmetry operators labeled by
group variables g € S3. Our construction further provides
an explicit expression for these symmetry operators in the
form of MPOs via

where p : S5 — End(2) is the representation matrix of 2. Tt
is immediate to confirm that the 7, symmetry is generated
by the MPO labeled by the order-2 group element r € S3,
whereas the Z3 symmetry is generated by the MPO labeled
by the order-3 group element s € S;.

Let us now examine the topological sectors. Consider a
spin chain of length L + 1. Generally speaking, boundary
conditions of the Hamiltonian He® are of the form

Spey= K‘IS%K, (64)
with S =5%,8,5 and K € End(C?) a unitary matrix.
In particular, we can choose K = p(g) with p : &3 —
End(2) for any g € S;. These boundary conditions, which
are labeled by simple objects in (Rep(S3))y,, = Vecs;,
do correspond to those predicted by our approach [103].
Recall that in general, given a simple object in Vecs,,
the corresponding boundary condition is provided by the
local operators defined in Eq. (37), where the MPO tensors
appearing in these local operators are rotated versions of
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the symmetry MPO tensor given in Eq. (63). It follows that
boundary conditions are provided by the local operators

Vi

by ™ = p(@)1 5, Sy + @),/ 57 +he,
Vng z z (65)
[b (g)SL+1 ga

where o : 83 — End(l) is the character of the sign rep-
resentation 1. We can now explicitly check that this
definition agrees with that proposed above. For instance,

for p(g) = p(r) = (V}), one has

by =5, ST 45,5,

=S’ p(r)S p(r)+S, p(r)S+p(r) (66)

by*>" = —57, 183 =5,,1p085p0), (67)

which readily agrees with Eq. (65).

Now that we have confirmed that the boundary con-
ditions prescribed by our tensor-network approach agree
with the usual definitions, let us analyze these boundary
conditions in more detail. Naturally, the boundary condi-
tion labeled by g = 1 corresponds to a periodic spin chain.
In this case, the Hamiltonian has the same &3 symme-
try as in the infinite-chain case and therefore the Hilbert
space decomposes into charge sectors labeled by the three
irreducible representations of S3. The boundary condition
labeled by g = r corresponds to an antiperiodic spin chain.
Interestingly, it is clear from Eq. (67) that the resulting
Hamiltonian is no longer S; symmetric but merely Z,
symmetric and, as such, decomposes into charge sectors
labeled by irreducible representations of Z,. This is true
for any (twisted) antiperiodic boundary condition labeled
by representatives of the conjugacy class [r] = {r, rs, rs*}.
Finally, the boundary condition labeled by g = s corre-
sponds to a twisted periodic spin chain. We can readily
check that the resulting Hamiltonian retains the Z3 sym-
metry of the periodic case, whereas the Z, symmetry is
lost. Therefore, the model decomposes into charge sec-
tors labeled by irreducible representations of Z;. Akin
to the previous scenario, these statements are valid for
any twisted periodic boundary condition labeled by rep-
resentatives of the conjugacy class [s] = {s,s*}. Overall,
we find eight topological sectors that are in one-to-one
correspondence with simple objects in Mod(D(S3)), i.e.,
simple modules over the Drinfel’d double of S;. This is
in agreement with the general results presented in Sec. 1.
Indeed, our approach predicts that topological sectors are
organized into the Drinfel’d center Z(Vecs,), which is
equivalent to Mod(D(S3)) as we review in Appendix B 2
in the case of an arbitrary finite group G.

D. M = Rep(Z,)

The second Rep(S;)-module category that we consider
is M = Rep(Z,), the simple objects of which are denoted
by 0,, and 1, . As mentioned in Sec. IVB, the mod-
ule action is given by M <Y =M ® Resz (Y), for every
M € Rep(Z,) and Y € Rep(S3), with the restriction func-
tor fully specified by its action on the simple objects of
Rep(S;), namely, Res3?(0) = 0, , Resy’ (1) = 1, , and
Resz3 (2) >~ 0, ® 1,,. The nonvanishing ¥’ symbols that
are relevant for our construction are given by

07,22\2.11 17,22, 211 17,22\ 2.11
(QFI2 )1 11=(<]F02 )1 11=(<1F12 )0 11
~Zy 1z, =Z) 1z, ~Zy 2z,
02,22.211 1

2 2z,

= (4 0z, )922,11 = %,
1 2,11 07,22, 11 07,22\ 2.11
(FOZ )QZ n= (QFLZ )522,11 = (QFQZ2 )122,11
1,22

SNt 2,11 1
= (FIZ2 )122,11 = _ﬁ’

and

(: Mlg);,ll

i = 1= (!

M1®lzz,11 - M, M1®lzz,11’

for any My, M, € Tp4.

As for the previous choice of module category, let us
begin by writing down the Hamiltonian in the infinite-
spin-chain case. The parametrization of the microscopic
Hilbert space significantly differs from that of the previ-
ous scenario. The local operators b%! always constrain the
D-strings to be labeled by 2. Moreover it follows from the
definition of the module action that hom-spaces in M are
all one dimensional. The only fluctuating physical degrees
of freedom thus correspond to the M-strings. We thus
find an effective microscopic Hilbert space that is still iso-
morphic to ), C?, where the spin-1/2 particles are now
located at integer sites of the lattice. How does the local
operator [b act on this effective Hilbert space? Identify-
ing [0, ) and 1, ) with the 4+1 and —1 eigenvectors of the
Pauli SZ operator respectively, it follows from the defini-
tions of the ¥ symbols that [bi\; acts as a projector onto the
state |+) at site i if the degrees of freedom at sites i — 1 and
i + 1 agree and as minus this projector otherwise. The local
[bi‘l" simply acts as the Pauli $* operator at site i. Putting
everything together, we find that the Hamiltonian given in
Eq. (60) in the infinite-chain case boils down to

Jy
HReP(Z2) = ) Z(Sz 1 LisSy i1 T Siz—lSixSiz+l) _JLZSiX'
i

What is the symmetry of this Hamiltonian? Unlike the
Hamiltonian HV®°, it is very difficult to identify the sym-
metry without relying on the fact that we have obtained
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this Hamiltonian using tensor networks satisfying certain
pulling-through conditions. Specifically, we know by con-
struction that the Hamiltonian HR®P(Z2) is left invariant
by symmetry operators organized into the fusion cate-
gory (Rep(&))ﬁep(zz), which happens to be equivalent to
Rep(S;). Given the representative X of an isomorphism
class of simple objects in Rep(S;), the corresponding
symmetry operator is provided by an MPO generated
by tensors that evaluate to ™F symbols of Rep(Z,) as
a (Rep(S;3), Rep(Ss))-bimodule category. Naturally, the
symmetry MPO associated with the trivial representation
0 acts trivially, whereas the symmetry MPO labeled by 1
can readily be checked to act as []; S, which does com-
mute the Hamiltonian HR®P?2)  What about the symmetry
MPO labeled by 2? Let us try to write it down as explicitly
as possible. The nonvanishing *¥ symbols relevant to this
operator are

(>< 21222)922,11 _ (I><1 207,2
0z, /0z,.11 1z,

0 3

)922,11 = >

(Mpzozzg)lzz,ll _ (|><1 @zzg)gzz,” _
0z, /0z,,11 0z, /lz,,11 >

- 2022;)122,11 _ (MFAZZ;)lzZ,n _

Fy 17,11 = U %o 17,11 = "5
7 v4) 43 743 2
= 2122;)922,11 _ (= Azzg)lzz,ll _ V3

lzz lzzall lzz sz,” 2’
- @Zzz)gzz,n e 2122;)%,11 _ 1
Oz, /0z,11 1z, 1zl 2’
ar207,2, 17,,11 b 217,2,07,.11 1
(Fo )1 112( 1 )0 1= 5>
27y izy “zy 3Zy: 2
e 2lzy 2\ 17,010 207,207 011
( 05 )QZ a1 = ( le );Z A1 = 5
2 2 2 2 2
(N Azzz)gzz,n . (N 2022;);22,11 1
0z 17,11 — 1z 07,11 =™ 5>
2 2 2 2 2

and

(><| Ezzl)lzz,ll _ (Mﬁzlzzl)gzz,ll 1
Oz, /1z,.11 1z, /0z,.11 >
(l><1 @zzl)gzz,ll _ (><1 2lzzl)lzz,” — 1

lzz lzz,ll sz 922711 :

We note immediately that the first set of ™F symbols satisfy
a symmetry condition whereby the entries only depend on
the number of times the representation 1,  occurs in the
symbol. This symmetry condition can be exploited in order
to rewrite the symmetry MPO associated with the above

symbols as an MPO of the form

| (68)

with building blocks

s}
o
Il

m s,
(69)

This MPO should be interpreted as an operator acting on
the integer sites of the effective Hilbert space. Let us now
use this alternative form of the symmetry MPO labeled
by 2 to explicitly check its commutation relation with
HReP(Z2)  The building block defined above verifies the
following symmetry conditions:

where O := 1/2(+/35 — §7). Let us briefly derive the last
equality. Since (1 +5%)[0/1) = /2|+) = +/2H|0) with
H the Hadamard matrix, and

|0)
[H]
a TG
2 _\/g 1 ab
1
|0) — —(_ T Qz

it is implied by $71/2(—+/3S8* — §)0 = 1/2(—+/38" —
S§*). It then follows from the above three symmetry con-
ditions that the MPO commutes with 7 | (1 + §7)iS;, ;,

for any i; thus it commutes with HR®P(Z2) thereby con-
firming that the MPO labeled by 2 is indeed a sym-
metry operator. Putting everything together, this con-
firms the Rep(S;) symmetry of HR®P(Z2) The exercise
that we have just carried out exemplifies how nontriv-
ial it may be to explicitly confirm certain properties
of a given Hamiltonian, although these properties are
immediate once the model has been recast within our
framework.

Let us now examine the topological sectors. Consider
a spin chain of length L + 1. We know from our gen-
eral construction that topological sectors are in one-to-
one correspondence with simple objects of Z(Rep(S;)),
which is equivalent to Z(Vecs,) considered in the previ-
ous scenario in virtue of the Morita equivalence between
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Rep(Ss3) and Vecs, (see Appendix A). Therefore, we must
find eight topological sectors corresponding to the simple
objects Mod(D(S3)) as for M = Vec. The Hamiltonian
HReP(Z2) admits three types of boundary conditions labeled
by simple objects in Rep(S3). Naturally, choosing 0 iden-
tifies the degrees of freedom at sites L 4+ 1 and 1 and thus
corresponds to a periodic chain, in which case the Hamil-
tonian has the same Rep(S3) symmetry as in the infinite
case. We can then check that the Hilbert space decom-
poses into charge sectors indexed by conjugacy classes of
the group, providing the simple objects labeled by ([1], 0),
([r],QZZ), and ([s],QZ3) of Z(Rep(S83)) in the notation of
Appendix B 1. More generally, given a boundary condition
labeled by a simple object 4 in Rep(S3), the correspond-
ing Hilbert space decomposes in charge sectors indexed
by the simple objects of Z(Rep(S3)), which, when treated
as (typically not simple) objects in Rep(S;), contain 4
as subrepresentation (see Appendix B4). We can obtain
the explicit boundary conditions associated with the other
simple objects in Rep(S3) applying our general construc-
tion. Recall that a boundary condition is provided by
the local operators defined in Eq. (37), where the MPO
tensors appearing in these local operators are rotated ver-
sions of the symmetry MPOs tensor evaluating to the
>F symbols defined previously. Concretely, the boundary
condition labeled by 1 identifies the degree of freedom
at site L + 1 and the image of that at site 1 under the
Pauli $* operator, so we still have an effective Hilbert
space with L degrees of freedom and the local operator
reads

1
[bzep(zz),l — E(Sz]llsg — SESTSE), (71)

Rep(Z2).l _
Pt = g7, (72)

The corresponding charge sectors are then given by
(11, D), ([r],122), and ([S]=QZ3)~ Finally, our construction
stipulates that the boundary conditions labeled by 2 is
provided by

1
BYPEE = (=878, 5785 + V3SiS]1 1S3

V38585, STSE + S5SE, 1S5, (73)

bYPEE = —s7 8] (74)
and the corresponding charge sectors are labeled by
([11,2), (71, 0,), (7). 15,), ([s], 1,), and (5], 13,). Note
the doubling of physical degrees of freedom taking place at
the boundary in contrast to the other cases, i.e., this model
is effectively defined on a chain of L + 1 spins as opposed
to L. This is an explicit example of a non-Abelian boundary

condition. In Sec. IV G, we shall provide the lattice oper-
ator performing the duality relation between HReP(Z2) and
HVec, as well as the mapping of all the topological sectors
under this duality relation.

