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Classical shadows enable us to learn many properties of a quantum state ρ with very few measurements.
However, near-term and early fault-tolerant quantum computers will only be able to prepare noisy quantum
states ρ and it is thus a considerable challenge to efficiently learn properties of an ideal, noise-free state
ρid. We consider error mitigation techniques, such as probabilistic error cancelation (PEC), zero noise
extrapolation (ZNE), and symmetry verification (SV), which have been developed for mitigating errors in
single expected value measurements and generalize them for mitigating errors in classical shadows. We
find that PEC is the most natural candidate and thus develop a thorough theoretical framework for PEC
shadows with the following rigorous theoretical guarantees: PEC shadows are an unbiased estimator for
the ideal quantum state ρid; the sample complexity for simultaneously predicting many linear properties
of ρid is identical to that of the conventional shadows approach up to a multiplicative factor, which is
the sample overhead due to error mitigation. Due to efficient postprocessing of shadows, this overhead
does not depend directly on the number of qubits but rather grows exponentially with the number of noisy
gates. The broad set of tools introduced in this work may be instrumental in exploiting near-term and early
fault-tolerant quantum computers: we demonstrate in detailed numerical simulations a range of practical
applications of quantum computers that will significantly benefit from our techniques.
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I. INTRODUCTION

Quantum computers are developing rapidly and can
already be said to perform certain demonstration tasks that
are impossible or very difficult with even the largest super-
computers [1–5]. It is however still to be seen whether the
technology can achieve true practical quantum advantage,
i.e., the point when these machines can solve an otherwise
impossible computational task that is of value to indus-
try or to researchers in other fields such as quantum field
theory [6], quantum gravity [7], or drug development and
materials science [8–11].

Quantum computers are highly vulnerable to noise and
while quantum error correction provides a comprehensive
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solution, implementing it poses an extreme engineering
challenge [12]. It is generally expected that some form of
early practical quantum advantage just beyond the reach
of classical computing could be achieved even with noisy
quantum computers [13–16]. This prospect has motivated
the development of a broad range of quantum error mit-
igation protocols, which has grown into an entire sub-
field. While the range of error mitigation tricks are very
diverse, they collectively aim to mitigate the effect of gate
errors in an expected-value measurement process—a key
subroutine in quantum computing.

Another major challenge is that near-term quantum
algorithms typically require an extreme number of circuit
repetitions in order to suppress shot noise [17–20]. Clas-
sical shadows were introduced relatively recently [21] and
represent another promising angle in achieving practical
quantum advantage. The approach allows one to extract
many properties of a quantum state without having to
repeat the measurement many times. This is achieved by
performing measurements in randomized bases. The mea-
surement outcomes as bitstrings, along with the indexes of
the measurement bases form a classical shadow, which is
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an efficient classical representation of the entire quantum
state. Shadows have become an entire subfield and
various promising applications have been proposed [22,23]
that greatly benefit from the rich information one can
access via shadows. For instance, in shadow spectroscopy
[23], we estimate many time-dependent expected values
from time-evolved quantum states, which then allows us to
reveal accurate spectra through the use of efficient classical
postprocessing.

The focus of the present work is to amalgamate quan-
tum error mitigation techniques with classical shadows.
It is worth noting that prior works have considered fruit-
ful connections between quantum error mitigation and
classical shadows. First, Refs. [24,25] use classical shad-
ows obtained from a noisy quantum state to perform
purification-based error mitigation [26–28] offline, with
access only to a single copy of the state but at an expo-
nential complexity in the number of qubits. Second, the
mitigation of errors in the randomized measurements have
similarly been addressed in Refs. [29,30].

In the present work we address a distinct problem: pre-
vious methods have assumed that the task involves extract-
ing information from a predetermined quantum state ρ,
such as the output of a quantum device. However, we
consider the practically more relevant scenario where the
state ρ is generated by a noisy quantum circuit, and our
aim is to mitigate the impact of errors induced by the
noisy quantum gates. Our focus is thus to extract prop-
erties of an ideal state ρid, which would be generated by
a noise-free quantum computer. This approach is a gen-
eralization of quantum error mitigation techniques, which

generally aim to extract an ideal expected value Tr[Oρid]
when only noisy measurements Tr[Oρ] are available. In
contrast, the techniques we present are not restricted to a
single expected value but instead provide efficient classi-
cal representations of the ideal quantum state ρid through
powerful classical shadows as illustrated in Fig. 1.

While we cover most classes of conventional error mit-
igation techniques, such as probabilistic error cancelation
(PEC), zero noise extrapolation (ZNE), and symmetry ver-
ification (SV), we find that PEC is the most amiable to be
used in combination with classical shadows. We thus dedi-
cate most attention to PEC shadows for which we establish
a comprehensive theory: assuming the error model of the
quantum gates has been appropriately learned, we rigor-
ously prove that our PEC shadow is an unbiased estimator
of the ideal quantum state ρid. We also furnish explicit,
efficient classical reconstruction algorithms that enable the
simultaneous prediction of linear and nonlinear properties
of ρid.

Similarly to conventional error mitigation techniques,
the ability of estimating properties of the noise-free sce-
nario comes at the cost of an increased statistical variance,
which implies an increased number of circuit repetitions.
We establish rigorous bounds on sample complexities and
our results indicate that (a) the sample complexity of PEC
shadows is identical to that of conventional shadows up
to a multiplicative factor, and (b) this multiplicative factor
‖g‖1 has already been known in the literature as the sample
overhead of the PEC approach [13]. Thus the present tech-
niques are efficient in the sense that sample complexities
are independent of the number of qubits—but of course the

Classical computerNoisy quantum computer

...

Ideal quantum computer

Noise-free shadowNoisy shadows

...

Noisy quantum circuits

Randomized

measurements

Reconstruction

Algorithm

Rx

Rx

Rx

Rz

Rz

Rz

Ry

Ry

Ry

Rz

Rz Rz

Rz

Z

Rx

Rx

Rx

Rz

Rz

Rz

Ry

Ry

Ry

Rz

Rz Rz

RzY

Noise-free
quantum circuit

Rx

Rx

Rx

Rz

Rz

Rz

Ry

Ry

Ry

Rz

Rz Rz

Rz

- Fidelities
- Observables
- Rényi entropies

FIG. 1. In the present work we assume we have only access to a noisy quantum computer (left) such that every circuit we run
(left, yellow area) gets corrupted by gate noise (unwanted red-gate elements). We aim to extract properties of a state that would be
prepared by an ideal quantum computer (right) with the use of powerful error mitigation techniques. We provide a rigorous theoretical
framework for PEC shadows, which effectively allows us to obtain a classical shadow of the ideal quantum state (noise-free shadow)
from which we can predict many ideal properties in classical postprocessing (middle blue area, classical computer). In our formalism
we run a series of distinct quantum circuit variants (left, yellow area) that cast different classical shadows (noisy shadows) due to gate
noise and due to our intentional recovery operations (red-gate elements and their shadows). Under the assumption that the device’s
error characteristics have been appropriately learned, we can estimate the noise-free shadow (middle) via classical postprocessing.
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overhead grows exponentially with the number of noisy
gates.

In numerical simulations, we showcase a broad range
of useful practical applications that will play a crucial role
in both the near-term and in the early fault-tolerance era.
These examples comprise (a) determining error mitigated
energies in variational quantum circuits, which constitutes
a fundamental subroutine in near-term applications; (b)
predicting many properties simultaneously in ground-state
preparation to extract two-point correlators or to accelerate
the training of circuit parameters [21–23]; (c) extracting
error mitigated local entanglement entropies of a ground
state that is prepared by a noisy quantum circuit. Moreover,
we discuss several other applications that will signifi-
cantly benefit from our efficient amalgams of quantum
error mitigation and classical shadows.

This paper is organised as follows. In the following
section we first briefly review the formalism of classical
shadows. Then in Sec. III we introduce our main result as
probabilistic error canceled shadows. In Sec. IV we dis-
cuss how to combine further error mitigation techniques
with classical shadows but conclude that PEC shadows
admit the most natural formalism. Finally, in Sec. V we
demonstrate powerful applications of our approach and
then conclude in Sec. VI.

II. PRELIMINARIES: CLASSICAL SHADOWS

The original idea of classical shadow tomography is to
apply to the quantum system of N qubits prepared in a spe-
cific state ρ a unitary Qj randomly sampled from a certain
ensemble Q; typically the ensemble corresponds to just
rotating the individual qubits with single-qubit unitaries
(Pauli-basis measurements) or applying Clifford rotations.
This is followed by a measurement in the computational
basis, yielding a bitstring b ∈ {0, 1}N as the outcome; this
bitstring is logged along with the measurement basis form-
ing the index l = (j , b). The collection of these indexes
from many independent runs of the protocol then allow
us to construct a classical shadow of the state. A clas-
sical shadow provides a description of the quantum state
that can be classically efficiently stored and manipulated,
bypassing the computationally expensive reconstruction of
the full density matrix [21].

A. Classical shadows via idealized measurements

We mathematically describe a particular measurement
outcome l = (j , b) by the positive operator as El =
pj Q†

j |b〉〈b|Qj ; the probability ql = Tr(ρEl) of this outcome
is a product of a (classical) probability pj of choosing a
unitary Qj and the probability of observing the bitstring
b given the rotated measurement basis. The shadow pro-
tocol can be therefore compactly described by a set E of

NE = 2N |Q| positive operators given by

E = {El = pj Q†
j |b〉〈b|Qj , with Qj ∈ Q, b ∈ {0, 1}N }.

(1)

In the literature, such a collection E of positive operators
El that sums up to the identity is referred to as a generalized
measurement (positive operator-valued measure—POVM)
and El are called its effects [31]. It has been shown that
formulating shadow tomography using POVMs brings var-
ious advantages [32]. Particularly relevant to our purpose,
this formulation allows one to automatically account for
errors in measurements, which include both readout errors
and gate errors in the implementation of the random uni-
taries Qj [12,29,30,33,34]. This is carried out by simply
adjusting the effects El appropriately [32,35] as we detail
towards the end of this section.

Given the above generalized measurement, a single out-
come l = (j , b) can be used to construct a snapshot as
ρ̂l = C−1

E (El) where the channel CE is defined by

CE(ρ) =
NE∑

l=1

Tr[ρEl]El, (2)

which is invertible if E spans the whole space of observ-
ables [21,32]. The snapshot can be thought of as a single-
shot estimator of the prepared state ρ. In an experiment,
one repeats the above single-shot procedure Ns times,
which produces a collection of outcomes {l1, l2, . . . , lNs}.
Accordingly, a collection of snapshots can be constructed

S(ρ, Ns) = {ρ̂l1 , ρ̂l2 , . . . ρ̂lNs
},

which is called a classical shadow of ρ. The classical
shadow allows us to obtain an unbiased estimate for the
density operator in the sense ρ = El[ρ̂l].

