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Irreversibility, crucial in both thermodynamics and information theory, is naturally studied by compar-
ing the evolution—the (forward) channel—with an associated reverse—the reverse channel. There are two
natural ways to define this reverse channel. Using logical inference, the reverse channel is the Bayesian
retrodiction (the Petz recovery map in the quantum formalism) of the original one. Alternatively, we know
from physics that every irreversible process can be modeled as an open system: one can then define the
corresponding closed system by adding a bath (“dilation”), trivially reverse the global reversible process,
and finally remove the bath again. We prove that the two recipes are strictly identical, both in the classical
and in the quantum formalism, once one accounts for correlations formed between system and the bath.
Having established this, we define and study special classes of maps: product-preserving maps (including
generalized thermal maps), for which no such system-bath correlations are formed for some states; and
tabletop time-reversible maps, when the reverse channel can be implemented with the same devices as the
original one. We establish several general results connecting these classes, and a very detailed characteri-
zation when both the system and the bath are one qubit. In particular, we show that, when reverse channels
are well defined, product preservation is a sufficient but not necessary condition for tabletop reversibility;
and that the preservation of local energy spectra is a necessary and sufficient condition to generalized
thermal operations.
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I. INTRODUCTION

Irreversibility is ubiquitous in real life. In science, it was
first studied systematically in the context of thermodynam-
ics: this is captured by the second law, which stipulates
the impossibility of putting all the energy to fruition, lead-
ing to the necessary generation of heat—or more generally,
entropy [1–7]. Eventually, information theory became the
setting in which to study irreversibility: a process is irre-
versible for an agent when the agent is unable to retrieve
from the output all the information about the input. In turn,
a theory of optimal retrieval of information was developed,
both in classical and in quantum theories [8–12].
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Meanwhile, the field of stochastic thermodynamics
developed quantitative approaches to irreversibility, based
on statistical comparisons between the process under study
and its associated reverse process. But how to define
the latter? In the case of fully reversible, deterministic
processes, the reverse process is obviously the dynam-
ics played backwards. For isothermal evolutions (driven
Hamiltonian evolution while the system is in contact with
a thermal bath), a possible and very natural reverse process
consists in driving the evolution backwards in the presence
of the same bath [13,14]. Reverse process have also been
found for more complex processes, through expert control
of the model and its assumptions (see, e.g., Ref. [15]). A
general recipe may be built on the observation that any
irreversible process can be seen as a marginal of a global,
reversible process involving the system and some envi-
ronment. The recipe through dilation is then: add a suit-
able environment (dilation), trivially reverse the reversible
global process, and finally remove the environment.

Recently, it was proposed to define the reverse process
using the Bayesian recipe for information retrieval, also
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known as Bayesian inversion or retrodiction [16,17]. This
recipe through retrodiction requires only choosing a refer-
ence state, which plays the role of a Bayesian prior. The
connection between reverse processes and Bayesian logic
had not been noticed in the context of classical stochas-
tic thermodynamics. In quantum thermodynamics, one the
main tools for information recovery had been used, first
occasionally [14,18], then systematically [19,20]: the Petz
recovery map [11,21,22], which was also proposed early
on as a quantum analog of Bayesian inversion [23–26].

In this work, after a review of known material on reverse
processes (Sec. II), we start by proving that the two recipes
by dilation and by retrodiction are identical, both in the
classical and the quantum case (Sec. III). The fact that
the two proposed general recipes coincide, combined with
the knowledge that all the previously known special cases
can be recovered with these recipes, shows that we have
the definition of the reverse process under control. Next
we bring up the observation that a process and its asso-
ciated reverse process may be very different. It is indeed
well known in the quantum case that implementing the
reverse (Petz) of a channel may require very different
resources than those needed to implement the channel
itself (see, e.g., Ref. [27]). The cases mentioned above of
the reversible and the isothermal processes, whose reverses
are “what one would expect” and can be implemented with
the same control and the same environment, seem to be
the exception. Based on this observation, we set to study
which processes have a reverse that can be implemented
with the same, or similar, resources (Fig. 1). We shall
say that the latter processes possess tabletop reversibil-
ity. This is of interest for the structure of the theory of
the reverse processes, as well as for possible experimental
tests of fluctuation theorems in situations that are not uni-
tary or isothermal. The mathematical definition of tabletop
reversibility is defined in Sec. IV, together with the aux-
iliary notion of product-preserving channels, which may
be of interest in its own right. In Sec. V, we present both
general results valid and a thorough characterization of
two-qubit channels. In Sec. VI, we highlight the impli-
cations of these results and scenarios for energetics and
reversibility in the quantum regime. Section VII is the
conclusion.

II. REVERSE PROCESSES

A. Notations

In classical theory, we consider a discrete state space
with d distinct states. A generic state is represented by a
probability distribution p: p(j ) ≥ 0 for j = 1, . . . , d; and∑d

j=1 p(j ) = 1. It can be represented by a d × 1 proba-
bility vector p, whose entries are pj := p(j ). A generic
channel is a stochastic map ϕ, defined by d2 probabilities
ϕ(j ′ | j ) of transiting from the input state j to the output
state j ′. These probabilities must satisfy ϕ(j ′ | j ) ≥ 0 for

FORWARD PROCESS

GENERAL
RETRODICTION

IF TABLETOP
TIME REVERSIBLE
(DEPENDENT ON
REFERENCE PRIOR)

FIG. 1. An illustration of the main goal of this paper. Any
channel E on a system can be viewed as a larger reversible uni-
tary process U involving the system and a bath (top). Applying
the recipes by dilation or by retrodiction (proved identical in Sec.
III), one finds that the reverse process must in general be imple-
mented with completely different tools than the original process
(bottom left). We set out to characterize the tabletop reversible
situations, in which the reverse process can be implemented with
the same, or similar, tools as the forward process: namely, by
appending an ancilla and inverting the original unitary U . The
exact definitions will be given in Sec. IV, and the results in the
following sections.

all j , j ′ and
∑d

j ′=1 ϕ(j
′ | j ) = 1 for all j . The channel can

be represented by the d × d stochastic matrix ϕ, whose
entries are ϕj ′j := ϕ(j ′ | j ). In this representation, the com-
position of channels is represented by the standard matrix
multiplication: if ϕ = ϕ2 ◦ ϕ1, then ϕ = ϕ2 ϕ1.

An important remark for what follows: even if the
matrix ϕ has an inverse, in general the entries of the
matrix ϕ−1 do not define a valid stochastic map. Anal-
ogously, while every matrix can be transposed, the map
corresponding to ϕT is a valid map if and only if the chan-
nel is bistochastic, i.e., satisfies the additional property∑d

j=1 ϕ(j
′ | j ) = 1 for all j ′. When the inverse or the trans-

pose of the matrix do define valid channels, we shall denote
those channels as ϕ−1 and ϕT, respectively.

In quantum theory, we consider a finite-dimensional
complex vector space of dimension d. A generic state is
described by a semidefinite operator ρ � 0 in this space
with Tr(ρ) = 1. Channels are represented by completely
positive, trace-preserving (CPTP) maps. Given a CPTP
map E , the adjoint E† is the unique map for which

Tr(E[X ]Y) = Tr(X E†[Y]) (1)

for operators X and Y. Just as ϕT is not a valid stochas-
tic map in general, E† is in general not a valid quantum
channel.
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FIG. 2. (a) Illustrations for standard examples of reversal. (b) Bayesian inversion or “retrodiction” is a formal recipe that reproduce
results of the standard approach while generalizing the definition of reverse processes for any characterized process, and any under
setting as captured by a reference state.

B. Reverse process: standard examples

We first review some classes of processes where the
reverse—or at least, a candidate for it—is known [see
Fig. 2(a) for an illustration].

The most obvious class is that of reversible processes,
where the map is a bijection between the space of states.
Their reverse processes are naturally defined as the evo-
lution played backwards, i.e., the inverse map. In classical
theory, such processes are Hamiltonian evolutions� obey-
ing Liouville’s theorem: reversal is given by inverting the
trajectories in the configuration space. In a discrete-state
space, the matrix � is a permutation matrix, whose inverse
and transpose coincide (�−1 = �T) and define a valid
map. Analogously, in quantum theory, bijective transfor-
mations are unitary channels U [•] = U • U† where UU† =
1: their inverse exists, coincides with the adjoint, and
defines a valid map. For a reversible process, the inverse
map is the only reasonable candidate of the corresponding
reverse process.

Moving to bistochastic and unital processes, their
inverse is, in general, not defined, but their transpose and
adjoint is a valid channel and thus provides an immediate,
natural candidate for the reverse map. Beyond this class,
the transpose and adjoint ceases to define a valid channel.
On this basis, it has been argued that only bistochastic and
unital processes are fundamental if one wants the theory to

be fundamentally reversible [28–30]. We do not take sides
in that discussion: we are not concerned with ultimate con-
straints on fundamental theories, but with the description
of practical irreversibility.

The most obvious irreversible processes describe the
dissipation of information in an unmonitored environment,
or arise from a coarse graining over a chaotic dynamics.
In both cases, the dynamics is generally not bistochas-
tic and unital. The reverse of some such processes has
been constructed on a case-by-case basis by invoking
physical arguments. For a system undergoing Hamiltonian
evolution while in contact with thermal baths, under the
assumption of detailed balance, the recipe is very simple:
the reverse process consists in playing the Hamiltonian
evolution backward, while staying in contact with the same
thermal baths [6,13]. This recipe was used in the experi-
mental demonstrations [31] of Crooks’ fluctuation theorem
with biological systems [32,33] and levitating nanospheres
[34,35]. For quantum channels, the same result holds for
the so-called thermal operations T [14,36–43].

C. Reverse processes: general recipe through Bayesian
retrodiction

1. Generalities

Having reviewed the prime examples of constructed
reverse processes, we now describe a general recipe
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applicable to every process: Bayesian retrodiction
(sometimes called “Bayesian inversion”) [16,17]. It can be
traced back to the works of Watanabe [44,45], ultimately
building on the observation that the laws of physics give
us the knowledge of the evolution (the channel, in our
language) and not the initial state.

In classical theory, given the channel ϕ, the recipe for
Bayesian inversion is standard: one postulates a reference
prior γ , then applies Bayes’ rule to the joint probability
distribution P(a, a′) := ϕ(a′ | a)γ (a). The resulting reverse
map is

ϕ̂γ (a | a′) = ϕ(a′ | a)
γ (a)

ϕ[γ ](a′)
(2)

where the distribution ϕ[γ ] is given by ϕ[γ ](a′) =∑
a ϕ(a

′ | a)γ (a), the output obtained by propagating the
reference prior γ through the channel ϕ. In matrix notation,
Eq. (2) reads

ϕ̂γ = Dγϕ
TD−1

ϕ[γ ], (3)

where Dp is the diagonal matrix with entries corresponding
to the distribution p .

The extension of Bayesian formalism to the quantum
formalism has been the object of many studies [23–25,46,
47]. Here, we do not need an exhaustive Bayesian toolbox:
only a candidate for the reverse map. Our choice is the Petz
recovery map Êα [21,48,49]

Êα[•] = √
α E†

[
1√
E[α]

• 1√
E[α]

]
√
α, (4)

where α is a state that plays the role of reference prior.
The choice of the Petz map as the quantum analog of
Bayes’ rule is standard [23,25,26]. It has recently been
shown to fulfill the most crucial intuitions about rever-
sal [20,24,25,49] and to be suited to recover results in
stochastic quantum thermodynamics [16,19].

From now onwards, we identify

Rc [ϕ, γ ] = ϕ̂γ (5)

Rq [E ,α] = Êα (6)

and will use these notations interchangeably when conve-
nient. A property of the Bayes and Petz maps that we shall
use later is composability [24]:

Rc[ϕ2 ◦ ϕ1, γ ] = Rc [ϕ1, γ ] ◦Rc [ϕ2,ϕ1[γ ]] , (7)

Rq [E2 ◦ E1,α] = Rq [E1,α] ◦Rq [E2, E1[α]] . (8)

One may see Appendix C 1 for proofs. This property holds
even when the maps are not stochastic.

We note in passing that, due to presence of the term
E[α]−1/2 (D−1

ϕ [γ ]), Êα (ϕ̂γ ) is ill defined when the prop-
agated reference E[α] (ϕ[γ ]) is rank deficient. Of course,
one could attempt to side step this problem in several ways:
for example, by defining E[α]−1/2 (D−1

ϕ [γ ]) only on its
support, or by considering a neighborhood of full-rank
states around the rank-deficient output and taking some
limit. However, this boils down to a matter of convention,
where each approach gives a different retrodiction chan-
nel, as we discuss in Appendix F in some detail. We do not
make a particular choice, and instead leave the retrodiction
channel undefined in this case.