E. M = Rep(Z3)

We pursue the exploration of this Morita class of mod-
els with M = Rep(Z3), the simple objects of which
are denoted by 0., 1, , and l}}. As earlier, the mod-

ule action is given by M <Y =M ® Resz (), for every
M € Rep(Z3) and Y € Rep(S;), with the restriction fully
specified by its action on the simple objects of Rep(S;),

namely, Res‘% 0) =04, Res‘% (1) =~ 04, and Res% Q) ~

1, & 15 ,- The nonvanishing ' symbols relevant for our
construction are

(<,F923Q);,11 _ (<,F923Q);,11 1
123 923,11 - l%S 923711 -
(QFQZB)A);]] . (q QZ3A);,11 .
1zy Jogpt — \T15 Jogn T
alzz12201 aAzz12201 1
( 0z, )123,11 = —( 1%, )123,11 -
a-1z321\2,11 a1z321\2,11
(Fo )1 11:_( 1% )1 n=1
*Z3 173> —Z3 223>
RN etz 12i201
(FO )1* 11__( 1 )1* n =1L
=z iz ~zy 7 1zy:
izl 21 izl 21
(FO )1* 11:(F1 )1* n=-L
=Z3 iz ~z3 1zy:

and
¥122\2.11

(QFYz )y3,11 =1,
where Y1, Y2, Y3 € Rep(S3) are all required to be distinct
from one another, i.e., each irreducible representation of
S; can only appear once in {Y7, 15, Y3}.

As usual, we begin by writing down the Hamiltonian
in the infinite-chain case. The microscopic Hilbert space
underlying this model differs from that of the previous
scenarios. First, the local operators still constrain the D-
strings to be labeled by 2 and the hom-spaces in M are
all one dimensional. The only fluctuating physical degrees
of freedom thus correspond to the M-strings. Since the
category M counts three isomorphism classes of simple
objects, we are now dealing with a system of spin-1 par-
ticles, in sharp contrast to the previous cases. Moreover,
given an object M in Rep(Z3), it follows from the fusion
rules in Rep(Z3) that M does not appear in the decompo-
sition of M <2 ~ M ® (1, ® 17,). As such, strands i and
i + 1 cannot be labeled by the same object M—this is con-
firmed by the definition of the ¥’ symbols above. We thus
find an effective microscopic Hilbert space of spin-1 par-
ticles located at integer sites of the lattice, which is not a
tensor product of local Hilbert spaces given the kinemati-
cal constraint that we have just described. We denote this
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microscopic Hilbert space by HReP(3), Within this micro-
scopic Hilbert space, it follows from the definition of the
“F symbols that [bf‘z/l modifies the label of the strand i to
whichever other label—if any—is allowed by the kine-
matical constraint and acts as the zero operator if this is
not possible. Similarly, [bi‘l" acts on the strands i — 1, i and
i + 1 as the identity operator whenever the labels of the
strands i — 1 and i+ 1 are identical and minus the iden-
tity operator otherwise. Putting everything together, the
Hamiltonian is given by

J
Rep(Z3) _ x o 1
HRep(Zs _J;Z(«% HX))_?Z
x (SIS =I5 +he),
(75)

with
0 1 0 1 0 O
=10 0 1), Z“=|0 o 0], (76)
1 00 0 0 o?

so that S*.7* = w.9*.%*. Note that given certain config-
urations of spin-1 variables, acting with .7 + ()", may
bring the corresponding state outside of 77®P(2)_in which
case it is projected out by definition of the ¥ symbols.
Our construction predicts that the Hamiltonian HReP(Z3)
is left invariant by operators organized into the fusion
category (Rep(S3))pepzy) = VeCs;, ie., [HReP(Z3) hag an
S; symmetry. This symmetry works as follows. First,
note that Rep(Z;) and Vecz, are equivalent as fusion
categories. Second, identifying the simple objects C,
in Vecz, with the corresponding left cosets M = g7,
the left Vecs,-module structure of Vecz, is given by
Co> M := (gr(M))Z, for any g € Sz and M € S3/75,
where r(M) denotes the representative of M. There-
fore, the symmetry operator labeled by g € S5 simply
acts on the local Hilbert space C? associated with every
spin-1 particle by permutation of the coordinates. The
fact that HR®P(Z3) commutes with these symmetry oper-
ators finally follows from #%.%% = w./*.*, € (" +
(N = (S + (IHNE, and €7 = (S7)'€, where

€ = (77)

S O =
—_ o O
S = O

This can be readily confirmed using the symmetry MPOs
the building blocks of which evaluate to "F symbols of
Rep(Z3) as a (Vecs,, Rep(S3))-bimodule category.

The boundary conditions are labeled by simple objects
in Vecs, and can be implemented using our general
recipe. The analysis of the topological sectors then par-
allels that of the model HVe°; i.e., conjugacy classes of

&3 define equivalence classes of boundary conditions and
the corresponding charge sectors are labeled by irreducible
representations of the centralizer of the conjugacy class.
The topological sectors are found to correspond to simple
objects of Z(Vecs,), as expected.

F. M = Rep(S;)

The remaining Rep(S3)-module category is Rep(S3)
itself. This model is both the simplest model to
define—since all the data that we need are provided by
the monoidal structure of Rep(S;)—and the most difficult
model to analyze explicitly. Indeed, contrary to the previ-
ous scenarios, we do not know how to rewrite the resulting
Hamiltonian in terms of spin operators, so we can hardly
make the local operators and the symmetry operators as
explicit. On the bright side, this illustrates the need for a
systematic category theoretical approach in general.

By definition, the F symbols of Rep(S;) as a Rep(S;)-
module category coinciding with the F symbols of
Rep(Ss). The latter are typically referred to as 6 symbols
and are obtained by contracting Clebsch-Gordan coeffi-
cients. It has been shown in Ref. [58] that in the case
where we choose module categories over themselves, the
lattice models constructed following our approach boil
down to so-called anyonic chains [30-35]. In particular,
the Rep(S;) anyonic chain associated with our choice of
local operator [see Eq. (61)] has been studied in Refs.
[36,37]. As such, we shall not review this model explic-
itly here and we encourage the reader to consult the
above references for detail. Let us merely stress the fact
that since FUnRep(s;) (Rep(S3), Rep(S3)) = Rep(Ss), the
model is left invariant by symmetry operators encoded into
Rep(S;) as for HReP(Z2),

G. Duality Rep(Z,) — Vec

By definition, the Hamiltonians [HVe¢, HReP(Z2)  [{Rep(Z3)
and HReP(S3) constructed above are all dual to one another.
Duality relies upon the fact that they only differ by a
choice of module category over Rep(Ss). Crucially, the
symmetry operators of these various models are encoded
into categories that are Morita equivalent, although they
are not necessarily equivalent as fusion categories. Morita
equivalence ensures that the center of the categories of
symmetry operators are equivalent as braided fusion cate-
gories, which is crucial to being able to map the topological
sectors of one model onto those of another. We have
explained in Sec. III C how to explicitly perform such a
mapping via intertwining tubes. In this section, we illus-
trate our construction with the duality between the models
[HVec and [HRep(Zz).

Let us first compute the mapping of local operators.
Note that this mapping immediately provides the duality
relation in the infinite-chain case. Inspecting the local oper-
ators, we note that HYe¢ can be obtained from H%2 via the
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mapping
Si> =8 8,
i—5 ity
e (78)
SiSi = SI’;%
Indeed, due to S = iS*S?, we have, e.g.,
R (Z ) Z Z 4 X QZ
by " = S LS + ST SESE
o o WV v _ mVec
> Sii%SiJr% +Si_%Si+% =Db,". (79)

Let us now prove that this mapping is provided by a
Rep(S;)-module functor in Fungeps;) (Rep(Z,), Vec), as
predicted by the general construction. First, we can show
that Funpep(s;) (Rep(Z,), Vec) = Rep(Z3), so that we
distinguish three duality maps between HYe¢ and HReP(Z2)
labeled by simple objects in Rep(Z3). These duality maps
cannot be distinguished locally in the sense that they
all perform the same transformations of local operators.
Locally then, without loss of generality, we can focus on
the duality operator labeled by the simple object 0, in
Rep(Z3). Globally, however, they may perform different
mappings of the states within topological sectors and one
needs to consider all the duality operators.

Constructing the MPO intertwiners that perform the
transformation of the local operators only requires
one type of tensors, namely, those that evaluate
to the “Zw symbols of the Rep(S;)-module func-
tor in Funpep(s,)(Rep(Z,), Vec) associated with 05, €
Rep(Z3). However, directly computing these tensors may
prove challenging. Conveniently, these can be obtained via
the following composition of module functors:

Fungep(s;) (Rep(S3), Vec) x Fungepcs,) (Rep(Z»),
x Rep(S3)) — Fungeps,) (Rep(Z,),Vec).  (80)

On the one hand, the MPO intertwiner labeled by the
unique object in FUnRgep(s,) (Rep(S3), Vec) = Vec evalu-
ates to Clebsch-Gordan coefficients of Rep(S;), i.e.,

. lllll‘ _ )
R

On the other, simple objects X in Fungep(s,) (Rep(Z,),
Rep(S3)) = Rep(Z,)°P label MPO intertwiners the build-
ing blocks of which read

e

1] —X——1 — (QFXY12)Y3711

My )10

|

where F here refers to the Rep(S;)-module associa-
tor of Rep(Z,). We have provided the relevant entries
for these tensors in Sec. IV D. Importantly, compos-
ing module functors labeled by simple objects in the
relevant categories does not yield simple objects in
Fungep(s;) (Rep(Z;), Vec). This means that after con-
tracting the MPO intertwiners presented above, we must
decompose the resulting MPO into simple blocks. Doing
so, we are able to find the MPO intertwiner labeled by sz
the building block of which is of the form

Y, 3(A}M12) Mz,11
1,14

M, % [M2
! (83)

for any My, M, € Zrep(z,) and basis vector |i = 1,2) in
Homyec(C <2, C) ~ C?. The nonvanishing 9754 symbols
that are relevant to our computations are found to be

(i = ettt - L
e R e 1
e R N A T

(oo = Coa g = .

