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Michael Antesberger ,1,* Marco Túlio Quintino ,2 Philip Walther,1,3,4 and Lee A. Rozema1

1
Vienna Center for Quantum Science and Technology and Research Network Quantum Aspects of Space Time

(TURIS), Faculty of Physics, University of Vienna, 1090 Vienna, Austria
2
Sorbonne Université, CNRS, LIP6, 75005 Paris, France

3
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090

Vienna, Austria
4
Christian Doppler Laboratory for Photonic Quantum Computer, Faculty of Physics, University of Vienna, 1090

Vienna, Austria

 (Received 1 June 2023; accepted 22 December 2023; published 9 February 2024)

The field of indefinite causal order (ICO) has seen a recent surge in interest. Much of this research has
focused on the quantum switch, wherein multiple parties act in a superposition of different orders in a
manner transcending the quantum circuit model. This results in a new resource for quantum protocols,
and is exciting for its relation to issues in foundational physics. The quantum switch is also an example
of a higher-order quantum operation, in that it transforms not only quantum states but also other quantum
operations. To date, no quantum process without a definite causal order has been completely experimen-
tally characterized. Indeed, past work on the quantum switch has confirmed its ICO by measuring causal
witnesses or demonstrating resource advantages, but the complete process matrix has been described only
theoretically. Here we report our performing higher-order quantum process tomography. However, doing
so requires exponentially many measurements with a scaling worse than that of standard process tomog-
raphy. We overcome this challenge by creating a new passively stable fiber-based quantum switch using
active optical elements to deterministically generate and manipulate time-bin encoded qubits. Moreover,
our new architecture for the quantum switch can be readily scaled to multiple parties. By reconstructing
the process matrix, we estimate its fidelity and tailor different causal witnesses directly for our experiment.
To achieve this, we measure a set of tomographically complete settings, which also spans the input opera-
tion space. Our tomography protocol allows the characterization and debugging of higher-order quantum
operations with and without an ICO, while our experimental time-bin techniques could enable the creation
of a new realm of higher-order quantum operations with an ICO.
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I. INTRODUCTION

The formalism of higher-order quantum operations
(HOQOs) provides a framework to view quantum opera-
tions as objects that can be subjected to transformations
[1–6]. This framework is particularly useful for analyzing
causality in quantum mechanics. Since it was first real-
ized that quantum mechanics allows for processes with an
indefinite causal order (ICO) [6–8], the field of quantum
causality has seen an increasing level of interest [9]. These
processes are interesting for a variety of foundational
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topics [10–15], and also because it has been recognized
that they can lead to ICO-based enhancements that go
even beyond “normal quantum technology.” Examples of
these advantages include applications in quantum com-
puting [16–19], quantum communication [20–28], channel
discrimination [29,30], metrology [31], reversing quan-
tum dynamics [32,33], and even thermodynamics [34].
Experimentally, work has focused on either implementing
various protocols [35–42] or verifying the ICO of a given
experimental implementation [43–46].

In spite of this large body of work, there has not yet been
a complete experimental characterization of processes with
an ICO. Instead, previous work on ICOs focused mainly on
designing and measuring witnesses to essentially provide a
yes or no answer to the question “does this process have an
indefinite causal order?” On the one hand, this is because
no concrete protocol for a complete characterization has
yet been presented. On the other hand, it is because the
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number of experimental settings required for a complete
characterization was prohibitive in past experiments. Here
we overcome both these hurdles, first presenting a proto-
col to perform “higher-order process matrix tomography,”
and then implementing a new experimental method to real-
ize the quantum switch based on time qubits, based on the
proposal in Ref. [47]. Our new passively stable implemen-
tation is based on active optical elements, and it allows
us to acquire sufficient data (estimating almost 10 000 dis-
tinct probabilities) to fully reconstruct a process matrix
demonstrating an ICO for the first time.

In the two-party quantum switch, Alice and Bob each
act on a target system (typically taken to be a qubit) in
their local laboratories. This target qubit is sent first to one
party and then to the other. The order in which the target
qubit is shared between the two is coherently controlled
via a second, control qubit. If the control qubit is prepared
in a superposition state, then the two parties act on the tar-
get qubit in a superposition of orders [Figs. 1(a)– 1(c)].
The quantum switch and the so-called quantum time flip
[48–50] are the only processes that do not respect our stan-
dard notions of causality that have been experimentally
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FIG. 1. The quantum switch. (a),(b)) The causally ordered pro-
cess with the control in state |0〉C (|1〉C), where Alice (Bob) acts
before Bob (Alice) on the target system. (c) A superposition
of orders with the control qubit in the state 1√

2
|0〉C + |1〉C. (d)

The principle of the process tomography on the quantum switch.
Alice and Bob perform projective measurements in three differ-
ent bases and then prepare four different linearly independent
states in their output. The same input states are prepared at the
past target. The past control is fixed to the superposition state
for generation of the indefinite order. Finally, the future con-
trol is measured in a different basis, while the future target is
traced out (the two measurements shown are those that are imple-
mented experimentally; to span the space, a third measurement is
needed).

implemented to date. The quantum switch is an example
of a HOQO, in the sense that its inputs are not only the
control and target qubits but are also Alice’s and Bob’s
operations.

All experimental realizations of the quantum switch
have been accomplished by encoding both the control sys-
tem and the target system in a single photon. Typically,
the control system is encoded in a path degree of free-
dom, which then determines the order in which the photon
is routed between the two parties. In practice, this means
that a photon is placed in a superposition of the two paths
with use of a beam splitter, and these paths are then looped
between two parties in a manner mimicking the paths
in Fig. 1(c). The parties then act on a different degree
of freedom, such as polarization [35], time bins [37], or
orbital angular momentum [44]. The result of all these
approaches is essentially a Mach-Zehnder interferometer
(MZI), which must be phase stabilized [51]. Stabilizing the
phase for long enough to acquire the required data for full
higher-order quantum process tomography is a daunting
experimental challenge.

We overcome this challenge by implementing a new
passively stable quantum switch. In our experiment, the
control system is encoded in a time-bin qubit, the target
qubit is encoded in the polarization of the same photon,
and active optical switches are used to route the photon
between the two parties in superposition of both orders, as
in the theoretical proposal in Ref. [47]. Two other exper-
iments have achieved an intrinsically stable phase, using
a Sagnac-like approach [37,52], and in the related stud-
ies, the propagation direction acts as the control system.
Since there are only two propagation directions, the control
system can only be a qubit, making it difficult to imag-
ine scaling these methods to multiple parties. Moreover,
the operations on the target must act identically, regardless
of the propagation directions. As shown in Ref. [52], this
is not straightforward to achieve even for unitary opera-
tions when the target system is a polarization qubit. Our
approach, however, has straightforward generalization to
multiple parties [47] and allows us to use standard polar-
ization operations (both unitary and nonunitary), making it
a promising new experimental method to create an ICO.

Recently, there has been some discussion in the commu-
nity as to whether such photonic implementations of the
quantum switch are simulations of an ICO [53,54], with
some concluding that they may only have an ICO in a
“weak sense” [55], while others have concluded that the
experiments do have an ICO [56,57], or that they at least
have a quantifiable resource advantage [58]. Here we do
not address this debate, but we use the mathematical for-
malism of process matrices and HOQOs to describe our
physical experiment.

One method to certify ICO is made via the vio-
lation of a so-called causal inequality [6]. This is a
device-independent technique, similar to the use of a Bell
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violation to verify entanglement [59]. Unfortunately, it is
not yet known if one can implement a quantum process that
deterministically violates a causal inequality; moreover, it
has been shown that the quantum switch cannot violate
causal inequalities [17]. Instead, in the first implementa-
tion of the quantum switch [35], the ICO was indirectly
proven by means of a game, where a player has to decide
if two unitary gates either commute or anticommute (see
Appendix B 1). By winning that game more often than one
could with a definite causal order, the study authors con-
cluded the experiment did not have a definite causal order.
This method can be reframed in terms of a causal witness
[13]. A causal witness is a measurement that can be used
to verify if a process is causally nonseparable (i.e., if it
has an ICO), and it has been experimentally implemented
for the quantum switch [44,45]. Unlike a causal inequality,
a causal witness is not device independent, requiring the
assumption that the experimenter knows the correct quan-
tum description of the experiment. Recently, progress has
been made by relaxing the complete device-independent
approach, allowing the certification of causal nonsepara-
bility under semi-device-independent assumptions [46,60,
61], Bell-locality-like assumptions [15,45], and additional
device-independent no-signaling assumptions [62,63].

In this work, we implement full experimental higher-
order process tomography of the quantum switch. For this
goal, we generalize the ideas from quantum state and quan-
tum process tomography [2,4,64–70] to tackle tomography
of arbitrary higher-order processes, including those with-
out a definite causal order. In particular, we show that it
is possible to construct tomographically complete mea-
surement settings on arbitrary quantum processes by using
a tomographically complete set of input states spanning
the input state space; a tomographically complete set of
measurement-repreparation channels spanning the input
operation spaces; and a tomographically complete set of
quantum measurements spanning the output state space
[see Fig. 1(d)]. We then use these ideas to experimentally
perform higher-order quantum process tomography on the
quantum switch.

The rest of this paper is organized as follows. In Sec. II
we introduce the theory of quantum process matrices,
using the quantum switch as a paradigmatic example, and
we present our causal tomography protocol. In Sec. III, we
discuss our new passively stable architecture for the quan-
tum switch. In Sec. IV we present our experimental results,
and in Sec. V we discuss our findings.