2. Examples revisited

The examples of reverse maps of the previous subsec-
tion are recovered, and possibly clarified, in the retrod-
ictive approach. Reversible maps are the only ones, for
which the Bayes and Petz map does not depend on the
reference prior [17,25,45]; and, unsurprisingly, coincides
with the inverse:

Rc [�] = �̂γ = �T = �−1 ∀ γ ,

Rq [U ] = Ûα = U† = U−1 ∀ α.
(9)

For the case of bistochastic and unital maps, the Bayes
and Petz does depend on the reference prior [17,25]. The
reverse described above is obtained for a very natural
choice of reference prior, namely the uniform: γ := u with
u(j ) = 1/d in the classical case, α := 1/d in the quan-
tum case. Indeed, this prior is preserved by these maps
(ϕ[u] = u, E[1/d] = 1/d), and one can immediately see
that

Rc [ϕ, u] = ϕT, Rq [E ,1/d] = E†

[bistochastic and unital].
(10)

Lastly, let us look at thermal operations in the quantum
language. Given a noninteracting system-bath Hamiltonian
HA ⊗ 1+ 1⊗ HB, one defines

T [•] = TrB
{
U [•⊗ τκ(HB)] U†} , (11)

where τκ(H) = eκH/tr(eκH ) is the thermal (or Gibbs) state
with κ = −1/kBT (usually denoted −β, but later in the
paper we use β to denote a state of the bath) and where
U is constrained to satisfy

[U, HA ⊗ 1+ 1⊗ HB] = 0. (12)

A channel thus constructed preserves the thermal, or
Gibbs, state of the system for the same κ: T [τκ(HA)] =
τκ(HA). The Petz map with the Gibbs state as reference
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prior is found to be (Ref. [14], see also Appendix A for the
derivation)

T̂τκ (HA)[•] = TrB
{
U† [•⊗τκ(HB)] U

}
, (13)

which describes indeed a reversal of the unitary dynamics
while in contact with the same thermal bath. Notice how,
having adopted the retrodictive approach, the usual ther-
modynamical assumptions called “microreversibility” and
“detailed balance” are replaced by the single assumption
on the choice of the reference prior.

III. REVERSE PROCESSES AND DILATIONS

Before studying tabletop reversibility, we need to intro-
duce the notion of dilation of a process. The word,
common in the language of quantum channels, describes
the extension of a process on system A to include an
environment (or “bath”, or “ancilla”) B.

Typically, a dilation is performed with the goal of mak-
ing the extended system AB a closed one, whose dynamics
is therefore reversible. Hence, it is natural to look at defin-
ing reverse processes by the following recipe: dilate by
adding the environment, reverse the map of the dilation
(trivial if reversible), then remove the environment. A pri-
ori, this recipe is different from the Bayesian one applied
on the system alone: dilations are not unique, and the
reverse process obtained by this recipe might depend on
the details of the chosen dilation. We proceed to prove
that the two recipes actually coincide: given a choice
of dilation, only the reference prior chosen on the sys-
tem determines the reverse process. This holds both for
classical and quantum systems.

A. Classical dilations and Bayes’ rule

Every classical process ϕ on a system state space A
(|A| = dA) can always be expressed as a marginal of a
global process �AB on an extended state space AB (|B| =
dB), alongside some potentially correlated environment βB.
This may be expressed by

ϕ(a′ | a) =
∑
bb′
�(a′, b′ | a, b)β(b | a). (14)

A tuple (�AB,βB) that fulfills Eq. (14) will be called a
dilation of ϕ. We proceed to prove our claim for classical
processes:

Result 1.—Given a classical map ϕ, the reverse obtained
by dilating with an environment, reversing the dilated
map, then removing the environment, is the same as that
obtained directly through the Bayesian recipe (2) on the
system.

Proof.—Let us construct the reverse with the dilation.
Besides the reference prior on the system A, we have the
additional freedom of choosing a dilation (�AB,βB). The

total reference prior is then 
(a, b) = γ (a)β(b | a), and we
define the reverse of the dilated map by applying Bayes’
rule to P(a, b, a′, b′) ≡ �(a′, b′ | a, b)
(a, b):

�(a′, b′ | a, b)
(a, b) = �̂
(a, b | a′, b′)�[
](a′, b′).
(15)

Finally, we remove the environment. Writing η := �[
]
for readability, we have

∑
bb′
�(a′, b′ | a, b)β(b | a)

︸ ︷︷ ︸
ϕ(a′ | a)

γ (a)

=
∑
bb′
�̂(a, b | a′, b′)�[
](a′, b′)︸ ︷︷ ︸

η(b′ | a′)η(a′)

:= ϕ̂′

(a | a′)η(a′).

where on the left-hand side we have used the fact that
(�AB,βB) is a dilation of ϕ, and where ϕ̂′


(a | a′) is the
reverse map obtained through this recipe. By summing on
both sides over a, we see that η(a′) = ϕ[γ ](a′): whence
ϕ̂′

(a | a′) is identical to Eq. (2). In particular, the only

freedom left is indeed that of choosing γA. �
Notice that we did not have to assume that �AB is

reversible: the proof is valid for any dilation. Also, we did
not have to assume that β(b | a) = β(b) carries no initial
correlations; of course, one can choose a dilation with this
property, if deemed physically important. By contrast, hav-
ing chosen the dilation, the posterior η := �[
] is what it
is: one cannot enforce η(b′ | a′) = η(b′).

B. Assignment maps

Let us now have a more detailed look at the structure
of dilations. The first operation (appending an environ-
ment) appears as the natural reverse of the last operation
(tracing out the environment). We are going to show that
this is indeed the case (see Appendix C for supplementary
proofs).

Denote the operation of tracing out the environment by
�B. The map of appending an environment B to the system
A (assignment map), with reference state on AB given by
, is given by the Bayesian reverse of �B:

�̂B,[•A] = •A

(


�B[]

)
B |A

. (16)

Explicitly, �̂B,[pA](a, b) = p(a)(b | a) has the form
of Jeffrey’s update: given a reference joint distribution
(a, b), if one gets the information that the distribution
of A is actually given by p , the rational way of updating
one’s knowledge is to update A’s marginal while keeping
what attains to B unchanged.
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In turn, the Bayesian reverse of any classical assignment
map, for which (a, b) is the product, is the partial trace,
for any choice of reference prior: Rc

[
�̂B,�⊗β , γ

]
= �B

for all β and γ .
The generic definition (14) of the dilation (�AB,βB) can

then be written as

ϕ = �B ◦� ◦ �̂B, (17)

with a choice of  such that ((a, b)/
∑

a(a, b)) =
β(b | a). By using the composability property (7), one
obtains

ϕ̂γ = �B ◦ �̂
 ◦ �̂B,�[
], (18)

which is what we proved in Result 1. For relevant proofs
see Appendix C 2.

Classically, by choosing(b | a) 
= (b), initial system-
bath correlation are straightforwardly described. The quan-
tum analog, by contrast, took some discussions to be
clarified [50–52]. The Petz map of the partial trace satis-
fies all the properties of a completely positive assignment
map. For a generic reference state � of AB, it reads

T̂rB,�[•A] =
√
�

[(
1√

TrB[�]
•A

1√
TrB[�]

)
⊗ 1B

]√
�.

(19)

For an uncorrelated � = � ⊗ β, it takes the form

T̂rB,�⊗β[•A] = •A ⊗ β. (20)

With this definition of the quantum assignment map, we
now tackle retrodiction on dilations in the quantum for-
malism.

C. Quantum dilations and the Petz recovery map

For quantum processes, we focus on unitary dilations
with an initially uncorrelated state of the environment. Any
quantum channel E can be seen as the marginal of a global
unitary U acting on a target input and an ancillary system
prepared in a suitable density operator β [22,53]:

E[•] = TrB
[
U(•⊗β)U†] . (21)

As in the classical case, it can be seen as the composition
of channels

E[•] = TrB ◦ U ◦ T̂rB,�⊗β[•]. (22)

The Petz map of E with reference state α can be com-
puted directly, using the fact that the adjoint of Eq. (21)
is E†[•] = TrB[

√
1⊗ βU†(• ⊗ 1)U

√
1⊗ β]:

Êα[•] = TrB

{√
α ⊗ β U†

[(
1√

TrB[U(α ⊗ β)U†]
• 1√

TrB[U(α ⊗ β)U†]

)
⊗ 1

]
U

√
α ⊗ β

}

= TrB

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U†

[√
U(α ⊗ β)U†

[(
1√

TrB[U(α ⊗ β)U†]
• 1√

TrB[U(α ⊗ β)U†]

)
⊗ 1

]√
U(α ⊗ β)U†

]
︸ ︷︷ ︸

T̂rB,U[α⊗β][•]

U

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= TrB ◦ U† ◦ T̂rB,U[α⊗β][•], (23)

where between the first and the second line we inserted
two identities U†U = 1 and used U

√
(α ⊗ β)U† =√

U(α ⊗ β)U†, and where we used Eq. (19).
Thus, we verified directly the composition that was

expected on formal grounds, Eq. (8). We can then state the
following claim:

Result 2.—Given a quantum map E , the reverse obtained
by dilating with an environment, reversing the dilated
map (accounting for propagated correlations through the
assignment map), then removing the environment, is the
same as the Petz map (4) computed directly on the map. In

other words, the knowledge of a dilation of E does not add
any useful information to define the reverse of E .

Proof.—The recipe through the dilation is the composi-
tion of

Rq

[
T̂rB,�⊗β ,α

]
= TrB

Rq

[
U , T̂rB,�⊗β[α]

]
= Ûα⊗β = U† ∵ (9)

Rq

[
TrB,U ◦ T̂rB,�⊗β[α]

]
= T̂rB,U[α⊗β].

(24)
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TABLE I. Summary table of the relation between retrodiction and dilations. To stress the comparison between classical and quantum
theory, in this table the classical dilation � is a reversible channels, and the bath is taken as initially uncorrelated with the system
(although these restrictions are not needed, as proved in the text).

Classical Quantum

Dilation definition ϕ(a′ | a) = ∑
bb′ �(a

′b′ | ab)β(b) E[•] = TrB[U • ⊗βU†]
Dilation as channels ϕ = �B ◦� ◦ �̂B,�⊗β E = TrB ◦ U ◦ T̂rB,�⊗β
Bayesian inversion ϕ̂γ = �B ◦�−1 ◦ �̂B,�[γ⊗β] Êα = TrB ◦ U† ◦ T̂rB,U [α⊗β]

Via decomposability
Assignment map to partial trace Rc

[
�̂B,�⊗β , γ

]
= �B Rq

[
T̂rB,�⊗β ,α

]
= TrB

Inversion of global process Rc [�, γ ⊗ β] = �−1 Rq [U ,α ⊗ β] = U†

Partial trace to retrodictive assignment Rc [�B,�[γ ⊗ β]] = �̂B,�[γ⊗β] Rq [TrB,U [α ⊗ β]] = T̂rB,U [α⊗β]
If no correlations are formed, and reverse map is well defined ⇒ tabletop reversibility

Tabletop time reversibility ϕ̂TR
γ = �B ◦�−1 ◦ �̂B,�⊗β ′ ÊTR

α = TrB ◦ U† ◦ T̂rB,�⊗β ′

Proofs for each individual part of the decomposition are
found in Appendix C 3. This composition indeed coincides
with the Petz map, as proved in Eq. (23). �

We summarize the structural symmetries that relate dila-
tion and retrodiction, for classical and quantum theory,
in Table I. The results are also illustrated by Fig. 3. In
both regimes, the role of retrodictive assignment maps
T̂rB,U[α⊗β], �̂B,�[γ⊗β] ensures consistency in expressing
the reverse process. The last line of the table anticipates
the definition of tabletop reversibility, the central object of
this paper, which we are going to introduce next.

IV. DEFINITION OF TABLETOP REVERSIBILITY
AND RELATED CLASSES OF CHANNELS

In this section, we introduce the new classes of channels
that are the central object of this work. From here onward,
we work only in the quantum formalism. When required,

we shall highlight whether a result is purely quantum, or is
also true for classical processes.

A. Tabletop reversibility

Our primary concern is the implementation of a Petz
map Êα , given the control on the implementation of the
channel E[•] = TrB[U(• ⊗ β)U†].

