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Lloyd et al. [Nat. Commun. 7, 10138 (2016)] were first to demonstrate the promise of quantum algo-
rithms for computing Betti numbers, a way to characterize topological features of data sets. Here, we
propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with
reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient
amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue pro-
jectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate
constant factors in the Toffoli complexity. Our analysis reveals that superquadratic quantum speedups are
only possible for this problem when targeting a multiplicative error approximation and the Betti number
grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows
that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for
superpolynomial advantage. We then introduce and analyze specific problem examples which have param-
eters in the regime where superpolynomial advantages may be achieved, and argue that quantum circuits
with tens of billions of Toffoli gates can solve seemingly classically intractable instances.
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I. INTRODUCTION

An important outstanding challenge in quantum com-
puting is to find quantum algorithms that provide a sig-
nificant speedup for practical problems. One area of great
interest is quantum machine learning [1]. Early proposals
included, for example, principal component analysis [2],
and were often based on quantum solution of linear equa-
tions [3]. However, it has proven possible to dequantize
many of these proposals, indicating that there is at most a
polynomial speedup [4,5]. Analysis of the cost taking into
account error-correction overhead indicates that more than
a quadratic speedup would be needed to provide a useful
quantum advantage within quantum error correction [6,7].
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An algorithm for topological data analysis proposed by
Lloyd et al. [8] turned out not to be directly “dequantiz-
able” using the same techniques, raising the question of
whether a greater speedup was possible. A simple analysis
by Gunn et al. [9] contradicted some of the scaling results
originally reported by Lloyd et al., and indicated that under
certain assumptions there would still only be a quadratic
speedup for these algorithms (our analysis agrees with that
of Gunn et al.). Here we give a far more careful analysis
of the complexity, and examine applications which provide
better-than-quadratic speedups.

An important goal in data analysis is to extract fea-
tures of a data set and use them to cluster or classify
the data. This data set would be represented as a set
of points in some metric space, such as R

n with the
Euclidean distance function. One approach for the anal-
ysis is to convert the point cloud into a graph where
the vertices are the given data points and the edges are
determined by whether or not pairs of points lie within a
chosen distance ε. This approach can capture features such
as connectivity but ignores potential higher-dimensional
features, especially if the data points are sampled from

2691-3399/24/5(1)/010319(45) 010319-1 Published by the American Physical Society

https://orcid.org/0000-0003-0869-5110
https://orcid.org/0009-0006-1500-505X
https://orcid.org/0000-0001-6979-9533
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.5.010319&domain=pdf&date_stamp=2024-02-06
http://dx.doi.org/10.1103/PRXQuantum.5.010319
https://creativecommons.org/licenses/by/4.0/


DOMINIC W. BERRY et al. PRX QUANTUM 5, 010319 (2024)

some underlying high-dimensional manifold. Topologi-
cal data-analysis (TDA) attempts to extract such higher-
dimensional global topological features of an underlying
data set by applying techniques from the field of alge-
braic topology, in particular, what is known as simplicial
homology.

A simplex is a point, line segment, triangle, or higher-
dimensional equivalent, and a simplicial complex is a
collection of simplexes. One can form a simplicial com-
plex from the data set with respect to a distance scale ε,
by adding points that are within distance 2ε to simplices.
The Betti number βk is the number of k-dimensional holes
of the complex. One can determine the Betti number for
a chosen range of ε. Betti numbers, which persist over
an appreciable range of the values of ε are indicative of
intrinsic topological features of the data set, as opposed
to artifacts that appear at a particular scale and disappear
shortly thereafter. The study of such features is referred to
as persistent homology.

The classical complexities of algorithms for estimat-
ing Betti numbers are typically exponential in k. That
means the computation can be intractable even for a mod-
erate amount of data. That is an important feature for the
promise of quantum algorithms, because even fully error-
corrected quantum computers with millions of physical
qubits are expected to be very limited in data storage.
The most promising applications of quantum computers
are therefore those involving a limited amount of classi-
cal data that needs to be fed into the quantum algorithm as
part of the problem specification.

Recent work on quantum TDA algorithms introduced
more efficient fermionic representations of the Dirac oper-
ator [10] and employed the quantum singular value trans-
formation to implement the kernel projector [11,12]. Some
of these techniques have led to significant asymptotic
improvements over the original approach, but it is unclear
whether they are useful for reducing the fault-tolerant
implementation cost for solving problems in practice.
Indeed, to the best of our knowledge, no study has been
done on the fault-tolerant implementation of quantum
TDA algorithms for solving any instance of problems of
practical interest.

In this work, we give a new algorithm for estimating
Betti numbers on a quantum computer. We significantly
reduce the cost of fault-tolerant implementation as com-
pared to prior work, as well as estimating the constant
factors that are needed to give realistic estimates of gate
counts. Specifically, we develop a new method to pre-
pare the initial Dicke states, introduce improved ampli-
tude estimation using Kaiser windows, directly construct
the quantum walk operator from block encoding, opti-
mally project onto the kernel of the boundary map, then
use the overlap estimation to estimate the kernel dimen-
sion of the block-encoded operator, leading to a quadratic
improvement in precision over classical sampling. We

also provide the concrete constant factors in the complex-
ity of our algorithm and estimate its fault-tolerant cost,
going beyond the asymptotic analyses of all existing work
on quantum topological data analysis. Finally, we show
that it is possible to construct specific data sets, which
have parameters in a regime where quantum TDA would
appear to have a significant speedup. In particular, we give
examples of a very specific family of problem instances
exhibiting the required parameters for the quantum TDA
to have a superpolynomial speedup over the naive gen-
eral classical algorithm, and a more general family of
instances that exhibits the required parameters for a quartic
speedup. Here, we are comparing to well-studied classi-
cal approaches with complexity approximately linear in the
possible number of cliques.

We provide a more detailed explanation of the tech-
nical background needed to understand Betti numbers in
Sec. II. We then provide the improved algorithm and the
analysis of its complexity in Sec. III. We use this result
to analyze the regimes where large quantum speedups
may be expected in Sec. IV. In particular, we consider
cases where the Betti number would be large (implying a
large quantum speedup) in Sec. IV A, and novel compet-
ing classical algorithms in Sec. IV D. We then conclude in
Sec. V.

II. TECHNICAL BACKGROUND

Here we give a more detailed background that is needed
to understand the standard approaches for this problem
and our contribution. For the technical definitions of the
simplicial complex and Betti number, see Appendix A.

A. Overview of the TDA algorithm and its
implementation

In order to analyze the Betti numbers, the points and
lines between the points are represented by a graph G.
Then a simplex is represented by a clique in the graph
(groups of vertices that are all connected by edges). The
n vertices of the graph G are represented by n qubits.
That is, |1〉 |0〉 · · · |0〉 would represent the first vertex,
and |0〉 |0〉 · · · |1〉 |0〉 would represent vertex n− 1. Note
that this is a distinct representation from that often used
to analyze sparse Hamiltonians, where each computa-
tional basis state represents a distinct vertex (so n qubits
would represent 2n vertices). In the representation here, a
computational basis state with more than one |1〉 would
represent a clique of the graph (a set of vertices with
edges connecting every pair of vertices). For example,
|1〉 |1〉 |1〉 |0〉 · · · |0〉 would represent a clique of the first
three vertices.

The entire Hilbert space can then be subdivided into
subspaces of different Hamming weights. Using Hk to
denote the space spanned by computational basis states
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with Hamming weight k, we have

(
C

2)⊗n =
n⊕

k=0

Hk, (1)

where dim(Hk) =
(n

k

)
. This space includes all states of the

various Hamming weights. One can also restrict to only
states which represent vertices of cliques of the graph G.
Denoting by HG

k the space spanned by basis states of all
k-cliques of G, we have HG

k ⊆ Hk. We also use Clk(G) to
denote the set of bit strings which correspond to k-cliques
of G.

We define boundary maps ∂k : Hk+1 → Hk by their
actions on the basis states |x〉 ∈ Hk+1 as

∂k |x〉 :=
k∑

i=0

(−1)i |x\(i)〉 , (2)

where x\(i) means the ith 1 in the bit string x is set to
0. We also define ∂G

k : HG
k+1 → HG

k as the restriction of
∂k to HG

k+1. That is, it gives zero for any x not represent-
ing a k + 1-clique of G. By definition, we have that both
im(∂G

k+1) and ker(∂G
k ) are subspaces of HG

k . But in fact, we
have im(∂G

k+1) ⊆ ker(∂G
k ) ⊆ HG

k , which can be seen from
(with |x〉 ∈ HG

k )

∂G
k ∂

G
k+1 |x〉 =

k+1∑

i=0

(−1)i∂G
k |x\(i)〉

=
k+1∑

i=0

(−1)i
i−1∑

j=0

(−1)j |x\(j , i)〉

+
k+1∑

i=0

(−1)i
k∑

j=i+1

(−1)j−1 |x\(i, j )〉

=
k+1∑

i=0

(−1)i
i−1∑

j=0

(−1)j |x\(j , i)〉

+
k+1∑

j=0

(−1)j−1
j−1∑

i=0

(−1)i |x\(i, j )〉

= 0. (3)

Since im(∂G
k+1) is a subspace of ker(∂G

k ), one can define the
quotient space

Hk(G) := ker(∂G
k )/im(∂

G
k+1). (4)

This space is called the kth homology group, and its
dimension

βG
k := dim(Hk(G)) = dim(ker(∂G

k ))− dim(im(∂G
k+1))

(5)

is the kth Betti number. In practice, Betti numbers βG
k can

be used to extract features of the shape of the data modeled
by the graph G, and their estimation is the main problem
in the topological data analysis we will consider here. In
this work we will be estimating βG

k−1 for the k − 1th Betti
number, so we can simplify our discussion by considering
Hamming weight k.

To describe our quantum algorithm and its circuit imple-
mentation for estimating Betti numbers, we will introduce
the Dirac operator BG. Specifically, for any graph G and a
fixed value of k, we define

BG :=

⎡

⎢
⎣

0 ∂G
k−1 0

∂
G†
k−1 0 ∂G

k

0 ∂
G†
k 0

⎤

⎥
⎦ , (6)

where the blocks indicate the subspaces HG
k−1, HG

k , and
HG

k+1. Since ∂G
k−1∂

G
k gives zero, squaring BG yields

B2
G =

⎡

⎢
⎣

∂G
k−1∂

G†
k−1 0 0

0 ∂
G†
k−1∂

G
k−1 + ∂G

k ∂
G†
k 0

0 0 ∂
G†
k ∂G

k

⎤

⎥
⎦ . (7)

It can be seen here that the middle part corresponds to the
combinatorial Laplacian [13]

�G
k−1 = ∂G†

k−1∂
G
k−1 + ∂G

k ∂
G†
k . (8)

It is known that [13–15]

dim(ker(�G
k−1)) = βG

k−1, (9)

which provides a convenient way of computing Betti num-
bers. Since BG is Hermitian, the kernel of BG and B2

G is
identical. Therefore, to estimate the Betti number corre-
sponding to a particular graph and a fixed value of k, it
suffices to construct the Dirac operator and compute the
dimension of its kernel on the subspace HG

k .
It can be difficult in general to perform topological

data analysis on a classical computer due to the high-
dimensional nature of the problem, with the dimension
increasing exponentially in k. However, the Dirac opera-
tor could be efficiently simulated on a quantum computer,
in the sense of solving the Schrödinger equation with the
Dirac operator as the Hamiltonian. That indicates expo-
nential speedups are possible, though there are a number
of other stages needed for the quantum algorithm. Previ-
ous work has provided several approaches for estimating
Betti numbers on quantum computers. The stages of these
approaches include preparation of a uniformly mixed state,
construction of the projector onto the kernel subspace, and
estimation of the overlap.
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The original approach of Lloyd et al. [8] applied ampli-
tude amplification and estimation to prepare the desired
initial state in HG

k , starting from a uniform mixture of
all Hamming weight k basis states in Hk. Their approach
actually produces a superposition over all values of k, so
the success probability of obtaining a specific k can be
quite low; this issue was addressed by later work such as
Refs. [9,15]. To construct the projector onto the kernel,
they implement Hamiltonian simulation and perform quan-
tum phase estimation on the resulting operator. The Betti
number is then estimated as the frequency of zero eigen-
values in the measurement. That is, the algorithm can be
summarized as below.

(1) For i = 1, . . . , m, repeat the following:

(a) Prepare the mixed state

ρG
k =

1
dim(HG

k )

∑

x∈Clk(G)

|x〉〈x| . (10)

(b) Apply quantum phase estimation to the unitary
eiBGt.

(c) Measure the eigenvalue register to obtain an
approximation λ̃i.

(2) Output the frequency of zero eigenvalues:

#{i, λ̃i = 0}
m

. (11)

In this work, we give a new algorithm for estimating Betti
numbers on a quantum computer. We provide a num-
ber of improvements, which significantly reduce the cost
of fault-tolerant implementation. Specifically, we do the
following.

(A) Develop new methods to prepare a mixture of fixed
Hamming-weight states with garbage information
that have significantly lower fault-tolerant cost. This
step is a precursor to preparing the equivalent of
Eq. (10).

(B) Introduce improved amplitude estimation using
Kaiser windows to estimate the number of steps
of amplitude estimation needed. That is used both
for preparation of Eq. (10) and estimation of the
frequency of zero eigenvalues.

(C) Directly construct the quantum walk operator from
block encoding, which is more efficient than quan-
tum simulation to give the operator eiBGt.

(D) Project onto the kernel of the boundary map by
implementing a Chebyshev polynomial to optimally
filter the zero eigenvalues. This is more efficient
than phase estimation as in step 1 (b) above.

(E) Use the overlap estimation to estimate the kernel
dimension of the block-encoded operator, leading

to a quadratic improvement in precision over the
sampling approach as in step 2 above.

We also provide the concrete constant factors in the com-
plexity of our algorithm and estimate its fault-tolerant cost
for solving example problems, going beyond the asymp-
totic analyses of all prior work on quantum topological
data analysis.

Ultimately, the performance of our algorithm (as well as
other algorithms from previous work) will depend on sev-
eral important problem parameters. First, the desired state
on which we perform the kernel projector as in Eq. (10) is
a uniform mixture of all the |Clk(G)| basis states in HG

k ,
where |Clk(G)| is the number of k-cliques. In contrast, we
start with a uniform mixture of all

(n
k

)
basis states in Hk

[the mixture of Hamming weight k states referred to in
(A) above]. The ratio

(n
k

)
/|Clk(G)|will determine the num-

ber of amplification steps required in the state preparation.
There is potential to improve the efficiency of preparation
of the cliques via an improved clique-finding algorithm.

Second, we need to implement a spectral projector
that distinguishes the zero eigenvalue from the remaining
nonzero eigenvalues of the Dirac operator. That is the pro-
jection referred to in (D) above, which replaces the phase
estimation from prior work. The cost of implementing such
a projector will depend on the spectral gap of the Dirac
operator. Third, the output of the quantum TDA algorithm
[given by the overlap estimation in (E) above] will not be
the actual Betti number βG

k−1 but instead a normalized ver-
sion βG

k−1/|Clk(G)|. In order to estimate the Betti number
to some additive precision, we need to increase the com-
plexity by a factor that depends on |Clk(G)|, with the result

that the complexity would roughly scale as
√(n

k

)
.

An alternative scenario is that a fixed relative error is
required; that is, the ratio of the uncertainty in the Betti
number to the Betti number. Then the complexity would

roughly scale as
√(n

k

)
/βG

k−1, as we show in Sec. III. This
means that significant speedups can be provided in cases
where the Betti number βG

k−1 is large, and we provide
examples of such graphs in Sec. IV.

Our overall complexity may be summarized as in the
following lemma.

Lemma 1 (Total complexity).—The complexity of esti-
mating to relative error r the Betti number βG

k−1 of graph G
with n vertices may be approximated as, for two different
methods

ln(1/δ2)

r2

√
|Clk(G)|
βG

k−1

⎡

⎣π
2

√ (n
k

)

|Clk(G)| (6|E| + n log2 n)

+ n
λmin

ln

(
4|Clk(G)|

r3β
G
k−1

)

(6|E| + 5n)

]

, (12)
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ln(1/δ2)

r2

√
|Clk(G)|
βG

k−1

⎡

⎣π
2

√
nk/k!
|Clk(G)| (6|E| + 2kn)

+ n
λmin

ln

(
4|Clk(G)|

r3β
G
k−1

)

(6|E| + 5n)

]

, (13)

with probability of failure δ = δ1 + δ2, where r = r1 +
r2 + r3, |Clk(G)| is the number of k-cliques, and it is
assumed we are given a classical database of edges of the
graph. In the case where we are instead given a database
of missing edges, then 6|E| is replaced with 4|EC| in the
above expressions.