II. THEORY

A. Process matrices and the quantum switch

The expression “quantum process” is a general term
used to refer to the dynamics of quantum systems, and its
precise meaning may depend on the context. For instance,
when one is analyzing transformations between quantum

states, “quantum process” refers to a quantum channel,
which may be unitary (associated with closed quantum
systems and mathematically described by unitary opera-
tors) or nonunitary (associated with open quantum sys-
tems and mathematically described by completely positive
trace-preserving linear maps). In this scenario of transfor-
mations between states, one can experimentally determine
the dynamics by means of what is known as quantum pro-
cess tomography [65–67]. To do so, a complete set of
known quantum states is fed into an unknown quantum
process E and a complete set of measurements is per-
formed on the output of the underlying process for each
input state [70]. When performing standard process tomog-
raphy, one reconstructs, for example, the χ matrix, which
takes quantum sates as inputs and returns quantum states
as outputs [71]. The χ matrix is often called a “process
matrix”; however, we stress that this χ or process matrix
is different from the process matrices discussed in the field
of HOQO and ICO, the case that we address here.

An operation that transforms a quantum operation is
referred to as a higher-order quantum operation. Causally
ordered higher-order operations have appeared in differ-
ent contexts under different names, i.e., quantum strategies
[3], quantum combs [2], and non-Markovian quantum pro-
cess [72], and have found applications in several branches
of quantum information processing [4,32,73–75]. Inter-
estingly, the formalism of higher-order operations also
includes quantum processes that do not respect any defi-
nite causal order [6,8,29], such as the notorious quantum
switch [8,29], the main object analyzed in this work. The
quantum switch is a process that transforms a pair of
unitary operators (UA, UB) into another operator that is
a coherent superposition of the composition UAUB and
UBUA. In mathematical terms, the quantum switch is the
transformation

(UA, UB) �→ |0〉 〈0| ⊗ UAUB + |1〉 〈1| ⊗ UBUA, (1)

where the first system on the rhs of Eq. (1) is referred to
as the control system, since the order in which UA and UB
will be performed may be controlled by setting the con-
trol qubit state. The second system is referred to as the
target system, since it is the system on which the unitary
operators act. The action of the quantum switch on general
nonunitary quantum operations is uniquely determined by
its action on unitary operations [76] and may be described
via its actions on Kraus operators [71], or via the process
matrix formalism discussed in the next section. Let �A
and �B be quantum operations that act on density matri-
ces as �A(ρ) = ∑

i KiρK†
i and �B(ρ) = ∑

j Lj ρL†
j . The

quantum switch then transforms the pair of operations �A
and �B into another one with Kraus operators given by

Wij = |0〉 〈0| ⊗ KiLj + |1〉 〈1| ⊗ Lj Ki. (2)
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In this work, we perform experimental tomography of the
quantum switch and analyze the robustness of its indefi-
nite causality in a real experimental setup. For this goal,
we build on known mathematical methods for causally
ordered process tomography [65,68,69,72,77] that are used
for higher-order causal process tomography experiments
[78,79]) and present a simple but general tomographic
procedure by explicitly presenting what we refer to as
tomographically complete setting operators. Our setting
operator approach is particularly convenient to analyze
causal nonseparability witnesses with additional restric-
tions, the method we use to certify that the process we
characterize does not respect any definite causal order, and
that this noncausal property is robust with regard to white
noise and general noise.

B. Choi-Jamiołkowski isomorphism and quantum
operations

Higher-order transformations such as the quantum
switch may be conveniently described by means of a pro-
cess matrix [6], a formalism that is heavily based on
the Choi-Jamiołkowski isomorphism [80,81], a method
to represent linear maps as linear operators, and linear
operators as vectors. Let Hin and Hout be finite linear
(Hilbert) spaces associated with the input and the output.
Let U : Hin → Hout be a linear operator. Its process vector
|U〉〉 ∈ Hin ⊗ Hout is then defined as [82]

|U〉〉HinHout :=
∑

i

|i〉 ⊗ U |i〉 , (3)

where {|i〉}i is the computational basis. The Choi vector of
the identity operator is given by

|1〉〉 =
∑

i

|i〉 ⊗ |i〉 , (4)

which is equivalent to a maximally entangled state up to
normalization.

Let L(H) be the set of all linear operators acting on
H. Let C : L(Hin) → L(Hout) be a linear map. Its Choi
operator C ∈ L(Hin ⊗ Hout) is defined as

CHinHout :=
∑

ij

|i〉 〈j | ⊗ C(|i〉 〈j |). (5)

The action of any linear map C on a state ρ can be written
in terms of the Choi operator C as

C(ρ) = Trin

(
ρTHin ⊗ 1Hout CHinHout

)
, (6)

where ρT is the transpose of ρ in the computational basis
and ρ is an arbitrary density operator acting on Hin.

The Choi-Jamiołkowski isomorphism is very useful to
represent quantum operations, because a linear map C :

L(Hin) → L(Hout) is completely positive if and only if its
Choi operator C ∈ L(Hin ⊗ Hout) respects C ≥ 0, and the
map C is trace preserving if and only if Trout(C) = 1Hin .
Since quantum channels are completely positive trace-
preserving maps, all quantum channels have a simple and
direct characterization in terms of their Choi operators.
Before finishing this subsection, we also remark that if C is
a unitary channel, that is, C(ρ) = UρU† for some unitary
operator U, direct calculation shows that its Choi opera-
tor may be written as C = |U〉〉〈〈U|, where |U〉〉 is defined in
Eq. (3).

A quantum instrument is a quantum operation that has
a classical and a quantum output, and it formalizes the
concept of a quantum measurement that has a postmea-
surement quantum state. Mathematically, a set of linear
maps {Ci}i, Ci : L(Hin) → L(Hout) is a quantum instru-
ment if all Ci are completely positive and C := ∑

i Ci
is trace preserving. In the Choi operator picture, this is
equivalent to having Ci ≥ 0 and Trout

(∑
i Ci

) = 1Hin . A
simple and useful class of quantum instruments is the class
of measure-and-reprepare instruments. In its most basic
form, a measure and reprepare instrument simply performs
a measurement described by the operators {Mi} [83], and
reprepares some fixed state σ . Its linear map is described
by Ri(ρ) := Tr(ρMi)σ , and its Choi operators are given
by Ri ∈ L (Hin ⊗ Hout), with Ri = M T

i ⊗ σ .

C. The quantum switch as a process matrix

We are now in position to present process matrices that
describe transformations between the quantum channels of
different parties. We start by presenting the process vec-
tor describing Fig. 1(a), which is simply a process where a
system flows freely from a common past target space HPT
to Alice’s input space HAin . Alice may perform an arbi-
trary operation as the state goes from HAin to HAout . Later,
the state goes freely from Alice’s output space HAout to
Bob’s input space HBin . Bob may then perform an arbitrary
operation as the state goes from HBin to HBout . Finally, the
state goes freely from Bob’s output space HBout to a com-
mon future target space HFT . The process vector of this
quantum process is

|A → B〉 := |1〉〉PT,Ain ⊗ |1〉〉Aout,Bin ⊗ |1〉〉Bout,FT . (7)

Notice that although the vector |A → B〉 represents a pro-
cess, we do not use the double-ket notation, since |A → B〉
is not the Choi vector of “A → B.” We should understand
|A → B〉 simply as convenient notation for |1〉〉PT,Ain ⊗
|1〉〉Aout,Bin ⊗ |1〉〉Bout,FT .

By examining the superscripts, one can see that this pro-
cess vector represents the flow of information (without any
applied operations) in three steps: first, from the past tar-
get space to Alice’s input space, then from Alice’s output
space to Bob’s input space, and finally from Bob’s out-
put space to the future target space. As we show soon,
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the connections between Alice’s (Bob’s) input and output
spaces are made by Choi operators acting on the respective
space, which can be quantum channels or instruments. The
process matrix in Eq. (7) is given by

WA→B := |A → B〉 〈A → B| , (8)

where A → B indicates that Alice acts before Bob. We
have not included Alice’s or Bob’s operations in this
description; this is introduced in Sec. II E. Note that in the
superscripts of the process vector in Eq. (7) (and in subse-
quent labeling of the Hilbert spaces), we have dropped H.
For example, Ain corresponds to the Hilbert space HAin .
Analogously, we may define the process where Bob acts
before Alice, which will lead to a process vector

|B → A〉 := |1〉〉PT,Bin ⊗ |1〉〉Bout,Ain ⊗ |1〉〉Aout,FT , (9)

and its process matrix is given by

WB→A := |B → A〉 〈B → A| . (10)

The quantum switch is a process that allows one to coher-
ently alternate between |A → B〉 and |B → A〉. For that,
we allow the common past and common future to have
another system, denoted as a control system, which will
be able to coherently alternate between the ordered pro-
cesses. More formally, the common past space and com-
mon future space are now described by HP = HPC ⊗ HPT
and HF = HFC ⊗ HFT , respectively, and the Choi vector
of the quantum switch is given by

|wswitch〉 := |0〉PC ⊗ |A → B〉 ⊗ |0〉FC

+ |1〉PC ⊗ |B → A〉 ⊗ |1〉FC , (11)

which corresponds to the process matrix

Wswitch := |wswitch〉 〈wswitch| . (12)

Almost all known applications of the quantum switch, e.g.,
computational advantages [17], channel discrimination [8],
reducing communication complexity [21], semi-device-
independent certification [60] and device-independent cer-
tification [62,84] of indefinite causality, do not require
the general form of the quantum switch as presented in
Eq. (12). Rather, in such applications, one starts with the
control qubit in the |+〉C := (|0〉C + |1〉C)/

√
2 state, so

that the process state corresponds to a coherent superpo-
sition of processes described by

∣
∣w+

switch

〉
:= |A → B〉 ⊗ |0〉FC + |B → A〉 ⊗ |1〉FC

√
2

. (13)

Additionally, for all such applications, one does not use the
future target system; hence, this qubit is often discarded.

Mathematically, discarding a system corresponds to the
partial trace. Hence, we construct the simplified version of
the switch as

W+
s := TrFT

(∣
∣w+

switch

〉 〈
w+

switch

∣
∣
)

. (14)

In this work, we focus on the simplified quantum switch,
and as is usual in the literature, we use “quantum switch”
to refer to the process described in Eq. (14).