Crucial to the advantage of shadow tomography is that
when the measurement E consists of independent measure-
ments on individual qubits, the snapshots ρ̂l also factorize
into a tensor product over the qubits. It is therefore suffi-
cient to store single-qubit tensoring factors of ρ̂l, instead of
the exponentially large matrix itself [21]. Functions of the
density operator with appropriate locality, such as correla-
tion functions or the Rényi entropy, can also be efficiently
estimated [21]. As an example, for experimentally friendly
case of randomized noiseless Pauli-basis measurements on
the qubits, the snapshot corresponding to l = (j , b) is given
explicitly by

ρ̂l =
N⊗

i=1

[
3(Q(i)

j )
†|b(i)〉〈b(i)|Q(i)

j − 1
]

. (3)

Above b(i) is the ith bit of the N -qubit measurement out-
come bitsring b, and Q(i)

j is the ith single-qubit basis
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transformation in the applied N -qubit Pauli-basis transfor-
mation Qj . In the following, we focus on this practically
pivotal randomized Pauli-measurement scheme. However,
our general formalism can immediately be applied to
other unitary ensembles, such as matchgates [36], Clifford
circuits [21], and beyond [37].

B. Mitigating readout errors

An advantage of having introduced classical shadows
through generalized measurements (POVMs) is that it is
now straightforward to incorporate readout-error mitiga-
tion techniques [32]. In particular, readout errors refer to
the classical process of incorrectly assigning the labels b to
the measurement outcome. While in ion-trap devices read-
out errors may not be significant, i.e., below error levels of
gate operations [38,39], in solid-state devices these errors
can be quite substantial and can be on the order of several
percent [40]. We illustrate the approach by considering a
simple readout-error model where entries in the bitstring
b undergo random and independent bit flips (ith bit is
flipped as 0 → 1 with probability α+

i and as 1 → 0 with
probability α−

i )—while existing techniques for address-
ing correlated readout errors as well as gate errors in the
shadow basis rotations are indeed similarly applicable [13,
32,33,41]. As a consequence, the idealized measurement
operators |0〉 〈0| and |1〉 〈1| on the ith qubit are replaced
according to the readout error model, in the present case
by (1 − α+

i ) |0〉 〈0| + α−
i |1〉 〈1| and by α+

i |0〉 〈0| + (1 −
α−

i ) |1〉 〈1|, which then allows us to explicitly build the
effects in Eq. (1) and invert the measurement channels in
Eq. (2).

For example, we can analytically obtain a simple for-
mula for the Pauli measurement snapshot from Eq. (3) for
the specific readout-error model when α+

i = α−
i =: αi as

ρ̂l =
N⊗

i=1

[
3

1 − 2αi
(Q(i)

j )
†|b(i)〉〈b(i)|Q(i)

j − 1 + αi

(1 − 2αi)
1

]
.

In the more realistic case when α+
i �= α−

i the snapshots
can still be computed straightforwardly by numerically
(rather than analytically) inverting the single-qubit chan-
nel in Eq. (2), model-free readout-error mitigation is also
applicable [42]. In conclusion, as measurement-error mit-
igation techniques are completely decoupled from miti-
gating state-preparation errors, our mathematical theorems
will quantify the sample complexity of the latter, while
we demonstrate in numerical simulations that it is indeed
straightforward to combine measurement-error mitigation
techniques with the present approach.

III. PROBABILISTIC ERROR CANCELED
SHADOWS

While PEC has been used in the literature to remove the
bias in expected-value measurements [13], here we apply

it to classical shadows to obtain an efficient, classical rep-
resentation of the entire ideal, noise-free state ρid. While
this procedure even allows us to estimate the full density
matrix ρid, we will focus on efficient practical applications
such as simultaneously predicting many properties of ρid.
At a technical level PEC shadows is a combination of two
random processes, i.e., sampling circuit variants Gk and
sampling the bitstrings and the basis transformations that
form a shadow.

A. Probabilistic error cancelation

PEC is one of the most broadly studied error-mitigation
techniques [13,43,44] and indeed has been implemented
experimentally [13–16]; it is performed by decompos-
ing the channel U of an ideal unitary gate into a linear
combination of noisy physical gate operations Gk as U =∑

k γkGk. Negative quasiprobabilities γk < 0 are required
to formally implement the inverse of a noise channel.
Thus the above operation is nonphysical, similarly as the
inverse measurement channels of the shadow protocols
are nonphysical operations. For this reason, PEC applies
only the decomposition in classical postprocessing, at the
level of expected values and allows us to compute ideal
expected values as a linear combination of noisy ones as∑

k γkTr[OGk|0〉〈0|].
Let us first give an overview of efficient methods that

have been developed to accurately identify the coefficients
{γk} for the quasiprobability decomposition [13,45–48].
The simplest such approach exploits that noise models are
approximately local and one can thus efficiently charac-
terize the local noise channel of each gate and invert them
classically. Recent advances allow for nonlocal noise mod-
els of the form� = eL to be efficiently learned for the case
of sparse Pauli operations L resulting in a trivial inverse of
the channel as �−1 [47]. Making the assumption that U
is supported only on the space spanned by the noisy oper-
ations Gk, one then randomly applies circuit variants that
implement the operations Gk in the inverse noise channel.
Under this assumption, theoretical guarantees have been
derived on the sample complexity of learning the error
model [47]. Given the noise model can be learned prior to
the experiment with a constant overhead, we assume in this
work that a sufficiently high-precision estimate is available
[49]

Indeed a considerable experimental challenge is posed
by the possible drift of the error models over time which
may necessitate the repetition of the learning procedure
every so often further increasing its sample budget. Let
us finally note that our scope goes beyond mitigation of
physical gate errors and the formalism developed here
can be immediately applied to other scenarios, such as
the following. (a) Overcoming finite rotation-angle resolu-
tion whereby the quasiprobability decomposition is known
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exactly [50]. (b) Mitigating logical errors in early fault-
tolerant devices whereby the dominant source of noise may
arise from imperfect magic state distillation but noise char-
acterization and mitigation are effectively identical to the
presently considered formalism [51–53].

We consider that an ideal quantum state ρid :=
Ucirc|0〉〈0| is prepared by an ideal circuit of ν gates whose
channel we denote as Ucirc = Uν · · · ◦ U2 ◦ U1. By intro-
ducing the vector notation k = (k1, k2, . . . kν), we can com-
pactly represent the decomposition of this circuit into
noisy gate sequences as Ucirc =∑k gkGk. Here the index
k indexes all possible gate sequences as

Gk = G(1)k1
G(2)k2

· · ·G(ν)kν , gk = γ
(1)
k1
γ
(2)
k2

· · · γ (ν)kν , (4)

and as shown above the corresponding quasiprobabilities
gk factorise (the superscript indexes individual gates, e.g.,
G(1)k1

stands for the decompositon of U1). We now define the
quasiprobability decomposition of a quantum circuit.

Definition 1.—We define the quasiprobability decompo-
sition of an ideal circuit Ucirc via the set G := {(gk,Gk)}k.
We also define the associated probability distribution
p(k) := |gk|/‖g‖1 and here the norm factorizes as ‖g‖1=∏ν

k=1‖γ (k)‖1 into a product of individual norms.
The above quasiprobability decomposition has been

used for estimating the ideal expected value of an observ-
able O, Tr[OUcirc|0〉〈0|], by randomly sampling the noisy
expected values sign(gk)Tr[OGk|0〉〈0|] according to the
probability distribution p(k) and linearly combining them
in a classical postprocessing step [13,43,44]. The norm
‖γ (k)‖1 can be evaluated straightforwardly for any proba-
bilistic error model: Assuming that during the execution of
the kth gate an error happens with probability pk, e.g., Pauli
errors, we obtain the single-gate norm ‖γ (k)‖1 = (1 +
pk)/(1 − pk) [13]. Thus, the cost of error mitigation—as
the product of these individual norms from Definition
1—grows as ‖g‖1∈ O(e2ξ ) with the expected number ξ =∑

k pk of errors in the full circuit, rendering the approach
impractical when ξ 	 1 [13,43,44].

B. Details of the protocol

We start by applying the PEC protocol in a more gen-
eral setting such that the quasiprobability decomposition
allows us to obtain an unbiased estimator of the full density
matrix.

Lemma 1.—Given a quasiprobability decomposition G
from Definition 1, by sampling the noisy circuits Gk
according to the probability distribution p(k) we obtain
an unbiased estimator of the ideal density matrix ρid :=
Ucirc|0〉〈0| as

ρ̂id = ‖g‖1 sign(gk)Gk|0〉〈0| (5)

in the sense that Ek[ρ̂id] = ρid.

The above estimator has a clear operational meaning: (1)
choose a multi-index k randomly according to the proba-
bility distribution p(k) and run the noisy quantum circuit
Gk; (2) the output state Gk|0〉〈0| is a density matrix that
we multiply by sign(gk) and with the norm ‖g‖1; (3) for-
mally, the mean of these matrices is an estimate of the ideal
density matrix ρid.

Regrettably, the above protocol is purely formal as
the multiplication with negative quasiprobabilities is non-
physical and could only be achieved in postprocessing,
e.g., after fully reconstructing the density matrix. We thus
exploit classical shadows as a powerful tool for obtaining
an efficient classical description of the states, which can
then be naturally assigned negative quasiprobabilities in
classical postprocessing. Indeed, snapshots are not phys-
ical density matrices either, as is apparent in Eq. (3). We
now state our protocol that serves as an unbiased estimator
of the ideal state.

Theorem 1 (PEC shadows).—Given a quasiprobability
decomposition G of the ideal circuit Ucirc from Definition
1, and a classical shadow protocol with the POVM mea-
surement E from Eq. (1), we define PEC shadows as the
set H := {(gk,Gk, El)}k,l and define the corresponding PEC
snapshot as

ρ̂id := ρ̂k,l = ‖g‖1 sign(gk)C−1
E (El). (6)

We will often use the notation ρ̂id to abbreviate ρ̂k,l as it is
an unbiased estimator of the ideal density matrix ρid such
that E[ρ̂id] = E

k,l
[ρ̂k,l] = ρid.

Above the averaging E[·] happens not only over the
effects El indexed by l (all basis transformations and all
measurement outcomes), but additionally we average over
all circuit variants indexed by k. The reason is that the
measurement E = {El}l is not performed on a fixed input
density matrix ρ as in conventional shadows but rather on
the quasiprobability decomposition of the ideal state ρid ∝
Gk|0〉〈0|. Let us now summarize the resulting experimental
protocol.