Let us check that this MPO intertwiner indeed performs the
mappings given in Eq. (78). Given the specific form of Eq.
(83) and the values of the 925 49 symbols, one can rewrite
the resulting MPO intertwiner in a more traditional form

as
(84)
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with building blocks

5(a, 4)3(b.j) = aTb

(85)

It is now immediate that the MPO tensor verifies the
following symmetry conditions:

OEF =- 30— = O = :

which in turn provide the mappings given in Eq. (78), as
expected.

We have checked how the MPO intertwiners labeled
by simple objects in Fungep(s,)(Rep(Z,), Vec) transform
the local symmetric operators entering the definition of
HReP(Z2) into those entering the definition of HeC. In order
to fully establish the duality relations between these mod-
els, we must further explain how topological sectors are
mapped under these transformations. We know from the
general construction that topological sectors of He¢ and
[HReP(Z2) are associated with isomorphism classes of sim-
ple objects in Z(Vecs,) and Z(Rep(Ss3)), respectively.
Naturally, since Vecs, and Rep(S;) are Morita equivalent,
we have Z(Vecs,) = Z(Rep(S3)), which in turns guaran-
tees the correspondence of topological sectors. However, it
does not mean that under duality the topological sectors
are mapped identically. It is indeed possible for permu-
tations of sectors to take place, as already illustrated for
the Kramers-Wannier duality. Let us investigate such a
scenario in some detail.

Let us consider the boundary condition of HReP(Z2)
labeled by the simple object 2 in Rep(S;). Concretely,
we have found that the local operators associated with this
boundary condition are given by Eq. (73). We have further
explained in Sec. IV D that, given this boundary condition,
the model decomposes into five charge sectors. In order
to consider a specific topological sector of the model, it
is thus required to project the model onto the correspond-
ing charge sector. This can be performed via the projectors
described in Appendix B 3, which are constructed from the
half-braiding tensors associated with the simple objects in
Z(Rep(S3)) labeling the topological sectors of interest.
Concretely, let us consider the topological sector labeled
by the simple object ([1],2). As an object of Z(Rep(S3)),
([1],2) is also an object of Rep(S;), namely, 2 itself. We
wish to compute what this topological operator is mapped
to under the duality transformation labeled by 923.

Carrying out this computation amounts to deriving the
intertwining tubes for all boundary conditions defined

in Sec. IIIC, applying the projectors associated with
all topological sectors on both sides of the intertwin-
ing tube, and identifying which topological sectors have
nonvanishing overlap with ([1],2). The MPO intertwin-
ers provided by Eq. (83) are only one component of the
intertwining tubes given in Eq. (42). Indeed, we further
require three-valent tensors that evaluate to SF symbols
capturing the composition Funpep(s;) (Vec, Rep(Z,)) x
Funrep(s;) (Rep(Z,), Vec) — Fungepcs;) (Rep(Z2), Rep
(Z3)) of module functors:

1
i + B
""" B T _ (FOBXM 1,11
1+x-1-xt1 = (SFy )
M
y (86)
""""""""""" M;,11
“xl ] <X-1 — (SpXAM M2,
Lo = (R

I\
M) A [M2
1

for any X, X' € TRrepz;), 4 € LRep(s;y)» B € IVec$3, and
M, M, M, € Irep(z,)- Since we are interested in the fate of
the topological sector ([1],2) of HRP@2) ynder the dual-
ity operator labeled by 0,., we fix 4 =2 and X =0,
which in turn constrains X tobe 1, & 15 ,- We then apply
the projector associated with the simple object ([1],2) of
Z(Rep(S53)) so as to select the corresponding topological
sector amongst all possible charge sectors compatible with
the boundary condition labeled by 2. The question is, then,
for which B € I\/ecs3 and charge sectors of HYe¢ associ-
ated with the boundary condition labeled by B does acting
with the corresponding projector on the intertwining tube
provide a nonvanishing operator? We find that B must be
equal to C; @ C,2, where we should think of C as the vec-
tor space underlying 0,_, yielding the topological sector
associated with the simple object ([s], 923) of Z(Vecs,).
The SF symbols entering the definition of the intertwining
tube that are relevant to this mapping are given by

(SFQZ3®ZZ)OZZ’” (&ngsmzz)lzz’“

1 07,11 = 1 07,11 =5
EFQ@EZZ 0z, 11 . 3FQZ3EZZ 1z11 1
v g =T e =
5.923202,\ 12,11 e 07,215, 07,11 —1
Iy Iz = 7t Fy Izt =
and
(SFIQZ_;)QZz)Jl,ll _ (3: IQZ3LZZ)1,11 -1
1 0z, 11 — V1L Oz,11 = 7
05,0 50, 1
5 SVz3Y7,\ 1,11 (& 023773\ 1,11 o
(Fﬂ )lZB,ll —(F]l )123,11_1’
2 2
(SFS 923922)1,11 . (SFS QZ?,lZz)Jl,ll =1
1 1= Ve 1501~

010338-24



DUALITIES IN ONE-DIMENSIONAL QUANTUM LATTICE MODELS

PRX QUANTUM 5, 010338 (2024)

In short, this shows that under the duality operator labeled
by the Rep(S3)-module functor in Fungep(s,)(Rep(Z,),
Vec) = Rep(Z;3) identified with the simple object
0,,, the topological sector ([1],2) of HRep(Z2) g
mapped to the topological sector ([s],0,,) of [HVee,
Conversely, we can show that the topological sec-
tor ([s],QZ3) is mapped to ([1],2). We can simi-
larly show that the remaining topological sectors are
mapped identically. This permutation of topological sec-
tor corresponds to the nontrivial braided autoequiva-
lence of Z(Rep(S3)) in BrEq(Z(Rep(S;))) ~ Z, (see
Appendix A).

V. DISCUSSION AND CONCLUSIONS

We conclude with a discussion of concrete applications
of some of the results presented in this paper and comments
on possible generalizations and extensions.

A. Application: Symmetric tensor networks

Our study of the interplay between duality transfor-
mations and closed boundary conditions can be directly
applied to the numerical diagonalization of symmetric
Hamiltonians within the variational class of symmetry-
preserving tensor networks. One standard approach for this
problem involves decomposing the Hamiltonian into sym-
metric tensors and working in a fusion basis for the Hilbert
space [104—106]. In this basis, the matrix elements of the
Hamiltonian can be obtained by invoking the recoupling
theory of the symmetric tensors associated with the fusion
category D and the setting effectively becomes equiva-
lent to that of the one-dimensional models covered in
this paper. For closed boundary conditions, the sectors are
organized into Z(D) and one requires the half-braiding
tensors as discussed in, e.g., Appendix B to thread the
corresponding flux through the closed loop [13]. For mod-
ular tensor categories, there is an equivalence Z(D) =
DX D, so that half braidings can be obtained from the
braiding of D; this case has been studied in detail in Refs.
[107—109].

In the setup described above, the original Hamiltonian
is given in terms of symmetric tensors associated with a
choice of right D-module category M. However, when
working in the usual fusion basis, we are effectively replac-
ing the Hamiltonian by a dual Hamiltonian obtained by
choosing M = D. This means that when performing sym-
metric tensor-network computations, one is generically
simulating a dual model that has the same spectrum but
typically much smaller degeneracies for given sectors.
This last property is responsible for the computational
advantage gained by working with symmetry-preserving
tensor networks. In order to simulate the full model with
all possible boundary conditions, it is clear that a detailed
understanding of how sectors are mapped into one another

under duality is required, which we have obtained in this
paper.

B. Open boundary conditions

The results presented in this paper focus on closed
boundary conditions, raising the question, what about open
boundary conditions? The accommodation of open bound-
ary conditions requires an extension of the framework
employed in this paper.

We have shown in this paper that given a fusion cat-
egory D and a choice of D-module category M, we
can construct local operators that commute with symmet-
ric operators organized into the fusion category D%, :=
Funp(M, M). In this context, we loosely define open
boundary conditions as equivalence classes of extensions
of the one-dimensional system to its boundary components
in a way that is compatible with the “bulk” D’ ; symme-
try. More precisely, we require open boundary conditions
to be organized into categories that are equipped with
a D} -action, i.e., D} -module categories. Given a pair
(P, Q) of D3 ;-module categories, we would then consider
microscopic Hilbert spaces of the form

cf e 3 e s JP e ST .
1% Y,

Xo

=

Xr+1

ol
N

over objects {M € Ty}, {Y€eIp},Pelp,Qeln, Xy €
I,:unD;\A(M’p), and X, € IFun,D;V((Q’M) and basis vec-

tors {i} in the appropriate hom-spaces. The resulting
model would have symmetry operators organized into
Funp+ (P, Q). In the same way that topological sectors
M

correspond to simple objects in the center Z(D,) in the
closed case, we would find that topological sectors in the
open case define the bicategory Mod(D?,,) of D7 ,-module
categories, D’ (-module functors, and D’ ,-module natural
transformations.

As discussed in Sec. I, mathematically, spherical fusion
categories serve as input data for topological quantum field
theories via the Turaev-Viro-Barrett-Westbury construc-
tion [40,41]. Crucially, these topological quantum field
theories are fully extended in the sense that they capture
locality all the way down to the point. In this context,
the Drinfel’d center Z(C) of C corresponds to the quan-
tum invariant assigned to the circle by the state sum [110],
whereas Mod(C) is identified with the quantum invari-
ant assigned to the point. Crucially, these invariants are
related via a so-called “crossing with the circle” condi-
tion stipulating that Dim Mod(C) = Z(C), where Dim is
an appropriate categorification of the notion of dimension
of a vector space suited to bicategories (for the case of
C = Vecg, see Ref. [111,112] ). This relation formalizes
the process whereby identifying the endpoints of a model
with open boundary conditions yields a model with closed
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boundary conditions. We postpone a systematic study of
dualities in one-dimensional quantum lattice models with
open boundary conditions to another paper.

C. Higher dimensions

The results presented in this paper can be largely
extended to two-dimensional quantum lattice models fol-
lowing the ethos of categorification. Loosely speaking,
this amounts to replacing fusion (1-)categories and mod-
ule (1-)categories in our exposition by fusion 2-categories
and module 2-categories. More specifically, given an input
fusion 2-category and a choice of module 2-category over
it, local symmetric operators akin to those considered in
this paper can be constructed [61]. These in turn define
Hamiltonians that commute with operators organized into
the (higher) Morita dual of the input fusion 2-category with
respect to the chosen module 2-category. Similarly, duality
relations are also encoded into module 2-functors between
distinct module 2-categories. Boundary conditions and
topological sectors will then be related to representations
of higher-dimensional tube algebras, as considered in Ref.
[55,113—115], and to the higher-categorical center of the
symmetry fusion 2-category.

As an example, given a two-dimensional model with a
G symmetry, we can construct a tensor-network operator
performing the gauging of the symmetry and show that the
resulting dual model commutes with projected entangled
pair operators forming the fusion 2-category 2Rep(G) of
“2-representations” of the group G [61,116,117], which is
Morita equivalent to the fusion 2-category 2Vecs of G-
graded 2-vector spaces [61].