D. The general process matrix formalism

The process matrix formalism allows one to assign a
matrix that perfectly describes transformations between
arbitrary quantum objects, in particular, to transform quan-
tum channels into quantum channels. The normalization
constraints from quantum channels (or more general quan-
tum objects) and a generalized notion of completely posi-
tive inputs lead to constraints on valid process matrices. In
a nutshell, when focused on quantum channels, a matrix W
is a process matrix if it is positive semidefinite and respects
a set of affine constraints arising from the channel normal-
ization conditions. These affine constraints are described
in references such as Refs. [6,17] and may be viewed as
causal constraints (for instance, they prevent local loops
or the possibility of obtaining negative probabilities via
Born’s rule).

E. Measuring a process matrix

One of the main applications of the process matrix for-
malism is to provide mathematical methods to analyze the
dynamics of a quantum process and to predict the out-
comes of measurements performed on a quantum process.
Below, we describe the scenario considered in this work,
which is graphically represented in Fig. 2:

(1) W ∈L (HP ⊗HAin ⊗HAout ⊗HBin ⊗HBout ⊗HF
)

is
the process matrix that describes a bipartite scenario
with a common past (target) and common future
(control).

W

FIG. 2. Probing a quantum process W. Illustration on how to
probe a bipartite quantum process W with a common past and a
common future. Here ρw are quantum states, {Aa|x} and {Bb|y} are
quantum instruments, and {Mc|z} are quantum measurements.
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(2) ρ ∈ L(HP) is a quantum state on the common past
(target) space.

(3) Aa ∈ L(HAin ⊗ HAout) are the Choi operators of an
instrument on Alice’s space.

(4) Bb ∈ L(HBin ⊗ HBout) are the Choi operators of an
instrument on Bob’s space.

(5) Mc ∈ L(HF) are the measurement operators on the
common future (control) space.

In the scenario described above, if W is the process matrix,
one inputs the state ρ into the common past, Alice per-
forms the instrument {Aa}, Bob performs the instrument
{Bb}, the measurement {Mc} is performed in the future,
and the probability that Alice obtains the outcome a, Bob
obtains the outcome b, and the future obtains the outcome
c is given by

p(a, b, c) = Tr
(

W
(
ρP ⊗ AAinAout

a ⊗ BBinBout
b

)T
⊗ M F

c

)

.

(15)

In practice, it is often convenient to have indices to label
states, instruments, and measurements. In this work, we
use {ρw} to denote a set of states acting in the common
past, {Aa|x} for a set of instruments in Alice’s space (a
labels the classical outcome of the instrument and x labels
the choice of instrument), {Bb|y} for a set of instruments in
Bob’s space (b labels the classical outcome of the instru-
ment and y labels the choice of instrument), and {Mc|z} for
a set of measurements in the future space (c labels the clas-
sical outcome and z labels the choice of measurement). We
can then define the setting operators [85] as

Sabc|xyzw :=
(
ρP

w ⊗ AAinAout
a|x ⊗ BBinBout

b|y
)T

⊗ M F
c|z, (16)

which leads us to the so-called generalized Born’s rule:

p (abc|xyzw) = Tr
(
W Sabc|xyzw

)
. (17)

The setting operator approach allows us to present the
experimental setup in a compact and explicit manner, and
it is convenient for data analysis. For instance, it allows
us to easily include particular restrictions to general causal
nonseparability witnesses, as we detail in Sec. IV B.

F. Process matrix tomography

The goal of quantum tomography is to completely char-
acterize a quantum object by performing known measure-
ments on it. Before discussing process matrix tomography,
we revisit the standard case of quantum state tomogra-
phy, where one aims to characterize an unknown state by
analyzing the outcomes obtained after performing known
measurements on it. If Ma|x ∈ L(Cd) are known measure-
ment operators, one can use the probabilities p(a|x) =

Tr(ρMa|x) to uniquely reconstruct the unknown state ρ.
When the set of operators {Ma|x} spans the linear space
of L(Cd), the operator ρ may be obtained via p(a|x) by
standard linear inversion methods.

For qubit states, a standard set of tomographi-
cally complete measurements is formed by the three
Pauli observables X , Y, and Z, which are associ-
ated with the measurement operators via their eigen-
projectors:

{ |+〉 〈+| , |−〉 〈−| },
{ |y+〉 〈y+| , |y−〉 〈y−| },{ |0〉 〈0| , |1〉 〈1| }, respectively, where |±〉 = (|0〉 ± |1〉)/√

2 and |y±〉 = (|0〉 ± i |1〉)/√2. In particular, the standard
measurement operators from the set

S := {|ψi〉 〈ψi|}4
i=1, (18)

where

|ψ1〉 〈ψ1| := |0〉 〈0| , |ψ2〉 〈ψ2| := |1〉 〈1| , (19)

|ψ3〉 〈ψ3| := |+〉 〈+| , |ψ4〉 〈ψ4| := |y+〉 〈y+| . (20)

These measurements are linearly independent, forming a
(nonorthonormal) basis for L(C2).

We now consider the task of performing tomography of
a qubit channel. As discussed in Sec. II B, every quan-
tum channel C : L(Hin) → L(Hout), can be represented
by its Choi operator C ∈ L(Hin ⊗ Hout). In this case,
tomography can be performed by one preparing a set of
states {ρw}w, ρw ∈ L(Hin) and performing a complete set
of measurements on each state. For qubits, the standard
measurements are

M := {Mi|j }i=2,j =3
i=1,j =1, (21)

where Mi|j is a positive-operator-valued measure (POVM)
element, the label i stands for the outcomes, and the label
j stands for the choice of measurements. Hence, M is
a set with three dichotomic measurements with POVM
elements given by

M1|1 := |0〉 〈0| , M2|1 := |1〉 〈1| , (22)

M1|2 := |+〉 〈+| , M2|2 := |−〉 〈−| , (23)

M1|3 := |y+〉 〈y+| , M2|3 := |y−〉 〈y−| . (24)

Note that, because of the normalization of probabilities, the
measurements of some measurement operators are unnec-
essary. However, in practice, the orthogonal measurements
M2|j are often measured to aid in the data normalization.
We include them here, with a view to our experiment.

From these input states and measurements, one
estimates the probabilities p(a|x, w) = Tr

(
C(ρw)Ma|x

)
,
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which can also be written as

p(a|x, w) = Tr
(

C
(
ρT

w ⊗ Ma|x
) )

(25)

= Tr
(
C Sa|xw

)
(26)

in the Choi formalism, where Sa|xw := ρT
w ⊗ Ma|x, where

Sa|xw is a setting operator for standard quantum process
tomography. One way to perform complete tomography
is by ensuring that the setting operators Sa|xw span the
space L(Hin ⊗ Hout). Also, thanks to a property usu-
ally referred to as “local tomography” [86], if the set of
operators {ρT

w}w spans L(Hin) and the set {Ma|x}a,x spans
L(Hout), then the set of setting operators

{
ρT

w ⊗ Ma|x
}

w,a,x
spans L(Hin ⊗ Hout). In other words, full quantum chan-
nel tomography is always possible if one measures a set
of characterized setting operators {Sa|xw}a,x,w that span the
space L(Hin ⊗ Hout).

In principle, measuring a set of setting operators
{Sa|xw}a,x,w that span L(Hin ⊗ Hout) is actually “overkill.”
More specifically, because of the normalization condition
Trout(C) = 1in, respected by quantum channels, there are
linear operators in L(Hin ⊗ Hout) that cannot be written as
linear combinations of quantum channels, e.g., |0〉 〈0|in ⊗
1out. One can then consider a set of operators {Sa|xw}a,x,w
that span the set of quantum channels, a subspace with
dimension strictly smaller than the dimension of L(Hin ⊗
Hout). In particular, the linear space L(Hin ⊗ Hout) has
dimension of d2

in d2
out, and the linear span of quantum chan-

nels in L(Hin ⊗ Hout) has dimension of d2
in(d

2
out − 1). We

emphasize, however, that this does not represent a prob-
lem; in practice, use of an overcomplete measurement set
is known to minimize the experimental errors in standard
quantum tomography [87].

Finally, we now consider tomography of process matri-
ces W ∈ L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
,

such as the quantum switch illustrated in Fig. 1(d). As
discussed before, one way to perform tomography is
to measure setting operators Sabc|xyzw that span the lin-
ear space L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
.

Also, thanks to local tomography, we may consider sets of
states and measurements that span the local space individ-
ually. We then consider the set of states given by Eq. (18),
and the set of measurements is given by Eq. (21). For
tomography of a higher-order process matrix, we then con-
sider the set of measure-and-reprepare instruments (to be
used as inputs for Alice’s and Bob’s channels) given by all
combinations of the two sets above; that is,

R := {Ri|(j ,k)}i=2,j =3,k=4
i=1,j =1,k=1, (27)

where

Ri|(j ,k) := Mi|j ⊗ |ψk〉 〈ψk|T . (28)

The interpretation of Eq. (28) is as follows: First, the mea-
surement j with POVM elements {Mi|j }i is performed.
Then, the state |ψk〉 is prepared. Notice that in our measure-
and-reprepare instruments, the prepared state |ψk〉 is inde-
pendent of the measurement choice j and the obtained out-
come i. One could also use measurement-dependent states,
but even in this case we would need to estimate the proba-
bilities of subsequent measurements for each reprepared
state. Thus, the total number of estimated probabilities
would not change.

It is worth mentioning explicitly that the linear space
spanned by unitary channels is strictly contained in the lin-
ear space spanned by quantum channels (for an explicit
characterization of such linear spaces, see Appendix A
in Ref. [76]). Additionally, the linear space spanned by
quantum channels is strictly contained in the linear space
spanned by general instrument elements (which are arbi-
trary positive semidefinite operators that are not greater
than or equal to general quantum channels). Hence, to per-
form full process tomography, one cannot simply use quan-
tum channels (even if nonunitary channels are considered).
Rather, full quantum instruments are required.