(i) choose randomly a multi-index k according to the
probabilities p(k) and store the sign(gk);
(ii) choose uniformly randomly a unitary rotation Qj ∈

Q and store its index j ;
(iii) execute in a quantum computer the gate sequence

Gk, the unitary rotation Qj , perform a measurement in the
standard basis and finally register its outcome b;
(iv) each stored index (sign[gk], j , b) uniquely iden-

tifies a classical snapshot ρ̂k,l = ‖g‖1 sign(gk)C−1
E (El)

where recall that El is a POVM effect with the index
l = (j , b) from Eq. (1);
(v) repeat the procedure and collect Ns classical snap-

shots to build a classical shadow of the ideal state
S(ρid, Ns) = {(ρ̂id)1, (ρ̂id)2, . . . , (ρ̂id)Ns}.
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The classical dataset S(ρid, Ns) can then be classically
postprocessed offline and we detail explicit algorithms for
predicting local properties in Sec. III D.

Note that PEC shadows produce a distribution of snap-
shots that is different than directly applying conventional
shadows to a noise-free state ρid, albeit with an identical
mean. The reason is that each circuit variant Gk in Eq. (5)
yields a different distribution of classical snapshots. For
example, in the next section we prove bounds on variances
of PEC shadows and find that they are indeed increased
compared to conventional shadows applied directly to ρid.

C. Rigorous performance guarantees

We first consider the pivotal practical application as pre-
dicting error mitigated expected values of observables O
via the estimator ô = Tr[Oρ̂id]. A key observation is that in
error mitigation techniques the ability to predict noise-free
expected values comes at the cost of an increased statisti-
cal variance, which implies an increased number of circuit
repetitions. We now bound the variance of any operator’s
expected value.

Lemma 2 (Variance of linear properties).—Given an
observable O and the PEC snapshot ρ̂id from Theorem 1,
the variance of ô = Tr[Oρ̂id] can be upper bounded as

Var[ô] ≤ ‖g‖2
1 ‖O‖2

E , (7)

where ‖·‖2
E is the shadow norm of the observable O as

defined in Lemma 3. When O is a q-local Pauli string and
we use Pauli-basis measurements then ‖O‖2

E = 3q as we
detail in Lemma 3.

We explain in Appendix D that we can account for
the cost of readout-error mitigation via the above shadow
norm, which becomes 3q(1−2α)−2q when considering a
simple readout-error model with probability at most α.
Observe that the above variance depends on two factors:
the first one is the squared shadow norm ‖O‖2

E , which
determines the sample complexity of conventional shad-
ows [21]; the second factor is a multiplicative term ‖g‖2

1,
which accounts for the well-known measurement overhead
associated with the conventional PEC protocol [13,43,44]

We defer further discussion to Appendix A 2 where
we also explain how the shadow norm depends on the
unitary ensemble Q: while we state only explicitly the
shadow norm for the practically most important ensem-
ble of Pauli-basis measurements, we note that bounds for
other ensembles are immediately available in the literature
[21,36,37]. Furthermore, we also explain in Appendix B 1
that the above bound is expected to be pessimistic due to an
even more significantly overestimated constant prefactor
than in conventional shadows.

Following the approach of Ref. [21] we use concentra-
tion properties of the median of means estimator to derive
rigorous sample complexities: for the simultaneous pre-
diction of many observables O1, . . . , OM we exponentially

suppress statistical outliers by splitting the PEC shadows
S(ρid, Ns) into independent batches and then computing a
median of the means as we detail in Appendix B 2. The
resulting bounds depend on two performance metrics as
the accuracy ε and the success probability δ.

Theorem 2 (Informal summary).—Given the PEC shad-
ows H := {(gk,Gk, El)}k,l from Theorem 1 we want to
simultaneously estimate expected values of M opera-
tors in the ideal state as Tr[O1ρid] . . .Tr[OMρid]. Using a
median of means estimator, the number of shots required
to achieve performance parameters ε, δ ∈ [0, 1] is

Ns = 32ε−2 log
(

M
δ

)
‖g‖2

1 max
1≤k≤M

‖Ok‖2
E , (8)

where we use the largest shadow norm ‖Ok‖2
E . Refer to

Theorem 4 for a formal statement of this theorem.
Finally, we consider predicting nonlinear properties of

the state of the form Tr[O(ρid)
m]. Following Ref. [21] we

use the fact that a polynomial function in the quantum state
can be written as a linear function in tensor products of
the state, for example, Tr[O(ρid)

2] = Tr[Õρid ⊗ ρid] with
Õ = SWAP(O ⊗ 1)where the SWAP operator swaps the two
copies. In Appendix B 3 we detail our construction using
U statistics to derive unbiased estimators in terms of the
classical snapshots, e.g., for m = 2 we select all distinct
pairs of snapshots (ρ̂id)i ⊗ (ρ̂id)j with i �= j . We can bound
the variance of any nonlinear property as follows.

Theorem 3 (Variance of nonlinear properties).—Given
our PEC snapshots ρ̂id from Theorem 1 we can estimate
polynomial properties of degree m of the ideal state ρid via
U statistics of tensor products of all distinct snapshots. The
number of samples required to predict the nonlinear prop-
erty scales as Ns ∈ O(||g||2m

1 /ε
2) for a desired accuracy ε.

Refer to Appendix B 3 for details.
One can similarly apply a median of means estimator

to enable simultaneous prediction of many nonlinear prop-
erties: we detail an explicit protocol in the next section
for simultaneously estimating many local Rényi entropies.
Note that measurement overhead ||g||2m

1 grows with the
2mth power of the quasiprobability norm consistent with
our effective construction of m copies of the original noisy
circuit, which leads to an effective m-fold increase in the
number of noisy gates.

D. Classical postprocessing algorithms

In this section we summarize reconstruction algorithms
for the practically pivotal scenario of Pauli-basis measure-
ments from Sec. II.

Algorithm 1 (Local Pauli strings).—The expected value
of a q-local Pauli observable P in a PEC snapshot can be
calculated analytically as

Tr[Pρ̂k,l] = ‖g‖1 3q sign(gk) f (b, Qj ).
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FIG. 2. Illustration of the light cone of an observable O, which
is represented by the measurement apparatus and acts only non-
trivially on the second (from top) qubit. The orange area indicates
the qubits which are contained in the light cone I of the observ-
able with respect to the ideal quantum circuit (orange boxes)
U3U2U1. To simplify derivations we assume the gate noise chan-
nels Nk are local (light green boxes) such that they are contained
within the light cone I but our results can be extended to
nonlocal models via Ref. [54].

The reconstruction algorithm iterates over all snapshots in
the shadow S(ρid, Ns) and calculates the median of means
of the above expression using a number of batches pro-
vided by the user. Here f (b, Qj ) ∈ {±1, 0} results in 0 if
the measurement bases in Qj are incompatible with P and
±1 if the measurement bases are compatible with P while
the sign is determined by the bitstring b. The algorithm has
runtime O(qNs).

We defer the detailed derivation to Appendix C 1. Note
that the above error mitigated reconstruction algorithm
deviates from that of Ref. [21] as the individual snapshot
outcomes are multiplied with the norm ‖g‖1 and signs of
the quasiprobabilities sign(gk).

Since we reconstruct q-local Pauli observables, we can
significantly reduce the sample variance via light-cone
arguments [54,55]. In Fig. 2 we illustrate the light cone that
an observable creates with respect to the ideal unitary cir-
cuit Ucirc. To simplify the following arguments we assume
local noise models to guarantee the same light cone is valid
for all gate sequences Gk, however, it is straightforward to
extend the arguments to nonlocal noise following [54].

We observe that for each gate that is not within the light
cone of the observable P we can “turn off” PEC thereby
not wasting our measurement budget on mitigating noisy
gates that do not affect our observable.

Algorithm 2 (Light cones).—Given a q-local Pauli string
P we define the set of indexes of all gates in the light cone
of the observable as I := {l |Ul is in the light cone of P}.
We then simply use Algorithm 1 with a modified set of
quasiprobabilities from Definition 1 as

‖g̃‖1 =
∏

l∈I
‖γ (l)‖1, and sign(g̃k) =

∏

l∈I
signγ (l)kl

.

The algorithm has the same asymptotic runtime O(qNs)

as Algorithm 1 and incurs only a negligible preprocessing
time to determine the index set I specifically for each P.

Refer to Appendix C 2 for a derivation. The measure-
ment cost ‖g̃‖1 is thus determined by the number of gates
in the light cone of P rather than by the total number of
gates ν. Imagine, for example, noisy quantum gates with
‖γ (l)‖1 = 1 + p; the measurement cost is determined by
(1 + p)|I| as opposed to the worst case ‖g̃‖1 = (1 + p)ν

where ν is the total number of noisy gates as detailed in
Ref. [54]. A significant advantage of this procedure is that
it does not require one to modify the experimental protocol,
i.e., the noise in all gates can be mitigated in the shadows.

Finally, we consider estimating Rényi entropies via the
purities Tr

(
ρ2

Q

)
as RQ := − log Tr

(
ρ2

Q

)
where ρQ is the

reduced density matrix of the subsystem Q.
Algorithm 3 (Local purities).—Given a subsystem as the

set of qubits Q = {q1, . . . , qm}, an unbiased estimator for
the respective purity is obtained as

Tr
(
ρ̂2

Q

)
= ‖g‖2

1 sign(gi) sign(gj ) f (i, j , Q). (9)

Here i and j abbreviate indexes of the snapshots as, e.g.,
i = (k, l) and i �= j . The algorithm iterates over all distinct
pairs of snapshots in the shadow S(ρid, Ns) and calculates
the median of means of the above expression. The factors
f (i, j , Q) depend only on whether the measurement bases
and outcome bitsrings are identical within the subsystem
Q. The algorithm has a runtime O(|Q|N 2

s ).
We defer the detailed derivation to Appendix C 1. Note

that the runtime is linear in the subsystem size and
quadratic in the number of shots. For sufficiently small
subsystems and large numbers of shots it might be pre-
ferred to use the exponentially O(4|Q|Ns) scaling algorithm
of Ref. [21].

IV. FURTHER ERROR MITIGATION
TECHNIQUES

A. Error extrapolated shadows

The key idea behind zero-noise extrapolation resides
in the possibility of increasing the noise in the circuit
and extrapolating expected values back to the case of
zero noise. The approach is intuitive to use, requires less
resources than PEC but yields a biased estimator. A non-
trivial aspect, however, is choosing the correct model
function for the extrapolation, which has been exten-
sively discussed in the literature [13,14,44]; typical models
include a linear function, an exponential function or a
linear combination of multiple exponentials.

