
PRX QUANTUM 5, 010331 (2024)

Stabilizer Subsystem Decompositions for Single- and Multimode
Gottesman-Kitaev-Preskill Codes

Mackenzie H. Shaw ,1,* Andrew C. Doherty ,1 and Arne L. Grimsmo 1,2,3

1
ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney,

Sydney, NSW 2006, Australia
2
AWS Center for Quantum Computing, Pasadena, California 91125, USA
3
California Institute of Technology, Pasadena, California 91125, USA

 (Received 9 December 2022; revised 28 July 2023; accepted 10 January 2024; published 23 February 2024)

The Gottesman-Kitaev-Preskill (GKP) error-correcting code encodes a finite-dimensional logical space
in one or more bosonic modes, and has recently been demonstrated in trapped ions and superconducting
microwave cavities. In this work we introduce a new subsystem decomposition for GKP codes that we
call the stabilizer subsystem decomposition, analogous to the usual approach to quantum stabilizer codes.
The decomposition has the defining property that a partial trace over the nonlogical stabilizer subsystem
is equivalent to an ideal decoding of the logical state, distinguishing it from previous GKP subsystem
decompositions. We describe how to decompose arbitrary states across the subsystem decomposition using
a set of transformations that move between the decompositions of different GKP codes. Besides providing
a convenient theoretical view on GKP codes, such a decomposition is also of practical use. We use the
stabilizer subsystem decomposition to efficiently simulate noise acting on single-mode GKP codes, and in
contrast to more conventional Fock basis simulations, we are able to consider essentially arbitrarily large
photon numbers for realistic noise channels, such as loss and dephasing.

DOI: 10.1103/PRXQuantum.5.010331

I. INTRODUCTION

Bosonic codes encode digital quantum information
in continuous-variable (CV) quantum systems and have
received both theoretical [1–3] and experimental [4–9]
attention. The Gottesman-Kitaev-Preskill (GKP) codes
[10] are one of the most intensively studied encodings of
this type, and the single-mode square GKP qubit code has
recently been realized in both trapped ions [11,12] and
superconducting microwave resonators [13–15].

From a theoretical perspective, bosonic codes can be
understood as defining a logical subspace L of the CV
Hilbert space H = L ⊕ L∗, with the infinite-dimensional
Hilbert space L∗ providing the redundancy required for
error correction. However, in the case of GKP codes, the
non-normalizability of the codewords [10] means that the
GKP logical “subspace” is formally not in the CV Hilbert
space.

*msha2420@uni.sydney.edu.au

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

An alternative formulation, which can be applied to any
error-correcting code, is to consider a decomposition of the
Hilbert space such that the logical information in the error-
correcting code forms a subsystem H = L ⊗ S [16,17]. In
such a decomposition, the partial trace over the nonlog-
ical subsystem corresponds to a decoding map H → L.
In Ref. [18], Pantaleoni et al. introduced the concept of a
bosonic subsystem decomposition, and defined a subsys-
tem decomposition for single-mode GKP codes based on
a modular quadrature. This subsystem decomposition has
been used in numerical studies of GKP codes [19–22].

The subsystem decomposition is, however, not unique
and there are good reasons to investigate alternatives.
Specifically, the subsystem decomposition of Ref. [18] has
lower symmetry than the GKP code itself: the logical sub-
system differs if one chooses position or momentum as
the “modular quadrature.” More recent work [23] has also
linked the modular position subsystem decomposition to
the Zak basis [24]. In all of these cases the decomposi-
tion does not represent the logical information one would
retrieve by performing noiseless decoding of the GKP code
[23].

In this work, we introduce a subsystem decomposi-
tion that resolves these issues. In particular, this new
decomposition has the desirable property that tracing over
the nonlogical subsystem S corresponds to a noiseless

2691-3399/24/5(1)/010331(36) 010331-1 Published by the American Physical Society

https://orcid.org/0000-0002-0776-886X
https://orcid.org/0000-0002-8069-7754
https://orcid.org/0000-0002-5208-0271
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.010331&domain=pdf&date_stamp=2024-02-23
http://dx.doi.org/10.1103/PRXQuantum.5.010331
https://creativecommons.org/licenses/by/4.0/

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

decoding map for the GKP code. We refer to this decom-
position as the GKP stabilizer subsystem decomposition,
as different stabilizer eigenstates correspond to orthogonal
basis states of the subsystem S . The stabilizer subsystem
decomposition for GKP codes is entirely analogous to the
stabilizer-destabilizer formalism of qubit codes [25].

The stabilizer subsystem decomposition can be applied
to all multimode qubit or qudit GKP codes (including the
concatenation of GKP and qubit stabilizer codes), and is
closely related to the Zak basis [24]. For any GKP encod-
ing, we show how to write an arbitrary CV state in the
corresponding stabilizer subsystem decomposition from
the position wave function of the state. We use the sub-
system decomposition to provide a description of logical
Clifford gates on the subsystem decomposition, and show
that an ideal implementation of a logical Clifford gate can
propagate errors unless a modified round of decoding is
performed immediately after the gate.

One practical challenge with GKP codes is the diffi-
culty of numerically simulating GKP codes using a trun-
cated Fock basis, since both the mean and variance of
the photon-number distribution of physically realizable
GKP codestates increases as the codestates approach the
infinitely squeezed “ideal” codewords. Logical gates can
also increase the photon number of the codestates, pro-
viding a further need to find new numerical methods to
efficiently store and manipulate GKP states [26].

Using the stabilizer subsystem decomposition we are
able to study realistic noise channels such as loss and
white-noise dephasing for essentially arbitrary photon
numbers. In the case of the single-mode square GKP qubit
code our treatment is analytical. We find that GKP codes
are far more resilient against pure loss than against dephas-
ing: a square single-mode code state with ten decibels of
GKP squeezing achieves an average gate infidelity below
10−3 for a loss rate up to approximately 4%, while it can
only tolerate a dephasing rate of approximately 0.2% to
achieve the same fidelity. In the case of pure dephasing,
i.e., with white-noise dephasing as the only noise chan-
nel, there is a threshold value for the GKP squeezing value
and dephasing rate for the GKP code to “break even,” as
the GKP code performs better than a qubit defined using
the Fock states |0〉 and |1〉 only when the GKP squeez-
ing is above 10 dB and simultaneously the dephasing rate
is below 0.1%. We also find that for both pure loss and
pure dephasing, there is an optimal finite photon number
that minimizes the logical error rate, which is much larger
for loss than for dephasing at the same rate, qualitatively
consistent with the results of Refs. [13,27].

Our results are organized as follows. Beginning in Sec.
II, we present the stabilizer subsystem decomposition for
the single-mode square GKP qubit code. Readers wishing
to quickly learn the key concepts in the paper can safely
begin by reading only Sec. II, since it provides a simple
explanation of most of the results in the rest of the paper.

Then in Sec. III, we provide an overview of the estab-
lished formalism of multimode GKP lattices and set up
the notation we will use in the remainder of the paper. In
Sec. IV, we define the stabilizer subsystem decomposition
in the general case and show that the partial trace over
the stabilizer subsystem corresponds to noiseless decod-
ing. In Sec. V, we show how to transform the states of
the stabilizer subsystem decomposition of one GKP code
to any other code, and describe the method to write the
subsystem “wave function” of a state in terms of its posi-
tion wave function. Finally, we show how to write many
practical components of GKP codes conveniently in the
stabilizer subsystem decomposition, namely logical Clif-
ford gates (Sec. VI), approximate GKP codewords, and
noise channels, such as pure loss, Gaussian displacements,
and white-noise dephasing (Sec. VII). Readers focused on
applying the stabilizer subsystem decomposition to model
noise can safely skip Secs. III–VI and go straight to Sec.
VII. We provide concluding remarks in Sec. VIII.

II. STABILIZER SUBSYSTEM DECOMPOSITION
FOR THE SQUARE GKP QUBIT CODE

We begin by constructing the stabilizer subsystem
decomposition in the simplest nontrivial case: the single-
mode square GKP qubit code. To define the subsystem
decomposition in Eqs. (8), (15), and (17), we will make use
of the Zak states [24], and provide the intuition for why the
stabilizer subsystem decomposition accurately describes
the GKP logical information stored in an arbitrary state.
Then we will outline the key properties of the decomposi-
tion in Sec. II C, including examples of states and operators
decomposed in the subsystem decomposition. In doing so,
we foreshadow the numerical techniques for simulating
GKP codes that we develop in more detail in Sec. VII.

A. Preliminaries

The square GKP qubit code encodes a qubit into a
single-mode continuous-variable (CV) Hilbert space H,
which is described by position and momentum opera-
tors that satisfy [q̂, p̂] = i. We define the displacement
operators

Ŵ(v1, v2) = exp
(√

2π i(v2q̂ − v1p̂)
)

(1)

for v1, v2 ∈ R, which form an operator basis of L(H), the
space of all linear operators acting on H. The displacement
operators obey the commutation relation

[[Ŵ(u1, u2), Ŵ(v1, v2)]] = e−2iπ(u1v2−u2v1), (2)

010331-2

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

where [[A, B]] = ABA−1B−1 is the group commutator, and
the composition rule

Ŵ(u1, u2)Ŵ(v1, v2) = e−iπ(u1v2−u2v1)Ŵ(u1 + v1, u2 + v2).
(3)

Ŵ(v1, v2) “displaces” the position and momentum opera-
tors such that

Ŵ(v1, v2)
†q̂Ŵ(v1, v2) = q̂ +

√
2πv1, (4a)

Ŵ(v1, v2)
†p̂Ŵ(v1, v2) = p̂ +

√
2πv2. (4b)

Note that Eqs. (1) and (4) differ by a factor of
√
π from the

more standard definition D̂(α) = exp
(
αâ† − α∗â

)
.

The square GKP qubit code is a stabilizer code with
stabilizer group generated by the commuting displacement
operators

Ŝ1 = Ŵ
(√

2, 0
)

= e−2i
√
π p̂ , (5a)

Ŝ2 = Ŵ
(

0,
√

2
)

= e2i
√
π q̂, (5b)

along with their inverses. The logical Pauli group is gener-
ated by

X̄ = Ŵ
(

1/
√

2, 0
)

= e−i
√
π p̂ , (6a)

Z̄ = Ŵ
(

0, 1/
√

2
)

= ei
√
π q̂, (6b)

which anticommute with each other but commute with the
stabilizer generators. The ideal codespace is the simulta-
neous +1 eigenspace of both stabilizer generators, and is
spanned by the ideal codestates

|0̄〉 ∝
∑
s∈Z

|2s
√
π〉q , |1̄〉 ∝

∑
s∈Z

|(2s + 1)
√
π〉q , (7)

where |x〉q is the x eigenstate of the position operator q̂.
A particularly useful set of states for describing GKP

codes is the Zak basis [24], and was first applied to GKP
codes in Ref. [28]. The Zak states are parameterized by
two real numbers, k1 and k2, and are given in the position
basis by

|k1, k2〉a = 4√2πa2 eiπk1k2
∑
s∈Z

e2iπak2s
∣∣√2π(k1 + as)

〉
q,

(8)

where a > 0 is a constant. Note that we have rescaled
some of the constants in our definition compared to Ref.
[24]. We can interpret the (rescaled) parameter

√
2πk1 as

the quasiposition of the Zak state in the following sense:

since a given Zak state has support on position eigenval-
ues spaced by

√
2πa, each Zak state is an eigenstate of the

modular-position operator q̂ (mod
√

2πa), with eigenvalue√
2πk1. Likewise, it can be shown that

√
2πk2 represents

the quasimomentum of the Zak state corresponding to the
modular-momentum operator p̂ (mod

√
2π/a).

The full set of Zak states with k1, k2 ∈ R span H but
are not linearly independent, obeying the quasiperiodic
boundary conditions

|k1 + a, k2〉a = e−iπak2 |k1, k2〉a , (9a)

|k1, k2 + 1/a〉a = eiπk1/a |k1, k2〉a . (9b)

As a result, the Zak states only form a nonovercomplete
basis of H when k1 is restricted to an interval of length a
and k2 to an interval of length 1/a. Moreover, the Zak basis
is orthonormal, satisfying

a 〈k1, k2|k′
1, k′

2〉a = δ(k1 − k′
1)δ(k2 − k′

2) (10)

as long as k1 and k2 are restricted as above.
An alternative formulation of the Zak states is to define

|0, 0〉a as the unique simultaneous +1 eigenstate of the
displacements Ŵ(a, 0) and Ŵ(0, 1/a). The remaining Zak
states are then given by the property

|k1, k2〉a = Ŵ(k1, k2) |0, 0〉a . (11)

Setting a = √
2, we observe that the |0, 0〉√2 Zak state is

a simultaneous +1 eigenstate of the GKP operators Ŝ1 and
Z̄, so we can write

|0̄〉 = |0, 0〉√2 , |1̄〉 = X̄ |0̄〉 = |1/
√

2, 0〉√2 . (12)

The remaining a = √
2 Zak states can be viewed as dis-

placed GKP codestates.

B. Stabilizer subsystem decomposition for the GKP
code

To define the stabilizer subsystem decomposition we
first define the stabilizer subspaces Vk1,k2 , each of which
is a simultaneous eigenspace of the stabilizer generators
Ŝ1, Ŝ2. In particular, we define Vk1,k2 as the set of states
|φ〉 ∈ H satisfying

Ŝ1 |φ〉 = e−2i
√
π p̂ |φ〉 = e−2

√
2iπk2 |φ〉 , (13a)

Ŝ2 |φ〉 = e2i
√
π q̂ |φ〉 = e2

√
2iπk1 |φ〉 , (13b)

for k1, k2 ∈ (−2−3/2, 2−3/2
]
. Here,

√
2πk1 and

√
2πk2 rep-

resent the quasiposition q̂ (mod
√
π) and quasimomentum

p̂ (mod
√
π) of |φ〉 (respectively). It is straightforward

to show that each subspace Vk1,k2 is two-dimensional

010331-3

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

(a)

(b)

FIG. 1. Diagrams representing (a) the stabilizer subsystem
for the single-mode square GKP qubit code, (b) the Zak basis
with a = √

2. In subplot (a), each point represents the two-
dimensional stabilizer subspace Vk1,k2 ; while in (b) each point
represents a single Zak state |k1, k2〉√2. Applying a random walk
of displacement operators to an ideal GKP codestate |ψ〉L ⊗
|0, 0〉 does not affect the logical subsystem until the state reaches
one of the quasiperiodic boundaries of the cell; for example,
causing an X̂ error as shown in (a). The corresponding path is
traced out twice in (b) since each basis state |ψ〉 ⊗ |k1, k2〉 of the
square GKP code consists of superpositions of states |k1, k2〉√2

and |k1 + 1/
√

2, k2〉√2 in the Zak basis.

and spanned by the a = √
2 Zak states |k1, k2〉√2 and

|k1 + 1/
√

2, k2〉√2. With this connection to Zak states we
can see that the union of subspaces Vk1,k2 for k1, k2 ∈(−2−3/2, 2−3/2

]
spans the full Hilbert space H.

Since each stabilizer subspace Vk1,k2 is two-dimensional,
we can define a qubit within each subspace labeled
by the orthonormal stabilizer states |μ, k1, k2〉, where
μ = 0, 1. The naïve way to do so would be to define
the |0, k1, k2〉 stabilizer state as |k1, k2〉√2 and |1, k1, k2〉
as |k1 + 1/

√
2, k2〉√2. This is justified since |k1, k2〉√2

is “closest” to the ideal codestate |0̄〉 = |0, 0〉√2, while
|k1 + 1/

√
2, k2〉√2 is “closest” to |1̄〉 = |1/√2, 0〉√2, see

Eq. (12) and Fig. 1.
However, we want to ensure that the qubit state repre-

sents the GKP logical information stored in the state. In
particular, we impose the defining property of the stabilizer

states that

|ψ , k1, k2〉 = Ŵ(k1, k2) |ψ̄〉 (14)

is a displaced ideal codestate for all qubit states |ψ〉 =
α |0〉 + β |1〉 with ideal GKP encoding |ψ̄〉 = α |0̄〉 +
β |1̄〉.

To see the importance of Eq. (14), consider perform-
ing a round of ideal GKP error correction on the state
|ψ , k1, k2〉 as follows. First, we measure the stabilizer gen-
erators, which reveals the values of k1 and k2 via Eq. (13).
Then, we apply the displacement Ŵ(k1, k2)

† that returns
the state to the ideal codespace. With this definition, we
ensure that the qubit information |ψ〉 in the state |ψ , k1, k2〉
is the same as the logical information one would obtain by
performing an ideal round of error correction and reading
out the resultant ideal codestate. Equivalently, this enforces
that the partial trace over the stabilizer subsystem corre-
sponds to an ideal GKP decoding map, as we show in Sec.
IV D. Strictly enforcing Eq. (14) is, in fact, the key differ-
ence between our subsystem decomposition and previous
definitions [18].

Enforcing Eq. (14) gives the stabilizer states in terms of
Zak states

|0, k1, k2〉 = |k1, k2〉√2 , (15a)

|1, k1, k2〉 = eiπk2/
√

2 |k1 + 1/
√

2, k2〉√2 . (15b)

The additional eiπk2/
√

2 phase on the definition of |1, k1, k2〉
arises from the differing geometric phases in the definition
of the Zak states Eq. (11) and the stabilizer states Eq. (14):

|1, k1, k2〉 = Ŵ(k1, k2) |1̄〉 (16a)

= Ŵ(k1, k2)Ŵ(1/
√

2, 0) |0, 0〉√2 (16b)

= eiπk2/
√

2 |k1 + 1/
√

2, k2〉√2 . (16c)

This phase has two additional consequences. First, it
ensures that all the logical Pauli operators act as a tensor
product between the logical and stabilizer subsystems, as
we will see in Sec. II C 3. A similar result is described in
Ref. [29]. Second, the phase ensures that the full symme-
try of the square GKP code is preserved in the subsystem
decomposition.

It is also interesting to compare Eq. (15) with the Zak-
basis representation of the modular-position subsystem
decomposition [18,23]. Once a rescaling of k1, k2 is taken
into account, the only difference between the two decom-
positions is the k2-dependent phase (see Appendix A). In
this sense the stabilizer subsystem decomposition for the
single-mode square GKP qubit code can be thought of as
a “rephasing” of the modular-position subsystem decom-
position that symmetrizes the treatment of position and
momentum.

010331-4

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

The states |μ, k1, k2〉 form a basis for μ = 0, 1 and
k1, k2 ∈ (−2−3/2, 2−3/2

]
, so we can define a subsystem

decomposition

H = L ⊗ S , |μ〉 ⊗ |k1, k2〉 = |μ, k1, k2〉 , (17)

where L is the logical subsystem and S is the stabi-
lizer subsystem. Similar to results obtained in Ref. [18],
L is a two-dimensional subsystem while S is isomorphic
to the full Hilbert space H by associating the stabilizer
subsystem basis states |k1, k2〉 ∈ S with a = 1 Zak states
|√2k1,

√
2k2〉1 ∈ H of the full Hilbert space. For this rea-

son we call the basis of the stabilizer subsystem |k1, k2〉 the
Zak basis of S . We note here for clarity that the stabilizer
subsystem decomposition Eq. (17) applies to the square
GKP code, which is a stabilizer code and not a “subsystem
code” in the sense of Ref. [30].

It is worth briefly reiterating why the subsystem decom-
position Eq. (17) is nontrivial. The key feature of the
stabilizer subsystem decomposition is that the state in the
logical subsystem is the information one would obtain
if one performed a round of ideal quantum error correc-
tion and logical read out. This feature is enforced by Eq.
(14) and appears as a state-dependent eiπk2/

√
2 phase when

defining the subsystem basis states in terms of Zak states,
see Eq. (15). We can use the connection to error correction
to justify the use of the stabilizer subsystem decomposition
in the analysis of GKP codes, as we will now do in the rest
of the paper.

C. Properties

Now that we have defined the stabilizer subsystem
decomposition for the square GKP code, we outline its
key properties. We begin by presenting the quasiperiodic
boundary conditions of S in Sec. II C 1, which provide an
intuitive picture of how uncorrectable errors on the oscil-
lator cause logical errors in the logical subsystem L. In
Sec. II C 2, we provide examples of states decomposed into
the subsystem decomposition. In particular, the decompo-
sition of approximate GKP codestates follows a simplified
version of the general method developed in Sec. VII for
numerical simulations of GKP codestates. Finally in Sec.
II C 3, we decompose examples of operators, including
logical Clifford operators, into the subsystem decomposi-
tion, and discuss how operators that do not decompose into
tensor products can spread errors in the GKP code.

1. Boundary conditions

We begin by noting that the stabilizer states |μ, k1, k2〉
obey quasiperiodic boundary conditions given by

|μ, k1 + 1/
√

2, k2〉 = e−iπk2/
√

2 |μ⊕ 1, k1, k2〉 , (18a)

|μ, k1, k2 + 1/
√

2〉 = eiπk1/
√

2(−1)μ |μ, k1, k2〉 , (18b)

where here ⊕ denotes addition mod 2. These are analogous
to the Zak state boundary conditions Eq. (9), except that
the boundary conditions also affect the logical information.
In particular, Eq. (18a) applies a Pauli X̂ operator to the
logical information while Eq. (18b) applies a Pauli Ẑ.

For illustrative purposes, consider a toy error model con-
sisting of a random walk of displacement errors applied
to an ideal square GKP codestate |ψ̄〉, as depicted in Fig.
1. The logical information in the state remains unchanged
as long as the random walk does not cross a boundary,
i.e., while the error remains correctable. Once it crosses
a boundary, applying Eqs. (18a) or (18b) causes a logical
Pauli operator to be applied to the logical subsystem, cor-
responding to a logical error on the state, reflecting the fact
that the correctable error has now become uncorrectable.
The applied logical Pauli operator is identical to the logi-
cal error that would be applied if an ideal decoder acted on
the displaced codestate.