One can then perform full tomography with the setting
operators

Sabc|xyzw := |ψw〉 〈ψw|TPT ⊗ AAinAout
a|x ⊗ BBinBout

b|y ⊗ M FC
c|z ,

(29)

where |ψw〉 〈ψw| are the four different quantum states in
S , Aa|x and Bb|y are each the 2 × 3 × 4 = 24 instrument
elements [88] of set R defined in Eq. (27), and 2 × 3 = 6
measurement elements for the future control space are the
measurements Mc|z of M [Eq. (21)]. In total, we then mea-
sure 4 × 24 × 24 × 6 = 13 824 different settings. In this
tomography approach, we do not apply any constraints on
the process matrices. One could also reduce the number
of required settings by imposing the assumption that valid
process matrices necessarily belong to a particular linear
subspace, as discussed in Sec. II D. Notice that, since the
linear space spanned by general process matrices strictly
contains the linear space spanned by causally ordered pro-
cess matrices [13,89], the minimal number of required
setting operators to perform full tomography for general
process matrices is strictly larger than the required number
for causally ordered processes.

In an ideal theoretical scenario, if we obtain the prob-
abilities p (abc|xyzw) = Tr

(
W Sabc|xyzw

)
for a tomograph-

ically complete set of setting operators, standard linear
inversion will uniquely identify the process W. However,
because of finite statistics, we never obtain the exact prob-
ability p (abc|xyzw), but obtain an approximation from
measured frequencies. Also, because of measurement pre-
cision and other possible sources of errors, we cannot
expect to obtain an exact reconstruction of the process
matrix. Indeed, performing direct linear inversion often
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results in unphysical quantum states or processes. Instead,
we aim to estimate a physical process matrix that agrees
best with the experimental data.

To estimate our experimental process matrix Wexpt, we
perform a fitting routine to find the process matrix that
best describes our measured data. We find that minimiz-
ing the least absolute residuals works quite well. To do
this, we numerically search for a process matrix Wexpt that
minimizes the following expression:

r = 1
Nsettings

∑

abcxyzw

∣
∣
∣pexpt(abc|xyzw)− Tr(Wexpt Sabc|xyzw)

∣
∣
∣,

(30)

where Nsettings is the number of setting operators, and the
minimization is further subject to the constraint that Wexpt
is a valid process matrix; that is, it is positive semidefinite,
it has trace d2, and it is constrained to the linear subspace
described in Refs. [13,89]. This minimization can be per-
formed by means of semidefinite programming and may
be implemented with the help of numerical libraries such
as YALMIP and MOSEK. Our MATLAB code implementing
this is available from Ref. [90]. The first term in the abso-
lute value is the experimentally measured probability pexpt,
while the second term corresponds to what is predicted
by quantum theory for the characterized settings Sabc|xyzw.
Since Wexpt is the only unknown quantity, the minimization
of Eq. (30) delivers a process matrix that fits best to our
experimental data, with our making no assumptions about
the specific form of the process matrix.

It is worth mentioning that we also attempted to use
the more standard maximum likelihood and least-squares
fits. However, when attempting to solve these problems
with YALMIP, our code was unable to define these objec-
tive functions after running for several days. On the other
hand, our code [90] can solve the entire least absolute
residuals problem in approximately 5 min. In numeri-
cal experiments on lower-dimensional systems, we found
the fidelities between process matrices reconstructed with
these different objective functions were slightly lower than
our experimental error.

III. EXPERIMENT

A. Time-bin quantum switch

To date, most implementations of the quantum switch
have been based on bulk optics. Since photonic quantum
switches are essentially interferometers, inevitable phase
drifts limit the measurement time or require active stabi-
lization [35,45]. Furthermore, since adding more parties
means that the dimension of the control system must be
increased, scaling up previous architectures requires more
and more spatial modes to be transmitted through the same
optic, making it difficult to create a switch with more than
two parties. Here we present a passively stable, fiber-based

architecture for the quantum switch where the control sys-
tem is encoded in a time degree of freedom of the photon.
Thus, in our architecture, although the dimension of the
control system must still be increased at the same rate, this
can be done with additional time bins, but only one spa-
tial mode must traverse each optical element. Furthermore,
by our using the same interferometer to prepare and mea-
sure the control system, all phase fluctuations cancel out,
making our setup passively stable. This is important for
process tomography, as we must perform many measure-
ments, and the experiment must remain stable during this
time.

To create the time-bin qubit that we will use to con-
trol the order, we start by generating a photon pair, λ =
1550 nm, using spontaneous parametric down-conversion
(SPDC). One photon of the pair is directly detected to
herald the other photon, setting a time reference for the
experiment. The second photon is sent to a 50:50 beam
splitter—a fiber directional coupler (FDC)—that splits the
incoming mode into two fibers of different lengths. We then
deterministically recombine these two fiber paths using an
ultrafast fiber optical switch (UFOS); see Fig. 3(a) and also
the yellow section in Fig. 4(a) [91]. To do so, we gener-
ate an electronic pulse, triggered off the timing reference
generated by detection of the first photon. This pulse is
sent to the UFOS, which changes its state to first route the
“photon component” from the short path, followed by the
“photon component” in the long path, into the upper output
mode of the UFOS-MZI [Figs. 3(a)(ii) and 3(a)(iii)]. The
result is that the second photon is left in an equal super-
position of two time bins in a single fiber [Fig. 3(a)(iv)].
Because the short time bin is transmitted through the FDC,
while the long time bin is reflected, one mode picks up
a reflection phase, while the other does not. Hence, in
our experiment we prepare the control qubit in the state
|y−〉C = (|S〉C − i |L〉C)/

√
2, where we have labeled the

mode as the “short” (“long”) state |S〉C (|L〉C) when it has
taken the short (long) fiber path of the interferometer. The
spacing between these two time bins is 150 ns, which is set
by the response time of our UFOS.

The UFOSs we use to route the photon are BATi
2 × 2 Nanona fiber switches. In addition to creating the
time-bin qubit, they allow us to route the photon in a
controlled way through the quantum switch. Our UFOSs
have a response time of 60 ns, with a maximal duty
cycle of 1 MHz, and a cross-channel isolation greater than
20 dB for any polarization (see Refs. [92,93] for more
details).

Having created the time-bin control qubit, we need to
apply the quantum switch operation to the target system,
which we encode in the polarization degree of freedom
of the same photon. To route the photon, we use two
additional UFOSs and follow the protocol illustrated in
Figs. 4(b)(i)i– 4(b)(vi). In particular, we send a voltage
pulse train consisting of three low levels and two high
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FIG. 3. Active generation and measurement of time-bin qubits. (a) An incident single photon is deterministically placed in a super-
position of the “short” (S) and “long” (L) time bins, with use of an UFOS. This optical switch is UFOS-MZI in Fig. 4(a). However,
for clarity, we have mirrored the device horizontally. (b) Our measurements in the Z basis. Here the UFOS remains in the “bar state.”
After traversing the device, the photon remains in a superposition of the two incident time bins (but spread over two paths). In this
situation, simply resolving the arrival time of the photon projects the control qubit into the Z basis. (c) A schematic of our deterministic
measurement in the Y basis. Here the UFOSs alternate between the “cross” and bar states so that the short (long) time bin now takes
the long (short) path. In this manner, the two time bins interfere on the beam splitter, so finding the photon in the upper (lower) path
corresponds to projecting the time bin onto |y+〉 (|y−〉).

levels to the UFOSs. During each low level, the fiber
switches are in a “cross state” (output modes are swapped
with respect to the input), while during a high level the
switch state is set to the “bar state” (input modes trans-
mitted to output modes). As the time bins approach the
quantum switch [Fig. 4(b)(i)] the UFOSs are initially in the
cross state, which routes the short time bin |S〉C through
Bob’s quantum channel [Fig. 4(b)(ii)]. Then the UFOSs
change to the bar state [Fig. 4(b)(iii)], which sends |L〉C
through Alice’s channel, while |S〉C travels over a fiber
from the rhs UFOS to the lhs UFOS. Then the UFOSs
see a low voltage level, and they are set to the cross
state [Fig. 4(b)(iv)]. This sends |S〉C through Alice’s local
laboratory, while |L〉C loops back to the lhs UFOS. In
Fig. 4(b)(v) the UFOSs are in the bar state and hence |L〉C
passes through Bob’s channel. At this point |S〉C exits the
quantum switch. Finally, the fiber switches are set to the
cross state [Fig. 4(b)(vi)] so that |L〉C leaves the quantum
switch. At this point, depending on the control state, the
target system has experienced a different order of Alice’s
and Bob’s actions, which, as we describe shortly, act on the
polarization state of the photon. Note that all the lengths
of the fibers in the quantum switch are set to ensure the
correct routing of time bins spaced by 150 ns.

The time-bin quantum switch from Fig. 4(b) is placed
in the full fiber-based setup [Fig. 4(a)], in which the time
bins are prepared and measured. The quantum switch itself
is shown in the green section in Fig. 4(a). The type-II
SPDC photon source [94] is shown in the red section
[95]. Here, a polarizing beam splitter (PBS) reflects the

heralding photon to a single-photon detector (blue area),
while the other photon is transmitted to the Mach-Zehnder-
like time-bin-generation interferometer described above
(red section). Following this, we have a photon encod-
ing a time-bin qubit in the state (|S〉C − i |L〉C)/

√
2 in

the “upper” output of the interferometer (clockwise direc-
tion). The counterclockwise path of the loop (lower output
mode of the UFOS-MZI) hosts an optical circulator with
an empty port to filter out misguided photons, which can
arise from the imperfect extinction ratio of our UFOSs.
Next, the target system is encoded in the photon’s polar-
ization. For this we use a PBS and a set of quarter-wave
and a half-wave plates, as shown in the orange section in
Fig. 4(a). Then we apply the two-switch operation to the
target system described above [green sections in Figs. 4(a)
and 4(b)], where we implement Alice’s and Bob’s instru-
ments using short free-space sections containing wave
plates and polarizers.

