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Generating Function for Projected Entangled-Pair States
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Diagrammatic summation is a common bottleneck in modern applications of projected entangled-pair
states, especially in computing low-energy excitations of a two-dimensional quantum many-body system.
To solve this problem, here we extend the generating-function approach for tensor-network diagrammatic
summation, a scheme previously proposed in the context of matrix product states. Taking the form of
a one-particle excitation, we show that the excited state can be computed efficiently in the generating-
function formalism, which can further be used in evaluating the dynamical structure factor of the system.
Our benchmark results for the spin-1/2 transverse-field Ising model and Heisenberg model on the square
lattice provide a desirable accuracy, showing good agreement with known results. We then study the spin-
1/2 J1-J2 model on the same lattice and investigate the dynamical properties of the putative gapless spin
liquid phase. We conclude with a discussion on generalizations to multiparticle excitations.

DOI: 10.1103/PRXQuantum.5.010335

I. INTRODUCTION

Strongly correlated quantum systems occupy a central
position in condensed-matter physics, often triggering
exotic behavior at low temperatures. For low-dimensional
systems, where quantum effects are pronounced, the
entanglement-based tensor-network method is now widely
recognized as an ideal tool for both analytical and
numerical studies of these systems [1,2]. Beyond its
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immense success in exploring ground-state properties due
to its structure that adheres to the area law, tensor-
network methods also enable the study of low-energy
properties above the ground state, including dynami-
cal correlations and entanglement dynamics. The former
are often directly measurable in spectroscopic experi-
ments within condensed-matter physics, such as inelastic
neutron-scattering experiments in quantum magnets [3],
while out-of-equilibrium properties are accessible in quan-
tum simulators [4]. However, in systems extending beyond
one spatial dimension, efforts to fully understand low-
energy excitations in quantum many-body systems through
tensor networks are still in their early stages. Conse-
quently, there is a high demand for an efficient and accu-
rate method to compute low-lying excitations and related
dynamical correlation functions in two-dimensional (2D)
systems.

Over the past 20 years, projected entangled-pair states
(PEPS) have become one of the cornerstones in the study
of 2D quantum many-body systems [5]. Along with a
deeper understanding of its mathematical structure and
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improved numerical recipes, PEPS has been demonstrated
to capture the ground states of many classes of 2D phases
of matter. These include nonchiral topological states [6–9],
ordered quantum magnets [10–16], (chiral) quantum spin
liquids [17–22], and various phases in fermionic systems
[23–27]. Beyond ground-state properties, the PEPS tool-
box has been expanded to study excited states [28–32],
time evolution [33–38], and finite-temperature properties
[39–45]. Although PEPS-based ground-state exploration
has reached a level of maturity, research into excited states
continues to be a vibrant area of development. Therefore,
it is both natural and promising to refine the theoretical
tools further, leveraging the success with ground states to
explore the excitations in 2D systems using PEPS.

One physically motivated way of studying excitations
is to use the tensor-network generalization [46,47] of the
Feynman-Bijl ansatz [48–51] or the single-mode approxi-
mation [52,53], which is a variational ansatz for an excited
state in the tangent space of the ground-state tensor man-
ifold [54,55]. In this construction, the ground state is
perturbed locally by introducing an “impurity” tensor to
represent a local quasiparticle. By making a momentum
superposition of such a local perturbation, one obtains a
natural representation of a low-energy excited state. This
approach has been successfully applied to build excitations
on top of ground states of matrix product state (MPS) form
in one-dimensional (1D) [56–61] and quasi-1D [60,62,63]
systems, where contractions can be performed exactly
and efficiently. For a 2D quantum many-body system in
the thermodynamic limit, this construction leads to the
sum of infinitely many copies of PEPS with infinite size,
so that the computation of expectation values or opti-
mization of the variational energy is not straightforward.
This can still be achieved through summing a geometric
series of channel operators built from the boundary-MPS
approach [28,29] or, alternatively, through summing dia-
grams within the corner transfer matrix renormalization
group (CTMRG) method [30,31]. Nevertheless, the num-
ber of tensor diagrams one needs to take care of in these
approaches is substantial. Additionally, it is not clear how
to apply these approaches to finite-size systems, since both
approaches rely on a fixed-point iteration that is designed
for an infinite system.

Instead of directly conducting the tensor-diagram sum-
mation, in Ref. [64] some of the authors and collabo-
rators have introduced a set of generating functions for
tensor-network diagrammatic summations and applied this
scheme to study the excitation spectrum in 1D systems
with MPS. The key idea of the generating function is that
the relevant tensor-diagram summations can be expressed
as low-order derivatives of a single diagram. The origin of
this scheme can be traced to the fact that interactions in
quantum many-body systems are local and the low-energy
excited states only contain one or few quasiparticle excita-
tions. Thus, inspired by the generating-functional method
in quantum field theory, one can introduce a source term in

the tensor network and express the excited state as a first-
order derivative of a new tensor diagram. With straight-
forward extensions, the effective Hamiltonian and norm
matrices in the variational parameter space of excitations
can be obtained, making it simple to evaluate expectation
values or optimize the variational parameters.