We consider extrapolation as a means for mitigating
errors in properties extracted from classical shadows.
The key ingredient we require is the ability to gener-
ate a collection of shadows at different noise strengths
S(ρp0 , Ns), . . . , S(ρpn , Ns) such that pk ≥ p0 and p0 is the
device’s lowest possible noise strength. These shadows
enable us to extract the expected values fm(p) = Tr[Omρp ]
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at a given noise level p . By fitting a suitable model function
f̃m(p), e.g., a linear model, to this dataset we can approxi-
mate ideal properties of the state using an extrapolation via
the limit

Tr[Omρid] ≈ lim
p→0

f̃m(p).

While we could certainly leverage existing techniques for
physically increasing noise rates in a circuit to obtain
S(ρp , Ns) [13,14], we can also exploit the power and flex-
ibility of the previously derived PEC shadow approach:
instead of considering the quasiprobability representation
of the ideal circuit in Definition 1 we can rather decom-
pose the noise-boosted circuits as Gcirc(p) =∑k gk(p)Gk
with non-negative probabilities gk(p). For example, in the
case of local depolarizing noise, the circuit variants Gk are
simply obtained by randomly inserting Pauli X , Y, or Z
operations after each noisy gate with probabilities p−p0.
Furthermore, Lindblad-Pauli learning directly gives access
to the continuous set of circuits Gcirc(p) [47].

Let us now state a corollary to Theorem 1 that allows
us to obtain the shadows of error-boosted states ρp :=
Gcirc(p)ρref.

Corollary 1 (Error-boosted shadows).—We consider the
parametric quasiprobability decomposition G as noise-
boosted circuits Gcirc(p) with p ≥ p0. The PEC shad-
ows H := {(gk(p),Gk, El)}k,l from Theorem 1 result in
the simplified snapshots as ρ̂p := ρ̂p ,(k,l) = C−1

E (El) due to
sign(gk(p)) = +1 and ‖g(p)‖1 = 1. It follows that ρ̂p is
an unbiased estimator of the noise-boosted density matrix
ρp such that E[ρ̂p ] = E

k,l
[ρ̂p ,(k,l)] = ρp .

A significant advantage in boosting noise via p ≥ p0
rather than reducing it is that now every quasiprobabil-
ity is non-negative gk(p) ≥ 0 and thus we do not incur
a measurement overhead in Theorem 2 via ‖g(p)‖1 = 1.
Nevertheless, the extrapolated value indeed suffers from
an increased variance, which implies an increased number
of samples and details can be found in the literature [13].

Note that the above scheme can be applied beyond
the estimation of expectation values. For instance, one
can in principle use shadows to reconstruct partial den-
sity matrices ρ̂p at different noise strengths p and apply
ZNE to individual matrix entries. However, note that ZNE
might require different kinds of model functions f (p) for
different properties, e.g., nonlinear models for predicting
nonlinear properties of the state. In contrast, the great
advantage of PEC shadows is that it provides an unbiased
estimator for the entire quantum state.

B. Symmetry-verified shadows

Symmetry verification is another leading quantum error
mitigation technique [56,57]; it exploits that often the ideal
states to be prepared ρid are pure states that obey certain
problem specific symmetry group operations described by
S ∈ S. The fact that the ideal state is symmetric then

implies that it “lives in” the subspace defined by the
projection operator


S = 1
|S|
∑

S∈S

S,

which satisfies 
2
S

= 
S.
Given a noisy state ρ, one might be able to measure

the above symmetries (in fact their generators are suf-
ficient) via, e.g., Hadamard-test circuits, and retain only
circuit runs that produce the correct symmetry outcomes
[13,58]. Such postselection projects the noisy state back
into this symmetry subspace producing the effective output
state as ρsym = 
Sρ
S/Tr(
Sρ). We can apply conven-
tional shadow tomography to this symmetry-verified state
ρsym thereby effectively obtaining error mitigated shadows,
i.e., an unbiased estimator of ρsym. The sampling overhead
of this postselection technique is Tr(
Sρ)

−1 the inverse
of the fraction of circuit runs that pass the symmetry
verification process.

Instead of postselection, we can also perform symmetry
verification at the postprocessing stage. Suppose we are
interested in the expectation value of the ideal state with
respect to the target observable O, the target expectation
value can be written as

Tr(Oρsym) = Tr(O
Sρ
S)

Tr(O
Sρ)
= 1

|S|

∑
S,S′∈S

Tr(SOS′ρ)
∑

S∈S
Tr(Sρ)

.

Conventional shadow tomography can be used well in
practice for estimating SOS′ and S for all S, S′ ∈ S when
the symmetries are sufficiently local, i.e., they are sup-
ported on at most weight-s Pauli operators. Then, given
a Pauli observable O of weight at most q, the effective
observable SOS′ is then at most of weight (2s + q). How-
ever, the sample complexity of conventional shadows with
Pauli measurements grows exponentially with the weight
of the Pauli string and it is thus crucial that the total weight
2s + q be reasonably small.

For example, a typically used symmetry in fermionic
simulation is the fermionic particle number parity, which
is, however, usually a high-weight operator for standard
encodings, such as the Jordan-Wigner encoding. Never-
theless, one can use encodings that come with inherent
local symmetry generators like Majorana loop encodings
[59], or even implement the circuit using some small
quantum codes with local stabilizers [60]. However, even
if these symmetry generators are local, the number of
generators scales with the number of qubits thus some
symmetries they generate are still high weight. Hence, in
order to efficiently use shadow techniques, we can apply
verification using a constant number of local symmetry
generators, such that the highest-weight symmetry that can
be generated is upper bounded by some constant.
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We also note that the sampling cost can be reduced when
the target observable O commutes with the symmetry pro-
jector 
S, which is often the case in typical applications.
In such a scenario, 
SO
S = O
S and thus

Tr(Oρsym) = Tr(O
Sρ)

Tr(
Sρ)
=
∑

S∈S
Tr(SOρ)∑

S∈S
Tr(Sρ)

.

This way the effective observables we need to estimate
from shadows are SO and S for all S ∈ S, which have a
reduced weight s + q compared to the previous 2s + q.

V. APPLICATIONS

In this section we showcase how our approach can
effectively extend the reach of noisy quantum comput-
ers and explore its practical applications. Recall that fully
fault-tolerant quantum computers will enable executions
of (in principle) arbitrarily deep circuits thus allowing
users to extract expected values via, e.g., amplitude esti-
mation, whose time complexity is superior O(M/ε) but
is proportional to the circuit depth. In contrast, we focus
on application areas where these coherent techniques are
prohibitive due to circuit-depth limitations, e.g., due to
non-negligible logical error rates expected in early fault-
tolerant devices. The advantage of classical shadows is that
they require only an increase of circuit depth that is inde-
pendent of the state preparation circuit—and this increase
is negligible for Pauli shadows. Since the present approach
has a sample complexity O(log(M )/ε2) it is particularly
well suited for applications where the aim is to extract a
large number M of properties.

For instance, noisy quantum computers in either the late
NISQ era or in the early fault-tolerance era will enable
us to simulate the time evolution of quantum states or
to prepare ground or eigenstates [17–19,22,23,61,62]. Our
approach can then be used to accurately and efficiently
extract a large number of properties of these states pro-
vided that the noise rates are reasonable, i.e., the overhead
‖g‖1 is moderate. In these application areas a fixed preci-
sion, such as chemical accuracy ε ≈ 10−3, is often sought
[9,17–19].

A. Ground-state preparation

We first consider a spin-ring Hamiltonian as

H =
∑

k∈ring(N )

ωkZk + J �σk · �σk+1, (10)

with coupling J = 0.3, on-site interaction strengths uni-
formly randomly generated in the range −1 ≤ ωk ≤ 1 and
�σk = (σ x

k , σ y
k , σ z

k )
T is a vector of single-qubit Pauli matri-

ces. This spin problem is relevant in condensed-matter
physics in understanding many-body localization [63] but
is challenging to simulate classically for large N [64,65]. A

broad range of techniques are available in the literature for
finding eigenstates of such quantum Hamiltonians using
near-term or early fault-tolerant quantum computers [17–
19,22]. Here we prepare the ground state of this model
using a variational Hamiltonian ansatz in Fig. 3 (left) of
l = 5 layers on 12 qubits and, as we detail in Appendix D,
we assume a biased Pauli noise model that can be learned
efficiently using techniques from Ref. [47] while assuming
a readout error model from Sec. II B.

1. Ground-state energy with PEC

Figure 3 (middle) shows the error in the ground-state
energy estimated using conventional shadows (dashed blue
and dashed red) and PEC shadows (solid blue and solid
red) for an increasing number of shots Ns.

Our ansatz circuit would ideally prepare the ground state
ρid but due to gate noise we actually prepare the noisy state
ρ. Thus, conventional shadows (dashed blue, dashed red)
converge to a plateau corresponding to the biased energy
Tr(ρH) (solid gray). This bias is significantly increased
as we increase the circuit error rate from ξ ≈ 0.15 to
ξ ≈ 0.26 (dashed blue versus dashed red), which is the
expected number ξ =∑k pk of errors in the full circuit
as explained in Sec. III. In contrast, PEC shadows that
include measurement-error mitigation (solid blue and solid
red) converge to the true energy Tr(ρidH) in standard
shot-noise scaling O(1/

√
Ns).

2. Local properties with PEC

Besides Hamiltonian energy estimation, which is one
of the typical subroutines in quantum computing, there is
also significant value in simultaneously determining many
local observables’ expectation values. For example, the
rich information from classical shadows can be used to
significantly improve parameter training or to directly esti-
mate Hamiltonian energy gaps through the use of efficient
classical postprocessing [22,23]. In Fig. 3(right), we plot
errors when simultaneously estimating all three-local Pauli
operators for an increasing number of shots Ns. Figure
3(red) shows that the errors in PEC shadows are always
significantly below the theoretical bounds (black line) from
Theorem 2 confirming looseness of the bounds [assuming
success probability δ = 10−3, and M = 33

(12
3

) = 5940].
Figure 3(blue) shows the errors in conventional shadows
are below their bounds (with ‖g‖1 = 1) only for a small
number of shots but then asymptotically reach a plateau
due to circuit noise.