After exiting the switch, the photon follows the fiber
loop in a clockwise direction and approaches the MZI used
for time-bin generation (red section), but now from the
opposite direction in the lower path. At this point, we can
decide to measure the control qubit in the computational
(Z) basis or a superposition (Y) basis. These measurements
are illustrated in Figs. 3(b) and 3(c), respectively. For mea-
surements in the computational basis, both time bins are
routed by the UFOS along the lower path of the MZI,
after which the two time bins split up at the FDC, and are
then sent to detectors in the blue region. By measuring the
arrival time, with respect to the herald detection, we can
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FIG. 4. Experimental setup. (a) The complete experiment. The individual sections are indicated with colors. The red section shows
the Sagnac SPDC source, whuch generates heralded single photons. In the yellow section, we illustrate the asymmetric MZI used to
generate and measure the time-bin control qubit. The orange section shows the target qubit preparation stage, which consists of a PBS
and two wave plates. The green area hosts the fiber-based quantum switch. The heralded and heralding photons are detected wit use
of superconducting-nanowire single-photon detectors (SNSPDs), shown in the blue area. By triggering off the detection event for a
heralding photon, we use a pulse generator to control the optical switches in the setup. (b) The functionality of the quantum switch.
By controlling the state of the optical switches, we route the two time bins in different orders through Alice’s and Bob’s quantum
channels. After the switch operation, the target qubit has experienced the action of the quantum channels in a different order depending
on the state of the time-bin qubit. Note that panels (i)–(vi) serve merely to illustrate the time-bin routing using the optical switches.
The positions of the time bins in the diagram do not accurately represent their exact locations during the experiment. Experimentally,
the time-bin spacing�t between |S〉C and |L〉C stays unchanged. HWP, half-wave plate; L, long time bin; QWP, quarter-wave plate; S,
short time bin.

distinguish between the short and long time bins. To mea-
sure in a superposition basis, we use the UFOS-MZI to
send the time bins through the opposite paths of the inter-
ferometer (|S〉C takes the long path and |L〉C takes the short
path) so that they arrive at the FDC at the same time. In this
case, interference occurs at the FDC, and detecting a pho-
ton exiting the upper (lower) port corresponds to projecting
the control qubit in |y+〉C (|y−〉C).

With this in place, we collect the measurement statistics
from different measurement settings by detecting coinci-
dence events between the heralding photon and the FDC
output or the circulator output. For each experimental
configuration, we record approximately 1600 coincidence
counts (approximately 21 000 total single-photon counts)
over 10 s at the FDC output and the circulator output.
The photon source generates approximately 1 480 000 sin-
gle photons (approximately 116 000 coincidence events)

in 10 s before the experiment. Thus, our entire quantum
switch experiment has an overall insertion loss of approxi-
mately 18 dB. All our measurements are performed with
superconducting-nanowire single-photon detectors from
PhotonSpot Inc. The result, for a representative set of
measurements, is shown in Fig. 5. Therein, the bars rep-
resent the theory for an ideal quantum switch with the
control qubit in state |y−〉C, described by the process
matrix Wy−

s , while the points represent our experimen-
tally measured data. One can observe good agreement
between theory and experiment. Using unitary operations
(rather than measure-and-reprepare instruments), we can
also play the anticommuting-commuting gate discrimina-
tion game, as in Ref. [35]. We find a success probability of
0.974 ± 0.018, indicating high fidelity of our implemen-
tation (full details of this measurement are presented in
Appendix B 1).
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FIG. 5. Experimentally estimated probabilities. A small subset
of the experimentally estimated probabilities. The bars represent
the theory for the ideal process matrix Wy−

s and the points repre-
sent the experimental estimates. The upper (lower) panel shows
measurements of the control qubit in the Z (Y) basis. The red bars
are for outcomes |0〉 and |y−〉 and the blue bars are for outcomes
|1〉 and |y+〉.

B. Experimental process matrix tomography

We now present our experimental reconstruction of
the process matrix of our time-bin quantum switch. As
discussed in Sec. II, to probe the underlying process,
Alice and Bob must each implement a complete set
of instruments. In our experiment, the target system is
encoded in the polarization state of the photon, so Alice
and Bob must act on this degree of freedom. Rather
than the measurement-repreparation instruments defined in
Eqs. (27) and (28), we use a slightly modified form R̃ :=
R̃i|(j ,k) presented in Eqs. (A9) and (A10) in Appendix A. In
particular, Alice and Bob each have access to three dif-
ferent measurement bases M̃i|j , where j ∈ 1, 2, 3 defines
the measurement and i defines the outcome. For each j ,
M̃j := M̃1|j − M̃2|j is the observable associated with the
POVM {M̃1|j , M̃2|j }. The specific operators we implement
are defined in Eqs. (A5) and (A6). For example, j = 1
corresponds to the Z basis: M̃1 := M̃1|1 − M̃2|1 = Z.

Experimentally, we implement these measurements
using a polarizer fixed to transmit horizontally polarized
light |H 〉. We set the measurement basis using a quarter-
wave plate and a half-wave plate before the polarizer set to
the angles given in Eq. (A6). To implement the second part
of the instrument—the repreparations—we must prepare
one of four different states. We experimentally accom-
plish this using another quarter-wave plate and another
half-wave plate to rotate the photon’s polarization if it is
transmitted through the polarizer. This allows us to prepare
one of the four

∣
∣
∣φ̃k

〉
states listed in Eq. (A8). Thus, overall,

both parties can implement the 24 different measurement-
repreparation operators defined in Eqs. (A9) and (A10)

(six different measurement operators times four different
repreparations).

In addition to Alice’s and Bob’s channels, we must send
in a complete set of target states and perform measure-
ments on the control qubit after the switch. To this end,
we first prepare the target qubit in the four different input
states

∣
∣
∣ψ̃w

〉
given in Eq. (A4). We set these states using

the quarter-wave plate and half-wave plate pair mounted
in the target preparation stage, shown in the orange area in
Fig. 4(a) [the exact wave plate angles that we use are listed
in Eq. (A4)].

Finally, at the output of the switch we must measure the
state of the control qubit. This procedure is illustrated in
Figs. 3(b) and 3(c). As discussed in Sec. III A, we use the
same beam splitter to measure and prepare the time-bin
qubit, but from opposite directions. As a result, the phase
of this measurement basis is fixed to the Y basis. In our
notation in Eqs. (A1) and (A2) in Appendix A, this corre-
sponds to measurements C̃1|2 and C̃2|2. Experimentally, a
C̃1|2 versus C̃2|2 result depends on from which port of the
FDC the photon exits. As described above, we can addi-
tionally measure in the Z basis by fixing the UFOS-MZI to
the bar state on the return trip such that the short and long
time bins do not interfere at the FDC and observing the
arrival time of the time bins. If we find the photon arrives
earlier, this is associated with a C̃1|1 detection event, while
if it arrives later, it corresponds to C̃2|1.

To be complete with regard to the future control space,
we would require an additional measurement of the con-
trol qubit in the X basis, i.e., we need the measurements
M1|2 and M2|2 from Eq. (23). In our experiment, this could
be achieved with use of a fast phase modulator to apply
the appropriate phase between the short path and the long
path only in the reverse direction. However, we do not
implement this here. Instead, we impose an additional con-
straint on our tomographic reconstruction. We require that
Tr

(
WexptX F

) = 0, where X = |+〉 〈+| − |−〉 〈−|. Given
the passive phase stability of our experiment, this is a very
good assumption. We verify this assumption by comparing
reconstructions with and without this constraint. In partic-
ular, we find that the fidelity between the process matrices
reconstructed with and without this constrain is 0.999982,
well below our experimental error.

Overall, this results in 24 × 24 × 4 × 4 = 9216 setting
operators of the form given in Eq. (A11) (number of
Alice’s settings times number of Bob’s settings times num-
ber of target states times number of control measurements).
However, for the control measurements, we have access to
both ports of the FDC beam splitter simultaneously (i.e.,
there is a detector in each output port of the beam splitter),
giving rise to 4608 different experimental configurations.
From these data we can calculate the probabilities for each
given setting operator. Experimentally, we measure count
rates associated with each setting operator, which we must

010325-11



ANTESBERGER, QUINTINO, WALTHER, and ROZEMA PRX QUANTUM 5, 010325 (2024)

then normalize for conversion into the required probabili-
ties. To do so, we use the normalization condition over the
outcomes of all three measurements

∑

abc

p(abc|xyzw) = 1. (31)

Thus, we define a normalization constant for every value
of x, y, z, and w:

Nxyzw =
∑

abc

C(abc|xyzw), (32)

where C(abc|xyzw) are the number of coincidences mea-
sured between the heralding detector and the detectors
after the FDC, corresponding to the setting operator
defined by a, b, c, x, y, z, and w. Then our experimentally
estimated probabilities are defined as

pexpt(abc|xyzw) = C(abc|xyzw)
Nxyzw

. (33)

A small subset of the resulting probabilities is plotted in
Fig. 5. By minimizing Eq. (30) [with the setting opera-
tors Sabc|xyzw replaced by the experimental setting operators
S̃abc|xyzw from Eq. (A11)], we can reconstruct the pro-
cess matrix Wexpt. Our MATLAB code implementing this
minimization is available from Ref. [90].