In this work, we will extend this idea to PEPS in
the thermodynamic limit. We begin, in Sec. II, with a
short explanation of the infinite-PEPS (iPEPS) ground-
state ansatz and how to construct low-energy excited states
on top of a PEPS ground state. Then, in Sec. III, we
introduce the generating function for PEPS and illustrate
how to solve several practical issues. With impurity ten-
sors obtained through solving an eigenvalue problem, it
is straightforward to study the low-energy properties of
2D systems, e.g., the dynamical spin structure factor. In
Sec. IV, we will first benchmark our approach using the
well-studied transverse-field Ising model and Heisenberg
model on the square lattice and then apply the method to
the more challenging spin-1/2 J1-J2 model on the same
lattice. We conclude in Sec. V with some perspectives on
generalizing this approach to more general excitations and
other settings.

II. PRELIMINARIES

A. PEPS as a variational ground state

For a 2D quantum many-body system, despite an expo-
nentially large Hilbert space, the ground state of a gapped
system obeys the so-called entanglement area law [65,66].
This guarantees the validity of the direct extension of MPS
for 1D quantum systems to PEPS as a suitable numerical
tool for studying ground states of gapped 2D systems. For
2D critical systems, which could violate the entanglement
area law, PEPSs have also been shown to be a powerful
tool that can capture the critical properties via a so-called
finite-entanglement-scaling approach [67–69].

On the square lattice, a PEPS is defined by a set of rank-
5 tensors, with one tensor for each site. Using translation
symmetry with a suitable unit cell of tensors, PEPS can be
defined directly in the thermodynamic limit, giving rise to
the so-called iPEPS method. Taking an iPEPS with a one-
site unit cell as an example, the wave function is given by
the following tensor-network form:

(1)
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where the black (red) bonds represent the virtual (physi-
cal) indices with bond dimension D (d). The accuracy of
approximating the ground state of a 2D quantum system
with the PEPS ansatz can be controlled by the virtual bond
dimension D.

Although, in general, exact contraction of PEPS in
the thermodynamic limit is not possible, various con-
trolled approximate contraction schemes for PEPS have
been developed, including the boundary-MPS approach
[70–72], the tensor renormalization group and its var-
ious generalizations [73–75], and the CTMRG method
[23,76–78]. In this work, we will use the CTMRG method,
where the basic idea is to approximate the surroundings
of every site using a set of tensors with finite bond dimen-
sion, typically denoted as the environment bond dimension
χ . As an illustration, we first trace out the physical index
of A and Ā, where Ā represents the complex conjugate of
tensor A, creating the norm of the PEPS wave function:

(2)

where

(3)

The thick black bonds in Eq. (3) thus have dimension D2.
Through the CTMRG procedure, one can obtain a series of
environment tensors that serve as the approximation of all
surrounding tensors:

(4)

Here, the Ci tensors are the corner tensors and the Ti rep-
resent the edge tensors (i = 1, 2, 3, 4). The green bonds
(bonds that connect C and T tensors) have dimension χ

and typically one would choose χ ≥ D2 to ensure accu-
racy. Note that to obtain the environment tensors, one
would need to introduce projectors to truncate the growing
environment bond dimension in each CTMRG iteration.

Apart from the ground-state calculation, we will show that
the environment tensors and the projectors will also play
important roles in the calculation of generating functions
for excited states.

Using environment tensors, the reduced density matrix
of a local region can be constructed and observables can be
evaluated. For example, given a local Hamiltonian of the
form H = ∑

i hi, the energy density can be calculated as

e = 〈�(A)|hi|�(A)〉
〈�(A)|�(A)〉 . (5)

Note that when computing Eq. (5), the approximations
due to projectors in CTMRG are the same for the numer-
ator and denominator. This point will be illuminating
when considering the contraction scheme for generating
functions of PEPS.

The remaining task is to optimize the ground-state ten-
sor A to minimize the variational energy. Conventionally,
this can be achieved through imaginary time evolution,
where the local Hamiltonian is used to construct Suzuki-
Trotter gates and, after a sufficiently long imaginary time
evolution, a well-approximated ground-state ansatz can be
obtained [70,79,80]. However, the initial ansatz for imag-
inary time evolution tends to significantly affect the final
outcome, hindering the simulation without any tentative
knowledge of the target model and sometimes causing
a serious issue of getting trapped in the local minima
of Hilbert space. Additionally, due to the approximations
involved in truncating the PEPS after applying Suzuki-
Trotter gates, the imaginary time evolution does not always
converge to the variationally optimal PEPS tensor.

Instead of doing imaginary time evolution, minimization
of the energy through the energy gradient, i.e., varia-
tional optimization, has been proven to be a more accurate
optimization scheme [81,82]. When the number of varia-
tional parameters is small (e.g., when the PEPS tensors are
strongly constrained by symmetries), variational optimiza-
tion can be done using a simple finite-difference approach
to compute the energy gradient [19,20,83,84]. For generic
tensors, a direct evaluation of the gradient requires a sum-
mation of a large number of tensor diagrams [72,81,82]
but the numerical derivatives can be obtained through
automatic differentiation (AD) [85]. By storing the compu-
tational graph of PEPS [14,15] in the memory during the
forward-mode calculation, the numerically exact gradients
can be evaluated through back propagation [86]. We then
make use of those gradients to further optimize our tensors
in order to lower the variational energy.

