
PRX QUANTUM 5, 010337 (2024)

Partially Fault-Tolerant Quantum Computing Architecture with Error-Corrected
Clifford Gates and Space-Time Efficient Analog Rotations

Yutaro Akahoshi ,1,2,* Kazunori Maruyama ,1,2 Hirotaka Oshima ,1,2 Shintaro Sato ,1,2 and
Keisuke Fujii2,3,4,5

1
Quantum Laboratory, Fujitsu Research, Fujitsu Limited, 4-1-1 Kawasaki, Kanagawa, 211-8588, Japan

2
Fujitsu Quantum Computing Joint Research Division, Center for Quantum Information and Quantum Biology,

Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka, 565-8531, Japan
3
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531,

Japan
4
Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka,

Osaka, 560-0043, Japan
5
RIKEN Center for Quantum Computing, Wako, Saitama, 351-0198, Japan

 (Received 28 March 2023; accepted 22 January 2024; published 5 March 2024)

Quantum computers are expected to drastically accelerate certain computing tasks versus classical com-
puters. Noisy intermediate-scale quantum (NISQ) devices, which have tens to hundreds of noisy physical
qubits, are gradually becoming available, but it is still challenging to achieve useful quantum advan-
tages in meaningful tasks. On the other hand, full fault-tolerant quantum computing (FTQC) based on
quantum error correction code remains far beyond realization due to its extremely large requirement of
high-precision physical qubits. In this study, we propose a quantum computing architecture to close the
gap between NISQ and FTQC architectures. Our architecture is based on erroneous arbitrary rotation gates
and error-corrected Clifford gates implemented by lattice surgery. We omit the typical distillation proto-
col to achieve direct analog rotations and small qubit requirements, and minimize the remnant errors of
the rotations by a carefully designed state injection protocol. Our estimation based on numerical simula-
tions shows that for early-FTQC devices that consist of 104 physical qubits with physical error probability
p = 10−4, we can perform roughly 1.72 × 107 Clifford operations and 3.75 × 104 arbitrary rotations on
64 logical qubits. Such computations cannot be realized by the existing NISQ and FTQC architectures on
the same device, as well as classical computers. We hope that our proposal and the corresponding devel-
opment of quantum algorithms based on it will bring new insights into the realization of practical quantum
computers in the future.

DOI: 10.1103/PRXQuantum.5.010337

I. INTRODUCTION

Quantum computers are expected to provide exponential
speedup of computation in certain tasks, including factor-
ing [1], simulating quantum many-body systems [2,3], and
linear algebraic operations [4]. To realize such a quantum
computer, the development of quantum computing devices
in various physical systems has been actively carried out in
recent years. While fidelity and controllability are diverse,
quantum devices with tens to hundreds of qubits have

*akahoshi.yutaro@fujitsu.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

emerged and are referred to as “noisy intermediate-scale
quantum (NISQ) devices” [5]. Now we are entering an
era of quantum computational supremacy [6–10], where
simulating the behavior of a quantum computer itself is
becoming intractable for a classical computer. Unfortu-
nately, it is still challenging to extract useful quantum
advantages over the classical best approaches from NISQ
devices for practically meaningful tasks. Additionally, the
classical simulation technology of a quantum computer
using supercomputers has recently improved, and it has
been reported that random quantum circuit sampling on
Google’s quantum computer in 2019 can be simulated in
comparable time [11].

The problem with NISQ devices is that they cannot pro-
vide an ultimate solution to the noise issue. Qubits and
the gate operations on them lose their quantum nature due
to decoherence caused by undesirable interactions with

2691-3399/24/5(1)/010337(21) 010337-1 Published by the American Physical Society

https://orcid.org/0009-0005-4263-3791
https://orcid.org/0009-0009-9766-3735
https://orcid.org/0000-0002-6770-0234
https://orcid.org/0000-0002-7249-5570
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.010337&domain=pdf&date_stamp=2024-03-05
http://dx.doi.org/10.1103/PRXQuantum.5.010337
https://creativecommons.org/licenses/by/4.0/

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

the environment, which introduces errors into a quantum
computer. Thus, useful tasks are difficult to perform reli-
ably. Furthermore, the variational quantum algorithm [12]
is based on the estimation of expectation values, and the
number of measurements increases with the number of
qubits. The accuracy becomes poor due to statistical errors
as well as the effects of noise, and the optimization of the
variational parameters becomes extremely difficult [12].
This problem may be solved by increasing the fidelity of
quantum devices and by using techniques such as quan-
tum noise mitigation [13], specifically designed for NISQ
devices. However, it is a nontrivial question whether quan-
tum noise mitigation can solve the noise problem at a
realistic sampling size for quantum computation of the 50-
to 100-qubit level, which is difficult to simulate even with
a classical computer [14]. The ultimate long-term solu-
tion is the realization of fault-tolerant quantum computing
(FTQC) by implementation of quantum error correction
(QEC).

Several experiments have demonstrated the viability of
QEC [15–17]. Error correction will soon allow us to store
quantum information for longer than its physical coherence
time, and to perform fault-tolerant logical gate operations.
However, non-Clifford gates, which are necessary ingre-
dients for quantum speedup, are difficult to implement
fault-tolerantly on the QEC codes such as the surface
code. A special protocol called “magic state distillation”
is used to implement a non-Clifford T gate reliably [18].
Furthermore, the arbitrary angle rotation gates on a logi-
cal qubit require a huge number of T gates when they are
decomposed into Clifford and T gates via Solovay-Kitaev
decomposition. Together with the cost of magic state dis-
tillation and Clifford gate plus T gate decomposition, the
realization of fully fledged FTQC requires an overhead of
hundreds of thousands to millions of qubits [19–22].

In terms of the number of qubits for algorithm viability,
a large gap will exist between the NISQ era and the FTQC
era; the number of qubits that is needed for a meaningful
quantum computation differs by several orders of magni-
tude. While experimental breakthroughs are expected to
emerge to integrate ×106 qubits in the long term, in the
meantime it is also necessary to establish a theoretical
framework that meaningfully exploits early FTQC with
103–104 qubits.

In this study, we propose a framework to hybridize
NISQ and FTQC architectures to close the gap between
them and provide evidence that a quantum computer of
104 qubits has great potential to exhibit quantum advan-
tages in meaningful tasks. In this direction, quantum noise
mitigation designed for NISQ devices has been applied for
FTQC to reduce the required number of physical qubits,
while magic state distillation still requires a huge number
of physical qubits for quantum advantage [23,24]. Here we
integrate the NISQ and FTQC approaches at a deeper level.
More concretely, in our approach, continuous rotational

gates are not protected by QEC but are executed by injec-
tion of ancilla states without magic state distillation. This
allows us to perform a rotation gate by an arbitrary angle
directly. As a drawback, the injection of the ancilla states
on a QEC code suffers from unavoidable errors. In our pro-
posal, we carefully design an injection circuit so that most
errors during the injection are detected and/or corrected
so that the resultant special ancilla states have a mini-
mum error. Furthermore, for the Clifford gates, such as the
controlled-NOT (CNOT), Hadamard (H), and S gates, we use
the rotated planar surface code as usual, and hence errors
are corrected in a scalable way. This allows an almost
error-free implementation of logical Clifford operations
versus the rotation gates.

Combining error-corrected Clifford gates and reason-
ably clean analog rotations, our resource estimation shows
that 3.75 × 104 arbitrary rotation gates and 1.72 × 107

Clifford gates on 64 logical qubits are reliably executed
with use of 104 physical qubits when the physical error
probability is 10−4. Such computations cannot be simu-
lated on classical computers, and even the existing NISQ
and FTQC architectures on the same device cannot real-
ize this amount of computational power. Our architecture
can be applied to useful tasks such as quantum many-body
simulation and the quantum approximation optimization
algorithm (QAOA) thanks to the fast implementation of
the analog rotations. The proposed space-time efficient
analog rotation quantum computing architecture (here-
inafter referred to as “STAR architecture”) provides a new
framework for the use of quantum computers that fills the
gap between the NISQ era and the FTQC era.

II. OVERVIEW OF THE STAR ARCHITECTURE

Before delving into a comprehensive description, we
provide an overview of the STAR architecture in this
section.

Currently, we are in the NISQ era, and the number
of qubits is increasing to hundreds. However, it will be
extremely difficult to fully exploit the computational power
of NISQ devices with hundreds to thousands of qubits,
because NISQ devices suffer from errors in both Clif-
ford and non-Clifford operations. The number of gates
increases due to the SWAP operations at the stage of com-
piling a quantum algorithm to be executable on actual
quantum computing devices with limited qubit connec-
tivity. Moreover, in applications to quantum chemistry,
fermionic rotations, such as the unitary coupled cluster
ansatz, require the entangling gates to generate multi-qubit
Pauli rotations. Most of the gates used there are Clifford
gates such as CNOT gates, which do not make classical sim-
ulation difficult from the viewpoint of the Gottesman-Knill
theorem, while they result in the accumulation of errors. As
a result, the total number of non-Clifford gates that can be
executed is rather limited.

010337-2

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

QEC is a method for entangling multiple qubits and
encoding quantum information in a special subspace to
protect it from noise [25]. Unlike a classical bit, a qubit,
which takes a superposed state through continuous com-
plex probability amplitudes, suffers from continuous ana-
log noise. The orthogonal subspace structure introduced by
a QEC code can collapse such analog noise into digitalized
Pauli X , Y, and Z errors, which are corrected appropriately.
However, the orthogonal subspace structure also makes
operations of the encoded degrees of freedom (DOF) diffi-
cult [26]. Particularly, a fault-tolerant implementation of
the T gate, which is a non-Clifford gate and an essen-
tial ingredient for universal quantum computation, on an
encoded degree of freedom is highly nontrivial. Most QEC
codes do not support fault tolerance for the T gate in a
native way. A special protocol, called “magic state distil-
lation” [18], is necessary to purify noisy magic states and
execute a T gate via gate teleportation [27]. Furthermore,
since the T gate is an π/8 rotation gate around the z axis,
an arbitrary rotation gate can be complied to the sequence
of Clifford gates and T gates by use of the Solovay-
Kitaev algorithm. The state-of-the-art optimal Clifford gate
plus T gate decomposition [28] still requires several tens
of T gates to achieve the 10−4 accuracy of an arbitrary
single-qubit rotational gate, even if this accuracy can be
achievable by physical single-qubit rotation.

If a quantum computer can execute all Clifford oper-
ations ideally and errors are introduced only in analog
non-Clifford operations, more advanced quantum algo-
rithms can be executed even in the era of early FTQC. Our
approach is to construct such an architecture by success-
fully combining fault-tolerant error correction in FTQC

and analog operations in NISQ devices. An overview of
the STAR architecture is summarized in Fig. 1. The key
points are as follows:

(i) Fault-tolerant Clifford gates with QEC.
(ii) Analog rotation gates with reasonably clean ancilla

state injection.

Regarding point (i), since the Clifford gates are protected
by QEC, the connectivity of physical qubits and Clifford
transforms for gates such as multi-qubit Pauli rotations are
not limiting factors to design reliable quantum computing.
We use the rotated planar surface code [29] as a logical
qubit and use lattice surgery [30] to implement the fault-
tolerant logical Clifford gates, as explained in Sec. III.

