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The possibility of engineering artificial Kitaev chains in arrays of quantum dots coupled via narrow
superconducting regions has emerged as an attractive way to overcome the disorder issues that compli-
cate the realization and detection of topological superconducting phases in other platforms. Although a
true topological phase would require long chains, a two-site chain realized in a double quantum dot can
already be tuned to points in parameter space where it hosts zero-energy states that seem identical to the
Majorana bound states that characterize a topological phase. These states have been named “poor man’s
Majorana bound states” (PMMs) because they lack formal topological protection. In this work, we propose
a pathway for next-generation experiments on PMMs. The pathway starts with experiments to characterize
a single pair of PMMs by measuring the Majorana quality and then moves on to initialization and readout
of the parity of a PMM pair, which allows the measurement of quasiparticle poisoning times. The next step
is to couple two PMM systems to form a qubit. We discuss measurements of the coherence time of such a
qubit, as well as a test of Majorana fusion rules in the same setup. Finally, we propose and analyze three
different types of braidinglike experiments that require more complex device geometries. Our conclusions
are supported by calculations based on a realistic model with interacting and spinful quantum dots, as
well as by simpler models to gain physical insight. Our calculations show that it is indeed possible to
demonstrate non-Abelian physics in minimal two-site Kitaev chains despite the lack of a true topological
phase. However, our findings also reveal that doing so requires some extra care, appropriately modified
protocols, and awareness of the details of this particular platform.
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I. INTRODUCTION

Majorana bound states (MBSs) [1–5] are zero-energy
excitations described by Hermitian operators. They have
been predicted to exhibit exciting new physics, such as
non-Abelian and nonlocal properties, which could poten-
tially be harnessed in topological quantum computation
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[6–9]. A simple theoretical model hosting MBSs is the
Kitaev chain, a tight-binding model of a spinless p-wave
topological superconductor [10]. By now, there have been
many theoretical proposals (for a few examples, see Refs.
[11–17]) and substantial experimental efforts (for a few
examples, see Refs. [16,18–28]) aiming at creating and
detecting MBSs in various systems for which the Kitaev
chain is an adequate low-energy description. Despite
experiments showing signatures expected for MBSs in
tunneling spectroscopy, the possible emergence of non-
topological Andreev bound states (ABSs) due to disor-
der [29–40] generally makes the interpretation challeng-
ing. Measurements of non-Abelian and nonlocal physics
would constitute much stronger evidence of topological
MBSs but still seem beyond experimental reach, with mea-
surements of lifetimes or coherence properties of MBS
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candidates still lacking (unlike for nontopological ABSs
[41–44]).

One way to remedy the effects of disorder and mate-
rial imperfections is to create a Kitaev chain with an array
of quantum dots (QDs) coupled via superconducting seg-
ments [45–47]. Although long chains are needed to reach
a true topological phase, a minimal Kitaev chain with only
two QDs separated by a superconductor can already host
states similar to MBSs [46]. These states have been called
poor man’s MBSs (PMMs) because they only appear in
fine-tuned points (sweet spots) of the parameter space and
thus lack topological protection. However, PMMs should,
in principle, share all of the exotic properties of topological
MBSs, including the nonlocal and non-Abelian properties.

In the simplest QD-based two-site Kitaev chain model
[46], two spin-polarized QDs are coupled via two pro-
cesses that involve the superconducting segment, namely,
elastic cotunneling (ECT) and crossed Andreev reflection
(CAR). The sweet spot where PMMs appear is found for
equal strengths of CAR and ECT and QD orbitals tuned
to zero energy (the middle of the superconducting gap).
Since CAR is suppressed for parallel QD spins [48–51]
while ECT is suppressed for antiparallel spins, Ref. [46]
has suggested controlling the angle between the QD spins
to fine-tune the system to the sweet spot. However, control-
ling the angle between the QD spins is not straightforward
in practice. Another problem with this spinless model is
that the QDs in a real system will never be completely
spin polarized and the charging energy in the QDs will
also play a role. It is thus fair to wonder whether and how
PMMs would emerge in a system of partly spin-polarized
and interacting QDs.

An alternative approach to control the relative mag-
nitudes of ECT and CAR without the need to fine-tune
the angle between the QD spins has been suggested in
Ref. [52]. If the two QDs couple via an ABS inside
the superconductor, quantum interference between differ-
ent tunneling processes causes both CAR and ECT to
depend on the energy of the ABS but in different ways.
Thus, all that is needed to reach the PMM sweet spot is a
global magnetic field together with spin-orbit coupling and
control of the ABS energy.

The effects of interactions, finite Zeeman splittings, and
strong coupling to the ABS have been studied in Ref. [53].
Under these realistic conditions, although there are still
exact degeneracies between ground states with even and
odd electron-number parity, these are not necessarily asso-
ciated with PMMs and there are no points in parameter
space where these degeneracies are associated with exci-
tations that are identical to true MBSs. This necessitates
the introduction of a Majorana quality measure that ideally
could be accessed in experiment. One such measure is the
Majorana polarization (MP) [54–56]. It has been shown in
Ref. [53] that it is indeed possible to realize PMMs that are
close to true MBSs, as indicated by close-to-ideal MP, but

the requirements on the parameters for doing so are non-
trivial and it is also possible to end up with low-quality
PMMs. Furthermore, it is not clear what is actually needed
in terms of PMM quality to be able to explore nonlocal and
non-Abelian physics.

Recently, a series of pioneering experiments [57–63]
have demonstrated a high degree of control of the ECT and
CAR magnitudes and transport-spectroscopy results that
seem to be compatible with the analyses of Refs. [52,53].
In particular, Ref [58] has shown both local and nonlo-
cal tunnel spectroscopy data that seem fully consistent
with PMMs. Therefore, it appears to us that the time has
now come to move on to the next generation of Majorana
experiments based on PMMs.

The purpose of this paper is to sketch a pathway for this
next generation of Majorana experiments, which has the
demonstration of non-Abelian physics as its end destina-
tion. Before going into the details, we start with a short
overview of the different experiments that we propose in
this paper. We first give a brief introduction to the under-
lying physics and general goal of each experiment, before
discussing the special problems and possibilities offered by
performing them with PMMs in the QD platform.

A. Majorana quality assessment

Most simple measurements, such as local spectroscopy,
cannot unambiguously distinguish between MBSs and the
(nontopological) ABSs that can appear because of disor-
der and/or smooth potential variations [29–31,33–40,64].
In fact, one can argue that in a finite and disordered sys-
tem, there is no fundamental difference between these two
types of states, because a zero-energy ABS can be decom-
posed into two MBSs. What we call a MBS is then an ABS
that decomposes into two spatially separated MBSs, such
that a local experimental probe only interacts with one of
them. In the ABS limit, on the other hand, the two MBSs
are localized in the same region in space and any exper-
imental probe will couple to both of them. Clearly, there
is a gray zone in between these two limits where we have
partially separated MBSs [37,39,65–70]. Whether it is pos-
sible to carry out nonlocal and non-Abelian operations in
this regime will depend on the details and time scales of the
experimental protocol. It is therefore desirable to have a
measure of Majorana quality. However, it is not clear what
the best-quality measure is; this will, in general, depend
on for what experiment one wants to assess the Majorana
quality. In this work, we will mostly use the MP [54–56]
(Sec. III) as a local Majorana quality measure and we will
show how it affects protocols aiming to measure nonlocal
and non-Abelian properties in our PMM setup.

Compared with local spectroscopy, nonlocal tunnel
spectroscopy allows us to extract more information about a
bound state [27,58,71–76]. In a slightly more complicated
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setup where a QD is tunnel coupled to the part of the (pos-
sibly) topological system in which a zero-energy state is
localized, it is possible to estimate the MBS localization
[22,77,78]. If the QD level is tuned to zero energy, it inter-
acts with the zero-energy state. If the zero-energy state is a
single isolated MBS, the QD-MBS hybridization leaves a
single zero-energy state, while coupling to a second MBS
(the ABS limit) results in a splitting. The spectrum can be
measured by a single tunnel probe coupled to the QD. In
this work, we investigate this type of spectroscopy in the
PMM setup in Sec. IV B, which requires coupling a third
QD to the double QD hosting the PMMs.

B. Majorana initialization and readout

Two MBSs form a single fermionic state. With no other
low-energy states or excited quasiparticles, the occupation
of this state (empty or full) correlates directly with the par-
ity of the total electron number (even or odd). For a truly
topological system with perfectly separated MBSs, two
things hold: the even and odd ground states are perfectly
degenerate (i.e., there is a fermionic state at zero energy)
and no local measurement can read out the occupation of
that state. Different ways have been proposed to initialize
and read out the state by controlled breaking of the topo-
logical protection (see, e.g., Refs. [79–87]). In this work,
we will show in Sec. V that the lack of topological pro-
tection of the PMMs is not only a bug but also a feature
that allows for easy initialization and readout. We will also
discuss how to measure the lifetime of such a state, which
will be the limiting factor for the relaxation time of a PMM
qubit. Such experiments will require coupling one of the
QDs in the PMM setup to, e.g., a charge detector [88–92]
or to a circuit measuring the quantum capacitance [93–95].

C. Majorana qubits

Because the state encoded in a pair of MBSs corre-
sponds to the parity of the electron number, which is a
conserved quantity, the minimal way to encode a useful
qubit is in the two-level subspace spanned by the state
of four MBSs with fixed total parity [2,3,7,96]. Arbitrary
(unprotected) single-qubit rotations can be performed by
introducing an energy associated with the occupation of
the fermionic state encoded in different MBS pairs. Such
controllable MBS couplings can, e.g., be based on direct
overlap of MBS wave functions [14,79,97] or Coulomb
interactions [80–82]. In Secs. VI A and VI B, we will dis-
cuss how to realize PMM qubits by coupling two PMM
systems, either by a direct coupling between one QD
in each system or by a coupling via a superconducting
region. We calculate the spectrum as a function of this
coupling, show how this crucially depends on the MP,
and discuss the effects on single-qubit gates. This setup
also allows measurements of both relaxation and coher-
ence times. These measurements will be a benchmark on

how well-protected these nontopological MBSs actually
are, which is crucial information to judge the feasibility
of the non-Abelian experiments to follow.

D. Majorana fusion

The process of bringing together non-Abelian anyons
to measure their joint quantum state is known as fusion
and the fusion rules [6] describe the possible outcomes
of such a measurement. MBSs are a realization of so-
called Ising anyons [6], for which the fusion rules state
that pairs can either annihilate (the measurement outcome
gives an empty fermionic state in the language used above)
or combine into a regular fermion (the measurement out-
come gives a filled fermionic state). The simplest nontriv-
ial experimental test of this physics requires four MBSs,
where one configuration of pairings is chosen for intial-
ization and then a different pairing is chosen for readout
[81,82,98–103].

The fusion rules encode the possible measurement out-
comes. In this work, we briefly discuss the fusion of PMMs
in interacting QDs in Sec. VI C in a protocol similar to
another recent proposal [103], requiring the same setup
and control capabilities as in the qubit experiments in Sec.
VI B. Although fusion of PMMs indeed seems experimen-
tally feasible, it is not sensitive to the Majorana quality [98]
and we show that the result is independent of the MP as
long as one can fine-tune to a point at which the uncoupled
PMM systems exhibit a perfect even-odd degeneracy.