3. Local properties with extrapolation

We now consider the same task of simultaneously esti-
mating expectation values of Pauli operators but we use
error extrapolation. Here we start by generating shadows
S(ρp1 , Ns), . . . , S(ρpn , Ns) at different noise strengths that
we use to compute the noisy Pauli expectation values.
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Ansatz circuit

Ground-state energy Three-state

FIG. 3. (Left) A noisy variational Hamiltonian ansatz is used to prepare the ground state of Eq. (10) but our aim is to learn properties
of the noise-free state. (Middle) Energy estimation errors for different noise strengths with conventional shadows (dashed blue, dashed
red) and with PEC shadows including readout error mitigation (solid blue, solid red). Bias (gray solid lines) is introduced when the
ground-state energy Tr(ρH) is directly estimated from the noisy quantum state ρ. Error mitigated shadows are unbiased as they
estimate Tr(ρidH). Increasing the circuit error rate ξ (blue versus red) increases the bias in standard shadows (dashed blue versus
dashed red) and increases the variance of the error mitigated shadows (solid blue versus solid red). Each data point is an average over
104 experiments of a fixed shot budget Ns. (Right) Error in simultaneously estimating all three-local Pauli strings without (blue) and
with (red) PEC and readout error mitigation—only the 200 observables of the highest estimation error are shown and a circuit error rate
ξ ≈ 0.72 is assumed. Errors are significantly below our rigorous bounds from Theorem 2 (which also take into account the overhead
due to readout errors) for PEC shadows but the errors for conventional shadows can be above their respective bounds from Ref. [21]
due to bias and readout errors (right end of blue).

Figure 4 shows ten examples of expected values (crosses)
as a function of noise strength and the respective linear
models we fit (dashed lines). The intercept of the fitted
model (dashed lines) is our estimate of the exact expected
value (disks) and is indeed reasonably close in the exam-
ple. While ZNE has been very effective and typically has
a lower measurement overhead than PEC, it is generally
biased.

B. Error mitigated estimation of entanglement
entropies

Finally, we consider an application for which classical
shadows are a primary enabler but for which error mitiga-
tion techniques have been less explored [13]. As opposed
to studying entanglement properties or verifying the pres-
ence thereof in mixed quantum states [66–69], here our
primary goal is to extend the reach of noisy quantum com-
puters: we aim to study entanglement properties of ideally
pure states, which are prepared by quantum algorithms,
such as phase estimation or VQE. For example, near-term
quantum computers will enable us to prepare eigenstates
[17–19,22] of quantum Hamiltonians and error mitigated
entanglement measures can be used for, e.g., character-
ising phase transitions. Similarly, one could simulate the
time evolution of a collision of two molecules with an
early fault-tolerant quantum computer and investigate how
entanglement builds up across the individual subsystems.

Furthermore, efficiently characterizing many local correla-
tions in a state can be used to train DFT models for accurate
classical simulations [70].

We consider the Heisenberg chain

H =
∑

k

Jk �σk · �σk+1, (11)

FIG. 4. Simultaneously estimating all three-local Pauli oper-
ators using error extrapolated shadows. We estimated noisy
expected values (crosses) from shadows of size Ns = 107 by
increasing the native depolarizing error rate p = 10−3 to higher
levels

{
2 × 10−3, 5 × 10−3

}
by randomly sampling noisy circuit

variants. Using a linear model function we then extrapolate to
zero noise to obtain an error mitigated expectation value close to
the ideal ones (disks).
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FIG. 5. A noisy variational Hamiltonian ansatz is used to prepare the ground state of Eq. (11) whose ideal, noise-free Rényi entropies
RQ we can learn with PEC shadows. We plot purities Tr(ρ2

Q) as a proxy for RQ := − log Tr(ρ2
Q). (Left) Purity heat map in the noiseless

case and infinite shot limit. An increasing value indicates that the subsystem Q is less entangled with the remaining qubits. (Middle-
right) Absolute error in the purities due to gate noise for a circuit error rate ξ = 0.6 and due to finite repetition using Ns = 105.
(Middle) Although the entanglement pattern is approximately recovered with conventional shadows, in some instances we observe
substantial errors, i.e., the largest error is 0.27. (Right) Absolute errors with PEC shadows are significantly smaller, i.e., the largest
error is 7 × 10−2 but this figure could be further reduced by increasing Ns.

with uniformly random −1 ≤ Jk ≤ 1 and prepare its
ground state with a variational Hamiltonian ansatz of l = 8
layers on 12 qubits. This system was used in Ref. [21]
to illustrate the power of classical shadows in predicting
entanglement entropies. However, the ground state was
approximated by a set of noise-free singlet states [71,72]
whereas we assume a noisy quantum computer is used for
state preparation.

We use PEC shadows to extract purities Tr(ρ2
Q) for all

single- and two-qubit subsystems Q; these purities then
define Rényi entropies as RQ := − log Tr(ρ2

Q). In Fig. 5,
we plot the exact purities in the noiseless case—disjoint
blocks involving two qubits confirm that the ground state
could be approximated by a tensor product of noise-free
singlet states.

Figure 5 (middle) shows the errors in estimating local
purities using shadows of size Ns = 105 for a circuit error
rate ξ = 0.6. Even for this moderate error rate conven-
tional shadows are significantly impacted by imperfections
and result in errors as large as 0.27—whereas for an
increasing noise rate all purities converge to a constant
value of 1/d where d is the subsystem dimension. In
contrast, PEC shadows drastically improve the accuracy
in Fig. 5 (right) and the largest error is approximately
7 × 10−2 at a number of samples Ns = 105.

C. Further applications

The techniques presented in this work enable us to
approximate an unbiased estimator of an ideal noise-free
state ρid, which can be enabling for a broad range of further
practical applications that we defer to follow-up works. For
example, Ref. [21] proposed that classical shadows with
randomized Clifford measurements can be used to predict
fidelities, such as the fidelity of ρ with respect to a known

state ψ . One can imagine applications where the fidelity
〈ψ |ρ|ψ〉 is not a relevant indicator due to the impact
of noise on ρ and one rather aims to predict 〈ψ |ρid|ψ〉,
e.g., to quantify how well a variational quantum circuit or
phase estimation can prepare a known ground state thereby
verifying a circuit structure under the presence of gate
noise.

Furthermore, the quantum Fisher information (QFI),
which is a key quantity in quantum metrology, can be
bounded and approximated using classical shadows via
techniques of Ref. [73]. Indeed, in certain applications the
relevant quantity might not be the QFI of the noisy state ρ
but rather the QFI of the noise-free state ρid, which can be
approximated with our techniques [74].

We also finally note possible “reverse” applications
where classical shadows can be used to improve error mit-
igation techniques; an obvious one is perhaps the use of
shadow tomography in explicitly reconstructing the noisy
gate channels from Sec. III—typically one assumes the
gate channels are local and thus the approach is efficient.
In contrast, in learning-based error mitigation one does
not reconstruct the noisy gate channels but rather aims to
directly learn the quasiprobabilities gk by running clas-
sically simulable circuits on a noisy quantum computer
and comparing observable expectation values to classically
simulated ones [13,45,46,48]. While one can exclusively
train a model for one specific observable with conventional
measurement schemes, classical shadows allow for simul-
taneously estimating a large number of expected values.
We can thereby efficiently train error models that mitigate
the impact of errors in all local operator measurements.
The approach might similarly be useful in measuring
many Pauli operators in the case of learning sparse Pauli
models [47]
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VI. DISCUSSION AND CONCLUSION

In this work we consider the powerful classical shad-
ows methodology, which allow us to obtain an efficient
classical representation of a quantum state ρ and thus to
simultaneously predict many of its properties in classical
postprocessing. A major difficulty concerning near-term
and early fault-tolerant quantum computers is that they can
only prepare noisy quantum states ρ from which we would
estimate corrupted properties; this challenge motivated the
field to develop quantum error mitigation techniques that
allow us to estimate expected values Tr[Oρid] of observ-
ables O in an ideal noise-free state ρid but with having
access only to noisy expected values.

We consider a range of typical quantum error mitigation
techniques and generalize them from single expected-
value measurements to the case of mitigating errors in
classical shadows. We find that probabilistic error cance-
lation is the most well-suited candidate, which motivates
us to develop a thorough theory of PEC shadows. In the
conventional PEC approach one learns error characteris-
tics of the device and counters them by a probabilistic
implementation of the inverse noise channel—thus the
only source of noise is due to a possibly imperfect knowl-
edge of gate-error characteristics and due to finite circuit
repetition. Under the assumption that the error model of
the quantum device has been appropriately learned such
that a quasiprobability representation is known, we prove
that PEC shadows are an unbiased estimator of the ideal
state ρid. We additionally prove the following rigorous
performance guarantees.

First, we prove bounds on the number of samples
required to simultaneously predict many linear proper-
ties of the ideal quantum state ρid. Second, the fact that
we use noisy quantum circuits to predict ideal properties
manifests in a multiplicative measurement overhead—this
overhead is identical to the cost of the conventional PEC
approach and grows exponentially with the number of
noisy gates. Third, we prove rigorous sample complexities
for predicting nonlinear properties of the ideal states.

We note that our results are completely general and
apply to any shadow ensemble E via Eq. (1) and to any
linear or nonlinear property of the quantum state. Fur-
thermore, we provide practical postprocessing protocols
for the pivotal scenario of randomized measurements in
Pauli bases. Finally, we demonstrate in numerical simu-
lations the usefulness of PEC shadows and error extrap-
olated shadows, and conclude that these techniques may
be instrumental in practical applications of near-term and
early fault-tolerant machines.

We note that previous works have already explored
applying error mitigation techniques to classical shad-
ows focusing on errors in the POVMs E [29,30] assum-
ing the aim is to estimate shadows of an input state
ρ. Furthermore, classical shadows of ρ have been used

to classically estimate expected values Tr[Oρn]/Tr[ρn]
thereby classically performing error suppression by
derangements (ESD) [26], virtual distillation (VD) [27].
This ultimately allows us to estimate expected values in the
dominant eigenvector of ρ, which is an approximation [75]
to ρid but at an exponential cost in the number of qubits and
in the number of noisy gates. In contrast, the techniques
we present are efficient in the sense that the sample com-
plexity does not directly depend on the number of qubits
but rather depends exponentially on the number of noisy
gates, here via the norm ‖g‖2

1. As with usual error miti-
gation techniques, the approach is limited to a number of
gates ν ∈ O(p−1) given by the inverse of the per-gate error
rate—beyond this threshold the effect of errors escalates
exponentially [76–78]. State-of-the-art theoretical lower
bounds suggest a slightly more optimistic picture whereby
circuits of poly log log N depth provably yield exponential
decrease of fidelity as opposed to constant depth suggested
by ‖g‖2

1.
In summary, the present work leverages an existing, rich

toolbox of quantum error mitigation ideas, and general-
izes powerful classical shadows to the pivotal scenario of
approximating properties of an ideal quantum state ρid.
As we demonstrate in a broad range of examples, these
quantum error mitigated classical shadows are very intu-
itive, easy to use in practice and may play a central role in
exploiting near-term and early fault-tolerant quantum com-
puters. We discuss a broad range of further possible use
cases and anticipate the present work will stimulate further
advancements in the field.
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APPENDIX A: DETAILS OF PEC SHADOWS

1. Unbiased estimators (Lemma 1 and Theorem 1)

Proof of Lemma 1.—The statement directly follows
from the fact that ||g||1sign(gk)Gk is an unbiased estima-
tor for the ideal operation Ucirc. In particular, as we sample
k according to the probability distribution p(k), we obtain
the expectation as

E
k

[ρ̂] = E
k

[‖g‖1 sign(gk)Gk(|0〉〈0|)]

=
∑

k

p(k)‖g‖1 sign(gk)Gk(|0〉〈0|).