On the other hand, by virtue of point (ii), we can avoid
the magic state distillation, which is the costly part of
FTQC. This also successfully reduces the computational
cost in a double sense in that it eliminates the need for
decomposition into T gates when one is performing contin-
uous rotation gates. As explained in Sec. IV, we carefully
design a quantum circuit to inject a special ancilla state
into the planar surface code with error detection and post-
selection. Then the reasonably clean ancilla states are used
to implement analog rotation gates via gate teleportation,
where the byproduct is treated by a repeat-until-success
(RUS) approach. In Sec. V, we provide typical logical
qubit arrangements in the STAR architecture. As shown
in Sec. VI, according to our numerical simulations, the
STAR architecture surpasses the existing NISQ and FTQC
architectures on the early-FTQC device as well as classi-
cal computers. We also discuss the possible applications

FIG. 1. Overview of the STAR architecture proposed in this work. The STAR architecture performs universal quantum computation
using the error-corrected Clifford gate and an analog rotation gate. Clifford gates are implemented by lattice surgery based on the
rotated planar surface code. Analog rotation is directly performed, avoiding the magic state distillation, and a special ancilla state
needed for the rotation is cleanly injected into the rotated planar surface code by error detection and postselection. Combined with an
appropriate logical qubit arrangement, the STAR architecture fully exploits the computational power of early-FTQC devices.

010337-3

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

of our architecture there. Section VII concludes this study
and provides a discussion of future directions.

III. FAULT-TOLERANT CLIFFORD GATES

To make the discussion self-contained, we start by
reviewing the existing approaches for encoding quantum
information into the rotated planar surface code and pro-
tecting Clifford gates on the rotated planar surface codes.

A. Rotated planar surface code

The rotated planar surface code is a QEC code that has
good features suitable for early-FTQC devices: a relatively
high threshold value in comparison to other QEC codes
and the requirement of a small number of physical qubits
[29,31]. We summarize its definition in Fig. 2.

Physical qubits constructing the rotated planar surface
code are arranged on the vertices of a two-dimensional lat-
tice (white circles in Fig. 2). X (Z) stabilizer operators are
defined on the faces of the lattice [orange (blue) faces in
Fig. 2], and the logical state is defined as the simultaneous
eigenstate of those stabilizer operators with eigenvalues of
+1. A single surface has two types of boundary, namely,
the X and Z boundaries, along which the logical X and Z
operators are defined as chains of physical X and Z oper-
ators (orange and blue lines on the boundaries in Fig. 2).
The code distance d is equal to the length of a side of the
lattice. In the following discussion, we call a surface that
carries a single logical state a “logical patch” or simply a
“patch.”

To perform the error correction, one measures the
eigenvalues of the stabilizers using measurement qubits
arranged on the faces of the lattice (black circles in Fig. 2).
Measured eigenvalues are called “syndromes” and are used
to infer a possible error pattern. The syndrome measure-
ment circuits that we use in this study are shown in Fig. 3.
Using this circuit, we can measure simultaneously all

FIG. 2. Definition of the rotated planar surface code with code
distance d = 5. White and black circles represent physical qubits
used for encoding and measurement qubits, respectively. Sta-
bilizer operators, which define the logical state, are shown as
orange and blue surfaces. Representative logical operators are
given as solid lines on boundaries.

FIG. 3. Syndrome measurement circuits. X syndrome mea-
surement circuit (top) and Z syndrome measurement circuit
(bottom). The order of CNOT operations is represented by circled
numbers on the left-hand side.

syndromes in eight fundamental operation steps. The order
of CNOT operations between physical and measurement
qubits in Fig. 3 is important for preserving commutation
relations between stabilizer operators. In this study, we
use the order proposed in Ref. [32] to prevent hook errors
along the logical operators.

Errors that occur in the logical qubit are inferred by
observed error syndromes, where the eigenvalue of the sta-
bilizer is flipped from +1 to −1. In the surface code, we
can infer the most likely error pattern as follows. First, we
construct a decoder graph, in which syndromes and error
events are represented by nodes and edges, respectively.
Paths that connect error syndromes in the graph provide
candidates for the actual error pattern, and their length is
related to the number of errors. Therefore, we can adopt
the shortest path among these candidates as the most likely
error pattern by assuming that the errors occur indepen-
dently. The shortest path connecting the error syndrome
is determined by a certain matching algorithm, e.g., the
Edmonds minimum-weight perfect matching (MWPM)
algorithm [33]. In practice, measured syndromes are also
unreliable due to measurement errors; thus, the syndrome
measurement is performed d times and the differences on
the time axis are calculated by our taking the XOR opera-
tion of the temporally neighboring two syndromes (in the
following, we call these differences “syndromes” unless
stated otherwise). Then we can construct a spatiotempo-
ral decoder graph from d sets of syndromes and infer
the most likely error chains including the measurement
errors by the MWPM algorithm. In addition to the MWPM
algorithm, several other ways to perform this error infer-
ence have been proposed, such as the union-find algorithm
[34], the renormalization group decoder [35], and the Ising
model–based approach [36,37]. In this study, we use the
MWPM algorithm to benchmark the performance of the
logical patch.

010337-4

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

B. Clifford gates by lattice surgery

In principle, logical Clifford gates such as the CNOT gate
and the Hadamard gate can be transversally performed in
the planar rotated surface code [29]. In practice, however,
the transversal CNOT gate is difficult to realize for some
devices in which the connectivity between physical qubits
is restricted. A clever way to implement Clifford gates
in this situation is lattice surgery, which consists of two-
patch merging, splitting, and patch deformation [29,30].
The Clifford gates implemented in the STAR architecture
rely on this technique. Here we discuss typical examples to
implement the logical CNOT gate and the logical Hadamard
gate, based on the fundamental operations introduced in
Ref. [30].

A standard logical CNOT operation using lattice surgery
is achieved by merging and splitting a control logical
qubit |C〉 and a target logical qubit |T〉. Figure 4 shows
a sequence of lattice surgery operations for performing
the logical CNOT operation. The logical states |C〉 and
|T〉 are placed as in Fig. 4(a). Then the following lat-
tice surgery operations are performed: expand |C〉 along
the X boundary [Fig. 4(b)], split |C〉 into two patches by
the Z boundary and merge one of them with |T〉 along
the X boundary [Fig. 4(c)], and contract |T〉 along the Z
boundary [Fig. 4(d)]. The operations in Figs. 4(b) and 4(c)
need d rounds of syndrome measurement to determine syn-
drome values, and a total of 2d rounds for the logical CNOT
operation. If the measured XL ⊗ XL eigenvalue, which is
a product of the eigenvalues of the X stabilizers newly
introduced in the X boundary merging in the operation in
Fig. 4(c), is −1, a byproduct operator ZL subsequently acts
on |C〉.

A logical Hadamard gate is simply achieved by transver-
sally applying a physical Hadamard gate on all data qubits.
An important obstacle is that the logical qubit patch after
the operation rotates 90◦ from the original orientation
[Fig. 5(a)]. This rotated orientation can be corrected by
the lattice surgery operations. A typical sequence of the
operation is shown in Fig. 5: expand a patch [Fig. 5(b)],

(a) (b) (c) (d)

FIG. 4. Logical CNOT operation by lattice surgery. Blue
(orange) lines indicate Z (X) boundaries. (a) Initial configura-
tion of two logical patches. (b) Expansion of the control patch
along the X boundary. (c) Splitting of the control patch along the
Z boundary and merging of one of them with the target patch
along the X boundary. These two operations can be performed
simultaneously. (d) Contraction of the target patch along the Z
boundary.

(a)

H

(b) (c) (d) (e)

FIG. 5. Logical Hadamard operation with a boundary rota-
tion by lattice surgery. (a) After application of the transversal
Hadamard gate on a certain patch, its orientation rotates by 90◦.
To fix its orientation, (b) expand the patch first, (c) modify its
boundary, and (d) contract the patch. At this moment its orien-
tation is fixed correctly. (e) The patch is moved to the original
position. This operation can be achieved by combining patch
expansion and contraction.

deform the patch boundary [Fig. 5(c)], contract the patch
[Fig. 5(d)], and move the patch to the original position
[Fig. 5(d)]. In this example, the operations in Figs. 5(b),
5(c), and 5(e) need d rounds of syndrome measurement;
thus, 3d rounds are required in total.

Litinski [30] proposed another way to perform fault-
tolerant quantum computation, in which the Clifford gates
in quantum circuits are moved to the end of the circuits
and absorbed into measurements. The modified circuits
contain multi-qubit Pauli measurements and multi-qubit
Pauli π/8 rotations, which can also be performed by lat-
tice surgery. A typical example of measuring a multi-qubit
Pauli operator XL,1 ⊗ YL,2 ⊗ ZL,3 is given in Fig. 6. Phys-
ical qubits in an ancilla region are first initialized to |+〉
(a red region in Fig. 6), and then the stabilizer operators
in the entire region are measured (including the hatched
area in Fig. 6). The product of the eigenvalues of stabilizer
operators whose eigenvalues are not determined by the ini-
tialization gives the measurement result of XL,1 ⊗ YL,2 ⊗
ZL,3. This operation is performed by d rounds of syndrome
measurement.

The Clifford operations discussed in this section are
closely related to the arrangement of logical qubits, which

FIG. 6. Example of the multi-qubit Pauli measurement XL,1 ⊗
YL,2 ⊗ ZL,3.

010337-5

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

plays an important role in performing quantum computa-
tions with small overheads. We discuss typical examples
of the arrangement in Sec. V.

IV. SPACE-TIME EFFICIENT ANALOG
ROTATION GATE

In this section, we discuss how to implement analog
rotation gates with reasonable accuracy, which is a core
technology of the STAR architecture. We directly perform
analog rotation gates without the lengthy Solovay-Kitaev
decomposition and avoid the costly magic state distillation.
This approach is advantageous in terms of a physical qubit
requirement and execution time. However, a major chal-
lenge is that the logical error rate of the analog rotation
becomes relatively large at O(p). To minimize the logi-
cal error rate, in our proposal, we carefully design a state
injection protocol needed to generate a special ancilla state
for the rotation. The remaining logical error of the analog
rotation becomes a simple phase-flip error and can be fur-
ther mitigated by the probabilistic error cancellation when
the physical error probability is sufficiently small.

A. Repeat-until-success implementation of analog
rotation gate

In the typical Clifford gate plus T gate decomposition
in FTQC, the T gate is implemented by the gate teleporta-
tion circuit with the magic state. Furthermore, to achieve
an analog rotation gate with sufficient accuracy, approx-
imately 100 T gates are required via the Solovay-Kitaev
decomposition [28]. In contrast, the STAR architecture
directly implements the analog rotation gate by using a
special ancilla state |mθ 〉 ≡ RZ(θ) |+〉 = 1√

2
(e−iθ/2 |0〉 +

e+iθ/2 |1〉), where the angle θ can be chosen arbitrarily. The
circuit for implementing the analog rotation is shown in
Fig. 7.

Since we allow arbitrary rotation angles, this imple-
mentation is not deterministic: an output state is a cor-
rectly rotated state RZ(θ) |ψ〉 if the measurement result
in the circuit is +1; otherwise the output is an inversely
rotated state, RZ(−θ) |ψ〉. Both outputs evenly occur. If the
inversely rotated state is obtained, we apply a rotation gate
with angle 2θ on the output state to correct its angle. This
correction is repeated until we obtain RZ(θ) |ψ〉 (RUS).

|ψ〉L MZ

|mθ〉L • XL RZL(θ) |ψ〉L or RZL(−θ) |ψ〉L

FIG. 7. Quantum circuit for the analog Z rotation gate. MZ is a
destructive ZL measurement on a logical patch.

MP⊗Z

P

|mθ〉L MX

FIG. 8. Quantum circuit for the analog multi-qubit Pauli rota-
tion gate.

The average RUS step number for success is given as

1 × 1
2

+ 2 × 1
4

+ 3 × 1
8

+ · · · =
∞∑

i=1

n
2n = 2. (1)

The Clifford gates in Fig. 7 are performed by lattice
surgery.