2. States

Arbitrary single-mode CV states can be decomposed
into the square subsystem decomposition using Eqs. (8)
and (12). For example, ideal GKP codestates |μ̄〉sq =
|μ〉 ⊗ |0, 0〉 are tensor product states by definition. Posi-
tion eigenstates |x〉q and momentum eigenstates |x〉p are
also tensor product states given by

|x〉q = 1
4
√
π

|μx〉 ⊗
∫ 1

2
√

2

− 1
2
√

2

dk2 e−iπ(kx+√
2nx)k2 |kx, k2〉 ,

(19a)

|x〉p = 1
4
√
π

|±x〉 ⊗
∫ 1

2
√

2

− 1
2
√

2

dk1 eiπ(kx+√
2nx)k1 |k1, kx〉 ,

(19b)

where we decompose x = √
2πkx + √

πnx such that kx ∈(−2−3/2, 2−3/2
]

and nx ∈ Z, μx = nx (mod 2), and we
write |±x〉 = |+〉 if μx = 0 and |±x〉 = |−〉 if μx = 1.
Intuitively, the position eigenstate |x〉q corresponds to a
product state with logical subsystem state |0〉 (|1〉, respec-
tively) if x rounds to an even (odd) multiple of

√
π .

Similarly, the momentum eigenstate |x〉p corresponds to
a product state with logical subsystem state |+〉 (|−〉,
respectively) if x rounds to an even (odd) multiple of

√
π .

In contrast, approximate codestates are “entangled”
across the two subsystems. We define approximate
codestates by |ψ̄�〉 ∝ e−�2â†â |ψ̄〉 with constant of propor-
tionality such that |ψ̄�〉 is normalized, and where e−�2â†â

is the nonunitary envelope operator. To find the analyti-
cal form of |ψ̄�〉 in the subsystem decomposition, we first
utilize the characteristic function of the envelope operator

010331-5

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

(see Appendix F)

e−�2â†â ∝
∫

R

dv1dv2 e
− π

2 coth
(
�2
2

)(
v2

1+v2
2

)
Ŵ(v1, v2). (20)

With the envelope operator written in this form it is
straightforward to apply it to an ideal codestate |ψ〉 ⊗
|0, 0〉 using Eq. (14). However, since the integral in Eq.
(20) is over v1, v2 ∈ R, we must apply the boundary con-
ditions Eq. (18) to obtain a valid subsystem decomposition,
giving

|ψ̄�〉 ∝
∑

s∈Z2

P̂(s) |ψ〉 ⊗
∫

d2v
(

e
− π

2 coth
(
�2
2

)
|v+s/

√
2|2

× eiπ(v1s2−v2s1)/
√

2 |v1, v2〉
)

, (21)

where P̂(s) = eiπs1s2/2X̂ s1 Ẑs2 , the region of integration is
v1, v2 ∈ (−2−3/2, 2−3/2

]
, and we have written v = (v1, v2).

Note that the boundary conditions introduce logical Pauli
operators acting on the logical subsystem, reflecting the
fact that the envelope operator introduces errors on the
ideal codestate.

To quantify the logical information stored in a state,
we can apply the partial trace over S , which gives an
expression of the form

trS
(|ψ̄�〉 〈ψ̄�|) ∝

∑

s,t∈Z2

I�s,tP̂(s) |ψ〉 〈ψ | P̂(t). (22)

We derive Eq. (22) and provide the analytical form of
I�s,t in Appendix C due to the length of the equations. To
numerically evaluate Eq. (22) we can truncate the infinite
sums over s, t ∈ Z

2, which is justified as long as |I�s,t| → 0
sufficiently fast as |s|, |t| → ∞. Importantly, numerically
evaluating Eq. (22) also becomes easier as � → 0 since
|I�s,t| converges to zero faster as � becomes small, requir-
ing fewer terms in the sum to be included. Intuitively, this
is because the characteristic function of the envelope oper-
ator Eq. (20) decays exponentially away from the origin,
and the rate of decay increases as � → 0.

In Fig. 2, we plot the logical state given by Eq. (22),
where we have quoted � in decibels using the formula
�dB = −10 log10(�

2). In the limit � → 0, the approxi-
mate codestate |ψ̄�〉 approaches the ideal GKP codestate
|ψ̄〉 and its partial trace approaches the pure state |ψ〉. In
the limit � → ∞, e−�2â†â → |0〉 〈0|, the projector onto
the vacuum state, and as such |ψ̄�〉 → |0〉. In the square
code, the logical information stored in the vacuum state is
a mixed state that lies outside the stabilizer octahedron, and
has been shown to be distillable to a magic state [31].

In fact, as we show in Sec. VII, the procedure we have
just followed to obtain the partial trace of |ψ̄�〉 can be

FIG. 2. Decoded states trS
(|ψ̄�〉 〈ψ̄�|) for |ψ〉 =

|0〉 , |1〉 , |+〉 , |−〉, where |ψ̄�〉 is an approximate single-
mode square GKP codestate. The decoded states are plotted on
the x-z plane of the Bloch sphere (solid outline) as a function
of � (labeled on the plot). As �dB → +∞ (� → 0), each state
approaches the ideal logical |ψ〉L state, respectively; while as
�dB → −∞ (� → +∞), each state approaches the vacuum
state |0〉, which is outside the stabilizer octahedron (dotted line)
and is distillable to a magic state [31].

generalized to apply quantum channels E to ideal GKP
codestates. In particular, one needs to obtain the charac-
teristic function of the map, apply the boundary conditions
of the code, and then take the partial trace. The result-
ing object is an effective logical channel that reflects the
change in logical information stored in the state under the
action of E . Moreover, the logical channel can be obtained
numerically by truncating each of the infinite series that
arise from the boundary conditions so long as the charac-
teristic function of the channel tends to zero sufficiently
fast. The details and results of this method are discussed in
more detail in Sec. VII.

3. Operators

We can also decompose arbitrary CV operators into the
subsystem decomposition. In order to do so, we first define
the stabilizer subsystem operators k̂1, k̂2, which act on the
Zak basis states |k1, k2〉 ∈ S via

k̂1 |k1, k2〉 = k1 |k1, k2〉 , k̂2 |k1, k2〉 = k2 |k1, k2〉 . (23)

Since k̂1 and k̂2 are simultaneously diagonalizable we also
have [k̂1, k̂2] = 0. Moreover, the eigenvalues of k̂1, k̂2 lie in
the range (−2−3/2, 2−3/2].

From Eq. (13), we see that the stabilizer generators are
product operators that act trivially on the logical subsys-
tem:

Ŝ1 = e−2i
√
π p̂ = Î ⊗ e−2

√
2iπ k̂2 , (24a)

Ŝ2 = e2i
√
π q̂ = Î ⊗ e2

√
2iπ k̂1 . (24b)

010331-6

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

The operators
√

2π k̂1 = q̂ (mod
√
π) and

√
2π k̂2 = p̂

(mod
√
π) can also be interpreted as modular quadrature

operators.
It is straightforward to show directly that logical Pauli

operators decompose to tensor products given by

X̄ = e−i
√
π p̂ = X̂ ⊗ e−√

2iπ k̂2 , (25a)

Z̄ = ei
√
π q̂ = Ẑ ⊗ e

√
2iπ k̂1 , (25b)

where X̄ , Z̄ are logical Pauli operators acting on H while
X̂ , Ẑ are Pauli operators acting on L ∼= C

2. Note that the
nontrivial action of X̄ , Z̄ on the stabilizer subsystem is nec-
essary for them to satisfy the identities X̄ 2 = Ŝ1, Z̄2 = Ŝ2.
When a logical Pauli operator is applied to a state, the logi-
cal subsystem is transformed exactly by the corresponding
Pauli operator, and the distribution of the state in the sta-
bilizer subsystem is unchanged since e−√

2iπ k̂2 multiplies
each Zak basis state only by a phase. As such, X̄ and Z̄
can be considered as ideal Pauli operators when acting as
a gate.

When considered as a measurement operator however,
the phase on the stabilizer subsystem can affect the mea-
surement outcome. In particular, the phase ensures that the
spectrum of X̄ , Z̄ is indeed the set of modulus 1 complex
numbers, consistent with the fact that displacements are
unitary but not Hermitian operators. Alternatively, one can
define the Hermitian and unitary ideal Pauli measurement
operators X̂m = X̂ ⊗ Î and Ẑm = Ẑ ⊗ Î . These operators
can in theory be measured by performing an ideal round
of error correction and then performing a measurement
of the original Pauli operators X̄ , Z̄, since k1, k2 = 0 in
the ideal codespace. We note that such a measurement is
impossible in practice as the ideal round of error correc-
tion requires the preparation of an ideal GKP codeword. It
is interesting to note that the measurement operators X̂m,
Ẑm do not, in general, coincide with “binned quadrature
operator” measurements, which we discuss in more detail
in Appendix B.

Unlike logical Pauli operators, displacements are not
tensor-product operators in the subsystem decomposition
in general. As an example, consider the displacement
Ŵ(2−3/2, 0) = e−i

√
π p̂/2 =

√
X̄ , which acts on states in the

subsystem decomposition as

√
X̄ |ψ〉 ⊗ |k1, k2〉

=
{

|ψ〉 ⊗ e−iπk2/
√

8
∣∣k1 + 2−3/2, k2

〉
, k1 ≤ 0,

X̂ |ψ〉 ⊗ e−3iπk2/
√

8
∣∣k1 − 2−3/2, k2

〉
, k1 > 0.

(26)

Note that the states with k1 > 0 have been mapped over
the X̂ boundary [Eq. (18a)], while the remaining k1 ≤ 0
states have not.

√
X̄ is thus an entangling operator across

the subsystem decomposition.
For the square code, the Fourier transform operator

eiπ â†â/2 is a tensor-product operator given by

eiπ â†â/2 = Ĥ ⊗ R̂(π/2) (27)

where Ĥ = (X̂ + Ẑ)/
√

2 is the Hadamard operator, and
R̂(π/2) |k1, k2〉 = |−k2, k1〉 rotates the vector (k1, k2) anti-
clockwise by π/2. This reflects the fact that eiπ â†â/2 = H̄ is
a logical Hadamard operator on the square GKP code, and
demonstrates that the stabilizer subsystem decomposition
is symmetric in q̂ and p̂ .

However, logical Clifford gates are not tensor-product
operators in general. For example, consider the logical
phase gate S̄ = eiq̂2/2, which implements the gate Ŝ =
diag(1, i). It is straightforward to show from Eqs. (11), (9),
and (15) that

S̄ |μ, k1, k2〉 = iμ |μ, k1, k1 + k2〉 , (28)

where μ = 0, 1. Therefore, S̄ acts as an ideal phase
gate only on Zak basis states |μ, k1, k2〉 with k1 + k2 ∈
(−2−3/2, 2−3/2]. States lying outside this range incur an
additional Z̄ logical error due to the boundary condition
Eq. (18b). In particular, we have

S̄ |ψ〉 ⊗ |k1, k2〉 =

⎧⎪⎨
⎪⎩

Ŝ† |ψ〉 ⊗ eiπk1/
√

2
∣∣k1, k1 + k2 − 2−1/2

〉
, k1 + k2 > 2−3/2,

Ŝ† |ψ〉 ⊗ e−iπk1/
√

2
∣∣k1, k1 + k2 + 2−1/2

〉
, k1 + k2≤ − 2−3/2,

Ŝ |ψ〉 ⊗ ∣∣k1, k1 + k2
〉
, else.

(29)

In Sec. VI we show that logical Clifford gates by default
do not act as a tensor product acting on general GKP
codes, including two-qubit gates such as the logical con-
trolled NOT and controlled Z gates acting on the square

GKP code. Indeed, only a few special Clifford gates do in
fact decompose as tensor products, such as the Hadamard
gate in the square GKP code and the permutation gate Ĥ Ŝ†

in the hexagonal GKP code. Intuitively, a Clifford gate will

010331-7

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

decompose as a tensor-product operator only if it does not
deform the decoding “primitive cell” of the code, an idea
that we discuss more formally in Secs. V and VI.

In the remainder of the paper, we generalize the stabi-
lizer subsystem decomposition to general multimode GKP
codes (Secs. III and IV), and describe in more detail the
applications of the subsystem decomposition to Clifford
gates (Sec. VI) and the modeling of noise (Sec. VII). Read-
ers that are only interested in modeling noise can skip Secs.
III–VI and resume reading at Sec. VII.

III. GENERAL GKP CODES

Now that we have introduced the stabilizer subsystem
decomposition for the square GKP qubit code, we discuss
the generalization of the stabilizer subsystem decomposi-
tion to general multimode GKP qudit codes in the follow-
ing three sections. In this section, we introduce the notation
we will use throughout the rest of the paper, and review
the properties of multimode GKP codes. Then in Sec. IV
we define the stabilizer subsystem decomposition in gen-
eral. We provide a method of decomposing arbitrary CV
states into a general stabilizer subsystem decomposition in
Sec. V, before moving on to applications of the stabilizer
subsystem decomposition in the remainder of the paper.

A. Preliminaries

We start with a discrete-variable system consisting of the
tensor product of n finite-dimensional Hilbert spaces each
with dimension dj , j = 1, . . . , n, which we write as a sin-
gle vector d = (d1, . . . , dn). We will allow for dj = 1 for
any of the dimensions, which we refer to as a “qunaught,”
since no logical information can be stored in the sys-
tem. The Hilbert space of the system, Hd = ⊗n

j =1 C
dj , is

spanned by an orthonormal computational basis |μ〉, where
μ = (μ1, . . . ,μn) ∈ ⊕n

j =1 Zdj is a ditstring. On each qudit
we define the Pauli X̂(d) and Ẑ(d) operators that have action

X̂(d) |a〉 = |a + 1 (mod d)〉 , (30a)

Ẑ(d) |a〉 = e2iπa/d |a〉 . (30b)

From now on we will no longer explicitly write (d) to indi-
cate the dimension of the Pauli operators. For a general
Pauli operator acting on the whole system Hd we use the
notation

P̂d(s) =
n⊗

j =1

exp
(

iπ
dj

sj sj +n

)
X̂ sj Ẑsj +n , (31)

where s ∈ Z
2n, c.f. P̂(s) as in Eq. (21). We allow every

component of the vector s = (s1, . . . , s2n) to be an integer
with unrestricted range for later convenience. Because of
this, the Pauli operators P̂d(s) and P̂d(s′) may be identical
even if s �= s′.

Next, consider a CV system consisting of n modes with
Hilbert space H. Such a system can be described by n
position and momentum operators, which we write in a
column vector ξ̂ = [q̂1 · · · q̂n p̂1 · · · p̂n]T. These obey
the canonical commutation relations [q̂j , p̂j ′] = iδjj ′ .

We define the n-mode displacement operators

Ŵ(v) = exp
(√

2π i ξ̂
T
	 v

)
, (32)

for v ∈ R
2n, where

	 =
[

0n In
−In 0n

]
(33)

defines the standard symplectic bilinear form uT	v in R
2n.

The displacement operators obey the commutation relation

[[Ŵ(u), Ŵ(v)]] = exp
(−2iπuT	v

)
, (34)

c.f. Eqs. (1) and (2). Moreover, they “displace” the position
and momentum operators such that

Ŵ(v)†ξ̂Ŵ(v) = ξ̂ +
√

2πv, (35)

c.f. Eq. (4), where on the left-hand side the displacement
operators are acting component-wise on the vector ξ̂ .

We define the n-mode Zak states

|k〉a = |k1, . . . , k2n〉a =
n⊗

j =1

|kj , kj +n〉aj
, (36)

where a = (a1, . . . , an) is a list of constants aj > 0. Each
Zak state is a simultaneous eigenstate of the displacement
operators Ŵ(aj ej) and Ŵ(en+j /aj) for j = 1, . . . , n, where
eJ ∈ R

2n is the vector with a 1 in the J th component and
0’s elsewhere. Restricting each component kj to an inter-
val of length aj and each component kj +n to an interval of
length 1/aj forms a basis of Zak states.

We also consider Gaussian unitary operators ÛS that
are parameterized by a 2n × 2n real symplectic matrix S
with ST	S = 	. The action of a Gaussian unitary on the
position and momentum operators is defined as the linear
transformation

Û†
S ξ̂ ÛS = Sξ̂ . (37)

Given a symplectic matrix S, the operator ÛS can be found
from the unitary metaplectic representation of S [32,33].
Every Gaussian operator ÛS can be written as the prod-
uct of unitaries generated by Hamiltonians quadratic in ξ̂ .
Alternatively, we can interpret S as defining a canonically
transformed set of modes �̂ = S−1ξ̂ such that we can write
ÛSŴ(v)Û†

S = Ŵ(Sv) = exp(
√

2π i �̂T	v).

010331-8

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

B. Multimode GKP encodings

We can now introduce multimode qudit GKP codes,
which encode a discrete-variable system Hd consisting of
k qudits and k − n qunaught states into an n-mode contin-
uous variables system H. To specify the GKP encoding
we provide two pieces of information (
, d), where
 is
a 2n × 2n real symplectic matrix, and d is a list of dimen-
sions of length n consisting of k elements that are integers
greater than or equal to 2 and n − k elements equal to 1.
Together, they specify a set of 2n mutually commuting
stabilizer generators

ŜJ = Ŵ(mJ), mJ = d1/2
J (mod n) (
)J , (38)

where (
)J is the J th column of
, such that the set of
operators ŜJ and Ŝ†

J generate the stabilizer group. Note our
index convention of using j when the index runs from
1 to n, and J when the index runs from 1 to 2n. Also
note that the (mod n) in Eq. (38) is needed only due
to our definition of d being length n (and not 2n). The
codespace is defined by the simultaneous +1 eigenspace
of the stabilizer generators. We define the logical Pauli
operators

X̄j = Ŵ(m̄j), Z̄j = Ŵ(m̄j +n), (39)

where m̄J = mJ /dJ (mod n). We use the bar in the notation
m̄J both to denote that the vector m̄J is “dual” to the vec-
tor mJ (in the lattice sense, as will be explained below),
and to remind the reader that Ŵ(m̄J) corresponds to a logi-
cal Pauli operator. Note that on the qunaught modes where
dj = 1 the logical Pauli operators Z̄j and X̄j coincide with
the stabilizers Ŝj and Ŝj +n.

As an illustrative example, consider the case of a single
qudit with dimension d encoded in a single-mode square
GKP code. The parameters for this encoding are

(

sq, (d)

)
,

with
sq = I2, such that the stabilizers and logical Paulis
are simply

Ŝ1 = Ŵ(
√

d e1) = e−i
√

2πd p̂ , (40a)

Ŝ2 = Ŵ(
√

d e2) = ei
√

2πd q̂, (40b)

X̄ = Ŵ(e1/
√

d) = e−i
√

2π/d p̂ , (40c)

Z̄ = Ŵ(e2/
√

d) = ei
√

2π/d q̂, (40d)

where e1 = [1, 0]T and e2 = [0, 1]T. The encoding is called
square because of the square lattice generated by m1 =√

d e1 and m2 = √
d e2.

One way to understand a general multimode GKP
encoding defined by arbitrary (
, d) is as follows. Since

is a symplectic matrix, it defines a new set of canonically

FIG. 3. A circuit representing the encoding of k qudits into an
ideal GKP code described by (
, d). On the left-hand side, a
state is described in the Hilbert space Hd consisting of a tensor
product of k qudits and k − n qunaught states. The qudits are
encoded first into the ideal codespace of n independent square
GKP codes (each labeled sq), followed by a Gaussian unitary
operator Û
 .

transformed modes

ξ̄ =
−1ξ̂ , (41)

which we refer to as the logical modes. Written in terms
of the logical modes, the stabilizer generators and logical
Paulis take the form

Ŝj = e−i
√

2πdj p̄j , Ŝj +n = ei
√

2πdj q̄j , (42a)

X̄j = e−i
√

2π/dj p̄j , Z̄j = ei
√

2π/dj q̄j , (42b)

which we recognize as n independent square-GKP encod-
ings into the logical modes q̄j , p̄j . This picture is illustrated
in Fig. 3, where k qudits and n − k qunaught states are first
encoded into n square-lattice logical GKP modes, before
applying a unitary Gaussian transformation Û
 .

To clarify the role of the qunaught states, note that the
corresponding logical mode is constrained to a unique state
that could equivalently be defined as the +1 eigenstate
of Z̄ for a square-lattice GKP code with arbitrary d. The
qunaught modes thus play precisely the same role as stabi-
lizers in conventional qudit stabilizer codes [30], and can
be used to provide additional protection against errors. A
special case is when Û
 can be decomposed into a ten-
sor product of single-mode Gaussian unitaries, followed
by a logical Clifford circuit acting on the encoded GKP
qudits. This case can be understood as a concatenation
of n single-mode GKP codes with a conventional discrete
qudit stabilizer code. For example, the GKP-surface code
[34,35] belongs to this class, where there are n physical
modes and n − 1 logical qunaught modes (corresponding
to the surface-code stabilizer generators), leaving a single
logical GKP mode encoding a qubit with d = 2.