The above expression can be simplified collecting the con-
stant factors as p(k)||g||1sign(gk) = sign(gk)|gk| = gk and
thus we obtain the quasiprobability decomposition

E
k

[ρ̂] =
∑

k

gkGk(|0〉〈0|) = Ucirc(|0〉〈0|) = ρid.

�
Proof of Theorem 1.—Using the abbreviation ρ̂id ≡ ρ̂k,l

we calculate the expected value as

E
k,l

[ρ̂id] =
∑

k,l

pk ql ρ̂k,l, (A1)

where pk = |gk|/‖g‖1 is the probability of choosing the
circuit variant Gk from Definition 1 and we also use the
probability ql = Tr[Gk(|0〉〈0|)El] of observing the POVM
outcome l. We obtain the expected value by substituting
these in Eq. (A1) as

E
k,l

[ρ̂id] =
∑

k,l

|gk|
‖g‖1

Tr[Gk(|0〉〈0|)El] ‖g‖1 sign(gk)C−1
E (El).

Here we can collect and simplify all constant factors as
‖g‖1(|gk|/‖g‖1)sign(gk) = gk and simplify the expected

value as

E
k,l

[ρ̂id] =
∑

l

Tr

⎡

⎣

⎛

⎝
∑

k

gkGk

⎞

⎠ (|0〉〈0|)El

⎤

⎦C−1
E (El),

(A2)

=
∑

l

Tr[ρidEl]C−1
E (El), (A3)

= C−1
E

∑

l

Tr[ρidEl]El, (A4)

= (C−1
E CE)(ρid) = ρid. (A5)

Above in the first equality we simply used the linearity of
the trace operation while in the second equality we used
that by definition

∑
k gkGk|0〉〈0| = ρid. We finally sub-

stituted the definition of the measurement channel CE(·)
given by Eq. (2). �

2. Shadow norms

Before proving Lemma 2, let us define the shadow
norm of an operator O and calculate it explicitly for the
practically important scenario when O is a local Pauli
string.

Lemma 3.—We define the shadow norm with respect to
the generalized measurement E as

‖O‖2
E := ‖

NE∑

l=1

Tr [ρ̂lO]2El‖∞, (A6)

where ‖·‖∞ denotes the maximal eigenvalue of the corre-
sponding operator and ρ̂l = C−1

E (El). For the specific case
of Pauli-basis measurements and observables that are q-
local Pauli strings, the squared shadow norm is given as
3q.

Proof.—When formulating shadow tomography with
generalized measurements, the case of uniformly sampled
Pauli-basis measurements corresponds to the so-called
octahedorn POVM [32], where the effects on a single qubit
are given by

Ej = 1
3 Q†

j |b〉〈b|Qj ,

where b ∈ {0, 1} is a single bit and Qj is one of the three
basis transformation unitaries that allow us to measure in
the bases of the Pauli X , Y, and Z operators.

Thus the effect is equivalent to 1
3 |t±〉〈t±| for t ∈ {x, y, z}

where |t±〉 denotes the eigenvector corresponding to eigen-
value ±1 of the single-qubit Pauli-t operator. It follows
from the symmetry of the measurement [32] that the
shadows can be computed directly from the effects as

ρ̂l = 9El − 1. (A7)

For the case of a system consisting of n qubits where
one aims to estimate local observables of the form O =
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O1 ⊗ · · · ⊗ On and the measurement is given by the ten-
sor product of local measurements E(1)j1 ⊗ · · · ⊗ E(n)jn with
E(j ) denotes the POVM acting on the j th qubit, the shadow
norm similarly factorizes as ‖O‖2

E =∏j ‖Oj ‖2
E(j )

.
We now consider the case when the single-qubit opera-

tor Oj acting on the j th qubit is a Pauli operator X , Y, or Z
and thus Tr[Oj ] = 0. By the previous discussion, it is suffi-
cient to consider only a single qubit, thus we will suppress
the index j . This yields the shadow norm

‖O‖2
E = ‖

6∑

l=1

Tr[ρ̂lO]2El‖∞, (A8)

= ‖
∑

t±

1
3

Tr[(3|t±〉〈t±|)O]2|t±〉〈t±| ‖∞, (A9)

= 3‖
∑

t±
〈t±|O|t±〉2|t±〉〈t±| ‖∞. (A10)

Now observe that if O, T ∈ {X , Y, Z} with |t±〉 are
the normalized eigenvectors of T to eigenvalues ±1,
we have due to the anticommutation relation δO,T =
1/2〈t±|{O, T}|t±〉 = ±〈t±|O|t±〉. This implies that the sum
in Eq. (A10) collapses to the identity 1. Hence we obtain
‖O‖2

E = 3. When the single-qubit observable is the identity
O = 1 we obtain a shadow norm ‖O‖2

E = 1. Consequently,
for q-local Pauli strings acting on n qubits the squared
shadow norm is ‖O‖2

E = 3q, and is thus independent of
n. We explain in Appendix D how this bound is modified
when considering the effect of readout errors. �

In practice it is often the case that the set of targeted
observables posses a certain structure. If this is the case,
small variations to the classical shadow protocol in which
the measurement basis is sampled uniformly at random
can yield a substantial improvement with respect to sample
complexity [82].

For instance, in electronic structure problems where one
aims to, e.g., determine the ground state of molecules using
a quantum algorithm, one typically starts by transforming
the molecular Hamiltonian into a qubit Hamiltonian as a
sum of Pauli observables by means of an appropriate map-
ping. Common types of such mappings are Jordan-Wigner
(JW), Bravyi-Kitaev (BK), and the parity (P) transforma-
tion [9]. Here it is important to note that depending on the
encoding, the different Pauli operators X , Y, Z appear with
different frequencies in the corresponding qubit observ-
able. For instance in BK encoding, the appearance of
Pauli-Y operators is suppressed compared to X and Z. Con-
sequently, measuring the different Pauli basis uniformly on
each qubit, i.e., using the octahedron measurement, would
be very wasteful.

A similar statement concerning sample complexity as
in Lemma 3 can be made for the case of locally biased
shadows [82,83]. Let us assume that the bias is px, py , pz

where pt is the probability for performing the measure-
ment in Pauli-t basis. The corresponding POVM would
be Et± = pt|t±〉〈t±|. Then the classical shadow based on
measurement outcome would be

ρ̂t± = p−2
t Et± − μ− p2

t

2ptμ
1, (A11)

where μ = p2
x + p2

y + p2
z . With this, given a Pauli string,

one can directly calculate the shadow norm.

APPENDIX B: PROOFS OF PERFORMANCE
GUARANTEES

1. Variance of linear properties (Lemma 2)

Proof of Lemma 2.—Note that Var[ô] = E[(ô − E[ô])2].
As ρ̂id is unbiased, we have E[Tr(Oρ̂id)]2 = 〈O〉2 and thus
Var[ô] = E[Tr(Oρ̂id)]2 − 〈O〉2 ≥ E[Tr(Oρ̂id)]2. Hence it
remains to bound the term

E
k,l

[
Tr(Oρ̂id)

2] = E
k,l

[
Tr
[
O‖g‖1 sign(gk)C−1

E (El)
]2 ]

= ‖g‖2
1 E

k,l

[
Tr
[
OC−1

E (El)
]2]

.

We can now calculate the expectation by recalling that
pk = |gk|/‖g‖1 is the probability from Definition 1 of
choosing the circuit variant Gk and ql = Tr[Gk(|0〉〈0|)El]
is the probability of observing the POVM outcome l. Thus
the above expectation is calculated as

‖g‖2
1

∑

k,l

|gk|
‖g‖1

× Tr
[Gk(|0〉〈0|)El

]× Tr
[
OC−1

E (El)
]2

= ‖g‖2
1

∑

l

Tr [�(|0〉〈0|)El] × Tr
[
OC−1

E (El)
]2

.

Above we introduced � := ‖g‖−1
1
∑

k |gk|Gk, which is
actually a permissible quantum channel [31], i.e., a CPTP
map since by definition it is a convex combination of CPTP
maps Gk. This expression is similar to the one in Ref. [21].

The above expression can be upper bounded by replac-
ing the initial state |0〉〈0| by a maximization over all states
σ . Thus we obtain the upper bound

E
k,l

[
Tr(Oρ̂id)

2]

≤ ‖g‖2
1 max

σ

∑

l

Tr [�(σ)El] × Tr
[
OC−1

E (El)
]2

= ‖g‖2
1 max

σ
Tr

[
�(σ)
∑

l

(
Tr
[
Oρ̂l
]2 El

)]
, (B1)

where we moved the summation inside the trace. By intro-
ducing the abbreviation � =∑l Tr[Oρ̂l]2El we obtain the
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upper bound as

E
k,l

[
Tr(Oρ̂id)

2] ≤ ‖g‖2
1 max

σ
Tr [�(σ)�]

≤ ‖g‖2
1 max

σ
Tr [σ�]

= ‖g‖2
1 ‖�‖∞

= ‖g‖2
1 ‖O‖2

E .

Above we used that �(σ) is a valid density matrix
and thus upper bounded the trace via the operator norm
Tr [σ�] ≤ ‖�‖∞ as the largest singular value of �,
which is by definition the shadow norm from Lemma 3.
Since 〈O〉2 ≥ 0, we obtain Var[ô] ≤ ‖g‖2

1 ‖O‖2
E − 〈O〉2 ≤

‖g‖2
1 ‖O‖2

E . �
Let us make a few observations. (a) Recall that con-

ventional classical shadows make no assumption about the
input state ρ [21]. In contrast, in our case a circuit descrip-
tion Ucirc|0〉〈0| of the “input state” ρid is actually part of
the protocol. Of course, knowing such a description of the
input state does not allow one to classically efficiently pre-
dict its properties without using classical shadows unless
the circuit Ucirc has some special properties permitting
efficient classical simulation, such as Clifford circuits.