In the computational scheme using the multi-qubit Pauli
measurement and the multi-qubit Pauli π/8 rotation gate
as mentioned in the previous section, the π/8 rotation
gate needs to be extended to an arbitrary angle multi-qubit
Pauli P rotation gate (e.g., P = X ⊗ Y ⊗ Z). Such multi-
qubit Pauli rotation gates can be realized by a multi-qubit
Pauli P ⊗ Z measurement with target logical qubits and the
ancilla state |mθ 〉 [30], as in the circuit shown in Fig. 8.
If the measurement result of P ⊗ Z is +1, the rotation
succeeds, otherwise we must apply RP(2θ) to the output
state to correct its angle. An X measurement in the circuit
checks whether the output state has a byproduct operator P.
Since the byproduct P commutes with RP(θ) and satisfies
P2 = I , it is sufficient to cancel it after completion of the
entire RUS protocol if the product of all X measurement
values is −1.

B. Low-error state injection protocol

As discussed above, an analog rotation is imple-
mented by circuits comprising error-corrected Clifford
gates. Therefore, the accuracy of the analog rotation is
dominated by the state injection protocol of the special
ancilla state |mθ 〉. In this section, we discuss a low-error
state injection protocol based on postselection.

Error detection and postselection is a promising
approach for near-term quantum computation. For exam-
ple, a recent study [38] proposed a well-designed error
detecting code and increased calculation accuracy by post-
selection over the entire calculation. In contrast, our posts-
election protocol is independent of the data logical patches
involved in the main calculation; thus, our protocol is
scalable to the overall size of the calculation.

The first step of our injection protocol is to generate the
ancilla state encoded in the [[4, 1, 1, 2]] subsystem code

010337-6

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

[39]. This code is defined by four physical qubits (we index
them by subscripts 0–3 in the following discussion) with
two stabilizer operators

SX = X0X1X2X3, SZ = Z0Z1Z2Z3. (2)

The +1 eigenstate of these stabilizers defines a logical
qubit with logical operators

LX = X0X1, LZ = Z0Z2, (3)

and gauge operators

GX = X0X2, GZ = Z0Z1. (4)

The code distance is 2, so it can detect a single error.
A circuit for preparing the ancilla state |mθ 〉L encoded

in the [[4, 1, 1, 2]] subsystem code is shown in Fig. 9.
Hadamard and CNOT operations encode the input state
into the |+〉L state first, and then the logical rotation
gate RZ0Z2(θ) ≡ e−iθ/2(Z0Z2) acts on |+〉L. The output state
is therefore |mθ 〉L up to an irrelevant overall factor. We
assume that the gate RZ0Z2(θ) ≡ e−iθ/2(Z0Z2) can be directly
performed here.

The generated ancilla state may suffer from errors in
practice; thus, we measure syndromes of the [[4, 1, 1, 2]]
subsystem code. Naively, we must measure the weight-
4 stabilizer operator defined in Eq. (2). Because of the
gauge DOF, however, we can measure them as products
of weight-2 gauge operators, whose measurements do not
collapse the logical qubit. This property reduces noise in
the ancilla state since it avoids critical weight-2 hook errors
propagating from the measurement qubits and reduces the
depth of the measurement circuit. As shown in Fig. 10, we
assume that four measurement qubits interact with the two
nearest physical qubits (black circles labeled as M0–M3).
This arrangement can be smoothly embedded in the rotated
surface code as discussed later. The measurement circuit
based on this arrangement is shown in Fig. 11. To detect
measurement errors, the measurement circuit is performed
twice, and we discard the prepared state if the measured
syndromes satisfy one of the following conditions (post-
selection): (i) one (or both) of the syndromes is equal to
−1 or (ii) one (or both) of the bare (the XOR operation
is not performed) syndromes of the first round takes the

|0〉0
RZ0Z2(θ)|0〉1 H •

|0〉2
|0〉3 H •

FIG. 9. Quantum circuit for the injection of the ancilla state
encoded in the [[4, 1, 1, 2]] subsystem code.

FIG. 10. Arrangement of physical and measurement qubits
encoded in the [[4, 1, 1, 2]] subsystem code. White circles labeled
as 0–3 and black circles labeled as M0–M3 represent phys-
ical qubits and measurement qubits, respectively. The solid
line shows the connectivity between measurement qubits and
physical qubits.

value −1, although the syndromes are equal to +1. The
state injection circuit is repeated until this postselection is
passed.

Once we obtain the ancilla state |mθ 〉L that passes the
postselection, we expand it to the rotated surface code with
an arbitrary code distance. After the measurement circuit in
Fig. 11, the gauge DOF are fixed to the eigenstate of GZ =
Z0Z1. In other words, the postselected state is stabilized by

SX = X0X1X2X3, S′
Z = Z0Z1, S′′

Z = Z2Z3, (5)

which is the smallest rotated planar surface code with d =
2. Therefore, its expansion to an arbitrary code distance
patch can be immediately achieved in a standard way in
lattice surgery [29]. We show an example of the expansion
to the d = 5 patch in Fig. 12.

The ancilla state |mθ 〉L is prepared on a certain corner
of the target patch, and other physical qubits in the tar-
get patch are initialized to |0〉 (blue circles in Fig. 12) or

FIG. 11. Syndrome measurement circuit of the [[4, 1, 1, 2]]
subsystem code using the gauge operators. Numbers 0–3 and
M0–M3 represent physical qubits and measurement qubits,
respectively. Meter symbols indicate Z measurements. Gates
grouped by dashed lines are implemented simultaneously.

010337-7

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

(a) (b)

FIG. 12. Expansion of the ancilla state to the d = 5 surface
code patch. (a) The ancilla state is prepared at the upper-left
corner of the target patch. Other physical qubits are initialized
to |0〉 (blue circles) or |+〉 (orange circles). (b) Expansion is
achieved by measuring stabilizer operators of the entire patch
twice. After the syndrome measurement, some stabilizers (shown
by the hatched pattern) have fixed eigenvalues determined by
the initial configuration in an error-free case. These deterministic
syndromes enables us to detect errors occurring on data qubits.

|+〉 (orange circles in Fig. 12). The success rate of the
postselection can be increased by performing the injec-
tion protocol in parallel using the empty space in the target
patch. In this case, one picks up a successful ancilla state
after the parallel injection and refreshes and initializes
other physical qubits in the target patch. Then the syn-
drome measurement of the entire patch is performed twice.
To obtain the ancilla state as clean as possible, we discard
the expanded state if one of the following conditions is sat-
isfied: (i) at least one of the syndromes is equal to −1 or
(ii) at least one of the bare syndromes whose value is deter-
mined by the initial configuration [shown by the hatched
pattern in Fig. 12(2)] takes an unexpected value, although
all syndromes are equal to +1. The state that passes the
second postselection is clean in detectable O(p) error, and
it can be consumed in the gate teleportation circuit in Fig. 7
or the multi-qubit Pauli rotation in Fig. 8.

Under the circuit-level noise model introduced in
Sec. VI A, the logical error probability of the prepared
ancilla state |mθ 〉L behaves as follows:

PZL(p) = 2p/15 + O(p2), (6)

PXL(p) = O(p2), (7)

whose details are discussed in the Appendix. Compared
with the previous state injection protocols, our protocol
achieves greater precision even in more general situations.
We now briefly discuss the difference between other proto-
cols and our protocol. In typical state injection protocols,
one first prepares the ancilla state on a single physical
qubit, and then it is injected into the encoded logical qubit.
Since the first step directly suffers from the noisy qubit
initialization and noisy single-qubit operation, the injected
state has a large logical error rate proportional to p . For

example, the injection protocol proposed in Ref. [40] and
its improved version of the rotated planar surface code [41]
show PL = 46p/15 + O(p2) and PL = 34p/15 + O(p2),
respectively. In contrast, our protocol first generates an
encoded qubit |+〉L, and then applies the logical Z rotation
gate RZ0Z2(θ) on the encoded qubit to generate the ancilla
state. The [[4, 1, 1, 2]] subsystem code is d = 2 and most
logical errors in our protocol occur at O(p2). Moreover,
possible O(p) logical errors are absorbed in part by the
redundant gauge DOF and the circuit structure. Thus, our
protocol achieves smaller error probability than the above-
mentioned protocols. The noisy non-Clifford gate can also
be performed by use of the code deformation [24], but
it has a large logical error rate PL ≈ 30p [24]. Another
recently proposed protocol is transversal injection [42], in
which physical qubits are transversally initialized in a cer-
tain state before the encoding, and then a random state
is injected depending on the initialization. By performing
a postselection, Gavriel et al. [42] report that the logi-
cal error rate of the injected state behaves as PL ≈ 0.39p .
Our protocol is advantageous for injecting a certain tar-
get state with high accuracy because the injected state
has no randomness and achieves greater accuracy. Other
approaches use distance-2 codes utilizing repetition code
[43] and weight-2 hook propagation [44]. However, the
former method is weak for O(p) bit-flip errors and the
latter method still suffers from the propagation of a single-
qubit error that results in a large logical error rate when
the single-qubit error is not negligible. Because our proto-
col is robust with regard to O(p) bit-flip errors and does
not assume that the single-qubit errors are negligible, it is
more versatile.

Although our implementation has a small logical error
rate, logical errors still occur at O(p). These remnant errors
can be mitigated if we consider the evaluation tasks for
the expectation value of some observable. Fortunately,
some proposed algorithms for the early-FTQC era, such as
resource-efficient phase estimation [45], are based on cer-
tain expectation values, so the error mitigation technique
can be applied to obtain accurate results. One possible
mitigation technique applicable to the STAR architec-
ture is probabilistic error cancellation (or quasiprobability
decomposition) [46,47]. We consider the case where the
noise channel is known as a simple phase-flip channel with
error probability P,

E(ρ) = (1 − P)ρ + PZρZ. (8)

In this case we can explicitly construct an “inverse error
channel” E−1 as

E−1(ρ) = 1 − P
1 − 2P

ρ − P
1 − 2P

ZρZ, (9)

010337-8

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

and we can rewrite the noise-free (identity) channel as

I = E−1E = γ ((1 − P)E − PZE) , (10)

where γ = 1/(1 − 2P) and Z is a Pauli Z channel. There-
fore, an error-free expectation value of a certain operator
M can be estimated by the noisy counterpart as

〈M 〉I = γ ((1 − P)〈M 〉E − P〈M 〉ZE) , (11)

where 〈M 〉N = tr (MN (ρ)). By performing Monte Carlo
sampling on an additional Z channel with probability P,
we can approximate Eq. (11) by averaging those samples
with correct overall factors of ±γ . The variance of the
expectation value is amplified by a factor of γ 2 as seen
in Eq. (11), so we need to generate γ 2 times more samples
to suppress amplified statistical fluctuations.

Returning to our analog rotation gate, its leading-order
logical error channel is well described by the phase-flip
channel with PL = 2p/15. If the O(p2) contribution is neg-
ligible, we can completely mitigate the phase-flip channel
by the probabilistic error cancellation. Even if the O(p2)

logical error contribution remains, we can still mitigate the
dominant O(p) contribution by the inverse bit-flip channel
with PL = 2p/15. The fact that the leading-order logical
error is a simple phase-flip channel is another benefit of our
injection protocol. Note that the total step number of the
RUS process varies in each sample, so we cannot directly
mitigate the errors of each RUS step. Instead, we consider
the entire RUS process as a single noisy operation and mit-
igate its error. The logical Z error probability of the entire
RUS process is given as

P =
∞∑

n=1

1
2n PZ,n, (12)

where PZ,n is an error probability when the RUS process is
completed by nth step:

PZ,n =
� n+1

2 �∑

m=1

(
n

2m − 1

)
P2m−1

Z,1 (1 − PZ,1)
n−2m+1

= nPZ,1 + O(P2
Z,1), (13)

PZ,1 = 2p/15. (14)

Since O(P2
Z,1) = O(p2) can be ignored, Eq. (12) becomes

P =
∞∑

n=1

1
2n PZ,n ≈ PZ,1

∞∑

n=1

n
2n = 2PZ,1. (15)

Therefore, we can mitigate the phase-flip error of the entire
RUS process by the probabilistic error cancellation with
P = 2PZ,1 by an additional sampling overhead of γ 2 =

(1/(1 − 2P))2 ≈ e8PZ,1 (P 1). When we perform N ana-
log rotations in a circuit and want to mitigate their noise,
we can immediately extend the discussion by assuming
that N noise channels are independent. In such a case,
the sampling overhead is modified to γ 2N ≈ e8PZ,1N . This
indicates that the sampling overhead grows exponentially
with increasing number of noisy gates. One typical bound
of the realistic number of noisy gates is N ≈ 1/P, where
the sampling overhead is e4 ≈ 55. Note that this overhead
gives the worst-case estimation since some observables are
affected by noise only in the relevant causal cone [48].