C. GKP lattices and primitive cell decoding

A useful way of understanding multimode GKP codes is
with lattice theory, which was first applied to GKP codes

010331-9

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

in Refs. [10,36] and revisited recently in Refs. [37,38]. We
define the GKP lattice

� =
{

� =
2n∑

J=1

sJ mJ

∣∣∣∣ s ∈ Z
2n

}
, (43)

which we say is generated by the vectors mJ . � has the
property that Ŵ(�) is a stabilizer (up to a ±1 phase) for
every � ∈ �. The symplectic dual lattice of � is defined
by

�̄ =
{
�̄
∣∣ �̄T

	� ∈ Z, ∀ � ∈ �
}

. (44)

�̄ is generated by the dual vectors m̄J and has the property
that Ŵ

(
�̄
)

is a (possibly trivial) logical Pauli operator for

every �̄ ∈ �̄. For example, the single-mode square qudit
code defined in Eq. (40) has GKP stabilizer lattice � =√

d Z
2 and dual lattice �̄ = Z

2/
√

d.
Conversely, if one starts with a lattice �, which defines

a GKP code, one can always find the corresponding pair
(
, d). For the lattice � to define a GKP code, it must
be full rank and symplectic, i.e., �T	�′ ∈ Z, ∀ �, �′ ∈ �.
For consistency with the previous literature [10,36–38], we
define the lattice generator matrix M whose rows are mT

J .
There is freedom in the choice of matrix M (or, equiva-
lently, the generators mJ) for the lattice �; in particular,
left multiplication of any integral unimodular matrix N
transforms M �→ NM via row operations that preserve the
lattice. Each choice of M corresponds to a different choice
of stabilizer generators, but not all of these choices of stabi-
lizer generator can be expressed in terms of logical modes
ξ̄ as in Eq. (41). To solve this issue, one can always use
Gaussian elimination to find a generator M written in stan-
dard form such that M T =
D1/2 for a symplectic matrix

 and diagonal matrix D = diag(d, d), which provide the
parameters in our original description (
, d). We note that
the standard form of M , and equivalently the choice of
,
is not unique for a given lattice �. However, specifying

fixes the choice of stabilizer generators ŜJ and the labeling
of each logical Pauli operator.

The lattice perspective of GKP codes also provides a
convenient description of GKP decoding in terms of prim-
itive cells of the dual lattice. We define a primitive cell P
of the dual lattice �̄ as any subset P ⊂ R

2n satisfying the
property that any vector v ∈ R

2n can be uniquely written
as

v = �̄ + {v}P , (45)

where �̄ ∈ �̄ and {v}P ∈ P .
To perform an ideal round of GKP error correction, one

first measures the eigenvalues of each stabilizer genera-
tor Ŵ(mJ), giving a complex measurement outcome. By

introducing a vector v ∈ R
2n, we can write the set of mea-

surement outcomes as exp(2iπvT	mJ) for each stabilizer.
However, the choice of v is unique only up to the addition
of vectors in the dual lattice. As such, to uniquely assign
a displacement that returns the state to the codespace, one
must choose a primitive cell P of �̄, such that v can be
written uniquely as v = �̄ + {v}P for �̄ ∈ �̄ and {v}P ∈ P .

The choice of P defines a decoder, in which we pick the
unique vector v = {v}P ∈ P that reproduces the syndrome
e2iπvT	mJ and perform the correction Ŵ(v)†, returning the
state to the ideal codespace. The canonical choice of P is
given by the Voronoi cell V(�̄) of the dual lattice, which
contains the set of points closer to the origin than any other
point in the lattice. However, other choices of P can be
made, for example, to account for the effects of logical
Clifford gates (Sec. VI) and maximum-likelihood decoding
[37].

IV. STABILIZER SUBSYSTEM DECOMPOSITION

In this section, we describe how to construct the sta-
bilizer subsystem decomposition for arbitrary multimode
GKP codes. We do this by first defining the stabilizer
states |μ, k〉(
,d), which are labeled by two variables μ ∈⊕n

j =1 Zdj (a ditstring label) and k ∈ R
2n, where the former

represents logical information and the latter the stabilizer
eigenvalues. The stabilizer states span the Hilbert space
H, but are not linearly independent, so we limit the range
of k to a subset of R

2n such that the resulting states
form a linearly independent basis. We can then define a
subsystem decomposition between the logical L and sta-
bilizer S labels. Finally, we outline two key features of
the decomposition: the decomposition of stabilizers and
logical Paulis as tensor-product operators, and the corre-
spondence of the partial trace to a noiseless primitive cell
decoding of the GKP code. A practical example of the
general framework is provided in Appendix D.

A. Stabilizer states

We begin by stepping through the definition of the sta-
bilizer states. For any pair of parameters (
, d), we define
the state |0n, 02n〉(
,d) as the simultaneous +1 eigenstate of
the stabilizer group and each logical Pauli Ẑ operator Z̄j
for j = 1, . . . , n, which corresponds to the ideal GKP state
encoding the codeword |0〉⊗n.

Next, we define the remaining ideal GKP codewords

|μ, 02n〉(
,d) = |μ̄〉 =
n⊗

j =1

X̄
μj

j |0n, 02n〉(
,d) , (46)

whereμ = (μ1, . . . ,μn) ∈ ⊕n
j =1 Zdj is a ditstring through-

out this section. Here,
⊗n

j =1 X̄
μj

j is a product of Pauli X
operators such that |μ, 02n〉(
,d) is the ideal codeword |μ̄〉.

010331-10

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

Finally, we define the remaining stabilizer states as

|μ, k〉(
,d) = Ŵ(k) |μ, 02n〉(
,d) , (47)

where k ∈ R
2n. The state |μ, k〉(
,d) can be viewed as an

ideal GKP codeword |μ̄〉 that has incurred a displacement
error Ŵ(k). We will also notate

|ψ , k〉(
,d) =
∑
μ

cμ |μ, k〉(
,d) , (48)

where |ψ〉 = ∑
μ cμ |μ〉.

We call the states |μ, k〉(
,d) stabilizer states due to the
property:

ŜJ |μ, k〉(
,d) = e2iπkT	mJ |μ, k〉(
,d) , (49)

where we recall that ŜJ = Ŵ(mJ) is a stabilizer generator
of the code [Eq. (38)]. In other words, the subspace Vk
spanned by

⎧⎨
⎩|μ, k〉(
,d)

∣∣∣∣μ ∈
n⊕

j =1

Zdj

⎫⎬
⎭ (50)

is the simultaneous eigenspace of the stabilizers ŜJ with
eigenvalues exp

(
2iπkT	mJ

)
, respectively. The stabilizer

states span the Hilbert space but are not linearly inde-
pendent, obeying the quasiperiodic boundary conditions:

|μ, k + m̄j 〉(
,d) = eiπ kT	m̄j |μ+ ej , k〉
(
,d) , (51a)

|μ, k + m̄j +n〉(
,d) = eiπ kT	m̄j +n e2iπμj /dj |μ, k〉(
,d) ,
(51b)

where the addition μ+ ej in Eq. (51a) is taken mod dj on
each of its components. Comparing to Eq. (30), one can
interpret Eq. (51a) as applying a logical X̂ to the qudit
labelμ and a k-dependent phase to the stabilizer label upon
application of the boundary condition, while Eq. (51b)
applies a logical Ẑ to μ along with a k-dependent phase.

B. The subsystem decomposition

To obtain a nonovercomplete basis of H from the stabi-
lizer states, we must restrict k to a primitive cell P of �̄
[defined in Eq. (45)], such that the set of states |μ, k〉(
,d)
for k ∈ P forms a (linearly independent) basis of H. We
shall justify this claim in Sec. V D by making a direct con-
nection to Zak states, which have already been shown to
form a basis over a given primitive cell [24]. From this we
construct a subsystem decomposition

H = L ⊗G S , (52)

where G = (
, d,P) represents the three parameters
required to specify the decomposition. We define the tensor

product such that

|ψ〉 ⊗ G |k〉 = |ψ , k〉(
,d) (53)

for k ∈ P . Note that this definition implicitly defines a
Zak basis {|k〉S | k ∈ P} of S . We may also define the
stabilizer states Eq. (47) to be normalized such that

(∑
μ

|μ〉 〈μ|
)

⊗G

(∫

P
d2nk |k〉 〈k|

)
= I . (54)

We call L the logical subsystem, which is isomorphic to
the discrete-variable Hilbert space Hd. We call S the sta-
bilizer subsystem, which is isomorphic to the full Hilbert
space H via the correspondence

|k〉S ↔ |D1/2
−1k〉1n , (55)

where D = diag(d, d). The right-hand side of Eq. (55) is a
Zak state with a = (1, . . . , 1), and the set {|D1/2
−1k〉1n |
k ∈ P} forms a basis of H.

We can make a connection here to the stabilizer-
destabilizer formalism of discrete-variable codes [25].
The set of destabilizers of the decomposition G is given
by DG = {Ŵ(v) | v ∈ P}, which represent the “lowest
weight” displacements that give rise to a given error syn-
drome. The full set of displacement operators {Ŵ(v) | v ∈
R

2n} is generated by the destabilizers DG and logical oper-
ators Ŵ(m̄J) via the equation v = �̄ + {v}P . The set of
displacement operators in turn forms an operator basis for
L(H), the space of linear operators on H. This is anal-
ogous to how qubit stabilizers, destabilizers, and logical
operators generate the Pauli group, which in turn forms a
basis for the space of linear operators acting on the n-qubit
Hilbert space.

The square single-mode GKP qubit code (discussed
extensively in Sec. II has parameters

Gsq = (
I2, (2),Vsq

)
, Vsq = (−2−3/2, 2−3/2]×2

. (56)

As a second example, the hexagonal single-mode GKP
qubit code has parameters

Ghex = (
hex, (2),Vhex) ,
hex =
[

4
√

4/3 −1/ 4√12
0 4

√
3/4

]
,

(57)

where Vhex is illustrated in Fig. 4(d). The hexagonal code
has the property that both � and �̄ are hexagonal lattices
in R

2. The Voronoi cell Vhex is hexagonal in shape and has
boundaries corresponding to all three Pauli operators. As
we will discuss in Sec. V, there are two differences between
the hexagonal and square GKP codes: the generators of the
lattice
 and the Voronoi cells V , both of which need to be
taken into account when comparing the properties of the
codes.

010331-11

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

(a)

(b)

(c)

(d)

FIG. 4. Primitive cell diagrams for (a) the single-mode square GKP qubit code Gsq [Eq. (56)], (b) the Zak basis Z√
2 [Eq. (72)], (c)

the square code transformed by the hexagonal Gaussian transformation
hexGsq, and (d) the single-mode hexagonal GKP qubit code
Ghex [Eq. (57)]. Subplots (a),(b) are related by an unfolding operation R; (a),(c) are related by a Gaussian transformation
hex; and
(c),(d) are related by a cell transformation P =
hexVsq �→ P ′ = Vhex, which is performed by shifting each of the colored regions P�̄

by the dual-lattice vector �̄ to form P ′. In subplots (a),(c), and (d), each point on the plot represents the two-dimensional simultaneous
eigenspace of the GKP stabilizers; while in (b) each point represents a single state.

C. Stabilizers and logical Paulis

Next, we wish to discuss the decomposition of stabiliz-
ers and logical Pauli operators in the stabilizer subsystem
decomposition. Before doing so, we must introduce oper-
ators that act on each of the subsystems. For the logical
subsystem L this is straightforward since it is isomor-
phic to a discrete-variable Hilbert space. For the stabilizer
subsystem S , one could use the isomorphism with the cor-
responding CV Hilbert space H to define, for example,
ladder operators âj ,S , â†

j ,S for each mode of S . Instead, we
will find it more useful to instead consider S as a subsys-
tem of H, and use operators on H that act trivially on L to
define the desired operators, analogous to our definition of
k̂1 and k̂2 in the single-mode square case (see Sec. II C 3).

The first such operator that we wish to define is a vector-
valued operator k̂, that has action on the full Hilbert space:

k̂ (|ψ〉 ⊗G |k〉) = k (|ψ〉 ⊗G |k〉) , (58)

where k = (k1, . . . , k2n), and the right-hand side may be
viewed as a vector with components kJ (|ψ〉 ⊗G |k〉). By
definition, k̂ acts trivially on L and thus can be viewed as

an operator acting solely on S . k̂ can be interpreted as a
modular quadrature operator k̂ =

{
ξ̂/

√
2π
}
P

, where we
recall that {v}P is the remainder of v in the primitive cell
P such that v = �̄ + {v}P for some �̄ ∈ �̄.

From the stabilizer eigenvalue equation [Eq. (49)], we
can decompose the stabilizer generators as

ŜJ = Ŵ(mJ) = Î ⊗G e2iπ k̂
T
	mJ . (59)

Physically, the eigenvalues of k̂, which lie within the prim-
itive cell P , can be measured simply by measuring the set
of stabilizer generators [10,39].

For the logical Pauli operators we have

X̄j = Ŵ(m̄j) = X̂j ⊗G e2iπ k̂
T
	m̄j , (60a)

Z̄j = Ŵ(m̄j +n) = Ẑj ⊗G e2iπ k̂
T
	m̄j +n , (60b)

where X̄j , Z̄j represent the logical Pauli operators acting on
H, while X̂j , Ẑj represent the finite-dimensional Pauli oper-
ators acting on L. The fact that each logical Pauli operator

010331-12

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

can be written as a tensor product of operators acting on
L and S ensures that it perfectly applies the corresponding
gate to the logical information of any given state.

Alternatively, it is also possible to write the stabilizers
and logical operators in terms of the logical modes ξ̄ =
(q̄1, . . . , q̄n, p̄1, . . . , p̄n) that we introduced in Eqs. (41).
We define the modular quadrature operators of the logical
modes k̄ = (k̄1, . . . , k̄2n) as

k̄j =
{

q̄j /
√

2π
}

d−1/2
j

, k̄j +n =
{

p̄j /
√

2π
}

d−1/2
j

, (61)

where we have written x = a�x�a + {x}a for x ∈ R such
that �x�a ∈ Z and {x}a ∈ (−a/2, a/2]. From Eqs. (42) we
see that the eigenstates of each stabilizer generator Ŝj

(respectively, Ŝj +n) are eigenstates of p̄j (q̄j) mod
√

2π/dj ,
and are thus also the eigenstates of k̄j +n (k̄j). The operator
k̄ acts trivially on L because every basis state |ψ〉 ⊗G |k〉
is an eigenstate of the stabilizers regardless of its logi-
cal state. Since the stabilizer generators are simultaneously
diagonalizable, we also have

[
k̄J , k̄J ′

] = 0. Finally, we can
relate the operators k̄ and k̂ to each other via the equation

k̂ = {

k̄
}
P . (62)

This equation can be used to rewrite Eqs. (59) and (60) in
terms of k̄, giving

Ŝj = Î ⊗G e−2iπ
√

dj k̄j +n , (63a)

Ŝj +n = Î ⊗G e2iπ
√

dj k̄j , (63b)

X̄j = X̂j ⊗G e−2iπ k̄j +n/
√

dj , (63c)

Z̄j = Ẑj ⊗G e2iπ k̄j /
√

dj . (63d)

D. The partial trace

The central feature of using the stabilizer subsystem
decomposition is the property that the partial trace over the
stabilizer subsystem trS corresponds to an ideal decoding
map over a primitive cell P , which we now show.

We consider an ideal decoding map composed of a
round of ideal error correction over P , followed by a
read out of the logical information in the resultant ideal
codestate. This ideal decoding map can be described in the
subsystem decomposition in three steps:

(a) First, there is a measurement of k̂ with some mea-
surement outcome v ∈ P , which projects the initial
state into the k̂ = v eigenspace via the projection
operator |v〉S 〈v| (up to normalization).

(b) To return the state to the k̂ = 0 eigenspace (the ideal
codespace), we apply the displacement Ŵ(v)†.

(c) Finally, ideal read out is then described by the map
ρ̂ ⊗G |0〉 〈0| �→ ρ̂.

Considering these three steps together and averaging over
the possible measurement outcomes results in a quan-
tum channel H �→ L described by the Kraus operators{
S 〈v| ∣∣ v ∈ P}, where S 〈v| is an operator that maps H →
L. Thus, the postdecoding state of an arbitrary density
operator ρ̂, unconditional on the stabilizer measurement
outcomes, can be found by taking the partial trace over the
S subsystem

∫

P
d2nv S 〈v| ρ̂ |v〉S = trS(ρ̂). (64)

Equivalently, if one performs a round of ideal error correc-
tion over P and averages over the outcomes, one obtains
the ideal GKP codestate trS(ρ̂)⊗G |0〉 〈0|. The partial trace
can in some sense be considered an “ideal” measure of the
logical information in a state ρ̂. Indeed, the ideal decod-
ing procedure is not implementable physically since the
measurement of the stabilizer generators requires the use
of a non-normalizable ideal GKP codestate. We leave it to
future work to describe approximate error correction in the
stabilizer subsystem decomposition.

In some contexts, it is also useful to consider the state
ρ̂v ∝ S 〈v| ρ̂ |v〉S , which is the decoded state conditioned
on the measurement outcome v (not averaged over them),
because some stabilizer outcomes can result in decoded
states ρ̂v with less noise than others. Such considerations
have previously been explored in qubit codes [40] and in
GKP magic state distillation [31].

We remark that this ideal GKP decoding map is not
equivalent to a decoding map defined by logical-state
tomography with binned measurement operators. Indeed,
we show in Appendix B that the logical-state tomography
with binned measurement operators (binned-LST) decod-
ing map is not completely positive, and is more susceptible
to logical errors than the ideal decoding map.

V. TRANSFORMATIONS OF ⊗G

Next, we turn our attention to transformations of the
subsystem decomposition ⊗G . In particular, we are inter-
ested in describing transformations that map basis states
in one subsystem decomposition to basis states of another:
|ψ〉 ⊗G |k〉 �→ |ψ ′〉 ⊗G′ |k′〉. We wish to do this for three
reasons. First, these transformations provide a recipe to
decompose arbitrary CV states in the ⊗G subsystem
decomposition (Sec. V E). Second, the transformations
provide useful tools to analyze logical Clifford gates (Sec.
VI) and the relationship between different GKP codes.
Finally, the transformations allow us to make explicit the
relationship between the subsystem decompositions and
the Zak basis states [Eq. (36)] of H (Sec. V D). To do
this, we introduce three transformations—cell transforma-
tions, Gaussian transformations, and dimension transfor-
mations—that allow one to relate any two arbitrary stabi-
lizer subsystem decompositions G and G ′ over n modes to

010331-13

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

each other. An example of each transformation is depicted
in Fig. 4, which we will refer to throughout the section.

A. Cell transformations

The first transformation we consider is a primitive
cell transformation (
, d,P) �→ (
, d,P ′), which can be
achieved by applying the boundary conditions Eq. (51) to
each basis state inP (as described below). Cell transforma-
tions are important to consider because different primitive
cells correspond to different decoders with different error-
correction properties. As such, the same state decomposed
across two subsystem decompositions differing only by
their primitive cell can encode different information in
their logical subsystems.

In order to describe the cell transformation G =
(
, d,P) �→ G ′ = (
, d,P ′), we start by noting from the
definition of a primitive cell [Eq. (45)] that any vector
k ∈ P can be uniquely written

k = �̄ + {k}P ′ , (65)

where �̄ ∈ �̄ and {k}P ′ ∈ P ′. Therefore, to write any basis
state |ψ〉 ⊗G |k〉 as a basis state of ⊗G′ , we can sim-
ply apply the boundary conditions associated with the
dual-lattice vector �̄, resulting in the equation

|ψ〉 ⊗G |k〉 =
(

P̂d(s) |ψ〉
)

⊗G′
(

eiπkT	�̄ |k − �̄〉
)

, (66)

where we have written �̄ = ∑2n
J=1 sJ m̄J and P̂d(s) is an

n-qudit Pauli operator defined in Eqs. (31). Importantly,
k − �̄ = {k}P ′ is in the new primitive cell P ′ of the sub-
system decomposition ⊗G′ . Note that this transformation
applies a k-dependent Pauli operator to the logical sub-
system, reflecting the fact that the new decoder defined
by P ′ results in different logical information stored in a
subsystem basis state.

It is also convenient to consider the subsets P�̄ ⊆ P for
�̄ ∈ �̄, defined as the set of points k that are mapped by
Eqs. (65) to P ′ with the dual-lattice vector �̄. For exam-
ple, in Figs. 4(c) and 4(d), we show the cell transformation
of a rhombus primitive cell P =
hexVsq to a hexagonal
primitive cell P ′ = Vhex, while the remaining parameters

 =
hex and d = (2) remain fixed. To perform this trans-
formation, the initial rhombus cell P is split into regions
P�̄ ⊂ P , each of which will be shifted by the dual-lattice
vector �̄ to form the new hexagonal cell P ′. In particu-
lar, the yellow, green, blue, and red regions are shifted
by +m̄1, −m̄1, +m̄2, and −m̄2, respectively; while the
unshaded region is “shifted” by the zero vector 0 ∈ �̄. The
basis vectors in each state are transformed by the bound-
ary conditions Eq. (66), which apply a Pauli operator to
the logical subsystem and a phase to the stabilizer subsys-
tem. In general, each region can be found by performing
the decomposition Eq. (65) to each vector k ∈ P .

B. Gaussian transformations

Next, we consider Gaussian transformations of the basis
states. Applying a Gaussian unitary operator ÛS to each
basis state in the subsystem decomposition transforms
G �→ S(G) = (S
, d, SP) such that

ÛS (|ψ〉 ⊗G |k〉) = |ψ〉 ⊗S(G) |Sk〉 . (67)

Unlike the cell transformation, a Gaussian transformation
affects both the generators of the lattice
 �→ S
 and the
cell P �→ SP . As such, to obtain a transformation that
alters only the lattice generators in
, one must combine
a Gaussian transformation with a cell transformation that
restores the original cell P . This is particularly relevant
in the special case where S =
N
−1 for some symplec-
tic integral matrix N , in which case ÛS is the Gaussian
unitary operator that implements the logical Clifford gate
with action ÛSP̄d(s)Û

†
S = P̄d(N s). Here, the transforma-

tion not only applies a logical Clifford gate but also alters
the primitive cell, which we discuss in more detail in Sec.
VI.

We can now describe the full set of transformations
required to transform the single-mode square GKP code
Gsq [Eq. (56)] to the single-mode hexagonal GKP code Ghex
[Eq. (57)], depicted in Figs. 4(a), 4(c), and 4(d). First, we
perform a Gaussian transformation Û
hex , resulting in the
intermediate subsystem decomposition
hexGsq [Fig. 4(c)].
Then, we perform a cell transformation from the rhombus
primitive cell
hexVsq to the hexagonal primitive cell Vhex.
When comparing the properties of the square and hexag-
onal GKP codes it is important to consider both of these
transformations, as both of them alter the properties of the
decomposition.