IV. RESULTS

A. Fidelity

The experimentally obtained 64 × 64 process matrix
and the ideal matrix are plotted in Fig. 6 as a 3D bar chart,
where Fig. 6(a) shows the real part and Fig. 6(b) shows
the imaginary part. The solid bars represent the experimen-
tally reconstructed process matrix, while the transparent
bars represent the theoretical process matrix Wy−

s . The x
and y axes numerically label the basis elements. The rel-
atively close agreement between the target process matrix
and our experimental process matrix is already evident in
Fig. 6.

To further assess the agreement between our experiment
and theory, we estimate the fidelity of the measured pro-
cess matrix Wexpt to the ideal matrix Wy−

s . Since every valid
process matrix normalized by its trace is a valid quantum
state, we use the conventional expression for calculating
the fidelity F(σ , ρ) = Tr

(√√
σρ

√
σ
)
, with σ and ρ being

different density matrices [71]. This results in fidelity

F(Wexpt, Wy−
s ) = 0.920 ± 0.001, (34)

where the error arising is estimated by a Monte Carlo simu-
lation of the entire reconstruction procedure accounting for
finite measurement statistics and small wave plate errors
of 1◦. Especially given the high dimension of our process

(a)

(b)

Re

Im

FIG. 6. Process tomography data. The experimentally recre-
ated process matrix of the quantum switch. (a) The real part of
Wy−

s and (b) the imaginary part. The color gradient along the x
axis does not have a physical meaning; rather, it is color coded
so as to identify the individual elements of this 64 × 64 matrix
better. Additionally, the ideal process matrix is represented via
the layer of semitransparent bars. Calculation of the fidelity
between these two process matrices results in F(Wexpt, Wy−

s ) =
0.920 ± 0.001.

matrix, this fidelity indicates that our experiment is quite
close to theory.

To quantify the agreement between our experimental
data and Wexpt, we compare the residuals of our fit r
[defined in Eq. (30)] with the average statistical error of
our data ηstat. The residuals r can be interpreted as the dis-
agreement between the outcome predicted by Wexpt and the
measured experimental outcome, averaged over all mea-
surement settings. For our fit r = 0.0089, indicating an
excellent match to our experimental data. We estimate our
statistical errors as follows. First, we treat the probability
to obtain an outcome abc as a binomial variable: either we
detect a photon or we do not detect a photon. Then we esti-
mate the variance of that setting as Nxyzw p(abc|xyzw)×
(1 − p(abc|xyzw)), where Nxyzw is the number of photons
detected in all outcomes associated with xyzw [defined
in Eq. (32)]. Finally, we compute the average error per
setting as

ηstat = 1
Nsettings

∑

abc|xyzw

p(abc|xyzw)(1 − p(abc|xyzw))√
C

.

(35)
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This is simply the standard error of each setting operator
averaged over all settings. Evaluating this for our data, we
find ηstat = 0.0056. Given that ηstat ≈ r, we conclude that
our process matrix fits our data well.

B. Causal nonseparability

A bipartite process matrix without a common past is
causally nonseparable when it cannot be written as a
classical mixture of causally ordered processes [6,13].
When one is considering bipartite processes with a com-
mon past, such as the quantum switch considered in this
work, there are different nonequivalent definitions of indef-
inite causality. In Refs. [13,43], a bipartite process matrix
W ∈ L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
with

common past and common future is said to be causally
separable if it can be written as a convex sum of causally
ordered process matrices. That is, W is causally ordered if
we can write it as

W = pWA>B + (1 − p)WB>A, (36)

where p ∈ [0, 1] and where WA>B and WB>A are causally
ordered processes (objects also referred to as quantum
combs [4,8], see Appendix C). Alternatively, in Ref. [11]
the concept of extensible causally separable processes is
proposed. This leads to a definition that differs from the one
in Eq. (36), but is equivalent to the definition of causal sep-
arability presented in Ref. [96], which considers not only
convex mixtures of causally ordered processes but also
incoherent (hence, classical) control of causal order. The
analysis and the numbers presented in this section and in
the main part of this paper were obtained via the definition
in Ref. [43], which is the one presented in Eq. (36). How-
ever, we stress that the results of our work are not qualita-
tively affected by the different definitions mentioned, in the
sense that, in all cases, the process we obtain after tomogra-
phy is not causally separable, and it is robust with regard to
different kinds of noise. In Appendix C, we present a more
detailed discussion of such definitions and how they result
in small quantitative changes in the numbers presented
here.

One method to quantify the degree to which our quan-
tum process is causally nonseparable is by use of a causal
witness. A causal witness is a Hermitian non-negative
operator G such that Tr

(
GWsep

) ≥ 0 for all causally sep-
arable processes. However, for all causally nonseparable
processes (such as the quantum switch), one can always
find a witness G such that Tr

(
GWy−

s

)
< 0. Without addi-

tional constraints, the quantity Tr (GW) does not have a
physical meaning, and may be artificially inflated by mul-
tiplying the witness G by some constant. However, by
setting additional normalization constraints on the witness
G, one may identify the quantity Tr (GW) with how much
noise the process W can tolerate until it becomes causally

separable. More concretely, let 1W := 1/dPTdAoutdBout be
the “white noise process,” which simply consists of dis-
carding everything and outputting white noise. The quanti-
ties in the denominator of 1W correspond to the dimensions
of the Hilbert spaces. Since Alice and Bob implement
qubit channels, their output space dimensions are both
dAout = dBout = 2. Additionally, they perform operations on
the target qubit system, making dPT = 2. Now, let Wsep be
an arbitrary causally separable process matrix. In Ref. [13]
it is shown that for any given process matrix W, the prob-
lem of minimizing the quantity tr(GW) over all possible
causal witnesses G given by

min
G

Tr(GW) (37)

subject to Tr
(
GWsep

) ≥ 0 for all Wsep, (38)

Tr(G) ≤ Tr(1W) (39)

is equivalent to its dual formulation, a problem that con-
sists in finding how robust the given process W is with
regard to white noise:

min
r

r (40)

subject to
W + r1W

1 + r
being causally separable. (41)

More specifically, in Ref. [13] it is shown that if G∗ is the
witness that solves the optimization problem presented in
Eq. (37) and r∗ is the solution of the optimization problem
in Eq. (40), it holds that Tr(G∗W) = −r∗, which allows us
to interpret Tr(G∗W) as how robust W is with regard to
white noise.

Alternatively, one may also consider the problem

min
G,�

Tr(GW) (42)

subject to Tr
(
GWsep

) ≥ 0 for all Wsep, (43)

Tr(G�) ≤ 1, (44)

where � is an arbitrary process matrix. In this case, the
equivalent dual problem reads

min
r,�

r (45)

subject to
W + r�

1 + r
being causally separable, (46)

where � is an arbitrary process matrix. If G∗ and r∗ are
the solutions of the optimization problems in Eqs. (42)
and (45), respectively, we have Tr(G∗W) = −r∗, a quan-
tity typically referred to as the “generalized robustness”; it
may be viewed as the amount of noise one needs to add to
W to make it causally separable in the worst-case scenario.
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For the witness G to fit the setting operators imple-
mented in our experiment, we impose an additional struc-
ture on the witness G that is given by

G =
∑

abcxwyz

αa,b,c,x,y,z,wSabc|xyzw, (47)

where αa,b,c,x,y,z,w are arbitrary real numbers and Sabc|xyzw
are the setting operators of our experiment (see Sec. II E).
Additionally, for fixed setting operators, finding the max-
imal violation of a witness G with the normalization con-
straints related to white noise and generalized noise is a
semidefinite program [13], and can be efficiently solved
numerically [97]. Our code for doing so is available from
Ref. [90].

With these tools, we can construct a variety of witnesses.
First, we can construct witnesses using the complete mea-
surement set [Eq. (29)] or our restricted measurement set
[Eq. (A11)]. We can further design witnesses for two dif-
ferent process matrices Wy−

s or Wexpt. This results in four
witnesses: Gy−,all, Gy−,res, Gexpt,all, and Gexpt,res. Where the
subscript “y−‘” (“expt”) indicates that the witness was
optimized for the ideal (experimental) process matrix, and
the subscript “all” (“res”) indicates that the witness was
computed with use of the complete (restricted) measure-
ment set. We can then further construct witnesses for either
the generalized robustness or the white noise robustness.

The results for the generalized robustness witnesses are
summarized in Table I. The first row in Table I shows
the value of the four witnesses evaluated with Wy−

s , and
the second row shows the experimental values, estimated
with Wexpt. In this case, we see that Tr(Wy−

s GGR
y−,res) ≈

Tr(Wy−
s GGR

y−,all) and Tr(WexptGGR
expt,res) ≈ Tr(WexptGGR

expt,all).
In other words, the generalized robustness evaluated either
with the complete setting operators or with the restricted
setting operators is equal within experimental error. Evi-
dently, the additional measurement on the future control
system does not affect the generalized robustness. More
interesting for the generalized robustness witnesses is the
performance of the witnesses optimized for our experimen-
tal process matrix Wexpt. Examining the performance of
our experimentally estimated witnesses (the bottom row
of Table I), we see that the witnesses designed specif-
ically for our experimental process matrix increase the

generalized robustness. In particular, Tr(WexptGGR
expt,all) >

Tr(WexptGGR
y−,all) and Tr(WexptGGR

expt,res) > Tr(WexptGGR
y−,res).

To quantify this, we note that the net improvement from
the first entry in the experimental row to the last is approx-
imately 14 standard deviations, which could prove very
relevant to low-fidelity implementations of the quantum
switch. This would not be readily possible without process
matrix tomography being performed.