E. Non-Abelian operations and braiding

The true hallmark feature of non-Abelian anyons is
that the result of particle exchange (braiding) is described
by non-Abelian representations of the braid group [6],
such that the order of exchange operations matters. The
robustness of the result of a braid operation—for a true
topological system, it depends only on which particles
are exchanged, not on the details of the exchange—is
the foundational property of topological quantum com-
puting schemes [6,7,9,85]. It might be possible to mea-
sure the non-Abelian exchange properties of MBSs by
actual physical exchange of MBSs [79,104] and there
are recent proposals for doing so in QD-based Kitaev
chains [105]. However, most recent proposals in differ-
ent superconductor-semiconductor hybrid platforms rely
instead on sequences of operations that can be proven to
be mathematically equivalent to braiding, including con-
trolled additions and removal of single electrons (which
we will refer to as charge-transfer-based non-Abelian
operations) [83,106,107], sequences of measurements of
MBS pairs (measurement-based braiding) [84,85,108], and
cyclic tuning of hybridization between different MBSs
(hybridization-induced braiding) [14,80–82,98,109,110].
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(a)

(b) (c)

FIG. 1. (a) A sketch of a PMM system, with two QDs coupled
via a grounded superconductor. We will later consider setups in
which one or both QDs couple to normal-metal leads, charge
detectors, or additional PMM systems. (b) The energy-level dia-
gram, showing the orbitals of the individual QDs and the ABS,
as well as different tunnel processes connecting the QDs and the
ABS. (c) A sketch of the spinless model, where QDs L and R are
coupled via ECT and CAR. The Majorana operators γL and γ̃R
describe the degenerate ground state when the system is tuned to
a sweet spot.

In Sec. VII, we propose, analyze, and numerically test
setups and protocols for all these three types of non-
Abelian protocols, each of which come with different
advantages and difficulties. They all build directly on the
ingredients introduced in earlier sections, although more
complex geometries are needed. Our focus here is on devi-
ations from the ideal MBS braiding results induced by
the imperfect MBS quality (signaled by the MP), which
is unavoidable in a realistic PMM system. We find that,
in contrast to the fusion protocol, although the result of a
braiding operation is in general a non-Abelian operation, it
only comes close to the topological MBS result for close-
to-ideal MP. Thus, we conclude that a braiding experiment
will be the real test of the similarities between PMMs and
true topological MBSs.

II. MAJORANA BOUND STATES IN A DOUBLE
QUANTUM DOT

Here, we introduce and discuss the basic system with
two QDs coupled via a superconductor as sketched in Fig.
1(a) and briefly explain how PMMs appear in this system.
In later sections of the paper, we will add additional ingre-
dients to this basic setup. Throughout the paper, we set
e = � = kB = 1.

A. Model with interacting spinful quantum dots

We will base most of our conclusions in this work on a
model that includes spin and Coulomb interactions on the

QDs and allows for strong coupling to the superconduc-
tor [53]. Figure 1(b) shows a sketch of the states of the
two QDs and their couplings to the superconductor, which
we describe by the Hamiltonian H = HQDs + HABS + HT.
Here, the two QDs are described by

HQDs =
∑

σ ,j

εj σ nj σ +
∑

j

Uj nj ↑nj ↓, (1)

where d†
j σ creates an electron with spin σ =↑, ↓ in QD j =

L, R with occupation nj σ = d†
j σ dj σ , single-particle orbital

energy εj σ , which includes the Zeeman energy εj ↑/↓ =
εj ± EZj /2, and Coulomb charging energy Uj . We assume
that the orbital spacing is large enough that we can restrict
the model to a single orbital on each QD.

The coupling between the QDs via the superconduc-
tor is assumed to be dominated by a discrete ABS. This
might be a subgap state in a narrow region of proximitized
semiconductor [52,57–60,62,63] or a third QD that is in
turn strongly coupled to a bulk superconductor [53]. For
definiteness, we choose

HABS =
∑

σ

εABS
σ nABS

σ + �c†
↑c†

↓+�∗c↓c↑, (2)

where c†
σ is the electron creation operator in the super-

conductor, nABS
σ = c†

σ cσ , and εABS
↑/↓ = εABS ± EABS

Z /2. We
neglect on-site Coulomb interactions for the ABS, moti-
vated by the assumption that the central region of the
PMM system is strongly coupled to a grounded super-
conductor that screens its charge. This is the case in the
experiments described in Refs. [57–60,62,63]. We note
that PMM sweet spots can also be found when the central
region features a charging energy, as discussed in Ref. [53].
We, for now, assume � to be real, but will discuss the gen-
eral case later when considering setups with more than one
superconductor.

The coupling between the QDs and the ABS is described
by

HT =
∑

σ

sσ

[
tSO
L d†

Lσ cσ̄ + tSO
R c†

σ dRσ̄

]

+
∑

σ ,j

tj d†
j σ cσ + h.c. (3)

Here, s↑,↓ = ±1, tj is the amplitude for spin-conserving
tunneling between QD j and the ABS and tSO

j is the ampli-
tude for the corresponding spin-flip tunneling process that
results from a spin-orbit interaction with spin-orbit field
BSO along the y axis, perpendicular to the external Zeeman
field B (cf. Ref. [111]).

To describe experiments in which the PMM system is
coupled to external normal-metal source and drain leads
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that allow for (local and nonlocal) conductance measure-
ments, we add the following terms to our Hamiltonian to
describe the electronic states in lead r and their couplings
to the level on QD j :

H res
rj =

∑

kσ

εrkσ c†
rkσ crkσ +

[
∑

kσ

trjkσ d†
j σ crkσ + h.c.

]
. (4)

Here, εrkσ is the energy of an electron in level k with
spin σ in lead r (relative to the Fermi level) and trjkσ
parametrizes the coupling strength of that level to the local-
ized state on the QD to which the lead is coupled (for
simplicity, we only include spin-conserving tunneling).
For example, for the case of a transport setup where QD
L is coupled to a source and QD R to a drain contact, we
would add H res

SL + H res
DR to the Hamiltonian. For our numer-

ical simulations of transport experiments, we always focus
on the regime where the tunnel coupling to the leads is
the smallest energy scale and solve for the current with a
rate-equation approach [112].

B. Spinless model

When |εj ↓|, |tj |, |tSO
j |, |EABS

Z | � |�|, |EZL,R|, one can
neglect occupation of the excited spin state and treat the
couplings between QDs L and R via the ABS in second-
order perturbation theory. The model in Eqs. (1)–(3)
then reduces to the effectively spinless and noninteracting
model of Ref. [46], sketched in Fig. 1(c) and described by

H spinless =
∑

j

ωj nj +
[
χ d†

LdR + � d†
Ld†

R + h.c.
]

. (5)

The QD orbital energy ωj ≈ εj ↓ but is renormalized by the
couplings to the ABS, while χ and � are the amplitudes
for ECT and CAR between QDs L and R, resulting from
second-order perturbation theory in tj and tSO

j . Similarly to
the spinful interacting case, for a single PMM system, any
phase of � can be gauged away. We thus take � to be real
without loss of generality.

We will sometimes use the spinless model in Eq. (5)
to gain intuitive understanding or analytical results. How-
ever, it might not be experimentally possible to reach a
regime where mapping onto the spinless model is appropri-
ate and it might not even be desirable, because |tj |, |tSO

j | �
|�| implies a small gap to excited states. Importantly, it
has been shown in Ref. [53] that one can also reach a
regime with high-quality PMMs in the regime where such
a mapping is not appropriate.

In the spinless model in Eq. (5), there is a sweet spot
with a degeneracy between the lowest-energy states with
even and odd fermion-number parity, which is associ-
ated with having one perfect PMM localized on each
QD, denoted by γL = d†

L + dL and γ̃R = i(d†
R − dR) in Fig.

1(c). This sweet spot occurs when the spin-polarized QD

orbitals are at zero energy, ωL = ωR = 0 (i.e., they are
aligned with the chemical potential of the superconductor
coupling them) and when the amplitudes for CAR and ECT
are equal, � = χ . Ref. [46] has proposed tuning the ampli-
tudes for CAR and ECT through the angle between the
noncollinearly polarized QD spins. In the spinful model,
both of these processes are possible because of the spin-
orbit coupling and control of the relative amplitudes can
be achieved by controlling the energy of the ABS cou-
pling the QDs because of an interference effect described
in Ref. [52] and studied experimentally in Ref. [60] (see
also Ref. [53]).

Away from the sweet spot, the splitting between the
lowest even and odd states can become finite and the cor-
responding fermionic mode cannot always be split up into
two nonoverlapping PMMs. The effect of tuning away
from the sweet spot can be understood in a more quanti-
tative way by performing a Bogoliubov transformation to
write Eq. (5) as

H spinless = 1
2

[√
ω2+ + 4�2 −

√
ω2− + 4χ2

]
f †
− f−

+ 1
2

[√
ω2+ + 4�2 +

√
ω2− + 4χ2

]
f †
+ f+, (6)

up to a constant term, where ω± = ωL ± ωR and f †
± cre-

ates a fermion in the excited (ground) state. In terms of the
Majorana operators we defined before, we can write

f− = 1
2

sin(ϕ+)γL + i
2

sin(ϕ−)γ̃L

− 1
2

cos(ϕ+)γR − i
2

cos(ϕ−)γ̃R, (7)

where ϕ± = [arctan(2χ/ω−) ± arctan(2�/ω+)]/2 and we
have introduced the two additional Majorana operators
γR = d†

R + dR and γ̃L = i(d†
L − dL). We note that the two

arctan functions are defined such that they yield an angle
in the range (0, π). This definition is crucial for obtaining
correct results.

We see that when ωL = ωR = 0, we have ϕ+ = π/2
and ϕ− = 0 and thus f− = (γL − iγ̃R)/2, i.e., the lowest
fermionic mode separates into two well-localized PMMs
on the two QDs. However, this does not imply that the
lowest odd and even states (corresponding to having the
mode f− occupied or unoccupied) must be degenerate; see
Eq. (6).

C. Low-energy model

We also introduce an even simpler low-energy model,
only including a single fermionic mode with energy ξ :

H lowE = i
2
ξγ γ̃ . (8)
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We choose the operators such that for well-localized
PMMs, γ has no weight on QD R, while γ̃ has no weight
on QD L. In general, we let ζ ≤ 1 denote the relative
amplitude of γ̃ on QD L, normalized by the amplitude
of γ on QD L. In the same way, we let ζ̃ ≤ 1 denote the
amplitude of γ on QD R, normalized by the amplitude of
γ̃ on QD R. Then, ζ = 1 (ζ̃ = 1) corresponds to a normal
fermion on QD L (R), while ζ = 0 (ζ̃ = 0) corresponds to
a single PMM on QD L (R).

The model in Eq. (8) can be seen as a low-energy
approximation to both the spinful model (Sec. II A) and
the spinless model (Sec. II B). In the latter case, we define
γ = f †

− + f− = sin(ϕ+)γL − cos(ϕ+)γR and γ̃ = i(f †
− −

f−) = − cos(ϕ−)γ̃R + sin(ϕ−)γ̃L and ξ is the energy of
the fermion annihilated by f− [see Eq. (6)]. This allows
us to write explicitly ζ = sin(ϕ−)/sin(ϕ+) and ζ̃ =
cos(ϕ+)/cos(ϕ−).