Finally, we briefly discuss how the restrictions of real
devices affect our protocol. In real quantum devices, there
are several restrictions on the connectivity between physi-
cal qubits and native gate sets. Regarding the connectivity
restriction, for example, the superconducting qubits can
interact only with their nearest neighbors. If we consider
this restriction in a qubit arrangement such as that in
Fig. 10, only qubits connected by solid black lines inter-
act with each other; thus, the CNOT operation and RZ0Z2(θ)

in the circuit in Fig. 9 cannot be performed directly . In
this situation, one can resolve the connectivity problem by
additionally inserting SWAP gates in the circuit. We show a
simple example to perform our state injection circuit with
SWAP gates in Fig. 13.

Inserted SWAP gates also introduce additional two-qubit
errors, but they occur on certain pairs of measurement
and physical qubits, so they do not lead to logical errors
at O(p). Therefore, the performance of our protocol at
O(p) can be maintained. Regarding the restriction of native
gates, our assumption that the RZ0Z2(θ) gate can be directly
applied may become invalid in some cases. For typical ion-
trap devices and superconducting devices, this assumption
is valid since the X ⊗ X rotation and the Z ⊗ X rotation
(the cross-resonance gate), respectively, can be directly
implemented. If such gates are not supported, indirect
implementations of the RZ0Z2(θ) gate shown should be
used. One straightforward example is the circuit shown
in upper part of Fig. 14. In this example, the logical error
rate of the injected state degrades to PL = 9p/15 + O(p2)

under the circuit-level noise model since the single Z errors
and their propagation through the second CNOT gate lead

(a) (b) (c)

FIG. 13. Example of the insertion of SWAP gates. (a) Initial
physical qubit arrangement. The circuit in Fig. 9 is performed in
this arrangement. (b) Physical qubits 1 and 2 are then swapped to
the neighboring measurement qubits (red circled pairs). (c) Final
arrangement after SWAP operations.

010337-9

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

0 • •
2 RZ2(θ)

0 • •
2 • •

M4 |0〉 RZM4(θ)

FIG. 14. Examples of a circuit for indirectly performing the
RZ0Z2(θ) operation. Top: RZ0Z2(θ) can be performed with use
of a single-qubit rotation RZ2(θ) and CNOT operations. The log-
ical error rate degrades to PL = 9p/15 + O(p2) in this circuit
since there are more error patterns generating the logical Z error.
Bottom: An alternative RZ0Z2(θ) operation circuit using another
ancilla qubit, M4. The final Z measurement of the ancilla qubit
M4 is necessary to detect O(p) X errors that flip θ to −θ . The
logical error rate becomes PL = 7p/15 + O(p2) in this circuit.

to additional undetectable logical Z errors. If an ancilla
qubit is available for this operation, we can use another cir-
cuit, where the logical error rate behaves as PL = 7p/15 +
O(p2) [Fig. 14 (Lower)]. The ancilla qubit is measured by
the Z basis after the operation to detect X errors that flip
the rotation angle θ to −θ . If any X error is detected, the
injection protocol will be restarted. Such variations for the
Z ⊗ Z rotation can also be useful to reduce the coherent
error of the rotation gate, which may cause, for example,
logical over-rotation. Although the detailed discussion of
the coherent error depends on the physical realization of
qubits and gates, one can, for example, perform the Z ⊗ Z
rotation by using the circuit in the upper part of Fig. 14
with the virtual Z rotation gate. In this case, the virtual Z
rotation is free from the coherent error, and other coher-
ent noise in CNOT operations can be twirled and partially
removed by postselection. In the resource estimation dis-
cussed in Sec. VI, we directly perform the circuit in Fig. 9
without specifying any device restriction.

V. LOGICAL QUBIT ARRANGEMENT

As mentioned in Sec. III B, mainly two schemes are used
to perform quantum computations by lattice surgery: (i)
original quantum circuits are computed by use of explicit
logical Clifford gates and single-qubit rotation gates RZ(θ)

and (ii) quantum circuits are converted to alternative forms
comprising multi-qubit Pauli rotation gates and multi-qubit
Pauli measurements beforehand and then the converted
circuits are computed. The former case is suitable for cal-
culating quantum circuits that have a high parallelism of
the rotation gates since the rotation gate acts on only a sin-
gle logical qubit and can be performed in parallel. A major
drawback is that we must implement costly logical Clifford
operations, which need 2d or 3d rounds of syndrome mea-
surement and an additional ancilla patch. In the latter case,
on the other hand, the number of physical qubits required

FIG. 15. Data unit that carries a data logical qubit and ancilla
state for rotation gates. Actual data are carried by the logical
patch labeled as |ψ〉, and the other patch labeled as |mθ 〉 is the
ancilla state for the rotation gate.

is small because it does not need an ancilla region for the
explicit Clifford gates. Instead, multi-qubit Pauli rotation
gates are difficult to parallelize because of the anticommu-
tation relations between them. Therefore, we can say that
the latter scheme is suitable for calculating quantum cir-
cuits that contain the rotation gates sparsely or have a small
parallelism of the rotation gates.

The arrangement of the logical qubit patches strongly
depends on these schemes. Moreover, a trade-off relation-
ship holds between the efficiency of the number of logical
qubits and the execution time of the operations in general.
To minimize unnecessary overheads, one needs to find an
optimal arrangement for an input quantum circuit. Addi-
tionally, the input circuit possibly must be converted into
a suitable form before the determination of the optimal
arrangement. A logical qubit arrangement optimizer and
circuit compiler are mandatory for maximizing the compu-
tational power of the STAR architecture, but this is beyond
the scope of this paper. Here we illustrate only some typi-
cal arrangements of the logical qubit in both schemes. The
development of a circuit compiler and arrangement opti-
mizer for the STAR architecture will be one of the most
important future studies.

In scheme (i), the ancilla state |mθ 〉 should be prepared
in parallel for each data logical qubit to maximize the merit
of the parallelism of rotation gates. Given that the gate
teleportation circuit in Fig. 7 needs at least three logical
patches because of the logical CNOT operation, it is better
to group four logical patches as a unit, which carry a data
logical qubit and an ancilla qubit for parallel rotation gates,

FIG. 16. Example of the qubit arrangement in scheme (i) with
n = 6. Data units are arranged in a row.

010337-10

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

(a) (b) (c)

FIG. 17. RUS protocol within the data unit. (a) The gate tele-
portation circuit in Fig. 7 is computed with use of three patches,
where |mθ 〉 and |ψ〉 are the control qubit and the target qubit of
the CNOT gate, respectively (red square). During the computa-
tion, we can prepare the ancilla state |m2θ 〉 for the next RUS step
in the lower-right patch (dashed green square). If the output state
|ψ ′〉 is not correct, (b) the prepared ancilla state moves to the next
patch and then (c) the next step of the RUS protocol begins. We
can also prepare |m4θ 〉 using the upper-left patch.

as shown in Fig. 15 (note that the same structure was pro-
posed in Ref. [49]). Figure 16 exemplifies the arrangement
based on this unit. This example requires at least 4n logical
patches to allocate n data logical qubits.

We can perform the RUS protocol within the unit as
shown in Fig. 17. Because a single patch is free during
the gate teleportation circuit, we can prepare the ancilla
state needed for the next RUS step with a small over-
head [dashed green square in Fig. 17(a)]. Additionally, the
patch rotation after the logical H operation (Fig. 5) can
be done with use of two patches in the unit. The logi-
cal CNOT operation can be directly applied to neighboring
units with additional patch movements. Moreover, remote
CNOT operations between distant units can be realized with
use of the ancilla region. We show examples of those log-
ical CNOT operations in Figs. 18 and 19. Note that one
cannot perform some remote CNOT operations in parallel
in the architecture in Fig. 16 because their ancillae cannot
overlap. To minimize such conflicts, it is better to optimize
the mapping of the quantum circuit.

The requirement of the 4n logical patch discussed above
may be somewhat large. Fortunately, we can use the multi-
qubit Pauli measurement–based rotation circuit in Fig. 8
instead of the gate teleportation circuit in Fig. 7 to reduce
the number of logical qubit patches. If we use the circuit
in Fig. 8 for a single-qubit rotation, we must measure the

(a) (b)

FIG. 18. Direct logical CNOT operation between neighboring
data units. (a) The logical patches in these units first move to
the appropriate positions and then (b) the CNOT operation is
performed (red square).

(a) (b)

FIG. 19. Remote logical CNOT operation. (a) Logical patches
move to the appropriate positions. (b) The CNOT operation is then
performed with use of a long ancilla patch (red square).

Z ⊗ Z operator over the target logical state and the ancilla
state, but it can be immediately performed by the Z bound-
ary merging and splitting of these states [30]. Furthermore,
unlike the circuit in Fig. 7, the target logical state does not
move after the rotation; thus, no unnecessary overhead is
needed to bring it back to the correct place. Therefore, in
this case, we can perform the RUS protocol by a unit of
three logical patches contacting each other on Z boundaries
as shown in Fig. 20. During a single rotation performed by
two of the three patches, the other patch can prepare the
ancilla state for the next rotation. Because the target log-
ical patch remains at the same position after the rotation,
the next rotation step can immediately start. Figure 21(a)
provides a typical arrangement in this case, which requires
3n logical patches to allocate n data logical qubits. One
can perform CNOT operations between logical patches and
patch deformations in the same way as in the previous
arrangement in Fig. 16 using the ancilla region. Note that if
the overhead of the state injection does not need to be hid-
den, then the number of the logical patches can be further
reduced to 2n, as shown in Fig. 21(b). Although we con-
sider mainly the case in which all data logical patches have
identical unit structures, they can be mixed to minimize the
computational overhead.

The prototypical logical qubit arrangement in scheme
(ii) was proposed in detail in Ref. [30], and we only briefly

(a) (b)

FIG. 20. RUS protocol based on the multi-qubit Pauli rota-
tion circuit in Fig. 8. (a) A single Z rotation circuit is imple-
mented by a Z ⊗ Z measurement between the target state and
the ancilla state (red square). During the operation, the other log-
ical patch can be used to prepare the next ancilla state (dashed
green square). (b) After the first RUS step, the output state |ψ ′〉
remains; thus, the next RUS step can start immediately.

010337-11

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

(a)

(b)

FIG. 21. Typical qubit arrangement in scheme (i) based on
the circuit in Fig. 8 with n = 6. (a) Arrangement requiring 3n
patches. Each column of three patches constructs a unit to imple-
ment the RUS protocol, and they are arranged in a row. An ancilla
region is used not only to parallellize Z rotations but also to per-
form other operations, such as logical CNOT operations and patch
deformations. (b) Minimum arrangement requiring 2n patches.
Although this arrangement cannot hide the overhead of the state
injection during the RUS protocol, it requires only 2n patches to
allocate n data logical qubits.

introduce it here. Since the early-FTQC device has a lim-
ited number of physical qubits, the compact block and
the intermediate block [30] are suitable for our purpose.
Figure 22 shows typical examples of each cases. In these
example, we assume that the multi-qubit Pauli rotation
gates are sequentially performed. We allocate two addi-
tional patches for the injection of the ancilla state |mθ 〉
to hide the overhead of the state injection behind the
execution time of a single RUS step by consuming and
generating the ancilla states consecutively. The minimum
construction using the compact and intermediate blocks

(a)

(b)

FIG. 22. Example of the qubit arrangement in scheme (ii),
based on the data blocks discussed in Ref. [30]. (a) Compact
block for n = 6. Gray patches represent data logical qubits. We
allocate two patches to prepare the ancilla state (green) to reduce
its additional overhead. (b) Intermediate block for n = 6.

requires 1.5n + 5 and 2n + 6 logical patches, respectively,
to allocate n data logical qubits.