See Sec. III F for the explanation of this total complex-
ity.

B. Complexity classes of TDA

Linear-algebraic applications of quantum computing
have led to numerous suggestions of how various types
of machine-learning subroutines could be implemented
on a quantum computer with superpolynomial speedups
over their classical counterparts. Many of these methods
were in the end shown to suffice only for at most polyno-
mial speedups, due to the randomized “dequantizations”
of Tang and others [4,5,16]. The algorithm of Lloyd et al.
[8], however, turned out not to be directly “dequantizable”
using similar techniques, raising the question of whether
more robust complexity-theoretic quantum-classical sepa-
rations can be proven. The current landscape on this topic
is somewhat involved.

In general, we have a number of discrepancies between
the computational problems in ordinary TDA applications
and the computational problems for which we have certain
complexity-theoretic insights. In ordinary TDA applica-
tions one is typically concerned with the computation
of the exact count of zero eigenvalues of combinatorial
Laplacians. By the result of Ref. [17]—which shows that
deciding if a combinatorial Laplacian has a trivial or non-
trivial kernel (i.e., Betti number zero or nonzero) is QMA1-
hard—this problem is likely beyond what is efficient even
for quantum computers in the worst case. This observation
goes in line with classical bodies of work showing that
exact computations of Betti numbers are NP-hard [18],
and that it can even be PSPACE-hard for more involved
topological spaces (i.e., so-called algebraic varieties) [19].

From the perspective of the types of problems quantum
algorithms may be efficient for, one could attempt a few
relaxations of the problem. First, it may be fruitful to relax
the TDA problem with respect to the quantity estimated.
Specifically, instead of the number of exactly zero eigen-
values, one could relax it and count the number of “small”
eigenvalues (i.e., below a threshold). This relaxation may
be convenient from a quantum algorithmic perspective, but
it is also still useful from a data-analysis perspective, since

Cheeger’s inequality demonstrates that the magnitudes of
the small nonzero eigenvalues of the graph Laplacian char-
acterizes the connectedness of the graph [20], and similar
results hold for combinatorial Laplacians [21]. In folklore
it is conjectured that for difficult cases, the magnitude of
the smallest nonzero eigenvalue of combinatorial Lapla-
cians very often scales inverse polynomially [14], in which
case the number of “small” eigenvalues coincides with
the number of zero eigenvalues if the threshold is chosen
appropriately. While the problem of counting small eigen-
values is more suitable to be solved on a quantum com-
puter, it could turn out to still be QMA1-hard if the TDA
matrices have a sufficiently large spectral gap. Specifically,
if the TDA matrices are sufficiently gapped, then one could
count the number of zero eigenvalues (which is QMA1-
hard [17]) by counting the number of eigenvalues below
the spectral gap (i.e., the number of “small” eigenvalues).

A related (yet different) problem for which complexity-
theoretical results are known is that of estimating normal-
ized Betti numbers to within additive inverse polynomial
precision. That is, the number of zero eigenvalues divided
by the total number of eigenvalues, which here would be
βG

k−1/|Clk(G)| (if the TDA matrix is sufficiently gapped).
This quantity is natural from a quantum computational
complexity perspective (though not from an applications
perspective), since a quantum algorithm naturally esti-
mates probabilities (so normalized quantities in this case),
and since additive errors allow for a direct relationship to
definitions of complexity classes like DQC1.

Specifically, in Ref. [15] it was shown that the gen-
eralization of this problem, namely estimating the ratio
when allowing a range of small eigenvalues, rather than
strictly zero eigenvalues, for arbitrary Hermitian operators
(i.e., the so-called low-lying spectral density) is DQC1-
hard. This result was build upon in Ref. [10], where it
was shown that the problem remains DQC1-hard when
restricting the input to combinatorial Laplacians of general
chain complexes. It is unknown whether the hardness per-
sists when further restricting to combinatorial Laplacians
of clique complexes, and the closest result to this is the
QMA1-hardness result of Ref. [17] for the problem of exact
counting. This normalized quantity is not typically studied,
and indeed there are concerns that Betti numbers may fail
to be large enough to be detectable when normalized (see
also Appendix F).

As discussed above, estimates of the normalized Betti
number with additive error are more natural from a
quantum computational complexity perspective. However,
from the perspective of applications, we typically work
with (unnormalized) Betti numbers (and perhaps their esti-
mates). For this case, the rescaling from normalized Betti
numbers to Betti numbers causes an in general exponential
blow up of additive errors, and leads to algorithms, which
always have exponential runtimes (for constant error). At
the same time, in many applications, we require only small
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additive errors when the quantities in question are them-
selves small. For these reasons here we focus on estimation
to within a given relative error; that is, the error in the Betti
number divided by the Betti number. That is immune to
rescaling and can lead to efficient algorithms in the cases
when the Betti numbers are large.

Note that the problem of estimating the low-lying spec-
tral density up to a certain relative error is also DQC1-
hard. The reason is that the relative error must always
be at least as large as the error in the normalized quan-
tity, and estimating the normalized quantity to additive
precision ε is DQC1-hard for ε = 1/poly(n) [15]. It is
unknown whether the hardness result holds for Betti num-
bers, because they are found by restricting to combinatorial
Laplacians, rather than arbitrary Hermitian operators. Gen-
erally, the larger the Betti number the more efficient the
quantum algorithm will be, which in certain cases results in
a polynomial quantum runtime. Examples of cases where
the Betti numbers are large are discussed in more detail in
Sec. IV.

III. OPTIMIZATION AND ANALYSIS OF
QUANTUM TOPOLOGICAL DATA ANALYSIS

In this section we describe our algorithm in detail. Sec-
tions III A, III B, and III C are for preparing a state similar
to ρG

k in prior work. That is a combination of states |x〉 that
correspond to k-cliques of the graph G. The general prin-
ciple is to first prepare a Dicke state, which is explained in
Sec. III A. That is an equal superposition of all states with
k ones, of which only a subset will be k-cliques. Therefore,
Sec. III B then describes how to efficiently detect the states
out of those that are k-cliques.

In order to provide a further speedup we then use
amplitude amplification, as described in Sec. III C. The
key difficulty there is that the number of steps of ampli-
tude amplification depends on the amplitude. We therefore
use amplitude estimation separately from the amplitude
amplification. This provides a significant advantage over
fixed-point amplitude amplification [22], which incurs
a logarithmic overhead, because we need only to per-
form the estimation once but perform the amplification
many times. Moreover, our amplitude estimation technique
using Kaiser windows is improved over standard ampli-
tude amplification, and can be used in far more general
applications.

Then in Sec. III D we describe how to block encode
the operator BG in order to provide a quantum walk oper-
ator that has eigenvalues related to those of BG, as in
Refs. [23,24]. In particular, we need to find eigenvalues
±1 of this walk operator, which correspond to eigenvalue
0 for BG. This provides a significant advantage over prior
work that was based on simulating a Hamiltonian time evo-
lution under BG, because we avoid the overheads inherent
in simulating Hamiltonian evolution.

Next, in Sec. III E we show how to use an optimal fil-
ter to find eigenstates of BG with eigenvalue 0 (or ±1 for
the walk operator). This method improves over prior work
that used phase estimation, which has an overhead due to
it providing more information (an estimate rather than just
distinguishing between zero and nonzero eigenvalues).

Finally, in Sec. III F we use the amplitude estimation
again to estimate the proportion of zero eigenvalues, then
provide the overall complexity. The use of amplitude esti-
mation here provides a square-root speedup over work
based on classical sampling.

A. Generating Dicke states with garbage

In this section, we consider preparing an n-qubit uniform
superposition of Hamming-weight k basis states (which is
allowed to be entangled with garbage states). Such a state
is known in the previous literature as the Dicke state. In
Ref. [25] it was shown how to prepare a Dicke state with
O(nk) gates, although these gates included rotations, so
there would be a logarithmic factor in the complexity when
counting non-Clifford gates.

Because the preparation here allows an entangled state
to be prepared between the superposition for the Dicke
state and ancilla states, it is possible to prepare the state
more efficiently. One approach is to apply a quantum sort
to n registers, then use it to apply an inverse sort to the n
qubits with the first k set in the state |1〉. This is similar
to the approach used for symmetrizing states for chemistry
in Ref. [24]. Another approach is to use inequality testing
to obtain k successes. Both those approaches give a factor
of log n in the number of qubits required, which is costly
when n is large. Throughout we use “log” for base 2, and
“ln” for natural logs.

We provide two schemes here. In our first scheme we
prepare n registers with approximately log n qubits in equal
superposition. This is similar to the first step in Ref. [24]
where a sort was used. Here we instead find a threshold
such that k registers are less than or equal to this threshold.
This approach is explained in detail in Appendix B 1.

Our second scheme is based on preparing separate
superposition states for the positions of each of the indi-
vidual ones. The target state is obtained by adding all those
ones into the target state, but has a higher amplitude for
failure arising from ones in the same locations. We provide
the details in Appendix B 2. The complexities of these two
schemes are as in the following lemma.

Lemma 2 (Dicke preparation).—The Dicke state with
k ones in n qubits may be prepared with probability of
success

1
(cn)n

(
n
k

) cn∑


=1

[
k − (
− 1)k](cn− 
)n−k ≈ 1− 1
2c

,

(14)
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using

(nseed + 1)
[n

2
(nseed + 2)+ 	log n


]
(15)

Toffolis, where nseed is a number of seed qubits

nseed := 	log cn
, (16)

for some constant c. Alternatively it may be prepared with
probability of success

k!
nk

(
n
k

)
(17)

with Toffoli complexity

(k + 2)n+ k(4	log n
 − 1)+ 	log k
, (18)

or

(k + 2)n− 2k + 	log k
, (19)

for n a power of 2. For this preparation, the state may be
entangled with an ancilla system.

Although the first scheme has better asymptotic com-
plexity of Õ(n), we find that for realistic parameters its
complexity is considerably larger. The lower probability of
success of the second scheme results in a larger factor in
the complexity, so the approach that is optimal will depend
on the parameters.

In comparison, prior work in Refs. [9,15] used a pro-
cedure based on an integer enumeration of all basis states
for the Dicke state. Lloyd et al. [8] used a method with a
superposition over values of k that is not directly compara-
ble. The complexity in Ref. [9] does not appear correct (the
complexity in Ref. [15] just cites that result). The method
it uses is to first compute a Pascal triangle of binomial
coefficients up to

(n
k

)
with complexity Õ(n2k).

To convert a natural number l to a Hamming-weight k
string, it then starts by finding the largest value of x such
that
(x

k

)
< l. It is said that the value of x can be found using

Õ(k) gates via a binary search using Pascal’s triangle as
a lookup table. The complexity is given as the number of
steps in the binary search, which is not correct. The reason
is that l is given in quantum superposition, so x needs to be
searched for in superposition, and finding the appropriate
entry in the lookup table (to perform the inequality test for
the binary search) has complexity of the size of the lookup
table. The value of k is fixed so not the entire lookup
table is needed, but there are n entries needed, and each
has size O(k log n). This has a complexity of O(kn log n),
which then needs to be performed O(log n) times in the
binary search, so would give a complexity O(kn log2 n).
That complexity needs to be multiplied by k steps of the

algorithm to give overall complexity O(k2n log2 n) for the
conversion.

The complexity of converting in the opposite direction,
from a Hamming-weight k string to a natural number,
is given correctly in Ref. [9] as Õ(nk). The complex-
ity of Pascal’s triangle is somewhat less than that given
in Ref. [9]. It can be calculated classically and entered
into a quantum registers with O(nk log n) Clifford gates,
so zero Toffoli complexity. The complexity of preparing
an equal superposition over natural numbers is O(k log n).
That is omitted in Ref. [9], which is reasonable because it
is smaller than the other complexities.

So in Ref. [9], the leading-order complexity of the
Dicke-state preparation is O(k2n log2 n), which is a fac-
tor of k2 larger than our complexity of O(n log2 n) for
our first approach, and a factor of Õ(k) larger than the
complexity of Dicke-state preparation in Ref. [25]. In the
example we give in Sec. IV A, k = 16 so the factor of
k2 is 256, and our first approach has about 2 orders of
magnitude improvement in the complexity of this step
as compared to Ref. [9]. For that example there is about
another factor of 4 improvement by using our second
approach.

B. Detecting the cliques

In the previous section, we have discussed the prepa-
ration of the n-qubit Dicke state with Hamming weight k
(and an additional garbage register)

1
√(n

k

)
∑

|x|=k

|x〉 1√
k!(n− k)!

∑

σ(0···01···1)=x

|σ 〉 . (20)

Here, the first register holds all n-qubit strings with Ham-
ming weight k, representing subsets of k vertices in an
n-vertex graph G. We now describe a quantum circuit that
detects whether a given string x represents a k-clique in
the underlying graph, with the promise that x has Ham-
ming weight k. Specifically, our goal is to implement the
mapping

|x〉 |0〉 |0〉 �→ |x〉 |x ∈ Clk(G)〉 |garbx〉 . (21)

Here, the second register has value 1 if x represents a k-
clique in G and 0 otherwise. The third register contains
some garbage information garbx that can depend on x and
need not be uncomputed.

Our implementation of the clique detection is related to
the approach of Ref. [26]. Specifically, we introduce a reg-
ister of 
log

(k
2

)� + 1 ≤ 2 log k qubits to represent integers
0, . . . ,

(k
2

)
. This register will be used to count the number of

edges in the subgraph induced by the k vertices denoted by
x. For the graph, we assume that it is given by a classical
database, so we need to run through this classical database,
rather than assuming any oracular access to the graph. Let
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us assume that we have a listing of all edges in the graph.
That is, for each edge, we have a listing of the two nodes.
In order to implement this classical data, for each edge in
the list we use a Toffoli with the qubits representing those
two nodes as controls, and an ancilla as target. In the case
where both qubits are in the state 1, the ancilla qubit will
be flipped.

The complexity is then given by a number of Toffolis
equal to the number of edges, which we denote |E|. We
aim to sum all the bits output by these Toffolis. Provided
that we are restricted to Hamming weight k, if x repre-
sents a k-clique then every pair of ones in x will result in
a 1, so the sum will yield

(k
2

)
. Summing bits in the obvi-

ous way would yield a complexity scaling as 2|E| log k
Toffolis, because each addition requires multiple Toffo-
lis. An improved method is given in Ref. [27], where it
would take no more than |E| Toffolis, but the same num-
ber of ancillas would be required, which would typically
be a prohibitively large cost. An alternative way of sum-
ming bits is given in Ref. [6], where multiple groups of
bits are summed, and their sums are summed. The overall
complexity is no more than 2|E| Toffolis, and only a log-
arithmic number of ancillas is used. The costs of the three
main parts of the algorithm are as follows.

(1) There is cost |E| Toffolis for checking the edges
of the graph. The resulting qubits can be erased
with measurements and phase corrections, with zero
Toffoli cost.

(2) The complexity of the efficient bit sum approach
from Ref. [6] is 2|E|.

(3) There is complexity no more than 2 log k Toffolis to
check that the output register is equal to

(k
2

)
.

Therefore, the total cost of clique detection is no more
than 3|E| + 2 log k Toffolis. In many cases we will need
to reflect on the result of this test. In that case, the 2 log k
cost is not doubled, because we can replace the equality
test with a controlled phase. Therefore, the cost in that case
is 6|E| + 2 log k. If we were to retain the qubits resulting
from the edge checking and use the sum from Ref. [27], the
cost would be 2|E| + 2 log k, though with a large ancilla
cost.

Later when we consider the block encoding of the
Hamiltonian we will need to allow a wider range of Ham-
ming weights, k − 1, k, and k + 1, in the case where we are
block encoding the Hamiltonian projected onto this sub-
space. First we can sum the ones in the string x, which has
Toffoli complexity n. We can check if the sum is equal to
k − 1 with 	log n
 Toffolis, then check if it is k or k + 1
with further Toffolis with the unary iteration procedure.
The number of Toffolis needed depends on the value of
k, and some values will require about another 	log n
 Tof-
folis. For each we can use CNOTs to output a success flag
on an ancilla qubit.

We can also output the value of
(k−1

2

)
,
(k

2

)
, or
(k+1

2

)
in

another register. In this case we would need to apply an
equality test between the result in our sum register and the
result in this register, which again has a Toffoli complexity
no larger than 2 log k. There are also n Toffolis needed to
sum the ones in x and no more than 3	log n
 Toffolis to
check the number of ones.