We will use generalizations of Eq. (8) to two- and
three-PMM systems in Secs. VI and VII to gain intu-
itive understanding and compare with the physics of true
topological MBSs.

III. MEASURES FOR MAJORANA QUALITY

When there is no clear separation between energy scales,
the model in Eqs. (1)–(3) does not reduce to the spinless
model given in Eq. (5). In this case, both spin states on
the QDs must be accounted for, the QD charging energy
becomes important, and we cannot project out the occu-
pation of the ABS. Nonetheless, it has been shown in
Ref. [53] that for a wide range of parameters, by vary-
ing εj σ and εABS

σ one finds two sweet spots associated with
localized PMMs. However, unlike in the spinless model
given in Eq. (5), these PMMs are never perfect, even at the
sweet spot where the degeneracy is (almost completely)
robust to detuning of individual QD levels. In Ref. [53],
the PMM quality (or closeness to perfect MBSs) has been
quantified through the MP defined by

Mj =
∑

σ

(
w2

j σ − z2
j σ

)

∑
σ

(
w2

j σ + z2
j σ

) , (9)

wj σ = 〈o|(dj σ + d†
j σ )|e〉, (10)

zj σ = 〈o|(dj σ − d†
j σ )|e〉, (11)

where |e〉 (|o〉) is the lowest-energy state with total even
or odd fermion-number parity. It always holds that −1 ≤
Mj ≤ 1. It should be noted that this definition of the MP
assumes real wave functions, which we can always choose,
because the Hamiltonians in Eqs. (1)–(3) are real; for com-
plex wave functions, there is a phase degree of freedom
in the definition of wj σ and zj σ which requires some extra
care.

The MP given in Eq. (9) can be calculated anywhere in
parameter space but we would only really call the states
PMMs if we had a combination of high (close-to-unity)
MP and a (quasi)degeneracy between the even- and odd-
parity ground states. |Mj | = 1 means that only a single
Majorana operator that switches between these even- and
odd-parity ground states has any weight on QD j . In the
different experiments proposed and investigated below, we
will study the effects of having low MP even at the best
possible sweet spot (resulting from a too low EZj and
Uj [53]). We will also consider (intentional and uninten-
tional) deviations from the sweet spot, which can break the
even-odd degeneracy and/or reduce the MP.

In the spinless model described in Sec. II B, we can use
Eq. (7) to find explicit expressions for the MP:

ML = sin(ϕ+)2 − sin(ϕ−)2

sin(ϕ+)2 + sin(ϕ−)2 (12)

= −4χ�

ω+ω−−
√

(ω2− + 4χ2)(ω2+ + 4�2)

(13)

and

MR = cos(ϕ+)2 − cos(ϕ−)2

cos(ϕ+)2 + cos(ϕ−)2 (14)

= −4χ�

ω+ω−+
√

(ω2− + 4χ2)(ω2+ + 4�2)

. (15)

We note that these expressions simply quantify how purely
real (γj ) or imaginary (γ̃j ) the component of the ground-
state wave function on QD j is, perfect MP corresponding
to ML = ±1, MR = ∓1.

Within the low-energy model introduced in Sec. II C, it
seems reasonable to define the MP as

ML ≈ 1 − ζ 2

1 + ζ 2 , MR ≈ −1 − ζ̃ 2

1 + ζ̃ 2
. (16)

This clearly agrees with Eqs. (12) and (14) if we derive the
low-energy model from the spinless model but we empha-
size that, for relatively high MP (small ζ ), Eqs. (8) and
(16) hold more generally, i.e., also when the PMMs have
some weight on the ABS and on the excited spin state.
When investigating coupled PMM systems and braiding in
Secs. VI and VII, we will see that, assuming that we have
tuned the system to even-odd degeneracy, ζ and ζ̃ indeed
quantify how the results deviate from those expected for
topological MBSs.

We emphasize that Mj is normalized to the total weight
of the wave function on the QD under consideration. This
suggests that one can have |Mj | = 1 even with only negli-
gible average occupation of QD j . This can be clearly seen
in the spinless model, where, e.g., in the limit ωR → ∞
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and ωL = 0, one finds for χ = � that the even and odd
ground states are the trivial states |0〉 and d†

L|0〉; however,
in this case, Eqs. (13) and (15) yield ML = 0 for QD L
but MR = −1 for the empty QD R. The quantities ML,R
are thus not very good measures for the “Majorananess”
of the ground-state wave function as a whole. They are,
however, useful to consider when one is interested in cou-
pling multiple PMM systems, to form qubits and perform
fusion or braiding experiments. As discussed in Sec. VI A,
when two PMMs are connected via two QDs, AR and
BL, that have |MAR| = |MBL| = 1, the resulting coupling in
the low-energy sector can be written in the form H lowE

AB =
iλABγAγB/2; reduced weights on the coupled QDs reduce
the effective coupling strength λAB but will not introduce
any undesired finite-coupling matrix elements between
other Majorana components of the low-energy modes.

We note that the product of the two polarizations
−MLMR or their weighted sum |ML − MR|/2 could be used
as a measure for the Majorana quality of the whole PMM
system, both measures reaching 1 in the ideal case.

In case one is interested in a measure that takes into
account the relative weight of the mode on the outer QDs,
one could also consider the quantity

MG = 1
2
[

cos(ϕ+)2 − cos(ϕ−)2]2

+ 1
2
[

sin(ϕ+)2 − sin(ϕ−)2]2 (17)

= 16χ2�2

(ω2− + 4χ2)(ω2+ + 4�2)
, (18)

written here in terms of the spinless model (one could
straightforwardly construct an equivalent expression for
the spinful case). This quantity satisfies 0 ≤ MG ≤ 1 and
only reaches its maximum when f− = (±γL ∓ iγ̃R)/2 or
f− = (∓γR ± iγ̃L)/2, i.e., when the lowest-energy mode is
a perfect PMM with all its weight on the two outer QDs.
This MG is thus more closely related to a global Majo-
rana quality of the full wave function corresponding to
the lowest mode. However, in the spinful model, the wave
function will also have some weight on the ABS and a gen-
eralization of MG will thus rarely approach 1. The same
will hold for any more complex model with additional
degrees of freedom. A low value of MG could indicate a
strong mixing of the Majorana components of the wave
function but could also be merely related to a small total
weight of the state on the outer QDs.

For the experiments considered in Secs. VI and VII, only
the Majorana quality in the parts of the PMM system that
are coupled to other components matters. This is quantified
by the normalized local Mj and we therefore focus on this
quantity in the following.

IV. DETECTING MAJORANA STATES

A. Tunneling spectroscopy

The most straightforward way to probe the low-energy
physics in a PMM system is to connect it via tunneling
barriers to metallic reservoirs, as sketched in Fig. 2(a),
and perform tunneling spectroscopy. In such a setup, the
full differential conductance matrix Gjk = dIj /dVk, with
j , k = L, R, can be accessed by varying the voltages Vk
applied to the reservoirs and monitoring the currents Ij
flowing into the two sides of the PMM system. A peak
in the local differential conductances Gjj at small bias volt-
age signals a degeneracy of the lowest even and odd states.
Mapping out the structure of this degeneracy as a func-
tion of the QD orbital energies, which can be controlled
via electrostatic gates, can provide information about the
ratio of CAR and ECT and could thus serve as a guidance
for tuning toward points in parameter space with large MP
[53,58]. A measurement of the nonlocal differential con-
ductances GLR and GRL provides additional information
about the detailed structure of the bound state involved in
the transport, including its “BCS charge” distribution over
the two QDs [74], such that a sign change of GLR and GRL
coinciding with the degeneracy can provide extra evidence
for a bound state with high MP [58]. The nonlocal nature
of MBSs can also be probed with shot-noise spectroscopy
[113–119] or entropy measurements [120–124].

B. Coupling to an extra quantum dot

Another method to assess the quality of the PMMs and
indirectly probe their MP is to add one extra QD to the
setup and measure the conductance of the combined QD-
PMM setup [see Fig. 2(b)]. While direct local tunneling
spectroscopy on the bare PMM system can only reveal the
presence of a low-energy state that has significant weight
on one end of the system, the addition of the extra QD
makes the level structure of the combined setup sensi-
tive to the exact distribution of the state over the whole
PMM part of the system, thus providing insight into the
Majorana quality of the state through straightforward local
conductance measurements only. In the search for MBSs
in proximitized nanowires, the addition of such an extra
QD has indeed yielded features in the low-energy part of
the spectrum that have been interpreted as signatures of the
absence or presence of low-energy modes corresponding to
localized MBSs [22,77,78,125].

To investigate this setup in more detail for the PMM sys-
tem, we thus add an extra QD “D” to our model, which we
account for by adding to the Hamiltonian

HD =
∑

σ

εDσ nDσ + UDnD↑nD↓

+
∑

σ

[
tDd†

Dσ dLσ + tSO
D sσ d†

Dσ dLσ̄ + h.c.
]
, (19)
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(b)

(a)

(e)

(d)(c)

FIG. 2. (a) The transport setup that allows for measurement of
the full differential conductance matrix of a PMM system, such
as performed in Ref. [58]. (b) The QD-PMM system embedded
in a similar transport setup as in (a). (c) The local differential
conductance (G = GRR) of the QD-PMM system for a high-MP
sweet spot as a function of the bias voltage V/2 = VL = −VR and
the QD orbital energy εD. The solid light-blue lines show the dif-
ference between the lowest even and odd states obtained from
numerical diagonalization of the spinful Hamiltonian. (d) The
same as (c) but for a low-MP sweet spot. (e) The maximum split-
ting between the even and odd ground states when sweeping εD
as a function of the Zeeman splitting on all the QDs, for param-
eters corresponding to different MP values (indicated by the dot
color). In all calculations, we have used (all in units of �) UL =
UR = UD = 5 and EABS

Z = 0. All the tunnel couplings between
the QDs have been chosen equal to tj = 0.5 and the spin-orbit
tunnel couplings are set to tSO

j = 0.1. To change the MP, we have
varied EZL,R (with EZD = EZL,R) and adjusted εL, εR, and εABS

to find a sweet spot. In (c) (high MP, |ML,R| ≈ 0.986), we have
used EZL = EZR = EZD = 1.5, εL = εR = −0.154, and εABS =
−0.329. In (d) (low MP, |ML,R| ≈ 0.661), we have used EZL =
EZR = EZD = 0.15, εL = εR = −0.306, and εABS = −0.564.

where d†
Dσ creates an electron with spin σ on the extra

QD D. QD D is only tunnel coupled to QD L of the
PMM system [see Fig. 2(b)] and the orbital on the QD
D has the (spin-dependent) single-particle energy εDσ =

εD ± EZD/2 and an on-site Coulomb charging energy
of UD. For simplicity, we have not included inter-QD
electrostatic interaction between QDs D and L, which
could in principle be significant, since they are not sep-
arated by a superconducting element that screens the
interaction. We will assume here that such interactions
are being screened by additional metallic components or
actively compensated for in the gating of the device.