Recently, a closely related point of view has been
embraced by the high-energy community under the name
of “sandwich construction” or “symmetry topological field
theory” [118]. So far, this approach has been mostly
employed in the continuum, although lattice versions of
these ideas have appeared in the past [9,27,28,119—121].
Succinctly, this approach amounts to realizing the partition
function of a d-dimensional theory as the interval compact-
ification of a (d+1)-dimensional topological field theory
with two types of boundaries: one hosting a gapped bound-
ary condition and another hosting a “physical” typically
nontopological boundary condition. In two space-time
dimensions on the lattice, the choice of three-dimensional
topological field theory and its gapped boundary condi-
tions amounts to our choices of input fusion category and
module category over it, whereas the data of the physical
boundary condition encodes our choice of abstract algebra
of operators. Explicitly performing the interval compacti-
fication, this would immediately recover our construction
or its completely analogue formulation in terms of anyonic
chains presented in Ref. [58]. We note that, in principle,
the sandwich construction produces a partition function
but this can be related to our Hamiltonian construction via

the transfer matrix and the standard quantum to classical
mapping.
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APPENDIX A: MORITA EQUIVALENCE

In this appendix, we collect a few results about (categor-
ical) Morita equivalence of fusion categories.

1. Motivating examples

Consider the fusion category Vecs of G-graded vector
spaces. Recall that it is the C-linear category with, as sim-
ple objects, the one-dimensional vector spaces C,, g € G,
such that C, ® C;, ~ Cy, and Hom(C,g, C;) = 8,4,C for
every g, h € G. (Indecomposable) module categories over
Vecg are labeled by pairs (4, ), with 4 € G a sub-
group and ¥ a representative of a cohomology class in
H?(4,U(1)), such that the collection of simple objects is
provided by G/A4 [122]. Choosing 4 = G, we find that
Vec is a (right) Vecg-module category via the forget-
ful functors Vecs — Vec. It is a well-known result that
the category (Vecq)y, := Funvec,(Vec, Vec) is equiva-
lent to Rep(G) [3]. Let us briefly review this derivation.
A functor F : Vec — Vec is fully specified by the vec-
tor space V := F(C) that it assigns to the unique simple
object C in Vec. The Vecs-module functor structure in
turn provides natural isomorphisms prescribed by

(,()g S HOmVec(F(C ® Cg)y F(C) ® q:g) = EndC(V)a

for every g € G. It follows from the defining coherence
relation of module functors that (V,w : g = wg) defines
a representation of G. Similarly, we can show that mod-
ule natural transformations between Vecg-module endo-
functors of Vec correspond to intertwiners of G. Putting
everything together, we have (Vecs)y,. = Rep(G).

As we will see below, this derivation demonstrates
that Vecs and Rep(G) are Morita equivalent. A conse-
quence of this result is that indecomposable module cate-
gories over Rep(G) are also parametrized by pairs (4, V).
Indeed, for any (4, ¥), the category Rep (4) of projective
representations of 4 can be endowed with the structure of
a (right) Rep(G)-module category via the restriction func-
tor Res$ : Rep(G) — Rep(4). As one would expect, we
have (Rep(G))y,. := Funrep(s) (Vec, Vec) = Vecgs. The
derivation of this result is more subtle than the previous
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one; as such, we will merely sketch here and refer the
reader to Ref. [3] for details. First, remember that Rep(G)
can be equivalently defined as the category Mod(C[G]) of
modules over the group algebra, whereas Vecg is equiva-
lent to the category Mod(C®) of module over the algebra
of functions on G. As already mentioned, a functor F :
Vec — Vec is fully specified by a vector space V :=
F(C). A Rep(G)-module structure on F then provides
natural isomorphisms prescribed by

wy € Homyee (F(C <« U), F(C) <« U) = Endc (V ® Res(U)),

for every U € Rep(G), satisfying the defining coherence
relation. Equivalently, the module structure of F pre-
scribes a homomorphism V' — V' ® Nat(Res, Res), where
Nat(Res) denotes here the vector space of natural endo-
transformations of Res : Rep(G) — Vec. By definition,
a vector in Nat(Res,Res) assigns to every object U in
Rep(G) a morphism Res(U) — Res(U) in Vec satisfy-
ing a naturality condition with respect to any intertwiner
of G. It turns out that this vector space Nat(Res, Res) can
be equipped with a canonical Hopf algebraic structure.
It follows from the defining axioms of module functors
that the map V' — V' ® Nat(Res, Res) endows V' with a
right comodule structure over Nat(Res, Res). We can show
that a natural transformation Res — Res is fully speci-
fied by its component on the regular representation C[G].
But endomorphic intertwiners of the regular representation
are given by right multiplication by an element in C[G]
and thus the component of the natural transformation on
the regular representation must amount to left multiplica-
tion by some element in C[G] [123]. So we have a right
comodule structure over Nat(Res, Res) >~ C[G], which is
the same thing as a left-module structure over the dual
of the Hopf algebra C[G], namely, C¢. Putting every-
thing together, we find (Rep(G))y,, = Mod(C%) = Vecg,
as expected. We will now put these results in the context
of Morita equivalence.

2. Definition

Given two fusion categories C and D, they are said
to be (categorically) Morita equivalent if there exists a
left C-module category M such that D}, = C or, equiv-
alently, if there exists a right D-module category such that
Ciy = D, or still equivalently if there exists an invertible
(C, D)-bimodule category M [3,90].

Consider, e.g., a fusion category C as a (left) module cat-
egory over itself. The functor X > (— ® X) : C? — C}
is a monoidal equivalence, whereby the module structure
is provided by

e )X L vye (—oX),

for every Y € Ob(C). This is the statement that C and C°P
are Morita equivalent. Note that the monoidal structure in

C; is provided by the composition of C-module functors,
which explains why the monoidal equivalence is with C°P
instead of C.

Let us consider an interesting application of the above
derivation. Given a fusion category C, we can construct
another fusion category Z(C) known as the center of C.
Objects in Z(C) consists of pairs (X,R_ x), where X is
an object of C and R_y : —® X — X ® — is a collec-
tion of natural isomorphisms known as half braidings.
These half braidings are required to satisfy a “hexagon
axiom” involving the monoidal associator of C. It turns
out that the center Z(C) can be identified with the cat-
egory Funcc(C,C) of (C,C)-bimodule functors. Indeed,
any functor in Fun¢¢(C,C) is, in particular, a functor in
Func(C,C) = C and hence is of the form — ® X with
X € Ob(C). The right C-module structure then imposes the
existence of natural isomorphisms

(- QX = (—®X)®Y

for every Y € Ob((), yielding half-braiding isomorphisms
R yx:—®X = X ® — in virtue of C} = C. It follows
from the defining coherence relation of module functors
that these half-braiding isomorphisms fulfill the expected
“hexagon axioms.” The monoidal structure in Z(C) finally
corresponds to the composition of (C,C)-bimodule func-
tors. Notably, it follows immediately from Fun¢c(C,C) =
(CICP); that Z(C) = Z(C), as expected. More gener-
ally, for any C-module category M, we have Z(C},) =
Z(C). We review this important result below.

3. Invariant

Let C and D be two fusion categories and M =
(M,>,<,a”,a”,a™) an invertible (C, D)-bimodule cate-
gory. There is a well-known braided monoidal equivalence
Z(C) = Z(D), making the Drinfel’d center an invariant of
Morita equivalence [3,88]. Let us examine this property.
Consider an object (X,R_ ) in Z(C). The endofunctor
X > — of M is equipped with a left C- and right D-module
structures via

) @)l ,
XoX'p—-) —— > X QX)) —

RT) sid_
X X' @X)> —

o,
2 X (X s —)

and

<y —1

@y _y
Xp(—<Y) —> X>—)«Y,

respectively, for any X' € Ob(C) and Y € Ob(D). The
“hexagon axioms” satisfied by the half-braiding isomor-
phisms R_ x as well as the various “pentagon axioms”
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fulfilled by the module associators ensure that the defin-
ing coherence relations of right- and left-module functors
are satisfied.

Conversely, let us consider an object Funeip (M, M).
By definition, it is, in particular, a right D-module functor
in Funpop (M, M). In virtue of Funpe (M, M) = C, it is
of the form X > — with X € Ob(C). The (C, D)-bimodule
structure is provided by natural isomorphisms

Xeo((X'>—)<Y) > X' vX>—)) <Y,

for any X’ € Ob(C) and Y € Ob(D). These yield the fol-
lowing collection of isomorphisms of right D-module
endofunctors:

<y —1
(a )X’®X,—,Y

X' ®X)>(—<D)

a;/x_qidy
— X'r(X>—)) Y

(X' ®@X)>—)«Y

S Xe((X'>—)<Y)

idy DDz;q,_ ¥
— 5 XX '>(—<Y))

@)Ly aidy

X ®X)>(—<D),

which, invoking Funpe (M, M) = C, in turn yield a col-
lection of natural isomorphisms R_y : —® X — X ® —
in C. Tt follows from the definition of module functors
that the natural isomorphisms R_ x in C satisfy the defin-
ing “hexagon axioms” of half braidings. Keeping in mind
that the monoidal structure in Fungp(M, M) is pro-
vided by the composition of module functors, this estab-
lishes the monoidal equivalence Z(C) = Fungp(M, M),
which can be lifted to a braided monoidal equivalence.
By symmetry, we similarly find Z(D) = Funep(M, M)
whereby objects (Y,Ry_) in Z(D) are identified with
(C, D)-module functors — < Y and thus

Z(C) = Fungip(M, M) < Z(D).

Finally, the induced braided monoidal equivalence
Z(C) > Z(D) is provided by a functor F : Z(C) —
Z(D) such that there is an isomorphism X > — =~
—<F(X) of (C,D)-bimodule functors for every X €
Ob(C). This, in turn, motivates the definition of our tube
intertwiners as maps between the tubes associated with
Z(C) and Z(D) that “commute” with M [see Eq. (42)].
A particularly compact way of stating the result pre-
sented in this section is that the center construction defines
a 2-functor Z : BrPic — EqBr, where BrPic refer to the

Brauer-Picard 2-groupoid of fusion categories and invert-
ible bimodule categories, whereas EQBr denotes the 2-
groupoid of braided fusion categories and braided equiv-
alences [90]. This implies, in particular, the group iso-
morphism BrPic(C) = EqBr(Z(C)) between the Brauer-
Picard group of invertible (C,(C)-bimodules and braided
autoequivalences of Z(C).

APPENDIX B: QUANTUM DOUBLE

In this appendix, we illustrate with a detailed example
the equivalence between the category of representations of
the tube category and the Drinfel’d center of the underlying
fusion category.