Much of the complexity of the algorithm is due to the
use of amplitude amplification to find the cliques. There
has been much work on quantum algorithms for clique
finding, but these algorithms are typically posed in terms of
calls to an oracle for the graph, with a possibly large com-
plexity for additional gates. What that means is that the
complexity in terms of oracle calls is no more than O(n2)

to find all the edges, and then there can be a very large
amount of postprocessing to find the cliques.

When there are n vertices there cannot be any more than
n(n− 1)/2 edges, but in practice we would only use the
above algorithm for |E| less than half this. The reason is
that for larger numbers of edges, it is more efficient to use
a database of missing edges. If we use such a database, we
can then iterate through all pairs of nodes in the database
and use a Toffoli controlled on the corresponding qubits. If
we find any cases where this gives one, it means that there
is a missing edge and the state does not represent a clique.
We therefore need to perform an OR on all the resulting
qubits.

Similarly to the case above using the list of edges, one
could perform an approach using addition and obtain a
complexity with |E| replaced by |EC|, where EC is the set
of missing edges. But, since we need only to find a single
one out of all the results, we can instead use an approach
for a multiply controlled Toffoli with a limited number of
ancillas. If one is willing to use about

√
|EC| ancillae, then

the cost is 2|EC|, with the same cost for erasure.
In particular, consider grouping the list of missing edges

into sets of approximately
√
|EC|. For each we can perform

the Toffolis with the qubits representing the correspond-
ing nodes as controls, then perform a multiply controlled
Toffoli with those qubits as controls (with the appropri-
ate bit flips to give an OR). The multiply controlled Toffoli
has Toffoli cost one less than the number of qubits in the
group. So, for example, if

√
|EC| is an integer, then it is

cost
√
|EC| − 1. The qubits giving the results of the Toffo-

lis for the missing edges can be erased using Clifford gates
similarly as before.

We do this for each of the approximately
√
|EC| groups.

Then we perform a multiply controlled Toffoli on the
results for all these groups. Because there are about

√
|EC|

this is again the Toffoli and ancilla cost. For exam-
ple, if

√
|EC| is an integer, then there would be Toffoli

cost (
√
|EC| − 1)

√
|EC| for the

√
|EC| groups, followed

by
√
|EC| − 1 for the multiply controlled Toffoli on the
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results, for cost |EC| − 1. That is combined with the |EC|
cost of the Toffolis for the individual missing edges, for
total cost 2|EC| − 1. Given the improved efficiency of this
approach, it would be preferable to using the list of edges
for |E| above about n2/5. We can therefore summarize the
complexity of the clique checking as follows.

Lemma 3 (Clique checking).—It can be checked that
an n-qubit state corresponds to a clique of graph G using
3|E| + 2 log k Toffolis given a classical database of edges
E, or 2|EC| given a classical database of missing edges EC.
The costs of reflecting on the result of the clique check are
6|E| + 2 log k or 4|EC| Toffolis.

The complexity in Ref. [8] is given as O(k2) in terms
of calls to an oracle for the distances between the points.
Similar complexities are given in Refs. [9,15] but are not
explained, so they are likely using the same assumption as
Ref. [8]. That complexity is not directly comparable to the
result here, because we are instead assuming that we are
given an explicit listing of edges (or missing edges).

In order to provide a comparison between that approach
and ours, we can consider a slight modification of that
where a database of locations of points is given. In that
case, one can use a quantum sort on the Dicke state to also
sort the locations of the nodes to the first k data locations.
That sort has complexity O(n log n log(1/ε)) given that the
locations are given to accuracy ε (relative to the range of
positions). Then the distances can be checked with com-
plexity O(k2 log2(1/ε)). The factor of the square of the
log here is from the complexity of performing squares for
determining the (squared) distance.

We consider an example of a graph in Sec. IV A
with n = 256, k = 16, and |E| = 30720. In that example,
|EC| = 1920, so it is more efficient to use the list of miss-
ing edges in our approach. In comparison, if one were to
attempt to use the database of locations, then just the sort
would have higher complexity than 2|EC|. If edges were
determined from positions given in a three-dimensional
space, then an accuracy of the components of the locations
of only 4 bits would result in complexity larger than our
costing by an order of magnitude. Although it is difficult to
compare our approach to Refs. [8,9,15] due to the different
model, we can expect an actual implementation of that type
of approach to have at least an order of magnitude larger
complexity.

C. Amplifying the initial state

We aim to amplify the initial state so that we have the
state with an equal superposition over cliques. The strategy
is to initially estimate the amplitude just once, then apply
the appropriate number of steps of amplitude amplification
when we are preparing the state to estimate the size of the
null eigenspace. It is possible to show that the complexity
of estimating the amplitude is as given in the following
lemma.

Lemma 4 (Quantum amplitude estimation).—Let U be a
unitary and let 0 < a < 1 be such that

U |0, 0〉 = a |ψ0, 0〉 +
√

1− a2 |ψ1, 1〉 . (22)

There exists a quantum algorithm, which estimates a to
within error ε with probability of error less than δ, using

N = π

ε

√
1+ α2 = 1

2ε
ln(1/δ)+O(ε−1 ln ln(1/δ)) (23)

calls to U or U†.
The proof for this lemma is given in Appendix D. To see

the value of ε needed, note that the probability of success
will be reduced to approximately sin2((1± ε/a)π/2) if we
incorrectly choose the number of iterates in the ampli-
tude amplification due to imprecision in estimating the
amplitude. That translates to a probability of failure of the
amplitude amplification of approximately (επ/2a)2. For
our application, the amplitude is approximately

√

1− 1
2c

√
|Clk(G)|(n

k

) , (24)

where the first factor comes from failure of the Dicke-state
preparation, and the second from the clique checking. For
simplicity, in the following expressions for complexity we
will omit the factor of

√
1− 1/2c, which is close to 1. The

amplitude estimation is needed because it typically will
be unknown how many cliques there are |Clk(G)|. Inaccu-
racy in the amplitude estimation translates to a probability
for failure of the amplitude amplification due to using an
incorrect number of steps.

In practice the “failure” of the amplitude amplification
is not a major problem, because it can be combined into an
uncertainty in estimation of the Betti number. That is, in
the next step instead of estimating the Betti number relative
to |Clk(G)|, we will be estimating it relative to a value that
may be increased by about a factor of 1/[1− (επ/2a)2]
(using the approximation of the sin function). If we want
(επ/2a)2 no more than a relative error r, then we should
choose

ε ≤ 2
√

r
π

√
|Clk(G)|(n

k

) . (25)

That means that the cost would be

ln(1/δ)√
r

π

4

√ (n
k

)

|Clk(G)| (26)

steps. In comparison, the number of steps of the amplitude
amplification is approximately

π

4

√ (n
k

)

|Clk(G)| . (27)
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That is, the amplitude estimation is more costly by a factor
of ln(1/δ)/

√
r.

This cost of the Dicke-state preparation from Lemma 2
will be doubled in amplitude estimation and amplification
when we account for the need to unprepare the Dicke state.
We also need to reflect on the clique check, with complex-
ity 6|E| + 2 log k or 4|EC| as described in Lemma 3. The
total complexity for each step of the amplitude estimation
and amplification is the total of these two complexities.

This approach of separating the estimation and amplifi-
cation provides a significant improvement over the obvious
approach of using fixed-point amplitude amplification [22]
to provide amplification with an unknown overlap. That
requires a logarithmic factor in the complexity similar to
amplitude estimation. In contrast, here we have only that
logarithmic factor in the cost once in the initial amplitude
estimation, then in the remainder of the algorithm we elim-
inate the logarithmic factor by just performing amplitude
amplification with the initially estimated amplitude.

It is somewhat ambiguous to compare our approach
to that in Refs. [8,9,15]. Reference [8] just invokes the
“multi-solution version of Grover’s algorithm,” which is
not sufficiently specific to give a complexity because
there are multiple approaches. Reference [9] cites the ver-
sion of Grover’s algorithm from Ref. [28], and Ref. [15]
just mentions Grover’s algorithm and uses the complex-
ity from Ref. [9]. The problem with citing [28] is that
it is not sufficient to specify exactly which approach is
intended.

One approach for searching with an unknown number
of solutions given in that work is to just use the approach
of Ref. [29], which would give a factor of 9/π in the
complexity, but that approach would not be compatible
with a later amplitude estimation used in Ref. [9]. That is
because the approach of Ref. [29] relies on a sequence of
measurements to obtain success of the search. The mea-
surements would prevent the later amplitude estimation
(for the number of zero eigenvalues) being used.

Reference [28] also mentions the approach of perform-
ing amplitude estimation, followed by Grover’s algorithm
for a known number of solutions. Our proposal here is
to divide between using amplitude estimation once, fol-
lowed by amplitude amplification based on the estimation
many times within the rest of the algorithm. That gives
a significant improvement over using both at every step
(which would be the obvious interpretation of just citing
Ref. [28]).

Moreover, we provide a significant improvement in the
efficiency of amplitude estimation over that in Ref. [28].
See Theorem 6 of that work for their result in terms of the
error in the squared amplitude. Translating that to the error
in the amplitude, the number of steps needed is approx-
imately π/ε to obtain 1− δ = 8/π2. Repetitions would
be needed to obtain a desired δ, which would typically
be smaller. If, for example, δ = 1/20 and the number of

repetitions is 5, then our approach gives about an order of
magnitude improvement.

D. Block encoding the sparse Hamiltonian

Having constructed the sparse oracles in the previous
section, we now implement a quantum circuit that block
encodes the sparse Hamiltonian. Block encoding is a gen-
eralization of a linear combination of unitaries, where an
operator B is given by 〈0|U |0〉 = B/λ for a unitary oper-
ator U acting on an ancilla system as well, and |0〉 on that
ancilla system. Together with a reflection on the ancilla
system, it can then be used to construct what was dubbed
a “qubitized” or “qubiterate” operator. These principles
were introduced in Ref. [23]. We use a similar principle
as in Refs. [10,11], except here we are implementing the
Dirac operator BG rather than the combinatorial Laplacian.
In Ref. [10] it is shown that the Dirac operator for all
Hamming weights and unrestricted by the cliques can be
written as

B =
n∑

j=1

(aj + a†
j ), (28)

where aj and a†
j are fermionic annihilation and creation

operators on qubit j . Using the usual Jordan-Wigner repre-
sentation that gives the Hamiltonian

n∑

j=1

Z1 ⊗ Zj−1 ⊗ Xj , (29)

where the subscripts indicate the qubits that these operators
act on (starting the numbering from 1). This is the core of
the implementation of the complete Hamiltonian, and can
easily be implemented by first preparing an equal superpo-
sition state over n-basis states, then applying the controlled
string of Pauli operators as in Fig. 9 of Ref. [30].

To understand the reason that the Pauli string encodes
the matrix, note that ∂k will remove a one from some
location in the bit string x of Hamming weight k + 1 and
apply a sign according to the number of ones prior to that
location. That can be achieved by applying an X in that
location, and applying Z gates on all qubits prior to that
location. We need a superposition of applying the X in all
locations where there are ones. Moreover, we also want to
apply ∂†

k+1 to a bit string of Hamming weight k + 1. This
involves flipping a zero to a one (which can be done with
an X gate) and applying a sign according to the number of
ones prior to that position. This can again be done using
a string of Z gates. Now we want a superposition of per-
forming X gates at all locations where there are ones, and
X gates where there are zeros, which can be implemented
by the above sum of Pauli strings.
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Here we aim to block encode the matrix

BG =

⎡

⎢
⎣

0 ∂G
k−1 0

∂
G†
k−1 0 ∂G

k

0 ∂
G†
k 0

⎤

⎥
⎦ . (30)

The difference of this from the unrestricted case B in
Ref. [11] is that it acts only on states with Hamming weight
k − 1, k, k + 1, and gives zero otherwise. Similarly, it gives
only states with Hamming weight in this range. Moreover,
BG is restricted to the clique subspace. That means it must
give zero if the input state is not a clique, and must also not
give any output states that are not cliques.

Next we provide a general method of constructing a
qubiterate operator in cases where tests on the system state
are required. The block encoding with the tests can be
described as

(|0〉 〈0| ⊗ P)V (|0〉 〈0| ⊗ P) = |0〉 〈0| ⊗ BG/λ, (31)

where P is a projection on the system that tests the Ham-
ming weight and cliques. We are adopting notation similar
to Eq. (3) in Ref. [24], but replacing the identity with P
to indicate that a projection is needed on the target system.
We will assume V is Hermitian; if it is not we can construct
a Hermitian V by block encoding it as V �→ V⊗ |1〉〈0| +
V† ⊗ |0〉〈1| [31]. Similarly, we are writing BG for the oper-
ator we aim to block encode, but this reasoning applies for
a more general Hamiltonian H .

If |k〉 is an eigenstate of BG with energy Ek and satisfying
P |k〉 = |k〉, then by definition we must have

V |0〉 |k〉 = Ek

λ
|0〉 |k〉 + i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|0k⊥〉 , (32)

where |0k⊥〉 is defined as a state such that

(|0〉 〈0| ⊗ P) |0k⊥〉 = 0. (33)

Then we can define the qubiterate as

W := RV, (34)

with

R := i (2 |0〉 〈0| ⊗ P − I) . (35)

This is similar to that in Ref. [24], except we have included
the projection P in the reflection operation. That is, we
are applying the tests as part of the reflection, instead of
applying them in the operation V.

Then we obtain

W |0〉 |k〉 = i
Ek

λ
|0〉 |k〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|0k⊥〉 . (36)

It is also found that

W |χk⊥〉 = i
Ek

λ
|χk⊥〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χ〉 |k〉 . (37)

Here we have corrected a minor error from Ref. [24]
where there was an i appearing on the second term. See
Appendix E for the derivation. Then it is easy to see that

1√
2

(|0〉 |k〉 ± |0k⊥〉) (38)

are eigenstates of W with eigenvalues ±e±i arcsin(Ek/λ). This
is the usual relation for the eigenvalues of the qubitized
operators, showing that this approach for constructing the
walk operator works.

For our implementation here, V is just the controlled
string of Pauli operators together with preparation of an
equal superposition state. The reflection on the target sys-
tem expressed by the projector can be implemented by
computing an ancilla qubit flagging that the projection is
satisfied (we have the appropriate Hamming-weight range
and cliques), reflecting on that qubit and the control qubits,
then uncomputing the test. In some cases this can give
a significant reduction in complexity over performing the
test before and after V. If the ancilla qubits used to compute
the tests are retained, then they can be erased with Clif-
ford gates and measurements. For the application here that
would be too costly in terms of ancilla qubits, so we incur
the Toffoli cost of the test again in erasing the ancillas.

For the complexity of the implementation we have the
following costs.

(1) Preparing an equal superposition state over n-basis
states, which can be performed with complexity
4	log n
 + 1 Toffolis [6], or just with Hadamards if
n is a power of 2. This cost is incurred twice.

(2) The controlled string of Pauli operators can be
applied with Toffoli complexity n− 1 using the
method in Fig. 9 of Ref. [30].

(3) The Hamming weight can be computed with no
more than n Toffolis and n ancilla qubits [27]. In
that case we would not need to double the com-
plexity for the reflection because the sum can be
uncomputed with Cliffords. We could use 2n Tof-
folis with a logarithmic number of qubits [6], but in
that case we would need to double the complexity
for the uncomputation cost.

(4) The complexity of outputting qubits with
(k−1

2

)
,
(k

2

)
,

or
(k+1

2

)
is no more than 3	log n
. At the same time
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we can use the QROM to output a qubit, which flags
if the Hamming weight is outside the range. These
qubits can be erased with Cliffords by retaining a
logarithmic number of ancilla qubits.

(5) As described above, the cost of the reflection on
the clique test is no more than 6|E| + 2 log k given
a database of edges, or 4|EC| given a database of
missing edges, as in Lemma 3.

(6) Note that there is a reflection on the result of two
tests, but this would correspond to a controlled-Z,
which is a Clifford gate.

The overall complexity is therefore as in the following
lemma.

Lemma 5 (Block-encoding complexity).—The Toffoli
complexity of block encoding BG/λ with the operator BG
as defined in Eq. (6) is

6|E| + 2 log k + 5n+ 11 log n+O(1), (39)

when given a database of edges E, or

4|EC| + 5n+ 11 log n+O(1), (40)

when given a database of missing edges EC. The value of
λ for this block encoding is approximately n.

These complexities come from adding the Toffoli com-
plexities in the list above. The value of λ is obtained
by noting that we use a linear combination of n Pauli
strings. This value will be increased very slightly because
of imperfect preparation of an equal superposition state in
the method of Ref. [6]. That increase is normally less than
one part in 1000, so will be ignored here.