C. Dimension transformations

Finally, we describe how to transform the dimension, d,
of the subsystem decomposition. Central to this descrip-
tion is the single-mode unfolding operation Rj (defined
below), which transforms the dimension of the j th mode
dj �→ 1, creating a qunaught mode. While there are many
possible transformations that map a given mode from a
qudit mode to a qunaught mode, we choose to describe
the unfolding operation Rj (defined below) due to its sim-
ple action on the basis states of ⊗G . The net effect of this
operation is to take the logical information in the j th mode
and instead label it in the stabilizer mode, thus increasing
the size of the primitive cell [see Fig. 4(b)]. The unfolding
operation is therefore a generalization of the relationship
between the single-mode square GKP qubit code and the
Zak basis as shown in Fig. 1. The “inverse” of the unfold-
ing operation is a d-fold folding operation Fj (d), which
turns a qunaught mode back into a qudit mode with dimen-
sion d. Arbitrary dimension transformations d �→ d′ can
then be described as unfolding and folding operations on

010331-14

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

each of the modes (although in some cases it is necessary
to perform a cell transformation following the unfolding
operation in order for the folding operation to be well
defined).

Intuitively, the unfolding operation Rj consists of
demoting the logical Z̄j = Ŵ(m̄j +n) operator on the j th
mode to a stabilizer of the new code, and removing the
corresponding X̄j = Ŵ(m̄j) from the logical Pauli group.
Since Ŵ(m̄j +n) is now in the stabilizer group, states related
by a displacement Ŵ(m̄j), which previously had identi-
cal support in the stabilizer subsystem are now distinct.
As a result, Rj “unfolds” (or copies) the cell P dj times
along the vector m̄j , with the new patch given by Rj (P) =⋃dj −1

a=0 (P + am̄j).
Concretely, the action of R1 (acting on the first mode

for simplicity) on states in the subsystem decomposition is
given by

|μ1⊕μ〉 ⊗G |k〉 = eiπμ1m̄T
1	k |0⊕μ〉 ⊗R1(G) |k + μ1m̄1〉 ,

(68)

where ⊕ represents the direct sum of two ditstrings μ1 ∈
Zd1 and μ ∈ ⊕n

j =2 Zdj , k ∈ P , and R1(G) is determined
below. Note that the 0 label in the right-hand side of Eq.
(68) is redundant since it represents a qunaught degree of
freedom. The corresponding folding operation F1(d1) can
be found by inverting Eqs. (68).

Finally, we must consider how Rj transforms the
parameters G of the subsystem decomposition. In terms
of lattice generators, Rj transforms mj +n �→ mj +n/dj
(which adds Z̄j to the stabilizer group), and correspond-
ingly m̄j �→ dj m̄j (which removes X̄j from the logical
Pauli group), while all other lattice and dual-lattice gener-
ators are unchanged. It is straightforward to show that the
equivalent transformation of the parameters is given by

Rj (G) =
⎛
⎝
Aj

(√
dj

)
, ddj →1,

dj −1⋃
a=0

(P + am̄j)

⎞
⎠ ,

(69)

where Aj (λ) is a diagonal matrix with λ and λ−1 on the
j th and (j + n)th positions, respectively, and ones else-
where, and ddj →1 = (d1, . . . , dj −1, 1, dj +1, . . . , dn). In Sec.
V D we will also make use of the all-mode unfolding
operation R = R1 ◦ . . . ◦ Rn, which results in a trivial
subsystem decomposition R(G) with dimension vector 1n.

As an example, consider the unfolding of the square
GKP code Gsq, shown in Figs. 4(a) and 4(b). The unfolded
square GKP code R(Gsq) is a qunaught code with triv-
ial logical subsystem L ∼= C, such that each point in the
unfolded primitive cell R(Vsq) represents a single-basis
state of the full Hilbert space H. R(Vsq) has double the
area of Vsq. The left half of R(Vsq) corresponds to states

in Gsq with a |0〉 logical state, while the right half corre-
sponds to |1〉. In general, a basis state |ψ〉 ⊗sq |k〉 of Gsq is
a superposition of two basis states |k〉 and |k + e1/

√
2〉 of

the unfolded decomposition R(Gsq) (where we have omit-
ted the redundant logical information |0〉 in the notation).
By comparison to Fig. 1, one can see that the basis states
of R(Gsq) correspond to Zak states as we will now discuss.

D. Zak states

We can now make explicit the connection between states
in a stabilizer subsystem decomposition G and Zak states
[24], which are known to be closely related to GKP codes
[23,29].

Since the n-mode Zak states |k〉a [Eq. (36)] are simul-
taneous eigenstates of the displacement operators Ŵ(aj ej)

and Ŵ(ej +n/aj), we can identify them with the stabilizer
states of an n-mode qunaught rectangular GKP code

|k〉a = |0n, k〉(
Z ,a,1n) , (70)

where
Z ,a = diag (a1, . . . , an, 1/a1, . . . , 1/an) and holds
for all k ∈ R

2n. We can obtain a Zak basis by restricting

kj ∈
(

− 1
2a

, a − 1
2a

]
, kj +n ∈

(
− 1

2a
,

1
2a

]
(71)

for j = 1, . . . , n. The Zak basis coincides with the Zak
basis states of a trivial stabilizer subsystem decomposition

Za = (
Z ,a, 1n,PZ ,a) (72)

that we call the Zak subsystem decomposition, where PZ ,a
is defined by Eq. (71). As foreshadowed in Sec. V C, apply-
ing an all-mode unfolding operation R to a square qudit
GKP code Gsq,d results in a Zak subsystem decomposition
Z√

d, where
√

d = (
√

d1, . . . ,
√

dn).
With this connection, we can now apply any of the

transformations discussed above in Sec. V A–V C to relate
arbitrary GKP stabilizer subsystem decompositions to a
Zak basis Z√

d. Starting from an arbitrary G = (
, d,P),
we can apply three transformations to result in a decompo-
sition described by Z√

d:

(a) First we apply a Gaussian transformation
−1,
resulting in the decomposition
−1(G) = (I2n, d,

−1P).

(b) Then, we apply a cell transformation
−1P �→
Vsq,d, where Vsq,d is the Voronoi cell of the square
GKP code with dimension vector d.

(c) Finally, we apply an all-mode unfolding operation
R, which results in the Zak subsystem decomposi-
tion Z√

d.

Since the transformations described in Sec. V A–V C pre-
serve the linear independence and completeness of the

010331-15

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

states in each subsystem decomposition, and the Zak states
form a basis of H when restricted to the primitive cell
PZ ,

√
d, we can confirm that the restriction of k to a primi-

tive cell P of the dual lattice �̄ does indeed result in a basis{
|μ, k〉 ∣∣μ ∈ ⊕n

j =1 Zdj , k ∈ P
}

of the full Hilbert space
H.

E. Wave functions in the subsystem decomposition

The relationship between basis states of an arbitrary sub-
system decomposition and the Zak basis also provides a
practical method of decomposing arbitrary states |φ〉 ∈ H
into an arbitrary stabilizer subsystem decomposition ⊗G .
In particular, we wish to calculate the overlap

(〈μ| ⊗G 〈k|) |φ〉 = (
,d) 〈μ, k|φ〉 (73)

for all μ ∈ ⊕n
j =1 Zdj and k ∈ P .

To perform this calculation we work with stabilizer
states |μ, k〉(
,d) as defined in Eq. (47). We can write the
stabilizer state |μ, k〉(
,d) as a Zak state:

|μ, k〉(
,d) = Û
 |μ,
−1k〉(I2n,d) (74)

= Û
 eiπ �̄(μ)T	k
∣∣
−1

(
k + �̄(μ)

) 〉
Z√

d
, (75)

where �̄(μ) = ∑n
j =1 μj m̄j . Note that m̄j for j ≤ n rep-

resents the logical X̄j operator, such that Ŵ
(
�̄(μ)

)
=

∏n
j =1 X̄

μj
j . In Eq. (74), we have applied the Gaussian trans-

formation Û
 [Eq. (67)]; and in Eq. (75), we have applied
the all-mode unfolding operation R defined by Eq. (68).

Since we are working with stabilizer states and not with
a subsystem decomposition, we do not need to explic-
itly apply a cell transformation. Instead, the primitive cell
of the original decomposition G is incorporated implic-
itly into the calculation by only calculating overlaps where
k ∈ P . Indeed, when k runs over P and μ runs over all
possible ditstrings, the “unfolded” vector
−1

(
k + �̄(μ)

)

[Eq. (75)] runs over a primitive cell that is related by a cell
transformation to our previous choice of Zak primitive cell
PZ ,

√
d.

Finally, we can use the position representation of the n-
mode Zak states given by Eqs. (8) and (36) to write the
overlap Eq. (73) as a sum of overlaps

q 〈x|Û†

|φ〉 . (76)

Therefore, any state for which one can calculate the over-
lap Eq. (76) can be decomposed into any subsystem
decomposition G. We relegate the full equation relating
the overlap Eq. (73) with Eq. (76) to Appendix E due to
its length.

VI. LOGICAL CLIFFORD GATES

We now move on to analyzing logical Clifford gates in
the stabilizer subsystem decomposition. To simplify our
discussion we consider only GKP codes that encode k
qubits in n modes, i.e., the dimension vector d consists
of k 2’s followed by n − k 1’s. One appealing feature of
GKP codes is that Gaussian operators, which are often easy
to implement experimentally, are sufficient to generate the
logical Clifford group. Given a k-qubit Clifford operator Â,
we can always write ÂP̂d(s)Â† = P̂d(NAs), where NA is an
integral symplectic matrix that acts trivially on the compo-
nents of s corresponding to the n − k qunaught states, and
P̂d(s) is a Pauli operator defined in Eq. (31). Equivalently,
NA is the symplectic representation of the Gaussian oper-
ator Āsq that applies the logical Â gate on the square GKP
k-qubit code. For a general GKP k-qubit code, a logical
implementation of the Clifford gate Â is given by Ā = ÛSA

with SA =
NA

−1, such that ĀP̄d(s)Ā† = P̄d(NAs). We

note that the logical implementation Ā (and, equivalently,
the symplectic matrices SA and NA) is not unique for a
given Clifford gate Â.

We begin our analysis by considering the action of Ā on
stabilizer states, given by

Ā |ψ , k〉(
,d) = |A(ψ), SAk〉(
,d) , (77)

where A(ψ) is the qubit label representing the state
|A(ψ)〉 = Â |ψ〉, c.f. Eq. (28). Since the state |ψ , k〉(
,d)
can be interpreted as an ideal GKP codestate that has
incurred a displacement error Ŵ(k) |ψ̄〉, we can see that
the logical Clifford gate maps the error k to SAk. The Clif-
ford gate can therefore cause a logical error if the initial
error is correctable (i.e., k ∈ P) but the final error is not
(SAk /∈ P). However, one can exactly counteract this effect
if one simply performs a round of error correction over a
modified patch SAP immediately after the application of
the gate, an idea which was first introduced in Ref. [41]
and generalized in Ref. [42].

An interesting alternative viewpoint is to consider Ā
as a Gaussian transformation of the stabilizer subsystem
decomposition G �→ SA(G) = (
NA, d, SAP) via Eq. (67).
Here, the right multiplication of
 by the integral symplec-
tic matrix NA can be viewed as a column operation that
relabels the generators of the GKP lattice and dual lattice
(equivalent to a row operation N T

A acting on the generator
matrix M) while leaving the lattice invariant. The relabel-
ing occurs in such a way that the Clifford operator Â is
applied to the logical Pauli labels of the dual lattice �̄, i.e.,

|ψ〉 ⊗(
NA,d,SAP) |SAk〉 =
(

Â |ψ〉
)

⊗(
,d,SAP) |SAk〉 .

(78)

010331-16

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

However, to write the right-hand side of Eq. (78) in terms
of the original subsystem decomposition G, one must per-
form a cell transformation SAP �→ P via Eq. (66), which
in general applies a Pauli operator to the logical subsystem.

In practical terms, the logical information in the original
subsystem decomposition G after applying Ā corresponds
to performing a round of error correction over the orig-
inal primitive cell P after the gate (and thus incurring
additional errors as described above). In contrast, the log-
ical information in the modified subsystem decomposition
(
, d, SAP) after applying Ā corresponds to performing
error correction over the modified primitive cell SAP . In
this case, no cell transformation is performed after Eq. (78)
and so no logical errors are introduced.

In Sec. II C 3 we already discussed the examples of
the logical Hadamard [Eq. (27)] and logical phase [Eq.
(29)] gates for the single-mode square GKP code. In par-
ticular, we saw that the logical Hadamard gate H̄sq is a
tensor-product operator in the subsystem decomposition,
while the logical phase gate S̄sq is not. This is a con-
sequence of how the corresponding symplectic matrices
for the Hadamard S(sq)

H and phase gates S(sq)
S transform

the square Voronoi cell Vsq. For the Hadamard gate, we
have S(sq)

H Vsq = Vsq, so no cell transformation is required
following Eq. (78), and hence H̄ decomposes as a tensor-
product operator. For the phase gate, we have S(sq)

S Vsq �=
Vsq, and the required cell transformation S(sq)

S Vsq �→ Vsq

ensures that S̄sq cannot be written as a tensor-product
operator.

As a further example, consider the logical controlled Z
gate. Since this is a two-qubit gate, we consider it acting
on two copies of the square GKP code, which is described
by the parameters

G2
sq = (

I4, (2, 2), (−2−3/2, 2−3/2]×4) . (79)

The controlled Z gate is described by

ĈZ = diag(1, 1, 1, −1), (80a)

NCZ = S(sq)
CZ

=

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

⎤
⎥⎦ , (80b)

C̄Z,sq = exp(iq̂ ⊗ q̂). (80c)

Since S(sq)
CZ

V2
sq �= V2

sq, the controlled Z gate cannot be writ-
ten as a tensor-product operator.

We can perform a similar analysis for the hexagonal
GKP code [Eq. (57)]. Consider the logical permutation
gate R̄hex = H̄hexS̄†

hex, which has

R̂ = 1√
2

[
1 −i
1 i

]
, NR =

[
1 −1
1 0

]
, (81a)

S(hex)
R =

[
1/2 −√

3/2√
3/2 1/2

]
, R̄hex = exp(iπ â†â/3).

(81b)

Since S(hex)
R is a π/3 anticlockwise rotation, we have

S(hex)
R Vhex = Vhex, so R̄hex is a tensor-product operator

across Ghex. However, the logical Hadamard, phase, con-
trolled NOT, and controlled Z gates all do not preserve
the hexagonal Voronoi cell and are not tensor-product
operators in Gsq.

Our formalism also allows for other logical gate propos-
als such as those using gauge fixing techniques [38,43],
which could be used to implement code deformation and
lattice surgery schemes. In particular, consider the projec-
tion into the +1 eigenspace of an arbitrary logical Pauli
operator P̂. In the stabilizer subsystem decomposition this
consists of demoting the logical Pauli operator to a stabi-
lizer via an appropriate unfolding operation, followed by a
round of error correction to project into the +1 eigenspace.
In symbols, this corresponds to the sequence R1 ◦ SA,
where Â is a Clifford operator such that ÂP̂Â† = Ẑ ⊗
Î⊗(n−1). We leave it to future work to apply this formalism
to practical problems involving GKP gauge fixing.

VII. NUMERICAL MODELING OF NOISE

One appealing feature of subsystem decompositions is
that the partial-trace operation provides a straight-forward
method of extracting qudit-level information from CV
states. Here, we apply the stabilizer subsystem decompo-
sition partial trace to model noise sources such as loss and
dephasing in GKP codes. In particular, we are interested
in obtaining the qudit-to-qudit logical map corresponding
to applying a given noise map N on approximate GKP
codewords. We develop a general method for calculating
the logical noise map from N using the partial trace in
Sec. VII A, from which the average gate fidelity can be
directly calculated. Excitingly, our method becomes more
accurate the closer the state is to an ideal GKP code-
word, allowing us to calculate logical noise maps for states
with essentially arbitrarily large photon numbers (Sec. H).
We then apply the method to calculate the average gate
fidelity of the pure loss (Sec. VII C), Gaussian random dis-
placement (Sec. VII D), and white-noise dephasing (Sec.
VII E) noise channels acting on single-mode square GKP
approximate codestates. We find that in the regime of small
loss and high-quality approximate codestates, pure loss
outperforms the Gaussian random-displacement channel
obtained by postcomposing pure loss with a quantum-
limited amplification noise channel, consistent with Ref.
[27]. Finally, we show that the square GKP code is far
more vulnerable to dephasing than pure loss; indeed, when
comparing the average gate infidelity of the GKP codes
with a trivial {|0〉 , |1〉} Fock space encoding, we find that

010331-17

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

a squeezing of at least 12 dB and a dephasing rate below
σ 2 = 10−3 (defined below) is necessary to break even.

A. Description of method

In this subsection we present the methods we use to
determine the logical noise channel NL corresponding
to a CV noise channel N . We develop the method for
a general GKP stabilizer subsystem decomposition G =
(
, d,P), although in the remainder of the section (Secs.
VII B–VII E) we will consider only the square single-mode
GKP code Gsq = (I2, (2),Vsq) [Eq. (56)].

We start by defining the logical noise map NL as

NL(ρ̂) = trS
(N (ρ̂ ⊗G |0〉 〈0|)) , (82)

where N is an arbitrary CV noise map. One can understand
NL as composed of three steps:

(a) an ideal encoding map ρ̂ �→ ρ̄ = ρ̂ ⊗G |0〉 〈0|, fol-
lowed by

(b) the CV noise map N , and finally
(c) an ideal decoding map over the primitive cell P ,

which is equivalent to the partial trace over S (as
described in Sec. IV D).

Importantly, we have defined N as acting on ideal
codestates ρ̄. In practice though, we are typically interested
in noise channels acting on nonideal codestates ρ̃ since the
ideal codestates are non-normalizable. However, we can
always define a map C that maps the ideal codestates |μ̄〉
to the nonideal codestates |μ̃〉. Then, the map N ′ = N ◦ C
can be used in place of N in Eq. (82) to define the cor-
responding logical noise map acting on the approximate
codestates.

To find the logical map NL from N , we first need
to write N in terms of displacement operators in its
characteristic function [44]

N (ρ̂) =
∫∫

R2n
d2nu d2nv c(u, v)Ŵ(u)ρ̂Ŵ(v)†. (83)

In general, the characteristic function c(u, v) can be
obtained either from the Liouville superoperator represen-
tation of N or from a Kraus decomposition, as described
in Appendix F. Alternatively, we derive the character-
istic function of an arbitrary Gaussian CPTP map in
Appendix F, giving us many of the characteristic functions
used below. Finally, the characteristic function c(u, v) of
a composition of maps N = N2 ◦ N1 can be written in
terms of the characteristic functions of the maps Ni with
the equation:

c(u, v) =
∫∫

R2n
d2nũ d2nṽ

(
eiπ(uT	ũ−vT	ṽ)

× c1(u − ũ, v − ṽ) c2(ũ, ṽ)
)

, (84)

where ci(u, v) is the characteristic function of Ni. Equation
(84) can be used, for instance, to calculate the character-
istic function of the map N ◦ C, where C is the nonideal
codestate map from the previous paragraph.

To calculate the logical noise map, we first apply N to
an ideal codestate via the equation

N (|ψ , 0〉 〈ψ , 0|) =
∫∫

R2n
d2nu d2nv c(u, v) |ψ , u〉 〈ψ , v| ,

(85)

where we have omitted the (
, d) label of the stabilizer
states to save space. We can see Eq. (85) holds from the
definition of stabilizer states as displaced ideal codestates
[Eq. (47)]. Moreover, Eq. (85) can be applied to an arbi-
trary ideal encoded density matrix ρ̂ ⊗G |0〉 〈0| using the
linearity of N .

The use of stabilizer states on the right-hand side of Eq.
(85) is necessary due to the domain of integration R

2n.
Therefore, to write Eq. (85) in terms of the subsystem
decomposition ⊗G , we must apply the boundary conditions
Eq. (51), giving

N (
ρ̂ ⊗G |0〉 〈0|) =

∑

s,t∈Z2n

∫∫

P
d2nu d2nv

×
(

cs,t(u, v)P̂d(s)ρ̂P̂d(t)† ⊗G |u〉 〈v|
)

, (86)

where P̂d(s) is a Pauli operator defined in Eq. (31), and

cs,t(u, v) = c
(

u + �̄(s), v + �̄(t)
)

eiπ(uT	�̄(s)−vT	�̄(t)),

(87)

with �̄(s) = ∑2n
J=1 sJ m̄J . Note that applying the boundary

conditions has introduced logical Pauli operators on the
logical subsystem, altering the logical information stored
in the state.

Finally, we obtain the logical noise map by taking the
partial trace over the stabilizer subsystem, giving

NL(ρ̂) =
∑

s,t∈Z2n

(∫

P
d2nv cs,t(v, v)

)
P̂d(s)ρ̂P̂d(t)†. (88)

In order to evaluate the logical noise map Eq. (88) in
practice, we need to truncate the infinite series over s, t.
This truncation is possible if the modulus of the char-
acteristic function |c(u, v)| goes to 0 sufficiently fast as
|u|, |v| → ∞. Indeed, in some cases this property does not
hold, for example, in the unphysical scenario of apply-
ing pure loss to an ideal codestate, and in these cases our
method cannot be applied in practice. However, in all the
other examples we consider, |c(u, v)| decays to 0 exponen-
tially as |u|, |v| → ∞, and we find that a truncation of each

010331-18

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

component of s, t to −1, 0, 1 is sufficient to achieve accu-
rate results in almost all regimes of interest, as discussed
in more detail later in this section. In the case of the square
GKP code, the integrals in Eq. (88) can often be analyt-
ically evaluated due to the Cartesian product structure of
the square Voronoi cell Vsq [Eq. (56)]. However, for sub-
system decompositions with more complicated primitive
cells P , the integrals must be evaluated numerically. In this
work we consider only square GKP codes for simplicity.