(b) The proof in Lemma 2 involves a maximization
over density matrices such that our bounds are indepen-
dent of the particular quasiprobability decomposition and
thus depends only on the norm ‖g‖2

1. (c) It can be expected
that the upper bound in Lemma 2 is very pessimistic. Sim-
ilar, constant factor looseness of the bounds was already
observed for conventional shadows [21], however the dis-
crepancy is strongly expected to be even larger for PEC
shadows. This is due to (b) as we do not take into account
properties of the individual circuits in the quasiprobability
decomposition but rather apply a pessimistic global bound.

2. Sample complexity for predicting linear properties
(Theorem 2)

In order to predict expected values of M independent
observables {O1, . . . , OM }, we group Ns = NbatchK inde-
pendent snapshots into K batches B1, . . . ,BK each of size
Nbatch. Then for each subset Bi one uses the empirical mean
as μ̂i(Oj ) = N−1

batch
∑

l∈Bi
Tr[Oj (ρ̂id)l]. The final estimate

for the expectation value of Oj is then obtained by the
median of the individual empirical means, i.e.,

μ̂K ,b(Oj ) := median{μ̂1(Oj ), . . . , μ̂K(Oj )}. (B2)

Even though this method requires an increased num-
ber NbatchK of independent classical shadows, it is much
more robust against outlier corruption. The idea is that if
μ̂K ,b(Oj ) deviates more than ε from Tr[Oj ρid], more than
K/2 of the individual empirical mean values must devi-
ate by more than ε. This is an exponentially suppressed

event. This can be made more formal by the concentration
inequality estimator [84,85].

Prob[|μ̂K ,b(Oj )− 〈Oj 〉| ≥ (2σ/
√

Nbatch)] ≤ exp(−K/8),
(B3)

where σ denotes the standard deviation.
Theorem 4 (Formal version of Theorem 2).—Let Ucirc be

the ideal quantum circuit producing the ideal output state
ρid from Definition 1. Suppose that we want to predict M
linear properties O1, . . . , OM of the ideal state, i.e., 〈Oj 〉 =
Tr[Oj ρid]. For fixed performance metrics ε, δ ∈ [0, 1] set

Nbatch = 4g2

ε2 ‖Oj ‖2
E

1≤j ≤M
and K = 8 log

(
M
δ

)
. (B4)

Then a collection of N = KNbatch independent classical
shadows allow for accurately predicting all ideal expec-
tation values via median of means estimation such that

Prob[|μ̂K ,b(Oj )− 〈Oj 〉| ≤ ε] ≥ 1 − δ. (B5)

Proof.—This is a direct consequence of the concentra-
tion property of the median of means estimator together
with the bound on the variance from Lemma 2. Because
Var[μ̂] ≤ ‖g‖2

1‖O‖2
E and if the accuracy is ε, we have

Nbatch ≥ 4‖g‖2
1‖O‖2

E ≥ 4σ 2/ε2. Further, as we have M
measurements that we want to accurately predict with at
most failure probability δ, we need for each individual
measurement exp(−K/8) ≤ δ/M . Thus the choice K =
8 log(M/δ) yields the desired bound. In total, we have

Prob[|μ̂K ,b(Oj )− μj | ≥ ε ∀j ]

= Prob[
M⋃

j =1

{|μ̂K ,b(Oj )− μj | ≥ ε}]

≤
M∑

j =1

Prob[|μ̂K ,b(Oj )− μj | ≥ ε] ≤ M
δ

M
= δ.

�

3. Predicting nonlinear properties (Theorem 3)

In order to obtain rigorous performance guarantees of
our estimator, two ingredients are needed. First, note
that any polynomial function in the quantum state can
be written as a linear function in tensor products of the
quantum state. More precisely, suppose we want to esti-
mate a polynomial function of degree m of the quantum
state ρ, e.g., f̃ : B(H) → R with f̃ (ρ) := Tr[Ãρm], where
ρ, Ã ∈ B(H). If C(m) : B(H⊗m) → B(H⊗m) denotes the
cyclic permutation operator, i.e., C(m)(|φ1〉|φ2〉 · · · |φm〉) =
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|φm〉|φ1〉 · · · |φm−1〉 we can associate to f̃ a function f and
an operator A ∈ B(H⊗m) such that

f (ρ) = Tr[Aρ⊗m], A = Tr1[C(m+1)Ã ⊗ 1⊗m] (B6)

and f (ρ) = f̃ (ρ).
The second tool needed is the so-called U statistics,

which often provides a uniformly minimum variance
unbiased estimator for nonlinear polynomial functions.
Suppose we have access to N independent snapshots
ρ̂1, . . . , ρ̂N , which are generated by an underlying state
ρ and that f (ρ̂1, . . . , ρ̂m) is a polynomial function in the
shadows such that θ , which is our parameter of interest
is given by θ = E[f (ρ̂1, . . . , ρ̂m)]. The U statistics [86] of
order m is defined as

UN :=
(

N
m

)−1∑

CN ,m

f (ρ̂i1 , . . . , ρ̂im), (B7)

where CN ,m is the set of all combinations of m distinct ele-
ments that one can build out of N different snapshots. The
variance of this estimator has a closed form in dependence
on the function f . For a U-statistic UN given by Eq. (B7)
the variance obeys [86]

Var[UN ] = 1
(N

m

)
m∑

d=1

(
m
d

)(
N − m
m − d

)
Var[f (d)(ρ̂1, . . . , ρ̂d)],

(B8)

where

f (d)(ρ̂1, . . . , ρ̂d) := E
ρ̂d+1,...,ρ̂m

[f (ρ̂1, . . . , ρ̂d, ρ̂d+1, . . . , ρ̂m)].

In order to understand the scaling of Var[UN ] it is sufficient
to consider a particular instance Var[f (d)(ρ̂1, . . . , ρ̂d)].
First notice that for A ∈ B(H⊗m) as defined in Eq. (B6)
one has

f (d)(ρ̂1, . . . , ρ̂k) = Tr[Aρ̂1 ⊗ · · · ⊗ ρ̂d ⊗ ρ⊗p ], (B9)

where p = m − d with the convention that ρ⊗0 = 1 ∈
C. Further define ρ̂l = ρ̂l1 ⊗ · · · ⊗ ρ̂ld ⊗ ρp using the

abbreviation ρ̂l1 ≡ (ρ̂id)l1 . For 1 ≤ d ≤ m we have

E[f (d)(ρ̂1, . . . , ρ̂d)
2]

= E[Tr(Aρ̂1 ⊗ · · · ⊗ ρ̂k ⊗ ρ⊗p)2]

= ||g||2d
1 E

k1,l1
· · · E

kd ,ld
Tr[Aρ̂l]2

= ||g||2d
∑

k1,...,kd

∑

l

⎛

⎝
d∏

j =1

p(kj )p(lj |kj )

⎞

⎠Tr[Aρ̂l]2

= ||g||2d
∑

k1,...,kd

∑

l

⎛

⎝
d∏

j =1

|gkj |
||g||

⎞

⎠Tr[Gkj (|0〉〈0|)Elj )]

Tr[Aρ̂l]2.

Similarly as in the proof of Lemma 2 we denote the oper-
ator � := ||g||−1∑

kj
|gkj |Gkj for all 1 ≤ j ≤ d and write

El = El1 ⊗ · · · ⊗ Eld . Then

||g||2d
∑

l

d∏

j =1

Tr[�(|0〉〈0|)Elj ] Tr[Aρ̂l]2

= ||g||2d
∑

l

Tr[�(|0〉〈0|)⊗dEl] Tr[Aρ̂l]2

≤ ||g||2d max
σ

Tr

⎡

⎣�(σ)⊗d
∑

l

Tr[Aρ̂l]2El

⎤

⎦

≤ ||g||2d max
σ

Tr[�(σ)⊗d�]

= ||g||2d ||�||∞, (B10)

where � =∑l Tr[Aρ̂l]2El.
Finally, we can evaluate an upper bound of the summa-

tion in Eq. (B8) analytically as

Var[UN ] ≤ ||g||2m ||�||∞ 1
(N

m

)
m∑

d=1

(
m
d

)(
N − m
m − d

)

= ||g||2m ||�||∞[1 − ((N − m)!)2

N !(N − 2m)!
].

Given the factorial formula is of O(1/N ) with N ≡ Ns, the
above bound implies that the number of samples needed
to predict polynomial functions of degree m scales as
O(||g||2m

1 /ε
2).

APPENDIX C: CLASSICAL POSTPROCESSING

1. Estimating local observables (Algorithm 1)

For an arbitrary observable P we can calculate the
estimator from Eq. (6) as

Tr[Pρ̂k,l] = ‖g‖1 sign(gk)Tr[PC−1
E (El)]. (C1)
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In the idealized measurement case E simplifies as detailed
in Eq. (1) and our classical shadow is then a collection
of Ns measurement outcomes b ∈ {0, 1}N and correspond-
ing single-qubit Pauli measurement basis defined by the
single-qubit rotations Qk ∈ Q. Since P is a q-local Pauli
string it admits the product from P =⊗i∈Q P(i) while the
snapshot C−1

E (El) similarly is of a product form via Eq. (3).
Note also that we use the index set Q to abbreviate the set
of qubits to which P acts nontrivially and |Q| = q. Thus
we obtain the trace as

Tr[Pρ̂k,l] =
∏

i∈Q

Tr
[
P(i)
(

3(Q(i)
l )

†|b(i)〉〈b(i)|Q(i)
l − 1

)]
.

(C2)

Above we have used that the trace of a tensor product sim-
plifies to a product of traces and that on every qubit i for
which P(i) ≡ 1 the single-qubit expression evaluates to

Tr
[
P(i)
(

3(Q(i)
l )

†|b(i)〉〈b(i)|Q(i)
l − 1

)]
= 1.

The expression in Eq. (C2) evaluates to {±3q, 0} as we
explain now. The expression evaluates to ±3q if the mea-
surement bases defined by Q(i)

k are the same as the single-
qubit Pauli matrices P(i) on the qubits i ∈ Q. The sign is
then determined by the bits b(i) in the bitstring b, i.e., it is
negative if the Hamming weight of the bitstring is odd on
the qubits in Q. Otherwise, if the measurement bases are
not compatible with P on the qubits in Q then the above
expression evaluates to zero.

Thus we obtain the simplified estimator as

Tr[Pρ̂k,l] = ‖g‖1 3q sign(gk) f (b, Qk),

where f (b, Qk) ∈ {±1, 0}. The reconstruction algorithm
thus takes the classical shadow data as the collection of
bitsrings and Pauli measurement bases {bk, Pk}Ns

k=1, as well
as the Pauli observable P, and calculates the values of
f (b, Qk) as 0 if the measurement bases are incompati-
ble with P and ±1 otherwise. The algorithm has runtime
O(qNs).