1. Hopf algebra

Let G be a finite group with identity element 1.
We denote by C[G] the group ring of G and C® the
space of functions on G. The quantum double D(G) =
(D(G), *,n, A, €,S,R) of G is a quasitriangular Hopf alge-
bra the underlying vector space of which is isomorphic to
C[G] ® CY. Denoting basis elements of D(G) by a ® §, =
adg, with a, g € G, the Hopf algebraic structure is defined
by

(@8y) % (b8)) 1= 8,14 (ab8y)
) =zy 16,

geG

(multiplication),

(unit),

A(adg) = Z ad, ® ad,-1, (comultiplication),

heG
€(ady) =041 (counit),
S(ady) = a! Sa-1g-1q (antipode),

for all a,b,g,h € G and z € C. The above definitions
imply that both C[G] and CC are equipped with the struc-
tures of Hopf subalgebras of D(G) and we denote by i¢g)
and (¢ the corresponding embedding maps. The quasitri-
angularity is then provided by the invertible element

R= (lC[G] ® L@G)(ié) with R = ZgSg
geG

(B1)

Let us consider the braided monoidal category Mod(D(G))
of left modules over the quantum double D(G). It follows
from C[G] and C forming subalgebras of D(G) as well as
the relation

ady =5+ (D as) = (D as)« (16,1,

heG heG

that an object in Mod(D(G)) is a vector space V equipped
with left C[G]- and C%-module structures satisfying the
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straightening formula
Sg(av|v)) = av(8,-14,> V),

foranya,g € Gand |v) € V. In particular, simple modules
of D(G) are labeled by pairs ([c1], 17) with [c;] a conjugacy
class of G with representative ¢; and / a simple left module
over the group ring C[Z}.,1] of the centralizer Zj.,,; = {g €
G|lgc) = c1g} of [c1] in G. Denoting the constituents of
[c1] by {ci}i=1....)[c;1» We have

V = Spanc{|c;, V) i=1...[[c1]] >
V=1,...,dim(})

so that dim(V) = |[c{]] 'dim(f/). Introducing the set

.....

gc, = 1, the action of D(G) on V is provided by

-1
acja

(adg)>lcj,v) = (Sg,acja—l |acja_1) ® (@ . _aq;)> |v),
for any a,g € G. We will often implicitly make use
of the equivalence between simple objects V' labeled
by ([c1], V) in Mod(D(G)) and irreducible representa-
tions (V, p : D(G) — End(}V)) such that (ady) > |c;, v) =
p(ady)lci,v) and

p(ady)h = (ci,lp(ady)le, v)
= Sg,ci (Sg,acj-cf1 ﬁ(qgilanj)S,

where (17, P Ziey — End(f/)) is an irreducible represen-
tation of Z.,; C G. The monoidal structure in Mod(D(G))
can then be conveniently defined in terms of the tensor
product WV ® W, (p ® o) o A) of representations (V, p)
and (W, o), whereas the braiding is provided by the
isomorphism

R = (0 ® p)(R) o swap
VW S WeRV,

where “swap” simply permutes the order of vector spaces
in the tensor product.

In the context of our work, the quantum double D(G) of
a finite group G arises—up to a normalization factor—as
the groupoid algebra of the tube category Tube(Vecs). By
definition, Tube(Vecg) is the category with object set G
and morphisms of the form a : g — a~!ga. Its groupoid
algebra is then defined as the algebra with underlying
vector space C[ |g— a~'ga)], over a,g € G and algebra
product

g5 a " ga) x [h5 b7 hb) = 8,140, 18 2> (ab) ' g(ab)).

Representations of the tube category defined as objects in
Fun(Tube(Vecg), Vec) then correspond to the modules
over D(G) as defined in this section.

2. Drinfel’d center Z(Vecg)

There is a famous braided monoidal equivalence
between Mod(D(G)) and the Drinfel’d center Z(Vecs) of
the category of G-graded vector spaces. Given an object
W, p) in Mod(D(G)), we will now review how to obtain
the corresponding object in Z(Vec) ( for more details, see
Ref. [124]). Since 18, x 18, = 1 85, the matrix p(15,)
is a projector and a fortiori it is diagonalizable. Further-
more, since 18, x 1§, = 1 6, » 1 §,, the matrices p(1 5,)
and p(16,) commute for every g,# € G and thus the set
{p(184)}gec is simultaneously diagonalizable with respect
to a basis denoted by {|v)},=1, . dimv). We denote by V,
the subspace of V given by Im p(18;). Due to the unit
element of D(G) being provided by deG]l(Sg, given
v e{l,...,dim(V)}, there is a unique g € G such that
|v) € Im p(1 §,). Consequently, } decomposes as

V=EPV.

geG

We deduce that the left D(G)-module V has the structure
of a G-graded vector space. Given two objects (V, p) and
(W, o) of Mod(D(G)), we further recover from

[(p®0) o AlML8) =D p(18:) ® 0 (18-1,)
heG
the monoidal structure of Vecg, i.e.,
VW) =P Vi@ W,-1,

heG

.Recall that we denote by C, the one-dimensional G-
graded vector space such that (C,), = 8,,C. Forany a €
G, we consider the map

R, = (,o(Zaég)@id) oswap:C,®V — V® C,.
geG

Since p(1 &) is an isomorphism V, — )/, that acts as the
zero map on Ve, the relations

p(adg) o p(18,-1,,) = p(ady) = p(154) o p(ady)

induce that p(a ;) must be a linear map V,-1,, — V, that
acts as the zero map on V, ,,-1,,. Therefore, the restriction
of Ry to V-1 isamap V,-1, = V1. It follows from

C.®V=PV,, and V&Ci=HV,
geG geG

that R, preserves the grading. Furthermore, R, is invertible
with

R = (id@ p(D a (Sg)> o swap

geG
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and thus R, is a (natural) G-grading-preserving isomor-
phism C, ® V 5 V®C,. Due to p: D(G) — End(V)
being a homomorphism, we can readily check that

Rap = (Ra ® idCb) o (idCa ® Rb)’

for any a,b € G. Putting everything together, we obtain
that (V,R_y) with Rc,y =R, defines an object of
Z(Vecg). Given a simple object (V, p) in Mod(D(G))
labeled by ([¢1], 7), the corresponding graded object in
Z(Vecg) is the object V = @, Ve such that V, ~ J/ for
every g € [¢;] and zero otherwise. The corresponding half-
braiding isomorphisms are conveniently encoded into the
so-called half-braiding tensor, expressed graphically as

This half-braiding tensor can in turn be used to explicitly
compute tube projectors onto the topological sector labeled
by the simple object (V, p) € Z(Vecg) in the case where
D', = Vecg:

1 Co § Ca 1
Gy, e =i X elady),

a,g€G

where the dotted lines indicate periodic boundary con-
ditions as in the main text. A representation of these
projectors on the Hilbert spaces considered in the main text
in the basis of matrix units is given by

1 VCeun(Ce))s
Gy 2 v

CixCj 0,0

from which we can infer the coefficients defining the
matrix units in terms of tubes as

(V.0),(Cc)vs(C; )3

CasCejasl,] (B2)

= p(q, ' aqe,)y-

3. Drinfel’d center Z(Rep(G))

In virtue of the Morita equivalence between Rep(G)
and Vecg, we know that the Drinfel’d centers are equiv-
alent and thus there is also a braided monoidal equiva-
lence between Mod(D(G)) and Z(Rep(G)). As before,
we are only interested in computing the simple objects in
Z(Rep(G)) corresponding to those in Mod(D(G)). Let V

be a simple left module over D(G) labeled by ([c;], 17)
We have mentioned earlier that V is, in particular, a left
module over both C[G] and CY, with

-1

— g1
av|c;,v) = lacja” ') @ (qacja

_laqc’j)[> |U>
(B3)
8g>1¢j, v) = g lcj, V),

for every a,g€ G, j €{l,....[[a]l} and ve{l,...,
dim V}. Given any left C[G]-module W, we define

ey - — V@W~
W) ® [v) > swapoR(lw) ® |[v)),

Rwy

wherej? has been introduced in Eq. (B1). By definition, we
have R(jw) ® |v)) = Zg€GQg> W) ® (8g > |v)), where V
is treated here as a left C®-module. It follows from (A ®
idp(G))(R) = Ry3 » R3 that R_ , is a half braiding, so that
(V,R_y) is an object of Z(Rep(G)). Choosing |v) =
lcj, v), we have, in particular,

Ryy(lw) ® [v) = [¢j,v) ® ¢; > [w).

Ultimately, we are interested in the half-braiding ten-
sors QY defined as follows. Given two objects V, W in
Rep(G), the hom-space Hompep) (W ® V, V' ® W) has a
basis provided by morphisms of the form (f,/"); o (f;5);
where U is a simple object in Rep(G) and 1 <i,j <
dim Hompep) (W ® V, U). We wish to express the half-
braiding isomorphisms as linear combinations of such
basis vectors. In order to choose a basis for hom-spaces
Hompgep) (W ® V,X), it is convenient to first decom-
pose the simple object V in Mod(D(G)) into a direct
sum of simple objects in Rep(G). This is typically a
tedious exercise but it can be facilitated by remembering
that, as a left module over C[G], the simple left module
over D(G) labeled by ([c1], 17) corresponds to the induced
C[G]-module of the simple C[Z[.,1]-module V. The decom-
position of this induced module can then be obtained by
invoking Frobenius reciprocity, which states that the multi-
plicity of the C[G]-module W in the induced C[H ]-module
Indg(V) of V, where H C G is a subgroup, equals the mul-
tiplicity of the C[H]-module ¥ in the restriction Res% ()
of the C[G]-module W. In symbols,

multy (Ind% (V) = multy(Res$ (7).

Equipped with a decomposition of V, a basis for the
hom-spaces mentioned above can be readily derived. The
coefficients of the decomposition of the half braiding into
such a basis define the nonvanishing components of the
half-braiding tensor V. Graphically, we represent this
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decomposition as the resolution of a crossing:

’

w

N
N\

w

N/
k\
/

\%

VAR
W,U,k,k

::ZZQ

ViV U ki

T
=

where the first sum on the right-hand side is over represen-
tatives of isomorphism classes in Zrep(g) of simple objects
U, V,V in Rep(G) with multiplicities i, j . We provide the
explicit definition of ¥ for a specific example below.

As before, the half-braiding tensor can be used to explic-
itly compute tube projectors onto the topological sector
labeled by the simple object V € Z(Rep(G)) whenever
D3 = Rep(G):

1

e Z dim W

W E€Irep(c)

A representation of these projectors on the Hilbert spaces
considered in the main text in the basis of matrix units is
given by

1 V.V
T e (>
dim V MM
ViV
J
from which we obtain that the coefficients defining the

matrix units in terms of tubes are the matrix elements of
the half-braiding tensor QV.

4. Example: D(S;)

Let us illustrate the procedure described above by com-
puting the half-braiding tensor for the Drinfel’d doublle

—|—
— o

|
| —

1 1

— —

— N — o
=

i [\

of the permutation group on the set of three elements.
Although the nonvanishing components of this tensor have
appeared previously (see, e.g., Ref. [125]), we have not
found any systematic analytical derivation in the litera-
ture. We provide such a derivation here for pedagogical
purposes.