Implementing the Petz map is not straightforward, and
approximate realizations have been studied recently [27,
54]. With what we introduced, we can understand the rea-
son of this difficulty. On the one hand, since the Petz map
is a CPTP map, there exist a unitary V and an ancillary
state β̄ such that Êα[•] = TrB̄[V(• ⊗ β̄)V†]. But in general,
V 
= U†: we may have to build a dedicated unitary. On the
other hand, we have just seen in Eq. (23) that every Petz
map can be written as Êα[•] = TrB[U†T̂rB,U[α⊗β][•]U]. But
in general, T̂rB,U[α⊗β][•] 
= • ⊗ β ′, as shown in Eq. (19):

REVERSAL

REVERSAL

DILATION
TAKING INTO ACCOUNT
PROPAGATED
CORRELATIONS

DISSIPATIVE PART OF THE TRANSFORMATION
CAN BE CAPTURED IN THE STOCHASTIC STATE
OF AN ENVIRONMENT

EXTENDED STATE SPACE

MARGINALIZE

FIG. 3. Two routes for Bayesian retrod-
iction illustrated. One can show that these
two protocols always give the same reverse
process, as long as the propagated corre-
lations formed across the reference prior
and the ancillary environment is accounted
for. This is captured by the retrodictive
assignment map (23).
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we may have to do something more complicated than
appending an ancilla.

We want to identify the special cases, in addition to uni-
tary and isothermal channels, where the reverse channel
can be obtained by just appending an ancilla and inverting
the unitary:

Definition 1.—A quantum channel E with a uni-
tary dilation E[•] = TrB[U(• ⊗ β)U†] is called tabletop
reversible for the prior α [shorthand TR(α,β ′ |U,β)] if
there exists a state β ′ = β ′(α) of the bath such that the Petz
map with respect to α is

Êα[•] = TrB[U†(•⊗β ′)U] (25)

for the same U that enters the dilation of E .
Notice that this definition does not mean that the reverse

should be implementable by acting only on the system, a
situation studied by Aberg [55] and inspired by dynamical
decoupling. Even in the generic case of isothermal pro-
cesses one may have to invert the system-bath interaction,
if the latter is not constant.

B. Product-preserving maps and generalized thermal
operations

Here we introduce two more definitions that will be used
below.

Definition 2.—A unitary that acts in a joint Hilbert space
HA ⊗HB is product preserving if

∃(α,β,α′,β ′) : U(α ⊗ β)U† = α′ ⊗ β ′. (26)

Here, α,α′ ∈ S(HA) and β,β ′ ∈ S(HB) are positive
semidefinite operators with trace one, and at least one
of α, β is not maximally mixed [to exclude the obvious
case U(1⊗ 1)U† = 1⊗ 1]. We shall also call any tuple
(U,α,β) for which U is product preserving with respect to
α and β a product-preserving tuple.

Contrary to the production of correlations (e.g., in uni-
versal entanglers [56,57]) and the preservation of maximal
entanglement (Bell-to-Bell maps [57]), product preserva-
tion has not been studied systematically prior to this work.
It appears as a natural property of thermal maps, and is at
the origin of several results in entropy production, thermal-
ization and reversibility in the quantum regime [14,36–38].
By relaxing Eq. (12), we enlarge that natural setting in
a way that was already used in some other works in the
literature [14,18]:

Definition 3.—A unitary that acts on a joint Hilbert space
HA ⊗HB is a generalized thermal unitary if

∃(HA, HB, H ′
A, H ′

B) : U(HA ⊗ 1+ 1⊗ HB)U†

= H ′
A ⊗ 1+ 1⊗ H ′

B, (27)

where either HA or HB is not proportional to the identity.
The corresponding generalized thermal map is given by
E[•] = TrB{U[• ⊗ τκ(HB)]U†}.

It is straightforward (see Appendix A) that

Uτκ(HA)⊗ τκ(HB)U† = τκ(H ′
A)⊗ τκ(H ′

B), (28)

that is, (U, τκ(HA), τκ(HB)) are a product-preserving tuple
for all generalized thermal operations.

V. RESULTS

Having defined tabletop time reversibility, Eq. (25),
product preservation, Eq. (26), and generalized thermal
channels, Eq. (27), we prove several results connecting
them.

In Sec. V A, we prove some general connections
between these classes of processes. At a glance

(1) Theorem 1 fully characterizes the generalized ther-
mal as a subset of product-preserving unitaries.

(2) Theorem 2 establishes a strong relation between
the input pair (α,β) and the output pair (α′,β ′)
of any product-preserving unitary (and Corollary 1
interprets that relation in the thermal case).

(3) Theorem 3 is almost obvious, but is central to our
work: it proves that product preservation leads to
tabletop reversibility.

(4) Theorem 4 proves that the converse is not true, by
exhibiting examples of tabletop reversibility that do
not arise from product preservation.

In Sec. V B, we present a thorough study for two-qubit
unitaries. At a glance

(1) Theorem 5 provides a parametric characterization of
two-qubit generalized thermal unitaries.

(2) Theorem 6 shows that, given any two qubit uni-
tary U and a pure state |β〉, there always exists |α〉
such that U(|α〉 ⊗ |β〉) is product. This is unique
to low-dimensional cases, as the existence of non-
product-preserving unitaries have been proven in
higher dimensions [58].

(3) Theorems 7 and 8 provide two connections between
the generalized thermal character and the product-
preservation properties of two-qubit unitaries.

Relationships between tuples and definitions introduced
are also summarized in Fig. 4. Tables II and III can be
consulted for a snapshot of the theorems as well.

A. General results

Theorem 1.—U is generalized thermal if and only if it is
product preserving with regard to full rank α,β.

Proof.—The “only if” direction has already been estab-
lished in Eq. (28). For the “if” implication, we note that for
any full-rank state α, one can always find a corresponding
HA for which α = τκ(HA) = exp{κ(HA − ZHA)}, and like-
wise for the bath state β with the same inverse temperature

010332-8
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PRODUCT PRESERVED

TABLETOP
TIME REVERSIBLE

THERMAL

Generalized
THERMAL

RANK-DEFICIENT
OUTPUT STATES

FIG. 4. Schematic of the order relationships between the
tuple sets we have introduced. Note that the nontabletop time-
reversible but product-preserved tuples are those for which a
Bayesian inversion is not well defined in general due to the
presence of rank-deficient output states: although it is still pos-
sible to define some retrodiction channel in this case, it will
depend on the chosen convention, and the different approaches
are inconsistent with each other (Sec. VI B, Appendix F).

−κ . Then,

ln(α ⊗ β) = κ(HA ⊗ 1+ 1⊗ HB)− (ZHA + ZHB)1⊗ 1.

The same construction can be done for the logarithm of the
output product states ln

(
α′ ⊗ β ′). By invoking

UAU† = A′ ⇐⇒ Uf (A)U† = f (A′), (29)

the product-preserved behavior of the tuple implies
U ln(α ⊗ β)U† = ln

(
α′ ⊗ β ′), which is Eq. (27). Thus

there will always exist for every product-preserved tuple
with full rank α,β some HA, HB, H ′

A, H ′
B such that U is a

generalized thermal unitary. �
Notice that, in the previous theorem, the condition of

full rank cannot be relaxed. Indeed, on the one hand,

the logarithm of rank-defective states is ill defined. On
the other hand, it is simple to find unitaries that pre-
serve one pure product state, and that are not even
close (in any meaningful distance) to a generalized ther-
mal unitary. One such example is the two-qubit uni-
tary U |00〉 = |00〉, U |01〉 = 1√

3
(ω |01〉 + ω∗ |10〉 + |11〉),

U |10〉 = 1√
3
(ω∗ |01〉 + ω |10〉 + |11〉), U |11〉 = 1√

3
(|01〉

+ |10〉 + |11〉) with ω = e2π i/3.
Next, in the definition of product preservation, we have

merely required the input states α ⊗ β and output states
α′ ⊗ β ′ to be uncorrelated. Now we show that product
preservation implies a stronger relationship between the
two:

Theorem 2.—If (U,α,β) is a product-preserving tuple
with output states α′ and β ′, then there exist local unitaries
uA and uB such that α′ ⊗ β ′ = (uAαu†

A)⊗ (uBβu†
B). In the

case dA = dB, this may hold up to a swap: in other words,
it could be α′ ⊗ β ′ = (uAβu†

A)⊗ (uBαu†
B).

Proof.—We denote σ [ρ] as the eigenspectrum of ρ, and
write the spectra of α and β in the following way:

(1) σ [α] = {λ1, . . . , λdA}, where ∀i : λi ≥ λi+1;
(2) σ [β] = {μ1, . . . ,μdB}, where ∀j : μj ≥ μj+1.

As such, σ [α ⊗ β] is given by the set of values mi,j =
λiμj . This implies that mi,j ≥ mi+1,j and mi,j ≥ mi,j+1 for
all i, j . Since the input and output products differ by a
unitary transformation, σ [α′ ⊗ β ′] is also given by the
same set of mi,j , for which some σ [α′] = {λ′1, . . . , λ′dA

}
and σ [β ′] = {μ′

1, . . . ,μ′
dB
} exist such that mi,j = λ′iμ

′
j . It

is therefore necessary that ∀i : λ′i ≥ λ′i+1, and likewise for
μ′

j .
Now, assume that there is some i for which λ′i =

cλi. This means that for every j , μ′
j = c−1μj . But since∑

j μj = 1 and
∑

j μ
′
j = 1, summing over j for both sides

of μ′
j = c−1μj gives c = 1. This argument also works for

the values of μj . Therefore, the spectra must always be
conserved.

An “up to a swap” is obtained if we begin by assuming
that there is some i for which λ′i = cμi. Thus, (U,α,β) is a
product-preserving tuple if and only if the spectra of α and

TABLE II. Summary of key results for general channels. For relevant results, α = τκ(HA),β = τκ(HB),α′ = τκ(H ′
A),β

′ = τκ(H ′
B)

and E[•] = TrB[U(• ⊗ β)U†].

For all Cd channels

For any α,β U, HA, HB is a generalized
thermal tuple to H ′

A, H ′
B

⇒ U,α,β is product preserved to
α′,β ′

Eq. (28)

U,α,β is product preserved to
α′,β ′

⇒ E(U,β) is tabletop reversible
with regard to α

Eq. (31)

For any full rank α,β U,α,β is product preserved to
α′,β ′

⇔ U, HA, HB is a generalized
thermal tuple to H ′

A, H ′
B

Theorem 1
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TABLE III. Summary of key results for channels with two-qubit dilations.

For all two-qubits channels

Full rank α,β U,α,β is product preserved
tuple to α′,β ′

⇔ U s.t. tj − tk mod (π/2) or tj +
tk mod (π/2) = 0 under
(33)

Theorem 5

Pure α,β ∀U, |β〉〈β| ⇒ ∃|α〉〈α| for which U,α,β is
product preserved

Theorem 6

(U, |α〉 , |β〉), (U, |α⊥〉 , |β⊥〉)
are product preserved

⇔ ∃HA, HB for which (U, HA, HB)

is generalized thermal
Theorem 7

Full rank α, pure β U,α, |β〉〈β| is product
preserved tuple to α′,β ′

⇒ U, HA, HB is a generalized
thermal tuple to H ′

A, H ′
B

Theorem 8

β are conserved up to a swap:

σ [α′] = σ [α] ∧ σ [β ′] = σ [β]

∨ σ [α′] = σ [β] ∧ σ [β ′] = σ [α].
(30)

Note that the second set of conditions can only be fulfilled
if |supp(α)| ≤ dB and |supp(β)| ≤ dA.

Since the spectra are conserved, up to a swap, we can
always find some local unitary uA that brings α to α′, and
similarly for uB, which completes the proof. �

Notably, Theorem 2 shows that demanding the global
unitary to preserve noncorrelation is enough to ensure that
the local spectra of the input states are preserved, up to a
swap between the input and ancilla. This provides us with
a corollary on the level of the Hamiltonian:

Corollary 1.—If (U, HA, HB) is a generalized thermal
tuple with output Hamiltonians H ′

A and H ′
B, then H ′

A =
uAHAu†

A and H ′
B = uBHBu†

B, or H ′
A = uAHBu†

A and H ′
B =

uBHAu†
B, where uA and uB are some local unitaries on the

system and ancilla, respectively.
Proof.—To prove this, we use Theorem 2 on Eq.

(28), and then apply Eq. (29) to find τc(H ′
A)⊗ τc(H ′

B) =
[uAτc(HA)u

†
A] ⊗ [uBτc(HB)u

†
B] = τc(uAHAu†

A)⊗ τc(uBHB

u†
B), up to a swap. Finally, noting that the exponential of a

Hermitian operator is full rank, we can take the logarithm
to complete the proof. �

Let us now state the following theorem.
Theorem 3.—If (U,α,β) is a product-preserving tuple,

the channel E[•] = TrB[U(• ⊗ β)U†] is tabletop reversible
for reference prior α.

Proof.—Using Eq. (20), it is immediate that

U [α ⊗ β] = α′ ⊗ β ′

⇒ Êα[•] = TrB ◦ U† ◦ T̂rB,α′⊗β ′[•]

= TrB[U†(•⊗β ′)U]

, (31)

which is tabletop reversibility, Eq. (25). �
Next, we prove that the converse of Theorem (3) is not

true:

Theorem 4.—TR(α,β ′ |U,β) does not imply that
(U,α,β) is generalized thermal.