In comparison, the approaches in Refs. [9,15] are not
very specific about the approach. They give a factor of n2

for an n-sparse operator, coming from the general proce-
dure for decomposing an unstructured n-sparse operator
into 1-sparse operators from Ref. [32]. The implementa-
tion of the operator also requires checking cliques, which
is not addressed in Refs. [9,15].

Ignoring those issues of how the operator is applied, the
major difference between the proposal here is that we use a
block encoding to construct a walk operator instead of sim-
ulating evolution under the Hamiltonian. References [9,15]
invoke the results in Refs. [32,33] for the Hamiltonian
evolution for unit time. In practice that would need to be
adjusted to a time 1/λ in the simulation in order to pre-
vent wraparound of the eigenvalues (which would cause
nonzero eigenvalues to be measured as zero). For these
short times the complexity of the Hamiltonian evolution
is multiplied by a logarithmic factor.

If we use the estimate of the complexity from Ref. [33]
given in Ref. [34], then we may expect the complexity
to be larger than the complexity for the block encoding
we have given here by a factor of 6 for the example in

Sec. IV A. There will be more significant factors in other
examples with smaller gaps than the example in Sec. IV A.

E. Projection-based overlap estimation

In order to estimate the number of zero eigenvalues
of the Hamiltonian, we project onto the zero eigenspace,
then perform amplitude estimation. The projection can be
approximated using a Chebyshev polynomial approach.
First, recall that in the qubitization the zero eigenvalue
of the Hamiltonian is mapped to eigenvalues ±1 of the
qubitized operator. For the filter function on the phase φ
of the eigenvalues of the walk operator, one can take

w̃(φ) = εT
 (β cos (φ)) (41)

for φ taking discrete values πk/
 for k from −
 to 
,
and where β = cosh( 1



cosh−1(1/ε)). Taking the discrete

Fourier transform of these values gives the window wj
such that

w̃(φ) =

∑

j=−

wj eijφ . (42)

Note that w̃(φ) is a function of cosφ, so wj = w−j . More-
over, we have values of j separated by 2. If 
 is even, then
we have even powers of cosφ, and therefore only even
j . This means that it can be regarded as a polynomial in
e2iφ . We can select between the qubitized walk step and its
inverse by controlling on the reflection, so implementing
a linear combination of unitaries may be performed with
cost 
.

The peak for w̃(φ) will be at 0 and π , which is what is
needed because the qubitized operator produces duplicate
eigenvalues at phases of 0 and π . The width of the operator
can be found by noting that the peak is for the argument
of the Chebyshev polynomial equal to β, and the width is
where the argument is 1, so β cos(φ) = 1. This gives us

cosh( 1



cosh−1(1/ε)) cos(φ) = 1. (43)

The gap in the Hamiltonian is λmin, which translates to a
gap in the qubitized operator of arcsin(λmin/λ). Because
the width of the peak should be equal to the gap, we can
replace φ with arcsin(λmin/λ), and solving for 
 gives


 = cosh−1(1/ε)

cosh−1(1/
√

1− (λmin/λ)2)
≤ λ

λmin
ln(2/ε). (44)

The complexity of the filter on the walk operator may
therefore be given as in the following lemma.
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Lemma 6 (Eigenvalue filtering).—The complexity of
filtering out nonzero eigenvalues of BG by a factor of ε is

n
λmin

ln(2/ε) (45)

calls to the block encoding of BG, given that the gap from
eigenvalue 0 is at least λmin.

This lemma is obtained by using λ = n for the block
encoding of BG in Eq. (44). To determine the appropriate
value of ε to take, note that ε tells us the multiplying fac-
tor for amplitudes for states with eigenvalues outside the
gap. The state starts with equal weighting on all eigenval-
ues, so ideally we should have the amplitude after filtering√
βG

k−1/|Clk(G)|. If the state amplitudes outside the gap are
multiplied by ε, then the error in the squared amplitude
can be at most ε2. This corresponds to an error in βG

k−1 of
ε2|Clk(G)|, or a relative error of ε2|Clk(G)|/βG

k−1.
In comparison, the approaches in Refs. [8,9,15] are

based on phase estimation. They just give the scaling
without specifying the method, which is needed to know
the constant factors. The best algorithm for phase estima-
tion would correspond to the method we have given in
Appendix D. That would have asymptotic complexity sim-
ilar to the filtering approach given here. To compare the
complexities, we first need to note that the accuracy of the
phase estimation should be half the gap. This is because
if the phase estimate has error half the gap, if the eigen-
value is zero then it could give an estimate of λmin/2, which
could also correspond to an eigenvalue of λmin. When this
factor of 2 is accounted for the phase-estimation approach
has similar complexity to the filter. The phase estimation
has a somewhat larger complexity in the nonasymptotic
regime, though by only about 60%.

That is, there is a moderate improvement over phase
estimation even if one were to use the optimal phase esti-
mation introduced in Appendix D. Because Refs. [8,9,15]
did not use that method of phase estimation we would pro-
vide a larger improvement over those works, though the
size of the improvement is ambiguous because they do not
specify the method of phase estimation.

F. Total complexity of algorithm

The Toffoli costs of the algorithm are as follows. In
the following we will present the complexity when using
the database of edges, then explain the modification for a
database of missing edges.

(1) The preparation of the Dicke state has a leading-
order complexity

n log2 n+O(n log n) (46)

Toffolis, or approximately 2kn for the two schemes
presented in Appendix B. Here we are including a
factor of 2 for inversion.

(2) The cost of checking cliques is given by 6|E| +
2 log k where we take into account the need to
uncompute the result.

(3) The cost of amplitude estimation is a number of
iterations of steps 1 and 2 given as

ln(1/δ)√
r

π

4

√ (n
k

)

|Clk(G)| . (47)

(4) The cost of amplitude amplification of the cliques

is given by approximately (π/4)
√(n

k

)
/|Clk(G)| of

iterations of steps 1 and 2.
(5) The walk step for the qubitization needs 6|E| +

5n+ 11 log n+ 2 log k +O(1) Toffolis.
(6) For the filtering there are n/(λmin) ln(2/ε) calls to

the block encoding with costs in item 5 above.
(7) Lastly, we need to perform amplitude estima-

tion on the entire procedure, using approximately
log(1/δ)/2ε calls to the amplitude amplification in
4 and filtering in 6.

In comparison, Ref. [9] invoked the amplitude estimation
scheme of Ref. [28], which we improve over by about
an order of magnitude. Reference [15] just uses classical
sampling, which is quadratically more costly. To give the
leading-order complexities, the combined cost of steps 1
and 2 is

6|E| + n log2 n+O(n log n). (48)

To distinguish the ε, δ, and r (relative error) needed in dif-
ferent steps we will use subscripts. The cost of amplitude
estimation is then approximately

ln(1/δ1)√
r1

π

4

√ (n
k

)

|Clk(G)| (6|E| + n log2 n). (49)

This is expected to be a trivial cost in the overall algorithm,
because the amplitude amplification is performed many
more times.

For the remainder of the algorithm, we have an initial
cost of

π

4

√ (n
k

)

|Clk(G)| (6|E| + n log2 n) (50)

for the amplitude amplification for the initial state. Then
there is a cost for the block encoding of

6|E| + 5n+O(log n), (51)

010319-13



DOMINIC W. BERRY et al. PRX QUANTUM 5, 010319 (2024)

for each step. Multiplying by the number of steps needed
for filtering, there is a cost

n
λmin

ln(2/ε3)[6|E| + 5n+O(log n)]. (52)

To determine the appropriate value of ε3 to take, note
that we are measuring a kernel of size βG

k−1 as compared
to an overall dimension of |Clk(G)| � βG

k−1. The relative
accuracy in the estimation of βG

k−1 will therefore be about
ε2

3 |Clk(G)|/βG
k−1 as explained above at the end of Sec. III E.

If we aim for relative accuracy r3, then we have complexity

n
2λmin

ln

(
4|Clk(G)|

r3β
G
k−1

)

(6|E| + 5n+O(log n)). (53)

Lastly, the amplitude estimation on the entire procedure
needs a number of repetitions

ln(1/δ2)

2ε2
. (54)

But, this amplitude estimation is on a number of steps cor-
responding to a reflection requiring both the forward and
reverse calculations. That introduces a further factor of 2,
so we should use

ln(1/δ2)

ε2
. (55)

Next, ε2 corresponds to an accuracy of estimating a ratio√
βG

k−1/|Clk(G)|. If we want a relative accuracy r2, then
the error-propagation formula gives

r2 =
�βG

k−1

βG
k−1

= ε2

βG
k−1

⎛

⎝ d
dβG

k−1

√
βG

k−1

|Clk(G)|

⎞

⎠

−1

= 2ε2

√
|Clk(G)|
βG

k−1
, (56)

where �βG
k−1 is uncertainty in βG

k−1. In terms of r2, the
number of repetitions becomes

2
ln(1/δ2)

r2

√
|Clk(G)|
βG

k−1
. (57)

Applying this to the complexity required for each step, we
get a complexity of approximately

ln(1/δ2)

r2

√
|Clk(G)|
βG

k−1

⎡

⎣π
2

√ (n
k

)

|Clk(G)| (6|E| + n log2 n)

+ n
λmin

ln

(
4|Clk(G)|

r3β
G
k−1

)

(6|E| + 5n)

⎤

⎦ . (58)

This is the expression given as Eq. (12) in Lemma 1. If
we use the second Dicke preparation scheme, then n log2 n
would be replaced with 2kn, and

(n
k

)
replaced with nk/k!,

which gives the expression in Eq. (13) of Lemma 1. For
this complexity the factor of 6|E| at the beginning is for the
complexity from the database of edges; for the database of
missing edges this factor would be replaced with 4|EC|.

Comparing this to the amplitude estimation cost in
Eq. (49) the primary difference is the factor of

√
|Clk(G)|
βG

k−1
(59)

here. There is another difference in that the amplitude esti-
mation cost has the factor 1/

√
r1 rather than 1/r2, so the

scaling in terms of relative error is improved. In cases
where the number of cliques |Clk(G)| is much larger than
the Betti number βG

k−1, then the amplitude estimation cost
is trivial.

We will have a total probability of failure δ = δ1 + δ2
due to the two amplitude estimations, and a total relative
error r1 + r2 + r3. In order to reduce the complexity, we
can use the fact that the cost of the initial amplitude esti-
mation is much smaller, so we can take δ1 and r1 smaller
without much impact on the overall complexity. The r3
appears inside a logarithm, so can be taken to be smaller
than r3.

To give the scaling of the complexity in a simpler way,
we can simply ignore the amplitude estimation complexity,
and replace δ2 with δ, and replace both r2 and r3 with r
(since r3 can be taken as for example r/20 without much
impact on the overall complexity). We will also omit terms
of complexity kn or n as compared to |E|. That then gives

T(G, k, r, δ) := 6|E| ln(1/δ)
r

√
|Clk(G)|
βG

k−1

⎡

⎣π
2

√ (n
k

)

|Clk(G)|

+ n
λmin

ln

(
4|Clk(G)|

rβG
k−1

)⎤

⎦ , (60)

where T(G, k, r, δ) gives the required number of Toffoli
gates to estimate, with precision parameters r, δ, the (k −
1)th order Betti number of a graph G with n nodes, |E|
edges and a Laplacian with gap λmin.

This expression for the complexity is in terms of the
relative accuracy r. Alternatively, if we aimed for a given
absolute accuracy α, then α = rβG

k−1, and so the expression
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for the complexity becomes

T(G, k, r, δ) := 6|E| ln(1/δ)
α

√
|Clk(G)|βG

k−1

⎡

⎣π
2

√ (n
k

)

|Clk(G)|

+ n
λmin

ln
(

4|Clk(G)|
α

)⎤

⎦ . (61)

We now discuss the complexity of just the first term in the
square brackets, which corresponds to the state-preparation
cost rather than the filtering cost. That cost will be domi-
nant if the gap is large, though it must be emphasized that
the gap will be small in many cases. This first term for the
cost gives

T(G, k, r, δ) = 3π |E| ln(1/δ)
r

√ (n
k

)

βG
k−1

. (62)

If we are aiming for a given absolute accuracy α in βG
k−1,

then the complexity would be

T(G, k, r, δ) = 3π |E| ln(1/δ)
α

√(
n
k

)
βG

k−1. (63)

The complexity is now larger for large Betti number βG
k−1.

The reason for this is that the amplitude estimation is esti-
mating the square root of βG

k−1. The square root has a small
derivative for large values of βG

k−1, making it more diffi-
cult to estimate the Betti number with small absolute error.
Again, note that the last three expressions above are only
for the state-preparation cost, without the filtering cost.

To compare to the complexity of classical approaches,
an exact diagonalization approach would tend to scale as(n

k

)2, whereas approximate schemes scale as
(n

k

)
. Thus the

quantum algorithm would give approximately a square-
root speedup over these classical algorithms if βG

k−1 is on
the order of a constant and one is targeting a fixed relative
error estimate. On the other hand, for graphs with large
βG

k−1, a speedup that is greater than a square root can be
obtained for fixed relative error estimates.

IV. REGIMES FOR QUANTUM SPEEDUP

In this section, we ask if there exist regimes where our
quantum algorithm offers a significant speedup over the
best classical algorithms. The aim is to compute to rela-
tive error the (k − 1)th Betti number of the clique complex
of a graph G. Say G has n nodes, |E| edges, r is the
desired multiplicative error, and λmin is the spectral gap
of the combinatorial Laplacian�G

k−1 = ∂G†
k−1∂

G
k−1 + ∂G

k ∂
G†
k .

To simplify the arguments, we will represent the quantum

complexity of this problem as

Tq = Õ
(

n |E|
r λmin

√
1
βk−1

(
n
k

))

. (64)

Comparing to Eq. (60), this will asymptotically upper
bound both terms up to log factors.

For a rough estimate of the cost of computing the Betti
number classically, one could use |Clk(G)| (i.e., the num-
ber of k-cliques) or

(n
k

)
. The reason is that classical algo-

rithms typically start by constructing a list of k-cliques, and
afterwards compute the nullity of the combinatorial Lapla-
cian or boundary operator. The cost of this second step
(i.e., estimating the nullity of the combinatorial Laplacian
or boundary operator), scales at best linearly in size of the
matrix |Clk(G)| [35]. On the other hand, the first step (i.e.,
listing all k-cliques) can be done using a brute force search
at cost

(n
k

)
. There are more efficient algorithms for list-

ing cliques, though the complexity tends to be dependent
on the properties of the graph. However, |Clk(G)| always
lower bounds the cost of listing all the k-cliques. Therefore,
|Clk(G)| and

(n
k

)
can be considered to be lower and upper

bounds on the scaling of the classical complexity, respec-
tively. In conclusion, the best classical algorithms for this
problem have scaling lower bounded by

Tc = �(|Clk(G)|) . (65)

Recall Clk(G) is the set of cliques of size k, which form
the (k − 1)-simplices of the simplicial complex. Classi-
cal algorithms have extra factors in the complexity, such
as 1/r2 dependence on the required precision, that intro-
duce orders of magnitude over this lower bound. Another
category of classical algorithms to compare to are those
tailored for the specific regime where quantum algorithms
are most efficient. Notable examples include the algorithm
developed in Sec. IV D, and the algorithm of Apers et al.
[36]. We defer their comparison to Sec. IV D, where we
will highlight regimes where the examples introduced in
Sec. IV A continue to exhibit a superpolynomial speedup.

The quantum algorithm will offer a speedup on instances
where βk−1 is large, and where λmin is not too small. We
can remove the dependence on λmin if we instead focus on
computing an approximate Betti number, in the following
sense.

Definition 1.—The δ-approximate kth Betti number
is Bδk = dim {v ∈ HG

k−1 : v†�kv/v
†v ≤ δ}. Note B0

k = βk,
and in general Bδk ≥ βk.

The same quantum algorithm computes Bδk−1 to relative
error with cost

Tq = Õ
(

n |E|
r δ

√
1

Bδk−1

(
n
k

))

. (66)
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A. A family of graphs with large Betti numbers and
large spectral gaps

In this section, we will construct a family of graphs with
all the necessary parameters to enable a large quantum
speedup. Our objective here is to demonstrate the existence
of instances that fulfill all the prerequisites for the quantum
algorithm to achieve a superpolynomial quantum speedup.