Let S; be the group with presentation (r,s|7* = s° =
(rs)> = 1). The set {1,r,rs,rs?,s,s?} of group elements
is the union of the conjugacy classes [1] = {1}, [r] =
{r,rs,rs*} and [s] = {s,s%}. The associated centralizer
SUng'OllpS are Z[]l] ~ 83, Z[r] = {]]_,V} ~ Zz and Z[S] =
{1,s,s%} ~ Z5. Furthermore, we have Qp; = {1,7} and
O = {1,s,s}. There are three irreducible representa-
tions, namely, {0, 1,2}, referred to as the trivial, sign, and
two-dimensional representation, respectively:

2

plg) | 1 r rs s s s
V=0 1 1 1 1 1 1
V=1 1 -1 -1 -1 1 17
v=2|(i1) () () G8) (2) (o)

where @ = ¢*™/3. The monoidal structure in Rep(S3)
is provided by 0 ® V'~ V, with V any simple object in
Rep(S3), 1®1 >0, 1®2>~2and 2®@2>~00162.
Given three simple objects V, W, and U in Rep(S3), we
denote our choice of basis vector for the one-dimensional
hom-space Hompep(s,) (W ® V, U) by

[W V|U]'W®V

- =

w oV
w o vu

—>U:|w)®|v)r—>2|: U] lu),

where the sum is over basis-vector labels in the vector
space U. The nonvanishing matrix components of these
intertwiners are provided by

—|—
| I—
Il
|

(8]

1
I

—

— 1N

| I

= o
| I ) S
I
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Henceforth, we refer to these entries as the Clebsch-
Gordan coefficients. Matrix components of the basis vec-
tors in the hom-space Hompeps,) (W ® V,V® W) are
depicted as

w \%4
/ :
N = 3 Y] o e el e .
2%
\%4 w

We denote by {0;,1,,} the irreducible representations
of the centralizer subgroup Z, such that the character of
1, maps r to —1 and by {QZ3,lZ3,l}3} the irreducible
representations of the centralizer subgroup Z3 such that
the characters of 1, and 17 map s to w and @, respec-
tively. The eight simple objects in Mod(D(S3)) are then
labeled by ([1]39)7 ([]l]al)n ([1]92)9 ([’”]9922)7 ([r]vlzz)n
([S]’Qz3)o ([s],lz3), and ([s],l%). Let us now compute
the half-braiding tensors associated with each simple
object. Since simple objects in Mod(D(S3)) labeled by
[1] correspond to irreducible representations of Ss, it
follows immediately from the definition of the Clebsch-
Gordan coefficients that, for every simple object (W, o) in
Rep(S;3),

w (1].0) w 0
AR
— \‘iv R
ANVAN
([11,0) w o W

= tro(s) 1\?/@1 ,
N\ aN
(@wy w 1w
and
wo (1.2 w2
\ 00 1 \1/
:Z 00 —1 \if
\ v \1 -1 1 — / \
2 w

(l1.2) W

The other simple objects in Mod(D(S;)) require us to
work out the decomposition of the corresponding induced

representations in Rep(S3). Let us consider the simple
object V' labeled by ([s1,1z,)- The restriction of 2 to
Z3 boils down to a sum of two characters. More pre-
cisely, for (p, V' =2), we have trp(s) = -1 = w+ . It
follows that Res% 2) ~ 15, ® 15, and thus Ind‘z (1z,) =~
2 such that the basis vectors are provided by |s, 1) and
|s?, 1). Although this case is similar to the previous
one, the half-braiding isomorphism is no longer triv-
ial with Ry (1w) ® Is/5%, 1)) = [s/s% 1) ® pls/sD)w).
When W = 2, we have, e.g., Ry (1), ® [s2,1)) = |5, 1) ®
®|1); and Ry, (|1)2 ® s, 1)) = |s, 1) ® w|1),. It then fol-
lows from the definition of the Clebsch-Gordan coeffi-

cients
that
w ([s],lz3) W 2
\ 00 1 \1/
= 2 0 0 -1 \f
\ U w —w w WU / \
([shizy) W 2 W

\\w

w
00 1 \1
0 0 -1 N
w w

VAN

Let us now consider the simple object ([s], 923)- As
the induced representation of a one-dimensional trivial
representation, we have Ind% 07,) ~C[S5/Z5]1~ 0@ 1.
This isomorphism is such that the one-dimensional vector
spaces 0 and 1 are spanned by |1)p = |s,1) + |s?,1) and
[1); = |s, 1) — |s%, 1), respectively. This can be confirmed
using the explicit action of S5 on ([s], 07,) provided by Eq.
(B3). But

Royy(I1)2 ® [1)g) = wls, 1) @ 1),

<_

s, 1) ® [1)2
)

s
3
|1>o—z§|1 1)@l

N | —

and, similarly,
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5

1 ~3
Ro(1)2® (1)) = (= 5111 +i5-110) ® 1.

It follows that

([s1.02,) W
2 0 2 1
w2 2 1 oW,z 2 1 ’
/' \ /' \
1 2 0o 2

The remaining cases are slightly more involved. We begin
with the simple object labeled by ([r],15,). What is the

decomposition of Ind% (17,)? Let us consider the restric-
tions of the irreducible representations of S; to Z, and
check the multiplicity of 1, . We know that 1, does
not appear in 0, since the odd element a acts trivially
on it. On the other hand, we have the obvious fact that
1 restricts to 1. Since Ind% (12, is three dimensional
as an irreducible representation of D(S3), we must have
Ind% (1) ~1@2 Invoking Eq. (B3), the basis vectors
are found to be

1= 1r1) + Irs, 1) + 157, 1),
)y =1r,1) +alrs, 1) + wlrs®, 1),

12)2

—|r 1) — wlrs, 1) — &|rs?, 1).

Noting in particular that

Ryy(I1)®@ 1)) =Y 1g. 1) ® p(2)I1);

g=rrs,rs?

=—[2), ® [2),,

it follows from the definition of the Clebsch-Gordan coef-
ficients that

wo (i)

(1) W 1 v
0 0 1 \1/
+>10 01 \f

v \-1 —-10 - / \

2 w

2 1 2 2
N\
+(5W’g \2 —(5W$2 \

/\ /\

Similarly, we find Ind3? (0, ) ~ 0 & 2 and

w ([7102,) w0 w2
\ \1/ 001 \1/
=tro(r) \ +>71001 Y
110
\ SN wo /N
(Ir.0y,) W 0w 2w
2 0 2 2
\1/ \1/
+5W,2 \2 +5W,2 \2

/N e

This concludes the computation of the half-braiding tensor
for Z(Rep(S3)).

[1] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, JHEP 02, 172 (2015).

[2] P. Etingof, D. Nikshych, and V. Ostrik, On fusion cate-
gories, arXiv:math/0203060 [math.QA] (2002).

[3] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor
Categories (American Mathematical Soc., Providence,
Rhode Island, 2016), Vol. 205.

[4] R. Thorngren and Y. Wang, Fusion category symmetry I:
Anomaly in-flow and gapped phases, arXiv:1912.02817
[hep-th] (2019).

[5] R. Thorngren and Y. Wang, Fusion category symmetry
II: Categoriosities at ¢ = 1 and beyond, arXiv:2106.12577
[hep-th] (2021).

[6] V. V. Albert, D. Aasen, W. Xu, W. Ji, J. Alicea, and J.
Preskill, Spin chains, defects, and quantum wires for the
quantum-double edge, arXiv:2111.12096 [cond-mat.str-
el] (2021).

010338-33


https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/math/0203060
https://arxiv.org/abs/1912.02817
https://arxiv.org/abs/2106.12577
https://arxiv.org/abs/2111.12096

LOOTENS, DELCAMP, and VERSTRAETE

PRX QUANTUM 5, 010338 (2024)

[7] W. Ji and X.-G. Wen, Categorical symmetry and nonin-
vertible anomaly in symmetry-breaking and topological
phase transitions, Phys. Rev. Res. 2, 033417 (2020).

[8] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng,
Algebraic higher symmetry and categorical symmetry: A
holographic and entanglement view of symmetry, Phys.
Rev. Res. 2, 043086 (2020).

[9] A. Chatterjee and X.-G. Wen, Algebra of local symmet-
ric operators and braided fusion n-category—symmetry is
a shadow of topological order, arXiv:2203.03596 [cond-
mat.str-el] (2022).

[10] J. McGreevy, Generalized symmetries in condensed mat-
ter, arXiv:2204.03045 [cond-mat.str-el] (2022).

[11] J. Kaidi, Z. Komargodski, K. Ohmori, S. Seifnashri, and
S.-H. Shao, Higher central charges and topological bound-
aries in 2+1-dimensional TQFTs, SciPost Phys. 13, 067
(2022).

[12] K. Inamura, On lattice models of gapped phases with
fusion category symmetries, JHEP 03, 036 (2022).

[13] R. Vanhove, L. Lootens, M. Van Damme, R. Wolf,
T. Osborne, J. Haegeman, and F. Verstracte, A criti-
cal lattice model for a Haagerup conformal field theory,
arXiv:2110.03532 [cond-mat.stat-mech] (2021).

[14] T.-C. Huang, Y.-H. Lin, K. Ohmori, Y. Tachikawa, and
M. Tezuka, Numerical evidence for a Haagerup confor-
mal field theory, arXiv:2110.03008 [cond-mat.stat-mech]
(2021).

[15] T.-C. Huang and Y.-H. Lin, Topological field theory with
Haagerup symmetry, arXiv:2102.05664 [hep-th] (2021).

[16] O. Buerschaper, M. Aguado, and G. Vidal, Explicit tensor
network representation for the ground states of string-net
models, Phys. Rev. B 79, 085119 (2009).

[17] O. Buerschaper, Twisted injectivity in projected entangled
pair states and the classification of quantum phases, Ann.
Phys. 351, 447 (2014).

[18] N. Bultinck, M. Marién, D. Williamson, M. Sahinoglu, J.
Haegeman, and F. Verstraete, Anyons and matrix product
operator algebras, Ann. Phys. (NY) 378, 183 (2017).

[19] M. B. Sahinoglu, D. Williamson, N. Bultinck, M. Marién,
J. Haegeman, N. Schuch, and F. Verstraete, Characterizing
topological order with matrix product operators, Annales
Henri Poincaré 22, 563 (2021).

[20] N. Bultinck, D. J. Williamson, J. Haegeman, and F.
Verstraete, Fermionic projected entangled-pair states and
topological phases, J. Phys. A: Math. Theor. 51, 025202
(2017).

[21] M. Hauru, G. Evenbly, W. W. Ho, D. Gaiotto, and G.
Vidal, Topological conformal defects with tensor net-
works, Phys. Rev. B 94, 115125 (2016).

[22] L. Lootens, J. Fuchs, J. Haegeman, C. Schweigert, and F.
Verstraete, Matrix product operator symmetries and inter-
twiners in string-nets with domain walls, SciPost Physics
10, 053 (2021).

[23] G. Felder, J. Frohlich, J. Fuchs, and C. Schweigert, Con-
formal boundary conditions and three-dimensional topo-
logical field theory, Phys. Rev. Lett. 84, 1659 (2000).

[24] J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, Duality
and defects in rational conformal field theory, Nucl. Phys.
B 763, 354 (2007).

[25] J. Fuchs, M. R. Gaberdiel, I. Runkel, and C. Schweigert,
Topological defects for the free boson CFT, J. Phys. A 40,
11403 (2007).

[26] D. Aasen, R. S. K. Mong, and P. Fendley, Topological
defects on the lattice: I. The Ising model, J. Phys. A: Math.
Theor. 49, 354001 (2016).

[27] D. Aasen, P. Fendley, and R. S. K. Mong, Topolog-
ical defects on the lattice: Dualities and degeneracies,
arXiv:2008.08598 [cond-mat.stat-mech] (2020).

[28] R. Vanhove, M. Bal, D. J. Williamson, N. Bultinck, J.
Haegeman, and F. Verstraete, Mapping topological to con-
formal field theories through strange correlators, Phys.
Rev. Lett. 121, 177203 (2018).

[29] H. A. Kramers and G. H. Wannier, Statistics of the
two-dimensional ferromagnet. Part I, Phys. Rev. 60, 252
(1941).

[30] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A.
Kitaev, Z. Wang, and M. H. Freedman, Interacting anyons
in topological quantum liquids: The golden chain, Phys.
Rev. Lett. 98, 160409 (2007).

[31] C. Gils, E. Ardonne, S. Trebst, D. A. Huse, A. W. W.
Ludwig, M. Troyer, and Z. Wang, Anyonic quantum spin
chains: Spin-1 generalizations and topological stability,
Phys. Rev. B 87, 235120 (2013).

[32] S. Trebst, E. Ardonne, A. Feiguin, D. A. Huse, A. W.
W. Ludwig, and M. Troyer, Collective states of inter-
acting Fibonacci anyons, Phys. Rev. Lett. 101, 050401
(2008).