2. Improved estimation of local observables with light
cones (Algorithm 2)

For example, imagine a circuit of a single noisy gate
with quasiprobaiblity decomposition |γ1|G1 − |γ2|G2 and
an observable O whose light cone does not contain this
gate. In Algorithm 1 we modify the sign sign(γk) → +1
and renormalize the coefficients such that ‖γ ‖1 → 1. Thus
in expectation we implement the gate

|γ1|Tr[OG1(ρin)] + |γ2|Tr[OG2(ρin)] = Tr[OU(ρin)],

where we used that |γ1| + |γ2| = 1 by definition. Further-
more, as the gate is not in the light cone of the observable

O we used the identity Tr[OG1(ρin)] = Tr[OG2(ρin)] =
Tr[OU(ρin)] where U is the ideal gate.

In general, for general circuits with local noise models
we can redefine the signs and norms in Eq. (4) such that if
the corresponding gate is not contained in the light cone as
l /∈ I then sign(γ̃ (l)kl

) = +1 with ‖γ̃ (l)‖1 = 1 otherwise the
coefficients are unchanged as γ̃ (l)kl

= γ
(l)
kl

.
This allows us to rescale the original sampling cost

‖g‖1 =∏ν
l=1‖γ (l)‖1 where ν is the total number of noisy

gates to
∏

l∈I‖γ (l)‖1 since we have redefined ‖γ (l)‖1 → 1
for every gate whose index l is outside of the light cone.
A significant advantage of this approach is that it is com-
pletely done at the stage of classical postprocessing and
at the time of measurement we simply just implement the
conventional quasiprobability approach assuming all gates
are noisy. For generalization to nonlocal noise models refer
to Ref. [54].

3. Local purities (Algorithm 3)

For ease of notation we abbreviate the indexes of PEC
snapshots as ρ̂i := ρ̂k,l with i = (k, l). Given a subsystem
as a set of qubits Q = {q1, . . . , qm} we obtain an unbiased
estimator for the Rényi entropy as

R̂Q := Tr
[
SWAPQ,Q′ ρ̂i ⊗ ρ̂j

]

= ‖g‖2
1 sign(gi) sign(gj ) f (i, j , Q), (C3)

with i �= j . Here SWAPQ,Q′ swaps all pairs of qubits qk and
qk+N in the system of 2N qubits in ρ̂i ⊗ ρ̂j .

The factor f (i, j , Q) can be computed analytically using
that snapshots are of a product form as ρ̂i =⊗N

q=1 ρ̂
(q)
i as

f (i, j , Q) =
∏

q∈Q

Tr
[

SWAPρ̂
(q)
i ⊗ ρ̂

(q)
j

]
,

where SWAP is the standard two-qubit SWAP operator. Here
we have used that traces for qubits not in subsystem
Q evaluate to 1 and that the trace of a tensor product
simplifies to a product of traces.

We can evaluate analytically the following expression as
it only involves two qubits as

Tr
[

SWAPρ̂
(qk)
i ⊗ ρ̂

(qk)
j

]
.

When the single-qubit measurement bases Q(q)
k and Q(q)

l in
the snapshots are nonidentical then the expression evalu-
ates to 1

2 . When the measurement bases are identical then
the expression evaluates to 5 given the measurement out-
come bits are identical. Otherwise it is −4 for nonidentical
measurement outcome bits. f (i, j , Q) is then just a product
of these values evaluated for all qubits in Q.
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The algorithm simply iterates over all distinct pairs
of snapshots and evaluates f (i, j , Q). We further multi-
ply each snapshot outcome by the corresponding signs
sign(gi)sign(gj ) and with the squared norm ‖g‖2

1. Finally,
we compute the median of means of these individual
outcomes. The algorithm has a runtime O(|Q|N 2

s ).

APPENDIX D: DETAILS OF NUMERICAL
SIMULATIONS

In this work we use exact quantum state simulators to
simulate noisy quantum circuits up to 12-qubit systems.
Given the present approach is effectively a Monte Carlo
sampling scheme, we efficiently simulate the effect of
noise using a Monte Carlo approach. For example, a Pauli
channel is simulated by randomly choosing a Pauli event
according to its corresponding probability and applying the
corresponding Pauli operator to the state.

As state-of-the-art experiments [40] apply Pauli twirling
to guarantee that the noise model is well approximated by a
Pauli channel—which can be learned efficiently [47]—we
assume Pauli noise models. In particular, we assume that
two-qubit gates are the dominant source of noise and
they are affected by Pauli errors with possibly different
probabilities for each gate as pk.

1. Details of Fig. 3

As we discussed in the main text, we simulate the 12-
qubit ansatz circuit in Fig. 3 (left) that prepares the ground
state of the spin-ring Hamiltonian in Eq. (10).

a. Gate error mitigation

We assume that each noisy quantum gate is affected by
the following, biassed, local Pauli channel

�k(ρ) := (1 − pk)ρ + pk
(

1 − ηk

2
X ρX + 1 − ηk

2
YρY + ηkZρZ

)
, (D1)

where ηk is a bias parameter. Furthermore, we consider
that the error probability pk is specific to each gate and we
randomly draw their values from the distribution N (μ =
p , σ = p) and as we explain below we explore two dif-
ferent regimes via p ∈ {10−3, 2 × 10−3}. We randomly
choose probabilities to reflect the high variability of two-
qubit error rates in typical superconducting devices [40].
Of course, this variability may be lower in ion-trap devices
[38,39]. Given in most platforms T2 relaxation timescales
are significantly faster than T1 relaxation timescales, we
consider a biased noise channel, that is specific to each
gate, by choosing the bias parameters ηk from the distri-
bution N (μ = 0.9, σ = 0.015).

We can straightforwardly find the inverse noise channel
analytically as

�k(ρ)
−1 := γ0ρ + γ1X ρX + γ2YρY + γ3ZρZ,

via coefficients

γ0 = ‖γ ‖1
2 − pk(pkη

2
k − pk − 2ηk + 4)

2 + 2pk(ηk − 1)(1 + pk + pkηk)
,

γ1 = γ2 = ‖γ ‖1
pk(ηk − 1)(pkηk + pk − 1)

2 + 2pk(ηk − 1)(1 + pk + pkηk)
,

γ3 = ‖γ ‖1
pk(2ηk + pk(η

2
k − 1))

2 + 2pk(ηk − 1)(1 + pk + pkηk)
, (D2)

with ‖γ ‖1 = 1/2 (1/(1 + 2pk(ηk − 1))− 2/(pk + pkηk − 1)).
In our simulations we thus randomly apply Pauli X , Y, Z
or 1 gates to the qubits in the support of the relevant gate
via probabilities defined by γ .

We additionally note that, while we found the coef-
ficients γ analytically, they can also conveniently be
computed numerically at the preprocessing stage. The
numerical inversion is efficient given noise models are
local, while state-of-the-art noise-model learning tech-
niques achieve trivial inversion via Pauli-Lindblad chan-
nels even for nonlocal (but sparse) models [47]. Indeed,
the present noise channel captures dominant terms in these
experimentally learned error models [47].

b. Circuit error rate

In Fig. 3 we repeat our simulations for two different
noise levels to demonstrate that the bias (as well as the
sampling overhead) grows exponentially. We implement
two different circuit error rates, ξ ≈ 0.15 and ξ ≈ 0.26.
As we detail in Sec. III, this circuit error rate ξ =∑k pk
expresses the average number of errors in the full circuit
and our circuit contains ν = 60 noisy two-qubit gates.

c. Readout error mitigation

We also consider readout errors: while readout errors
may not be significant in ion-trap devices [38,39] as they
are typically below gate operation errors, we consider
readout error rates that are consistent with typical super-
conducting systems. In particular, we assume the noise
model detailed in Sec. II B whereby the readout of each
qubit is affected by the same bitflip probability α = 0.01.
We mitigate the effect of readout errors using the analytical
inverse of the measurement channel detailed in Sec. II B.

d. Resampling scheme

In Fig. 3 (middle) we perform a ground-state energy
estimation for an increasing number Ns of snapshots and
for each fixed shot budget Ns, we estimate the average
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error from the exact energy by averaging over 104 dif-
ferent experiments. We efficiently simulate this sampling
task via the usual resampling scheme: we generate a very
large pool of 107 snapshots (an order of magnitude more
than the largest simulated shot budget Ns ≤ 106) using the
above described quantum mechanical simulations. We then
estimate the ground-state energy by randomly choosing Ns
snapshots each time from this large pool.

e. Error bounds

In Fig. 3 (right) we compare to analytical error bounds in
Theorem 2. Recall that our bounds in Theorem 2 depend on
the largest shadow norm max1≤k≤M ‖Ok‖2

E and in Lemma
3 we evaluate the shadow norm of a q-local Pauli string as
3q, assuming ideal measurements via the snapshots in Eq.
(3). We now take into account the effect of readout errors
by explicitly calculating the shadow norm under the above
readout-error model. As such, it is straightforward to mod-
ify our proof in Lemma 3 by considering the effects and
snapshots from Sec. II B, obtaining the following bound on
the shadow norms for considering all q local Pauli strings
as

max
1≤k≤M

‖Ok‖2
E = 3q

(1−2α)2q .

Indeed, readout-error mitigation has an associated mea-
surement overhead of (1−2α)−2q.

2. Details of Fig. 4

As our main objective is to demonstrate that extra-
polation-based error mitigation is indeed compatible with
classical shadows, we assume a simple error model
whereby every two-qubit gate has the same error proba-
bility p that we can perfectly magnify to λp . Of course,
in reality magnifying the error rates precisely is rather
involved but has been successfully demonstrated in even
large-scale experiments [40]. In particular, in our simula-
tions for extrapolation-based error mitigation, we assume
the above Pauli noise with an asymmetry parameter of
ηk = 1

3 , effectively a local depolarizing noise with a prob-
ability p . We define this channel as

�p(ρ) := (1 − p)ρ + p/3[X ρX + YρY + ZρZ], (D3)

where X , Y, and Z are Pauli matrices, and the channel can
be analytically inverted to obtain the inverse channel as

�p(ρ)
−1 := γ0ρ + γ1X ρX + γ2YρY + γ3ZρZ.

The explicit form of the coefficients follows as

γ = ‖γ ‖1

(
3 − p

2p + 3
,

−p
2p + 3

,
−p

2p + 3
,

−p
2p + 3

)
,

and the norm is ‖γ ‖1 = (3 + 2p)/(3 − 4p). The same
noise model was also used for Fig. 5.
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