In the following simulations, we have checked that for
each bond dimension D, the chosen value of χ is either
large enough, and the results barely change when fur-
ther increasing χ , or is the largest χ within computational
reach. In search of the ground state, we have imposed C4v

symmetry of the square lattice on the local tensor, since
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the models we have studied do not break this symme-
try. In the actual numerical computation, the ground-state
optimization is carried out using the PEPS-TORCH package
[87], where the energy gradient is obtained using the back
propagation of AD provided in PyTorch. For the excited-
state computation (see later sections), we have written our
codes in PYTHON and used PyTorch for back propagation.
To lower the bar for PEPS practitioners, we have made a
sample code publicly available [88].

B. Quasiparticle excitation with PEPS

The excited state for a given many-body Hamiltonian
can be thought of as a quasiparticle excitation on top of
the ground state [89]. As mentioned in Sec. I, in real
space such an excitation can be approximated through
the tensor-network version of the single-mode approxima-
tion, where we replace one ground-state tensor with some
“impurity” tensor at a certain location [90]. We then sum
up all the different tensor-network configurations gener-
ated by the translation operator, taking the corresponding
phase factors into account, to construct an eigenstate of the
translation operator with a given momentum.

With the ground state expressed as a one-site translation-
invariant iPEPS, the one-particle excitation with PEPS can
be written as

(6)

where T̂x (T̂y) represents the translation operator in the
x (y) direction, with its eigenvalue being eikx (eiky ), and
B is the impurity tensor to be determined.

Due to the linear dependence of excited states on the
impurity tensor, the variational optimization boils down to
a generalized eigenvalue problem:

HμνBν = ENμνBν , (7)

where H and N are the effective Hamiltonian and norm
matrix in the variational space. With translation invariance,
N can be obtained by hollowing out the Ā tensor in the
center of the bra layer and the summation goes over every
tensor graph with an empty site in the ket layer. Using
channel operators with boundary MPS [28], this sum can
be carried out at the same computational cost as ground-
state computation. A slightly different summation scheme

using CTMRG has also been proposed in Ref. [30]. Sim-
ilarly, the effective Hamiltonian H can also be computed,
where an additional summation for the Hamiltonian oper-
ator appears. These summations are the main bottleneck in
the study of excitations using the quasiparticle ansatz.

Because of the gauge freedom in the PEPS represen-
tation [Eq. (1)] in terms of the local tensor A, the linear
subspace of excitations contains a few zero modes [28].
These are reflected as zero eigenvalues in the norm matrix
and should be projected out to make Eq. (7) well con-
ditioned. We will come back to the conditioning of N
below.

III. THE GENERATING FUNCTION

A. Algorithm

The issue of summing up many diagrams also appears
in the MPS study of the 1D quantum system, where some
of the authors and collaborators have proposed generating
functions to tackle this problem [64]. We now adopt this
method in the current setting of PEPS in the thermody-
namic limit. The basic idea of the generating function is
that the sum of extensive tensor diagrams can be expressed
as a low-order derivative of a new tensor diagram. This
is possible for excited states due to the fact that tensor
diagrams only differ by the location of the impurity tensor.

For iPEPS, following Ref. [64], we define the generating
function for the one-particle excited state as

(8)

where GB denotes the generating function of the impurity
tensor and takes the following position-dependent form:

(9)

The one-particle excited state in Eq. (6) can now be
evaluated by taking the derivative:

|�k(B)〉 = ∂

∂λ
|G�(λ)〉

∣
∣
∣
λ=0

. (10)

One question immediately follows: namely, what would
be the right environment tensors for 〈G�(λ)|G�(λ)〉 when
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computing physical observables? Note that for PEPS in the
thermodynamic limit, the contraction scheme relies on the
translation invariance to interpret the environment tensors
as fixed points of the 1D transfer operator. For the generat-
ing function in Eq. (8), this translation invariance is lost for
any nonzero λ. The solution to this issue comes from the
following fact: after taking derivatives at λ = 0, all contri-
butions of the sum can be viewed as correlation functions
of local operators. Recall that when computing observables
or correlation functions in the infinite MPS, one uses the
fixed point of the transfer matrix as the boundary, suggest-
ing that fixed-point tensors of the transfer matrix of the
infinite-MPS ground state are the right environment ten-
sors for the generating function of the infinite MPS. The
same is true for the PEPS ground state in the thermo-
dynamic limit. Indeed, we have tested that using a fixed
point of the MPS transfer matrix in the generating func-
tions gives the same result as directly summing all tensor
diagrams. Thus, similarly for PEPS, we can use the envi-
ronment tensors from CTMRG of the ground-state PEPS
(i.e., the state |G�(λ)〉 at λ = 0) as the environment tensors
for the generating function in Eq. (8).