Proof.—We prove this with two counterexamples.
For the first example, we look at the two-qubit chan-

nel E1[•] := TrB[U1(• ⊗ β1)U
†
1] with U1 = |0〉〈0| ⊗ 1+

|1〉〈1| ⊗ σx and [β1, σx] 
= 0.
Given a prior α1 = a0|0〉〈0| + (1 − a0)|1〉〈1|, it can

be verified that E1[α1] = α1, while U1(α1 ⊗ β1)U
†
1= a0|0〉〈0| ⊗ β1 + (1 − a0)|1〉〈1| ⊗ (σxβ1σx) 
= α1 ⊗ β1.

Though separable, this is not a product state, so (U1,α1,β1)

is not generalized thermal.
The retrodiction of E1 with respect to α1 can be found

to be Ê1,α1 [•] = ∑
k |k〉〈k| • |k〉〈k|. Meanwhile, by setting

β ′
1 = (1+ b′

yσy + b′
zσz)/2, we have E1[•] := TrB[U†

1(• ⊗
β ′

1)U1] = Ê1,α1 [•]. Therefore, TR(α1,β ′
1 |U1,β1).

The second example is E2[•] := TrB[U2(• ⊗ β2)U
†
2]

with

U2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

β2 = 1
217

⎛
⎜⎜⎝

70 84e
iπ
3 35 30e−

2iπ
3

84e−
iπ
3 112 42e−

iπ
3 −35

35 42e
iπ
3 21 15e−

2iπ
3

30e
2iπ
3 −35 15e

2iπ
3 14

⎞
⎟⎟⎠ . (32)

The retrodiction channel Ê2,α2 with respect to the
prior α2 = 1/2 is the depolarizing channel Ê2,α2 [•] =
Tr[•]1/2. At the same time, E2[•] := TrB[U†(• ⊗ β ′

2)U]
with β ′

2 = 1/2 is also the depolarizing channel, so
TR(α2,β ′

2 |U2,β2).
Meanwhile, the log negativity of �2 := U2(α2 ⊗ β2)U

†
2

is found to be log2 tr‖�TB
2 ‖1 ≈ 0.9135, where •TB is a

partial transpose on the ancilla and ‖ • ‖1 is the trace
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norm. Since log negativity is an entanglement monotone
[59], and considering that the maximally entangled pure
state has a log negativity of 1, �2 is in fact very highly
entangled. So, (U2,α2,β2) is certainly not a product-
preserving tuple, and hence is not generalized thermal
either.

These examples demonstrate that channels can be table-
top time reversible without being generalized thermal with
respect to certain priors. Note that the first example also
holds for the classical case by setting b′

y = 0, while the
second example is inherently quantum due to the presence
of entanglement. �

B. Results for qubit channels with two-qubit dilations

We shall now focus our attention to one-qubit gen-
eralized thermal channels with two-qubit dilations, and
product-preserving unitaries acting on two qubits. It is
known that every two-qubit unitary permits the Cartan
decomposition [60]

U = (uA ⊗ uB) exp

(
i

3∑
k=1

tkσk ⊗ σk

)
(v

†
A ⊗ v

†
B), (33)

where {σk}3
k=1 are the usual Pauli operators, while vA,

vB, uA, and uB are single-qubit unitaries. Hence, every
U would be specified by these local unitaries and
angles {tk}3

k=1. With reference to this parametrization,
we fully characterize all two-qubit generalized thermal
unitaries:

Theorem 5.—A two-qubit unitary U, parameterized as
Eq. (33), is generalized thermal if and only if (tj − tk) mod
(π/2) = 0 or (tj + tk) mod (π/2) = 0 for some j 
= k.

Proof.—For a given two-qubit unitary U, we prove this
by characterizing every possible pair of Hamiltonians HA
and HB such that (U, HA, HB) is a generalized thermal
tuple. The proof by direct inspection is done in Appendix
E, divided in three lemmas: the main one covers all the U
such that tk mod (π/4) = 0 for at most one tk; the other
two settle the remaining special cases. �

Due to Theorem 1, the above also fully characterizes all
two-qubit unitaries that are product preserving with respect
to full rank states. There are in fact many more product-
preserving unitaries for two qubits. Indeed, every two-
qubit unitary is not just product preserving, but product
preserving with respect to every pure ancilla:

Theorem 6.—For every two-qubit U and ancilla |β〉,
there exists an |α〉 such that (U, |α〉 , |β〉) is a product-
preserving tuple.

Proof.—Let v
†
B |β〉 =̂(b0, b1)

T, v
†
A |α〉 =̂(a0, a1)

T ∝
(1, x)T, where vA and vB are the same as in Eq. (33), and

we have assumed for now that a0 
= 0. Then,

(u†
A ⊗ u†

B)U(|α〉 ⊗ |β〉) =̂

⎛
⎜⎝

f00(x)
f01(x)
f10(x)
f11(x)

⎞
⎟⎠ ,

(u†
A |α′〉)⊗ (u†

B |β ′〉) =̂
(

a′
0

a′
1

)
⊗

(
b′

0
b′

1

)
,

(34)

where fjk(x) are linear functions of x. The condition that
U is product preserving with respect to |α〉 ⊗ |β〉 requires
(a′

0b′
0)(a

′
1b′

1) = (a′
0b′

1)(a
′
1b′

0), which implies

f00(x)f11(x) = f01(x)f10(x). (35)

Since this is at most a quadratic equation in x, a solution
almost always exists for any choice of U, b0, and b1. If
a solution for x exists, then U is product preserving with
respect to |α〉 = vA(|0〉 + x |1〉)/

√
1 + |x|2 and the speci-

fied |β〉. A solution would not exist for Eq. (35) if it results
in a contradiction of the form c = 0 for a nonzero constant
c. However, in those cases, it is shown in Appendix D that
U is product preserving with respect to |α〉 = vA |1〉 and
|β〉. �

Corollary 2.—Every two-qubit unitary is product pre-
serving with regard to some states.

This corollary was already known in the context of uni-
versal entanglers, where it has been shown that there is
no two-qubit unitary that takes every product state to an
entangled state [58].

Finally, we present a characterization of the generalized
thermal two-qubit unitaries, an alternative to Theorem 5,
in terms of the product states that they preserve:

Theorem 7.—A two-qubit unitary U is generalized ther-
mal if and only if it is product-preserving with respect to
two pure states |α+〉 ⊗ |β+〉 and |α−〉 ⊗ |β−〉, such that
〈α+ |α−〉 = 〈β+ |β−〉 = 0.

Proof.—The “if” direction: we shall first consider the
case where HA and HB are nondegenerate. Let |α±〉 and
|β±〉 be the eigenstates of HA and HB, respectively, with
the ground states labeled |α−〉 and |β−〉. Taking the low-
temperature limit limc→∞ U [τ±c(HA)⊗ τ±c(HB)] U† =
limc→∞ τ±c(H ′

A)⊗ τ±c(H ′
B), we have

U [|α∓〉〈α∓| ⊗ |β∓〉〈β∓|] U† = |α′
∓〉〈α′

∓| ⊗ |β ′
∓〉〈β ′

∓|,
(36)

so U is product preserving with respect to |α±〉 ⊗ |β±〉.
The “only if” direction: let |α±〉 ⊗ |β±〉 =: (vA ⊗

vB)(|±〉 ⊗ |±〉) and |α′
±〉 ⊗ |β ′

±〉 =: (uA ⊗ uB)(|±〉 ⊗ |±〉).
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Then,

(u†
A ⊗ u†

B)U(vA ⊗ vB)

=̂

⎛
⎜⎜⎝

1 0 0 0
0 ei(a+φ) cos

(
θ
2

)
e−i(b−φ) sin

(
θ
2

)
0

0 −ei(b+φ) sin
(
θ
2

)
e−i(a−φ) cos

(
θ
2

)
0

0 0 0 1

⎞
⎟⎟⎠ , (37)

where the top-left and bottom-right entries originate
from the product-preserving condition, while the rest
of the entries are parameterized to impose unitar-
ity. Define HA := ωA|α+〉〈α+| − ωA|α−〉〈α−| and HB :=
ωB|β+〉〈β+| − ωB|β−〉〈β−|. From direct computation, U
will be found to be generalized thermal with respect to HA
and HB for any ωA and ωB if θ = 2nπ for some integer n,
and for ωA = ωB if θ 
= 2nπ .

To handle the degenerate case, we use the full charac-
terization of two-qubit generalized thermal unitaries from
Appendix E. Specifically, Lemmas 1′ & 1′′ state that U is
generalized thermal with respect to HA 
∝ 1 and HB ∝ 1 if
and only if it is generalized thermal with respect to HA 
∝ 1

and H̄B := vBv
†
AHAvAv

†
B. Since H̄B shares the same spec-

trum as HA and is therefore nondegenerate, the rest of the
proof follows as stated above. �

If we have a situation that only one of the states in the
product-preserved tuple is pure, then we can also conclude
that the unitary is generalized thermal:

Theorem 8.—For a two-qubit U and full-rank α, if
(U,α, |β〉〈β|) is a product-preserving tuple, then U is
generalized thermal.

Proof.—Up to a swap, U is product preserving with
respect to a full-rank α and pure |β〉〈β| if

U (α ⊗ |β〉〈β|)U† = α′ ⊗ |β ′〉〈β ′|, (38)

where we have used Theorem 2 to conclude that α′ is full
rank and |β ′〉〈β ′| is pure. Consider first the special case
of α = 1/2. Let |β+〉 := |β〉 and |β−〉 to be its orthogonal
state. Then,

U(1⊗ |β−〉〈β−|)U† = 1− U(1⊗ |β+〉〈β+|)U†

= 1⊗ |β ′
−〉〈β ′

−|. (39)

Hence, β = τκ(|β+〉〈β+| − |β−〉〈β−|) for any κ will sat-
isfy U(α ⊗ β)U† = α′ ⊗ β ′, so U is generalized thermal.

For α 
= 1/2, let α = p+|α+〉〈α+| + p−|α−〉〈α−| with
p+ > p−. It is clear that

U(αn ⊗ |β+〉〈β+|)U† = [U(α ⊗ |β+〉〈β+|)U†]n

= α′n ⊗ |β+〉〈β+|. (40)

Taking the limit n → ∞ with αn/Tr(αn) leads to
U(|α+〉 ⊗ |β+〉) = |α′

+〉 ⊗ |β ′
+〉. Then, with |α−〉〈α−| ∝

α − p+|α+〉〈α+|, where the product form of both terms
on the right are preserved by U with respect to the same
ancilla state |β+〉〈β+|, we also have U(|α−〉 ⊗ |β+〉) =
|α′

−〉 ⊗ |β ′
+〉.

Therefore, U is product preserving with respect to
|α+〉〈α+| + |α−〉〈α−| = 1 and |β〉〈β|. From the first part
of the proof, this implies that U is generalized thermal. �

Note that the converse does not hold. From the proof,
for a U to be product preserving with respect to some
input state of the form α ⊗ |β+〉〈β+|, it must necessarily
be generalized thermal with respect to 1⊗ τκ(|β+〉〈β+| −
|β−〉〈β−|) for all κ . From the proofs in Appendix E, this
is only possible when there exists j , k ∈ {1, 2, 3} and j 
= k
such that either tj , tk mod (π/2) = 0 or tj , tk mod (π/2) =
π/4. Therefore, a generalized thermal U is in general not
product preserving with respect to some α ⊗ |β〉〈β|.

VI. FURTHER OBSERVATIONS

While the preceding sections put emphasis on the math-
ematical aspects of product preserving and generalized
thermal unitaries, we now consolidate notable physical
insights that the results elucidate. We devote one sub-
section to each of the notions we introduced: general-
ized thermal operations, product preservation, and tabletop
reversibility.

A. On generalized thermal maps

Generalized thermal operations are the largest class of
operations that can be described by the following pro-
cedure [61]: a system (with free Hamiltonian HA) and a
bath (with free Hamiltonian HB) are brought into con-
tact, allowed to interact for some time with a unitary U,
then are decoupled again. As a result, the final Hamilto-
nian must be without interaction. A scattering experiment,
where two distinct collections of particles start far apart,
come together to interact in a complicated way, and two
(possibly different) collections of particles leave the inter-
action region, would be an example of such a process. That
said, we do not make any assumptions about the inter-
action unitary U apart from the fact that the initial and
final Hamiltonians are decoupled. This procedure indeed
describes our definition of generalized thermal operations
[Eq. (27)].

Corollary 1 shows that every process described by the
procedure above must obey a strong constraint: the local
conservation of energy spectra, up to a possible swap (if
the system and the bath have the same dimension, we can
always choose to redefine which is which).