Let K(m, k) be the k-partite complete graph, where each
partition contains m vertices. That is, K(m, k) consists of
k clusters, each with m vertices; there are no edges within
clusters, but all edges between clusters are included. Note
K(m, 1) is a collection of m points with no edges. K(m, k)
gives a useful example of a clique complex with a high
Betti number [37]. It also has a Laplacian with a large
spectral gap. An example is provided in Fig. 1.

Proposition 1.—The (k − 1)th Betti number of (the
clique complex of) K(m, k) is

βk−1 = (m− 1)k. (67)

Proposition 2.—The combinatorial Laplacian �k−1 =
∂

†
k−1∂k−1 + ∂k∂

†
k of (the clique complex of) K(m, k) has

spectral gap

λmin = m. (68)

We prove these in Appendix F using techniques from
simplicial homology. A further useful fact is that

|Clk(K(m, k))| = mk. (69)

Standard classical approaches need to at least store a vector
of this length, so we can give a classical complexity as

Tc ∼ ek ln m. (70)

As a first approximation for the quantum cost, we use the
formula in Eq. (62) and consider just the square-root factor
and |E|. In fact, for this example the large number of edges
means that it is better to use the list of missing edges to

FIG. 1. The graph K(6, 5). We do not explicitly provide all the
edges from points in a cluster to all other points in other clusters,
to avoid overcrowding the figure.

give complexity proportional to |EC|. Bearing in mind that
n = mk, Stirling’s approximation gives

(
n
k

)
� 1√

2π

√
mk

(n− k)k
(mk)n

(n− k)n−kkk

= 1√
2π

√
m

n− n
m

(
m

(m− 1)1−
1
m

)n

≤
(

m

(m− 1)1−
1
m

)n

, (71)

where in the first line we have omitted the exponentials in
Stirling’s approximation because they cancel. Proposition
1 gives βk−1 = (m− 1)n/m, giving a quantum complexity
scaling as

Tq ∼ |EC| n
m

(
m

m− 1

)n/2

≤ n2ek/2. (72)

Therefore, for constant m, there is a polynomial speedup by
a 2 ln m root (ignoring the n2 factor). Alternatively, taking
k constant, the above formulae give

Tc = O(nk), (73)

Tq = O(n2). (74)

Then there is a polynomial speedup by a k/2 root. To
obtain a superpolynomial speedup, m can be taken to
increase close to linear in n, but k can be taken to also
increase with n. Close to the best result is obtained for
k = c ln2 n with some constant c. Then the logs of the
complexities are approximately

ln Tc ∼ c ln3 n, (75)

ln Tq ∼ 2 ln n+ (c/2) ln2 n. (76)

That implies a speedup by a 2 ln n root, which is superpoly-
nomial.

This is still not an exponential speedup, but as far as the
graph is concerned this is the best speedup that could be
obtained from this type of approach. This is because, with k
constant, the quantum complexity ignoring the |EC| factor
is O(1). The Betti number is already scaling the same as(n

k

)
, but the overhead from |EC| means that the speedup is

not exponential.
Next we provide numerical results for the Toffoli com-

plexity as a function of n and k. For these calculations
we have made a number of adjustments to our simpli-
fied expressions in order to provide more accurate results.
In particular, we compute the integral of the Kaiser win-
dow rather than using the asymptotic expression, as well
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FIG. 2. The Toffoli counts for the quantum algorithm for the Betti number of K(m, k) as a function of n for k = 4 (a), k = 8 (b),
k = 16 (c), and k = 32 (d). The lines are green for the quantum complexity, blue for

(n
k

)
, and orange for the number of cliques mk. The

values of δ and r are held constant at 1/20. For the relative precision required r, the value of r2 (filtering error) is taken to be r/20, and
r3 (the amplitude estimation error) is taken to be r× 0.95.

as including the Dicke state-preparation cost and the ini-
tial amplitude estimation cost for the number of steps
needed for the state preparation. We are also using the sec-
ond Dicke preparation scheme from Appendix B, which
provides a smaller complexity for this example.

The results are as given in Fig. 2 as a function of n for
a range of values of k. It can be seen that the cost of the
quantum algorithm for a given k scales approximately as
n2, with the cost scaling primarily coming from the num-
ber of edges in the graph. The classical cost given as the
number of k-cliques or

(n
k

)
has similar scaling, which is

considerably worse than for the quantum algorithm, and is
much worse for larger values of k, as expected from the
analysis above.

For the example of n = 256, k = 16 the quantum cost
is approximately 6.8 billion Toffolis, which is comparable
to gate counts for classically intractable instances of quan-
tum chemistry [38]. In contrast, the number of cliques is
about 2× 1019, and

(n
k

) ≈ 1025. These numbers are suf-
ficiently large that it should be classically intractable for
any method that scales as |Clk(G)|. For example, just
storing the vector would be beyond the storage capacity

of supercomputers. Potentially, more advanced classical
algorithms that do not need to store the vector could be
tractable.

To compare to the scheme as presented in Refs. [9,15],
we improve by about 2 orders of magnitude for this
example by using a more efficient Dicke state-preparation
scheme. We have a further order of magnitude improve-
ment in complexity by using optimal quantum amplitude
estimation in the final step. That gives at least 3 orders of
magnitude improvement, which is the difference between
a quantum computer running for a day versus years. The
total improvement is unclear because some parts of the
algorithm were not specified in Refs. [9,15].

We obtain about another order of magnitude improve-
ment by separately performing an amplitude estimation to
avoid needing to repeatedly perform it in the initial state
preparation. The question of how this would be performed
was not addressed in Refs. [9,15]. There is a more mod-
est improvement in using the optimal filter as compared to
optimal phase estimation. But, the optimal phase estima-
tion is a procedure introduced here, and there would be
larger improvement over less efficient phase estimation.
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The type of phase estimation was not addressed in prior
work. We also provide an improved clique-checking proce-
dure, but Refs. [9,15] gave complexities in terms of oracle
calls without addressing how they would be implemented
in terms of elementary gates, making a direct comparison
of complexities impossible.

B. Erdös-Rényi graphs

The family of graphs in Sec. IV A is specifically con-
structed to have high Betti number and large spectral gap.
One might wonder what speedups are generically pos-
sible. To shed light on this question, we examine the
Erdös-Rényi family of random graphs.

The Erdös-Rényi random graph G(n, p) has n vertices,
and each of the

(n
2

)
edges is present i.i.d. with probability

p . In Ref. [39], the following theorem is established.
Theorem 1.—Let p = nα . If −1/k < α < −1/(k + 1),

then

βk
( n

k+1

)
p(

k+1
2 )
→ 1 almost surely (77)

On the other hand, if α < −1/k or α > −1/(2k + 1), then
βk → 0 almost surely.

Taking p = n−1/(k+1/2) gives βk ∼
( n

k+1

)
n−k/2 almost

surely. Ignoring the factor n|E|/λmin, our quantum
algorithm can compute the kth Betti number in time scal-
ing as Tq ∼ nk/4+2 for constant k. For large k, where the
+2 coming from |EC| is negligible, this is approximately a
quartic speedup.

C. Rips complexes

One of the main applications of topological data analysis
is to Rips complexes induced by finite-dimensional data in
R

d. This is another shortcoming of the graph family from
Sec. IV A—they are defined as abstract graphs, rather than
being induced from finite-dimensional data. But are such
speedups possible for Rips complexes? Unfortunately,
there are results which prevent these large speedups.

FIG. 3. The Rips complex R1(S).

It is shown in Ref. [40] that, for any fixed k and d

max
S⊂Rd :|S|=n

βk(Rε(S))
nk → 0 as n →∞. (78)

In Ref. [41], the author studies a setting where n data points
are drawn from a fixed underlying probability measure on
R

d. This is arguably the setting of interest in topological
data analysis. They show that the Betti numbers of the
derived Rips complexes have three “phases” depending on
the scale ε. (Recall that we include an edge if two points
are within distance ε.) For small ε = o(n−1/d), called the
subcritical phase, the Betti numbers vanish asymptoti-
cally. Intuitively the complex is highly disconnected, since
we are below the percolation threshold. There is a criti-
cal phase ε ∼ n−1/d, where the Betti numbers will scale
linearly βk ∼ n. Then for large ε = ω(n−1/d), in the super-
critical phase, the Betti number grows sublinearly βk =
o(n). Thus in all regimes, the Betti number grows at most
linearly in the number of points. This is of course far from
the nk scaling needed for superpolynomial speedup.

However, it is possible to construct a Rips complex with
large Betti number and large spectral gap, even in R

2

[40]. We illustrate an example of such a complex R1(S)
in Fig. 3.

Construct S ⊂ R
2 as follows. Let m = n/2k, θ = π/k,

and δ = n−4. For i = 1, . . . , k, let x+i = (1/2, iδ) and x−i =
(−1/2, iδ). Let S0 = {x+1 , . . . , x+m , x−1 , . . . , x−m }. For j =
1, . . . , k − 1, construct Sj by rotating S0 about the origin
by an angle j θ . Then finally S = S0 ∪ · · · ∪ Sk−1. We will
take the Rips complex R1(S) with ε = 1. {x+1 , . . . , x+m }
and {x−1 , . . . , x−m } become m-simplices. There is an edge
(x+i , x−i ) for every i, but no edges (x+i , x−j ) for i �= j . Due
to the small value of δ, each Si is completely connected to
every other Sj .

Proposition 3.—The (2k − 1)th Betti number of
R1(S) is

β2k−1(S) = (m− 1)k =
( n

2k
− 1
)k

. (79)

Proposition 4.—The combinatorial Laplacian �k =
∂

†
k ∂k + ∂k+1∂

†
k+1 of R1(S) has constant spectral gap λmin.

We prove these in Appendix F using techniques from
simplicial homology. Our quantum algorithm can compute
the kth Betti number in time scaling as Tq ∼ n3+k/4 for
constant k.

D. Randomized classical algorithms for Betti-number
estimation

While the previous discussion shows there are cases
where quantum algorithms can provide superpolynomial
advantages with respect to deterministic classical algo-
rithms for TDA, the question of how randomized clas-
sical algorithms perform in this setting is comparably
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understudied. There are works studying generalizations
of random-walk operators corresponding to higher-order
Laplacians for simplicial complexes [42–44]. These are
specific to the combinatorial Laplacian context and while
they could lead to more efficient classical approaches, no
such result is known at the present.

Here we show, perhaps surprisingly, that there exists a
randomized classical algorithm, which can compute nor-
malized Betti numbers in the clique dense case using
a polynomial number of operations under appropriate
assumptions. This shows that the sufficient conditions
needed for quantum algorithms to provide an advantage are
more subtle than anticipated and that simply having a high-
dimensional vector space does not necessarily guarantee a
superpolynomial speedup.

The main idea of our algorithm is to use imaginary-
time evolution to create a projector onto the kernel of
�G

k−1 = ∂G†
k−1∂

G
k−1 + ∂G

k ∂
G†
k . More specifically, we focus on

the Dirac operator BG and look at simulating its imaginary-
time dynamics of its square using path integral Monte
Carlo. We further simplify this approach by taking B̃G to be
an analogous operator to BG except we now use an energy
penalty to penalize any configuration that is not a clique or
of the correct parity. In particular,

B̃2
G = B2

G + γmin(1− P), (80)

where P as before is the projector onto the states of appro-
priate Hamming weight and configurations that correspond
to a clique, and γmin is an upper bound on the spectral gap
of B2

G, which coincides with the second smallest eigen-
value of the combinatorial Laplacian. Further, it is easy to
see that if a vector is in the kernel of B̃2

G it is also in the
kernel of BG. Following the same reasoning as before, as
BG is Hermitian so is B̃G and thus it has a complete set of
orthonormal eigenvectors. This implies that any unit vector
|ψ〉, which is supported on HG

k can be decomposed as

|ψ〉 = cos(θ) |ψg〉 + sin(θ) |ψb〉 , (81)

where |ψg〉 is the projection of |ψ〉 onto the kernel of B̃2
G

and |ψb〉 is its orthogonal complement. Then

e−B̃2
Gt |ψ〉 = cos(θ) |ψg〉 + e−B̃2

Gt sin(θ) |ψb〉 . (82)

Let B̃2
G |λμ〉 = λμ |λμ〉 such that λ1 ≤ λ2 ≤ · · · ≤ λdk−1 ,

where dk−1 =
(n

k

)
. The operator B̃2

G is positive semidefinite
and thus

〈ψ | e−B̃2
Gt |ψ〉 = cos2(θ)+ sin2(θ) 〈ψb| e−�G

k−1t |ψb〉
≤ cos2(θ)+ sin2(θ)e−γmint. (83)

If we then pick

t ≥ log(1/ε)/γmin, (84)

where γmin is the smallest nonzero eigenvalue of B̃2
G, the

expectation value will be at most cos2(θ)+O(ε).
If |ψ〉 is chosen such that it is a column of a Haar ran-

dom unitary over the constrained parity subspace HG
k , the

expectation value will be

EHaar(cos2(θ)) = βk−1

dk−1
. (85)

Thus performing imaginary-time evolution and a Haar
expectation value will give the required normalized Betti
number.

The remaining question centers around whether the
imaginary-time evolution can be performed on a classi-
cal computer in polynomial time. First, let us consider a
decomposition of the Hamiltonian of the form

B̃2
G =

D∑

p=1

cpHp , (86)

where each Hp is one sparse, Hermitian, and unitary.
Hence the eigenvalues of each are λpi,νi = ±cp , where νi
is an index of the eigenvalue and pi is the index of the
Hamiltonian [45,46]. The Jordan-Wigner decomposition
on B provides such a decomposition and the projector P
can always be written as a sum of a reflection over com-
putational basis states and an identity gate, which provides
an efficient decomposition into one-sparse Hermitian and
unitary terms.

With this decomposition in hand, we focus on using a
path-integral Monte-Carlo simulation of exp(−B̃2

Gt). The

path-integral expansion works by first breaking up e−B̃2
Gt

into r timeslices, Trotterizing over the matrices in our one-
sparse Hermitian decomposition of B̃2

G (which is efficient
to determine [45,46]), and then expanding each one-sparse
Hermitian matrix in its eigenbasis. Since one-sparse Her-
mitian matrices can be efficiently diagonalized, this pro-
cess is classically efficient. (Hermitian one-sparse matrices
can be decomposed as a direct sum of one- and two-
dimensional matrices, which are trivial to diagonalize.)

Let � denote a particular path of eigenvectors in the
path-integral representation, W(�) be the product of over-
laps between the eigenvectors and λpi,�i be the eigenvalue
corresponding to the eigenvector that appears in the ith
step in the path �. Finally, let Pr(�) be a probability
distribution from which the paths are drawn that can be
chosen to reduce the variance (as is standard in impor-
tance sampling). We show in Appendix G that taking the
Haar-expectation of the result leads to
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EHaar(cos2(θ)) = 1
dk−1

E�

⎛

⎝
exp
(
−λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/2r
)

W(�)δk1,k2rD

Pr(�)

⎞

⎠ . (87)

We then average over a finite ensemble of these random
paths to estimate the expectation value drawn from an
appropriate probability distribution. We propose, for gen-
eral purposes, a Metropolis-Hastings-based algorithm for
selecting appropriate paths in the decomposition that are
unlikely to have zero values of W. More specifically, the
algorithm works by drawing an initial eigenstate of the
first term in the one-sparse decomposition of the Dirac
operator BG uniformly. Then a path is drawn by transition-
ing to one of the two possible connected eigenstates for it
randomly. As the terms are Hermitian by assumption, all
eigenvalues at each step in the path integral are the same
up to a sign. This means that there are only two choices
when constructing a path: either we choose to traverse the
positive eigenvalue or the negative eigenvalue. Thus each
path can be described using O(log(dk−1)rD) bits. A path
that has nonzero overlaps between the neighboring eigen-
states can then be selected in O(log(dk−1)rD) time. This is
used as an initial guess that is improved using Metropolis-
Hastings, wherein the probability of transitioning between
two randomly chosen paths �(a) and �(b) is

P(�(b)|�(a)) =
exp
(
−2λp1,�(b)1

t/r−∑2rD−1
i=2 λpi,�

(b)
i

t/r
)

exp
(
−2λp1,�(a)1

t/r−∑2rD−1
i=2 λpi,�

(a)
i

t/r
) .

(88)

The equilibrium distribution leads to a thermal distribution
over the path K with

Pr(�) =
exp
(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
)
δ�∈S�

∑
�∈S� exp

(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
) ,

(89)

where S� is the set of all paths. The number of such updates
needed to achieve this distribution (within fixed error)
scales as O(1/γM ) where γM is the gap of the Markov
chain. We show in Appendix G that, provided the gap is
large, this distribution can be efficiently sampled from and
forms a good choice for the importance distribution for the
paths that minimizes the variance over the paths.