VI. PERFORMANCE OF THE STAR
ARCHITECTURE

To estimate the performance of our proposal quanti-
tatively, we perform numerical simulations on the error
correction of the surface code patch (related to the orange-
square part in Fig. 1) and the ancilla state injection (related
to the blue-square part in Fig. 1). In this section, we show
the results of these simulations and estimate the computa-
tional resources available for early-FTQC devices on the
basis of these results. We also briefly discuss possible
applications of the STAR architecture on the basis of the
estimation.

A. Logical error probability of the rotated surface
code patch

In the simulation of the error correction of the rotated
surface code, we assume that Hadamard and CNOT gates,
initialization to |0〉, and measurement in the Z basis are
available as physical qubit operations, so that we use the
depth-8 measurement circuit in Fig. 3. Noise processes
are simulated by the circuit-level noise model, in which
all operations on physical qubits suffer from errors: noisy
qubit initialization and measurement flip to an orthogonal
state with probability p , and noisy Hadamard and CNOT
gates are simulated by ideal gate operations followed by
the depolarizing noise channels

Esingle(ρ) = (1 − p)ρ + p
3
(X ρX + YρY + ZρZ) , (16)

and

Edouble(ρ) =
(

1 − 16
15

p
)
ρ + p

15

∑

E∈{I ,X ,Y,Z}⊗2

EρE, (17)

respectively. Noisy identity gates are inserted whenever
physical qubits are idle. We assume that all errors occur
with common probability p . All measurement circuits
are performed in parallel and performed d times to treat
measurement errors. The last measurement round is per-
formed ideally. For the decoding, we use PyMatching
[50], an open-source PYTHON/C++ library, to implement
the MWPM algorithm. We consider hook error edges in
the construction of the decoder graph to decode errors
correctly up to O(p�(d−1)/2�).

Logical error rates PL,i(i = Z, X) are determined by 107

Monte Carlo samples for each physical error rate p . For
a resource estimation under a limited number of physical
qubits available in the early-FTQC era, we consider small
code distances of up to d = 9 and a physical error rate
of p ∈ [10−4, 10−3]. Figure 23 shows the resultant logical
error rates obtained in our simulation.

010337-12

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

FIG. 23. Logical Z (left) and X (right) error rates of the rotated surface code patch. The error bars indicate ±1σ statistical errors
estimated by a standard deviation of the Monte Carlo samples.

Because the data obtained seem to behave linearly in
the log-log plot as seen in Fig. 23, we can expect that the
p dependence of the logical error rate is well described by

PL,i(p) = Ci

(
p

pth,i

) d+1
2

(i = Z, X), (18)

where Ci and pth,i(i = Z, X) are constant parameters,
within the range of the physical error rate we consider. We
determine those parameters by fittings using the numerical
results for d = 7 and 9. We show the optimized param-
eters and the behaviors of Eq. (18) with the optimized
parameters in Table I and Fig. 24, respectively.

As expected, the numerical data are well fitted by the
function of Eq. (18). We also observe that the threshold
value pth,X obtained is larger than pth,Z , which is a well-
known behavior resulting from the circuit asymmetry in
Fig. 3 [31]. In the later resource estimation, we use Eq. (18)
with the mean values of the optimized parameters (solid
black lines in Fig. 24).

B. Logical error probability of the ancilla state

In this study, we simulate the entire process of the
state injection protocol discussed in Sec. IV B. Because
the target patch after the expansion contains many phys-
ical qubits, the simulation is performed on the basis of
the stabilizer formalism [51]. The stabilizer simulation
does not support non-Clifford gates; thus, we take θ =
0. We can justify this assumption as follows: First, in
this setup, we cannot estimate the logical X error rate

TABLE I. Parameters of Eq. (18) optimized by the fitting. Sta-
tistical errors are estimated by the jackknife method with a bin
size of 104.

CZ pth,Z CX pth,X

0.0679(76) 0.00385(10) 0.0819(97) 0.00416(12)

because the prepared state is now RZ(0) |+〉 = |+〉, on
which the logical X operator does nothing. As discussed
in the Appendix, however, the logical X error occurs
only at O(p2) and can be ignored if we are interested in
the leading O(p) logical error rate. Second, the elimina-
tion of RZ0Z2(θ) ignores some error propagation processes
occurring at O(p), such as RZ0Z2(θ)X0 = X0RZ0Z2(−2θ)×
RZ0Z2(θ), but those errors always occur together with a sin-
gle Pauli X operator, which is detectable in the following
postselection. Therefore, the elimination does not modify
the leading O(p) logical error rate. We use the circuit-level
noise model and the same assumption on the fundamen-
tal operations as in the simulation of the surface code
patch discussed in Sec. VI A. Syndrome measurements are
performed with the circuits in Figs. 3 and 11. The last
syndrome measurement in the protocol is performed ide-
ally. For the ancilla state that passes all the postselections,
we measure the logical X operator and check whether the
logical Z error occurs. We estimate the failure rate of the
postselection and the logical Z error rate of the prepared
ancilla state by counting these events for all Monte Carlo
samples.

For the resource estimation, we consider the target
surface code patch with d = 3, 5, 7, and 9 and a phys-
ical error rate of p ∈ [10−5, 10−3]. The failure rate and
the logical Z error rate are estimated with use of 8 ×
106 (4 × 106) Monte Carlo samples with p ∈ [10−5, 10−4]
(p ∈ [10−4, 10−3]). Figures 25 and 26 show the numeri-
cal results for the logical Z error rate and the failure rate,
respectively.

First, we discuss the resultant logical Z error rate. As
discussed in the Appendix, under the circuit-level noise
model, the leading-order behavior of the logical Z error
rate is analytically given as PL,Z = 2p/15 + O(p2). Our
numerical result in Fig. 25 (top) shows that the logical Z
error rate actually approaches the leading-order behavior
when the physical error rate p becomes small. Moreover,
from Fig. 25 (bottom), we confirm that the subleading

010337-13

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

FIG. 24. Fitting results for the logical error rates with d = 7 and 9. The scaling of Eq. (18) with the mean values of the optimized
parameters is shown as solid black lines.

contribution of O(p2) can be ignored at a physical error
rate below 10−4. Combining this observation with the fact
that the logical X error rate in the ancilla state is O(p2), we
can assume that the logical X error is also negligible below
p = 10−4. Next, we examine the failure rate of the postse-
lection (Fig. 26). We observe that the failure rate increases

FIG. 25. Logical Z error rates of the ancilla state prepared in
the surface code patches with d = 3, 5, 7, and 9. The dashed
line shows the leading-order behavior expected under the circuit-
level noise model, PL,Z(p) = 2p/15. The error bars indicate
±1σ statistical errors estimated by the standard deviation. Top:
p dependence in the range p ∈ [10−5, 10−3]. Bottom: Enlarged
view in the range p ∈ [10−5, 10−4].

when the code distance becomes longer. This behavior is
due to the longer distance code having more possible error
configurations at O(p), which are captured by the second
postselection in our protocol. This large failure rate results
in a large overhead for the state injection, and therefore
we must reduce it using certain techniques. One solution
is to repeat the protocol many times and reduce the effec-
tive failure rate. This can be achieved naively by parallel
injection using multiple patches, although this approach
requires an additional space cost. Alternatively, we may

FIG. 26. Failure probability of the postselection in our proto-
col. Top: p dependence in the range p ∈ [10−5, 10−3]. Bottom:
Enlarged view in the range p ∈ [10−5, 10−4].

010337-14

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

reduce the effective failure rate without any additional
space cost by parallelizing the protocol along the “time
direction.” To this end, one should first notice that the
ancilla injection protocol can be performed within four
rounds of the syndrome measurement (strictly, the total
depth of the entire circuit can be 2 + 7 + 6 + 2 × 8 = 31
when we maximally overlap the circuits in Figs. 3, 9,
and 11). If we consider the RUS protocol shown in Fig. 17,
we have a time interval of 2d rounds of the syndrome
measurement during a single RUS step, and then we can
perform the state injection protocol roughly 2d/4 = d/2
times. With p = 10−4 and d = 9, we have a failure rate
of approximately 10% as observed in Fig. 26 (right), but
9/2 ≈ 4 runs of the protocol effectively reduce the failure
rate to 0.01%.

C. Resource estimation

In this section, we estimate a computational resource
for early-FTQC devices on the basis of the results of
the numerical simulations. Here we assume that a target
device has N = 104 physical qubits with physical error
probability p = 10−4.

Initially, we consider the number of logical qubits we
can allocate. This number depends on the scheme for cal-
culating a given circuit, as discussed in Sec. V. Since
scheme (ii) in Sec. V is more efficient regarding the space
cost, we consider it first. In the minimum construction
using the compact block, we need at least 1.5n + 5 logical
patches to allocate n data logical qubits. A single rotated
surface code patch with code distance d needs approxi-
mately 2d2 physical qubits, and therefore (1.5n + 5)× 2d2

physical qubits are needed in total. If N = 104, we can
allocate approximately 64 (approximately 37) data logi-
cal qubits for the d = 7 (d = 9) surface code patch in this
setup. The same estimation for scheme (i) in Sec. V results
in approximately 51 (approximately 30) data logical qubits
for d = 7 (d = 9) if we use the smallest arrangement in
Fig. 21(b).

Next, we estimate the number of gate operations we
can perform on those data logical qubits. Regarding the
logical Clifford operation, by our assuming that the error
channel for the logical Clifford gate is an independent
logical Z and X error channel, its logical error rate per
d rounds of the syndrome measurement can be given as
PL,round ≈ PL,Z + PL,X , where PL,Z and PL,X are the logical
error rates obtained by the numerical simulation discussed
in Sec. VI A. Using the fitting result for the logical error
rates given in Table I, we can estimate PL,round as approx-
imately 5.82 × 10−8 (approximately 1.46 × 10−9) for the
d = 7 (d = 9) logical patch with p = 10−4. The available
number of Clifford gates can be estimated as NClifford ≈
1/PL,round, leading to NClifford ≈ 1.72 × 107 (NClifford ≈
6.85 × 108) for the d = 7 (d = 9) logical patch with p =
10−4. This number is sufficiently large, and d = 7 or d = 9

may be sufficient for most applications in the early-FTQC
era. Note that, in practice, the estimated NClifford may be
divided by a certain O(1) factor because some logical
operations need more measurement rounds than d rounds
(e.g., the explicit logical CNOT operation needs 2d mea-
surement rounds). However, this factor is not expected
to change the estimation drastically, so we consider only
the estimated value of NClifford above as representative.
The available number of analog rotation gates can be esti-
mated similarly. For p = 10−4, we can ignore the O(p2)

contributions of the logical error rate as observed in the
numerical simulation discussed in Sec. VI B. Therefore, a
single rotation gate has a logical error rate of PL,rotation =
2p/15 ≈ 1.3 × 10−5. Since the actual rotation gate needs
two RUS steps on average, we can estimate the available
number of the rotation gates as Nrotation ≈ 1/(2PL,rotation) =
3.75 × 104. As discussed in Sec. IV, the remnant error of
Nrotation analog rotations can be mitigated by the probabilis-
tic error cancellation with an additional sampling overhead
γ 2Nrotation ≈ e8PL,rotationNrotation ≈ 55. Note that since the sam-
pling overhead of probabilistic error cancellation grows
exponentially as approximately e8PL,rotationNrotation , the num-
ber of rotation gates cannot increase drastically from the
estimation above in general. In some cases where one does
not need to remove the effect of noise completely, how-
ever, one can perform more rotation gates: for example,
tasks that allow some margin of error and evaluation tasks
for local observables that require only the error mitigation
of the relevant noisy gates included in the causal cone [48].