The requirement [Eq. (12)] that the local Hamiltoni-
ans be unchanged, which is the standard definition of
thermal operation [61,62], is strictly stronger. That being
said, given a generalized thermal tuple (U, HA, HB), up
to a swap there exists local unitaries vA and vB, such
that (U′, HA, HB) is a thermal tuple, with U′ = (vA ⊗ vB)U.
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Indeed, using Corollary 1,

U[HA ⊗ 1+ 1⊗ HB]U† = uAHAu†
A ⊗ 1+ 1⊗ uBHBu†

B

(u†
A ⊗ u†

B)U︸ ︷︷ ︸
=:U′

[HA ⊗ 1+ 1⊗ HB] = [HA ⊗ 1+ 1⊗ HB]

× U′ =⇒ [U′, HA ⊗ 1+ 1⊗ HB] = 0, (41)

which is the claimed result with vX = u†
X .

In Appendix E, we have characterized all possible gen-
eralized thermal tuples (U, HA, HB) for two qubits; whence
all generalized thermal maps that possess a two-qubit dila-
tion can be inferred. These are depicted in Fig. 5. This
complements the recent characterization of all thermal
maps for one qubit coupled to a bosonic bath [63] and
similar studies in resource-theoretic contexts [43]. Such
characterizations are necessary for one of the main goals
of a resource theory, namely, to identify all states reachable
from some initial state using only free operations [64].

B. Product-preservation involving rank-deficient states

The discrepancy between product-preserving and gen-
eralized thermal unitaries boils down to the states they
are acting upon. In the preceding sections, we have given
explicit examples of unitaries that are product preserving,
but not generalized thermal, with respect to pure states.

However, Gibbs states are full rank for finite inverse
temperature. So, pure states, or more generally rank-
deficient states, are zero-temperature states in the thermo-
dynamic picture, and are not physically feasible except in

FIG. 5. All two-qubit unitaries are equivalent up to local
unitaries to the Weyl chamber [60], as plotted here with
coordinates (t1, t2, t3). The generalized thermal unitaries
are marked out in gray, and occur only on the surfaces
(0, 0, 0)–(π/4,π/4,π/4)–(π/4,π/4, 0) and (0, 0, 0)–(π/4,
π/4,π/4)–(π/2, 0, 0).

the limiting sense. Even outside the field of thermodynam-
ics, since real-world experiments are always susceptible to
noise and uncertainty, pure states are really idealizations
that can never be actually prepared in the lab.

Whichever the motivation, a product-preserving unitary
with respect to a rank-deficient state is pragmatically use-
ful only when there is a neighborhood of full-rank states
around it whose product structure is also preserved by the
same unitary. If so, one can choose a full-rank approxi-
mation of the target state whose product structure is also
preserved by the same unitary.

For two-qubit unitaries, which are all product preserv-
ing, Theorem 7 therefore provides a simple check for when
that unitary has a product-preserving property. Its proof
also offers an exact construction of the input and ancilla
Hamiltonians for which they are a generalized thermal
tuple together with interaction unitary.

Meanwhile, the Stinespring dilation theorem asserts the
uniqueness of the dilation unitary for every quantum chan-
nel when the ancilla state is pure, up to an isomorphism
on the ancilla [65]. Therefore, for channels with dila-
tions whose input and ancilla are both a single qubit,
Theorem 8 connects the product-preserving property of the
Stinespring dilation and the generalized-thermal property
of the dilation unitary.

It must be emphasized here that considering full-rank
product-preserving states in the neighborhood of a rank-
deficient state, and taking the former to be full-rank
approximations of the latter, is a convenient choice: one
that is motivated by thermodynamic arguments, but an oth-
erwise arbitrary one. Bayes’ rule and the Petz alike involve
the inverse of the propagated reference. When this state
is rank deficient, an inverse does not exist, rendering such
channels undefined. One might consider a neighborhood of
full-rank states whose inverses exists, and define the retro-
diction channel with some limiting process. However, our
prevening discussion and an explicit example in Appendix
F 1 c shows that defining retrodiction this way depends on
the chosen neighborhood of full-rank states.

C. Composable tabletop time reversibility

Apart from the reduction in reversal complexity of a
tabletop-time-reversible channel, one might also desire for
this behavior to apply for compositions of the same chan-
nel. For example, when the prior and ancilla are thermal
states, the reverse channel of the composition of a thermal
operation is the composition of the reverse channel of a
single thermal operation [14].

More generally, it would be convenient if the reverse
channel of a composition of many copies of the same quan-
tum operation can be implemented as illustrated in Fig. 6.
Formally, for a tabletop-time-reversible channel E with
unitary dilation (U, β) and positive integer L, one desires
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. . .

β . . . β

. . .

β′ β′. . .

•
U U U

EL[•]
β

Rq[EL, α]
U U U

•
β′

FIG. 6. Where the composition of many copies of the same
channel involves the same β as the ancilla in each step, it can
be desirable for the reversal of the composite channel to involve
the same β ′ as the ancilla in each step in the opposite direction.
We call channels that satisfy Eq. (42) as composable tabletop
time-reversible channels.

the reverse channel of EL := E ◦ E ◦ · · · ◦ E︸ ︷︷ ︸
L times

to be

Rq
[
EL,α

] = Êα ◦ ÊE[α] ◦ ÊE2[α] ◦ · · · ◦ ÊEL−1[α]

!= Êα ◦ Êα ◦ Êα ◦ · · · ◦ Êα
= Rq [E ,α]L ∀ L ∈ Z

+, where

Êα[•] = Tr[U†(•⊗β ′)U]. (42)

For brevity, we shall use TRc(α,β ′ |U,β) to denote
such composable tabletop-time-reversible channels—TR
(α,β ′ |U,β) that also satisfy Eq. (42). Let us provide a
few examples of such channels.

Unitary channels. The action of both the unitary and
its inverse on the input is independent of the state of the
ancilla, so unitary channels are composably tabletop time-
reversible. While this is a trivial case, it aligns with the

intended definition of composable tabletop time-reversible
channels as illustrated in Fig. 6.

Reverse channel with N-steady state prior. Consider
E[•] = TrB[U(• ⊗ β)U†] that is not a unitary channel,
with a set of priors {α0,α1, . . . ,αN−1} that satisfy

U(αn ⊗ β)U† = α(n+1) mod N ⊗ β ′. (43)

Then, Êαn[•] = Tr[U†(• ⊗ β ′)U] for all n, hence TRc(αn,β ′

|U,β). We call this the “N-steady state” as the set {αn}N−1
n=0

is unchanged under the channel. The N = 1 case is the
usual steady state of a channel, which includes the class of
thermal operations as previously studied [14]. An example
of such a channel for any N is an N -dit channel E given by
the ancilla β = ∑N−1

k=0 bk|k〉〈k| and the dilation unitary

U =
N−1∑
k=0

uk ⊗ |ψk〉〈k|. (44)

Here, σ is a permutation of order N , {|ψk〉}N−1
k=0 and

{|k〉}N−1
k=0 are orthonormal bases, and

uk =
N−1∑
j=0

eiφ(k)j |σ(j )〉〈(j )|, (45)

with u†
kuk′ 
∝ 1 for all k 
= k′, which ensures that E is not

a unitary channel. Meanwhile, the priors are defined as
αn = ∑N−1

k=0 ak|σ n(k)〉〈σ n(k)| where αn is not degenerate,
so that αn 
= αn′ for all n 
= n′. Since uk|σ n(j )〉〈σ n(j )|u†

k =
|σ n+1(j )〉〈σ n+1(j )|, we have that

U(αn ⊗ β)U† =
N−1∑
k=0

N−1∑
j=0

aj bk

({
uk|σ n(j )

}
〉〈σ n(j )|u†

k

)
⊗ |ψk〉〈ψk|

=
⎛
⎝N−1∑

j=0

aj |σ n+1(j )〉〈σ n+1(j )|
⎞
⎠

︸ ︷︷ ︸
=α(n+1) mod N

⊗
(

N−1∑
k=0

bk|ψk〉〈ψk|
)

︸ ︷︷ ︸
:=β ′

. (46)

This satisfies Eq. (43), and hence this channel is
composably tabletop time-reversible with respect
to αn.

Channels with idempotent reverse channels. These are
tabletop time-reversible channels whose reverse channels
are idempotent, both with themselves and subsequent pri-
ors: that is, they have the property Êα ◦ (ÊL−1)E[α] =
Êα ◦ Êα = Êα . If so, Eq. (42) is also satisfied. An exam-
ple of such a channel is when the dilation unitary is a

swap, as

U(α ⊗ β)U† = β ⊗ α

=⇒ Êα[•] = TrB[U†(•⊗α)U]
(47)

for every α. Clearly, Êα ◦ ÊE[α] ◦ · · · ◦ ÊEL−1[α][•] = α =
Êα[•] = Êα ◦ Êα[•], so the reverse channel with respect to
the prior α is idempotent.
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These are the classes of composable tabletop
time-reversible channels that we have thus far identified. In
our study of generalized thermal channels with two-qubit
dilations, all TRc channels we have found belong to one of
the above classes. It is not known if this is an exhaustive
list, as there might be richer families of TRc channels in
higher dimensions.

VII. CONCLUSION

Using a recipe from Bayesian inference, one can asso-
ciate any physical channel, however irreversible, to a
family of reverse channels indexed by the choice of a ref-
erence prior. We proved that an apparently different recipe,
based on dilating the system to include the bath into which
information is dissipated, leads exactly to the same family
of reverse channels.

For thermal channels, it was known that a natural
reverse channel consists of reversing the unitary evo-
lution while in contact with the same thermal bath (in
our framework, this is obtained by choosing the Gibbs
state as reference prior). We ask for which other chan-
nels such phenomenon happens: that the reverse channel
can be implemented with the same devices and similar
baths as the original channel (“tabletop reversibility”).
These questions further inspire the related definition of
“product-preserving” maps that contains generalized ther-
mal channels as an important subclass. We then proved
several relations between these classes, both in general and
with more detail for two-qubit unitaries. In particular, we
show that when the reverse channel is well defined (Sec.
VI B), product preservation leads to tabletop reversibil-
ity (Theorem 3). As such, with full-rank states, the latter
is strictly more general (Theorem 4). As a byproduct of
this work, we found that the preservation of local energy
spectra is a necessary and sufficient characterization of
generalized thermal operations. Characterizing tabletop
reversibility in a necessary and sufficient way remains an
open problem.
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APPENDIX A: THERMAL OPERATIONS AND
GIBBS STATES

In Ref. [14], we have it that U commutes with a global
Hamiltonian H = HA ⊗ 1B + 1A ⊗ HB. We simply state
that under this definition of H , the Gibbs state of H is
none other than the product of the Gibbs states of the local
Hamiltonian:

eκH

ZH
= 1

ZAZB
eκ(HA⊗1B+1A⊗HB)

= 1
ZAZB

∑
nm

eκan |anbm〉〈anbm|
∑

ij

eκbj |aibj 〉〈aibj |

= 1
ZAZB

∑
nmij

eκaneκbj δinδjm|anbm〉〈aibj |

= 1
ZA

∑
n

eκan |an〉〈an| ⊗ 1
ZB

∑
j

eκbj |bj 〉〈bj |

= τκ(HA)⊗ τκ(HB). (A1)

Thus, if [U, H ] = 0 then [U, τκ(HA)⊗ τκ(HB)] = 0.
Clearly then this means (U, τκ(HA), τκ(HB)) is a product-
preserved tuple. For a generalized thermal scenarios, we
have that U(HA + HB)U† = H ′

A + H ′
B. Invoking Eq. (29),

it holds that for generalized thermal maps, U[τκ(HA)⊗
τκ(HB)]U† = τκ(H ′

A)⊗ τκ(H ′
B).

APPENDIX B: SIMPLE EXAMPLES OF
DILATIONS AND PRIORS THAT ARE NOT

TABLETOP TIME REVERSIBLE

Here we include simple classical dilations and priors for
which the retrodiction map does not fulfill tabletop time
reversibility (25). We begin first with a classical example.
For a dilation

� =

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ , β =

(
β0

1 − β0

)
, (B1)

the resultant bit channel is given by

ϕ =
(

β0 1 − β0
1 − β0 β0

)
. (B2)

The retrodiction channel ϕ̂γ = �B ◦�−1 ◦ �̂B,�[γ⊗β], with
an arbitrary reference γ T = (γ0 1 − γ0), is thus

ϕ̂γ =
(

γ0β0
(γ0−1)(β0−1)+γ0β0

γ0−γ0β0
−2γ0β0+γ0+β0

(γ0−1)(β0−1)
γ0(2β0−1)−β0+1

β0−γ0β0
−2γ0β0+γ0+β0

)
. (B3)
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Now, every tabletop-reversible map, ϕ̂TR
γ = �B ◦�−1 ◦ �̂B,�⊗η where ηT = (η0 1 − η0), for this dilation gives

ϕ̂
TR
γ =

(
1 − η0 η0
η0 1 − η0

)
. (B4)

This means that unless γ0 = 1/2 and η0 = 1 − β0, or β0 = 0 and η0 = 1, or β0 = 1 and η0 = 0, ϕ̂γ 
= ϕ̂TR
γ always. For

instance, if γ0 = β0 = 1/4, then the two maps will not be equal. This simple example highlights how common nontabletop
reversible tuples (of dilations and priors) are, and that these occur easily even when confined to classical correlations,
formed by a two-bit channel.