With the logical noise map, one can then directly extract
quantities such as the average gate fidelity, which is
defined as [45]

F(E) =
∫

dψ 〈ψ |E(|ψ〉 〈ψ |)|ψ〉 (89)

for a quantum channel E acting on a discrete-variable
Hilbert space Hd, where the integral is over the uniform
measure dψ in state space. In practice this is most easily
calculated via the entanglement fidelity

Fe(E) = 〈ME|(I ⊗ E)(|ME〉 〈ME|)|ME〉 , (90)

where |ME〉 ∈ Hd ⊗ Hd is a maximally entangled state,
and I is the identity quantum channel acting on L(Hd).
Then, we can use the relationship [45]

F(E) = dFe(E)+ 1
d + 1

, (91)

where d = d1 × d2 × · · · × dn is the dimension of the
Hilbert space Hd. We note that in order to calculate the
average gate fidelity, the logical noise map (and, equiva-
lently, the noise map itself) must be CPTP.

Here we comment that the methods described above
reflect the logical information one would obtain using ideal
error correction, which is not possible in practice since it
requires the use of ideal codestates. While we do not quan-
titatively model the more realistic case of error correction
with approximate codestates, we briefly discuss the quali-
tative effect that this would have on our subsequent results.
For small enough�, one can approximately model the use
of approximate codestates and inefficient homodyne detec-
tion in a teleportation-based error-correction scheme as
applying a Gaussian random-displacement channel imme-
diately before and after a round of ideal error correction,
see, for example, Appendix F of Ref. [46]. To approxi-
mately model the effect of approximate error correction,
we can simply postcompose the noise map N consid-
ered above with the an appropriate Gaussian random-
displacement channel. Such a modification would reduce
the fidelity of the resulting logical channel and introduce
more errors. However, the qualitative features described
below, such as the presence of a global minimum in the

infidelity, should not be affected since the stochastic dis-
placement errors add only decoherently to the noise map
N .

To summarize, if one wishes to calculate the logical
noise map corresponding to applying a noise map N
on some nonideal GKP codewords, one can follow the
following steps:

(a) First, determine the map C that maps ideal
codestates to nonideal codestates.

(b) Then, calculate the characteristic function of the
combined map N ◦ C [Appendix F and Eq. (84)].

(c) Finally, substitute this into Eq. (88) by truncating the
infinite sums.

These are the steps that we follow for the square GKP
code in the remainder of this section. We start by look-
ing at nonideal codestates defined by the envelope operator
in Sec. VII B, and follow this by applying the loss (Sec.
VII C), Gaussian random displacement (Sec. V B), and
white-noise dephasing (Sec. VII E) noise channels to the
codestates.

B. Envelope operator

We define approximate GKP codewords as

|ψ̄�〉 ∝ e−�2â†â |ψ̄〉 , (92)

where � quantifies the quality of the approximate code-
words, and the constant of proportionality is defined such
that |ψ̄�〉 is normalized. � is also commonly quoted in
decibels as �dB = −10 log10(�

2). We call the nonunitary
operator e−�2â†â the envelope operator, and we define
the envelope map as E = J [e−�2â†â], where J [Ô](ρ̂) =
Ôρ̂Ô†.

Since the envelope operator is nonunitary, the envelope
map E is not trace preserving. Moreover, the map that takes
ideal codestates to normalized approximate codestates
is not linear. To solve these problems, we apply an
orthonormalization procedure (described in Appendix G)
to the approximate codewords |ψ̄�〉 �→ |ψ̄�,o〉 such that the
orthonormalized encoding map E�o is CPTP. The orthonor-
malization has a vanishingly small effect on the approxi-
mate codestates themselves as � → 0. Conveniently, we
can calculate the orthonormalized CPTP logical noise map
E�L,o from the non-trace-preserving logical noise map E�L
after we have applied the steps in Sec. VII A.

The envelope map has characteristic function
(Appendix F)

c�E (u, v) ∝ exp
(
−π

2
coth

(
�2/2

) (|u|2 + |v|2)
)

, (93)

where we have omitted the constant of proportionality
since the codewords are going to be orthonormalized any-
way. Importantly, since the characteristic function Eq. (93)

010331-19

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

decreases exponentially as |u|, |v| → ∞, we can truncate
the sum in Eq. (88) to numerically obtain the logical enve-
lope map E�L . Moreover, each integral in Eq. (88) can
be evaluated analytically for the square GKP code (see
Appendix C). Then, we apply the orthonormalization pro-
cedure in Appendix G to obtain a CPTP map E�L,o. Finally,
we can calculate the average gate fidelity of E�L,o using Eqs.
(90) and (91). This average gate fidelity is plotted in the
γ = 0 curve of Fig. 5(a). Since c�E (u, v) becomes sharper
around the origin as � → 0, this method becomes more
accurate and less computationally expensive as the approx-
imation becomes more ideal. Indeed, our technique easily
enables the simulation of highly squeezed states, and in
principle there is no limit to the squeezing one could sim-
ulate (see Sec. H). Our result is similar in spirit to those
of Ref. [47], where it is shown that circuits that are effi-
ciently simulatable by classical computers with ideal |0̄〉
states as input states are universal for quantum computing
with approximate states as input, and the resourcefulness
of the approximate states increases as � increases.

Let us briefly comment on the accuracy of the truncation
of the infinite sum Eq. (88). To do this, we take the largest
value of � that we used in our simulations (� ≈ 0.94,
n̄ ≈ 0.56, �dB ≈ 3.1) and compare the average gate infi-
delity across different levels of truncation. In particular, we
truncate the absolute value of each component of s, t to be
less than or equal to some integer smax. We find that the
relative error

|F(smax = 2)− F(smax = 1)|
1 − F(smax = 2)

(94)

between the calculated average gate infidelities for smax =
1 and 2 is only 7 × 10−4, and the relative error between
smax = 2 and 3 is only 4 × 10−9. Moreover, these rela-
tive errors should decrease as � becomes smaller and the
codestates become more ideal. These results show that
the sum Eq. (88) converges extremely rapidly even for
large �, allowing smax to be set to 1 for all our remaining
calculations.

C. Pure loss

We define loss from the Kraus operators

Lγ (ρ̂) =
∞∑

j =0

L̂γj ρ̂L̂γ †
j , (95a)

L̂γj =
(

γ

1 − γ

)j /2 âj

√
j !
(1 − γ)n̂/2, (95b)

with characteristic function (Appendix F)

cγL(u, v) ∝ exp
(

− π

2
(1 + √

1 − γ)2

γ

× (|u − v|2 + 2iuT	v
))

. (96)

Here, γ = 1 − e−κt represents the amount of loss applied
to a system evolving under the master equation

˙̂ρ = κD[â]ρ̂ (97)

for some time t, where D[â]ρ̂ = âρ̂â† − 1
2 {â†â, ρ̂} is the

Lindblad dissipator and {A, B} = AB + BA is the anticom-
mutator.

Simulating loss acting directly on ideal GKP codestates
using our method is not possible since the modulus
|cγL(u, v)| is constant for u = v, even as |u| → ∞. Instead,
we simulate loss acting on approximate codestates by
considering a composition of maps Lγ ◦ E�, whose char-
acteristic function can be determined from Eq. (84). Again,
we calculate the logical map by truncating the infinite
series Eq. (88), and we must orthonormalize the codewords
using Appendix G, resulting in the orthonormalized logical
map (Lγ ◦ E�)L,o.

We plot the average gate fidelity of (Lγ ◦ E�)L,o for the
square GKP code in Fig. 5, and compare it to the average
gate fidelity of loss acting on the trivial Fock encoding,
{|0〉 , |1〉}, which represents the break-even point of the
code. We find that for any fixed loss rate γ , there is an
optimal � that maximizes the average gate fidelity. One
can understand this intuitively by noting that loss has a
larger effect on states with a large photon number. Since the
average photon number of an approximate GKP codestate
is given approximately by 〈â†â〉 ≈ 1/(2�2)− 1/2 [48], as
the GKP codestate becomes more ideal, the noise due to
E� decreases while the noise due to Lγ increases, giving
rise to a cross-over point, which represents the optimal �
that protects against the loss. As previously mentioned, we
expect that these results would hold qualitatively (if not
quantitatively) in the more realistic case of error correction
with approximate codestates.

Based on experimental parameters used in a recent paper
that produced GKP Pauli eigenstates [15], we can obtain
a rough, order-of-magnitude estimate of the loss rates we
might expect in near-term GKP experiments. Given a cav-
ity lifetime T1,c ∼ 600 µs, and an error-correction cycle
time of 6 µs, we can estimate the amount of loss we can
expect during an error correction cycle to be on the order of
γ ∼ 1%. At this loss rate, GKP codes perform very well,
and the optimal � is far beyond what is experimentally
feasible. Encouragingly, the square GKP code still outper-
forms the trivial encoding even for much larger amounts
of loss.

D. Gaussian displacements

Next, we consider a Gaussian random-displacement
noise model Gσ defined by its characteristic function

cσG(u, v) = σ−2 exp
(−π |u|2/σ 2) δ2(u − v). (98)

010331-20

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

0 10 20 30 40
n̄

10−6

10−4

10−2

100
av

er
ag

e
ga

te
in

fid
el

it
y

γ
=

0 γ = 2.5 %

γ = 5 %

γ = 10 %

loss
Gauss

4 810 12 14 16 18
ΔdB(a)

0 2% 4% 6% 8% 10%
γ = 1 − e−κt

10−6

10−4

10−2

100

av
er

ag
e

ga
te

in
fid

el
it
y

ΔdB = 6

ΔdB = 10

ΔdB
= 12

ΔdB
= 14

GKP
trivial

(b)

FIG. 5. Average gate infidelities of the logical noise channels corresponding to loss acting on approximate single-mode square GKP
qubit codestates (Lγ ◦ E�)L,o, and random Gaussian displacements acting on approximate GKP codestates (Gσ ◦ E�)L,o, where σ 2 =
γ /(1 − γ) is scaled such that the Gaussian displacement channel is equivalent to loss followed by a quantum limited amplification
via Eq. (100). (a) The average gate infidelities plotted as a function of �, where n̄ ≈ 1/(2�2)− 1/2 is the average photon number of
the approximate GKP encoded maximally mixed state. The γ = 0 curve represents the errors solely resulting from the approximate
GKP codestates. (b) Average gate fidelity of the loss channel as a function of γ ≈ κt, which represents the loss of logical information
as approximate GKP codestates evolve in time under loss. This is compared to the loss of logical information stored in a trivial Fock
encoding {|0〉 , |1〉} under the same loss channel.

Here, σ 2 = κGt represents the variance of random dis-
placements applied to a system evolving under the master
equation

˙̂ρ = κG
(D[â] + D[â†]

)
ρ̂ (99)

for some time t. The Gaussian random-displacement chan-
nel Gσ is equivalent to a loss channel Lγ followed by a
quantum limited amplification channel [49]

G
√
γ /(1−γ) = A1/(1−γ) ◦ Lγ , (100)

where the quantum limited amplification channel Ag(ρ̂)

is equivalent to the state ρ̂ evolving under the master
equation

˙̂ρ = κAD[â†]ρ̂ (101)

for some time t, where g = eκAt.
Using the same method as for loss, we calculate

the orthonormalized logical noise map for the Gaussian
random-displacement channel acting on approximate GKP
codewords, and plot the average gate fidelity in Fig. 5(a).
To compare loss to Gaussian random displacements, we
use the relationship σ 2 = γ /(1 − γ) from Eq. (100). For
equivalent values of σ and γ , Gσ introduces more noise
into the system than Lγ in the region of small �dB and γ .
However, the infidelity of Gσ becomes smaller than that
of Lγ at large values of �dB or γ , reflecting the fact that
cσG(u, v) tends to 0 as |u|, |v| → ∞ even when acting on
ideal codestates.

We again comment briefly on the accuracy of the trunca-
tion of Eq. (88). The data point with the highest infidelity

in Fig. 5 corresponds to a Gaussian random-displacement
channel with variance σ 2 = 0.1/(1 − 0.1) ≈ 0.11 applied
to a GKP codestate with very large� (� ≈ 0.94, n̄ ≈ 0.56,
�dB ≈ 3.1). Considering different truncations smax as in
Eq. (94), we find that the relative error in the average gate
infidelities for this � and σ 2 between smax = 1 and 2 is
2 × 10−3, and between smax = 2 and 3 is 2 × 10−7, indi-
cating that our truncation is still valid even for the channel
with the largest infidelity.

The consequences of our results for correcting GKP
codes against loss are interesting. In particular, in the
regime of large γ and large �dB, it is better to apply a
quantum limited amplification channel before performing
a standard round of GKP error correction, as discussed
in Ref. [49]. The fact that this scheme outperforms pure
loss followed by standard error correction is not neces-
sarily surprising, since the amplification is designed with
knowledge of the noise model acting on the system, while
standard error correction is not. However, loss without
amplification does outperform loss followed by amplifica-
tion in the small γ and small�dB regime that is likely to be
experimentally relevant. This result is consistent with the
results of Ref. [27].

E. White-noise dephasing

Finally, we conclude our numerical analysis by con-
sidering a white-noise dephasing channel, defined by its
continuous Kraus decomposition

Dσ (ρ̂) = 1√
2πσ 2

∫

R

dφ e−φ2/(2σ 2)eiφâ†âρ̂e−iφâ†â, (102)

010331-21

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

and with characteristic function (Appendix F)

cσD(u, v) = 1

4
√

2πσ 2

∫

R

dφ
e−φ2/(2σ 2)

sin2(φ/2)
e− iπ

2 cot
(
φ
2

)(
|u|2−|v|2

)
.

(103)

This time, σ 2 = κφt represents the amount of dephasing
applied to a system evolving under the master equation

˙̂ρ = κφD[â†â]ρ̂ (104)

for some time t. The term “white-noise” refers to the Gaus-
sian distribution of the Kraus operators, Eq. (102), which
is a simplification of general dephasing errors that can
occur in an experiment. Although our results should give
a general indication of the performance of GKP codes
against dephasing, typical experiments observe dephasing
with non-Gaussian, or colored, distributions.

Again, we calculate the orthonormalized logical noise
channel (Dσ ◦ E�)L,o as a function of both � and σ . In
the case of dephasing however, our result is not purely ana-
lytical as we perform the integral over φ arising from Eq.
(103) numerically. The average gate fidelity of the logical
noise channel is plotted in Fig. 6, and compared to pure
dephasing applied to the trivial Fock encoding {|0〉 , |1〉}.
For any given σ , we again find an optimal �, which cor-
rects against the dephasing, which we also expect to hold
qualitatively in the case of approximate error correction.
This can be understood intuitively by noting that dephasing
applies random rotations to a state in phase space. As� →
0, the approximate GKP codestate becomes more widely
distributed in phase space and is thus more vulnerable to
the effects of dephasing.

Comparing our results to the experimental data in Ref.
[15], we have Tφ ≈ 1 ms. At this rate, dephasing acting
over a time of 6 µs results in σ 2 ≈ 0.6%, although this
may be reduced if error correction can be performed faster
in the future. In contrast to loss, this amount of dephas-
ing severely affects GKP codestates, underperforming the
trivial encoding for all values of �. Indeed, for a GKP
squeezing of �dB = 10, one needs to be performing error
correction on a timescale of approximately 2 µs to achieve
an average gate infidelity of 10−3 even with state-of-the-
art dephasing rates. Moreover, to break even against a
pure-dephasing channel, one needs to be operating with a
squeezing of greater than �dB = 10 and a dephasing rate
less than 0.1%.

VIII. CONCLUSION

We began the paper by constructing the stabilizer sub-
system decomposition for the single-mode square GKP
qubit code in Sec. II, and discussing its key properties. In
Sec. III we introduced multimode GKP codes by describ-
ing the parameters (
, d) that specify the lattice generators

of a given GKP code. Then in Sec. IV, we introduced the
stabilizer subsystem decomposition H = L ⊗G S of the
CV Hilbert space into a logical and stabilizer subspace in
the general case. We showed that the partial trace trS cor-
responds to ideal decoding over the patch P , justifying our
use of the stabilizer subsystem decomposition over previ-
ously developed alternatives. We explored the properties
of the subsystem decomposition, and used three transfor-
mations (cell, Gaussian, and dimension transformations)
to connect states in the stabilizer subsystem decomposi-
tion to Zak states (Sec. V) and to describe logical Clifford
gates in our formalism (Sec. VI). Finally, in Sec. VII we
introduced a general method to calculate the logical effect
of various noise operators on GKP codes, which we then
used to analyze the envelope operator, pure-loss channels,
and Gaussian displacement channels in regimes that are
unreachable by Fock space simulations.

In Secs. VI and VII we provided a number of exciting
applications of the stabilizer subsystem decomposition to
implement logical gates and analyze the effects of noise.
However, there is significantly more work that must be
done to provide analysis that is useful for experiments.
In particular, one could incorporate other techniques from
the literature on fault tolerance, such as gate teleporta-
tion, subsystem codes [30], and gauge fixing [43], into the
GKP setting using our formalism. Furthermore, analyzing
more realistic noise sources such as colored dephasing,
Kerr nonlinearities, and approximate error correction is
required to model the dominant sources of errors in current
experiments. In particular, analyzing the dissipative GKP
error-correction schemes used in Ref. [12,50] in terms of
the subsystem decomposition may provide insights into
how the schemes work. We add that our formalism may
allow for more accurate simulations of concatenated GKP
codes using the logical action of noise channels and logical
gates defined by the stabilizer decomposition.

Finally, we note that our simulation methods rely on the
integration of characteristic functions over a cell P . In this
work, we were able to produce our results by evaluating
these integrals analytically over the single-mode square
GKP Voronoi cell. However, higher-dimensional integrals
over nonrectangular and/or multimode patches cannot be
evaluated analytically and thus require numerical integra-
tion, which may not scale favorably. As such, there is
still work that can be done to optimize the numerical
integration methods for multimode GKP codes.

ACKNOWLEDGMENTS

We acknowledge support from Australian Research
Council via the Centre of Excellence in Engineered Quan-
tum Systems (EQUS) Project No. CE170100009. M.H.S.
is also supported by an Australian Government Research
Training Program (RTP) Scholarship. M.H.S. would like
to thank Giacomo Pantaleoni, Ben Baragiola, and Nicolas

010331-22

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

0 5 10 15 20 25n̄

10−6

10−4

10−2

100
av

er
ag

e
ga

te
in

fid
el

it
y

σ 2
=

0

σ2 = 0.025 %

σ2 = 0.1 %
σ2 = 0.5 %

4 8 10 12 14 16
ΔdB(a)

0 0.05% 0.1% 0.15% 0.2%
σ2 = κφt

10−6

10−4

10−2

100

av
er

ag
e

ga
te

in
fid

el
it
y

ΔdB = 6

ΔdB = 10

ΔdB = 12
ΔdB = 14 GKP

trivial

(b)

FIG. 6. Average gate infidelities of the logical noise channels corresponding to dephasing acting on approximate single-mode square
GKP qubit codestates (Dσ ◦ E�)L,o. (a) The average gate infidelities plotted as a function of �, where n̄ ≈ 1/(2�2)− 1/2 is the
average photon number of the approximate GKP encoded maximally mixed state. (b) Average gate infidelities as a function of σ 2 =
κφ t, which represents the loss of logical information as approximate GKP codestates evolve in time under dephasing. This is compared
to the loss of logical information stored in a trivial Fock encoding {|0〉 , |1〉} under the same pure-dephasing channel.

Menicucci for their discussions about subsystem decom-
positions and the Zak basis. A.L.G. is supported by the
Australian Research Council, through an Discovery Early
Career Research Award Project No. DE190100380. We
acknowledge the traditional owners of the land on which
this work was undertaken at the University of Sydney, the
Gadigal people of the Eora Nation.

APPENDIX A: COMPARISON TO REF. [18]

In this Appendix we briefly compare the stabilizer sub-
system decomposition to the modular subsystem decom-
position [18], for the single-mode square qubit GKP code
Gsq = (I2, (2),Vsq) [Eq. (56)]. We show that the stabilizer
subsystem decomposition is not equivalent to the decom-
position of Ref. [18] by explicitly decomposing example
states and operators into each subsystem decomposition.
We also show explicitly the different choices of phase in
the definitions of each decomposition in the Zak basis,
which lead to their different properties. Since the stabilizer
subsystem decomposition is designed to describe ideal
GKP codes, one way to view the decompositions of Ref.
[18] is that it defines a bosonic code that shares the same
ideal codespace as the GKP code, but where the partial-
trace operation represents a nonideal error-correction pro-
cedure.

In order to define a modular subsystem decomposition
following Ref. [18], one must choose a quadrature in which
to decompose the Hilbert space H. We choose the position
basis for this purpose and refer to this decomposition as the
modular-position subsystem decomposition (Q). Any real
number x can be decomposed into a sum

x = √
π(2s + μ)+ r, (A1)

where s ∈ Z, μ ∈ Z2, and r ∈ (−√
π/2,

√
π/2]. Introduc-

ing the modular notation: x = a�x�a + {x}a, where �x�a ∈

Z and {x}a ∈ (−a/2, a/2], we can write r = {x}√π , s =⌊�x�√
π

⌉
2 and μ = {�x�√

π

}
2. Then, the modular-position

subsystem decomposition is defined on the position eigen-
states as

|x〉q = |μ〉 ⊗Q |√πs + r〉q , (A2)

where we use the subscript q on the nonlogical “gauge”
mode to signify that the state is a position eigenstate of the
gauge mode.