In summary, assuming that N = 104 and p = 10−4, the
STAR architecture based on the d = 7 (d = 9) surface
code patch can perform quantum circuits using 64 (37)
data qubits, which comprise 1.72 × 107 (6.85 × 108) Clif-
ford gates and 3.75 × 104 arbitrary rotation gates. Notably,
we can perform more than 104 arbitrary rotations and
many error-corrected Clifford gates on 64 logical qubits
with a relatively lenient requirement, namely, N = 104 and
p = 10−4. Computations of this size cannot be simulated
by classical supercomputers and state-of-the-art classical
algorithms [52,53]. Even if we choose the d = 9 case,
which classical supercomputers can simulate, it still pro-
vides a useful test bed for small-scale FTQC experiments
through the direct comparisons with classical simulations.

D. Comparison with existing NISQ and FTQC
architectures

To clarify an advantage of our architecture, we com-
pare its performance with the performance of naive NISQ
architectures and existing FTQC architectures.

A typical performance metric for the NISQ architecture
is the quantum volume VQ [54], which quantifies the typ-
ical size of a correctly executable circuit. To measure VQ,
we use a benchmark circuit with m qubits and d layers,
as shown in Fig. 27. Each layer comprises a permutation

010337-15

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

|0〉

π

SU(4)

π

SU(4)
|0〉

|0〉
SU(4) SU(4)

|0〉

FIG. 27. Benchmark circuit used to measure the quantum vol-
ume with m = 4 and d = 2. Operations grouped by dashed lines
form a single layer.

(depicted by π in Fig. 27) and two-qubit unitary gates
[depicted by SU(4) in Fig. 27]. The permutations and
two-qubit unitaries in the benchmark circuit are randomly
chosen and an output distribution is determined by our
averaging over these randomly generated circuits. By con-
sidering the heavy output generation problem [54] on the
output distribution, one can judge whether the circuit is
implemented successfully: if the heavy output probability
is more than two thirds, the circuit is considered reasonably
executed; otherwise the computation failed. VQ is defined
by the maximum size mmax of the square-shaped (m =
d) benchmark circuit that is successfully implemented,
log2 VQ = mmax. To compare the performance between the
STAR architecture and the naive NISQ architecture, we
consider, for example, a quantum device comprising 104

physical qubits with a square grid connectivity and error
rate p = 10−4. According to Ref. [54], the size m(= d)
of the square-shaped circuit that can be executed correctly
satisfies

m2(1.29
√

m − 0.78)p < 1, (19)

when the single-qubit error rate is negligible versus the
two-qubit error rate. The

√
m factor comes from the restric-

tion of the square grid connectivity. By inserting the phys-
ical error rate p = 10−4 into Eq. (19), we can estimate
the quantum volume as log2 VQ = 37 [55]. Regarding the
STAR architecture, on the other hand, the permutations
can be performed ideally and only the SU(4) gates suf-
fer from errors. To quantify the error rate of the SU(4)
gate, we use the fact that the SU(4) gate U can be decom-
posed as U = K1A(α,β, γ)K2, where Ki(i = 1, 2) are ten-
sor products of single-qubit unitary gates and A(α,β, γ) =
exp[i (αX ⊗ X + βY ⊗ Y + γZ ⊗ Z)] [54]. Each of the
single-qubit unitary gates as well as A(α,β, γ) is imple-
mented by three analog rotations. Therefore, the entire
SU(4) gate U can be implemented by 3 × 4 + 3 = 15 ana-
log rotations. Thus, the size m of the square-shaped circuit
that can be executed correctly satisfies

m2 × (15/2)× 2.6 × 10−5 < 1, (20)

and an allowed maximum size is m = 71. Since the STAR
architecture can prepare 64 logical qubits on 104 physical
qubits, it can achieve log2 VQ = 64, which is substantially
larger than that of the naive NISQ architecture. This result
indicates that the STAR architecture reaches an advanced
stage of quantum computation by successfully integrating
error-corrected Clifford gates and noisy analog rotations
when the physical error rate is sufficiently small. Note that
this advantage gradually decreases if the physical error rate
approaches the threshold value near pth = 0.4% because
the suppression of the logical error of the Clifford gates
becomes poor. Therefore, to overcome the difficulty asso-
ciated with the NISQ architecture in the early-FTQC era,
it is important to achieve a sufficiently small physical error
rate below the threshold.

Next, we compare the STAR architecture with the exist-
ing FTQC architectures. Presently, the best space-efficient
FTQC architecture is the one reported in Ref. [30] and
was introduced in Sec. III B. To compare it with the STAR
architecture, we first note that the STAR architecture can
perform an analog multi-qubit Pauli rotation with a logi-
cal error rate ε of 2.6 × 10−5 within 18 clocks on average
(here we call an execution time of d rounds of the syn-
drome measurements “1 clock”) since the compact block
consumes one magic state in 9 clocks in the worst case
[30]. In the following discussion, we estimate the resources
needed to achieve the same performance of the analog
multi-qubit Pauli rotation using the existing FTQC archi-
tecture. On this basis, we estimate the available computa-
tional power of the existing FTQC architecture under the
restriction of a quantum device that comprises 104 phys-
ical qubits with a square grid connectivity and error rate
p = 10−4.

The Clifford gates are implemented by lattice surgery in
both architectures; thus, we fix the code distance to d = 7
to make their performances even. Using the existing state
injection protocol proposed in Ref. [40], a bare magic state
is obtained with error rate 46p/15 ≈ 3.1 × 10−4. Because
we must implement tens or hundreds of T gates to perform
analog rotation, this accuracy is insufficient and we must
distill the magic state. Using the typical 15-to-1 distillation
protocol [30], we obtain a clean magic state with accu-
racy of 35 × (3.1 × 10−4)3 ≈ 1.0 × 10−9, the precision of
which is sufficient for our purpose. Therefore, to achieve
an accuracy ε of 2.6 × 10−5 for a single analog rotation,
the remaining task is to decompose the analog rotation gate
into the sequence of Clifford gates and T gates with accu-
racy ε. According to the state-of-the-art algorithm [28],
the required number of T gates to achieve approximation
accuracy δ roughly behaves as N ≈ 3 log2(1/δ) [56]. By
substituting δ = ε = 2.6 × 10−5, we obtain N ≈ 46. Thus,
the existing FTQC architecture needs at least 46 clocks to
implement the analog rotation, which is approximately 2.6-
fold slower than the STAR architecture. This clearly show

010337-16

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

that the direct analog rotation is inherently advantageous
for the fast operation.

Furthermore, in the FTQC architecture, a trade-off rela-
tionship holds between the execution time of the non-
Clifford gate and the number of physical qubits because
of the slow supply of the magic state by a single distilla-
tion block. First, we consider the case in which a single
T gate takes 1 clock to implement. This case is related
to the fast block in Ref. [30], which needs 2n + √

8n + 1
patches to allocate n logical qubits. In addition to the
data block, we need a magic state factory that can sup-
ply one magic state per clock. According to Ref. [30],
a single 15-to-1 distillation block can supply one magic
state in 11 clocks using at least 11 patches. To achieve the
required magic state supply rate, we must implement 11
distillation protocols in parallel; thus, at least 11 × 11 =
121 patches are required. If we consider the d = 7 sur-
face code, we can prepare at most 104/(2 × 72) ≈ 102
patches and cannot even allocate the magic state factory.
To reduce the physical qubit overhead, we can use other
data blocks, such as an intermediate block or a compact
block, at the expense of operation speed. The interme-
diate block (compact block) takes 5 clocks (9 clocks) to
implement a single T gate [30], and the number of distil-
lation blocks in the factory can be reduced to three (two),
respectively. The magic state factory requires 11 × 3 = 33
(11 × 2 = 22) patches; thus, we can allocate logical qubits
by using the remaining 102 − 33 = 69 (102 − 22 = 80)
patches. Because the intermediate block (compact block)
requires 2n + 4 (1.5n + 3) patches to allocate n logical
qubits, we can allocate n = 32 (n = 51) logical qubits. The
intermediate block architecture can easily be simulated
by existing classical supercomputers, and it is difficult to
provide useful quantum advantages with the 104 physi-
cal qubit device. Although the compact block architecture
enters a classically intractable region, its available logical
qubits are fewer than in the STAR architecture (n = 64)
and its execution time is 23 times slower than that of the
STAR architecture. Therefore, the STAR architecture is
advantageous in terms of the logical qubit number and exe-
cution time. We summarize the performance of the existing
FTQC architecture and the STAR architecture in Table II.

Although the STAR architecture always has advantages
against the FTQC architecture in terms of the execution
speed and the number of logical qubits, the executable
number of rotation gates is restricted by the inverse of
the physical error rate. Therefore, the development of the
low-error physical qubit is important again. In addition to
hardware improvement, algorithmic improvement is also
mandatory to achieve useful applications with a small
number of rotation gates. If fully fledged FTQC becomes
available in the future, it will be necessary to use the STAR
architecture and the FTQC architecture differently depend-
ing on the application. For example, quantum circuits in
which the number of arbitrary rotations is not so large can

TABLE II. Comparison between the STAR architecture and the
existing FTQC architecture [30] on an early-FTQC device that
consists of 104 physical qubits with a square grid connectivity
and error rate p = 10−4.

Architecture

Number of
logical
qubits

Non-Clifford gate
execution time

(clocks)

STAR compact (d = 7) 64 18
FTQC fast (d = 7) 0 46
FTQC intermediate (d = 7) 32 230
FTQC compact (d = 7) 51 414

be efficiently calculated with use of the STAR architec-
ture, while in the case of quantum circuits that comprise
an extremely large number of gate operations, the calcula-
tion is performed with high accuracy with use of the FTQC
architecture.

In summary, the STAR architecture can outperform a
naive application of the NISQ architecture and the FTQC
architecture to the early-FTQC device. Its advantage ver-
sus the NISQ architecture is attributed mainly to the error
correction of the Clifford gates. Furthermore, compared
with the existing FTQC architecture, we can say that the
combination of the direct implementation of the analog
rotation gate and the careful state injection protocol makes
the STAR architecture faster and smaller with minimum
compromising accuracy.

E. Possible applications

Finally, we briefly discuss possible applications of the
STAR architecture. Here we show only some naive exam-
ples and typical calculation sizes based on the resource
estimation. A detailed examination of the useful applica-
tions is an important future issue.

One promising application of the STAR architecture
is a quantum many-body simulation because the time-
evolution operator can be implemented easily by ana-
log rotation gates. For example, we consider a two-
dimensional Hubbard model with N = NxNy sites. By
using the Jordan-Wigner transformation and snake-shaped
indexing [57], we can write the Hamiltonian in terms of
Pauli operators as

H = − t
2

∑

〈i,j 〉
(XiXj + YiYj)Z↔

i,j + U
4

N−1∑

i=0

ZiZ2N−1−i

− U
4

2N−1∑

i=0

Zi, (21)

Z↔
i,j =

j −1∏

k=i+1

Zk, (22)

010337-17

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

where t and U are parameters of the system and Pi (P =
X , Y, Z) are Pauli operators acting on the ith degree of
freedom. The notation 〈i, j 〉 indicates adjacent sites in the
Nx × Ny lattice. The first term in Eq. (22) contains long
Pauli chains that require many CNOT operations in the Trot-
ter decomposition. A notable merit of our architecture is
that we do not need to be afraid of these Pauli chains thanks
to the error-corrected CNOT gates. This is generally true for
other Hamiltonians containing long Pauli chains.