Meanwhile, for a quantum channel E with dilation U = cos θ1+ sin θ SWAP, ancilla β, and prior α 
= β, we have
used semidefinite programming to verify that Êα[•] 
= TrB{U†(• ⊗ β ′)U} for all β ′ when θ mod (π/2) 
= 0.

APPENDIX C: PROOFS REGARDING DILATION AND RETRODICTION

1. Composability of Bayes’ rule and the Petz map

Here we provide some simple proofs for Eqs. (7) and (8). For any concatenation ϕ = ϕ2 ◦ ϕ1, applying Eq. (3) on ϕ

gives

Rc [ϕ2 ◦ ϕ1, γ ] = Dγ (ϕ2ϕ1)
TD−1

ϕ2◦ϕ1[γ ]

= Dγ ϕT
1 ϕT

2 D−1
ϕ2◦ϕ1[γ ]

= Dγ ϕT
1 D−1

ϕ1[γ ]Dϕ1[γ ]ϕ
T
2 D−1

ϕ2◦ϕ1[γ ]

= ϕ̂1,γ ϕ̂2,ϕ1[γ ], (C1)

with slight abuse of notation: on the right-hand side we have matrices instead of maps. We may write this more generally:

Rc[ϕL ◦ · · · ◦ ϕ1, γ ] = Rc [ϕ1, γ ] ◦Rc [ϕ2,ϕ1[γ ]] ◦ · · ·
· · · ◦Rc [ϕL,ϕL−1 ◦ · · · ◦ ϕ1[γ ]] . (C2)

A similar proof is available for the Petz map:

Rq [E2 ◦ E1,α] [•] = √
α(E2 ◦ E1)

†

(
1√

E2 ◦ E1[α]
• 1√

E2 ◦ E1[α]

)
√
α

= √
α(E†

1 ◦ E†
2 )

(
1√

E2 ◦ E1[α]
• 1√

E2 ◦ E1[α]

)
√
α

= √
α E†

1

⎛
⎜⎜⎜⎜⎜⎝

1√
E1[α]

√
E1[α] E†

2

(
1√

E2 ◦ E1[α]
• 1√

E2 ◦ E1[α]

)√
E1[α]

︸ ︷︷ ︸
Ê2,E1[α]

1√
E1[α]

⎞
⎟⎟⎟⎟⎟⎠

√
α

= Rq [E1,α] ◦Rq [E2, E1[α]] . (C3)

2. Bayes’ rule on classical decomposition

In this Appendix, we lay out an explicit proof for Result 1 on the level of matrices. This elucidates how retrodiction
occurs on every step of the decomposition and how Bayesian inversion applies on physically valid channels, including
those that are not stochastic (that is, even channels that do not correspond to a Markov matrix, such as the marginalization
of a subspace and the assigning of an environment). Note that here, for the sake of symmetry with the quantum case, we
will assume that the global process � is bijective and that the environment β is uncorrelated with the input. Nevertheless,
general insights also apply when these assumptions are removed.
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Firstly, we write Eq. (14) in terms of matrices:

ϕ = �B��̂B,�⊗β . (C4)

These matrices can be formalized in the following way. �B is a dA by dAdB matrix while �̂B,AB is dAdB by dA, defined as
follows:

�B = 1A ⊗ vT
1 (C5)

�̂B,AB =

⎛
⎜⎜⎝
v(1B) v0 · · · v0
v0 v(2B) · · · v0
...

...
. . .

...
v0 v0 · · · v(dAB)

⎞
⎟⎟⎠ . (C6)

Here, v1 and v0 are dB-dimensional column vectors of ones and zeros, respectively, and

v(aB)
T =

(
(a,1)∑
b̃ (a,b̃)

(a,2)∑
b̃ (a,b̃)

· · · (a,dB)∑
b̃ (a,b̃)

)
,

which comes from Eq. (16). Now, � indicates any choice of state in A. The matrix �̂B,�⊗β is independent of this choice,
since

v((� ⊗ β)aB) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β(1)�(a)∑
b̃ β(b̃)�(a)
β(2)�(a)∑
b̃ β(b̃)�(a)

...
β(dB)�(a)∑

b̃ β(b̃)�(a)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝
β(1)
β(2)

...
β(dB)

⎞
⎟⎟⎠ = β. (C7)

Thus, it follows that �̂B,�⊗β[•A] = •A ⊗ βB. Hence, each matrix performs the role of its corresponding channel. Turning
now to retrodiction, we recall that Bayes’ rule is composable [24]. This simply captures the time-reverse ordering and
propagation of the reference prior, expected of Bayesian inversion. When composability, Eq. (7), is applied to Eq. (C4),
insights are yielded:

ϕ̂γ = Rc

[
�̂B,�⊗β , γ

]
Rc

[
�, �̂B,�⊗β[γ ]

]
Rc

[
�B,� ◦ �̂B,�⊗β[γ ]

]
= Rc

[
�̂B,�⊗β , γ

]
Rc [�, γ ⊗ β]Rc [�B,�[γ ⊗ β]] . (C8)

Now, for both Rc

[
�̂B,�⊗β , γ

]
and Rc [�B,�[γ ⊗ β]] in matrix form, applying Eq. (3), we get

Dγ �̂B,�⊗βD−1
γ⊗β = Dγ

⎛
⎜⎜⎜⎝

β vT
0 · · · vT

0
vT

0 β · · · vT
0

...
...

. . .
...

vT
0 vT

0 · · · β

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝
γ (1)β(1) 0 · · · 0

0 γ (1)β(2) · · · 0
...

...
. . .

...
0 0 · · · γ (dA)β(dB)

⎞
⎟⎟⎠

−1

= Dγ

⎛
⎜⎝
γ (1)−1 · · · γ (1)−1 vT

0 · · · vT
0

...
...

. . .
...

vT
0 vT

0 · · · γ (dA)
−1 · · · γ (dA)

−1

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝
vT

1 vT
0 · · · vT

0
vT

0 vT
1 · · · vT

0
...

...
. . .

...
vT

0 vT
0 · · · vT

1

⎞
⎟⎟⎟⎠ = �B. (C9)
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D�[γ⊗β](�B)
TD−1

�B�[γ⊗β] = D�[γ⊗β]

⎛
⎜⎜⎝
v1 v0 · · · v0
v0 v1 · · · v0
...

...
. . .

...
v0 v0 · · · v1

⎞
⎟⎟⎠ D−1

�B�[γ⊗β]

= D�[γ⊗β]

⎛
⎜⎜⎜⎝
v−1

a (�B�[γ ⊗ β](1)) v0 · · · v0
v0 v−1

a (�B�[γ ⊗ β](2)) · · · v0
...

...
. . .

...
v0 v0 · · · v−1

a (�B�[γ ⊗ β](dA))

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝
v(�[γ ⊗ β]1,B) v0 · · · v0

v0 v(�[γ ⊗ β]2,B) · · · v0
...

...
. . .

...
v0 v0 · · · v(�[γ ⊗ β]dA,B)

⎞
⎟⎟⎠

= �̂B,�[γ⊗β], (C10)

where the dB-length vector va(p(ã))T = (
p(ã) · · · p(ã)

)
.

Thus it is shown that, given the propagated reference priors, the Bayesian inversion of the assignment map gives a
marginalizing channel and vice versa:

Rc

[
�̂B,�⊗β , γ

]
= �B, (C11)

Rc [�, γ ⊗ β] = �̂γ⊗β = �−1, ∵ (9) (C12)

Rc [�B,�[γ ⊗ β]] = �̂B,�[γ⊗β]. (C13)

Together, we can write

ϕ̂γ = �B ◦�−1 ◦ �̂B,�[γ⊗β]. (C14)

3. The Petz map on quantum dilations

Here we provide some explicit proofs for each step of Eq. (24). Firstly, we know Rq

[
U , T̂rB,�⊗β[α]

]
= Ûα⊗β = U†

because of Eqs. (20) and (9). Secondly, one can easily verify that the adjoint, Eq. (1), of the quantum assignment map is

(
T̂rB,
AB

)†
[•] = TrB

(
1√

TrB(
AB)
⊗ 1B

√

AB •

√

AB

1√
TrB(
AB)

⊗ 1B

)
. (C15)

Hence,

(
T̂rB,�⊗β

)†
[•] = TrB

(
1√
�

⊗ 1B
√

� ⊗ β •
√

� ⊗ β
1√
�

⊗ 1B

)

⇒ Rq

[
T̂rB,�⊗β ,α

]
= √

α
(

T̂rB,�⊗β
)†

(
1√
α ⊗ β

• 1√
α ⊗ β

)√
α

= √
αTrB

(
1√
�

⊗ 1B
√

� ⊗ β
1√
α ⊗ β

• 1√
α ⊗ β

√
� ⊗ β

1√
�

⊗ 1B

)√
α

= √
αTrB

(
1√
α

⊗ 1B • 1√
α

⊗ 1B

)√
α = TrB(•).

(C16)
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Thirdly, one can easily show that the adjoint of the partial trace is given by

Tr†
B[•A] = •A ⊗ 1B, (C17)

which implies,

Rq [TrB,
AB] =
√

ABTr†

B

(
1√

TrB(
AB)
• 1√

TrB(
AB)

)√

AB

=
√

AB

(
1√

TrB(
AB)
• 1√

TrB(
AB)
⊗ 1B

)√

AB = T̂rB,
AB

⇒ Rq [TrB,U [α ⊗ β]] = T̂rB,U[α⊗β]. (C18)

Thus, every step of Eq. (24) is proven, thus giving an alternative route to Eq. (23). These derivations highlight that
Bayesian inference can be applied in a logically consistent and physically insightful way to any valid channel, including
that of marginalization and the assignment of environments and so on.

APPENDIX D: SPECIAL CASE OF PURE PRODUCT-PRESERVING TUPLE FOR TWO-QUBIT UNITARIES

For a0 
= 0, the explicit form of Eq. (34) is

(u†
A ⊗ u†

B)U(|α〉 ⊗ |β〉)

=̂

⎛
⎜⎝

eit3 cos(t1 − t2) 0 0 ieit3 sin(t1 − t2)
0 e−it3 cos(t1 + t2) ie−it3 sin(t1 + t2) 0
0 ie−it3 sin(t1 + t2) e−it3 cos(t1 + t2) 0

ieit3 sin(t1 − t2) 0 0 eit3 cos(t1 − t2)

⎞
⎟⎠ [

(
1
x

)
⊗

(
b0
b1

)
]

=

⎛
⎜⎝

b0eit3 cos (t1 − t2)+ ib1xeit3 sin (t1 − t2)
ib0xe−it3 sin (t1 + t2)+ b1e−it3 cos (t1 + t2)
b0xe−it3 cos (t1 + t2)+ ib1e−it3 sin (t1 + t2)

ib0eit3 sin (t1 − t2)+ b1xeit3 cos (t1 − t2)

⎞
⎟⎠ . (D1)

The condition for (U, |α〉 , |β〉) to be product preserving is given in Eq. (35), which can be expressed as a quadratic
equation ax2 + bx + c = 0, with

a = i
2

[b2
0e−i2t3 sin(2t1 + 2t2)− b2

1ei2t3 sin(2t1 − 2t2)],

b = b0b1[e−i2t3 cos(2t1 + 2t2)− ei2t3 cos(2t1 − 2t2)],

c = − i
2

[b2
0ei2t3 sin(2t1 − 2t2)− b2

1e−i2t3 sin(2t1 + 2t2)].

(D2)

Unless a = b = 0 and c 
= 0, a solution always exists for x, and the corresponding |α〉 for the given U and |β〉 to make
the tuple product preserving.