With the generating function for the excited state, the
norm matrix and effective Hamiltonian can be similarly
expressed as derivatives of a single network. Using trans-
lation symmetry, we can lower the order of derivatives
by introducing two slightly new networks [64]. For that,
we first construct two (idealized) generating functions,
GN(λ, B) and GH(λ, μ, B), for the norm matrix and the
effective Hamiltonian, respectively. GN takes the following
form:

(11)

The green tensors in Eq. (11) are given by

(12)

where the tensor with a cross mark lies in the center of the
lattice. The norm matrix can then be evaluated by taking

the derivative:

N = ∂

∂B
GN(λ, B)

∣
∣
∣
λ=1,B=0

. (13)

For the generating function of the effective Hamiltonian,
we need to insert the local Hamiltonian between the bra
and ket layers. Note that although the local Hamiltonian
can be represented as a projected entangled-pair operator,
it is rarely used in practice, due to the increased computa-
tional cost. Here, we use the generating function for a local
Hamiltonian, as introduced in Ref. [64], to represent the
full Hamiltonian as a derivative of a new network. Then,
we sandwich the generating function of the local Hamil-
tonian term between the bra and ket layers. To illustrate,
assuming that we only have the nearest-neighbor terms, a
new tensor can be defined as

(14)

where I is the identity matrix and î = x̂, ŷ. Then, the (ide-
alized) generating function for the effective Hamiltonian is
given as follows:

(15)

From Eq. (15), the effective Hamiltonian H can be obtained
by taking a second-order derivative,

H = ∂2

∂B∂μ
GH(λ, μ, B)

∣
∣
∣
λ=1,μ=0,B=0

. (16)

Denoting the linear size of the bulk, i.e., the region encir-
cled by the dashed box in Eqs. (11) and (15), as Lx and Ly ,
it appears that Lx and Ly have to be chosen carefully. In
the case of infinite MPS, we have checked that the linear
size in the bulk has to be compatible with the momenta,
i.e., k = 2πm/Lx (m = 0, 1, 2, . . . , Lx − 1), to ensure exact
zero modes in the norm matrix. We expect that the same
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requirement is also true in the 2D case. Moreover, Lx and
Ly should be large enough (compared to the maximal cor-
relation length of the ground state) to mimic an infinite
system, so that the error due to finite linear size becomes
negligible. At the same time, with larger linear sizes, more
k points can be considered. Note that here we restrict to a
finite bulk size, instead of an infinite one, due to the fact
that for a given ground-state tensor A and impurity tensor
B, the generating function and its derivatives may not con-
verge within the same number of iterations. This is because
the forward calculation is computing the zeroth order of
the expansion of generating functions at λ = 0, which typ-
ically resembles the tensor diagram for a local observable
[see, e.g., Eqs. (11) and (13)], while the derivatives con-
tain multipoint correlators. Therefore, it is conservative but
safe to work with a finite bulk size.

With the norm matrix and effective Hamiltonian
obtained from derivatives of generating functions, we can
now solve the generalized eigenvalue equation in Eq. (7)
and obtain the impurity tensor B for excited states. As men-
tioned before, due to gauge degree of freedom, exact zero
modes appear in the norm matrix and one needs to project
out the corresponding subspace, leading to the following
generalized eigenvalue equation:

(P†HP)μνBν = E(P†NP)μνBν , (17)

where the subspace projector P projects out the exact zero
modes of the norm matrix. Note that up to this point,
there is no approximation involved and the scheme can
be directly applied to the infinite-MPS context, where
computation can be made essentially exact.

However, there is one more issue for PEPS to address:
for large tensor-network graphs in 2D [Eqs. (11) and (15)],
its computational complexity grows exponentially with
system size. Therefore, the exact contraction is not feasi-
ble. By utilizing the projectors during the CTMRG pro-
cess, on the other hand, we can approximate tensors on

each column as the following:

(18)

where the tensor projectors (dark green triangles) can be
evaluated through singular-value decomposition [23] and
a similar process can be conducted for the row and cor-
ner tensors. With the projectors inserted, now we show the
complete tensor network for the norm matrix in Fig. 1.
Note that here we show explicitly how to compress our
tensor graphs vertically but, in fact, a similar action is
also taken along the horizontal direction. We can then
take the average of these two compressed tensor graphs
as GN(λ, B).

The motivation for the above-mentioned splitting of the
contraction of GN(λ, B) into two is due to the insertion
of local Hamiltonian terms for GH(λ, μ, B). Note that the
tensor projectors would intuitively reduce the correlation
between nearby sites, which is undesirable when insert-
ing the local Hamiltonian operators. Therefore, in practice,
we conduct the insertion of Ĥr,r+x̂ and Ĥr,r+ŷ separately,
resulting in the tensor contractions along the horizon-
tal and vertical directions, respectively. More specifically,
we include GĤ in all the vertical (horizontal) bonds and
compress the tensor graph for each column (row).

The scheme is now clear and all we need to do is to
first contract the finite tensor network in Eqs. (11) and (15)
(with tensor projectors inserted) and then compute the
derivatives using either AD or any other numerical finite-
difference approach. Then, by solving for the eigenvalue
[Eq. (17)] after getting N and H, we obtain the impurity
tensors with the corresponding energies. With zero modes
in the norm matrix projected out, the excited states con-
structed with the impurity tensors are then orthogonal to
each other and also orthogonal to the ground state.