This combined QD-PMM system is then connected to
a source and a drain lead, as indicated in Fig. 2(b). We
include this in our model by adding the terms H res

LD + H res
RR

to the Hamiltonian [see Eq. (4)] and numerically calculate
the current through the system (see Sec. II A).

Figures 2(c) and 2(d) show the calculated local differ-
ential conductance GRR as a function of the symmetrically
applied bias voltage V/2 = VL = −VR and the QD detun-
ing εD. We plot the conductance in units of �/�, where
� = 2π t2rjkσ νres is the tunnel rate to the reservoirs, with
νres the density of states of the reservoirs, which, together
with the tunnel-coupling coefficients, trjkσ , is assumed to
be energy and spin independent and is set the same for the
two sides of the system. Within the rate-equation approach,
� is just a prefactor and the conductance plotted in units
of �/� is independent of �. However, the rate equation
is only valid under the assumption � � T, where we take
the thermal energy to be T = �/200. All other parameter
values are specified in the caption of Fig. 2.

In all the panels, the PMM system is tuned to a sweet
spot, i.e., a point in the parameter space (εL, εR, εABS)
where the lowest even and odd states are degenerate, the
degeneracy is quadratically protected against deviations of
εL,R, and the MP is maximized (cf. Ref. [53]). Figure 2(c)
shows the case where the sweet spot has relatively high
MP values, |MR| = |ML| = 0.986, whereas in Fig. 2(d)
we have lower |MR| = |ML| = 0.661, due to a 10 times
lower Zeeman splitting. The solid light-blue lines indicate
the energy difference between the lowest even and odd
states, found from numerically diagonalizing the spinful
Hamiltonian.

Similar to the case with MBSs in nanowires [22,77,78,
125], we see that the case with high MP distinguishes itself
by showing much smaller splitting of the zero-bias peak
as a function of the QD level εD, a feature that is indeed
clearly visible in the local conductance data. The intuitive
picture is that if QD D only couples to a single PMM, it
cannot break the ground-state degeneracy and level cross-
ings will thus not produce significant splitting. In general,
we note that the line shapes that we observe close to
the level crossings strongly resemble those observed in
experiments [22,78], which have been called “bowtie” and
“diamond” patterns [77,125].

To corroborate the connection between the observed
level splitting at the crossing and the MP of the PMM sys-
tem, we show in Fig. 2(e) the maximal even-odd ground-
state splitting δE around the level crossings as a function
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of the Zeeman splitting on the three QDs. For each point,
we have tuned the PMM system to a sweet spot, where
the even and odd ground states are degenerate, the degen-
eracy is quadratically protected against deviations of εL,R,
and the MP is maximal. The colors of the dots indicate
the MP, which ranges from 0.661 for a Zeeman splitting
of EZ = 0.15 � to 0.995 for EZ = 3 �. The dependence of
the MP on the Zeeman splitting is well known [53]; addi-
tionally, we see a clear correlation between the MP and the
maximal δE when sweeping εD, with δE converging to 0
for |ML| = 1.

These results clearly indicate that the addition of an
extra QD can facilitate probing the Majorana quality of the
low-energy states in a PMM system, using local tunneling
spectroscopy only.

C. Quantum capacitance and Majorana polarization

Another method to access the Majorana quality of a
PMM system could be to monitor the quantum capacitance
of the lowest even and odd state with respect to one of the
gate voltages that control the QD levels. In the spinless
model, the even (odd) charge sector is spanned by the two
basis states |00〉 = |0〉 and |11〉 = d†

Ld†
R|0〉 (|10〉 = d†

L|0〉
and |01〉 = d†

R|0〉). At the sweet spot, where ωL = ωR =
0, the lowest even and odd eigenstates become (|00〉 −
|11〉)/√2 and (|10〉 − |01〉)/√2, respectively, together
defining a fermionic mode that is comprised of two per-
fect MBSs. Both of these states are equal superpositions of
different charge states, which is indeed a crucial ingredient
to make them indistinguishable by local charge measure-
ments, a characteristic property related to the nonlocal
nature of MBSs. However, this also implies that at the
sweet spot, the charge distribution of both states is most
sensitive to small changes in the on-site potentials, sug-
gesting a local maximum in the magnitude of the quantum
capacitances Cpj = d2Ep/dω2

j , where p = e, o denotes the
parity of the state, and j = L, R.

The simplicity of the spinless model allows us to
straightforwardly find analytical expressions for the capac-
itances,

Cej = − 2�2

(
ω2+ + 4�2

)3/2 , (20)

Coj = − 2χ2

(
ω2− + 4χ2

)3/2 , (21)

which are equal for j = L, R and their magnitudes are
indeed both maximal at the point ωL,R = 0. In fact, we see
that in the spinless model, there is a direct connection with
MG, which is defined in Eq. (18),

Cej Coj = M 3/2
G

16χ�
. (22)

(a) (b)

(c) (d)

FIG. 3. The product of the four capacitances C(4) as a function
of the gate-tunable parameters (a),(b) εL = εR and εABS or (c),(d)
εL and εR. In (a) and (c), we have used the same parameters as in
Fig. 2(c) and in (b) and (d), we have used the same parameters
as in Fig. 2(d). The green crosses mark the locations of the local
sweet spot, where the even-odd splitting vanishes, the degener-
acy is quadratically protected against deviations of εL,R, and the
local ML,R are maximized. The white lines indicate the trajectory
of the ground-state degeneracy in parameter space (we plot all
points with even-odd energy splitting below a threshold value in
white).

A local maximum of Cej Coj as a function of the tuning
parameters can thus be interpreted as a signal of high MP.

To find the sweet spot in an experiment, one could first
find the manifold in parameter space that yields a vanish-
ing even-odd splitting, using local tunneling spectroscopy.
After that, one could monitor the capacitance of the QDs of
the PMM system, via rf reflectometry (see, e.g., Ref. [93–
95]), while allowing for tunneling events that change the
parity of the system, or just rely on randomly occurring
quasiparticle poisoning processes to switch between the
even and odd ground states. From the telegraph signal mea-
sured, one can extract a measure for both Cej and Coj .
The product Cej Coj is expected to have a maximum at the
Majorana sweet spot for zero energy splitting, which can
be used to tune the energy of the QDs.

We now explore the extent to which this relationship
holds in the spinful interacting model, with finite on-site
Zeeman splittings. The capacitances are now defined as
Cpj = d2Ep/dε2

j and are in general no longer symmetric
in j = L, R. In Fig. 3, we thus plot the product of the four
capacitances C(4) = CeLCeRCoLCoR and assess the correla-
tion between local maxima of this quantity and the location
of the sweet spot. Figures 3(a) and 3(b) show C(4) as a
function of εL = εR and εABS. In Fig. 3(a), we have used
a high Zeeman splitting of EZL,R = 1.5 �, resulting in a

010323-9



ATHANASIOS TSINTZIS et al. PRX QUANTUM 5, 010323 (2024)

sweet spot with relatively high MP, whereas we have used
EZL,R = 0.15 � in Fig. 3(b), yielding a low-MP sweet spot
(for all the parameters used, see the caption of Fig. 2 ). In
both plots, we indicate the location of the even-odd degen-
eracy with a white line and the location of the sweet spot
is marked with a green cross. In both cases, the sweet spot
indeed coincides with a maximum of C(4) along the degen-
eracy. Figures 3(c) and 3(d) show the same two situations,
now as a function of independent εL and εR, with fixed
εABS = −0.329 � (c) and εABS = −0.564 � (d). In this
case, the correlation between the maximum C(4) and MP
is even more clear than in Figs. 3(a) and 3(b).

This indeed suggests that local tunneling spectroscopy
combined with quantum capacitance measurements could
provide enough information to identify the sweet spots
in parameter space. The method only relies on finding
the maximum of C(4) within the even-odd ground-state
degeneracy manifold. This tuning method provides more
information than transport measurements alone—which
can only determine conditions for ground-state degenera-
cies—as it is insensitive to details such as QD level arms
and cross capacitances between different gates. However,
quantum capacitance measurements cannot distinguish
between high- and low-MP sweet spots. To distinguish
them, experiments probing the non-Abelian properties of
the PMMs are required and are discussed in Sec. VII.

V. INITIALIZATION AND READOUT

To go beyond transport spectroscopy and approach
Majorana qubits and eventually non-Abelian physics, the
first step is to develop the ability to initialize and read out
the state associated with a pair of PMMs. Here, the lack of
topological protection of the PMMs turns into an advan-
tage. The ground state is singly degenerate everywhere,
except for fine-tuned situations that include the sweet spot,
where well-separated PMMs appear. Thus, to initialize the
system we can simply shift the orbitals of both QDs away
from the sweet spot (the degeneracy is not lifted for small
shifts of the orbital of only a single QD, although the PMM
localization is affected [46]).

Figures 4(a) and 4(b) show the energy differences δEn
between the lowest excited states n = 1, 2, 3 and the
ground state as a function of the detuning from the sweet
spot (solid and dotted blue lines; left vertical axes), for
a sweet spot with high MP in Fig. 4(a) and low MP in
Fig. 4(b) (using the same parameters as in Fig. 2). Here, we
have chosen a symmetric detuning, δεL = δεR, where δεj is
the deviation of εj from the sweet-spot value. For symmet-
ric detuning, the ground state is even, while an asymmetric
detuning (δεL = −δεR) would give an odd ground state.
Initialization is most easily done by detuning to a point
where the even-odd splitting is larger than the thermal
energy and waiting for a time longer than the quasiparticle
poisoning time.

(a) (b)

(d)(c)

FIG. 4. (a),(b) The excitation energies δEn (solid and dotted
blue lines; left vertical axes) and absolute value of the charge
difference |δQL| between even and odd ground states on the left
QD (red lines; right vertical axes) as a function of detuning both
QD orbitals symmetrically (εL = εR) away from the sweet spot.
(c),(d) Similar to (a),(b) but showing instead the quantum capac-
itance associated with the left QD of the even ground state (CeL,
solid) and odd ground state (CoL, dotted). Parts (a) and (c) cor-
respond to parameters where the MP is high at the sweet spot,
while (b) and (d) correspond to parameters where the MP is low
at the sweet spot [the same parameters as in Figs. 2(c) and 2(d)].

The conceptually simplest way to read out the state
encoded in the two MBSs is through charge detection on
one (or both) QDs, similar to what is done for spin qubits
[88–92]. This does not give a signal at the sweet spot,
where the charge on both QDs is equal in the even and
odd states. However, as the QD orbitals are detuned, a
substantial charge difference develops; see the red lines
(right vertical axes) in Figs. 4(a) and 4(b), which show
|δQL| = |〈e|QL|e〉 − 〈o|QL|o〉|. This parity-to-charge con-
version is similar to the spin-to-charge conversion used for
single-shot readout of spin qubits in double QDs [90].

Another option is to read out the state based on a mea-
surement of the quantum capacitance introduced in Sec.
IV C (see, e.g., Refs. [93–95]). For readout, we want to
measure the quantum capacitance of an individual QD,
which is plotted in Figs. 4(c) and 4(d) for a high- and low-
MP sweet spot, respectively. At the sweet spot, Cej ≈ Coj ,
the difference approaches zero as the MP approaches unity
and is exactly zero at the sweet spot in the spinless model in
Eq. (5). However, away from the sweet spot, the quantum
capacitances differ substantially between the lowest even
and odd states. Just as for charge detection, we can there-
fore use a quantum capacitance measurement for readout
if we first detune the system away from the sweet spot.