[33] C. Gils, E. Ardonne, S. Trebst, A. W. W. Ludwig, M.
Troyer, and Z. Wang, Collective states of interacting
anyons, edge states, and the nucleation of topological
liquids, Phys. Rev. Lett. 103, 070401 (2009).

[34] E. Ardonne, J. Gukelberger, A. W. W. Ludwig, S. Trebst,
and M. Troyer, Microscopic models of interacting Yang-
Lee anyons, New J. Phys. 13, 045006 (2011).

[35] M. Buican and A. Gromov, Anyonic chains, topological
defects, and conformal field theory, Commun. Math. Phys.
356, 1017 (2017).

[36] P. E. Finch, From spin to anyon notation: The XXZ
Heisenberg model as a d3 (or su(2)4) anyon chain, J. Phys.
A: Math. Theor. 46, 055305 (2013).

[37] N. Braylovskaya, P. E. Finch, and H. Frahm, Exact solu-
tion of the D3 non-Abelian anyon chain, Phys. Rev. B 94,
085138 (2016).

[38] V. Pasquier and H. Saleur, Common structures between
finite systems and conformal field theories through quan-
tum groups, Nucl. Phys. B 330, 523 (1990).

[39] R. Couvreur, L. Lootens, and F. Verstraete, Matrix quan-
tum groups as matrix product operator representations
of Lie groups, arXiv:2202.06937 [cond-mat.stat-mech]
(2022).

[40] V. G. Turaev and O. Y. Viro, State sum invariants of 3
manifolds and quantum 6;-symbols, Topology 31, 865
(1992).

[41] J. W. Barrett and B. W. Westbury, Invariants of piecewise
linear three manifolds, Trans. Am. Math. Soc. 348, 3997
(1996).

[42] Y.-H. Lin, M. Okada, S. Seifnashri, and Y. Tachikawa,
Asymptotic density of states in 2D CFTs with non-
invertible symmetries, arXiv:2208.05495 [hep-th] (2022).

[43] J. Fuchs, C. Schweigert, and A. Valentino, Bicategories
for boundary conditions and for surface defects in 3-D
TFT, Commun. Math. Phys. 321, 543 (2013).

[44] A.Kitaev and L. Kong, Models for gapped boundaries and
domain walls, Commun. Math. Phys. 313, 351 (2012).

010338-34


https://doi.org/10.1103/PhysRevResearch.2.033417
https://doi.org/10.1103/PhysRevResearch.2.043086
https://arxiv.org/abs/2203.03596
https://arxiv.org/abs/2204.03045
https://doi.org/doi:10.21468/SciPostPhys.13.3.067
https://doi.org/10.1007/JHEP03(2022)036
https://arxiv.org/abs/2110.03532
https://arxiv.org/abs/2110.03008
https://arxiv.org/abs/2102.05664
https://doi.org/10.1103/PhysRevB.79.085119
https://doi.org/10.1016/j.aop.2014.09.007
https://doi.org/10.1016/j.aop.2017.01.004
https://doi.org/10.1007/s00023-020-00992-4
https://doi.org/10.1088/1751-8121/aa99cc
https://doi.org/10.1103/physrevb.94.115125
https://doi.org/10.21468/scipostphys.10.3.053
https://doi.org/10.1103/PhysRevLett.84.1659
https://doi.org/10.1016/j.nuclphysb.2006.11.017
https://doi.org/10.1088/1751-8113/40/37/016
https://doi.org/10.1088/1751-8113/49/35/354001
https://arxiv.org/abs/2008.08598
https://doi.org/10.1103/PhysRevLett.121.177203
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevB.87.235120
https://doi.org/10.1103/PhysRevLett.101.050401
https://doi.org/10.1103/PhysRevLett.103.070401
https://doi.org/10.1088/1367-2630/13/4/045006
https://doi.org/10.1007/s00220-017-2995-6
https://doi.org/10.1088/1751-8113/46/5/055305
https://doi.org/10.1103/PhysRevB.94.085138
https://doi.org/10.1016/0550-3213(90)90122-T
https://arxiv.org/abs/2202.06937
https://doi.org/10.1016/0040-9383(92)90015-A
https://doi.org/10.1090/S0002-9947-96-01660-1
https://arxiv.org/abs/2208.05495
https://doi.org/10.1007/s00220-013-1723-0
https://doi.org/10.1007/s00220-012-1500-5

DUALITIES IN ONE-DIMENSIONAL QUANTUM LATTICE MODELS

PRX QUANTUM 5, 010338 (2024)

[45] L. Kong, Anyon condensation and tensor categories, Nucl.
Phys. B 886, 436 (2014).

[46] L. Kong, X.-G. Wen, and H. Zheng, Boundary-bulk rela-
tion in topological orders, Nucl. Phys. B 922, 62 (2017).

[47] D. S. Freed and C. Teleman, Gapped boundary theories in
three dimensions, Commun. Math. Phys. 388, 845 (2021).

[48] J. Fuchs, C. Schweigert, and A. Valentino, A geometric
approach to boundaries and surface defects in Dijkgraaf-
Witten theories, Commun. Math. Phys. 332, 981 (2014).

[49] W.-Q. Chen, C.-M. Jian, L. Kong, Y.-Z. You, and H.
Zheng, Topological phase transition on the edge of two-
dimensional z, topological order, Phys. Rev. B 102,
045139 (2020).

[50] S. Beigi, P. W. Shor, and D. Whalen, The quantum dou-
ble model with boundary: Condensations and symmetries,
Commun. Math. Phys. 306, 663 (2011).

[51] L. Cong, M. Cheng, and Z. Wang, Universal quantum com-
putation with gapped boundaries, Phys. Rev. Lett. 119,
170504 (2017).

[52] L. Cong, M. Cheng, and Z. Wang, Defects between gapped
boundaries in two-dimensional topological phases of mat-
ter, Phys. Rev. B 96, 195129 (2017).

[53] A.Bullivant, Y. Hu, and Y. Wan, Twisted quantum double
model of topological order with boundaries, Phys. Rev. B
96, 165138 (2017).

[54] Y. Hu, Z.-X. Luo, R. Pankovich, Y. Wan, and Y.-S.
Wu, Boundary Hamiltonian theory for gapped topological
phases on an open surface, JHEP 01, 134 (2018).

[55] A. Bullivant and C. Delcamp, Gapped boundaries and
string-like excitations in (3+1)d gauge models of topolog-
ical phases, JHEP 07, 025 (2021).

[56] T.Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E.
Berg, Bulk anyons as edge symmetries: Boundary phase
diagrams of topologically ordered states, Phys. Rev. B
104, 075141 (2021).

[57] H. Moradi, S. F. Moosavian, and A. Tiwari, Topolog-
ical holography: Towards a unification of Landau and
beyond-Landau physics, arXiv:2207.10712 [cond-mat.str-
el] (2022).

[58] L. Lootens, C. Delcamp, G. Ortiz, and F. Verstraete, Dual-
ities in one-dimensional quantum lattice models: Symmet-
ric Hamiltonians and matrix product operator intertwiners,
PRX Quantum 4, 020357 (2023).

[59] E. Cobanera, G. Ortiz, and Z. Nussinov, The bond-
algebraic approach to dualities, Adv. Phys. 60, 679 (2011).

[60] D. S. Freed and C. Teleman, Topological dualities in the
Ising model, arXiv:1806.00008 [math.AT] (2018).

[61] C. Delcamp, Tensor network approach to electromagnetic
duality in (3+1)d topological gauge models, JHEP 08, 149
(2022).

[62] H. Weyl, Elektron und gravitation. I, Z. Phys. 56, 330
(1929).

[63] J. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[64] J. B. Kogut, An introduction to lattice gauge theory and
spin systems, Rev. Mod. Phys. 51, 659 (1979).

[65] M. P. A. Fisher, in Strong Interactions in Low Dimen-
sions, edited by D. Baeriswyl and L. Degiorgi (Springer
Netherlands, Dordrecht, 2004), p. 419,

[66] R. Savit, Duality in field theory and statistical systems,
Rev. Mod. Phys. 52, 453 (1980).

[67] O. Buerschaper, M. Christandl, L. Kong, and M. Aguado,
Electric-magnetic duality of lattice systems with topolog-
ical order, Nucl. Phys. B 876, 619 (2013).

[68] F. J. Wegner, Duality in generalized Ising models and
phase transitions without local order parameters, J. Math.
Phys. 12, 2259 (1971).

[69] Y. Tachikawa, On gauging finite subgroups, SciPost Phys.
8, 015 (2020).

[70] L. Bhardwaj and Y. Tachikawa, On finite symmetries and
their gauging in two dimensions, JHEP 03, 189 (2018).

[71] B. Pirvu, V. Murg, J. 1. Cirac, and F. Verstraete, Matrix
product operator representations, New J. Phys. 12, 025012
(2010).

[72] J. Haegeman and F. Verstraete, Diagonalizing transfer
matrices and matrix product operators: A medley of exact
and computational methods, Annu. Rev. Condens. Matter
Phys. 8, 355 (2017).

[73] L Cirac, D. Perez-Garcia, N. Schuch, and F. Verstraete,
Matrix product states and projected entangled pair states:
Concepts, symmetries, and theorems, arXiv Preprint
arXiv:2011.12127 (2020).

[74] Y. BenTov, Fermion masses without symmetry breaking
in two spacetime dimensions, JHEP 07, 034 (2015).

[75] D. Radicevic, Spin structures and exact dualities in low
dimensions, arXiv:1809.07757 [hep-th] (2018).

[76] V. Petkova and J.-B. Zuber, Generalised twisted partition
functions, Phys. Lett. B 504, 157 (2001).

[77] J. Fuchs, 1. Runkel, and C. Schweigert, TFT construction
of RCFT correlators I: Partition functions, Nucl. Phys. B
646, 353 (2002).

[78] D. Aasen, E. Lake, and K. Walker, Fermion condensation
and super pivotal categories, J. Math. Phys. 60, 121901
(2019).

[79] R. Verresen, N. Tantivasadakarn, and A. Vishwanath,
Efficiently preparing Schrdodinger’s cat, fractons and
non-Abelian topological order in quantum devices,
arXiv:2112.03061 [quant-ph] (2021).

[80] N. Tantivasadakarn, R. Thorngren, A. Vishwanath, and
R. Verresen, Long-range entanglement from measuring
symmetry-protected topological phases, arXiv:2112.01519
[cond-mat.str-el] (2021).

[81] S. Ashkenazi and E. Zohar, Duality as a feasible physical
transformation for quantum simulation, Phys. Rev. A 105,
022431 (2022).

[82] N. Tantivasadakarn, A. Vishwanath, and R. Verresen, A
hierarchy of topological order from finite-depth unitaries,
measurement and feedforward, arXiv:2209.06202 [quant-
ph] (2022).

[83] L. Lootens, B. Vancraeynest-De Cuiper, N. Schuch, and F.
Verstraete, Mapping between Morita-equivalent string-net
states with a constant depth quantum circuit, Phys. Rev. B
105, 085130 (2022).

[84] D. Aasen, Z. Wang, and M. B. Hastings, Adiabatic paths
of Hamiltonians, symmetries of topological order, and
automorphism codes, Phys. Rev. B 106, 085122 (2022).

[85] E. Cobanera, G. Ortiz, and Z. Nussinov, Unified approach
to quantum and classical dualities, Phys. Rev. Lett. 104,
020402 (2010).