T1 T1 T1 T1C1

T4

T4

C2

T2

T2

T4

T4

C3C4

T2

T2

T3 T3 T3 T3

FIG. 1. The complete tensor network for the generating function of the norm matrix with bulk size Ns = 4 × 4. The projectors
inserted are taken from the CTMRG of the ground state. We proceed similarly for the generating function of the effective Hamiltonian.
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Note that due to the projectors inserted in Fig. 1, the zero
modes in the norm matrix are no longer exact and, instead,
become fuzzy. Therefore, we use the subspace projector P
to truncate the basis by discarding the norm-matrix eigen-
vector with an eigenvalue close to zero [30]. Denoting the
eigenvalue decomposition of N as N = v	v†, we keep the
desired subspace of v and construct ṽ, which serves as P in
Eq. (17). One subtle point is that the selection of the sub-
space cannot be simply determined a priori. In practice,
we start from the leading eigenvalue of the norm matrix
and gradually enlarge the size of the subspace by includ-
ing the next leading ones. If adding a certain norm-matrix
eigenvector changes the energy eigenvalues drastically, we
would discard this vector when constructing the subspace.
So far, we cannot conclude a strict protocol in choosing the
subspace projectors and we occasionally need to examine a
different threshold for the subspace to obtain stable energy
eigenvalues. Note also that a suitable gauge in the ground-
state tensor may be helpful for improving the conditioning
of the norm matrix [91]. With these measures, we solve
Eq. (17) and the excited state can then be constructed with
Bν for further investigation of its properties.

B. Discussion of the algorithm

Comparing with the previous generating functions for
the finite-size MPS [64], two new ingredients are included
in the infinite-PEPS case. The first one concerns the infinite
size in typical PEPS calculations. Although our scheme
can be easily generalized to the finite PEPS, due to the
large computational cost, iPEPS is typically used in the
literature. For that purpose, we have introduced ground-
state environment tensors in computing the norm matrix
and effective Hamiltonian of the variational space.

The second ingredient is about the contraction of the
generating functions, where we have used ground-state
projectors to achieve an efficient contraction. The idea of
using projectors from the ground-state CTMRG procedure
can further be put on firm grounds as follows. That is,
all the correlations in our ansatz are essentially mediated
by the ground-state tensors and all contributions to the
effective Hamiltonian and norm matrix can be viewed as
correlation functions of local operators in the ground state.
Unraveling the CTMRG procedure, one would find that the
CTMRG procedure is essentially inserting tensor projec-
tors (which have been computed self-consistently) into the
original network. Moreover, when conducting the forward
calculation of generating functions with AD, we assign the
impurity tensor as a tensor with all elements equal to zero
(see Eqs. (13) and (16), where the derivatives are com-
puted at B = 0). Therefore, the contraction is akin to the
normal ground-state CTMRG process. Thus it is natural to
use the same projectors for the generating functions, which
would not lower the accuracy. However, if one computes
the generating function for excited states at nonzero λ or

nonzero B tensor, which would indeed be the case when
part of the derivatives is obtained with finite-difference
approaches, the projectors may need to be recomputed, tak-
ing into account the effect of the B tensor. In that case, the
computation time and memory consumption would also
be higher. Nevertheless, here we refrain from making a
detailed comparison between the various possibilities but
leave them to future developments. We also note that this
scheme is not restricted to CTMRG and in fact can be
generalized to other PEPS contraction methods, e.g., the
tensor renormalization group [75] and the boundary-MPS
approach [70].

In comparison with previous approaches using PEPS
for constructing one-particle excited states, our approach
largely reduces the number of tensor diagrams to be con-
sidered. In Ref. [28], the tensor contraction is done by eval-
uating the corner-shaped transfer matrix, with the norm
matrix and effective Hamiltonian obtained by summing
up the tensor diagrams the impurity tensors of which in
the bra and ket layer are located in different relative posi-
tions. While the corner transfer matrices are also adopted
in Ref. [30] for the environment tensors, again due to the
position change, many tensor graphs need to be taken into
account.

The approach proposed in Ref. [31] comes closer to
the approach presented here, which relies on AD to do
the tensor-diagram summations. Let us now compare with
that approach here. The most prominent feature of our
approach is that we only need to deal with one ten-
sor diagram for N or H, where all the tensors are fixed
before contraction. In Ref. [31], one needs to take care of
the additional environment tensors (coming from impu-
rity tensors), which have been computed iteratively. In
this sense, the approach presented here gets rid of all the
intricate summations and updating steps in the PEPS exci-
tations. This simplification will play an essential role when
considering multiparticle excitations with PEPS.