Due to this choice, the position and momentum quadra-
tures are not treated symmetrically, resulting in a number
of undesirable properties in the subsystem decomposi-
tion. To make our point explicit, let us give two concrete
examples demonstrating the asymmetries of the modular-
position subsystem decomposition. First, the modular-
position subsystem decomposition treats the position and
momentum quadratures asymmetrically, and as such the
Fourier transform operator eiπ â†â/2 does not have a neat
decomposition over the subsystem. In contrast, we recall
that the Fourier transform operator can be written in
the stabilizer subsystem decomposition as a product of
operators acting on L and S as

eiπ â†â/2 = Ĥ ⊗sq R̂(π/2), (27)

where R̂(π/2) |k1, k2〉 = |k1, −k2〉 rotates the vector (k1, k2)

by an angle π/2 anticlockwise.
Second, we take the partial trace of the two CV states

|φ±〉 =
(
|0〉q + |±√

π〉q

)
/
√

2 (see Table I). These states
are chosen to reveal an asymmetry between left and right
displacements in position in the modular-position subsys-
tem decomposition, since the partial trace results in a pure
final state |+〉 〈+| for |φ+〉 but the maximally mixed state
ρ̂ = Î/2 for |φ−〉. In contrast, the stabilizer subsystem

010331-23

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

TABLE I. The partial trace of the states |φ±〉 =
1√
2

(
|0〉q + |±√

π〉q

)
in the square single-mode stabilizer

and modular-position subsystem decompositions. The stabilizer
subsystem decomposition gives the same result for both states,
while the modular-position subsystem decomposition gives
different results, revealing an asymmetry in superpositions of
left and right displacements of the position eigenstates.

CV state Stabilizer partial trace Mod-q partial trace

|φ+〉 1
2 Î + 1

π
X̂ 1

2 (Î + X̂)
|φ−〉 1

2 Î + 1
π

X̂ 1
2 Î

decomposition gives the same logical state for both CV
states.

Now we turn our attention to the Zak basis representa-
tion of each decomposition. Recall our definition of a =√

2 Zak states

|k1, k2〉√2 = 4√4πeiπk1k2
∑
s∈Z

e2
√

2iπk2s |
√

2πk1 + 2
√
πs〉q

(8′)

for k1, k2 ∈ R. The set of states |k1, k2〉√2 restricted to k1 ∈(−2−3/2, 3 × 2−3/2
]

, k2 ∈ (−2−3/2, 2−3/2
]

forms a basis.
Next, recall the Zak representation of the Gsq decompo-
sition:

|μ〉 ⊗ |k1, k2〉 = eiπμk2/
√

2 |k1 + μ/
√

2, k2〉√2 (15′)

for μ = 0, 1 and k1, k2 ∈ (−2−3/2, 2−3/2
]
.

In recent work [23], a similar equation was developed
for the modular-position subsystem decomposition. Here
we provide a similar derivation using our notation in order
to directly compare the two decompositions. One can see
from the definition in Eq. (A2) that for any gauge mode
state |φ〉 we have

Ŵ
(

1/
√

2, 0
)

|0〉 ⊗Q |φ〉 = |1〉 ⊗Q |φ〉 . (A3)

Next, consider the “left half” of the Zak basis states
|k1, k2〉√2 for which k1 ≤ 2−3/2. These states have sup-
port only on position eigenstates |x〉q with μ = 0
in Eq. (A1), and thus can be decomposed into a
state |0〉 ⊗Q |φ〉. We can then choose a Zak basis{|k1, k2〉ζ

∣∣ k1, k2 ∈ (−2−3/2, 2−3/2]
}

of the gauge mode
such that

|0〉 ⊗Q |k1, k2〉ζ = |k1, k2〉√2 = |0〉 ⊗ |k1, k2〉 , (A4)

where the last ⊗ is across the stabilizer subsystem decom-
position. Now, we can apply Eq. (A3) to find

|1〉 ⊗Q |k1, k2〉ζ = e−iπk2/
√

2 |k1 + 1/
√

2, k2〉√2 , (A5)

which differs from the equivalent equation for the stabi-
lizer subsystem decomposition Eq. (15′) only by a e−√

2iπk2

phase. This in turn can be viewed as applying a k2-
dependent Z-axis rotation of the logical Bloch sphere, thus
altering the properties of the partial-trace operation. It is
because of this phase that the stabilizer subsystem decom-
position can be seen as a “rephasing” of the modular-
position subsystem decomposition, which symmetrizes the
treatment of the position and momentum quadratures. This
result is consistent with recent work done in Ref. [23].

APPENDIX B: BINNED QUADRATURE
MEASUREMENTS AND LOGICAL STATE

TOMOGRAPHY

In this Appendix we discuss the subsystem decompo-
sition of binned quadrature measurements (Sec. B 1), and
the relationship between ideal decoding (as defined in Sec.
III C) and logical state tomography using binned quadra-
ture measurements (binned LST), a procedure we define in
Sec. B 2. We show that binned quadrature measurements
do not correspond to measurements of the logical subsys-
tem Pauli operators; and, moreover, that binned quadrature
measurement operators do not decompose as tensor prod-
ucts in the stabilizer subsystem. Then, we show that binned
LST corresponds to a decoding procedure that is more
prone to errors, and defines a map that is not CPTP.
Throughout this Appendix we will consider only single-
mode qubit codes so that G = (
, (2),P) and the logical
Pauli operators are given by

X̄ = e−i
√
π p̄ , Ȳ = ei

√
π(q̄−p̄), Z̄ = ei

√
π q̄, (B1)

in terms of the logical modes ξ̄ =
−1ξ̂ [see Eqs. (41) and
(42)].

1. Binned quadrature measurements

We begin by defining a binned operator B(Û) for any
unitary operator Û as follows. Given the spectral decom-
position of the unitary operator

Û =
∑
λ∈L

eiθλ |λ〉 〈λ| (B2)

with θλ ∈ (−π/2, 3π/2], we define the binned operator

B(Û) =
∑
λ∈L+

|λ〉 〈λ| −
∑
λ∈L−

|λ〉 〈λ| , (B3)

where L+ = {λ | θλ ∈ (−π/2,π/2]} and L− = {λ | θλ ∈
(π/2, 3π/2]}. In words, the binned operator B(Û) shares
the same eigenstates {|λ〉} as Û, but the complex eigenval-
ues of Û are rounded to +1 if their real part is positive
and −1 if their real part is negative. Note that B(Û) is both
unitary and Hermitian for any unitary Û.

We define binned quadrature measurements as follows.
For a binned Pauli X̄ measurement:

010331-24

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

(a) First, measure the logical quadrature p̄ .
(b) Then, round the result to the nearest multiple of

√
π .

(c) If the rounded result is even, assign a +1-
measurement outcome to the X̄ measurement; and
if it is odd, assign a −1-measurement outcome.

Binned Ȳ and Z̄ measurements are similarly defined by
replacing p̄ with (q̄ − p̄) and q̄, respectively. With this
definition, a binned quadrature measurement for X̄ is
equivalent to a measurement of the Hermitian operator
B(X̄), and likewise for Ȳ and Z̄.

Now consider the action of B(X̄) on a subsystem basis
state |ψ〉 ⊗G |k〉. From Eq. (60), X̄ acts on the stabilizer
states as

X̄ (|ψ〉 ⊗G |k〉) = X̂ |ψ〉 ⊗G e2iπ kT	m̄1 |k〉 . (B4)

Since X̂ has eigenvalues ±1, the action of B(X̄) on the
state is determined by whether the real part of e2iπ kT	m̄1 is
positive or negative. In particular, we can write the action
of B(X̄) as

B(X̄) (|ψ〉 ⊗G |k〉)

=
⎧⎨
⎩

(
X̂ |ψ〉

)
⊗G |k〉 , {kT	m̄1}1 ∈ (− 1

4 , 1
4

]
,

(
−X̂ |ψ〉

)
⊗G |k〉 , else,

(B5)

where {x}1 ∈ (−1/2, 1/2] is the remainder of x modulo
1. Similar results can be obtained for B(Ȳ) and B(Z̄) by
replacing m̄1 with (m̄1 + m̄2) and m̄2, respectively.

The significance of Eq. (B5) is that the remainder
{kT	m̄1}1 [or the equivalent remainders for B(Ȳ) and
B(Z̄)] is not always between −1/4 and 1/4, even when k is
in the Voronoi cell of the dual lattice. As an example, con-
sider the square GKP code Gsq = (I2, (2),Vsq) [Eq. (56)].
Then, the symplectic products that determine the binned
logical operators simplify to

kT	m̄1 = −k2/
√

2, (B6a)

kT	(m̄1 + m̄2) = (k1 − k2)/
√

2, (B6b)

kT	m̄2 = k1/
√

2. (B6c)

Since the square Voronoi cell Vsq enforces k1, k2 ∈
(−2−3/2, 2−3/2], Eqs. (B6a) and (B6c) are guaranteed to
be between −1/4 and 1/4. As a result, the binned oper-
ators B(X̄sq) and B(Z̄sq) act as product operators X̂ ⊗ Î and
Ẑ ⊗ Î , since the second condition in the right-hand side of
Eq. (B5) is never satisfied. In contrast, there are values of

(a) (b)

FIG. 7. (a) Action of the binned logical Y operator B(Ȳsq)

on the square GKP qubit subsystem decomposition. Subsystem
basis states in the unshaded subsystem satisfy (k1 − k2)/

√
2 ∈

(−1/4, 1/4], and thus B(Ȳsq) acts as Ŷ ⊗ Î on these states. For
subsystem basis states in the shaded regions (k1 − k2)/

√
2 lies

outside (−1/4, 1/4] and B(Ȳsq) acts as −Ŷ ⊗ Î on these regions.

The displacement Ŵ
(

[−1, 1]T/(4
√

2)
)

(depicted by the arrow)
is the (equal) shortest displacement that causes a change in the
logical measurement outcome. (b) Action of the binned logical
Pauli operators B(P̄hex) on the hexagonal GKP qubit subsys-
tem decomposition (for P = X , Y, Z). Each binned Pauli operator
B(P̄hex) acts as −P̂ ⊗ Î in the corresponding shaded regions, and
as P̂ ⊗ Î elsewhere.

k1 and k2 inside the Voronoi cell for which Eq. (B6b) is out-
side the range (−1/4, 1/4], for example k1 = −1/(3

√
2),

k2 = 1/(3
√

2). In this region, B(Ȳsq) acts as −Ŷ ⊗ Î on
subsystem basis states as shown in Fig. 7(a).

Alternatively, one can understand this result as a con-
sequence of the logical phase gate S̄sq not being a tensor-
product operator. Since S̄sq maps −p̂ �→ q̂ − p̂ , we have
B(Ȳsq) = S̄sqB(X̄sq)S̄

†
sq. From Eq. (29) and using B(X̄sq) =

X̂ ⊗ Î , one can quickly show that B(Ȳsq) is not a tensor-
product operator in the subsystem decomposition, in agree-
ment with our direct calculation above.

Repeating the calculations in Eq. (B5) for the hexago-
nal GKP code reveals that none of the binned operators
B(X̄hex), B(Ȳhex), B(Z̄hex) are product operators, and there
are regions of the Voronoi cell in which each of them act
as negative Pauli operators, as shown in Fig. 7(b).

2. Logical state tomography with binned quadrature
measurements

A natural way to define a decoder is to use the binned
quadrature measurements to define a logical-state tomog-
raphy decoder that we label binned LST. For a CV state
ρ̂ ∈ L(H), the binned-LST decoder is defined by the map

ρ̂ �→ 1
2

(
Î + tr

(
B(X̄)ρ̂

)
X̂ + tr

(
B(Ȳ)ρ̂

)
Ŷ + tr

(
B(Z̄)ρ̂

)
Ẑ
)
,

(B7)

010331-25

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

which is identical to the logical state one would obtain by
running a tomography experiment on the CV state using
the binned Pauli measurements.

Since the binned measurement operators are not tensor-
product operators in the subsystem decomposition, Eq.
(B7) is not equivalent to taking the partial trace over the
stabilizer subsystem. Instead, the partial trace itself can be
recovered by replacing the binned measurement operators
B(P̄) with ideal measurement operators P̄m = P̂ ⊗G Î for
P = X , Y, Z.

There are two consequences of this discrepancy between
the binned-LST and subsystem decomposition decoders.
First, for the square GKP code, if one starts in an ideal
codestate |ψ〉 ⊗ |0〉, the (nonunique) shortest displace-
ment that alters the binned-LST decoded state is Ŵmin =
Ŵ
(

[−1, 1]T/(4
√

2)
)

with length 1/4, see Fig. 7(a). In con-
trast, the shortest displacement that causes an error in the
subsystem decomposition has length 1/(2

√
2). This reduc-

tion in distance is not unique for the square code and is also
the case for the hexagonal code, as shown in Fig. 7(b).

Second, the logical error caused by Ŵmin to the binned-
LST decoded state is given by X̂ �→ X̂ , Ŷ �→ −Ŷ, Ẑ �→ Ẑ.
In terms of density matrices, this is a transpose map, a well-
known example of a positive but not completely positive
map. Recall that a map N is positive if it maps positive
operators to positive operators, and is completely positive
if I ⊗ N is positive where I is the identity map (acting on
a Hilbert space of any dimension).

To see an example of a positive density operator being
mapped to a negative operator under the binned-LST
decoding map we must therefore consider an initial state in
a composite Hilbert space, which we choose for simplicity
to be between a qubit space and a CV space C

2 ⊗ H. We
consider the initial Bell-like state

|φ〉 = 1√
2
(|0〉 ⊗ (|0〉 ⊗G |v0〉)+ |1〉 ⊗ (|1〉 ⊗G |v0〉))

∈ C
2 ⊗ H = C

2 ⊗ (C2 ⊗G S), (B8)

where v0 = [−1, 1]T/(3
√

2) is in the shaded region of Fig.
7(a), and the unlabeled tensor product ⊗ is the tensor
product between the C

2 qubit space and the CV space H
while the labeled tensor product ⊗G is the tensor product
between the square GKP logical subsystem C

2 and stabi-
lizer subsystem S of the CV space H. The initial density
operator can be equivalently written as

|φ〉 〈φ| = 1
2

⎡
⎢⎣

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎦⊗G |v0〉 〈v0|

∈ L(C4)⊗G L(S) ∼= L(C2 ⊗ H), (B9)

where we have represented the qubit state and the logical
state of the CV mode together in the matrix.

Next, we perform binned LST on the CV space while
leaving the qubit state invariant. Since the binned-LST
decoder maps the CV Hilbert space H to a qubit space C

2,
the initial density matrix |φ〉 〈φ| ∈ L(C2 ⊗ H) is mapped
to a two-qubit operator Ô ∈ L(C4). Since v0 is in the
shaded region of Fig. 7(a), performing logical tomography
maps Ŷ �→ −Ŷ on the logical subsystem of H, while leav-
ing the remaining logical subsystem Pauli operators and
qubit Pauli operators invariant. This is equivalent to taking
the transpose of each 2 × 2 block of the matrix in Eq. (B9).
The final operator

Ô = 1
2

⎡
⎢⎢⎢⎣

(
1 0
0 0

)
T

(
0 1
0 0

)
T

(
0 0
1 0

)
T

(
0 0
0 1

)
T

⎤
⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

(B10)

has a −1 eigenvector [0, 1, −1, 0]T, and thus Ô is not posi-
tive and cannot represent a physical state. Since the tensor
product of binned LST with the identity map has mapped
a positive density operator |φ〉 〈φ| to a nonpositive opera-
tor Ô, binned LST is not a completely positive map. We
note that this example is in essence the same as the well-
known example that demonstrates the transpose map is not
completely positive.

To conclude this section, we note that the binned-LST
map can be tweaked to be made CPTP by replacing
the binned Pauli operators B(P̄) with ideal Pauli mea-
surement operators P̂m = P̂ ⊗G Î . These operators can be
measured by applying a round of ideal error correction
(which guarantees k = 0) followed by a standard binned
Pauli measurement. Logical-state tomography using these
operators would, by definition, be equivalent to the partial-
trace operation over the stabilizer subsystem. However, we
note that such ideal measurements are not possible in prac-
tice since they involve the preparation of an ideal GKP
codestate to perform ideal error correction.

APPENDIX C: ANALYTICAL FORMULA FOR
THE PARTIAL TRACE OF APPROXIMATE

SQUARE GKP STATE

In this Appendix we write the explicit analytical formula
for the partial trace of a square approximate GKP codestate
|ψ̄�〉 ∝ e−�2â†â |ψ̄〉, as discussed in Sec. II. We start with
the square subsystem decomposition of the approximate

010331-26

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

codestate

|ψ̄�〉 ∝
∑

s∈Z2

P̂(s) |ψ〉 ⊗
∫

V
d2v e

− π
2 coth

(
�2
2

)
|v+s/

√
2|2

eiπvT	s/
√

2 |v〉 , (21)

where P̂(s) = eiπs1s2/2X̂ s1 Ẑs2 , V = (−2−3/2, 2−3/2]2, and
we have written |v〉 = |v1, v2〉. We calculate the partial
trace by first writing the density operator

|ψ̄�〉 〈ψ̄�| ∝
∑

s,t∈Z2

P̂(s) |ψ〉 〈ψ | P̂(t)

⊗
∫∫

V
d2vd2w f�(v, s)f�(w, t)∗ |v〉 〈w| , (C1)

where we have written

f�(v, s) = e
− π

2 coth
(
�2
2

)
|v+s/

√
2|2

eiπvT	s/
√

2. (C2)

Then, the partial trace is given by

trS
(|ψ̄�〉 〈ψ̄�|) ∝

∑

s,t∈Z2

I�s,tP̂(s) |ψ〉 〈ψ | P̂(t), (22)

where the coefficients Is,t are

I�s,t =
∫

V
d2v f�(v, s)f�(v, t)∗ (C3)

= 1
4

tanh
(
�2

2

)
exp

(
−π

4
coth(�2)|s − t|2 + i

π

2
sT	t

)

× (g�(s1 + t1 − 1, t2 − s2)− g�(s1 + t1 + 1, t2 − s2))

× (g�(s2 + t2 − 1, s1 − t1)− g�(s2 + t2 + 1, s1 − t1)),
(C4)

where

g�(x, y) = erf
(√

π

8

(
x
√

coth(�2/2)+ iy
√

tanh(�2/2)
))

.

(C5)

We use this expression to produce Fig. 2, which shows
the location of the partial-trace approximate codestate on
the Bloch sphere, by truncating the sum in Eq. (22) to
s1, s2, t1, t2 = −2, −1, 0, 1, 2. We also note that similar ana-
lytical expressions can be obtained for the logical noise
channels considered in Secs. VII B–VII D, although these
expressions are best obtained using a symbolic package
such as Mathematica.

APPENDIX D: EXAMPLE: n-MODE REPETITION
CODE

For illustrative purposes, in this Appendix we present
the stabilizer subsystem decomposition of the n-mode rect-
angular GKP-repetition qubit code (which we simply refer
to as the GKP-repetition code). We describe the structure
of the GKP lattice �rep and dual lattice �̄rep, and their
relationship to the parameters (
rep, drep). We focus on the
three-mode GKP-repetition code since each of the lattices
and primitive cells is a direct sum of two 3D lattices in the
position and momentum quadratures, allowing for conve-
nient visualization. We present the Voronoi cell of �̄rep,
and describe the cell transformation between the Voronoi
cell of the GKP-repetition code and the primitive cell that
corresponds to a “concatenated” decoder, and find that the
Voronoi cell has an improved distance compared to the
concatenated decoding cell. Moreover, the GKP-repetition
code can be tuned such that the distance in position and in
momentum is the same, symmetrizing the effect of noise
on the code. Although we are not suggesting that quan-
tum computing with the GKP-repetition code is an optimal
strategy (see Ref. [36,38] for other multimode GKP codes),
it does provide a neat illustration of how the bosonic nature
of multimode GKP codes can be leveraged to enhance
GKP-qubit code concatenations.

The GKP-repetition code is defined as follows. We start
with the single-mode rectangular GKP qubit code Grect,
which has stabilizer generators Ŝ1 = Ŵ(

√
2α, 0) and Ŝ2 =

Ŵ(0,
√

2/α), and parameters

Grect = (diag(α, 1/α), (2),Vrect) , (D1a)

Vrect = (−α × 2−3/2,α × 2−3/2]× (−2−3/2/α, 2−3/2/α
]

,
(D1b)

for α > 0. Then, we obtain the GKP-repetition code by
taking n copies of the Grep,α and promoting the operators
Z̄j Z̄j +1 to stabilizers, where we have written Z̄j for the log-
ical Z̄ operator of the j th mode. The GKP-repetition code
logical operators are given in terms of the rectangular GKP
logical operators by X̄rep = X̄1X̄2 . . . X̄n and Z̄rep = Z̄1.

There are many ways to obtain the parameters
(
rep, drep) of the GKP-repetition code, but one convenient
way is via the encoding circuit in Fig. 8. Here, we have
set n = 3 for convenience, although our results general-
ize to arbitrary n. In this circuit, we start with a square
GKP qubit codestate |ψ̄〉sq in the first mode, and square
GKP qubit zero states |0̄〉sq on the second and third modes.
The square GKP zero states can equivalently be seen as
qunaught states of a rectangular α = √

2 GKP qunaught
code. Next, we apply the Gaussian operator

Ûrect = exp
(

− ilnα
2
(
q̂p̂ + p̂ q̂

))
, Srect = diag(α, 1/α),

(D2)

010331-27

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

|ψ̄〉sq Ûrect

|ψ̄〉rep|0̄〉sq Ûrect

|0̄〉sq Ûrect

FIG. 8. Encoding circuit for the three-mode GKP-repetition
code. The first mode is initialized in a square GKP qubit state
|ψ̄〉sq, while the second and third modes are initialized in the
square GKP 0 state |0̄〉sq. Then, each square GKP state is
squeezed via Ûrect, resulting in a rectangular GKP state. Finally,
the rectangular GKP codestates are encoded in a repetition code
via two logical controlled NOT gates, resulting in a three-mode
GKP-repetition codestate.

to each mode, where Srect is the symplectic matrix corre-
sponding to Ûrect. After applying Eq. (D2), each state is
encoded in a rectangular GKP qubit codestate given by
α. Finally, we apply logical controlled NOT gates between
first and second and the first and third modes, where each
logical controlled NOT gate is a Gaussian unitary given by

ÛCNOT = exp
(−iq̂ ⊗ p̂

)
, SCNOT =

⎡
⎢⎣

1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1

⎤
⎥⎦.