010338-35


https://doi.org/10.1016/j.nuclphysb.2014.07.003
https://doi.org/10.1016/j.nuclphysb.2017.06.023
https://doi.org/10.1007/s00220-021-04192-x
https://doi.org/10.1007/s00220-014-2067-0
https://doi.org/10.1103/PhysRevB.102.045139
https://doi.org/10.1007/s00220-011-1294-x
https://doi.org/10.1103/PhysRevLett.119.170504
https://doi.org/10.1103/PhysRevB.96.195129
https://doi.org/10.1103/PhysRevB.96.165138
https://doi.org/10.1007/JHEP01(2018)134
https://doi.org/10.1007/JHEP07(2021)025
https://doi.org/10.1103/PhysRevB.104.075141
https://arxiv.org/abs/2207.10712
https://doi.org/10.1103/PRXQuantum.4.020357
https://doi.org/10.1080/00018732.2011.619814
https://arxiv.org/abs/1806.00008
https://doi.org/10.1007/JHEP08(2022)149
https://doi.org/10.1007/BF01339504
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1016/j.nuclphysb.2013.08.014
https://doi.org/10.1063/1.1665530
https://doi.org/10.21468/SciPostPhys.8.1.015
https://doi.org/10.1007/JHEP03(2018)189
https://doi.org/10.1088/1367-2630/12/2/025012
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://arxiv.org/abs/2011.12127
https://doi.org/10.1007/JHEP07(2015)034
https://arxiv.org/abs/1809.07757
https://doi.org/10.1016/S0370-2693(01)00276-3
https://doi.org/10.1016/S0550-3213(02)00744-7
https://doi.org/10.1063/1.5045669
https://arxiv.org/abs/2112.03061
https://arxiv.org/abs/2112.01519
https://doi.org/10.1103/PhysRevA.105.022431
https://arxiv.org/abs/2209.06202
https://doi.org/10.1103/PhysRevB.105.085130
https://doi.org/10.1103/PhysRevB.106.085122
https://doi.org/10.1103/PhysRevLett.104.020402

LOOTENS, DELCAMP, and VERSTRAETE

PRX QUANTUM 5, 010338 (2024)

[86] R. Xu and Z.-H. Zhang, Categorical descriptions of 1-
dimensional gapped phases with Abelian onsite symme-
tries, arXiv:2205.09656 [cond-mat.str-el] (2022).

[87] L. Kong and H. Zheng, Categories of quantum liquids III,
arXiv:2201.05726 [hep-th] (2022).

[88] M. Miiger, From subfactors to categories and topology I:
Frobenius algebras in and Morita equivalence of tensor
categories, J. Pure Appl. Algebra 180, 81 (2003).

[89] M. Miiger, From subfactors to categories and topology II:
The quantum double of tensor categories and subfactors,
J. Pure Appl. Algebra 180, 159 (2003).

[90] P. Etingof, D. Nikshych, and V. Ostrik, Fusion categories
and homotopy theory, Quantum Topology 1, 209 (2010).

[91] See the Supplemental Material at http://link.aps.org/supple
mental/10.1103/PRXQuantum.5.010338 for the categori-
cal data relevant to the example in the main text.

[92] For instance, we work in a basis where F' ;ll 2% evaluates
to the identity matrix whenever Y;, Y, or Y3 is the unit
object; we make similar choices for the other symbols in
this paper.

[93] Note that local operators in Ref. [58] are defined in a
equivalent but different way. The alternative definition
that we employ in this paper will make accounting for
boundary conditions more convenient.

[94] A. Ocneanu, Chirality for operator algebras, Subfactors
(World Scientific Publishing Co., Inc., River Edge, New
Jersey, 1993), 39 (1994).

[95] A. Ocneanu, in Taniguchi Conference on Mathematics,
Nara 98 (2001), Vol. 98, p. 235.

[96] R. Longo and K.-H. Rehren, Nets of subfactors, Rev.
Math. Phys. 07, 567 (1995).

[97] M. Izumi, The structure of sectors associated with Longo-
Rehren inclusions. I: General theory, Commun. Math.
Phys. 213, 127 (2000).

[98] S. Popa, D. Shlyakhtenko, and S. Vaes, Cohomology
and L2-Betti numbers for subfactors and quasi-regular
inclusions, arXiv:1511.07329 [math.OA] (2015).

[99] In Appendix B, we review this correspondence in the case
where D is the category Vecg of G-graded vector spaces.

[100] Note that one of the X; in the resulting FX142%3 gym-
bols is always a simple object in some Morita dual of
the input fusion category, which implies that the potential
obstructions to defining these symbols vanish.

[101] S. Neshveyev and M. Yamashita, A few remarks on the
tube algebra of a monoidal category, Proc. Edinburgh
Math. Soc. 61, 735 (2018).

[102] A.Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[103] In the same way as picking a fusion category D amounts
to focusing on a specific subsymmetry of the total sym-
metry of the Hamiltonian, it prescribes a certain subset of
boundary conditions compatible with the subsymmetry.

[104] S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network
decompositions in the presence of a global symmetry,
Phys. Rev. A 82, 050301 (2010).

[105] A. Weichselbaum, Non-Abelian symmetries in tensor net-
works: A quantum symmetry space approach, Ann. Phys.
(NY) 327, 2972 (2012).

[106] P. Schmoll, S. Singh, M. Rizzi, and R. Orus, A pro-
gramming guide for tensor networks with global SU(2)
symmetry, Ann. Phys. (NY) 419, 168232 (2020).

[107] R. N. C. Pfeifer, P. Corboz, O. Buerschaper, M. Aguado,
M. Troyer, and G. Vidal, Simulation of anyons with
tensor network algorithms, Phys. Rev. B 82, 115126
(2010).

[108] R. Kénig and E. Bilgin, Anyonic entanglement renormal-
ization, Phys. Rev. B 82, 125118 (2010).

[109] R. N. C. Pfeifer, O. Buerschaper, S. Trebst, A. W.
W. Ludwig, M. Troyer, and G. Vidal, Translation
invariance, topology, and protection of criticality in
chains of interacting anyons, Phys. Rev. B 86, 155111
(2012).

[110] D. S. Freed, CRM-CAP Summer School on Particles and
Fields ’94 (to be published).

[111] B. Bartlett, On unitary 2-representations of finite groups
and topological quantum field theory, arXiv:0901.3975
[math.QA] (2009).

[112] A. Bullivant and C. Delcamp, Crossing with the cir-
cle in Dijkgraaf-Witten theory and applications to topo-
logical phases of matter, J. Math. Phys. 63, 081901
(2022).

[113] C. Delcamp, Excitation basis for (3+1)d topological
phases, JHEP 12, 128 (2017).

[114] A. Bullivant and C. Delcamp, Tube algebras, excita-
tions statistics and compactification in gauge models of
topological phases, JHEP 10, 216 (2019).

[115] A. Bullivant and C. Delcamp, Excitations in strict 2-group
higher gauge models of topological phases, JHEP 01, 107
(2020).

[116] T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pear-
son, Non-invertible symmetries and higher representation
theory I, arXiv:2208.05993 [hep-th] (2022).

[117] L. Bhardwaj, S. Schafer-Nameki, and J. Wu, Univer-
sal non-invertible symmetries, arXiv:2208.05973 [hep-th]
(2022).

[118] D. S. Freed, G. W. Moore, and C. Teleman, Topologi-
cal symmetry in quantum field theory, arXiv:2209.07471
[hep-th] (2022).

[119] Y.-Z. You, Z. Bi, A. Rasmussen, K. Slagle, and C. Xu,
Wave function and strange correlator of short-range entan-
gled states, Phys. Rev. Lett. 112, 247202 (2014).

[120] R. Vanhove, L. Lootens, H.-H. Tu, and F. Verstraete,
Topological aspects of the critical three-state Potts model,
J. Phys. A: Math. Theor. 55, 235002 (2022).

[121] A. Chatterjee, W. Ji, and X.-G. Wen, Emergent general-
ized symmetry and maximal symmetry-topological-order,
arXiv:2212.14432 [cond-mat.str-el] (2022).

[122] V. Ostrik, Module categories over the Drinfeld dou-
ble of a finite group, arXiv Mathematics e-prints,
arXiv:math/0202130 [math.QA] (2002).

[123] Alternatively, we can invoke the fact that the forgetful fun-
ctor Res is naturally isomorphic to Homgepg) (C[G], —)
where C[G] is thought as the regular representation of G.
It then follows from the Yoneda lemma that Nat(Res, Res)
is equivalent to C[G] as a vector space and then as a Hopf
algebra.

[124] A. Gruen and S. Morrison, Computing modular data for
pointed fusion categories, arXiv:1808.05060 [math.QA]
(2018).

[125] Y. Hu, N. Geer, and Y.-S. Wu, Full dyon excitation spec-
trum in extended Levin-Wen models, Phys. Rev. B 97,
195154 (2018).

010338-36


https://arxiv.org/abs/2205.09656
https://arxiv.org/abs/2201.05726
https://doi.org/10.1016/S0022-4049(02)00247-5
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.4171/QT/6
http://link.aps.org/supplemental/10.1103/PRXQuantum.5.010338
https://doi.org/10.1142/S0129055X95000232
https://doi.org/10.1007/s002200000234
https://arxiv.org/abs/1511.07329
https://doi.org/10.1017/s0013091517000426
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2020.168232
https://doi.org/10.1103/PhysRevB.82.115126
https://doi.org/10.1103/PhysRevB.82.125118
https://doi.org/10.1103/PhysRevB.86.155111
https://arxiv.org/abs/0901.3975
https://doi.org/10.1063/5.0061214
https://doi.org/10.1007/JHEP12(2017)128
https://doi.org/10.1007/JHEP10(2019)216
https://doi.org/10.1007/JHEP01(2020)107
https://arxiv.org/abs/2208.05993
https://arxiv.org/abs/2208.05973
https://arxiv.org/abs/2209.07471
https://doi.org/10.1103/PhysRevLett.112.247202
https://doi.org/10.1088/1751-8121/ac68b1
https://arxiv.org/abs/2212.14432
https://arxiv.org/abs/math/0202130
https://arxiv.org/abs/1808.05060
https://doi.org/10.1103/PhysRevB.97.195154

	I.. INTRODUCTION
	II.. INFINITE CHAINS
	A.. Technical preliminaries
	B.. Tensor networks
	C.. Symmetric Hamiltonians and dualities
	D.. Illustration

	III.. TOPOLOGICAL SECTORS AND DUALITIES
	A.. Boundary conditions and tube category
	B.. Symmetric operators
	C.. Intertwining tubes and dualities
	D.. Illustration

	IV.. EXAMPLES WITH Rep(S3) SYMMETRY
	A.. Preamble
	B.. Local operators
	C.. M = Vec
	D.. M = Rep(Z2)
	E.. M=Rep(Z3)
	F.. M=Rep(S3)
	G.. Duality Rep(Z2) Vec

	V.. DISCUSSION AND CONCLUSIONS
	A.. Application: Symmetric tensor networks
	B.. Open boundary conditions
	C.. Higher dimensions

	. ACKNOWLEDGMENTS
	. APPENDIX A: MORITA EQUIVALENCE
	1.. Motivating examples
	2.. Definition
	3.. Invariant

	. APPENDIX B: QUANTUM DOUBLE
	1.. Hopf algebra
	2.. Drinfel'd center Z(VecG)
	3.. Drinfel'd center Z(Rep(G))
	4.. Example: D(S3)

	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