Before showing the applications, let us also mention that
the generating functions are in fact independent of AD. In
some cases, the derivative is taken only with respect to
one parameter, λ, and therefore can be easily carried out
using the finite-difference method. Indeed, the use of finite
difference may become crucial when the bond dimension
is large, since in that case AD might be limited due to
memory issues. Nevertheless, in this work we use AD for
two reasons. First, in obtaining the norm matrix and effec-
tive Hamiltonian, multiple parameters are involved and
thus the back-propagation mode of AD is more efficient.
Second, being numerically exact, AD can avoid finite-
difference error. While the full expression of the norm
matrix and the effective Hamiltonian may not be neces-
sary for Lanczos-type diagonalization algorithms (and thus
only one parameter is involved in the derivative), we will
not explore this possibility here and leave it to future
considerations.
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IV. APPLICATIONS

We now benchmark our algorithm with two well-studied
models, namely, the transverse-field Ising model and the
spin-1/2 Heisenberg model on the square lattice, and then
move to the more challenging J1-J2 model.

A. Transverse-field Ising model

The spin-1/2 quantum Ising model with a transverse
field in 2D is described by

HTFI = −
∑

〈i,j 〉
σ z

i σ z
j − h

∑

i

σ x
i , (19)

where σ x,z are the Pauli matrices and the summation of
〈i, j 〉 runs over all nearest-neighbor pairs. As the most
widely known model for benchmarking, its phase transi-
tion can be accurately captured by PEPS [70,92]. A high-
precision estimate of the transition point has been made
by the cluster Monte Carlo method, with the value being
hc = 3.04438 [93]. When h → ∞, the ground state pre-
serves the global Z2 symmetry Û = ∏

i σ
x
i with a nonzero

energy gap, while at h = 0 the ground state is twofold
degenerate, with all spins aligning up or down, break-
ing the Z2 symmetry. Close to the transition point, the
energy gap decreases and becomes zero at hc, which is a
Lorentz-invariant critical point.

In order to compare with the results in Refs. [29,30],
we first compute the lowest-energy excited state at each
k and plot its energy versus momentum in Fig. 2(a). Here
and below, we have chosen the high-symmetry path M →
X → S → � → M → S in the first Brillouin zone of the
square lattice, shown in the right inset of Fig. 2(a).

Let us first examine the choice of bulk size Ns = Lx × Ly
in computing excited states. As shown in the left inset of
Fig. 2(a), with h closer to the critical point and a larger
bond dimension D, the maximal correlation length (ξ ) of
the ground state (measured from the transfer matrix spec-
trum of ground-state PEPS) becomes larger and one would
need larger bulk size Ns to converge the energy gap  (at
momenta �(0, 0)), in agreement with the previous discus-
sion on bulk size. Nevertheless, due to the relatively small
bond dimension (and therefore small ξ ) used in this work,
the excited states shown in this work are relatively easy to
converge.

From Fig. 2(a), one can further find that away from the
critical point (e.g., at h = 2.5), the finite D effect is rather
small and the excitation energy does not show significant
changes from D = 2 to D = 3. Close to the critical point
(e.g., at h = 3.0), the finite-D effect is most prominent in
the lowest excited state, where the energy gap  decreases
with a larger bond dimension. Our results show both qual-
itative and quantitative agreement with Ref. [29,30] and
also agree with the series-expansion result [94].

Besides the quasiparticle dispersion relation, we can
also fit the numerically computed energy gap  versus the
magnetic field h, taking a function form  ∝ |h − hc|ν . In
Fig. 2(b), we compare the numerical data with the analyt-
ically known critical exponent ν = 0.629971 and indeed
find good agreement, further confirming the accuracy of
the generating-function method.

B. Heisenberg model

Next, we examine another model that is widely used
for the purpose of benchmarking, the antiferromagnetic

(a) (b)

FIG. 2. (a) The energy dispersion of the lowest-lying excitation for the transverse-field Ising model at distinct k points for h = 2.5
and h = 3.0. We adopt Ns = 24 × 24 for D = 2 and Ns = 16 × 16 for D = 3 and confirm that further enlargement of Ns does not
change the results. The red triangles show the results from series expansion (SE). The left inset shows the energy gap with different
Ns for (h, D, ξ) = (2.5, 2, 0.603), (h, D, ξ) = (3.0, 2, 1.194), and (h, D, ξ) = (3.0, 3, 2.531), where ξ is the maximal correlation length.
The right inset shows the high-symmetry path in the Brillouin zone. (b) The gap function along with the magnetic field h. We adopt
D = 4 and Ns = 12 × 12 and the solid curve takes the scaling relation of the 3D Ising universality class with the critical exponent
ν = 0.629971.
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(AFM) Heisenberg model:

HHeisenberg = J
∑

〈i,j 〉
Si · Sj , (20)

where we take J = 1 as the energy unit and the sum
runs over all nearest-neighbor pairs. While the nature of
the AFM demands at least a two-site unit cell for the
ground-state ansatz, by rotating the local spin on one of
the two sublattices, we can preserve the one-site translation
symmetry for PEPS.

Before showing the excited states, as a good benchmark
we compute the static structure factor, which can be mea-
sured by elastic neutron-scattering experiments. The static
structure factor is defined by the equation [95]

S(k) =
∑

r,α

eik·r〈Sα
0 Sα

r 〉c =
∑

α

Sα(k), (21)

where 〈·〉c denotes the connected part of the correlator and
α = x, y, z. Because of the AFM nature, the static struc-
ture factor possesses a peak at k = (π , π) and becomes
zero at k = (0, 0). Given a variational PEPS ground state,
the static structure factor can be evaluated efficiently using
generating functions. Here, we show S(k) with D = 4 in
Fig. 3. Our result is in good agreement with the previous
one using iPEPS [81], as well as those using other meth-
ods [95,96]. More importantly, the results of different Ns
all look similar, reinforcing the fact that for our method,
the choice of bulk size casts little effect on the final out-
comes, as long as the bulk linear size is large compared to
the ground-state maximal correlation length ξ .