However, if a = b = 0 and c 
= 0, the condition simplifies to c = 0, which is a contradiction. In that case, setting
|α〉 = |1〉 gives

(u†
A ⊗ u†

B)U(|1〉 ⊗ |β〉)=̂

⎛
⎜⎝

ib1eit3 sin (t1 − t2)
ib0e−it3 sin (t1 + t2)
b0e−it3 cos (t1 + t2)

b1eiϕeit3 cos (t1 − t2)

⎞
⎟⎠ , (D3)

and it can be verified that Eq. (35) is satisfied with a = 0.
In summary, for a given U and |β〉, if a as defined in Eq. (D2) is nonzero, ax2 + bx + c = 0 is solved for x with the

coefficients given in Eq. (D2), and we set |α〉 = vA(|0〉 + x |1〉)/
√

1 + |x|2. Otherwise, if a = 0, we set |α〉 = |1〉. In either
case, (U, |α〉 , |β〉) forms a product-preserving tuple.
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APPENDIX E: LEMMAS ABOUT TWO-QUBIT
GENERALIZED-THERMAL UNITARIES

Lemma 1.—For U such that tk mod (π/4) = 0 for at
most one k ∈ {1, 2, 3}, U is generalized thermal with
respect to HA, HB, H ′

A, and H ′
B if and only if

HA = vAHv†
A, HB = vBσ̃H σ̃ †v

†
B,

H ′
A = uAς̃H ς̃†u†

A, H ′
B = uBς̃ σ̃H σ̃ †ς̃†u†

B,
(E1)

where σ̃ := ∏3
j=1 σ

m−j
j and ς̃ := ∏3

j=1 σ
m+j
j are “bit flips”

with m±j defined below, and H is any Hamiltonian such
that Tr(Hσj ) 
= 0 only when (tj − tk) mod (π/2) = 0 or
(tj + tk) mod (π/2) = 0 for all permutations (j , k, l) of
(1, 2, 3).

The definition of m±j is as follows: if (tk − tl) mod
(π/2) = 0 or (tk + tl) mod (π/2) = 0, where j 
= k 
= l,
then

(−1)m+j = sgn[cos(2tk) cos(2tl)] ,

(−1)m−j = sgn[tan(2tk) tan(2tl)] .
(E2)

Otherwise, if (tj ± tk) mod (π/2) 
= 0, m±j should be cho-
sen so that (−1)m±1+m±2+m±3 = 1.

Proof.—Let us first consider the unitary Ũ = eiH̃ where
H̃ = ∑3

k=1 tkσk ⊗ σk, with traceless Hamiltonians H̃A, H̃B,
H̃ ′

A, and H̃ ′
B with the decomposition H̃A = ∑3

k=1 hA,kσk
(and similarly for H̃B, H̃ ′

A/B).
The key step is to work out that for μ ∈ {0, 1, 2, 3}, with

σ0 = 1, and cyclic permutations (j , k, l) of (1, 2, 3),

[iH̃ , σμ ⊗ σμ] = 0

[iH̃ ,1⊗ σj ± σj ⊗ 1] = 2(tk ∓ tl)(σk ⊗ σl ± σl ⊗ σk)

[iH̃ , σk ⊗ σl ± σl ⊗ σk] = −2(tk ∓ tl)(1⊗ σj ± σj ⊗ 1).
(E3)

Together with the Baker-Campbell-Hausdorff lemma, Eq.
(E3) can be used to find Ũ(σμ ⊗ σν)Ũ† for all μ, ν ∈
{0, 1, 2, 3}.

Having these transformations, we notice that the condi-
tion of generalized thermal channel

Ũ(H̃A ⊗ 1+ 1⊗ H̃B)Ũ† = H̃ ′
A ⊗ 1+ 1⊗ H̃ ′

B, (E4)

implies that there are no products σj ⊗ σk on the right-hand
side. Setting the same components to zero on the left leads
to

hA,j sin(2tk) cos(2tl) = hB,j sin(2tl) cos(2tk),

hA,j sin(2tl) cos(2tk) = hB,j sin(2tk) cos(2tl).
(E5)

Let us first take tk mod (π/4) 
= 0 for all k, so that
{tan(2tk)}3

k=1 are all nonzero and finite.

To satisfy Eq. (E5), the following must hold:

(1) if hA,j , hB,j 
= 0, then tan2(2tk) = tan2(2tl), which
further implies hA,j = ±hB,j ,

(2) if tan2(2tk) 
= tan2(2tl), then hA,j = hB,j = 0.

So, it is always true that hB,j = ±hA,j , and they are nonzero
only if |tan(2tk)| = |tan(2tl)|, which in turn implies that
(tj − tk) mod (π/2) = 0 or (tj + tk) mod (π/2) = 0. The
sign ambiguity is due to the absolute value in the latter
expression.

Now, turning to the 1⊗ σj and σj ⊗ 1 components of
Eq. (E4), we have

h′
A,j = hA,j cos(2tk) cos(2tl)+ hB,j sin(2tk) sin(2tl)

= ±hA,j ,

h′
B,j = hB,j cos(2tk) cos(2tl)+ hA,j sin(2tk) sin(2tl)

= ±hB,j .

(E6)

In the end, this means that hB,j = ±hA,j = ±h′
A,j = ±h′

B,j .
Therefore, after defining H := H̃A, we have HB = σμHσμ,
H ′

A = σνHσν , and H ′
B = σγHσγ for some “bit flips” or

identities σμ, σν , and σγ that correct the sign ambiguities.
Finally, we arrive at Eq. (E1) by substituting Ũ into Eq.

(33). The form of σ̃ and ς̃ is found by keeping track of the
signs of the trigonometric functions.

The proof also holds when tk mod (π/4) = 0 for at most
one k: substituting tk into Eq. (E5) gives hA,j = hB,j = 0
for all j 
= k, after which the rest of the proof follows as
stated. �

Lemma 2.—For U such that tj , tk mod (π/4) = 0 and
tl mod (π/4) 
= 0, U is generalized thermal with respect
to HA, HB, H ′

A, and H ′
B if and only if

(1) tj mod (π/2) = tk mod (π/2) = 0 and, up to a con-
stant offset,

HA = hAvAσlv
†
A, HB = hBvBσlv

†
B,

H ′
A = hAuAσlu

†
A, H ′

B = hBuBσlu
†
B,

(E7)

or
(3) tj mod (π/2) = tk mod (π/2) = π/4 and, up to a

constant offset,

HA = hAvAσlv
†
A, HB = hBvBσlv

†
B,

H ′
A = hBuAσlu

†
A, H ′

B = hAuBσlu
†
B.

(E8)

Proof.—First, let 2tk = nkπ/2 for integer nk, which
gives 2 cos(2tk) = (−1)�nk/2 (1 + (−1)nk ) and 2 sin(2tk) =
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(−1)�nk/2 (1 − (−1)nk ). Substituting it into Eq. (E5),

hA,j (1 − (−1)nk ) cos(2tl) = hB,j sin(2tl)(1 + (−1)nk ),

hB,j sin(2tl)(1 + (−1)nk ) = hA,j (1 − (−1)nk ) cos(2tl).
(E9)

Since one of 1 + (−1)nk or 1 − (−1)nk must be zero, it is
either the case that both right columns are zero, or both left
columns are zero. As such, hA,j = hB,j = 0.

Similarly letting 2tj = njπ/2, repeating the above steps
give hA,k = hB,k = 0.

Meanwhile, for the hA,l and hB,l case,

hA,l(1 − (−1)nk )(1 + (−1)nj )

= hB,l(1 + (−1)nk )(1 − (−1)nj ),

hB,l(1 + (−1)nk )(1 − (−1)nj )

= hA,l(1 − (−1)nk )(1 + (−1)nj ).

(E10)

When the parities of nj and nk do not match, hA,l = hB,l =
0. In other words, if tj mod (π/2) 
= tk mod (π/2), then U
is not generalized thermal.

Otherwise, the equations are trivially satisfied. Then, Eq.
(E6) gives

h′
A,l =

{
hA,l if tj mod π

2 = 0
hB,l if tj mod π

2 = π
4 ,

(E11)

with analogous expressions for h′
B,l. Placing these expres-

sions back into the definitions of the Hamiltonians end the
proof. �

Lemma 3.—For U such that tk mod (π/4) = 0 for all k ∈
{1, 2, 3}, U is generalized thermal with respect to HA, HB,
H ′

A, and H ′
B if and only if

(1) t1 mod π
2 = t2 mod π

2 = t3 mod π
2 = 0, HA and HB

are arbitrary, and

H ′
A = uAv

†
AHAvAu†

A,

H ′
B = uBv

†
BHBvBu†

B,
(E12)

or
(2) t1 mod π

2 = t2 mod π
2 = t3 mod π

2 = π
4 , HA and HB

are arbitrary, and

H ′
A = uAv

†
BHBvBu†

A,

H ′
B = uBv

†
AHAvAu†

B.
(E13)

Proof.—The proof is almost identical to that of Lemma
1′, so we shall provide only a sketch. Substituting 2tk =
nkπ/2 for all k ∈ {1, 2, 3} into Eq. (E5), we will find that
hA,k = hB,k = 0 for all k if the parities of n1, n2, and n3 do

not all match. This means that U is not generalized thermal
if tj mod (π/2) 
= tk mod (π2) for any two j 
= k.

Otherwise, Eq. (E6) gives, for all k,

h′
A,k =

{
hA,k if tj mod π

2 = 0
hB,k if tj mod π

2 = π
4 ,

(E14)

with similar expressions for hB,k. Substituting these back
into the Hamiltonians concludes the proof. �

APPENDIX F: RETRODICTION WITH
RANK-DEFICIENT OUTPUTS IS ILL-DEFINED IN

GENERAL

The Petz recovery map in Eq. (4) involves the operator

(E[α])−
1
2 , which does not exist when E[α] is rank defi-

cient. One might attempt to circumvent this problem in in
several ways:

(1) Define Êα,1 using the pseudoinverse. The inverse
can be defined only on the support of E[α], result-
ing in the so-called pseudoinverse of E[α], as is the
convention in quantum information [66].

(2) Define Êα,2 in a full-rank neighborhood. Another
possibility is to perturb the prior or the channel so
that the output state is perturbed as E[α] → E (ε)[α],
such that limε→0 E (ε)[α] = E[α] and E (ε)[α] is full
rank for every ε > 0. Then, the Petz map Ê (ε)α is well
defined for every ε > 0, and the retrodiction channel
is defined as the limit Êα,2 := limε→0 Ê (ε)α .

(3) Naïvely define Êα,3 with product-preserving tuples.
As Eq. (31) gives a simple form for the retrodic-
tion channel when (U,α,β) is a product-preserving
tuple for full rank α and β, one might extend it to the
rank-deficient case by imposing that the retrodiction
channel should also take the same form

Êα,3[•] := TrB[U†(•⊗β ′)U] (F1)

even when α′ is not full rank.

In the following section, we show that the retrodiction
channels as defined by the above approaches do not agree
in general. As such, the retrodiction channel for a rank-
deficient output state depends on the convention chosen,
and cannot be consistently defined when the output state is
rank deficient.

1. Comparison of different approaches to retrodicting
rank-deficient outputs

a. Unitary channels

Consider a unitary channel U [•] := U • U† with the
dilation U [•] = TrB[(U ⊗ V)(• ⊗ β)(U† ⊗ V†)] for arbi-
trary unitary V and ancilla β. (U ⊗ V,α,β) is clearly a
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product-preserving tuple, since

(U ⊗ V)(α ⊗ β)(U† ⊗ V) = (UαU†)⊗ (VβV†)

=: α′ ⊗ β ′. (F2)

(1) Define Ûα,1 using the pseudoinverse. Given α′ =∑|supp(α′)|
k=1 a′

k|a′
k〉〈a′

k| with a′
k > 0 for all k ∈ {1, 2, . . . ,

|supp(α′)|}, the pseudoinverse of
√
α′ is defined as

√
α′+++ :=

|supp(α′)|∑
k=1

1√
a′

k

|a′
k〉〈a′

k|. (F3)

The pseudoinverse has the property
√
α′√α′+++ =√

α′+++√α′ = �α′ , where �α′ := ∑|supp(α′)|
k=1 |a′

k〉〈a′
k|

is the projector onto the support of α′. Therefore,

with the replacement α′− 1
2 → √

α′+++, the retrodic-
tion of a unitary channel can be found to be

Ûα,1[•] = U†�α′ •�α′U. (F4)

This channel is completely positive but not trace-
preserving in general.

(2) Define Êα,2 in a full-rank neighborhood. Given any
state αε in the full-rank neighborhood of α, that is,
αε is full rank and limε→0 αε = α, we find the retro-
diction defined on prior αε to be Û (ε)

α [•] = U† • U.
Taking the limit gives

Ûα,2[•] = lim
ε→0

Û (ε)
α [•] = U† • U, (F5)

which does not depend on how we chose to perturb
α.

(3) Naïvely define Êα,3 with product-preserving tuples.
Substituting the product-preserving tuple (U,α,β)
into Eq. (F1), we have

Ûα,3[•] = U† • U. (F6)

Therefore, we find that Ûα,2 = Ûα,3 but Ûα,1 
= Ûα,2: choos-
ing the pseudoinverse results in a different retrodiction
channel in comparison to the other two choices.

b. Erasure channels

Consider the erasure channel E[•] := Tr(•)|0〉〈0| with
input and output dimensions dA. Let its dilation be

E[•] = TrB[U(•⊗|0〉〈0| ⊗ |0〉〈0| ⊗ |0〉〈0|)U†], (F7)

where the ancilla space is HB = HB1 ⊗HB2 ⊗HB3 =
CdA ⊗ CdA ⊗ C2, and

U = SWAP ⊗ 1⊗ |0〉〈0| + V ⊗ |1〉〈1|, (F8)

with SWAP acting on HA ⊗HB1 and V acting on HA ⊗
HB1 ⊗HB2 . Since U(α ⊗ |000〉〈000|)U† = |0〉〈0| ⊗ α ⊗
|00〉〈00|, we again have a product-preserving tuple.