We estimate how many Trotter steps our architecture
can perform in the two-dimensional Hubbard model sim-
ulation. Equation (22) consists of 8N + N + 2N = 11N
terms; thus, its time evolution of a single Trotter step
requires 11N arbitrary rotation gates. If we choose the d =
7 (d = 9) architecture and fully allocate data logical qubits
for N sites, we can simulate N = 64/2 = 32 (N = 37/2 =
18) sites. The actual number of rotation gates per Trotter
step is 11 × 32 = 352 (11 × 18 = 198). Therefore, we can
simulate real-time dynamics with 3.75 × 104/352 ≈ 107
(3.75 × 104/198 ≈ 189) Trotter steps for this system.

With use of the iterative phase estimation [58] or recent
resource-efficient algorithms for the early-FTQC era [45,
59], phase estimation for unitary operators acting on 63 or
37 qubits can be achieved. This phase estimation can be
applied to determine the ground state energy of the quan-
tum system reachable in the STAR architecture if it allows
sufficiently large Trotter steps. In this context, discretiza-
tion errors must be minimized in the Trotterization. We
may, for example, use local variational quantum compiling
[60] for this purpose.

Another promising application is the QAOA [61] for
solving binary optimization problems. For example, we
consider the maximum-cut problem for a graph with N
nodes. The problem Hamiltonian is given as

HC = −1
2

∑

i�=j

(1 − ZiZj). (23)

To obtain the ground state of HC, we consider the QAOA
ansatz state

|γ ,β〉 = e−iβp−1HBe−iγp−1HC · · · e−iβ0HBe−iγ0HC

× H⊗N |0〉⊗N , (24)

where

HB =
N−1∑

j =0

Xj (25)

and γ = (γ0, . . . , γp−1) and β = (β0, . . . ,βp−1) are opti-
mization parameters. They are optimized to minimize an
expectation value 〈γ ,β| HC |γ ,β〉. The ansatz state con-
tains p(N + ((N (N − 1))/2)) arbitrary rotations in total. If
we choose the d = 7 (d = 9) architecture and set N = 64

(N = 37), we can take the depth of the ansatz as p =
3.75 × 104/2080 ≈ 18 (3.75 × 104/703 ≈ 53). Note that
higher-order binary optimization problems can be directly
solved in the STAR architecture without any reduction
to quadratic unconstrained binary optimization problems,
because the Clifford gates are almost error-free.

VII. CONCLUSION

In this work, we propose a quantum computing archi-
tecture suitable for early-FTQC devices, the STAR archi-
tecture. In the STAR architecture, universal quantum com-
putation is achieved by arbitrary rotation gates and error-
corrected Clifford gates. Analog rotation gates are realized
by the RUS protocol with appropriate ancilla states. To
reduce logical errors of the rotation gates, we carefully
design the ancilla state injection protocol by combining
the [[4, 1, 1, 2]] subsystem code and postselection. Thus,
our rotation gate achieves a small logical error rate of
PL = 2p/15 + O(p2) under the circuit-level noise model,
which is verified numerically. Clifford operations are per-
formed by the standard lattice surgery protocol based on
the rotated surface code, and we illustrate typical logical
qubit arrangements. We also perform a numerical simu-
lation on the surface code patch and determine a scaling
behavior of the logical error rate. Finally, we estimate an
available computational resource in the STAR architec-
ture under the assumption of typical early-FTQC devices,
where N = 104 physical qubits can operate with a gate
fidelity p of 10−4. According to this estimate, we can apply
3.75 × 104 arbitrary rotation gates and 1.72 × 107 Clifford
gates on 64 logical qubits encoded in the d = 7 rotated
planar surface code. Classical computers cannot emulate
such computations. Furthermore, the STAR architecture
can surpass the naive NISQ architecture and the exist-
ing FTQC architecture. The STAR architecture may apply
to some useful applications such as quantum many-body
simulation, phase estimation, and the QAOA.

Some topics are not addressed in this paper. We sum-
marize these topics to envision future directions of our
proposal.

(i) Optimization of the logical qubit arrangement and
input quantum circuit. Regarding the logical qubit
arrangement, we illustrate only some prototypical
arrangements in this paper. In practical applications,
however, the number of logical operations that can
be performed simultaneously must be maximized
to reduce computational time. Such parallelization
highly depends on the structure of the quantum cir-
cuit we want to perform. Some existing ideas, such
as introducing other “synthesis qubits” for parallel
implementation of the diagonal non-Clifford opera-
tions [62], may be useful in this context. Developing
a clever compiler that decomposes the input circuit

010337-18

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

into the sequence of Clifford gates and RZ(θ) and
determines the patch arrangement maximizing the
gate parallelism based on the decomposed circuit
should be future work.

(ii) More concrete discussion of the possible applica-
tions of the STAR architecture. In this study, we
only briefly mentioned some prototypical quan-
tum computations that can be performed on the
STAR architecture. By combining clever resource-
reduction techniques such as local variational quan-
tum compiling, the STAR architecture may give us
some useful applications at the earlier stage of a
large-scale quantum device.

(iii) Improvements in our injection protocol. Although
our injection protocol minimizes the remaining log-
ical error, it still occur at O(p). To perform more
interesting computations, we must further reduce
the logical error rate on the analog rotation. How-
ever, the distillation protocol on the arbitrary rota-
tion ancilla state has not been known until now,
and the task of reducing its logical error rate to
O(p2) is challenging. Developing a more sophisti-
cated state injection and distillation protocol for the
early-FTQC era is an interesting future direction.
In this context, we note that another injection pro-
tocol was recently suggested by Choi et al. [63],
which can achieve high-accuracy rotations for small
angles. Since our injection protocol can achieve
high accuracy for large angles, a combination of
both protocols may improve the entire performance.

We hope that our proposal and the corresponding develop-
ment of quantum algorithms will result in new insights into
realizing practical quantum computers in the future.

ACKNOWLEDGMENTS

We thank Jun Fujisaki and Mitsuki Katsuda for fruit-
ful discussions. K.F. is supported by MEXT Quantum
Leap Flagship Program Grants No. JPMXS0118067394
and No. JPMXS0120319794, JST COI-NEXT Grant
No. JPMJPF2014, and JST Moonshot R&D Grant No.
JPMJMS2061.

APPENDIX: LEADING-ORDER LOGICAL ERROR
PROBABILITY OF |mθ〉L UNDER THE

CIRCUIT-LEVEL NOISE MODEL

In this appendix, we discuss a leading-order logical
error probability of the ancilla state prepared in our pro-
tocol under the circuit-level noise model. We consider the
same noise model as discussed in Sec. VI A: all physical
operations suffer from error, which occurs with common
probability p .

First, we consider logical errors occurring in the ancilla
state injection circuit in Fig. 9. In this circuit, there can be

weight-2 logical errors with probability proportional to p ,
due to the error propagation of the CNOT operations and the
two-qubit depolarizing channels. The error propagation of
the CNOT operations causes weight-2 errors, such as

X0X1, X2X3, Z0Z1, Z2Z3. (A1)

Note that errors on qubits 2 and 3 are identical to those on
qubits 0 and 1 up to stabilizer operators. Since Z0Z1(Z2Z3)

is the logical Z error on the gauge DOF, it is not critical for
state injection. The other one, X0X1(X2X3), is the logical X
error on the logical qubit, but it does not destroy the logi-
cal state since the state is |+〉L at that moment. The single Y
errors before the CNOT operation also lead to other weight-
2 errors, e.g., Y0 ⊗ Z1 or X0 ⊗ Y1, but they are detected as
single X0 or Z1 errors and are removed by the postselec-
tion. In the same discussion, weight-2 errors produced by
the two-qubit depolarizing channel in the noisy CNOT oper-
ation do not destroy the logical state. Regarding the noisy
RZ0Z2(θ), however, there are weight-2 errors that destroy
the logical state. The two-qubit depolarizing channel after
the ideal RZ0Z2(θ) provides weight-2 errors, such as

Z0Z2, X0X2. (A2)

In these examples, X0X2 is the logical X error on the gauge
DOF and does not affect the logical state. On the other
hand, Z0Z2 is the logical Z error and changes the ancilla
state to an orthogonal state as follows:

ZL |mθ 〉L = ZL
(
e−iθ/2|0〉L + eiθ/2|1〉L

)

= e−iθ/2|0〉L − eiθ/2|1〉L ≡ |mθ 〉L. (A3)

The weight-2 errors that cause the logical Z error in the
two-qubit depolarizing channel are Z0Z2 and Y0Y2. There-
fore, its probability of occurring is 2p/15. There are other
weight-2 errors, such as Y0X2, but they are detectable
as a single-qubit error. In addition, there are some O(p)
error propagation processes that cause an inverse rota-
tion (equivalent to logical X error), such as RZ0Z2(θ)X0 =
X0RZ0Z2(−2θ)× RZ0Z2(θ), but those errors are detectable
as a single-qubit error. In summary, the logical error rate
of the ancilla state generated by the circuit in Fig. 9
behaves as

PZL(p) = 2p/15 + O(p2), (A4)

PXL(p) = O(p2). (A5)

Next, we examine possible logical errors during the syn-
drome measurement circuits in Figs. 3 and 11. In the
circuit in Fig. 11, a single error on the measurement qubit
leads at most to weight-1 errors on physical qubits, and
they do not lead to undetectable logical errors. One pos-
sibility to realize O(p) weight-2 errors is the two-qubit

010337-19

YUTARO AKAHOSHI et al. PRX QUANTUM 5, 010337 (2024)

M1 |0〉 Z

0 • Z Z

1 Z

FIG. 28. Example of an O(p) weight-2 error in the measure-
ment circuit of the [[4, 1, 1, 2]] subsystem code. The Z ⊗ Z error
occurring in the first CNOT gate (grouped by a dotted line)
propagates to physical qubits and forms a weight-2 error.

error occurring in the first CNOT operation with error
propagation through the second CNOT operation, as shown
in Fig. 28. However, this weight-2 error acting on physical
qubits is the gauge operator and is absorbed by the gauge
DOF. Thus, the measurement circuit in Fig. 11 does not
amplify the leading-order logical error rate of the ancilla
state, Eqs. (A4) and (A5). Regarding the syndrome mea-
surement circuit in Fig. 3, weight-2 errors can occur but
they are orthogonal to the logical operators due to the order
of CNOT operation. There is no other possibility to generate
logical errors at O(p). Therefore, the circuit in Fig. 3 does
not amplify the leading-order behavior of the logical error
rate as well.

In conclusion, the logical error rate of the ancilla
state |mθ 〉 prepared in our protocol is dominated by the
ancilla state injection circuit (Fig. 9) and behaves as PL =
2p/15 + O(p2).

[1] P. W. Shor, Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer, SIAM
Rev. 41, 303 (1999).

[2] D. S. Abrams and S. Lloyd, Quantum algorithm provid-
ing exponential speed increase for finding eigenvalues and
eigenvectors, Phys. Rev. Lett. 83, 5162 (1999).

[3] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Simulated quantum computation of molecular
energies, Science 309, 1704 (2005).

[4] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum
algorithm for linear systems of equations, Phys. Rev. Lett.
103, 150502 (2009).

[5] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell, et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[7] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al.,
Quantum computational advantage using photons, Science
370, 1460 (2020).

[8] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, X. Chen,
T.-H. Chung, H. Deng, Y. Du, D. Fan, et al., Strong
quantum computational advantage using a superconducting
quantum processor, Phys. Rev. Lett. 127, 180501 (2021).

[9] Q. Zhu, S. Cao, F. Chen, M.-C. Chen, X. Chen,
T.-H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, et al.,

Quantum computational advantage via 60-qubit 24-cycle
random circuit sampling, Sci. Bull. 67, 240 (2022).