(D3)

By comparison with Fig. 3, we can take the product of the
symplectic matrices in the encoding circuit from the initial
square states, Eqs. (D2) and (D3) to obtain

rep =
[

q 0
0
p

]
, (D4a)

q = α

⎡
⎣

1 0 0
1

√
2 0

1 0
√

2

⎤
⎦ , (D4b)

p = 1
α

⎡
⎣

1 −1/
√

2 −1/
√

2
0 1/

√
2 0

0 0 1/
√

2

⎤
⎦ . (D4c)

The block-diagonal form of
rep represents the fact that
the GKP-repetition code is “CSS” in the sense that each
stabilizer generator translates either position quadratures
or momentum quadratures, but not both.

Since the GKP-repetition code encodes a single qubit,
we have drep = (2, 1, 1), which coincides with the dimen-
sions of the initial encoded states in Fig. 8. The GKP lattice

and dual-lattice generators are given by

mJ = d1/2
J (mod n) (
rep)J , m̄J = d−1/2

J (mod n) (
rep)J , (D5)

where (
rep)J is the J th column of
rep. Note that from
Eq. (39) we have

Ŵ(m̄1) = X̄rep, Ŵ(m̄4) = Z̄rep, (D6)

while the remaining displacements of dual-lattice gener-
ators Ŵ(m̄2) = Ŵ(m̄3) = Ŵ(m̄5) = Ŵ(m̄6) all represent
logical identity gates (i.e., stabilizers) since the qunaught
Pauli operators trivially equal X(1) = Z(1) = [1] by Eq.
(30).

Since the three-mode repetition code is CSS, we can
illustrate the GKP lattice �rep = �q ⊕�p and dual lattice
�̄rep = �̄q ⊕ �̄p in the position and momentum sectors as
3D lattices as shown in Fig. 9. �q is a cubic lattice with
spacing

√
2α, coinciding with the single-mode rectangular

GKP Ŝ1 stabilizers.�p is a face-centered cubic lattice with
spacing

√
2/α, where the cubic lattice points correspond to

single-mode rectangular GKP Ŝ2 stabilizers while the face-
centered lattice points correspond to stabilizers of the type
Z̄j Z̄j ′ . For the dual lattice, �̄p is a cubic lattice with spacing
1/(

√
2α) since the GKP-repetition code logical Z̄rep can

be implemented with a single-mode rectangular Z̄j on any
of the modes. Finally, �̄q is a body-centered cubic lattice
with spacing

√
2α where the body-centered lattice points

correspond to logical X̄ operators.
The Voronoi cell Vrep of the dual lattice �̄rep also has

a CSS structure and can be split into Voronoi cells Vq of
�̄q and Vp of �̄p . Since �̄p is a cubic lattice, Vp is a
cube with side length 1/(

√
2α), and thus the shortest dis-

placement that causes a logical error has length 1/(2
√

2α).
As a result, the GKP-repetition code offers no additional
protection against shifts in momentum compared to the
single-mode rectangular GKP code.

In contrast, the Voronoi cell Vq of the body-centered
cubic lattice is a truncated octahedron, as illustrated in
Figs. 10(a) and 10(b). Vq has boundaries corresponding to
both logical X̂ errors (for each hexagonal face) and logical
Î operators (for each square face). The shortest displace-
ment that causes a logical X̄ error has length

√
3α/(2

√
2),

an improvement over the single-mode rectangular GKP
code by a factor of

√
3. It is therefore natural to choose

α = 3−1/4 (α = n−1/4 in general) to equalize the logical
distance in momentum and in position. This can be inter-
preted as choosing α to bias the noise of the single-mode
rectangular GKP code to compensate for the fact that the
repetition code provides additional protection only against
shifts in position.

It is interesting to compare the Voronoi cell Vq to the
primitive cell Pconcat corresponding to a “concatenated”
error-correction procedure, which we define as follows:

010331-28

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

(a) (b)

(c) (d)

FIG. 9. The GKP-repetition code lattice �rep = �q ⊕�p and
dual lattice �̄rep = �̄q ⊕ �̄p . In (a),(c), each dimension repre-
sents a position operator on each mode, while in (b),(d) each
dimension represents a momentum operator. We have shown a
cell of side length

√
2α [for (a),(c)] or

√
2/α [for (b),(d)], since

the lattices extend to infinity in all directions. The lattice gen-
erators mJ and dual-lattice generators m̄J are shown in yellow;
m5, m6, m̄5, and m̄6 have been displaced from the origin for
display purposes. �q and �̄p are cubic lattices, while �p is
a face-centered cubic lattice and �̄q is a body-centered cubic
lattice.

(a) First, perform a round of error correction on each
single-mode rectangular GKP codestate.

(b) Then, measure the repetition code stabilizers Z̄1Z̄2
and Z̄1Z̄3, which take values ±1 since each single-
mode GKP state is in the codespace.

(c) Finally, perform the correction X̄ †
1 , X̄ †

2 , or X̄ †
3 based

on the syndrome from the repetition code stabilizers,
returning the state to the GKP-repetition codespace.

The corresponding primitive cell is identical to Vp in
the momentum sector, while in the position sector it is
given by Pconcat, see Fig. 10(c). The shortest displacement
outside of Pconcat has length α/(2

√
2); however, this dis-

placement does not correspond to a logical error since it
crosses a Î boundary. Indeed, using Eq. (66) we can per-
form a cell transformation Pconcat �→ P ′ [Fig. 10(d)] along
each of the Î boundaries such that the cell transforma-
tion does not affect the logical subsystem. The shortest
displacement outside of P ′ has length α/2 and this time
corresponds to a logical X̂ error. This is a factor of

√
3/2

(a) (b)

(c) (d)

FIG. 10. Primitive cells of the position sector of the dual lat-
tice, �̄q. (a) The Voronoi cell Vq of the body-centered cubic
lattice is a truncated octahedron. In the stabilizer subsystem
decomposition, each face is associated with either an Î boundary
or a X̂ boundary; as shown in (b) these correspond to the square
and hexagonal faces, respectively. (c) The primitive cell Pconcat
corresponding to a “concatenated” decoder. (d) After perform-
ing a cell transformation that acts only along Î boundaries, the
symmetric primitive cell P ′ is obtained. The subsystem decom-
positions associated with Pconcat and P contain identical logical
information. The shortest displacement leading to a logical error
is longer for the Voronoi cell Vq than Pconcat or P ′.

shorter than the corresponding distance of the Voronoi cell
Vq (in general, this factor is

√
2n/(n + 1) for any odd n).

One could perform a second cell transformation P ′ �→ Vq,
but this would require translations along X̂ boundaries,
altering the information in the logical subsystem.

APPENDIX E: DECOMPOSING STATES INTO ⊗G

In this Appendix, we present the explicit formula for
the decomposition of an arbitrary state |φ〉 ∈ H into an
arbitrary subsystem decomposition ⊗G in terms of the
wave function q 〈x|Û†

|φ〉, as discussed in Sec. V E. This
is equivalent to calculating the overlap

(〈μ| ⊗G 〈k|) |φ〉 = (
,d) 〈μ, k|φ〉 (73)

for k ∈ P . We continue the derivation from

Û
 eiπ �̄(μ)T	k
∣∣
−1

(
k + �̄(μ)

) 〉
Z√

d
. (75)

010331-29

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

Next, we find the position representation of a multimode
Zak state |k〉Z√

d
by applying Eqs. (36) to (8):

|k〉Z√
d

= 4
√
(2π)nd eiπ kq·kp

∑
s∈Zn

e2iπ(
√

Ds)·kp

× ∣∣√2π
(

kq +
√

Ds
) 〉

q, (E1)

where d = d1 × · · · × dn, D = diag(d), kq = [k1, . . . , kn]T,
kp = [kn+1, . . . , k2n]T, “·” represents the dot product
between two vectors in R

n, and |x〉q = |x1〉q ⊗ · · · ⊗ |xn〉q.
Applying this to Eq. (75), we obtain the equation, giving

(〈μ| ⊗G 〈k|) |φ〉 = 4
√
(2π)nd e−iπ �̄(μ)T	ke−iπ k̃q·k̃p

∑
s∈Zn

(
e−2iπ(

√
Ds)·k̃p

× q

〈√
2π
(

k̃q +
√

Ds
) ∣∣Û−1

∣∣φ〉
)

,

(E2)

where we have written k̃ =
−1
(

k + �̄(μ)
)

, concluding
the derivation.

APPENDIX F: CHARACTERISTIC FUNCTION OF
GAUSSIAN CHANNELS

Here, we present analytic expressions for the charac-
teristic function of an arbitrary Gaussian unitary operator
ÛS [Eq. (F8)] and an arbitrary Gaussian channel ET,N [Eq.
(F24)] that depend only on the matrices S, T, N that define
the Gaussian operator or channel (as described below). In
doing so, we will also derive the characteristic function of
the envelope operator, and the loss and dephasing noise
channels discussed in Sec. VII.

To begin, we recall some basic properties of the charac-
teristic function of operators and channels, written with our
chosen scaling of the displacement operators Ŵ(v). The
characteristic function of an arbitrary operator Ô is given
by [51]

c(v) = tr
(

ÔŴ(v)†
)

, (F1)

and satisfies

Ô =
∫

d2nv c(v)Ŵ(v), (F2)

where all integrals in this section are over R
2n. It follows

from this definition that when an operator is conjugated
by a Gaussian unitary via Ô �→ ÛSÔÛ†

S, its characteristic
function transforms as

c(v) �→ c(S−1v). (F3)

Moreover, when Eq. (F1) is applied to a density operator
ρ̂, tr(ρ̂) = 1 implies c(0) = 1 and ρ̂ = ρ̂† implies c(−v) =

c(v)∗. Alternatively, when Eq. (F1) is applied to a unitary
operator Û, Û†Û = Î implies

∫
d2nv c(u + v)c(v)∗e−iπuT	v = δ2n(u). (F4)

We define the characteristic function of a quantum channel
E such that it satisfies the property [44]

E(ρ̂) =
∫∫

d2nu d2nv c(u, v)Ŵ(u)ρ̂Ŵ(v)†, (83)

which is analogous to Eq. (F2). Then, the Hermitivity of
E(ρ̂) implies c(u, v) = c(v, u)∗, and tr(E(ρ̂)) = 1 implies

∫
d2nv c(u + v, v)e−iπuT	v = δ2n(u). (F5)

One way to obtain the characteristic function c of an
arbitrary quantum map is from its Kraus decomposition
E(ρ̂) = ∑

i Êiρ̂Ê†
i , in which case we have [44]

c(u, v) =
∑

i

ci(u)ci(v)∗, ci(u) = tr
(

ÊiŴ(u)†
)

. (F6)

Alternatively, we can use the characteristic function of
the Liouville superoperator representation of the map Ê =∑

i Êi ⊗ Ê∗
i ∈ L(H ⊗ H∗) (where ∗ here indicates com-

plex conjugation in the Fock basis), in which case we
have

c
([

uq
up

]
,
[

vq
vp

])
= tr

(
Ê Ŵ

([
uq
up

])†

⊗ Ŵ
([

vq
−vp

])†)
,

(F7)

where uq, up , vq, vp ∈ R
n. Due to the uniqueness of the

Liouville representation Ê , it is now clear that c(u, v) does
not depend on the Kraus decomposition of E . We note that
the minus sign −vp in Eq. (F7) arises from the fact that
the complex conjugate of p̂ in the Fock basis is p̂∗ = −p̂ .
Although Eqs. (F6) and (F7) provide a general procedure
to calculate the characteristic function of E , in Sec. F 2 we
will use a different strategy that leverages the Gaussianity
of the channel.

Having reviewed these basic facts, we present and prove
the characteristic function of Gaussian unitary operators
and Gaussian channels in the following two subsections.
Our proof strategy will be to verify the action of the char-
acteristic function of the operator or channel on the char-
acteristic function of states that they act upon. Then, we
calculate the characteristic function of example operators
and channels that were used in Sec. VII.

010331-30

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

1. Gaussian unitary operators

First, we show the following:

The characteristic function of a Gaussian unitary ÛS
is given by

cS(v) = tr
(

ÛSŴ(v)†
)

= exp(iπvTMv)√|det(S − I)| , (F8a)

M = 1
2
	(S + I)(S − I)−1, (F8b)

assuming (S − I) is invertible.

Note that it follows from S being symplectic that M is
symmetric.

Proof.—We show this by proving the condition Eq. (F3).
In particular, for any state ρ̂ with characteristic function
cρ(v), we show that
∫∫∫

d2nud2nvd2nw cρ(u)cS(v)cS(w)∗Ŵ(v)Ŵ(u)Ŵ(w)†

=
∫

d2nu cρ(S−1u)Ŵ(u), (F9)

where we note that Eq. (F9) is equal to ÛSρ̂Û†
S.

Using the proposed characteristic function of ÛS in Eq.
(F8), the left-hand side of Eq. (F9) becomes

∫∫∫
d2nud2nvd2nw
|det(S − I)| cρ(u) exp

(
iπ(vTMv − wTMw)

)

× Ŵ(v)Ŵ(u)Ŵ(w)†. (F10)

Next, we combine the three displacements via

Ŵ(v)Ŵ(u)Ŵ(w)† = eiπ(uT	v+uT	w+vT	w)Ŵ(u + v − w)
(F11)

and perform a change of variables u �→ u − v, v �→ v + w,
w �→ w, giving

1
|det(S − I)|

∫
d2nu Ŵ(u)

∫
d2nv c(u − v)

× exp
(
iπ(vTMv + uT	v)

)

×
∫

d2nw exp
(
2iπ

(
vT(M −	/2)+ uT	

)
w
)

,

(F12)
where we have also used M = M T. Next, we integrate over
w, giving

∫
d2nw exp

(
2iπ

(
vT(M −	/2)+ uT	

)
w
)

= δ2n ((M +	/2)v −	u) , (F13)

where we have used 	 = −	T. Applying the identity
δ2n(Mv) = δ2n(v)/| det M | allows us to simplify Eq. (F13)
to

δ2n (v − (M +	/2)−1	u
)
/| det(M +	/2)|. (F14)

It follows from Eq. (F8b) that M +	/2 = 	S(S − I)−1

and thus det(M +	/2) = 1/ det(S − I), since det S = 1
is guaranteed by S being symplectic. Moreover, (M +
	/2)−1	 = I − S−1. Substituting Eqs. (F14) into (F12)
gives

∫
d2nu Ŵ(u)

(∫
d2nv cρ(u − v) exp

(
iπ(vTMv + uT	v)

)
δ2n (v − (I − S−1)u

))

=
∫

d2nu Ŵ(u)cρ(S−1u) exp
(

iπuT ((I − S−1)+ (I − S−1)TM (I − S−1)
)

u
)

. (F15)

The remaining exponent can be shown to be 0 again
from the definition of Eq. (F8b). Thus, we have shown Eq.
(F9), and proven that the characteristic function of ÛS is
given by Eq. (F8). �

It is worth noting at this point a subtlety regarding the
phase of the unitary operator ÛS. The definition of ÛS in
Eq. (37) defines ÛS only up to an overall phase eiθ . Con-
sequently, our expression Eq. (F8) for the characteristic
function of ÛS applies only for the representative of ÛS

with Arg
(

tr(ÛS)
)

= 0. Nevertheless, this is typically of
little consequence, since the overall phase of the unitary
operator does not affect the state of the system.

As an example, consider the single-mode rotation oper-
ator

ÛR(θ) = −i exp
(

iθ
(
â†â + 1/2

))
, (F16a)

010331-31

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
, (F16b)

with θ ∈ (0, 2π). Note that the phase of ÛR(θ) is cho-

sen such that Arg
(

tr(ÛR(θ))
)

= 0, which can be verified
by inserting a coherent state resolution of the identity.
Applying Eq. (F8) gives

M = 1
2
	(R(θ)+ I)(R(θ)− I)−1

= −1
2

cot(θ/2)I , (F17a)

det (R(θ)− I) = 4 sin2(θ/2), (F17b)

and therefore

ÛR(θ) = 1
2 sin(θ/2)

∫
d2v exp

(
− iπ

2
cot(θ/2)|v|2

)
Ŵ(v).

(F18)

Equation (F18) is used directly to calculate the character-
istic function of white-noise dephasing in Eqs. (102) and
(103). One can also obtain the characteristic function of
the operator exp(iθ â†â) simply by multiplying Eq. (F18)
by i exp(−iθ/2), giving

eiθ â†â = 1
1 − eiθ

∫
d2v exp

(
− iπ

2
cot(θ/2)|v|2

)
Ŵ(v).

(F19)

From Eq. (F19), we can obtain the characteristic function
of the envelope operator e−�2â†â by substituting θ �→ i�2,
giving

e−�2â†â = 1
1 − e−�2

∫
d2v exp

(
− π

2
coth(�2/2)|v|2

)

× Ŵ(v), (F20)

as was used in Eqs. (20) and (93).
In the case where (S − I) is not invertible, one can

instead find a product of two symplectic matrices S1S2 = S
for which S1 − I and S2 − I are both invertible and find
the characteristic functions of the Gaussian unitary oper-
ators ÛS1 and ÛS2 separately. Then, one can use Eq. (84)
to find the characteristic function of the overall unitary
operator ÛS. However in these specific cases it may be
easier to calculate the trace tr

(
ÛSŴ(v)†

)
directly. Intu-

itively, 0 eigenvalues of S − I correspond to δ functions
in the corresponding characteristic function. For example,
in the extreme case S = I we trivially have tr

(
Î Ŵ(v)†

)
=

δ2n(v).

2. Gaussian channels

The proof and result from Sec. F 1 can be extended
naturally to obtain the characteristic function of Gaussian
channels, as we discuss below. Before doing so, we define
a Gaussian channel N in the context of Gaussian quantum
computing [51].

First, a Gaussian state ρ̂ is any state whose characteristic
function takes the form

cμ,V(v) = exp
(

− πvT (V	T) v − iπ(μ)Tv
)

, (F21)

where μ is the vector of expectation values μi = 〈ξ̂i〉 and
V is the (symmetric) matrix of second-order expectation
values with elements Vij = 〈ξ̂iξ̂j + ξ̂j ξ̂i〉/2. Then, a Gaus-
sian channel is any quantum channel E that maps Gaussian
states to Gaussian states. In particular, a Gaussian channel
can be described by two matrices T and N and a vector d,
that transforms [52]

V �→ TVTT + N , μ �→ Tμ + d. (F22)

In the remaining discussion, we will notate ET,N for a Gaus-
sian channel with d = 0. We have set d = 0 here since any
channel with nonzero d can be achieved by applying the
channel ET,N followed by a displacement Ŵ(d/

√
2π). In

the special case where we also have N = 0, the Gaussian
channel corresponds to conjugation by a Gaussian uni-
tary ÛS where T = S. It is known that Gaussian channels
transform the characteristic function of arbitrary (not just
Gaussian) states via [52]

c(v) �→ exp
(−πvT	N	Tv

)
c(TT	Tv), (F23)

which provides a generalization of Eq. (F3) to Gaussian
channels.

Now, we present our main result. The characteris-
tic function of a Gaussian channel ET,N is given by

cT,N (u, v) = 1
|det(T − I)| exp

(
2iπuTMav + iπ(uTMsu

− vTMsv)− π(u − v)TL(u − v)
)

,

(F24a)

L = 	(T − I)−1N (T − I)−T	T, (F24b)

M = 	

2
(T + I)(T − I)−1, (F24c)

assuming (T − I) is invertible, and where Ms =
(M + M T)/2 is the symmetric part of M and Ma =
(M − M T)/2 the antisymmetric part.

010331-32

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

Proof.—The proof of Eq. (F24) follows a similar strat-
egy as in Sec. F 1, in that we wish to show that Eq. (F24)
satisfies Eq. (F23). In particular, we show that for any
density matrix ρ̂ with characteristic function cρ(v), we
have
∫∫∫

d2nud2nvd2nwcρ(u)cT,N (v, w)Ŵ(v)Ŵ(u)Ŵ(w)†

=
∫

d2nu e−πuT	N	Tucρ(TT	Tu)Ŵ(u), (F25)

which is equal to ET,N (ρ̂).
Starting with the left-hand side of Eq. (F25), we sub-

stitute the proposed characteristic function of ET,N in Eq.
(F24), combine the three displacement operators using
Eq. (F11), and perform a change of variables u �→ u − v,
v �→ v/2 + w, w �→ w − v/2 (which has unit Jacobean

determinant), giving

1
|det(T − I)|

∫
d2nu Ŵ(u)

∫
d2nv cρ(u − v) exp(−πvTLv)

×
∫

d2nw exp
(

2iπ
(
vT(M −	/2)+ uT	

)
w
)

,

(F26)

where we have used M = Ms + Ma. Performing the inte-
gral over w gives

δ2n ((M −	/2)Tv −	u
) = δ2n

(
v − (M −	/2)−T	u

)

|det(M −	/2)| .