We ultimately find that the number of arithmetic opera-
tions needed to estimate the ratio of the kernel to the size of
the set of all k-simplices within additive error ε is, assum-
ing that the sample variance in the estimates yielded by

Algorithm 1 is σ 2, is in

Õ
(
σ 2

ε2

( |E|dk−1

|Clk(G)| +
D4

γM

κ3

ε

(
log(dk−1)D−2 + κ3

ε

)))
,

(90)

where κ is the ratio of the largest eigenvalue to the small-
est nonzero eigenvalue, i.e., the condition number of the
combinatorial Laplacian, |E| is the size of the edge set in
the input graph, and |Clk(G)| is the number of k-cliques in
the input graph (this is not equal to dk−1 in general!). This
shows that even in cases where the dimension is exponen-
tially large, we can use path integration to estimate the ratio
dim ker�k/dk−1 using a number of operations that scales
polynomially with the number of vertices n provided that
σ , D, κ , γ−1

M , and |Clk(G)|−1 are at most poly(n). We also
show that σ can be polynomially large in some cases in
Appendix G.

Quantum algorithms for TDA were thought to outper-
form classical counterparts in the clique dense case [15],
but this algorithm serves as a counterexample. Another
key point behind this dequantization result is that while an
exponentially large dimension is a necessary condition for
an exponential speedup for quantum TDA, it is not a suf-
ficient condition. This implies that further work is needed
in order to understand when, and even if, quantum algo-
rithms can provide truly exponential advantages relative to
all classical randomized algorithms for TDA.

Apers et al. [36] subsequently developed another classi-
cal path-integral Monte Carlo algorithm, which can also
be efficient in some of the regimes where the quantum
algorithm for Betti-number estimation works best. It is
therefore natural to investigate how it fares compared to
our classical and quantum algorithms. They study addi-
tive error estimation of the normalized Betti number, so
we focus on comparing the runtime of their algorithm for
this case.

Apers et al. claim a runtime of nO(γ−1 log(1/ε)) for gen-
eral simplicial complexes, where n is the number of
vertices, ε the additive error, and γ ≤ λ2(�k)/λ̂ with
λ̂ ∈ �(λmax(�k)). For clique complexes in particular,
their runtime is generically poly(n)(n/λ̂)O(γ

−1 log(1/ε)), or
2O(γ−1 log 1/ε) when k or the maximum up-degree (see
the last section of Appendix G for the definition) of the
k-simplices are O(n).

For general simplical complexes, their runtime depends
exponentially on γ−1 of �k, which is an upper bound
on the condition number κ . They thus require constant γ

010319-20



ANALYZING PROSPECTS FOR QUANTUM. . . PRX QUANTUM 5, 010319 (2024)

Data: k > 0, n > 0, Nsamp > 0, t ≥ 0, r ≥ 0, a function Pr(Γ) which assigns a non-zero probability to each
vector Γ ∈ R

2rD, a function W (Γ) = 〈λp1,Γ1 |λp2,Γ2〉 · · · 〈λp2rD−1,Γ2rD−1

∣∣λp1,Γ1

〉
where

∣∣λpj ,Γj

〉
is the

Γth
j eigenvector of the one sparse matrix Upj .

Result: Estimate Ē which is an unbiased estimator of βk−1/dk−1

for q from 1 to Nsamp do
Σ ← a set of k points encoded as an integer
while Σ is not a (k − 1)-simplex do

Σ ← a random set of k points encoded as an integer
end
Draw a vector Γ = [Σ, Γ2, . . . , Γ2rD] from the probability distribution Pr(Γ).

Eq ← 1
dk−1

(
exp (−λp1,Γ1 t/r−∑2rD−1

i=2 λpi,Γi
t/2r)W

Pr(Γ)

)

end
Ē ← 1

Nsamp

∑
q Eq average of E.

Algorithm 1. Classical randomized algorithm for Betti-number computation.

and ε for general simplicial complexes. By contrast, our
classical algorithm above has a runtime depending on fixed
polynomials in γ−1 and ε−1, and can thus tolerate poly(n)
scaling for both provided σ 2 also depends polynomially
on κ and 1/ε. For clique complexes, their best-case run-
time is polynomial if γ ∈ �(1) and ε = 1/poly(n), or γ ∈
�(1/ log n) and ε ∈ �(1). Analogous conclusions hold for
our classical algorithm in these regimes if we are once
again given suitable promises on the polynomial depen-
dence of σ 2 on those parameters. Thus given the difficulty
in analyzing the dependence of σ 2 on κ and ε−1 in general,
our algorithms cannot be easily compared. In the worst-
case bound for σ 2 given in Eq. (G37), we would require Dκ
to be poly-logarithmic in n and κ/ε a constant at worst and
thus also cannot tolerate inverse polynomial error scaling
or spectral gap.

The algorithm of Apers et al. can efficiently compute
a constant additive error estimate of the normalized Betti
number but cannot efficiently compute an inverse poly-
nomial additive error estimate for the graphs K(n/k, k)
discussed in this work. This yields an immediate expo-
nential separation with the quantum algorithm since the
latter is able to efficiently compute such an inverse poly-
nomial additive error estimate. Moreover, even stronger
separations are possible. As noted above, the runtime of
the algorithm of Apers et al. depends exponentially on
the inverse of the (normalized) spectral gap of the com-
binatorial Laplacian, unlike in the case of the quantum
algorithm whose runtime depends only polynomially on
this parameter.

For the family K(n/k, k), this (normalized) spectral gap
is large and suitable for the algorithm of Apers et al. There
are nevertheless many graphs that do have a (normalized)
spectral gap, which incurs an additional exponential scal-
ing for the case of the classical algorithm but not for the
quantum one. For example, by adding a single edge to
each cluster in K(n/k, k) the (normalized) spectral gap of
the combinatorial Laplacian becomes much smaller, which

causes the algorithm of Apers et al. to no longer be able to
efficiently compute even a constant additive precision esti-
mate of the normalized Betti number. On the other hand,
the quantum algorithm can still efficiently compute an
inverse polynomial additive error estimate as can our clas-
sical algorithm given similar guarantees on the polynomial
scaling of σ 2 with 1/γ . In Appendix F 1, we detail some of
these modified graph examples with smaller spectral gaps.

V. CONCLUSION

In order to provide applications where quantum com-
puters can practically outperform classical computers on
hardware anticipated in the near future, it is necessary to
develop algorithms where there is a greater than square-
root speedup in the complexity [7]. This is because the
large overheads involved in implementing quantum gates
in an error-corrected code mean that there is a huge slow-
down in the gate frequency as compared to classical com-
puters. When the Betti number is of order 1, the complexity
of the quantum algorithm for estimating Betti numbers is
only a square-root speedup over classical approaches. This
is as compared to classical approaches that scale approx-
imately linearly in

(n
k

)
. On the other hand, when the Betti

number is large, the quantum complexity of estimating the
Betti number to given relative error (error as a ratio to the
Betti number) will be small.

There exist classes of graphs with very large Betti num-
bers. We introduce graph classes, which exhibit Betti num-
bers in the regime where the speedup is superpolynomial;
specifically it is approximately a 2 ln n root. The magnitude
of the speedup is limited by the need to enter the data in the
quantum algorithm, which introduces a |E| factor to the
complexity. These are very specially constructed graphs
for large Betti number, but we show there exist far more
general classes of graphs whose parameters give a quar-
tic speedup over naive classical algorithms, showing that
speedups beyond quadratic are possible far more generally.
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We have also provided a host of new techniques for
quantum Betti-number estimation that reduce the complex-
ity. These include Kaiser-window amplitude estimation,
improved Dicke state preparation, and improved eigen-
state filtering. These improvements greatly improve the
complexity in many ways, though the main scaling of the

complexity as
√(n

k

)
remains. In particular, we have major

improvements in the complexity arising from improved
Dicke state preparation as well as improved amplitude esti-
mation, which together give about 3 orders of magnitude
improvement. We have further improvements arising from
our clique-checking procedure, separation of amplitude
estimation and amplification in initial state preparation,
and use of filtering instead of phase estimation, which
may give a further order of magnitude of improvement
depending on how prior work is interpreted. Moreover, our
methods enable accurate estimation of the complexity of
the quantum algorithm, including all constant factors.

Based on that, we estimate that tens of billions of Tof-
folis would be sufficient to estimate a Betti number that
should be classically intractable. This number of Toffoli
gates is reasonable for early generations of fully fault-
tolerant quantum computers. While the exact threshold
for quantum advantage depends on constant factors in the
classical algorithms, it seems likely that this application
will fall somewhere in between quantum chemistry appli-
cations and Shor’s algorithm in terms of the resources
required for quantum advantage. The standard classical
approaches would be expected to be intractable because
they would require an extremely large storage. We have
also presented an alternative approach for classical estima-
tion that could be more efficient, because it does not require
large storage and instead requires Monte Carlo sampling.
That classical approach may be tractable, but it is difficult
to evaluate its complexity because it depends on the gap of
a Markov chain, which is unknown.

There is scope for further improvement of the quantum
algorithm for Betti numbers by implementing a more effi-
cient method of clique finding. We have currently applied
just amplitude amplification for clique finding, but there
are more efficient classical methods for clique finding that
could potentially be adapted for the quantum algorithm.
That is nontrivial because these methods often require
large storage, which would not be practical in the quan-
tum algorithm where we need to minimize the number of
ancilla qubits.
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APPENDIX A: DETAILED BACKGROUND ON
TOPOLOGICAL DATA ANALYSIS

We present some background material from singular
homology needed in topological data analysis, broadly
following the treatments in Refs. [47–49].

Let v0, . . . , vk be k + 1 distinct points in R
n. The set

{v0, . . . , vk} is said to be affinely independent if the set
{v1 − v0, . . . , vk − v0} is linearly independent. In other
words, we consider the given set of points to be affinely
independent if when we take one of the points to be the
“origin” (say v0 without loss of generality) and draw vec-
tors from this point to the others, the collection of the
resulting vectors is linearly independent.

If {v0, . . . , vk} is affinely independent, the k-simplex
spanned by them is the set

[v0, . . . , vk] :=
{ k∑

i=0

tivi : ti ≥ 0 and
k∑

i=0

ti = 1
}

. (A1)

Equivalently, a simplex is just the convex hull of its
affinely independent set of vertices. The points vi are the
vertices of the simplex and the integer k is the dimen-
sion of the simplex. Figure 4 shows some examples of
simplices. Note that it follows from the definitions given
that k ≤ n since any set of n+ 2 points or more cannot
be affinely independent. This is because no collection of
n+ 1 vectors or more in an n-dimensional vector space
can be linearly independent. Such a collection of vectors
therefore cannot determine any simplicies of dimension
n+ 1 or higher.

FIG. 4. A 0-simplex (point), 1-simplex (edge), 2-simplex (tri-
angle), and 3-simplex (tetrahedron) from left to right.
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Let σ be a k-simplex. A simplex spanned by a nonempty
subset of the vertices of σ is a face of σ . For example,
the 0-dimensional faces of σ are its vertices and its one-
dimensional faces are the edges, which are spanned by
two vertices. Faces of σ that are not equal to σ are called
proper faces. The (k − 1)-dimensional faces of σ are
called its boundary faces and their union is its boundary.

Definition 2 (Simplicial Complex).—A simplicial com-
plex S is a finite collection of simplices satisfying the
following conditions:

(1) If σ ∈ S, every face of σ is in S.
(2) If σ1, σ2 ∈ S, then σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 is a face

of σ1 and σ2.

The first condition says that a simplicial complex should
also contain all the faces of a given simplex in the com-
plex. The second condition says that any two simplices in
a simplicial complex either do not intersect or intersect at
a common face of both. Examples of a simplicial complex
and a similar object which does not satisfy the conditions
are given in Fig. 5. We define the dimension of a simpli-
cial complex to be the maximum of the dimensions of all
simplices in the complex.

It can be shown that a simplicial complex is completely
determined by its vertices and information about which
sets of vertices span which simplices. This provides the
motivation for the following definition.

Definition 3 (Abstract Simplicial Complex).—An
abstract simplicial complex is a collection C of nonempty
finite sets such that if s ∈ C, then every nonempty subset
of s is also in C.

This general notion of a simplicial complex is particu-
larly useful when we wish to construct one “abstractly,”
i.e., without reference to a particular embedding into
Euclidean space.

We will mainly be concerned with computing topo-
logical invariants of a certain kind of simplicial com-
plexes constructed from graphs, called clique complexes,
throughout this paper. The graphs serving as inputs into
the quantum algorithms in this paper are not necessarily
induced by any finite-dimensional data and are instead

FIG. 5. (Left) A 2D simplicial complex in R
2. (Right) A set

that is not a simplicial complex in R
2. It violates condition 2 of

Definition 2.

abstract graphs, i.e., abstract simplicial complexes in the
sense of Definition 3 in the preceding section.

Definition 4 (Graphs).—A graph G is a pair of objects
G = (V, E), where V is a set of elements referred to as the
“vertices” of G and E is a set consisting of pairs of vertices
thought of as “edges” connecting the pairs of vertices.

Given an undirected graph (i.e., one in which the edges
are not assumed to have direction), a clique C of a graph is
a subset of V such that every pair of distinct vertices in C
is connected by an edge. C is called a k-clique if |C| = k.

We now define the notion of a clique complex.
Definition 5 (Clique Complex).—The clique complex of

a graph G is the abstract simplical complex formed by
associating a k-simplex to every k + 1-clique in G.

The invariants we are most interested in are the Betti
numbers of a clique complex associated to a graph, which
give the number of holes of a given dimension in that
clique complex. We now show how to determine the Betti
numbers of an arbitrary simplicial complex via simplicial
homology.

Let K be a simplicial complex and consider the set of
k-simplices in K . In what follows, we would like to make
sense of taking “linear combinations” of the k-simplices in
K with coefficients in some field R (we will need only R =
R or R = C for our purposes). A k-chain is a formal sum
of k-simplices

∑
i ciσi where σi ∈ K , ci ∈ R. The set of all

k-chains is denoted by Ck(K) and is a vector space over R.
The k-simplices form a basis for Ck(K), so the dimension
of Ck(K) equals the number of k-simplices in K .

Definition 6 (Boundary Map).—Let σ = [v0, . . . , vk] be
a k-simplex. The boundary map on k-simplices is a map

∂k : Ck(X )→ Ck−1(X ) (A2)

that acts as

∂kσ =
k∑

i=0

(−1)i[u0, u1, . . . , ûi, . . . , uk], (A3)

where ûi denotes that the vertex i has been removed.
The boundary map acts on k-simplices σ ∈ Ci(K) and

gives a (k − 1)-simplex ∂kσ that can be interpreted as the
boundary of σ .

An k-cycle is a k-chain c ∈ Ck(K) such that ∂kc = 0.
Therefore, k-cycles are precisely the kernel of the bound-
ary map and are a subspace of Ck(K) denoted by Zk =
ker ∂k. An k-chain c is an k-boundary if there exists an
(k + 1)-chain σ ∈ Ck+1(K) such that c = ∂k+1(σ ). Equiv-
alently, k-boundaries are precisely the image of the bound-
ary map and form a subspace denoted by Bk(K) = Im ∂k+1.
Figure 6 shows an example of a 1-boundary and 1-cycle.

It turns out that there is a relationship between the two
subspaces as implied by the following fundamental result
in homology theory.
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FIG. 6. (Left) The 1-boundary of a 2-chain as indicated by the
arrows. (Right) A 1-cycle that is not the boundary of any 2-chain.

Proposition 5.—∂k ◦ ∂k+1(σ ) = 0 for all k + 1 chains σ
and all 0 ≤ k ≤ dim K .

The above proposition essentially says that the bound-
ary of a boundary is 0. It implies that the image of ∂k+1 is
contained in the kernel of ∂k. This allows us to define the
homology groups as follows:

Definition 7 (Homology Groups).—The kth singular
homology group Hk of a simplicial complex is the quotient
vector space

Hk(K) = Zk(K)/Bk(K) = Ker ∂k/Im ∂k+1 . (A4)

Definition 8 (Betti Numbers).—The ith Betti number βi
is the dimension of the ith homology group.

The ith homology group is generated by cycles that
are not the boundaries of any simplex. In other words,
these are simplices that enclose a “void” or “hole” (see the
right image of Fig. 6 above). It is worth noting that β0,
the 0th Betti number, represents the number of connected
components the simplicial complex has.