In Table II we summarize the results of our white noise
witness analysis. In this case, we see a significant differ-
ence between the witnesses constructed with the restricted
and complete measurement sets, with the complete mea-
surements sets revealing greater white noise robustness
in all cases. Furthermore, in the second row, we can see
that each step progressively increases the experimental
white noise robustness. The first entry Tr(GWN

y−,resWexpt) =
−1.65 ± 0.02 shows the value that one would obtain for
our setup without performing process matrix tomogra-
phy. i.e., the witness was designed for the ideal process
and uses only the experimentally implementable measure-
ment settings. In the next column, Tr(GWN

expt,resWexpt) =
−1.76 ± 0.01 is an improvement by our tailoring the wit-
ness for our experiment, however, still using only exper-
imentally implementable measurements. In the next two
columns, we improve both these values further by comput-
ing the witness assuming the complete measurement set.
The final entry, Tr(GWN

expt,allWexpt) = −2.11 ± 0.02 is higher
than the first entry by 23 standard deviations, clearly show-
ing the power of full process matrix tomography. Process
matrix tomography allows us to compute properties of the
experimental process without having direct experimental
access to them and we can precisely tailor our analysis
to our experimental conditions. In Tables III and IV in
Appendix C, we show the same analysis for the alternative
definition of causal nonseparability. The trends observed
therein are the same, although the absolute values of the
robustnesses are smaller.

C. Worst-case process tomography

For the process tomography results presented in
Sec. IV A, we found the process matrix that fit to our
data best by minimizing Eq. (30). As discussed there,
this resulted in a process matrix that describes our data

TABLE I. Generalized robustness witness analysis. A summary of the different generalized robustness witnesses constructed. The
witnesses Gi,j are labeled by two subscripts. The first indicates if the witness was designed for the ideal process matrix Wy−

s (subscript
“y−”) or the experimental process matrix Wexpt (subscript “expt”). The second subscript indicates if the restricted measurement set
(subscript “res”) or the complete measurement set (subscript “all”) was used for the witness. The first row shows the value of the
witness for Wy−

s and the second row shows the experimental values, which were evaluated as Tr[Gi,j Wexpt].

GGR
y−,res GGR

expt,res GGR
y−,all GGR

expt,all

Wy−
s −0.5834 −0.5525 −0.5834 −0.5512

Wexpt −0.387 ± 0.003 −0.431 ± 0.003 −0.370 ± 0.003 −0.431 ± 0.002
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TABLE II. White noise witness analysis. A summary of the different white noise witnesses constructed. The witnesses Gi,j and
process matrices are labeled by two subscripts described in the caption for Table I.

GWN
y−,res GWN

expt,res GWN
y−,all GWN

expt,all

Wy−
s −2.296 −2.174 −2.767 −2.624

Wexpt −1.64 ± 0.02 −1.76 ± 0.01 −1.96 ± 0.02 −2.11 ± 0.02

very well. However, one could ask the following question:
“Are there other causally separable process matrices that
describe the data almost as well?” To answer this question,
we perform a “worst-case” version of our process matrix
tomography. To do so, rather than minimizing Eq. (30),
we find the process matrix that maximizes the generalized
robustness or the white noise robustness, Tr(WworstGGR

j ,all)

or Tr(WworstGWN
j ,all), respectively. We do this using the

witnesses designed for the ideal process matrix and the
originally reconstructed experimental process matrix, but
always with the complete measurement sets. This max-
imization is subject to the constraints that Wworst is a
physical process matrix and that the predictions of Wworst
match the experiment within some error ε:

∑

abcxyzw

|Tr(Sabc|xyzwW)− pexpt(abc|xyzw)| ≤ ε. (48)

(a)
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FIG. 7. Worst-case process tomography. (a) Worst-case gen-
eralized robustness and (b) worst-case white noise robustness
causal witnesses versus the allowed deviation from the experi-
mental data. For these plots, the tomography routine attempted to
find a process matrix that maximized the witness (i.e., it searched
for the “most causally separable” process matrix), while still
agreeing with our experimental data with an average error of ε.
For all witnesses considered, the process that minimizes ε is also
the most causally nonseparable. For ε < 0.089, no valid process
matrix is found.

Here ε is closely related to the residuals defined in Eq. (30).
In particular, if ε < r, the maximization will fail, as there
is no physical process matrix compatible with this con-
straint. Thus, we perform worst-case process tomography
for the four witnesses discussed above starting from ε =
rexpt = 0.0089 and going to ε = 0.015. The results of this
analysis are plotted in Figs. 7(a) and 7(b). We find that
the generalized robustness witnesses are more tolerant ε,
finding that our data are consistent with causally separa-
ble process matrices only for ε � 0.012, while the white
noise witnesses require ε � 0.0105. Although this analy-
sis suggests that the causal nonseparability is rather fragile,
we stress the worst-case nature of this treatment: if a sin-
gle causally separable process matrix is compatible with
our data within ε, it will be returned, even if causally
nonseparable data fit our data better. In any case, we see
that for a range of experimentally relevant errors our data
are compatible only with a causally nonseparable process
matrix.

V. DISCUSSION

In this work, we have presented a protocol to perform
process tomography on a higher-order quantum opera-
tion, the quantum switch. We discussed how to construct
a complete set of measurements. The requirements for
this go beyond standard quantum process tomography,
wherein one must “only” send a complete set of input states
through the process, and perform a complete set of mea-
surements after the process. In particular, because HOQOs
take quantum channels as inputs, we must also imple-
ment a complete set of quantum channels for each input
channel. This can be achieved with measure-and-reprepare
instruments. Since this procedure scales even worse than
standard process tomography, we implement it using a new
phase-stable architecture of the quantum switch, allowing
long integration times.

Our photonic quantum switch uses a time-bin qubit as
the control system. By recombining time-bin qubits with
use of a passively stable interferometer, we were able to
keep our experiment stable indefinitely. We believe this
technique will be beneficial for various time-bin quantum
information experiments and will be scalable to high-
dimensional time-bin qudits. Furthermore, with a stable
time-bin qudit source, there is straightforward expansion
of the two-party quantum switch into a multiparty ver-
sion [47]. Creating a multiparty quantum switch is an
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experimentally challenging task, with just one experiment
to date superposing four parties [40]. However, this goal is
well motivated both for fundamental studies of multiparty
causal nonseparability [96,98,99] and for applications that
require the ICO advantage to scale with the number of
superposed parties [17,19,28,40,47].

The results of performing quantum process matrix
tomography on our experiment show that we have indeed
implemented a high-fidelity quantum switch, with fidelity
F = 0.920 ± 0.001. We then used our results to verify
the causal nonseparability of our experiment, designing
causal witnesses specifically for our experimental pro-
cess matrix. Finally, we implemented worst-case process
tomography, searching for a causally separable process
that could also describe our measurement. To find such a
process, we had to allow for an approximately 1.5 times
larger disagreement between our measurements and our
causally separable model. Our experimentally estimated
process matrix yields a precise description of our physi-
cal implementation, and could prove an essential tool for
experimentalists. Beyond estimating the process fidelity
and evaluating the causal nonseparability, it could be used
to debug experimental implementations and to simulate
other experiments, including scenarios where Alice and
Bob implement channels that were not used for process
tomography or situations where the quantum switch makes
up one part of a larger experiment.

Although our protocol was presented for the quan-
tum switch, it could be adapted to general HOQOs in
a straightforward manner. In the present work, we per-
formed an overcomplete set of measurements, but it
should be possible to implement a reduced set of mea-
surements by taking into account the constraints on the
space of physical process matrices. We also point out that
many complexity-reducing techniques from standard state
and process tomography, including compressed sensing
[100], shadow tomography [101], and adaptive tomogra-
phy [102], should apply to our protocol equally well. But
we leave these as topics for future work.

All the data necessary to replicate, verify, falsify, and/or
reuse this research are available online from Ref. [90].
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APPENDIX A: EXPERIMENTAL TECHNIQUES

In this appendix, the SPDC photon pair source used
is described and the technique implemented to compen-
sate for unwanted polarization transformations induced
by the birefringence of the optical fibers is explained.
Moreover, the implemented experimental instruments and
measurements are shown in detail.

1. Photon source

To generate photon pairs at wavelength λ = 1550 nm,
we use a 775-nm, cw laser beam to pump a 30-mm-long
Periodically poled potassium titanyl phosphate crystal. A
dichroic mirror reflects 775-nm light and transmits photons
at 1550 nm. The signal and idler photons are then separated
on a PBS and coupled over optical fibers into the setup.

2. Polarization compensation

To ensure that the quantum switch performs the desired
transformations on the photon’s polarization, it is impor-
tant to correct for the birefringent behavior of the fibers
that connect Alice’s and Bob’s laboratories; i.e., to ensure
that the fibers do not change the polarization state of the
photon. Hence, each fiber link has to perform an iden-
tity operation. To this end, each fiber is equipped with a
three-loop fiber polarization controller, which allows us
to implement any unitary polarization transformation in
the fiber. To implement a true identity operation, we must
check that the correct transformation is applied in two dif-
ferent bases. We use the computational and diagonal bases.
A convenient way to do this is to send classical light at
the same wavelength as the single photons through the
fibers and detect the polarization with a polarimeter at
the fiber output. To ensure the identity transformation, we
switch the light’s polarization state at the target prepara-
tion stage (see Fig. 4) between horizontal |H 〉 and diagonal
|D〉, while adjusting the polarization controller until it con-
verges to the correct setting in both bases. To correct the
polarization for the second trip through the channels, we
place a polarizer in one of the channels (without additional
wave plates). This decouples the compensation from the
previous fiber. Then we follow the same procedure and
alternate the polarizer to transmit |H 〉 and then |V〉. For this
procedure to work properly, it is essential that the wave-
lengths of the classical light and the single photons are
matched.
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3. Experimental instruments and measurements

Here we explain in detail the measurements and instru-
ments we implement in the laboratory, and how they relate
the ideal settings discussed in the main text.

a. Future control measurement

Our control qubit is the time-bin qubit. Its past state is
fixed to |y−〉C. Ideally, we would measure the future con-
trol in three different bases described by Eqs. (22)–(24).
However, because of experimental limitations, we measure
the future control in only two bases:

C̃ := {C̃c|z}c=2,z=2
c=1,z=1, (A1)

where

(A2)