We note that it is also possible to construct a setup that
allows reading out the state while keeping the system at

010323-10



MAJORANAS IN MINIMAL KITAEV CHAINS PRX QUANTUM 5, 010323 (2024)

the sweet spot [46,103]. However, adding detectors capa-
ble of readout at the sweet spot not only complicates the
device and measurements (requiring either measurements
sensitive to charge fluctuations or capacitive coupling to
both QDs) but also necessarily introduces a decoherence
mechanism at the sweet spot (which will be relevant when
we consider coupled PMM systems below). We, therefore,
believe that it is better to use simpler readout schemes,
such as those discussed above, which are only sensitive to
the state encoded in the PMMs away from the sweet spot.

Using the methods for initialization and readout dis-
cussed above, we propose that an important first experi-
ment is to measure the lifetime of the parity of a single
PMM system. This will limit the lifetime of a PMM
qubit and will be a limiting factor for any experiment
probing the non-Abelian nature of the low-energy states.
Away from the sweet spot, continuous charge-detection
or quantum capacitance measurements should exhibit
jumps in the readout signal when quasiparticle poisoning
switches the system between even and odd parity, thus
revealing the rate for such processes. This requires stay-
ing close enough to the sweet spot that the even and odd
ground states are not separated by much more than the
thermal energy. The magnitude of the jumps in the sig-
nal should be reduced when approaching the sweet spot.
To measure the parity lifetime at the sweet spot, one could
instead initialize the system away from the sweet spot and
then tune back to the sweet spot for some waiting time,
followed by readout away from the sweet spot.

Finally, we note that the physics discussed in this section
is to a large extent independent of the MP at the sweet spot.
Both readout methods discussed above (charge-detection
and quantum capacitance measurements) work almost
equally well for a high-MP sweet spot [Figs. 4(a) and 4(c)]
as for a low-MP sweet spot [Figs. 4(b) and 4(d)]. There
is no qualitative difference in the spectra between high-
and low-MP sweet spots [compare Figs. 4(a) and 4(b)],
although the gap to excited states tends to be lower for
lower MP. There is also no reason to expect drastic differ-
ences in the quasiparticle-poisoning times between PMM
systems with high- and low-MP sweet spots. The differ-
ence between high and low MP will, however, be clear
when coupling two PMM systems, as will be discussed in
Sec. VI, and will be of crucial importance for the braiding
protocols investigated in Sec. VII.

VI. COHERENT MAJORANA OPERATIONS

In the previous sections, we have described ways to
characterize a PMM system, where information is encoded
in the parity degree of freedom. However, it is usually
not possible to create superpositions of the even- and
odd-parity states encoded in a single pair of PMMs (or
topological MBSs). Therefore, a Majorana qubit should be
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(e) (f)

(c)

FIG. 5. (a) A sketch of two coupled PMM systems that can be
used as a PMM qubit, with the two inner QDs coupled via direct
tunneling (upper panel), and a sketch of a low-energy (MBSs-
only) model (lower panel). (b),(c) The four lowest eigenenergies
of the system in (a) plotted as a function of the QD coupling tAB
at (b) a high-MP sweet spot and (c) a low-MP sweet spot (the
parameters are the same as for the high- and low-MP sweet spots
in Fig. 2 and tAB = 5tSO

AB). The full red (green dashed) lines show
states with total even (odd) parity. (d) The same as (a) but with
the inner QDs coupling via a superconducting segment hosting
an ABS (and using tAC = 5tSO

AC). (e),(f) The same as (b),(c) but
for the coupling mechanism in (d) (m = A, B).

encoded in four PMMs, which can be hosted in two PMM
systems with a fixed total parity [3,96].

A. Coupled double quantum dots

We consider two different realizations of the coupling
between two PMM systems, as shown in Figs. 5(a) and
5(d). We denote the two PMM systems by A and B, each
of which is described by a Hamiltonian as in Eqs. (1)–(3).
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The first way to couple the two PMM systems is by
direct coupling between the two closest QDs, described by

HAB =
∑

σ

[
tABd†

ARσ dBLσ + tSO
ABsσ d†

ARσ dBLσ̄ + h.c.
]

+ UABnARnBL, (23)

where tAB (tSO
AB) is the amplitude for spin-conserving (spin-

orbit–induced spin-flip) tunneling between the right QD
in system A and the left QD in system B and UAB is
the inter-QD Coulomb charging energy between those
QDs with nAR = ∑

σ nARσ , nBL = ∑
σ nBLσ . A finite UAB

will induce correlations between the charge on the inner-
most QDs and prevent reaching a sweet spot in any of
the individual PMM systems even with the tunnel cou-
pling switched off, and in the following we will assume
that UAB = 0. Because, in contrast to the individual PMM
systems, there is no natural screening by a superconduct-
ing coupler, achieving UAB = 0 will require some design
effort, just as for the extra QD in Sec. IV B.

The complication with an inter-QD charging energy
can be circumvented by coupling the two PMM systems
via an additional superconducting segment. An additional
potential advantage with this coupling is that the whole
system can be turned into a four-site Kitaev chain. We
describe this superconductor with a Hamiltonian analo-
gous to Eq. (2), while the couplings are described by a
Hamiltonian analogous to Eq. (3):

HACB =
∑

σ

sσ

[
tSO
ACd†

ARσ cCσ̄ + tSO
BCc†

Cσ dBLσ̄

]

+
∑

σ

[
tACd†

ARσ cCσ + tBCc†
Cσ dBLσ

]
+ h.c., (24)

where tmC (tSO
mC) is the amplitude for spin-conserving (spin-

flip) tunneling between PMM system m = A, B and the
connecting superconductor (C) that has electron annihila-
tion operator cCσ .

With both ways to couple the two PMM systems, the
phase differences between the superconductors become
important, which can be transformed into phases in the
couplings tAB or tAC, tBC. In the results presented in Fig.
5, we have taken all such couplings to be real, which in
general will require connecting the different superconduc-
tors in a loop to allow phase control. This control is not
crucial for the physics discussed here but, as we will see
below, it is advantageous for suppressing undesired PMM
couplings for low-MP sweet spots.

We consider a setup where the couplings between
PMM systems A and B (via either of the two mecha-
nisms described above) can be controlled via gate voltages.
If PMM systems A and B are both tuned to a sweet
spot and the coupling between them is switched off, the
ground state is fourfold degenerate. We can choose to

operate the system within the subspace with total even or
odd parity, spanned by |ee〉 = |e〉A|e〉B, |oo〉 and |eo〉, |oe〉,
respectively. Transitions between the total-even- and total-
odd-parity subspaces can only happen via quasiparticle
poisoning.

When the coupling between the PMM systems is
switched on, the fourfold-degenerate ground state splits as
seen in Figs. 5(b) and 5(c) for the direct coupling [Eq. (23)]
and in Figs. 5(e) and 5(f) for the coupling via an additional
superconducting segment [Eq. (24)]. For small coupling
strength (compared with the couplings within each PMM
system), the main difference between the two coupling
mechanisms is that for coupling via an additional super-
conducting segment, the effective coupling between QDs
AR and BL is of second order in the couplings tmC and tSO

mC
to the ABS (although the details will depend on the energy
of the ABS). We furthermore compare the cases of high
and low MP. Figures 5(b) and 5(e) show that for a system
tuned to a high-MP sweet spot, switching on the cou-
pling splits the fourfold-degenerate ground state into two
(nearly) twofold-degenerate states. This corresponds to an
equal splitting within the even- (red full lines) and odd-
(green dashed lines) parity subspaces. In contrast, lower
MP leads to a different splitting within the total-even- and
total-odd-parity subspaces and thus to a complete breaking
of the ground-state degeneracy [see Figs. 5(c) and 5(f)].

We can understand the MP dependence of the spectra by
comparing with the low-energy model introduced in Eq.
(8) generalized to two coupled PMM systems,

H lowE
AB = i

2

∑

s=A,B

ξsγsγ̃s

+ i
4

[λAB(γA − iζAγ̃A)(γB + iζBγ̃B) − h.c.] ,

(25)

where we have chosen the Majorana operators such that
the ground states on the inner QDs (AR and BL) are domi-
nated by γs but also contain an additional small fraction ζs
of γ̃s (see Sec. II C). This model is illustrated in the lower
panel of Fig. 5(a). Formally, we can obtain the coupling
term from the spinless model by projecting the electron
operators d(†)

AR and d(†)

BL onto the low-energy fermion in Eq.
(7) and then reexpressing the result in terms of the Majo-
rana operators in Eq. (8). The coupling λAB can also induce
terms ∝ γsγ̃s but they will scale as λ2

AB and we will neglect
them in the following, where we focus on small λAB. The
connection between ζ and the MP is given by Eq. (16),
although this expression should not be used for a very
small Zeeman energy (leading to small MP), where the
low-energy model is not appropriate.

As mentioned above, the coupling between the PMMs
depends on the phase of λAB, which can be controlled if the
superconductors are connected in a loop. Just as in Fig. 5,
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we focus below on real λAB > 0, where Eq. (25) simplifies
to

H lowE
AB = i

2

∑

s=A,B

ξsγsγ̃s

+ iλAB

2
(γAγB + ζAζBγ̃Aγ̃B). (26)

If each PMM system is at a sweet spot when the cou-
pling is switched off, then ξs = 0 by definition. If, in
addition, we have perfect PMMs at the sweet spot, the
MP is unity and ζs = 0, and Eq. (26) shows that turning
on λAB leads to an equal splitting within the subspaces
with total even and total odd parity [see Figs. 5(b) and
5(e)]. This splitting corresponds to a finite energy of the
fermion fα = (γA + iγB)/2 but a preserved twofold degen-
eracy associated with the uncoupled fermion fβ = (γ̃A −
iγ̃B)/2 (for an explanation for the specific forms of fα and
fβ , see Appendix A). For imperfect PMMs—MP less than
unity and |ζs| > 0—also, γ̃A and γ̃B couple, leading to a
finite energy of the fermion fβ and thus to a breaking of
the remaining twofold degeneracy. As a consequence, the
splittings within the subspaces with even and odd total par-
ity are no longer equal. This is what is seen in Figs. 5(c)
and 5(f) as a splitting between the full red and dashed green
lines [note that for an even ground state, one must take
ζA = −ζB in Eq. (26)].

We note here that there is, in fact, an important advan-
tage in using phase control to achieve a real λAB. Compared
with Eq. (25), the terms that are linear in ζs have vanished
in Eq. (26). Thus, a real λAB reduces the effect of imperfect
PMMs (low MP).

It is exactly this additional splitting for finite ζs that
will be the deciding factor for whether or not the braid-
ing protocols in Sec. VII work. It is therefore desirable to
accurately measure the breaking of the ground-state degen-
eracy in two coupled PMM systems. One way would be
to simply measure the spectrum for a finite coupling with
transport spectroscopy (similar to Sec. IV A). However, we
will now show that by operating the coupled PMM systems
as a qubit in both the total-even-parity and total-odd-parity
subspaces, the breaking of the ground-state degeneracy can
instead be measured in the time domain, which should
allow for the detection of much smaller energy splittings.