In Fig. 4, we show our results for the lowest-energy dis-
persion of the Heisenberg model. One clear feature that we
can see is the vanishing of the excitation energy at �(0, 0)

and X(π , π) with increasing D, which is desirable since the
Heisenberg model is known to be gapless at the these two
points. To further confirm the gapless nature, in the inset
we provide the scaling of the energy gap  (at �(0, 0))
with 1/ξ . We can see that the energy gap indeed extrapo-
lates to a value close to zero when ξ → ∞. Except for the

Ref. [81]

FIG. 3. The static structure factor S(k) for the Heisenberg
model (D = 4, ξ = 1.8438), with three different Ns. For com-
parison, the black dashed line shows the results of Ref. [81] with
D = 4.

FIG. 4. The energy dispersion of the lowest-lying excitations
for the Heisenberg model with D = 2 (Ns = 24 × 24), D = 3
(Ns = 16 × 16), D = 4 (Ns = 12 × 12), and D = 5 (Ns = 8 ×
8). The dashed line indicates the result from spin-wave theory.
The inset shows the scaling of  (at �(0, 0)) with the inverse
of the maximal correlation length 1/ξ . Using a linear fit, 

extrapolates to a value close to zero with ξ → ∞.

gapped feature due to the finite bond dimension, our dis-
persion is close to those from earlier iPEPS results [29,30]
and Gutzwiller-projected trial wave functions [97]. Also,
the well-known feature that the gap at (π , 0) is smaller than
the one at (π/2, π/2) [97] is recovered in our simulation.
In fact, the nature around the M (π , 0) point is of interest
and has been under investigation [98–100]. In Ref. [30], it
has been demonstrated using PEPS that the repulsion from
the multimagnon branches pushes the magnon at M (π , 0)

to a lower energy [99]. This feature is also captured in
our simulation by showing a dip in the single-magnon
branch near the M point, which cannot be captured by spin-
wave theory (dashed line). In Sec. IV C, we will show that
after introducing the next-nearest-neighbor (NNN) J2 cou-
pling, the lowest excitation energy at M (π , 0) can decrease
further.

C. Spin-1/2 J1-J2 antiferromagnet

In the previous subsections, we have studied models
with only nearest-neighbor couplings using our method.
Both the transverse-field Ising model and the Heisenberg
model have served as good benchmarks and have been
studied earlier using a conventional iPEPS construction for
the excited states [28–31]. Here, we aim to push further and
study the J1-J2 model, in which the NNN coupling intro-
duces frustration and thus exotic ground states [101,102].
The Hamiltonian is given by

HJ1-J2 = J1

∑

〈i,j 〉
Si · Sj + J2

∑

〈〈k,l〉〉
Sk · Sl, (22)

where the J1 (J2) term runs over all (next-)nearest-neighbor
pairs on the square lattice.

The J1-J2 model has been under intense investigation.
Since the frustration induces a sign problem for quantum
Monte Carlo method, alternative numerical methods have

010335-9



WEI-LIN TU et al. PRX QUANTUM 5, 010335 (2024)

been applied, suggesting that between J2 ≈ 0.5J1 and J2 ≈
0.6J1, a ground state without magnetic order is realized
(hereafter, we fix J1 = 1). Using PEPS methods, this van-
ishing of the staggered magnetization has been confirmed
[14] using advanced scaling techniques—for any finite
bond dimension, it appears that a variational PEPS ground
state yields a nonzero magnetization. Despite an abundant
amount of related studies for the ground state, very few
results have been reported for the excited state and there is
no result so far using the 2D tensor-network ansatz [103].
We will now investigate the excitation spectrum for this
frustrated model.

In order to include the NNN coupling, î in Eq. (14) now
represents x̂, ŷ, x̂ + ŷ, and x̂ − ŷ. As a result, the tensor
contraction that one needs to apply when preparing GH
becomes slightly cumbersome. For example, the tensor
graphs that we now need to consider involve two columns
at the same time,

(23)

which consumes more memory when storing the compu-
tational graph for the back propagation. Therefore, our
calculation in this work is restricted to D = 4 for the J1-J2
model and we will leave further considerations on increas-
ing the available bond dimension, e.g., using symmetries
in tensor networks to reduce the computational cost, to
future work. We note in passing that the NNN coupling
may also be handled using diagonal-channel environments
as in Ref. [81], which, however, differs from the CTMRG
environment used in this work.