[10] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais,
T. Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G.
Helt, M. J. Collins, et al., Quantum computational advan-
tage with a programmable photonic processor, Nature 606,
75 (2022).

[11] Y. Liu, X. Liu, F. Li, H. Fu, Y. Yang, J. Song, P. Zhao,
Z. Wang, D. Peng, H. Chen, et al., in Proceedings of the
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (Association for
Computing Machinery, New York, 2021), p. 1.

[12] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S.
Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cin-
cio, et al., Variational quantum algorithms, Nat. Rev. Phys.
3, 625 (2021).

[13] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid
quantum-classical algorithms and quantum error mitiga-
tion, J. Phys. Soc. Jpn. 90, 032001 (2021).

[14] S. Brandhofer, S. Devitt, T. Wellens, and I. Polian, in
2021 IEEE 39th VLSI Test Symposium (VTS) (IEEE, 2021),
p. 1.

[15] Y. Zhao, Y. Ye, H.-L. Huang, Y. Zhang, D. Wu, H. Guan, Q.
Zhu, Z. Wei, T. He, S. Cao, et al., Realization of an error-
correcting surface code with superconducting qubits, Phys.
Rev. Lett. 129, 030501 (2022).

[16] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Her-
rmann, et al., Realizing repeated quantum error correc-
tion in a distance-three surface code, Nature 605, 669
(2022).

[17] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ans-
mann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush,
et al., Suppressing quantum errors by scaling a surface code
logical qubit, Nature 614, 676 (2023).

[18] S. Bravyi and J. Haah, Magic-state distillation with low
overhead, Phys. Rev. A 86, 052329 (2012).

[19] C. Gidney and M. Ekerå, How to factor 2048 bit RSA inte-
gers in 8 hours using 20 million noisy qubits, Quantum 5,
433 (2021).

[20] N. Yoshioka, T. Okubo, Y. Suzuki, Y. Koizumi, and W.
Mizukami, Hunting for quantum-classical crossover in con-
densed matter problems, ArXiv:2210.14109 (2022).

[21] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M.
Troyer, Elucidating reaction mechanisms on quantum com-
puters, Proc. Natl. Acad. Sci. 114, 7555 (2017).

[22] J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Deg-
roote, C. Gidney, T. Shiozaki, R. Babbush, and N. C. Rubin,
Reliably assessing the electronic structure of cytochrome
P450 on today’s classical computers and tomorrow’s quan-
tum computers, ArXiv:2202.01244 (2022).

[23] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, Quantum
error mitigation as a universal error reduction technique:
Applications from the NISQ to the fault-tolerant quantum
computing eras, PRX Quantum 3, 010345 (2022).

[24] C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and K.
Temme, Error mitigation for universal gates on encoded
qubits, Phys. Rev. Lett. 127, 200505 (2021).

[25] K. Fujii, Quantum Computation with Topological Codes:
From Qubit to Topological Fault-Tolerance (Springer,
Singapore, 2015), Vol. 8.

010337-20

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1126/science.1113479
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.22331/q-2021-04-15-433
https://arxiv.org/abs/2210.14109
https://doi.org/10.1073/pnas.1619152114
https://arxiv.org/abs/2202.01244
https://doi.org/10.1103/PRXQuantum.3.010345
https://doi.org/10.1103/PhysRevLett.127.200505

PARTIALLY FAULT-TOLERANT QUANTUM. . . PRX QUANTUM 5, 010337 (2024)

[26] B. Eastin and E. Knill, Restrictions on transversal encoded
quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).

[27] X. Zhou, D. W. Leung, and I. L. Chuang, Methodology for
quantum logic gate construction, Phys. Rev. A 62, 052316
(2000).

[28] N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+T
approximation of z-rotations., Quantum Inf. Comput. 16,
901 (2016).

[29] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Sur-
face code quantum computing by lattice surgery, New J.
Phys. 14, 123011 (2012).

[30] D. Litinski, A game of surface codes: Large-scale quantum
computing with lattice surgery, Quantum 3, 128 (2019).

[31] A. M. Stephens, Fault-tolerant thresholds for quantum error
correction with the surface code, Phys. Rev. A 89, 022321
(2014).

[32] D. Litinski and F. v. Oppen, Lattice surgery with a twist:
Simplifying Clifford gates of surface codes, Quantum 2, 62
(2018).

[33] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[34] N. Delfosse and N. H. Nickerson, Almost-linear time
decoding algorithm for topological codes, Quantum 5, 595
(2021).

[35] G. Duclos-Cianci and D. Poulin, Fast decoders for topolog-
ical quantum codes, Phys. Rev. Lett. 104, 050504 (2010).

[36] K. Fujii, M. Negoro, N. Imoto, and M. Kitagawa,
Measurement-free topological protection using dissipative
feedback, Phys. Rev. X 4, 041039 (2014).

[37] J. Fujisaki, H. Oshima, S. Sato, and K. Fujii, Practical and
scalable decoder for topological quantum error correction
with an Ising machine, Phys. Rev. Res. 4, 043086 (2022).

[38] C. N. Self, M. Benedetti, and D. Amaro, Protecting
expressive circuits with a quantum error detection code,
ArXiv:2211.06703 (2022).

[39] D. Bacon, Operator quantum error-correcting subsystems
for self-correcting quantum memories, Phys. Rev. A 73,
012340 (2006).

[40] Y. Li, A magic state’s fidelity can be superior to the
operations that created it, New J. Phys. 17, 023037 (2015).

[41] L. Lao and B. Criger, in Proceedings of the 19th ACM
International Conference on Computing Frontiers, CF ’22
(Association for Computing Machinery, New York, NY,
USA, 2022), p. 113.

[42] J. Gavriel, D. Herr, A. Shaw, M. J. Bremner, A. Paler, and S.
J. Devitt, Transversal injection: A method for direct encod-
ing of ancilla states for non-Clifford gates using stabiliser
codes, ArXiv:2211.10046 (2022).

[43] S. Singh, A. S. Darmawan, B. J. Brown, and S. Puri,
High-fidelity magic-state preparation with a biased-noise
architecture, Phys. Rev. A 105, 052410 (2022).

[44] C. Gidney, Cleaner magic states with hook injection,
ArXiv:2302.12292 (2023).

[45] Z. Ding and L. Lin, Even shorter quantum circuit for
phase estimation on early fault-tolerant quantum comput-
ers with applications to ground-state energy estimation,
ArXiv:2211.11973 (2022).

[46] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitiga-
tion for short-depth quantum circuits, Phys. Rev. Lett. 119,
180509 (2017).

[47] S. Endo, S. C. Benjamin, and Y. Li, Practical quantum
error mitigation for near-future applications, Phys. Rev. X
8, 031027 (2018).

[48] M. C. Tran, K. Sharma, and K. Temme, Locality and error
mitigation of quantum circuits, ArXiv:2303.06496 (2023).

[49] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Kham-
massi, K. Bertels, and C. G. Almudever, Mapping of lattice
surgery-based quantum circuits on surface code architec-
tures, Quantum Sci. Technol. 4, 015005 (2018).

[50] O. Higgott and C. Gidney, PyMatching v2, https://github.
com/oscarhiggott/PyMatching (2022).

[51] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[52] S. Bravyi and D. Gosset, Improved classical simulation of
quantum circuits dominated by Clifford gates, Phys. Rev.
Lett. 116, 250501 (2016).

[53] H. Pashayan, O. Reardon-Smith, K. Korzekwa, and S.
D. Bartlett, Fast estimation of outcome probabilities for
quantum circuits, PRX Quantum 3, 020361 (2022).

[54] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation,
and J. M. Gambetta, Validating quantum computers using
randomized model circuits, Phys. Rev. A 100, 032328
(2019).

[55] This value may be overly large since it ignores single-qubit
errors. By adding the contribution of the single-qubit errors
in the transpiled circuit of SU(4) gate obtained by QISKIT,
we roughly obtain m = 26.

[56] Precisely, Ross and Selinger [28] conjectured that N =
K + 3 log2(1/δ) with some constant K if δ → 0. Our esti-
mation may be rough since it ignores the constant term and
δ = O(10−5) is not small. However, a similar algorithm
proposed in Ref. [64] gives N = 3.067 log2(1/δ)− 4.322
around δ ∈ 10−2, 10−10; therefore, we expect that our esti-
mation is reasonable up to O(1) constant deviation.

[57] C. Cade, L. Mineh, A. Montanaro, and S. Stanisic, Strate-
gies for solving the Fermi-Hubbard model on near-term
quantum computers, Phys. Rev. B 102, 235122 (2020).

[58] M. Dobšíček, G. Johansson, V. Shumeiko, and G. Wendin,
Arbitrary accuracy iterative quantum phase estimation
algorithm using a single ancillary qubit: A two-qubit bench-
mark, Phys. Rev. A 76, 030306(R) (2007).

[59] R. Kshirsagar, A. Katabarwa, and P. D. Johnson, On prov-
ing the robustness of algorithms for early fault-tolerant
quantum computers, ArXiv:2209.11322 (2022).

[60] K. Mizuta, Y. O. Nakagawa, K. Mitarai, and K. Fujii, Local
variational quantum compilation of large-scale Hamilto-
nian dynamics, PRX Quantum 3, 040302 (2022).

[61] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approx-
imate optimization algorithm, ArXiv:1411.4028 (2014).

[62] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T.
Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken, A. Sun-
daram, and A. Vaschillo, Assessing requirements to scale
to practical quantum advantage, ArXiv:2211.07629 (2022).

[63] H. Choi, F. T. Chong, D. Englund, and Y. Ding, Fault tol-
erant non-Clifford state preparation for arbitrary rotations,
ArXiv:2303.17380 (2023).

[64] V. Kliuchnikov, D. Maslov, and M. Mosca, Practical
approximation of single-qubit unitaries by single-qubit
quantum Clifford and T circuits, IEEE Trans. Comput. 65,
161 (2016).

010337-21

https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevA.62.052316
https://doi.org/10.26421/QIC16.11-12-1
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.22331/q-2021-12-02-595
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevX.4.041039
https://doi.org/10.1103/PhysRevResearch.4.043086
https://arxiv.org/abs/2211.06703
https://doi.org/10.1103/PhysRevA.73.012340
https://doi.org/10.1088/1367-2630/17/2/023037
https://arxiv.org/abs/2211.10046
https://doi.org/10.1103/physreva.105.052410
https://arxiv.org/abs/2302.12292
https://arxiv.org/abs/2211.11973
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://arxiv.org/abs/2303.06496
https://doi.org/10.1088/2058-9565/aadd1a
https://github.com/oscarhiggott/PyMatching
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PRXQuantum.3.020361
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevB.102.235122
https://doi.org/10.1103/PhysRevA.76.030306
https://arxiv.org/abs/2209.11322
https://doi.org/10.1103/PRXQuantum.3.040302
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2303.17380
https://doi.org/10.1109/TC.2015.2409842

	I.. INTRODUCTION
	II.. OVERVIEW OF THE STAR ARCHITECTURE
	III.. FAULT-TOLERANT CLIFFORD GATES
	A.. Rotated planar surface code
	B.. Clifford gates by lattice surgery

	IV.. SPACE-TIME EFFICIENT ANALOG ROTATION GATE
	A.. Repeat-until-success implementation of analog rotation gate
	B.. Low-error state injection protocol

	V.. LOGICAL QUBIT ARRANGEMENT
	VI.. PERFORMANCE OF THE STAR ARCHITECTURE
	A.. Logical error probability of the rotated surface code patch
	B.. Logical error probability of the ancilla state
	C.. Resource estimation
	D.. Comparison with existing NISQ and FTQC architectures
	E.. Possible applications

	VII.. CONCLUSION
	. ACKNOWLEDGMENTS
	. APPENDIX: LEADING-ORDER LOGICAL ERROR PROBABILITY OF |m"526930B L UNDER THE CIRCUIT-LEVEL NOISE MODEL
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