B. Coherent control of Majorana qubits

We start by considering a qubit encoded in the subspace
with even total parity, such that |ee〉 is at the north pole
and |oo〉 is at the south pole of the Bloch sphere. Then,
detuning one or both PMM systems away from the sweet
spot with the coupling between them switched off causes
a rotation around the z axis, while coupling the two PMM
systems results in a rotation around an axis in the x-y plane.
This becomes clear if we approximate the coupled PMM

systems by the low-energy four-MBS Hamiltonian given
in Eq. (26). If we choose

γs = f †
s + fs, γ̃s = i(f †

s − fs), (27)

with f †
s being the creation operator for a fermion

in the lowest-energy mode in PMM system s = A, B,
then |ee〉 is the ground state of the uncoupled sys-
tem for ξs > 0 and we identify the Pauli matrices as
σz = −iγAγ̃A = −iγBγ̃B, σy = iγAγB = −iγ̃Aγ̃B, and σx =
−iγAγ̃B = −iγ̃AγB (where the equality signs should be
interpreted as the operators having the same effect within
the total-even-parity subspace). Thus, within the total-
even-parity subspace Eq. (26) becomes

H lowE
AB,e = −ξ+

2
σz + λAB

2
(1 − ζAζB)σy , (28)

where ξ+ = ξA + ξB.
We now discuss how to initialize, control, and read out

the PMM qubit. For simplicity, we base our discussion on
the low-energy model in Eq. (28) but the same operations
also work when this is not a good approximation. The qubit
can be initialized in an eigenstate of σz by letting λAB → 0
and detuning the QDs away from the sweet spot to make
ξA �= 0 and ξB �= 0. This can be followed by either a parity
measurement as described in Sec. V or simply by letting
the system relax (by quasiparticle poisoning) to the ground
state, before tuning back to the sweet spot. Two-axis con-
trol of the qubit is achieved by pulsing ξs (resulting in a
rotation around the z axis) or λAB (resulting in a rotation
around the y axis). Readout is performed in the same way
as initialization with λAB switched off.

Even if one has braiding as the end goal, qubit measure-
ment is an important stepping stone. In addition to being a
test of initialization, coupling, and readout, it allows mea-
surements of the coherence time (T2 time), which will also
be a limiting factor for braiding. This can be done sim-
ply by measuring the decay of coherent oscillations with a
finite λAB or in a Ramsey-type experiment where one first
performs a π/2 rotation into the x-y plane, then waits for
some time before applying another π/2 rotation, giving
a decaying signal as a function of the waiting time. Fur-
thermore, the frequency of coherent oscillations provides a
measure of ξ+, allowing for tuning to even-odd degeneracy
without being limited by thermal broadening. This experi-
ment in itself is not sensitive to ζ and we can equally well
implement a qubit based on PMMs with low MP, although
there is a slight lifting of the protection from variations
in QD orbital energies that will likely affect the coherence
times at very low MP.

For the purpose of estimating ζ (or the MP), we
now consider a qubit encoded instead in the subspace of
total odd parity, where we choose σz = −iγAγ̃A = iγBγ̃B,
σy = iγAγB = iγ̃Aγ̃B, and σx = iγAγ̃B = −iγ̃AγB (where
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the equality signs should be interpreted as the opera-
tors having the same effect within the total-odd-parity
subspace). Then, we obtain

H lowE
AB,o = −ξ−

2
σz + λAB

2
(1 + ζAζB)σy , (29)

where ξ− = ξA − ξB.
Comparing the second terms in Eqs. (28) and (29) shows

that for the same value of λAB, the effective coupling
strength is different in the even and odd subspaces. This
reflects the different splitting between the two green dashed
lines compared with the splitting between the two red
full lines in Figs. 5(c) and 5(f). Thus, the difference in
qubit rotation frequency around the y axis for a given λAB
between the qubit in the even and odd subspaces provides
a time-domain measurement of the Majorana quality.

It is important to note that at the sweet spot and with
the coupling between the PMM systems switched off, the
total-even- and total-odd-parity ground states are degener-
ate. Thus, the total-even- and total-odd-parity qubits will
be operated with all parameters identical and the only dif-
ference during operation will be in the initialization. To
initialize in the total odd subspace, we detune one PMM
system away from the sweet spot to give an even-parity
ground state (which can, e.g., be done by setting εAL =
εAR) but the other one to give an odd-parity ground state
(which can, e.g., be done by setting εBL = −εBR).

C. Testing Majorana fusion rules

A Majorana fusion experiment has been suggested as a
probe of non-Abelian physics that is experimentally eas-
ier than braiding [81,82,98–103]. Here, we briefly discuss
and comment on a fusion protocol for PMMs that is simi-
lar in spirit to that in Ref. [81] and analogous to the recent
proposal in Ref. [103]. The aim of a fusion protocol is to
initialize Majorana pairs and thereafter measure them in a
different pairing configuration. The possible outcomes of
this measurement (fusion) and the associated probabilities
are a fundamental property of non-Abelian anyons. The
simplest version of the fusion protocol requires four PMMs
and can be accomplished in either of the setups sketched in
Figs. 5(a) and 5(d) [where UAB ≈ 0 is needed for the setup
in Fig. 5(a)] through the following steps:

(i) The protocol starts with a large coupling between
the two PMM systems. If the MP is high, the ground
state is almost twofold degenerate [Figs. 5(b) and
5(e)] but we can break that degeneracy by detun-
ing the outermost QDs, AL and BR. The system is
then allowed to relax to the unique ground state
before bringing the levels of QDs AL and BR back
to their sweet-spot values. With true topological
MBSs, which is described by the low-energy model
in Eq. (25) with ζA = ζB = 0, this corresponds to

initializing the system in a state where the inner-
most (γA and γB) and outermost (γ̃A and γ̃B) PMM
pairs have a definite parity. A PMM system with
|MAR| < 1 and/or |MBL| < 1 can be approximated
by |ζA| > 0 and/or |ζB| > 0, in which case all four
PMMs couple and the initial state deviates from the
ideal one.

(ii) In the next step, we reduce the coupling between
the two PMM systems. This should be done adia-
batically with respect to higher-energy states [not
shown in Fig. 5 but corresponding to excitations
within each PMM system of the type in Figs. 4(a)
and 4(b)]. At the end of this step, the ground state
is (almost) twofold degenerate independent of the
MP, with a possible splitting set by a combination
of residual coupling (if this cannot be switched off
completely) and a finite energy of each individual
PMM system if it has not been tuned perfectly to the
sweet spot [corresponding to finite ξs in Eqs. (25)
and (26)]. The operation of switching off the cou-
pling should be fast compared to the inverse of that
energy scale.

(iii) Finally, the state of the PMM pairs within each
PMM system is read out. The readout can be done
as described in Sec. V by detuning away from the
sweet spot with the coupling between PMM systems
switched off. In the ideal case, this corresponds to
reading out the eigenvalue of iγsγ̃s in Eqs. (25) and
(26).

Thus, in the ideal case, the fusion protocol will initialize
the system in an eigenstate of iγAγB and iγ̃Aγ̃B and then
read out this state in the eigenbasis of iγAγ̃A and iγBγ̃B.
According to the Majorana fusion rules, the outcome of the
readout is 50-50 (because of conservation of total parity,
there are two possible outcomes).

In principle, there is no problem associated with imple-
menting this protocol in the setup with imperfect PMMs.
The problem is, instead, that the protocol will also work
for low-MP PMMs. In fact, as was noted in Ref. [98],
the outcome of a fusion protocol as sketched above (or
any of the versions that are based on the same principle)
will always be 50-50, as long as the protocol is diabatic
with respect to the small ground-state splitting mentioned
in step (ii) above but adiabatic with respect to all higher
excited states. We show this in detail in Appendix A, where
we demonstrate that the low-energy model in Eq. (26)
produces a 50-50 outcome independent of the values of
ζs, i.e., independent of the MP values. Thus, the proto-
col serves as a time-domain probe of the exactness of the
ground-state degeneracy and is a useful test of adiabatic
control of the PMM system but it does not give conclusive
evidence of the actual Majorana nature of the associated
(near) zero-energy fermionic states. Therefore, we now
turn to braiding experiments.
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VII. NON-ABELIAN SIGNATURES AND
MAJORANA BRAIDING

Exchanging two MBSs leads to a nontrivial change in
the system state, which serves as direct evidence of their
non-Abelian properties. However, physically exchanging
MBSs is challenging and hence various protocols have
been proposed that have the same effect on the states
encoded by the MBSs but that are hopefully easier to
realize experimentally. In this section, we adapt three
such proposals for the PMM platform and investigate the
impact of the unavoidable imperfect nature of the PMMs.
Throughout this section, we describe the PMM systems
with appropriately extended versions of the low-energy
model in Eqs. (25) and (26), which implicitly means
that we assume that inter-QD Coulomb interactions are
negligible or can be compensated for by gating.

A. Non-Abelian signatures in charge-transfer-based
protocols

Charge-transfer-based protocols [83,106,107] provide
conceptually simple tests of Majorana non-Abelian prop-
erties. The basic setup (adapted to our PMM systems) is
sketched in Fig. 6(a) and the protocol is based on transfer-
ring charges between the central QD (D) and the PMM
systems by sweeping the level of QD D from negative
to positive (or from positive to negative) energies. In an
adiabatic operation, a single charge is transferred between
QD D and the coupled PMMs, thereby changing the joint
fermion parity of the two PMM systems. When QD D
couples to a single PMM (e.g., γA), the operation can be
understood mathematically as acting with the correspond-
ing Majorana operator, Ci = γA on the ground state of the
PMM system. If QD D is coupled to a pair of PMMs (say,
γA and γB), the charge-transfer operation can be under-
stood as acting with the operator FAB = (γA + γB)/

√
2

on the PMM systems. Therefore, BAB = FABCA gives the
same result as braiding PMMs γA and γB and the differ-
ence between CAFAB and FABCA is due to the non-Abelian
nature of the PMMs. It might be more convenient to
add a third operation, i.e., FABCAFAB and FABFABCA, so
that, for perfect PMMs, each sequence gives a state with
well-defined PMM parities, differing only by the fermion
between the left and right subsystems [107].

To see how this protocol is affected by having PMMs
with MP less than unity, we generalize the low-energy
model in Eq. (25) to include the extra QD D in Fig. 6(a):

H = ωDd†
DdD + i

2

∑

s=A,B

ξsγsγ̃s

+ i
2

∑

s=A,B

[λs(γs − iζsγ̃s)dD − h.c.] . (30)

(a)

(b) (c)

(d) (e)

FIG. 6. The charge-transfer protocol for demonstration of
PMM non-Abelian properties. (a) A sketch of the setup with
QD D tunnel coupled to the two PMM systems. (b),(c) The two
sequences of the protocol, where the energy of QD D is swept
between positive and negative energies (TB is the duration of
each sequence). To minimize the effect of dynamical phases,
we sweep QD D as ωD(t) = ωmax

D tan[π/4(t − t0)/τ ], where t0
is a time offset and τ controls the sweep time. The energies
are normalized with respect to their maximum values, taken as
λmax

A = λmax
B = ωmax

D /500 = λmax (used as the energy unit in the
figure). (d) The protocol visibility �, defined as the product of
the probabilities of finding the ideal Majorana outcome after
sequences 1 and 2. For the initial state |ee〉, � = P1

oeP2
eo. (e)

Close-up of the plot in (d) close to ζ = 0.