The problem of computing the Betti numbers of a sim-
plicial complex therefore reduces to the problem of com-
puting the rank of the boundary map. A common and sim-
ple classical approach to doing this at the computational
level is as follows.

Let K be a simplical complex and assume for simplicity
we are working over the field Z2. Label the p-simplices in
Cp(K) by x1, . . . , xnp and the (p − 1)-simplices in Cp−1(K)
by y1, . . . , ynp−1 . These simplices form bases for Cp(K) and
Cp−1(K) as mentioned previously. We can then represent
the action of the boundary map ∂p on Cp(K) as follows:

∂p(xj ) =
np−1∑

i=1

ai
j yi where ai

j =
{

1 if yi is a face of xj

0 otherwise
.

(A5)

Then for any p-chain c =∑np
j=1 aj xj , we can write the

above in matrix form

∂pc =

⎡

⎢
⎢⎢⎢
⎢
⎣

a1
1 a2

1 . . . anp
1

a1
2 a2

2 . . . anp
2

...
...

. . .
...

a1
np−1

a2
np−1

. . . anp
np−1

⎤

⎥⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎣

a1

a2

...
anp

⎤

⎥
⎥⎥⎥
⎦

. (A6)

Thus the boundary map on Cp(K) can be represented as an
np−1 × np sparse matrix with entries in Z2. The columns of
this matrix span Im ∂p = Bp−1, so rank ∂p = dim Bp−1 =
bp−1. The boundary matrix can be brought into the Smith
normal form via a generalization of Gaussian elimination,
which applies to any principal ideal domain (this includes
fields). This results in a matrix with a number of 1’s on the
diagonal equal to the rank of the boundary matrix. Gaus-
sian elimination for ∂p takes O(np−1np min(np , np−1))

time and requires O((np−1 + np)
2)memory [50,51]. When

working over arbitrary fields, the same procedure holds
with the exception that the matrix elements of the boundary
operator can be ±1 or 0.

In the worst-case scenario, however, the number of p-
simplices grows exponentially with the number of points
in the complex, so this procedure becomes intractable for
large data sets. This motivates the problem of finding effi-
cient classical and quantum algorithms for extracting Betti
numbers of simplicial complexes.

APPENDIX B: SCHEMES FOR DICKE STATE
PREPARATION

1. First scheme

In our first scheme we prepare n registers with nseed :=
	log cn
 qubits in equal superposition. Then the principle
is to find a threshold such that k registers are less than or
equal to this threshold, and the inequality test is used to set
the ones in the Dicke state. In the limit of large nseed, there
is very low amplitude for the registers to be equal to each
other, which can cause a failure. The problem is that mak-
ing nseed larger increases the complexity. Reducing nseed
will reduce the complexity but increase the amplitude for
failure. We will adjust the value of c in order to make both
the complexity and probability of failure reasonably small.

The steps of the procedure are as follows.

(1) Prepare n registers in an equal superposition of 2nseed

values. This may be done with Hadamards (no non-
Clifford gates).

(2) Sum the most significant bits of these registers. This
may be done with no more than n Toffolis. This
gives the number of registers at least as large as
10 000 . . ..

(3) Perform an inequality test with k (with log n Tof-
folis) and place the result in an ancilla. That is, we
are testing if the number is ≥ k, and we call the bit
representing the result b1.

(4) For j = 2 to nseed, we perform the following.

(a) Perform an inequality test on each register
checking if the first j bits are ≥ b1 . . . bj−11.
The cost is (j − 1)n Toffolis.

(b) Sum the results of those inequality tests, with
cost n.
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(c) Perform an inequality test if that number is ≥ k,
setting the result as bj , with cost log n.

(5) Perform inequality tests on each register to check
if all nseed bits are ≥ b1 . . . bnseed . The cost is nseedn
Toffolis.

(6) Sum the results of those inequality tests, with cost n.
(7) Check if the result is equal to k, with cost log n.

The logic of this procedure is that whenever there are
more than k registers greater than or equal to the thresh-
old, we increase the threshold, which is given by the bits
b1b2 . . ., otherwise we reduce it. This test corresponds to
the inequality test ≥ k in part (4)(c), and the threshold is
adjusted by choosing bj . The ones for the Dicke state are
given by the inequality tests in step (5). At the end, pro-
vided we have success where the sum of the ones checked
in step (7) was equal to k, then we have k ones in a superpo-
sition of permutations corresponding to a Dicke state. The
prepared state is entangled with the ancilla registers, but
this is suitable for our application. Summing all the costs
in this procedure gives a total Toffoli cost

(nseed + 1)
[n

2
(nseed + 2)+ 	log n


]
. (B1)

To derive the probability of success, note that the failure
occurs where it is not possible to provide a threshold where
there are k numbers greater than or equal to it. That will be
true if the kth smallest and k + 1th smallest numbers are
equal. In other words, if we were to sort our numbers, and
compare the values in register k and register k + 1, there
would be failure if these numbers were equal. (Note that
we do not perform this sort in practice.)

The success probability for a given k may be given in
the form of a sum as

1
(cn)n

(
n
k

) cn∑


=1

[
k − (
− 1)k](cn− 
)n−k, (B2)

where for simplicity we are choosing c such that cn is a
power of 2. This expression is obtained by considering
values up to 
 in registers 1 to k, and greater than 
 for reg-
isters k + 1 to n. The number of combinations of k registers
with a maximum of 
 is 
k − (
− 1)k, and the number
of combinations of n− k registers with values above 
 is
(cn− 
)n−k. The factor of

(n
k

)
is to account for the number

of positions to choose the k registers with maximum value

. Summing over 
 then gives the number of combinations
of values where there is a success when sorting the num-
bers, and we divide by the total number (cn)n to give the
probability.

This sum can be approximated by an integral to give

(
n
k

) cn∑


=0

(



cn

)k (
1− 


cn

)n−k

−
(

n
k

) cn∑


=1

(



cn
− 1

cn

)k (
1− 


cn

)n−k

≈ cn
(

n
k

)∫ 1

0
dx xk(1− x)n−k − cn

(
n
k

)

×
∫ 1

1/cn
dx
(

x − 1
cn

)k

(1− x)n−k

= cn
n+ 1

− (cn− 1)n+1

(cn)n(n+ 1)

= cn
n+ 1

[

1−
(

1− 1
cn

)n+1
]

≥ 1− 1
2c

. (B3)

The integrals are evaluated by repeated integration by
parts, which cancels the factor of

(n
k

)
. This shows that

the exact expression is well approximated by an upper
bound of 1− 1/2c. See Appendix C for analysis of the
error in this approximation, showing that it is of order
O(c−(min(k,n−k)+1)). Moreover, we show that 1− 1/2c is an
exact lower bound to the success probability.

In practice, we find that moderate constant values of c
are suitable for minimizing the complexity, and we will
take c = 8 in the examples below. That only increases the
cost about 3%, while only needing another three qubits
to store the numbers. The result of taking c constant is
that the Toffoli complexity is approximately (n/2) log2 n.
In comparison, in the sorting approach from Ref. [24], the
complexity is approximately 2nseedn log n, where n log n is
the number of steps in the sorting network. Moreover, that
approach fails when any of the numbers in the sorted reg-
isters have equal values, which requires taking 2nseed � n2

to provide a reasonable probability of success. That results
in a preparation complexity of approximately 4n log2 n, or
8 times what we have provided here.

As a simple example where our threshold procedure is
performed, consider n = 4 and c = 4, so we have four
registers of four qubits. An example of a basis state is

|0110〉 |1110〉 |0111〉 |0010〉 . (B4)

Now say we aim for k = 2. The steps are as follows.

(a) Sum the first (most significant bits) giving 1. This
is equivalent to checking how many registers are at
least 1000. The sum is 1, which is less than k, so
b1 = 0.
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(b) Perform an inequality test on the first two bits of
each register with 01. We get a total of 3, which is
greater than k, so b2 = 1.

(c) Perform an inequality test of the first three bits with
011. We get 3 again, so b3 = 1.

(d) Perform an inequality test with 0111. We get a total
of 2, which is equal to k, so we get b4 = 1.

(e) Perform an inequality test with 0111 again. Now test
equality with k, which succeeds, so we get overall
success.

As an alternative to the above example, consider the case
that the basis state is

|0110〉 |1110〉 |0110〉 |0010〉 . (B5)

Then in the second-last step, the total would be 1, so we
would have b4 = 0, and in the last step we would test
inequality with 0110. That would give three greater than
or equal to 0110, so we would fail the test that the num-
ber is equal to k. In this case, if you sort the numbers you
have 0010, 0110, 0110, 1110, and you can see that the sec-
ond and third numbers are equal. This is the condition for
failure discussed above.

2. Second scheme

Here we provide an alternative scheme for Dicke state
preparation that can be more efficient, but provides a lower
amplitude for success. It is useful in the case of large n but
small k (smaller than

√
n), where

(n
k

) ∼ nk/k!. The steps of
this scheme are as follows.

(1) First prepare k registers in equal superposition states
over n values. The complexity of preparing an equal
superposition over n values (with high probabil-
ity of success) is 4	log n
 + 1 Toffolis [6], so this
would give complexity k(4	log n
 + 1). In the case
where n is a power of 2, then this preparation can be
performed just with Hadamards.

(2) For each of the k registers, apply unary iteration as
in Ref. [30] with the n qubits for the Dicke state
as the target. This is used to flip the correspond-
ing qubit. The complexity of each unary iteration is
n− 2, giving total complexity k(n− 2). There will
be approximately log n temporary ancillas used in
the unary iteration that are reset to zero.

(3) Now we sum the bits in the string of n qubits. A
method of summing bits is given in Ref. [6], where
multiple groups of bits are summed, and their sums
are summed. The overall complexity is no more than
2n Toffolis, and only a logarithmic number of ancil-
las is used. The ancillas used that need to be kept
for later stages of the calculation can be given as
	log n
, and there are 2	log n
 temporary ancillas
used.

(4) The sum of the bits is compared to k. This has com-
plexity 	log k
 because we are guaranteed that the
number of ones is at most k.

As before, this is a scheme which prepares the Dicke
state in an entangled state with an ancilla. The overall
complexity is then

(k + 2)n+ k(4	log n
 − 1)+ 	log k
 (B6)

Toffolis with the number of ancillas used being

(k + 1)	log n
 (B7)

with a logarithmic number of working ancillas as well.
In comparison, the scheme used above uses a number of
qubits scaling as n log n, so is much larger when n � k.
In the case where n is a power of 2, the initial prepara-
tion of the equal superposition can be just performed with
Hadamards, and so the Toffoli complexity is

(k + 2)n− 2k + 	log k
. (B8)

There is a probability of failure for the preparation, because
it is possible for the ones to overlap, which will be detected
in the final stage where the sum of bits is compared to k.
This is an example of the birthday problem, and the prob-
ability of success will be at least 1/2 when k is not larger
than approximately

√
n. The probability of success is more

specifically given by

k!
nk

(
n
k

)
. (B9)

It is possible to perform amplitude amplification on this
step, but it is simpler to combine this step with the clique
finding. The net result on the complexity is that wherever
we have

(n
k

)
in the original costs, it is replaced with nk/k!.

APPENDIX C: ACCURACY OF DICKE
PREPARATION SUCCESS PROBABILITY

Here we analyze the accuracy of the approximation of
the sums by integrals in Eq. (B3). The sums correspond to
the integrals discretized in steps of 1/cn, so the approxi-
mation can be expected to converge for large c. Even for
moderate c the approximation of the sums by integrals
is highly accurate, because the integrands are zero at the
bounds of the integrals, and the first nonzero derivatives at
the bounds are of order min(k, n− k). That means the error
term in the Euler-Maclaurin formula will correspond to the
derivative of order min(k, n− k).
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In particular, since the summands have nonzero derivatives only up to order n, the first sum can be given by

cn∑


=0

(



cn

)k (
1− 


cn

)n−k

=
∫ cn

0
d

(



cn

)k (
1− 


cn

)n−k

+ f (0)+ f (cn)
2

+

⌈ n
2

⌉

∑

j=1

B2j

(2j )!
[
f 2j−1(cn)− f 2j−1(0)

]
, (C1)

where f (
) is the summand, B2j are Bernoulli numbers, and the upper bound on the sum over j is chosen so that only
derivatives up to order n are included. Now the summand is zero at the bounds, f 2j−1(0) is nonzero only for 2j − 1 ≥ k,
and f 2j−1(cn) is nonzero only for 2j − 1 ≥ n− k. When 2j − 1 ≥ k, the only nonzero term in the derivative at 
 = 0 is
for k derivatives of (
/cn)k and 2j − 1− k derivatives of (1− 
/cn)n−k. This is because we need exactly k derivatives of
(
/cn)k for it to be nonzero at 
 = 0. The general Leibniz rule therefore gives

d2j−1

d
2j−1

(



cn

)k (
1− 


cn

)n−k
∣∣∣∣∣

=0

=
(

2j − 1
k

){
dk

d
k

(



cn

)k
}{

d2j−1−k

d
2j−1−k

(
1− 


cn

)n−k
}∣∣∣∣∣


=0

= (−1)2j−1−k (2j − 1)!
(cn)2j−1k!(2j − 1− k)!

k!
(n− k)!

[n− k − (2j − 1− k)]!

= −(−1)k
(2j − 1)!(n− k)!

(cn)2j−1(2j − 1− k)!(n− 2j + 1)!
. (C2)

Similarly, the only nonzero term in the derivative at 
 = cn is for n− k derivatives of (1− 
/cn)n−k, and 2j − 1− n+ k
derivatives of (
/cn)k. In that case the general Leibniz rule gives

d2j−1

d
2j−1

(



cn

)k (
1− 


cn

)n−k
∣∣∣∣∣

=cn

=
(

2j − 1
n− k

){
d2j−1−n+k

d
2j−1−n+k

(



cn

)k
}{

dn−k

d
n−k

(
1− 


cn

)n−k
}∣∣∣∣∣


=cn

= (−1)n−k (2j − 1)!
(cn)2j−1(n− k)!(2j − 1− n+ k)!

k!
[k − (2j − 1− n+ k)]!

(n− k)!

= (−1)n−k (2j − 1)!k!
(cn)2j−1(2j − 1− n+ k)!(n− 2j + 1)!

. (C3)

These values for the derivatives then give us

cn∑


=0

(



cn

)k (
1− 


cn

)n−k

=
∫ cn

0
d

(



cn

)k (
1− 


cn

)n−k

+

⌈ n
2

⌉

∑

j=
⌈

k+1
2

⌉

B2j

(2j )!
(−1)k

(2j − 1)!(n− k)!
(cn)2j−1(2j − 1− k)!(n− 2j + 1)!

+

⌈ n
2

⌉

∑

j=
⌈

n−k+1
2

⌉

B2j

(2j )!
(−1)n−k (2j − 1)!k!

(cn)2j−1(2j − 1− n+ k)!(n− 2j + 1)!

=
∫ cn

0
d

(



cn

)k (
1− 


cn

)n−k

+

⌈ n
2

⌉

∑

j=
⌈

k+1
2

⌉

B2j

(2j )
(−1)k

(n− k)!
(cn)2j−1(2j − 1− k)!(n− 2j + 1)!

+

⌈ n
2

⌉

∑

j=
⌈

n−k+1
2

⌉

B2j

(2j )
(−1)n−k k!

(cn)2j−1(2j − 1− n+ k)!(n− 2j + 1)!
. (C4)
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Next, for the evaluation of the second integral, we have exactly the same reasoning, except the values of the derivatives
at the bounds are slightly different. For the value at 
 = 1 no (instead of 
 = 0), we now have a factor of

(
1− 


cn

)n−k−(2j−1−k)
∣∣∣∣∣

=1

=
(

1− 1
cn

)n−2j+1

. (C5)

Similarly, for the values of the derivatives at 
 = cn, we obtain a factor of

(



cn
− 1

cn

)k−(2j−1−n+k)
∣∣∣∣∣

=cn

=
(

1− 1
cn

)n−2j+1

, (C6)

which is the same.
Using these factors and combining the expressions for the two sums then gives

(
n
k

) cn∑


=0

(



cn

)k (
1− 


cn

)n−k

−
(

n
k

) cn∑


=1

(



cn
− 1

cn

)k (
1− 


cn

)n−k

= cn
n+ 1

[

1−
(

1− 1
cn

)n+1
]

+

⌈ n
2

⌉

∑

j=
⌈

k+1
2

⌉
D(n, k, c, j )+

⌈ n
2

⌉

∑

j=
⌈

n−k+1
2

⌉
D(n, n− k, c, j ), (C7)

where

D(n, k, c, j ) := (−1)k
n!
k!