(1) Define Êα,1 using the pseudoinverse. This gives
Êα,1[•] = 〈0|•|0〉α.

(2) Define Êα,2 in a full-rank neighborhood. Since
E[α] = |0〉〈0| is rank deficient for all α, it is not
enough to perturb just the prior. Instead, we need
to perturb the ancilla as

βε := (1 − ε)|000〉〈000| + ε
12 ⊗ |1〉〈1|, (F9)

with 
12 ∈ HB1 ⊗HB2 . This effectively perturbs the
channel as

E (ε)[•] := TrB[U(•⊗βε)] = (1 − ε)E[•] + ε�[•],
(F10)

where �[•] := TrB1,B2 [V(• ⊗ 
12)V†] with V and

12 chosen such that �[α] is full rank. This ensures
that the inverse of E (ε)[α] exists for every ε > 0.
While obviously limε→0 E (ε) = E , we are going to
show that limε→0 Ê (ε)α still depends on � in general.
As such, if we are given the rank-deficient erasure
channel, there is no unique consistent definition of
Êα .For simplicity, let us take � to be a classical
channel. That is,

�[|j 〉〈j ′|] = δj ,j ′
d−1∑
k=0

ϕ(k | j )|k〉〈k|, (F11)

where 0 ≤ ϕ(k | j ) ≤ 1 is a conditional probability
distribution, normalized as

∑d−1
k=0 ϕ(k | j ) = 1 but

otherwise arbitrary. Likewise, we take the classical
state α = ∑d−1

j=0 aj |j 〉〈j | as the prior. By direct com-

putation of Eq. (4), the action of Ê (ε)α on the basis
operators {|k〉〈k′|}d−1

k,k′=0 is found to be

Ê (ε)α [|k〉〈k′|]

= (1 − ε)δk,k′δk,0α + ε〈k|�[α]|k〉�̂α[|k〉〈k′|]
(1 − ε)δk,0 + ε〈k|�[α]|k〉 ,

(F12)

where

�̂α[•] =
d−1∑
j=0

(d−1∑
k=0

〈k|•|k〉ϕ(k | j )aj

〈k|�[α]|k 〉)|j 〉〈j | (F13)
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is the retrodiction channel of � with respect to the
prior α, similarly computed using Eq. (4).
All this is well defined, but taking the limit of Eq.
(F12), we find

Êα,2[•] = lim
ε→0

Ê (ε)α [•] = 〈0|•|0〉α

+ �̂α[•−|0〉〈0|•|0〉〈0|]. (F14)

We would have liked this expression to be indepen-
dent of � as long as �[α] is full rank, but this is
clearly not the case.

(3) Naïvely define Êα,3 with product-preserving tuples.
A simple substitution gives

Êα,3[•] = Tr(•)α. (F15)

We see here that all three approaches result in different
retrodiction channels in general, with Êα,2 = Êα,3 only for
the specific choice �̂α[•] = Tr(•)α.

Since the Petz map is equivalent to classical Bayesian
inversion when all channels and states involved are diag-
onal in a chosen basis [24], we have demonstrated that
retrodiction channels cannot be consistently defined in
general when the output state is rank deficient, even in clas-
sical theory. This is of course the case a fortiori in quantum
theory.

c. Product-preserving two-qubit dilations

Finally, let us investigate the difference between the
three approaches in more detail for the two-qubit case.

Consider the product-preserving tuple (U, |α+〉〈α+|, |β+〉
〈β+|), with U(|α+〉 ⊗ |β+〉) = |α′

+〉 ⊗ |β ′
+〉. Let |α−〉 be

the state orthogonal to |α+〉, with |β−〉, |α′
−〉, and |β ′

−〉
defined analogously.

Meanwhile, define uA as the local unitary such that
uA |α±〉 = |α′

±〉 and uB as the local unitary such that
uA |β±〉 = |β ′

±〉.
Then, in the {|α±〉} ⊗ {|β±〉} basis, U takes the form

(u†
A ⊗ u†

B)U =̂

⎛
⎜⎝

1 0 0 0
0 u11 u12 u13
0 u21 u22 u23
0 u31 u32 u33

⎞
⎟⎠ . (F16)

The first row and column is fixed by the product-preserving
property, while ujk might take on any value, so long as
unitarity is satisfied.

(1) Define Ê|α+〉〈α+|,1 using the pseudoinverse. This has
the action on the basis operators

Ê|α+〉〈α+|,1[|α′
+〉〈α′

+|] = |α+〉〈α+|,
Ê|α+〉〈α+|,1[|α′

−〉〈α′
−|] = 0,

Ê|α+〉〈α+|,1[|α′
+〉〈α′

+|α′
−] = 0.

(F17)

(2) Define Ê|α+〉〈α+|,2 in a full-rank neighborhood.
We perturb the prior as αε := (1 − ε)|α+〉〈α+| +
ε1/2 = (1 − ε/2)|α+〉〈α+| + (ε/2)|α−〉〈α−|. If
E[αε] is invertible, Eq. (23) gives

Eαε [•] = TrB

{
U†√ω

[(
1√

TrBω
• 1√

TrBω

)
⊗ 1

]√
ωU

}
, (F18)

where we have defined ω := U(αε ⊗ |β+〉〈β+|)U†

for brevity. With this, we have

ω = (1 − ε

2
)|α′

+,β ′
+〉〈α′

+,β ′
+|

+ ε

2
U|α−,β+〉〈α−,β+|U†︸ ︷︷ ︸

=:|ω⊥〉〈ω⊥|
. (F19)

Here, we have further defined

|ω⊥〉 := u12 |α′
+,β ′

−〉 + u22 |α′
−,β ′

+〉 + u32 |α′
−,β ′

−〉 .
(F20)

From this, we also have the reduced state

TrBω = 1
2
1+ 1

2

(
1 − ε

(
1 − |u12|2

))
× (|α′

+〉〈α′
+| − |α′

−〉〈α′
−|)

+ 1
2
εu12u∗

22|α′
+〉〈α′

−| +
1
2
εu∗

12u22|α′
−〉〈α′

+|

=:
1
2
1+ 1

2
!r · !σ , (F21)

where !σ = (σ1, σ2, σ3) are the usual Pauli oepra-
tors defined in the {|α′

±〉} basis, and !r is a three-
dimensional vector given in spherical coordinates
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(r, θ ,φ) with

r cos θ = 1 − ε(1 − |u12|2), r sin θeiφ = εu∗
12u22r =

√(
1 − ε

(
1 − |u12|2

))2

+ ε2|u12|2|u22|2. (F22)

The eigenvalues of TrBω can be verified to be (1 + r)/2 and (1 − r)/2, with eigenstates cos(θ/2) |α′
+〉 + eiφ sin(θ/2) |α′

−〉
and sin(θ/2) |α′

+〉 − eiφ cos(θ/2) |α′
−〉, respectively. Then, TrBω can be written in its diagonal form and (TrBω)

− 1
2 can be

worked out. Since we are considering the cases where Eαε is well defined, we require |u12|2 
= 1, so that the inverse of
TrBω exists. With this,

1√
TrBω

= 1√
2r

{[
r + r cos θ√

1 + r
−√

1 − r +√
ε ×

√
ε

1 − r2 × √
1 + r × (1 − |u12|2)

]
|α′

+〉〈α′
+|

+
[

r − r cos θ√
1 + r

+ 1√
ε︸︷︷︸

possibly problematic

×
√

ε

1 − r2 × √
1 + r × (r + r cos θ)

]
|α′

−〉〈α′
−|

+ [
r sin θ√

1 + r
−

√
ε

1 − r2 × r sin θ√
ε

× √
1 + r]({|α′

+〉〈α′
−|e−iφ + |α′

−〉〈α′
+|eiφ})

}
. (F23)

From Eq. (F22), we have the limits

lim
ε→0

r cos θ = 1, lim
ε→0

r sin θ√
ε

= 0, lim
ε→0

r = 1,

lim
ε→0

ε

1 − r2 = lim
ε→0

ε

2ε(1 − |u12|2)− ε2((1 − |u12|2)2 + |u12|2|u22|2) = 1
2(1 − |u12|2) .

(F24)

Keeping these limits in mind, we have singled out the only possibly problematic term in Eq. (F23), which would diverge

if the limit of (TrBω)
− 1

2 is considered on its own. Nonetheless, the following limits hold:

lim
ε→0

〈α′
+|

1√
TrBω

= 〈α′
+| , lim

ε→0

√
ε

2
〈α′

−|
1√

TrBω
= 1√

|u22|2 + |u32|2
〈α′

−| . (F25)

With this, we have

lim
ε→0

√
ω(

1√
TrBω

⊗ 1) = |α′
+,β ′

+〉〈α′
+,β ′

+| +
1√

1 − |u12|2
(|ω⊥〉〈ω⊥| − 1

u∗
12
|ω⊥〉〈ω⊥|α′

+,β ′
−). (F26)

As such, the action of the limit of [((1/
√

TrBω) • (1/
√

TrBω))⊗ 1]
√
ω can be found to be

lim
ε→0

√
ω

[(
1√

TrBω
• 1√

TrBω

)
⊗ 1

]√
ω = |α′

+,β ′
+〉〈α′

+| • |α′
+〉〈α′

+,β ′
+| + |ω⊥〉〈α′

−| • |α′
−〉〈ω⊥|

+ u22√
|u22|2 + |u32|2

|α′
+,β ′

+〉〈α′
+| • |α′

−〉〈ω⊥| + u∗
22√

|u22|2 + |u32|2
|ω⊥〉〈α′

−| • |α′
+〉〈α′

+,β ′
+|. (F27)

Finally, by taking the partial trace, we find

Ê|α+〉〈α+|,2[|α′
+〉〈α′

+|] = lim
ε→0

Êαε [|α′
+〉〈α′

+|] = |α+〉〈α+|, Ê|α+〉〈α+|,2[|α′
−〉〈α′

−|] = lim
ε→0

Êαε [|α′
−〉〈α′

−|] = |α−〉〈α−|,

Ê|α+〉〈α+|,3[|α′
+〉〈α′

−|] = lim
ε→0

Êαε [|α′
+〉〈α′

−|] =
u22√

|u22|2 + |u32|2
|α+〉〈α−|.

(F28)
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(3) Naïvely define Ê|α+〉〈α+|,3 with product-preserving
tuples. In terms of ujk, the action of Ê|α+〉〈α+|,3 as
defined in Eq. (F1) can be worked out directly to
be

Ê|α+〉〈α+|,3[|α′
+〉〈α′

+|] = |α+〉〈α+|,
Ê|α+〉〈α+|,3[|α′

−〉〈α′
−|] = (1 − |u21|2)|α−〉〈α−|

+ |u21|2|α+〉〈α+|
+ u∗

21u23|α+〉
× 〈α−| + u21u∗

23|α+〉〈α−|,
Ê|α+〉〈α+|,3[|α′

+〉〈α′
−|] = u22|α+〉〈α−|.

(F29)

Once again, we find that the three approaches result
in different retrodiction channels. Meanwhile, Eq.
(F29) agrees with Eq. (F28) if and only if u21 =
u12 = 0, or u21 = u22 = 0. Therefore, Ê|α+〉〈α+|,2 
=
Ê|α+〉〈α+|,3 in general, so we cannot naïvely assume
Eq. (31) to hold for pure output states.

2. Product-preserved tuples are almost tabletop time
reversible with the pseudoinverse convention

Although we have not given a preference to any partic-
ular approach for retrodicting with rank-deficient outputs,
it is worth pointing out that the product-preserved tuples
are almost tabletop time reversible with the pseudoinverse
convention.

Given a product-preserving tuple (U,α,β) with U(α ⊗
β)U† = α′ ⊗ β ′ where α′ is not necessarily full rank, Eq.
(19) with the pseudoinverse reads

T̂rB,α′⊗β ′[•] =
√
α′√α′+++ •

√
α′+++√α′ ⊗ β ′

= �α′ •�α′ ⊗ β ′, (F30)

which in turn gives a trace-non-increasing retrodiction
channel

Êα[•] = TrB[U†(�α′ •�α′ ⊗ β ′)U]. (F31)

We say that it is almost tabletop time reversible as Eq.
(F31) is the same as Eq. (25) up to a projection onto the
support of E[α] upon the input state.
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