The system is first initialized by detuning the PMM QDs,
as explained in Sec. V. Sweeps of QD D can flip the parity
of the A and B PMM systems. To implement FAB, we keep
the tunnel rates to A and B equal (λA = λB), while CA can
be achieved by setting λB = 0. The two different sequences
are sketched in Figs. 6(b) and 6(c).

We test the protocol numerically by solving the time-
dependent Schrödinger equation for the unitary time evo-
lution while sweeping the level of QD D up and down
according to Figs. 6(b) and 6(c). For these sweeps, we
use a shape that minimizes the accumulation of dynami-
cal phases [107]. For a system initialized in the state |ee〉 =
|e〉A|e〉B, the ideal outcome for sequence 1 (2) is |oe〉 (|eo〉),
which can be measured using the parity readout described
in Sec. V. Deviations from these outcomes are associated
with imperfectness of the charge-transfer operations (as
discussed in Refs. [106,107]) and/or the less-than-unity
MP (finite ζs). Figure 6(d) shows the protocol visibility,
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�, given by the product of the probabilities that the two
sequences give the result expected for perfect Majoranas.

The numerical calculations show small regions where
� ≈ 1, including the PMM sweet spot, ζ = 0. The fail-
ure of the protocol for larger ζ is due to the finite splitting
of the degenerate manifold, which depends linearly on ζ .
This splitting introduces a dynamical phase and, there-
fore, a dependence of the final state on the details of how
operations are performed. Therefore, a minimization of the
dynamical phase would require fast operations, although
slow enough to avoid nonadiabatic effects (which lead
to failure of the protocol for too fast sweeps, even for
ζ = 0). This trade-off results in a relatively narrow range
close to ζ = 0, where the designed sequences of operations
can show Majorana non-Abelian properties. In principle, it
might be possible to extend the ζ range where the protocol
is successful by echoing away the dynamical phase, e.g.,
by reversing the sign of ζ between operations (similar to
the echo used to compensate for an imperfectly fine-tuned
phase in Ref. [107]).

B. Measurement-based braiding

Another way of effectively performing braiding and
operations on a set of MBSs is by using a measurement-
based protocol [84,85,108]. A protocol that uses QDs to
read out the parity of pairs of MBSs and performs a braid-
ing has been presented in Ref. [85]. Here, we discuss how
this protocol can be adapted to PMMs. The setup shown in
Fig. 7(a) contains three PMM systems (A, B, and C) and
two additional QDs for parity readout (U and D). PMM
system s hosts two PMMs, γs, localized mainly on QD
sL, which is connected to one or two readout QDs, and γ̃s,
which is localized mainly on QD sR and is not connected
to any readout QD. PMM systems A and B together have
a doubly degenerate ground state for a given parity, which
can be manipulated by braiding. PMM system C provides
a pair of auxiliary PMMs.

Let us start by describing the procedure for the case
where all PMMs have unit MP. The aim will be to braid γA
and γB. This can be done through the following sequence
of measurements: (i) initialize the joint parity of γC and
γ̃C to be even; (ii) measure the joint parity of γA and γC;
(iii) measure the joint parity of γB and γC; and (iv) measure
the joint parity of the auxiliary PMMs γC and γ̃C, which
we postselect for an even outcome. After this sequence,
one has performed an operation identical to a braiding of
γA and γB if the outcomes of measurements (ii) and (iii)
are both even (see Ref. [85]) [for different outcomes of (ii)
and/or (iii), the result deviates from the ideal braiding by
a phase]. More formally, the operator BAB for braiding γA
and γB can be realized by the following set of projections:

BAB ∝ MCC̃MBCMACMCC̃, (31)

(a)

(c)

(b)

(d)

FIG. 7. Measurement-based braiding. (a) A sketch of the pro-
posed device, consisting of three PMM systems (A, B, and C) and
two readout QDs (U and D). (b)–(d) The outcomes of the braid-
ing protocols for single (dashed line) and double (solid lines)
braids, starting from the state |eee〉 = |e〉A|e〉C|e〉B. The lines rep-
resent the weights (P) of the final states. The red curves give the
probability for staying in the initial state, |eee〉, while the blue
curves give the probability for ending up in the other even state,
|oeo〉. (b) The braiding outcome as a function of ζ = ζA = ζB =
ζC with λ = 1 and φ = π/2. (c) The braiding outcome as a func-
tion of φ for λ = 1 and ζ = 0.1. (d) The braiding outcome as
a function of λ with φ = π/2 and ζ = 0.1. The full black lines
show for comparison the probability of the double braid to end
up in the |oeo〉 state with very high-quality PMMs (ζ = 0.01).
For this close-to-ideal case, the results are nearly independent of
λ and φ.

where Mss′ (Mss̃) denotes a projective measurement onto
the state with even parity of γs and γs′ (γs and γ̃s).

The projection MCC̃ = (1 + iγCγ̃C)/2 is done as
described in Sec. V and can, in principle, be perfect inde-
pendent of the MP. We now discuss readout of the joint
parity of γA and γC using readout QD U, which is done
along the lines described in Refs. [83–87]. The read-
out of the parity of γB and γC is completely analogous.
For MP less than unity, these readouts will not be per-
fect, which will lead to deviations from the ideal braiding
result.

The readout QD U is coupled to QD AL (CL) with
tunnel amplitude λAU (λCU) and the coupled system can
be described by a Hamiltonian completely analogous to
Eq. (30). First, we note that the coupling of the PMM
systems to a single-level QD can only decrease the degen-
eracy by 2. This is because a single fermion coupled to a
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degenerate subspace consisting of N fermions will neces-
sarily yield N − 1 dark fermions [126]. The readout QD U
thus splits the system according to the occupation of the
fermionic mode to which it couples and after some rather
lengthy algebra (see Appendix B), one can express the
parity operator that couples to QD U in terms of the param-
eters ζs, φ = arg(λAU/λCU), and λ = |λAU/λCU|. When the
coupling is switched on, it will constitute a measurement
of this parity operator. If the coupling is not too strong,
the system ends up in one of its two energy eigenstates
[86,87,127,128]. The maximal visibility turns out to be
achieved for φ = π/2 and λ = 1.

This projection varies between the ideal topological
case discussed above for all ζs = 0 to the “trivial” (or
fermionic) case for ζs = 1. However, the fermionic case is
actually not as trivial as one might expect. For ζs = 1 and
the initial state |oee〉 = |o〉A|e〉C|e〉B, the braiding protocol
of Eq. (31) gives BAB|oee〉 = |eeo〉, perhaps as expected.
However, a double braid (i.e., acting twice with BAB) anni-
hilates the state. The braiding protocol also annihilates
|eee〉 and |eeo〉, whereas |oeo〉 is an eigenstate of BAB. To
conclude, the braiding operation does not necessarily give
the “trivial” braiding of electrons in the fermionic limit.

The protocol gives the outcome expected for topologi-
cal MBSs only for all ζs = 0. In the small-ζ regime, there
are some deviations from the ideal braiding results. This is
shown in Fig. 7(b), where the outcomes of single and dou-
ble braids are shown as a function of ζ = ζA = ζB = ζC.
Figures 7(c) and 7(d) show the stability of the braiding
outcome when changing φ and λ. For ideal PMMs, the
outcome of the protocol does not depend on these parame-
ters (although the visibility of the readout signal does, such
that readout might become difficult far from φ = π/2 and
λ = 1).

To conclude this subsection, the presented measurement-
based protocol could in principle be used to demonstrate
PMM braiding. However, the interpretation might become
difficult, because the results will depend strongly on the
device parameters, such as magnetic fluxes, gate-voltage
settings, and tunnel couplings. On the other hand, this
dependence might be a very useful way to characterize the
device.

C. Hybridization-induced braiding

The hybridization-induced braiding protocol relies
on alternating couplings between MBSs to effectively
exchange their positions. There are many versions of
this protocol in the literature for braiding of topologi-
cal MBSs [14,80–82,98,109,110], which differ from each
other mainly in the physical mechanism used to realize
MBS coupling, initialization, and readout. Our proposed
PMM version is based on the setup in Fig. 8(a) with
three PMM systems and resembles the setup in Ref. [105]
(which, however, focuses on real-space braiding). To

describe this system, we use a generalization of Eq. (26),

H =
∑

s

i ξs

2
γsγ̃s + i

2

∑

ss′
λss′(γsγs′ + ζsζs′ γ̃sγ̃s′), (32)

where ss′ = AB, BC, AC and we have taken the coupling
terms λss′ to be real, which requires phase control of the
superconductors. As in Sec. VI, ζs is a measure of the rel-
ative amplitude of the outer-QD PMMs γ̃s on the inner
coupled QDs, such that ζs = 0 for unit MP.

The hybridization-induced braiding protocol requires
tuning the couplings between three PMMs [14,80–82,98,
109,110] and the different steps involved are schemati-
cally illustrated in Fig. 8(b). In the first step, all couplings
between PMM systems are switched off (all λss′ = 0) and
the system is initialized in a state with a well-defined
fermion parity in subsystems A and B, which are tuned
to the Majorana sweet spot (ξA = ξB = 0). The ground-
state degeneracy of the central subsystem is split (ξC �= 0)

by coupling the two PMMs γC and γ̃C, which is repre-
sented by a green dashed line in Fig. 8(b). The initialization
and degeneracy breaking within each PMM system is
described in Sec. V.

The aim of the protocol is then to exchange PMMs γA
and γB. During the protocol, λAC, λBC, and ξC are switched
on and off in a specific sequence, as shown in Figs. 8(b)
and 8(c). At each step, one or two (but never three or
zero) couplings are switched on. For PMMs with unit MP
(ζA = ζB = ζC = 0), this guarantees that the ground state
remains twofold degenerate within a subspace of fixed
total parity. The entire protocol is carried out once (sin-
gle braid) or twice (double braid), after which the parity
of subsystem A and/or B is read out (see Sec. V) with all
λss′ = 0.

For definiteness, we assume that the system is initialized
in the state |ee〉 = |e〉A|e〉B (in the calculation PMM system
C is also initialized to be even but this is not important and
we suppress it in our notation). The ideal result of exchang-
ing PMMs γA and γB once (one sequence of the braiding
protocol) is to transform the state according to

|ee〉 → 1√
2

(|ee〉 + i|oo〉) . (33)

Carrying out the same sequence twice brings γA and γB
back to their original positions but the state is transformed
according to

|ee〉 → |oo〉. (34)

Readout of the parity of either PMM system A or B is
sufficient to detect successful braiding but readout of both
provides a consistency check and, also, readout of PMM
system C can be used to verify that the total parity has
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(e)

(a)

(b)

(c)

(d)

FIG. 8. Hybridization-induced braiding. (a) A sketch of the setup. (b) The braiding protocol, where the coupling between PMM
pairs is switched on and off. (c) The strengths of the different couplings during the protocol, as a function of time t normalized by the
protocol duration TB. (d) PS [as defined in Eq. (35)] after a single braid, as a function of ζ , and the time of each interaction pulse τ (in
units of the inverse of λmax, the maximal value of ξC, λAC, and λBC). (e) The probability of measuring a parity flip of the PMM systems
A and B (= Poo with the chosen initial conditions) after a double braid. We have used max(λAC) = max(λBC) = max(ξC), which are
switched on and off using a sigmoid function with a rate r = 50/τ .

remained fixed during the protocol (no quasiparticle poi-
soning). We imagine that the experiment is carried out
many times and compare the outcome with the ideal prob-
ability distributions from Eqs. (33) and (34). For the single
braid, we define the function

PS = 4PooPee, (35)

where Pee (Poo) is the probability of measuring even (odd)
parity in PMM systems A and B. PS = 1 for the ideal 50-50
outcome and PS = 0 for the trivial outcome of both PMM
systems always being even or always being odd. For the
double braid, we simply have Poo = 1 in the ideal case,
while Poo = 0 in the trivial case.