(F27)

Now, from Eq. (F24c), we have that M −	/2 = 	(T − I)−1 and thus det(M −	/2) = 1/det(T − I). Substituting
Eq. (F27) into Eq. (F26) and integrating over v gives

∫
d2nu Ŵ(u)

(∫
d2nvcρ(u − v) exp(−πvTLv)δ2n

(
v − (

I −	TT	T)u
))

=
∫

d2nu Ŵ(u) cρ
(
	TT	Tu

)
exp

(−πuT	T(T − I)	TL	(T − I)T	u
)

, (F28)

which yields the right-hand side of Eq. (F25) upon substi-
tuting Eq. (F24b). �

Finally, as an example, consider Gaussian channels
where T = τ I and N = νI are proportional to the identity
matrix (with τ �= 1). Then, Eq. (F24) simplifies to

cτ I ,νI (u, v) = 1
(τ − 1)2n exp

(
−π ν

(τ − 1)2
|u − v|2

+iπ
τ + 1
τ − 1

uT	v
)

, (F29)

where n is the number of modes in the system. In fact, some
of the most well-studied Gaussian channels take this form.
For example, loss, defined in Eqs. (95) or (97), is given by
τ = √

1 − γ and ν = γ /2, resulting in the characteristic
function Eq. (96). Quantum-limited amplification, defined
in Eq. (101), is given by τ = √

g and ν = (g − 1)/2.
Composing the characteristic functions of quantum lim-
ited amplification and loss via Eq. (84) and setting g =
1/(1 − γ) as in Eq. (100) results in the characteristic func-
tion of the Gaussian random displacement noise model Eq.
(98), which has τ = 1 and ν = σ 2 = γ /(1 − γ) and thus
cannot be directly calculated using Eq. (F24).

APPENDIX G: ORTHONORMALIZATION
PROCEDURE

In this Appendix, we present the derivation of the pro-
cedure to orthonormalize the codewords of a single-mode
GKP qubit code. In particular, we are interested in a logi-
cal noise channel in which the approximate codestates are
defined by the envelope operator e−�2â†â, i.e.,

NL(ρ̂) = trS

(
N2 ◦ J [e−�2â†â]

(
ρ̂ ⊗G |0〉 〈0|)

)
, (G1)

where J [Ô]ρ̂ = Ôρ̂Ô† and N2 is a (CPTP) noise channel
such as loss or dephasing.

Since e−�2â†â is nonunitary, the overall logical noise
channel is completely positive (CP) but not trace preserv-
ing (TP). However, in order to define a valid quantum
channel, one can orthogonalize the approximate code-
words e−�2â†â |0̄〉 and e−�2â†â |1̄〉 (where |ψ̄〉 = |ψ〉 ⊗G
|0〉) via the equation

[|0̄�,o〉
|1̄�,o〉

]
= C(�)

[
e−�2â†â |0̄〉
e−�2â†â |1̄〉

]
, (G2)

010331-33

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

where

C(�) =
[

R+/(2N0) e−iφR−/(2N1)

eiφR−/(2N0) R+/(2N1)

]
, (G3a)

Nμ = ‖e−�2â†â |μ̄〉 ‖, (G3b)

R± = 1√
1 + R

± 1√
1 − R

, (G3c)

R =
∣∣ 〈0̄| e−2�2â†â |1̄〉 ∣∣

N0N1
, (G3d)

φ = arg
(
〈0| e−2�2â†â |1〉

)
. (G3e)

This orthogonalization procedure is equivalent to the
Löwdin orthogonalization [53], which orthogonalizes the
codewords symmetrically.

Conveniently, the inner products 〈μ̄| e−2�2â†â |ν̄〉 that
define the orthonormalization can be obtained solely from
the logical envelope channel E�L [i.e., the map in Eq. (G1)
with N2 set to the identity] via

tr(E�L |ν〉 〈μ|) = trL
(

trS
(
J [e−�2â†â] |ν̄〉 〈μ̄|

))

= 〈μ̄| e−2�2â†â |ν̄〉 , (G4)

since tracing over the stabilizer subsystem followed by the
logical subsystem is equivalent to the total trace over the
entire mode.

To apply this to the original problem of defining a
CPTP logical noise map, we use the orthonormaliza-
tion matrix C(�) given in Eq. (G3) such that |ψ̄�,o〉 =
e−�2â†âC(�) |ψ̄〉. Thus, we can define a CPTP map
NL,o = NL ◦ J [C(�)]. This resulting CPTP logical noise
map NL,o is identical to the non-trace-preserving map NL
but with the codewords orthonormalized, as required.

Since we use this orthonormalization procedure to
define the CPTP logical noise channel NL,o, it is impor-
tant to consider the effect this has on our results. In Fig. 11,
we present the state fidelity 〈ψ | trS

(|ψ̄�,(o)〉 〈ψ̄�,(o)|
) |ψ〉

between the decoded approximate codestates with the logi-
cal states they represent. The orthonormalized approximate
codestates are orthonormalized via the above procedure,
while the nonorthonormalized states are simply normal-
ized by dividing by

∣∣ 〈ψ̄�|ψ̄�〉 ∣∣2. Importantly, the effect
of the orthonormalization procedure is negligible for any
states with average photon number greater than roughly
1.5 (or �dB > 6), demonstrating that our procedure does
not significantly affect our results in the regime of interest.
In Fig. 11 we show only |ψ〉 = |0〉 , |1〉, but similar results
can also be obtained for other logical states.

0 1 2 3 4 5
n̄

10−4

10−2

100

st
at

e
in

fid
el

it
y nonorth

orth
|0〉
|1〉

FIG. 11. Comparison between the orthonormalized and
nonorthonormalized logical noise maps acting on the compu-
tational basis states |ψ〉 = |0〉 , |1〉. We plot the state infidelity
1 − 〈ψ | E(|ψ〉 〈ψ |) |ψ〉, where E is the logical noise map corre-
sponding to the envelope operator e−�2â† â, against the average
photon number n̄ ≈ 1/(2�2)− 1/2, which is calculated numer-
ically using n̄ = (〈0̄�| â†â |0̄�〉 + 〈1̄�| â†â |1̄�〉) /2. When we
orthonormalize the codestates as described in Appendix G, the
state infidelity is lower than the nonorthonormalized codestates,
although this difference is only noticeable for very low average
photon number n̄ ≤ 1.5, �dB ≤ 6. Note also that the infidelity
for the |1〉 state is larger than that for the |0〉 state because the
bosonic states |ψ̄�〉 tend to the vacuum state as n̄ → 0, which,
after the partial trace is applied, has a lower overlap with the
qubit state |1〉 than |0〉.

APPENDIX H: ENVELOPE OPERATOR
SIMULATIONS AS � → 0

In this Appendix we briefly discuss the utility of our
simulations in the ideal limit � → 0. In particular, our
simulations of the envelope operator, loss, and Gaussian
displacements for the square GKP code are all analytic. As
long as the error rate is sufficiently low, one can truncate
each of the sums in Eq. (88) to si, ti = −1, 0, 1 to retain
only the leading-order sources of error. Then, the simula-
tions can be run for arbitrarily squeezed states by simply
evaluating each analytic expression for the integral and
adding the relevant terms to the superoperator E�. Follow-
ing this, we again use Appendix G to calculate E�o from
E�, and then we can directly extract the average gate infi-
delity. The runtime of this procedure is limited only by the
analytic evaluation of the expressions for the superopera-
tor with large enough precision to reach the extremely low
infidelities.

As a proof of principle, in Fig. 12 we present the average
gate infidelities of an approximate GKP codestate with no
other noise, and an approximate GKP codestate with a loss
rate of γ = 0.1%, up to an average GKP photon number of
approximately 600 (� ≈ 0.029,�dB ≈ 30.8). At this level
of squeezing, Fock space simulations would require a trun-
cation dimension, which excludes at most approximately
10−400 of the total support of the state so that the leading
source of error in the simulation is due to the approximate

010331-34

STABILIZER SUBSYSTEM DECOMPOSITIONS. . . PRX QUANTUM 5, 010331 (2024)

0 200 400 600n̄

10−400

10−300

10−200

10−100

100

av
er

ag
e

ga
te

in
fid

el
it
y

γ = 0

γ = 0.1 %

4 20 24 26 28 30
ΔdB

FIG. 12. Average gate infidelity of the logical noise chan-
nel (Lγ ◦ E�)L,o corresponding to loss applied to approximate
single-mode square GKP qubit codestates. We show two differ-
ent values of loss given by γ = 0, 0.1%, and show the plot as
a function of �, where n̄ ≈ (1/2�2)− 1

2 is the average pho-
ton number of the approximate GKP encoded maximally mixed
state. This demonstrates that our methods can be applied eas-
ily to approximate GKP codestates with comically large average
photon number.

GKP codestate. Moreover, the variance in the photon-
number distribution of the approximate GKP codestate is
also roughly 600, rendering Fock space simulations com-
pletely infeasible. While the γ = 0 curve has a well-known
approximate analytic expression, which tends to being
exact as � → 0, it is less clear how one would determine
a similar analytic expression for the infidelity associated
with γ = 0.1%, particularly in the region around n̄ ≈ 600
as the curve reaches the optimal �. Although such photon
numbers are unlikely to ever be experimentally realized,
Fig. 12 demonstrates the efficiency and numerical stability
of our simulations when applied to square GKP codewords
with arbitrary amounts of squeezing.

[1] B. Terhal, J. Conrad, and C. Vuillot, Towards scalable
bosonic quantum error correction, Quantum Sci. Technol.
5, 043001 (2020).

[2] A. Joshi, K. Noh, and Y. Y. Gao, Quantum information pro-
cessing with bosonic qubits in circuit QED, Quantum Sci.
Technol. 6, 033001 (2021).

[3] A. L. Grimsmo and S. Puri, Quantum error correction
with the Gottesman-Kitaev-Preskill code, PRX Quantum 2,
020101 (2021).

[4] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Legh-
tas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, and L.
Jiang, et al., Extending the lifetime of a quantum bit with
error correction in superconducting circuits, Nature 536,
441 (2016).

[5] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M.
H. Devoret, and R. J. Schoelkopf, Implementing a universal
gate set on a logical qubit encoded in an oscillator, Nat.
Commun. 8, 1 (2017).

[6] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu,
H. Wang, Y. Song, and C.-L. Zou, et al., Quantum error
correction and universal gate set operation on a binomial
bosonic logical qubit, Nat. Phys. 15, 503 (2019).

[7] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S.
Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M.
H. Devoret, Stabilization and operation of a Kerr-cat qubit,
Nature 584, 205 (2020).

[8] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Del-
becq, B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas,
Exponential suppression of bit-flips in a qubit encoded in
an oscillator, Nat. Phys. 16, 509 (2020).

[9] J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and
C. Wang, Protecting a bosonic qubit with autonomous
quantum error correction, Nature 590, 243 (2021).

[10] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit
in an oscillator, Phys. Rev. A 64, 012310 (2001).

[11] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,
K. Mehta, and J. P. Home, Encoding a qubit in a trapped-ion
mechanical oscillator, Nature 566, 513 (2019).

[12] B. de Neeve, T.-L. Nguyen, T. Behrle, and J. P. Home,
Error correction of a logical grid state qubit by dissipative
pumping, Nat. Phys. 18, 296 (2022).

[13] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-
Geller, N. Frattini, V. Sivak, P. Reinhold, S. Puri, S.
Shankar, and R. Schoelkopf, et al., Quantum error correc-
tion of a qubit encoded in grid states of an oscillator, Nature
584, 368 (2020).

[14] A. Eickbusch, V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha, J.
Venkatraman, B. Royer, S. M. Girvin, R. J. Schoelkopf, and
M. H. Devoret, Fast universal control of an oscillator with
weak dispersive coupling to a qubit, Nat. Phys. 18, 1464
(2022).

[15] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S.
Ganjam, A. Miano, B. Brock, A. Ding, and L. Frunzio, et
al., Real-time quantum error correction beyond break-even,
Preprint ArXiv:2211.09116 (2022).

[16] E. Knill and R. Laflamme, Theory of quantum error-
correcting codes, Phys. Rev. A 55, 900 (1997).

[17] E. Knill, R. Laflamme, and L. Viola, Theory of quantum
error correction for general noise, Phys. Rev. Lett. 84, 2525
(2000).

[18] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci, Mod-
ular bosonic subsystem codes, Phys. Rev. Lett. 125, 040501
(2020).

[19] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K. Saba-
pathy, Progress towards practical qubit computation using
approximate Gottesman-Kitaev-Preskill codes, Phys. Rev.
A 101, 032315 (2020).

[20] J. Hastrup, M. V. Larsen, J. S. Neergaard-Nielsen, N. C.
Menicucci, and U. L. Andersen, Unsuitability of cubic
phase gates for non-Clifford operations on Gottesman-
Kitaev-Preskill states, Phys. Rev. A 103, 032409 (2021).

[21] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci,
Subsystem analysis of continuous-variable resource states,
Phys. Rev. A 104, 012430 (2021).

[22] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci,
Hidden qubit cluster states, Phys. Rev. A 104, 012431
(2021).

[23] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci, The
Zak transform: A framework for quantum computation with

010331-35

https://doi.org/10.1088/2058-9565/ab98a5
https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1103/PRXQuantum.2.020101
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41467-017-00045-1
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1038/s41567-020-0824-x
https://doi.org/10.1038/s41586-021-03257-0
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1038/s41567-021-01487-7
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1038/s41567-022-01776-9
https://arxiv.org/abs/2211.09116
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevLett.84.2525
https://doi.org/10.1103/PhysRevLett.125.040501
https://doi.org/10.1103/PhysRevA.101.032315
https://doi.org/10.1103/PhysRevA.103.032409
https://doi.org/10.1103/PhysRevA.104.012430
https://doi.org/10.1103/PhysRevA.104.012431

SHAW, DOHERTY, and GRIMSMO PRX QUANTUM 5, 010331 (2024)

the Gottesman-Kitaev-Preskill code, Preprint ArXiv:quant-
ph/2210.09494 (2022).

[24] J. Zak, Finite translations in solid-state physics, Phys. Rev.
Lett. 19, 1385 (1967).

[25] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[26] J. E. Bourassa, N. Quesada, I. Tzitrin, A. Száva, T. Isacsson,
J. Izaac, K. K. Sabapathy, G. Dauphinais, and I. Dhand,
Fast simulation of bosonic qubits via Gaussian functions in
phase space, PRX Quantum 2, 040315 (2021).

[27] J. Hastrup and U. L. Andersen, Analysis of loss cor-
rection with the Gottesman-Kitaev-Preskill code, Preprint
ArXiv:2112.01425 (2021).

[28] S. Glancy and E. Knill, Error analysis for encoding a qubit
in an oscillator, Phys. Rev. A 73, 012325 (2006).

[29] A. Ketterer, A. Keller, S. P. Walborn, T. Coudreau, and P.
Milman, Quantum information processing in phase space:
A modular variables approach, Phys. Rev. A 94, 022325
(2016).

[30] D. Poulin, Stabilizer formalism for operator quantum error
correction, Phys. Rev. Lett. 95, 230504 (2005).

[31] B. Q. Baragiola, G. Pantaleoni, R. N. Alexander, A. Karan-
jai, and N. C. Menicucci, All-Gaussian universality and
fault tolerance with the Gottesman-Kitaev-Preskill code,
Phys. Rev. Lett. 123, 200502 (2019).

[32] R. Simon and N. Mukunda, in Symmetries in Science VI
(Springer, Boston, MA, 1993), p. 659.

[33] B. Dutta, N. Mukunda, and R. Simon, The real symplectic
groups in quantum mechanics and optics, Pramana 45, 471
(1995).

[34] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M.
Terhal, Quantum error correction with the toric Gottesman-
Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).

[35] K. Noh and C. Chamberland, Fault-tolerant bosonic quan-
tum error correction with the surface—Gottesman-Kitaev-
Preskill code, Phys. Rev. A 101, 012316 (2020).

[36] J. W. Harrington, Ph.D. thesis, California Institute of Tech-
nology (2004).

[37] J. Conrad, J. Eisert, and F. Arzani, Gottesman-Kitaev-
Preskill codes: A lattice perspective, Quantum 6, 648
(2022).

[38] B. Royer, S. Singh, and S. M. Girvin, Encoding qubits in
multimode grid states, PRX Quantum 3, 010335 (2022).

[39] D. J. Weigand and B. M. Terhal, Realizing modular quadra-
ture measurements via a tunable photon-pressure coupling
in circuit QED, Phys. Rev. A 101, 053840 (2020).

[40] C. Chamberland, J. Wallman, S. Beale, and R. Laflamme,
Hard decoding algorithm for optimizing thresholds under
general Markovian noise, Phys. Rev. A 95, 042332
(2017).

[41] K. Noh, C. Chamberland, and F. G. S. L. Brandão, Low-
overhead fault-tolerant quantum error correction with the
surface-GKP code, PRX Quantum 3, 010315 (2022).

[42] M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, Logical
gates and read-out of superconducting Gottesman-Kitaev-
Preskill qubits, [in preparation].

[43] C. Vuillot, L. Lao, B. Criger, C. G. Almudéver, K. Bertels,
and B. M. Terhal, Code deformation and lattice surgery are
gauge fixing, New J. Phys. 21, 033028 (2019).

[44] J. Conrad, Twirling and Hamiltonian engineering via
dynamical decoupling for Gottesman-Kitaev-Preskill quan-
tum computing, Phys. Rev. A 103, 022404 (2021).

[45] M. A. Nielsen, A simple formula for the average gate
fidelity of a quantum dynamical operation, Phys. Lett. A
303, 249 (2002).

[46] F. Rozpędek, K. P. Seshadreesan, P. Polakos, L. Jiang, and
S. Guha, All-photonic GKP-qubit repeater using analog-
information-assisted multiplexed entanglement ranking,
Preprint ArXiv:2303.14923 (2023).

[47] C. Calcluth, A. Ferraro, and G. Ferrini, The vacuum pro-
vides quantum advantage to otherwise simulatable archi-
tectures, Preprint ArXiv:2205.09781 (2022).

[48] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young,
R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S.
M. Girvin, B. M. Terhal, and L. Jiang, Performance and
structure of single-mode bosonic codes, Phys. Rev. A 97,
032346 (2018).

[49] K. Noh, V. V. Albert, and L. Jiang, Quantum capacity
bounds of Gaussian thermal loss channels and achievable
rates with Gottesman-Kitaev-Preskill codes, IEEE Trans.
Inf. Theory 65, 2563 (2018).

[50] B. Royer, S. Singh, and S. M. Girvin, Stabilization of finite-
energy Gottesman-Kitaev-Preskill states, Phys. Rev. Lett.
125, 260509 (2020).

[51] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[52] J. Eisert and M. M. Wolf, Gaussian quantum channels,
Preprint ArXiv:quant-ph/0505151 (2005).

[53] P.-O. Löwdin, On the non-orthogonality problem connected
with the use of atomic wave functions in the theory of
molecules and crystals, J. Chem. Phys. 18, 365 (1950).

010331-36

https://arxiv.org/abs/quant-ph/2210.09494
https://doi.org/10.1103/PhysRevLett.19.1385
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PRXQuantum.2.040315
https://arxiv.org/abs/2112.01425
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.94.022325
https://doi.org/10.1103/PhysRevLett.95.230504
https://doi.org/10.1103/PhysRevLett.123.200502
https://doi.org/10.1103/PhysRevA.99.032344
https://doi.org/10.1103/PhysRevA.101.012316
https://doi.org/10.22331/q-2022-02-10-648
https://doi.org/10.1103/PRXQuantum.3.010335
https://doi.org/10.1103/PhysRevA.101.053840
https://doi.org/10.1103/PhysRevA.95.042332
https://doi.org/10.1103/PRXQuantum.3.010315
https://doi.org/10.1088/1367-2630/ab0199
https://doi.org/10.1103/PhysRevA.103.022404
https://doi.org/10.1016/S0375-9601(02)01272-0
https://arxiv.org/abs/2303.14923
https://arxiv.org/abs/2205.09781
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1109/TIT.2018.2873764
https://doi.org/10.1103/PhysRevLett.125.260509
https://doi.org/10.1103/RevModPhys.84.621
https://arxiv.org/abs/quant-ph/0505151

	I.. INTRODUCTION
	II.. STABILIZER SUBSYSTEM DECOMPOSITION FOR THE SQUARE GKP QUBIT CODE
	A.. Preliminaries
	B.. Stabilizer subsystem decomposition for the GKP code
	C.. Properties
	1.. Boundary conditions
	2.. States
	3.. Operators

	III.. GENERAL GKP CODES
	A.. Preliminaries
	B.. Multimode GKP encodings
	C.. GKP lattices and primitive cell decoding

	IV.. STABILIZER SUBSYSTEM DECOMPOSITION
	A.. Stabilizer states
	B.. The subsystem decomposition
	C.. Stabilizers and logical Paulis
	D.. The partial trace

	V.. TRANSFORMATIONS OF G
	A.. Cell transformations
	B.. Gaussian transformations
	C.. Dimension transformations
	D.. Zak states
	E.. Wave functions in the subsystem decomposition

	VI.. LOGICAL CLIFFORD GATES
	VII.. NUMERICAL MODELING OF NOISE
	A.. Description of method
	B.. Envelope operator
	C.. Pure loss
	D.. Gaussian displacements
	E.. White-noise dephasing

	VIII.. CONCLUSION
	. ACKNOWLEDGMENTS
	. COMPARISON TO REF. <xref ref-type="bibr" rid="c18">[18]</xref>
	. APPENDIX B: BINNED QUADRATURE MEASUREMENTS AND LOGICAL STATE TOMOGRAPHY
	1.. Binned quadrature measurements
	2.. Logical state tomography with binned quadrature measurements

	. APPENDIX C: ANALYTICAL FORMULA FOR THE PARTIAL TRACE OF APPROXIMATE SQUARE GKP STATE
	. APPENDIX D: EXAMPLE: n-MODE REPETITION CODE
	. APPENDIX E: DECOMPOSING STATES INTO G
	. APPENDIX F: CHARACTERISTIC FUNCTION OF GAUSSIAN CHANNELS
	1.. Gaussian unitary operators
	2.. Gaussian channels

	. APPENDIX G: ORTHONORMALIZATION PROCEDURE
	. APPENDIX H: ENVELOPE OPERATOR SIMULATIONS AS 0
	. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