Experimentally, the measurement outcomes c = 1 and c =
2 correspond to finding the photon exiting different ports
of the beam splitter (labeled “FDC” in Fig. 4). Note that
the order of the output indices has swapped compared with
Eqs. (22)–(24) so as to be consistent with our experimental
convention.

b. Past target states

Our target system is encoded as in the polarization
degree of freedom of the photon. We thus prepare its state
by sending the photon to a polarizer set to transmit hori-
zontal polarization, which we define to be the logical |0〉T
state. We then set its state using a quarter-wave plate, fol-
lowed by a half-wave plate. We can thus prepare the set of
states given by

S̃ := {
∣
∣
∣ψ̃w

〉 〈
ψ̃w

∣
∣
∣}4

w=1, (A3)

where

(A4)

c. Alice’s and Bob’s instruments

As our target system is encoded in a polarization state,
Alice and Bob must implement measure and reprepare
channels on this degree of freedom. To do the measure-
ment, they use a fixed polarizer to project the target qubit
onto horizontal polarization. Using a quarter-wave plate
and a half-wave plate before the polarizer, they can then
set the measurement basis. Since this provides only one
outcome (either the photon is transmitted or it is not trans-
mitted, but they cannot detect the cases when a photon
is absorbed by the polarizer) they must also explicitly set
the wave plates to perform the orthogonal measurement so
as to normalize the data to compute a probability. These
measurements are defined by the set

M̃ := {M̃i|j }i=2,j =3
i=1,j =1, (A5)

where the wave plate angles and resulting measurement
operators are given by

(A6)

Following their measurements, Alice and Bob reprepare
the target state in one of four different options:

P̃ := {
∣
∣
∣φ̃k

〉 〈
φ̃k

∣
∣
∣}4

k=1. (A7)

This is again accomplished with a quarter-wave plate and
a half-wave plate. Since the polarizers transmit horizontal
polarization, the horizontally polarized postmeasurement
photon is then rotated to one of the following states:

(A8)

The net action of their instruments is then given by all
combinations of the sets M̃ and P̃ ; that is,

R̃ := {R̃i|(j ,k)}i=2,j =3,k=4
i=1,j =1,k=1, (A9)
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where

R̃i|(j ,k) := M̃i|j ⊗
∣
∣
∣φ̃k

〉 〈
φ̃k

∣
∣
∣
T

. (A10)

We then have the following experimental setting operator:

S̃abc|xyzw :=
∣
∣
∣ψ̃w

〉 〈
ψ̃w

∣
∣
∣
TPT

⊗ ÃAinAout
a|x ⊗ B̃BinBout

b|y ⊗ C̃FC
c|z ,

(A11)

APPENDIX B: ADDITIONAL MEASUREMENTS

In this appendix, we describe additional measurements
taken on this setup.

1. Commutation-anticommutation game

Shortly after it was proposed that the quantum switch
offers a computational advantage over conventional quan-
tum circuits for certain tasks [13,29], one such task—the
commutation-anticommutation game—was experimen-
tally realized with a two-party switch [35]. This task takes
the form of a game, in which a referee provides a player
with two unitary gates Â and B̂. The referee states that
these two unitary gates either commute or anticommute,
and the player’s goal is to decide which statement is true.
However, the player is permitted to use each gate only
once. When the player has access to a quantum switch,
that player can win the game perfectly. However, When
the player is constrained to use a conventional (causally
ordered) quantum circuit, the player would need to query
one gate at least twice. The switch result can be easily
understood by looking at the output state of the switch after
application of a Hadamard operation on the control qubit.
In the experiment, this is realized when the time bins are
recombined on the beam splitter:

|�〉 = 1
2

|0〉C

{

ÂB̂
}

|�〉T + 1
2

|1〉C

[

ÂB̂
]

|�〉T . (B1)

Since the player is sure that either the commutator or the
anticommutator is zero, by measuring the control and find-
ing it in |0〉C, the player is sure the gates commute, while if

FIG. 8. Commutation game. The experimentally estimated
probabilities for the commutation-anticommutation game. The
green bars represent the probability that the photon leaves port
0, leading to the conclusion that the unitaries commute. The blue
bars show the probability of the photon exiting port 1, and thus
the conclusion that the gates anticommute. The x axis shows
which gates have been implemented for ÛA-ÛB.

the player finds it in |1〉C, the player can conclude that the
gates anticommute.

Before performing higher-order process tomography,
we first verified the correct performance of the new archi-
tecture of our quantum switch by implementing this game.
To do so, Alice and Bob could set the Pauli operators
X = σX , Y = σY, and Z = σZ and the identity operator I =
σ0 with the well-known commutation relation

[
σ̂iσ̂j

] =
2iεijkσ̂k and anticommutation relation

{
σ̂iσ̂j

} = 2δij12x2
[71]. Figure 8 shows the probabilities for measuring the
control either in state |0〉C or in state |1〉C.

The probabilities were calculating by our measuring
coincidence rates between the heralding detector and both
output ports of the MZI with a coincidence window of 5
ns between them. Data were acquired for a total of 10 s for
each setting. The visibility of the interferometer was mea-
sured as v2 = 0.97. We calculated the success probability
for the photon leaving the correct port as

psucc = 1
2
(p̄(0|[·, ·])+ p̄(1|{·, ·}))

= 0.974 ± 0.18. (B2)

TABLE III. Generalized robustness alternative definition witness analysis. A summary of the different generalized robustness wit-
nesses constructed with use of the definition in Ref. [37], presented in Eq. (C8). The witnesses Gi,j are labeled by two subscripts. The
first indicates if the witness was designed for the ideal process matrix Wy−

s (subscript “y−”) or the experimental process matrix Wexpt
(subscript “expt”). The second subscript indicates if the restricted measurement set (subscript “res”) or the complete measurement
set (subscript “all”) was used for the witness. The first row shows the value of the witness for Wy−

s and the second row shows the
experimental values, which were evaluated as Tr[Gi,j Wexpt].

GGR
y−,res GGR

expt,res GGR
y−,all GGR

expt,all

Wy−
s −0.500 −0.483 −0.500 −0.484

Wexpt −0.346 ± 0.003 −0.361 ± 0.003 −0.323 ± 0.003 −0.363 ± 0.003
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TABLE IV. White noise alternative definition witness analysis. A summary of the different white noise witnesses constructed with
use of the definition in Ref. [37], presented in Eq. (C8). The witnesses Gi,j and process matrices are labeled by two subscripts described
in the caption for Table III.

GWN
y−,res GWN

expt,res GWN
y−,all GWN

expt,all

Wy−
s −0.828 −0.800 −1.000 −0.965

Wexpt −0.572 ± 0.005 −0.614 ± 0.006 −0.689 ± 0.007 −0.739 ± 0.008

Thus, our new architecture achieves performance similar
to that of previous implementations [35], but now in a
phase-stable manner.

APPENDIX C: THE DEFINITION OF CAUSAL
NONSEPARABILITY

Let W ∈ L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF
)

be a bipartite process matrix with a common past and
common future. A process WA>B is said to be causally
ordered from A to B if it can be constructed by means
of a sequential quantum circuit [6,13], also called a
“quantum comb” [2,8]). More explicitly, a process matrix
WA>B ∈ L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
is

causally ordered from A to B if it respects

trF(WA>B) =trBoutF(W
A>B)⊗ 1Bout

dBout

, (C1)

trBinBoutF(W
A>B) =trAoutBinBoutF(W

A>B)⊗ 1Aout

dAout

,

(C2)

trAinAoutBinBoutF(W
A>B) =trPAinAoutBinBoutF(W

A>B)⊗ 1P

dP
.

(C3)

Analogously, a process matrix WB>A ∈L (HP ⊗ HAin⊗
HAout ⊗ HBin ⊗ HBout ⊗ HF

)
is causally ordered from B

to A if it respects

trF(WB>A) =trAoutF(W
B>A)⊗ 1Aout

dAout

, (C4)

trAinAoutF(W
B>A) =trBoutAinAoutF(W

B>A)⊗ 1Bout

dBout

,

(C5)

trAinAoutBinBoutF(W
B>A) =trPAinAoutBinBoutF(W

B>A)⊗ 1P

dP
.

(C6)

In the main part of this work, we follow the definition in
Ref. [43], where a bipartite process matrix W ∈ L (HP⊗
HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
with common past

and common future is said to be causally separable if it
can be written as a convex sum of causally ordered process

matrices; that is, if we can write

W = pWA>B + (1 − p)WB>A, (C7)

where p ∈ [0, 1] and where WA>B and WB>A are causally
ordered processes. However, as discussed earlier, there
exists a nonequivalent definition, which goes beyond a
simple convex combination and allows incoherent classi-
cal control of causal orders. This definition is presented
in Ref. [96], and it is proven to be equivalent to the
notion of extensible causal, presented in Ref. [11]. In
the bipartite scenario with a common past and common
future, in Ref. [96] it is stated that a process matrix
W ∈ L (HP ⊗ HAin ⊗ HAout ⊗ HBin ⊗ HBout ⊗ HF

)
is

causally separable when there exist causally ordered pro-
cesses WA>B and WB>A such that

1P

dP
⊗ trP(W) = pWA>B + (1 − p)WB>A. (C8)

Notice that the definition in Ref. [96] presented in Eq. (C8)
is more relaxed than the one in Ref. [43] and presented in
Eq. (C7). Indeed, as we show later, there are processes that
are causally separable following the definition in Ref. [96]
but are causally nonseparable following the definition in
Ref. [43].

In the definition in Ref. [96], for a causal witness to be
valid, one should include an extra constraint, which reads

G = 1P

dP
⊗ trP(G). (C9)

We can then recalculate the numbers presented in Tables I
and II, but following the definition in Ref. [96]. These
results are presented in Tables III and IV, and we notice
that although there are some differences in the numbers
obtained, the qualitative result remains the same.
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