We simulate the braiding protocol by solving the time-
dependent Schrödinger equation for the model in Eq. (32)
with the initial conditions described above. Figure 8(c)
shows the calculated result for PS defined in Eq. (35) after
a single braid, as a function of ζ = ζA = ζB = ζC and τ ,
the duration of each interaction. Figure 8(c) shows the
analogous result for Poo after a double braid.

For ζ = 0, we find the result expected for topological
MBSs, PS = 1 and Poo = 1 for the single and double braid,
respectively. The result for the single braid seems rela-
tively stable for ζ � 0.5. This is because the quantities
that are read out (Pee and Poo) are insensitive to the phase
between the |ee〉 and |oo〉 components of the wave func-
tion in Eq. (33) [98]. However, this phase manifests itself
after a second braid operation and the double braid result
is therefore much more sensitive to ζ . But also for the dou-
ble braid, there are special values of the operation speed
where a close-to-ideal result is found even for rather large
ζ . Thus, we conclude that to prove non-Abelian exchange
with PMMs, one should do both single- and double-braid
protocols and also vary the speed of the protocol to verify
the stability of the result.

VIII. CONCLUSIONS

In this work, we have presented a pathway for
next-generation experiments on PMMs in minimal Kitaev
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chains. We believe that the ultimate goal of such exper-
iments should be the demonstration of the non-Abelian
nature of Majoranas. However, the path contains a few
milestones along the way, including assessment of PMM
quality (closeness to true topological Majoranas), initial-
ization and readout of the fermion parity encoded in
PMMs (including measurements of quasiparticle poison-
ing times), and coherent control of a PMM qubit and
measurements of coherence times.

We have presented three different braidinglike tests of
Majorana non-Abelian physics, focusing on how the PMM
quality affects the outcome. The suggestion for charge-
transfer-based non-Abelian operations is simplest in terms
of the required setup, which can be realized in a linear
geometry. However, it has the disadvantage of only being
partially protected (even for topological Majoranas) and
we also show that it only produces a nontrivial result
if the PMMs have very high quality. The protocol for
measurement-based braiding becomes equivalent to topo-
logically protected braiding for perfect PMM quality but
it can also produce non-Abelian (but unprotected) results
for low-quality PMMs and care is needed to avoid false-
positive outcomes of an experiment. The hybridization-
induced braiding most closely resembles the picture of
braiding as moving Majoranas around each other, is fully
protected for topological Majoranas, and gives a non-
trivial outcome for lower-quality PMMs compared with
the charge-transfer protocol but requires a comparatively
complex geometry and operational protocol.

For all protocols, we emphasize that a true signature of
non-Abelian physics must exhibit some kind of stability
to be distinguishable from conventional manipulation of a
quantum state. For the charge-transfer and hybridization-
based protocols, this stability manifests in the result being
independent of protocol speed (within some interval). For
the measurement-based protocol, the stability is instead
with respect to parameters characterizing the coupling
between the PMMs and the readout device.

All braiding protocols need to be performed faster than
the coherence time and the inverse residual splitting at the
sweet spot, both of which can be measured as described in
Sec. VI B. Adiabaticity furthermore requires that the oper-
ations are slow with respect to the excitation gap. For a
high-MP PMM system at the sweet spot, from Fig. 4(a)
we find that the excitation gap is approximately 0.15�.
For an induced superconducting gap in the central (S) part
� = 0.2 meV, this corresponds to a lower time limit of
20 ps. The operations required for the proposed protocols
are fully analogous to those routinely performed in semi-
conductor spin-qubit platforms based on similar materials
[129]. There, operations involving gate-controlled changes
of tunnel barriers and QD levels are performed on time
scales of nanoseconds and we expect the same to be pos-
sible for PMM systems, while the duration of the readout
operations is in the order of µs.

With the Majorana delocalization parameter ζ = 0.1
the charge-transfer protocol fails, the measurement-based
braiding gives results that deviate by approximately
10–20% from the ideal result and have some stability
to variations in phase and tunnel coupling, while the
hybridization-induced braiding approaches the ideal sta-
ble results even for a double braid (with a single braid
also being successful for much larger ζ ). Based on Eq.
(16), ζ = 0.1 corresponds to an MP value of around 0.98,
which seems well within experimental reach (the high-MP
case in Figs. 2–5 has an MP value of around 0.986). With
ζ = 0.01, all three protocols give a stable and close-to-
ideal result. However, this corresponds to an MP value of
around 0.9998, which in our spinful model would require
EZ ≈ 20� if the rest of the parameters are chosen as
in Figs. 2–5 (but significantly higher charging energies
would reduce this value [53]). For all protocols, non-
Abelian results without significant stability already appear
for much larger ζ , which may not be unambiguous evi-
dence for topologically protected non-Abelian physics of
Majoranas but is exciting new physics nonetheless.

It would be an interesting direction for future theoretical
works to try to optimize the braiding protocols presented
here to improve their stability and extend their useful-
ness to PMM systems with lower MP. This could involve,
e.g., optimized pulses and/or echo pulses to minimize or
cancel dynamical phases. It would also be interesting to
theoretically investigate decoherence in PMM systems and
its effect on different braiding protocols. Another rele-
vant question is how the proposed experiments would be
affected by using longer QD chains (which are already
being pursued experimentally [61]).

In conclusion, although there are clearly challenges
involved in experimental tests of non-Abelian physics with
PMMs, we believe that this work has shown promising
paths toward this goal.
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APPENDIX A: FUSION-PROTOCOL OUTCOME

Here, we show that the outcome of the fusion protocol
suggested in Sec. VI C is 50-50 regardless of the weight
ζA,B of the outer MBSs γ̃A,B—mainly localized on AL and
BR—on the inner QDs AR and BL (cf. Fig. 5). We con-
sider the even-parity sector similarly to the main text. For
an operation that is diabatic with respect to the ground-
state splitting but adiabatic with respect to excited states,
the probabilities for the fusion outcomes are given by the
matrix elements

PnAnB = |〈eαeβ |nAnB〉|2, (A1)

where |eαeβ〉 is taken to be the ground state for the two
coupled PMM systems modeled by the Hamiltonian given
in Eq. (28) and |nAnB〉 correspond to the (almost) degen-
erate ground state for the uncoupled systems, right after
step (ii) of the fusion protocol (nA, nB = eA or oA). |eαeβ〉
is annihilated by the fermions:

fα = 1
2
γA + i

2
γB, fβ = 1

2
γ̃A − i

2
γ̃B, (A2)

which can be easily checked using the final result of this
section. |eAeB〉 is annihilated by the fermions:

fA = 1
2
γA + i

2
γ̃A, fB = 1

2
γB + i

2
γ̃B. (A3)

We can read off the probabilities in Eq. (A1) by writing
the ground state of the coupled systems in the basis |nAnB〉.
The eigenvalues of Eq. (28) at the sweet spot (ξ+ = 0) are

v±= ± λAB

2
(1 − ζAζB), (A4)

with the corresponding normalized eigenvectors

V± = 1√
2

(
1
±i

)
. (A5)

The ground state can be written as

|eαeβ〉 = 1√
2

[|eAeB〉 − i|oAoB〉] (A6)

and Pee = Poo = 1/2 for any ζA,B. The fusion outcome is
thus independent of the values of ζA,B and thus of the MP
of the PMM systems. Although Eq. (28) is derived for a
real and positive λAB, the conclusion is more general and
is also valid for a complex λAB.

APPENDIX B: QUANTUM DOT READOUT FOR
THE MEASUREMENT-BASED BRAIDING

PROTOCOL

In this appendix, we give the details on how to calculate
the projective measurements done by the readout QD U for
the measurement-based braiding. The Hamiltonian is anal-
ogous to Eq. (30) and the QD U electron is described by the
operator dU = (γU + iγ̃U)/2. Writing this in first-quantized
form in the Majorana basis {γU, γ̃U, γA, γ̃A, γC, γ̃C}, the
Hamiltonian becomes (up to a constant)

H = i|λAU|
2

⎛

⎜⎜⎜⎜⎜⎝

0 ω̄U 0 ζA λ sin(φ) ζCλ cos(φ)

−ω̄U 0 −1 0 −λ cos(φ) ζCλ sin(φ)

0 1 0 0 0 0
−ζA 0 0 0 0 0

−λ sin(φ) λ cos(φ) 0 0 0 0
−ζCλ cos(φ) −ζCλ sin(φ) 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
, (B1)

where ω̄U = ωU/|λAU| with ωU the orbital energy of QD U, λ = |λCU/λAU|, and φ = arg(λCU/λAU). The two linear
combinations of Majorana modes that couple to QD U are as follows:

a = ζAγ̃A + λ sin(φ)γC + ζCλ cos(φ)γ̃C,

b = γA + λ cos(φ)γC − ζCλ sin(φ)γ̃C.
(B2)

After orthonormalization of these two vectors, we have that the fermion, the parity of which is read out by QD U, is
given, in Majorana representation, by f read

U = (γ read
U + iγ̃ read

U )/2 where
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γ read
U = (a − xb)

ζ 2
Cλ2 sin2(φ) + λ2 cos2(φ) + 1

(
ζ 2

A + λ2 sin2(φ)
) (

ζ 2
Cλ2 sin2(φ) + 1

) + λ2 cos2(φ)
(
ζ 2

A + 2ζ 2
Cλ2 sin2(φ) + ζ 2

C

) + ζ 2
Cλ4 cos4(φ)

,

γ̃ read
U = b√

1 + λ2(ζ 2
C sin2(φ) + cos2(φ))

,

x = λ2 sin(φ) cos(φ)(1 − ζ 2
C)

1 + λ2(ζ 2
C sin2(φ) + cos2(φ))

.

(B3)

The parity being projected by the measurement is thus

pU = iγ read
U γ̃ read

U . (B4)

We note that for the case of perfect PMMs, ζA = ζC =
0, one obtains γ read

U ∝ −λ sin(φ) cos(φ)γA + sin(φ)γC and
γ̃ read

U ∝ γA + λ cos(φ)γC. This means that iγ read
U γ̃ read

U ∝
iγAγC as expected, independent of λ and φ.

When performing the calculations of the results of the
braiding protocol, we define the fermion operators, ds =
(γs + iγ̃s)/2, with s = A, B, C. These operators then act on
the Fock basis states |nAnCnB〉, which allows us to write
the matrices for the various projectors.
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