In Fig. 5, we show the lowest-energy quasiparticle dis-
persion for the J1-J2 model with J2 = 0.3 and J2 = 0.5
along a high-symmetry path in the Brillouin zone. Similar

FIG. 5. The energy dispersion for the lowest excited state of
the J1-J2 model at distinct k points for J2 = 0.3 and J2 = 0.5.
We adopt Ns = 24 × 24 for D = 2, Ns = 16 × 16 for D = 3, and
Ns = 8 × 8 for D = 4.

to the case for the Heisenberg model, with increasing bond
dimension, the energy gap becomes smaller, in agreement
with the fact that the phase is gapless [104]. Moreover,
these dispersions are also close to those produced by the
variational Monte Carlo (VMC) method [105]. Besides the
shape of the dispersion, we can clearly see that the energy
gap becomes smaller at M (π , 0) when J2 increases. More
importantly, at J2 = 0.5, our results using D = 2 indicate
that even the M (π , 0) point may become gapless. This soft-
ening of the dispersion at the M point is suggestive of
the formation of a spin liquid phase at intermediate val-
ues, where the mode at the M point would correspond to a
two-spinon state [105].

Based on the variational wave functions for the excited
states, it is straightforward to compute their contribu-
tions to the dynamical structure factor (DSF). The DSF
is defined as Sα(k, ω) = ∑

n |Mα
k |2δ(ω − Ek

n + E0), with
Mα

k = |〈�k(Bn)|Sα
k |�(A)〉|. E0 and Ek

n are the ground-
state and excited-state energies for |�(A)〉 and |�k(Bn)〉,
respectively. And Sα

k is the Fourier transform of the local
spin operator with α = (x, y, z). Note that in this case, the
forward-mode AD could be computationally cheaper than
the reverse-mode AD, since only a few parameters are

FIG. 6. The dynamical structure factor for the J1-J2 model with D = 3. Here, we show results for J2 = 0.1 (left panel), J2 = 0.3
(middle panel), and J2 = 0.5 (right panel), with Ns = 16 × 16. We replace the delta function with normalized Gaussian broadening of
width σ = 0.1.
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involved in the derivative. In Fig. 6, we show the DSF
for J2 = 0.1, 0.3, and 0.5, respectively, where all data are
computed with PEPS bond dimension D = 3. The delta
function in the DSF has been replaced by a normalized
Gaussian with broadening width σ = 0.1. Two clear fea-
tures can be seen from our data: (1) the energy gap gets
softened at the M (π , 0) point and (2) the spectral weights
get closer to those of the magnon branch (the lowest
excited energies) in the frustrated region. We have noted
that in the previous results by VMC, the authors have also
observed a similar trend in their DSF results, where a clear
energy continuum is formed after J2/J1 ≈ 0.45. In Fig. 6,
we can clearly see that as J2 goes to 0.5, various disper-
sions gather toward the lowest magnon branch, featuring
the potential formation of the energy continuum.

V. CONCLUSIONS

In this work, we have extended the generating func-
tions introduced in Ref. [64] to PEPS. After obtaining
the well-approximated ground state through variational
optimization, we have solved the eigenvalue problem in
Eq. (17), where effective Hamiltonian and norm matrices
are evaluated by taking the derivatives of their corre-
sponding generating functions. We have then utilized the
eigenstates as the impurity tensors to construct the one-
particle excited state and employed the transverse-field
Ising model and the Heisenberg model as benchmarks.
Our results are consistent with previous ones [29,30] using
PEPS that require serial summation on different parts of the
tensor graphs. We have then extended our considerations to
the model with NNN coupling and studied the J1-J2 model.
Despite the increasing computational cost, which hinders
the computation with larger D, our results already show
good agreement with previous ones by VMC [105].

Before closing, let us discuss how to generalize this idea
to multiparticle excitations, especially those associated
with spinons. It is known that spin liquids are characterized
by fractionalized excitations, where the quasiparticles can-
not appear alone but come in pairs, which are intrinsically
two-particle excitations. In the previous study, spinon exci-
tation (among other fractional excitations) has been treated
in MPS calculations using good quantum numbers, which
appear as a local excitation with a nonlocal string attached
[59,106]. In the case of PEPS, fractionalized excitations
can also be defined and their static properties, e.g., corre-
lation functions and correlation lengths, have been studied
in Ref. [20]. In that case, the local tensor of PEPS needs
a certain gauge symmetry. Once constructed, the excited
states containing spinon excitations can be obtained. To
further study the dispersion relation of spinon excitation,
one may put one spinon infinitely far away or use a suitable
boundary condition to reduce the issue to an effective one-
particle problem. Generating functions can then be used

for efficiently optimizing the one-particle problem, as we
have shown above.

In summary, our proposal of combining the generat-
ing function with the tensor-network ansatz helps reduce
the complexity in obtaining the physical properties or
observables involving the summation of tensor networks,
especially in the computation of quasiparticle excitations.
The present method provides not only the dispersion rela-
tion of the quasiparticles but also a systematic way of
knowing what the relevant quasiparticle for a given system
is, even if it is not clear a priori. It may then be possible
to discover completely new quasiparticles in 2D quantum
many-body systems. From another perspective, with the
generating-function method, the PEPS representation for
an excited state now takes almost the same form as the
ground-state PEPS. Thus it may also be helpful for prepar-
ing excited states in quantum computers, which we leave
to future study.
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