B2j

2j (cn)2j−1(2j − 1− k)!(n− 2j + 1)!

[

1−
(

1− 1
cn

)n−2j+1
]

. (C8)

We will show that |D(n, k, c, j )| decreases with j , so the dominant terms come from the smallest j . Moreover, we will
show that the largest values come from taking j = 1 with k = 1 or n− k = 1, in which case it is of order 1/c2. That means
the largest value the correction can take is of higher order than the failure probability.

To show that |D(n, k, c, j )| decreases with j , first note that

B2j = (−1)j+12(2j )!
(2π)2j ζ(2j ) , (C9)

so the monotonic decreasing property of the Riemann zeta function ζ(2j ) gives

∣∣∣∣
B2j+2

B2j

∣∣∣∣ <
2(j + 1)(2j )
(2π)2

. (C10)

We can therefore upper bound the ratio of |D(n, k, c, j + 1)| to |D(n, k, c, j )| as

|D(n, k, c, j + 1)|
|D(n, k, c, j )| <

(2j )(2j + 1)(n− 2j )(n− 2j + 1)
(2πcn)2(2j − k)(2j + 1− k)

<
1

(2πc)2
. (C11)

Here we have used the fact that the factor in square brackets for D(n, k, c, j ) is monotonically decreasing in j . Note that
in the sums we use both D(n, k, c, j ) and D(n, n− k, c, j ), and the same reasoning holds for both. This shows that the
summands D(n, k, c, j ) and D(n, n− k, c, j ) rapidly decrease with j , so the value for the smallest j is dominant.
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Now let us consider the size of D(n, k, c, j ) for the smallest j in the sum. For k = 1, the sum starts from j = 1, which
gives

n!
k!

B2j

2j (cn)2j−1(2j − 1− k)!(n− 2j + 1)!

[

1−
(

1− 1
cn

)n−2j+1
]

= 1
12c

[

1−
(

1− 1
cn

)n−1
]

≤ n− 1
12nc2 , (C12)

where we have used B2 = 1/6. Then for k = 2, the sum starts from j = 2, which gives

|D(n, 2, c, 2)| = (n− 1)(n− 2)
240n2c3

[

1−
(

1− 1
cn

)n−3
]

≤ (n− 1)(n− 2)(n− 3)
240n3c4 , (C13)

where we have used B4 = −1/30.
Thus we find that the first term in the sum is O(c−(k+1)) for k = 1 or 2. Next we will consider the value as we increase

k in steps of 2. Let us put jk := 	(k + 1)/2
 for the first j in the sum. Regardless of whether k is even or odd we find
(2jk − 1− k)! = 1. For the case of odd k we have 2jk = k + 1, so

|D(n, k + 2, c, jk+2)|
|D(n, k, c, jk)| <

(2jk)(2jk + 1)(n− 2j )(n− 2j + 1)
(2πcn)2(k + 1)(k + 2)

<
1

(2πc)2
. (C14)

This shows that the sum is decreasing when we consider steps of 2 in k. For k even we have 2jk = k + 2, so

|D(n, k + 2, c, jk+2)|
|D(n, k, c, jk)| <

k + 3
(2πc)2(k + 1)

≤ 5
3(2πc)2

, (C15)

which shows the sum is still decreasing.
In either case, increasing the value of k by 2 corresponds to reducing the value by at least c2, so we find that this first

term in the sum is O(c−(k+1)) in general. Moreover, because we have shown that successive terms in the sum are smaller
by factors of 1/(2πc)2, the entire sum is O(c−(k+2)). We have two sums, one with k and one with n− k, so the total of the
two sums over j can be given as

O
(

1
cmin(k,n−k)+1

)
. (C16)

These results can be used to show a lower bound of 1− 1/2c for the success probability. We will take n ≥ 3, since in the
trivial case n = 2 we find the probability is exactly 1− 1/2c. First, we use

0 ≤ (n− 2)n− (n− 2)(n− 3)/3− n2/3

n2/3 ≤ (n− 2)n− (n− 2)(n− 3)/3

1
3
≤ (n− 2)

n
− (n− 2)(n− 3)

3n2

1
2π2 <

(n− 2)
n

− (n− 2)(n− 3)
3n2

1
2π2 <

c(n− 2)
n

− (n− 2)(n− 3)
3n2

n− 1
nc

1
(2πc)2

<
(n− 1)(n− 2)

2(nc)2
− (n− 1)(n− 2)(n− 3)

6(nc)3

n− 1
nc

(
1− 1

(2πc)2

)
>

n− 1
nc

− (n− 1)(n− 2)
2(nc)2

+ (n− 1)(n− 2)(n− 3)
6(nc)3

n− 1
nc

(
1− 1

(2πc)2

)
>

[

1−
(

1− 1
cn

)n−1
]

n− 1
6nc2 >

1
6c

[

1−
(

1− 1
cn

)n−1
]

1
1− 1

(2πc)2
. (C17)

010319-29



DOMINIC W. BERRY et al. PRX QUANTUM 5, 010319 (2024)

In the fifth line we have used c ≥ 1. Next, we lower bound the probability of success by upper bounding the sums over j by
the cases with k = 1 or n− k = 1, and using a factor of (1− 1/(2πc)2)−1 to account for the sum where each successive
term is less than the previous by at least a factor of 1/(2πc)2. We find that

(
n
k

) cn∑


=0

(



cn

)k (
1− 


cn

)n−k

−
(

n
k

) cn∑


=1

(



cn
− 1

cn

)k (
1− 


cn

)n−k

≥ cn
n+ 1

[

1−
(

1− 1
cn

)n+1
]

− 2
1

12c

[

1−
(

1− 1
cn

)n−1
]

1
1− 1

(2πc)2

≥ 1− 1
2c
+ n− 1

6nc2 −
1
6c

[

1−
(

1− 1
cn

)n−1
]

1
1− 1

(2πc)2
> 1− 1

2c
. (C18)

In the last line we have used the bound we derived in Eq. (C17). Including the case n− 2 as well, this shows that the
probability of success is lower bounded by 1− 1/2c in general.

For the example where n = 256 and c = 8, the integral approximation gives estimated success probability
0.94001551223575. We show the error in the integral approximation in Fig. 7 for this example. As can be expected from
our analysis of the Euler-Maclaurin formula, it is found that the integral approximation is more accurate as min(k, n− k)
is increased. For k near n/2 the approximation is accurate to well over 200 decimal places. For k = 16, the integral approx-
imation is accurate to about 30 decimal places. For k = 2 the error in the approximation is still less than 10−6, though it
increases to 0.0012 for k = 1 or n− 1.

We can also more simply prove that 1− 1/2c lower bounds the probability of success when averaging over k. Summing
Eq. (B2) over k = 1 to n− 1 gives

1
(cn)n

n−1∑

k=1

(
n
k

) cn∑


=1

[
k − (
− 1)k](cn− 
)n−k = 1
(cn)n

n∑

k=0

(
n
k

) cn∑


=1

[
k − (
− 1)k](cn− 
)n−k − 1
(cn)n

cn∑


=1

[
n− (
− 1)n]

= 1
(cn)n

cn∑


=1

[(cn)n − (cn− 1)n]− 1
(cn)n

(cn)n

= cn− 1− (cn− 1)n

(cn)n−1 ≥ cn− 1− (cn)n − n(cn)n−1 + n(n− 1)(cn)n−2

(cn)n−1

= (n− 1)
(

1− 1
2c

)
. (C19)

Dividing by n− 1 for the number of values of k then gives a lower bound of 1− 1/2c for the average success probability.

APPENDIX D: PROOF OF COMPLEXITY OF
AMPLITUDE ESTIMATION

For the complexity of amplitude estimation, the standard
approach is to use phase estimation on the Grover iterate
of amplitude amplification. If there is an initial amplitude
of a, then the phase of each step of amplitude amplification
is 2 arcsin a. The original proposal was to use control reg-
isters in the phase estimation in an equal superposition, but
of course for phase estimation that is a poor choice. Here
we would like a small probability of error beyond a given
confidence interval, and for that case it is better to use a
prolate spheroidal window [52], which the Kaiser window
provides a good approximation of.

When applying phase measurement, we would start with
a control state of the form (omitting normalization)

N∑

m=−N

1
2N

I0

(
πα
√

1− (m/N )2
)

I0(πα)
|m〉, (D1)

where I0 is a zeroth-order modified Bessel function of the
first kind. If we call the operator combining U and the
reflection on the flag qubit W, then we would then con-
trol between applications of W and W† with eigenvalue eiθ

to give

N∑

m=−N

1
2N

I0

(
πα
√

1− (m/N )2
)

I0(πα)
eimθ |m〉. (D2)
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FIG. 7. The error in the integral approximation in Eq. (B3) as
a function of k for n = 256, c = 8.

The inverse quantum Fourier transform then corresponds
to an inner product with a phase state

1√
2N + 1

N∑

m=−N

eimθ̂ |m〉. (D3)

The inner product then gives the Fourier transform, so is
proportional to

sin
(√

N 2(θ̂ − θ)2 − (πα)2
)

I0(πα)

√
N 2(θ̂ − θ)2 − (πα)2

. (D4)

This needs to be squared to give the probability distribution
for the error in the phase measurement.

The distribution has its first zero for θ = (π/N )√1+α2,
so to estimate the probability in the wings of the distribu-
tion we should integrate past that point. We also have the
difficulty that we are not given the exact normalization of
the probability distribution. To approximate the normaliza-
tion, we can approximate the center of the distribution by
a Gaussian. The approximation can be found by taking the
Taylor series of the log of the distribution about zero, and
gives

sinh2(πα)

π2α2I 2
0 (πα)

e−N 2(πα coth(πα)−1)�θ2/(π2α2), (D5)

where we have replaced θ̂ − θ = �θ . Taking the integral
over �θ then gives

sinh2(πα)

NI 2
0 (πα)

√
πα
√
πα coth(πα)− 1

. (D6)

It is found that this expression is asymptotically

π

2N
√
α
+O(α−3/2). (D7)

This can be found using the asymptotic properties of
Bessel functions,

1
I 2
0 (πα)

≈ 2π2α

e2πα (D8)

and sinh2(πα) ≈ e2πα/4 and coth(πα) ≈ 1, so

sinh2(πα)

NI 2
0 (πα)

√
πα
√
πα coth(πα)− 1

≈ 2π2α

e2πα

e2πα

4
1

N
√
πα
√
πα − 1

. (D9)

That gives the asymptotic expression claimed.
Now, for the integral over the tails we can upper bound

the probability by that where we replace the sin with 1, so
we have an upper bound

2
∫ ∞

(π/N )
√

1+α2

1
I 2
0 (πα)[N 2δθ2 − (πα)2]

d�θ

= 1
I 2
0 (πα)

2 arcsinh(α)
πNα

. (D10)

Now using arcsinh(α) ≈ ln(2α), we have the asymptotic
expression

2π2α

e2πα

2 ln(2α)
πNα

= 4π ln(2α)
Ne2πα . (D11)

Dividing by the asymptotic expression for the normaliza-
tion then gives

4π ln(2α)
Ne2πα

2N
√
α

π
= 8 ln(2α)

√
α e−2πα . (D12)

This tells us that, if we want probability of error outside
the range given by δ, then we should take

ln(1/δ) ≈ 2πα − ln[8 ln(2α)
√
α]. (D13)

Solving for α then gives

α = (1/2π) ln(1/δ)+O(ln ln(1/δ)). (D14)

The size of the confidence interval is (π/N )
√

1+ α2, so if
that needs to be ε, we should take

N = π

ε

√
1+ α2 = 1

2ε
ln(1/δ)+O(ε−1 ln ln(1/δ)).

(D15)

The higher-order ln ln term for α is larger than the correc-
tion term for approximating

√
1+ α2 by α. The number of

calls to U or U† is N , giving the complexity stated.
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This derivation is for the continuous window, but the
performance of the discrete window must be at least as
good. Let f (m) be the continuous form of the window
function, here the Kaiser window. Then take the Fourier
transform to give f̃ (�θ), and define g̃(�θ) to be equal to
f̃ (�θ), except zero for |�θ | > R with confidence interval
half-width R; that is

g̃(�θ) =
{

f̃ (�θ), |�θ | ≤ R
0, |�θ | > R .

(D16)

For tail probability δ for f̃ (�θ), we then have

δ =
∫

d(�θ)
∣∣∣f̃ ′(�θ)− g̃′(�θ)

∣∣∣
2

=
∫

dm |f (m)− g(m)|2, (D17)

where the second equality is from Parseval’s theorem.
That is for the continuous case, where the Fourier trans-

form is not periodic in�θ . For the discrete case the Fourier
transform is equal to the original Fourier transform con-
volved with a comb function with spacing 2π . Let us use
subscript d to indicate the discrete Fourier transforms of
f and g. Since g̃(�θ) is zero for |�θ | > R, there is no
overlap coming from the periodic images, and g̃d is still
zero for |�θ | > R (in [−π ,π ]). The tail probabilities for
f̃d(�θ) can therefore be upper bounded by

∫ −R

−π
d(�θ)

∣∣∣f̃d(�θ)
∣∣∣
2
+
∫ π

R
d(�θ)

∣∣∣f̃d(�θ)
∣∣∣
2

≤
∫ π

−π
d(�θ)

∣∣∣f̃d(�θ)− g̃d(�θ)

∣∣∣
2

=
∑

m

|f (m)− g(m)|2, (D18)

where the equality is again from Parseval’s theorem.
It is also possible to choose the discrete form of the win-

dow by shifting the sampling points by ν ∈ [−1/2, 1/2],
which would give

∑

m

|f (m+ ν)− g(m+ ν)|2. (D19)

Averaging over ν then gives
∫ 1/2

−1/2
dν
∑

m

|f (m+ ν)− g(m+ ν)|2

=
∫

dm |f (m)− g(m)|2 = δ. (D20)

Therefore, the upper bound on the tail probability averaged
over the shift ν is equal to the tail probability in the contin-
uous case, δ. It is therefore possible to obtain performance

at least as good as the continuous case by an appropriate
selection of the discrete window.

APPENDIX E: QUBITIZATION WITH
PROJECTION

Here we derive the expression for qubitization with a
more general projection as given in Eq. (37). When the
block encoding is defined more generally using

(|0〉 〈0| ⊗ P)V (|0〉 〈0| ⊗ P) = |0〉 〈0| ⊗ H/λ, (E1)

then for |k〉 an eigenstate of H with energy Ek (and P |k〉 =
|k〉), we have

(|0〉 〈0| ⊗ P)V (|0〉 〈0| ⊗ P) |0〉 |k〉 = Ek

λ
|0〉 |k〉

(|0〉 〈0| ⊗ P)V |0〉 |k〉 = Ek

λ
|0〉 |k〉

V |0〉 |k〉 = Ek

λ
|0〉 |k〉 + i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|0k⊥〉 , (E2)

where |0k⊥〉 is defined as a state such that (|0〉 〈0| ⊗ P)
|0k⊥〉 = 0. That is, V gives an application of H to the target
system, with failure being flagged by states orthogonal to
|0〉 on the ancilla or perpendicular to the projector P on
the system. The phase factor on the orthogonal part can
be chosen arbitrarily, and is chosen here as i to simplify
later expressions. Then, one can define the qubiterate as
W := RV in the usual way except with the reflection being

R := i (2 |0〉 〈0| ⊗ P − I) . (E3)

This is similar to that in Ref. [24], except we have included
the projection P in the reflection operation. Essentially the
entire chain of reasoning as in Ref. [24] can be used, except
replacing |0〉 〈0| ⊗ I with |0〉 〈0| ⊗ P. Then we obtain

W |0〉 |k〉 = i
Ek

λ
|0〉 |k〉 +

√

1−
∣∣
∣∣
Ek

λ

∣∣∣∣

2

|0k⊥〉 . (E4)

Then, to show the correct expression for W |χk⊥〉 we use

010319-32



ANALYZING PROSPECTS FOR QUANTUM. . . PRX QUANTUM 5, 010319 (2024)

W† |χ〉 |k〉 = −VR |χ〉 |k〉 = −iV |χ〉 |k〉 = iRW |χ〉 |k〉 = iR

⎛

⎝i
Ek

λ
|χ〉 |k〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χk⊥〉
⎞

⎠

= −i
Ek

λ
|χ〉 |k〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χk⊥〉 . (E5)

Similarly, for |χk⊥〉, we have

W† |χk⊥〉 = −VR |χk⊥〉 = iV |χk⊥〉 . (E6)

Now applying W† to the expression for W |χ〉 |k〉 gives

|χ〉 |k〉 = i
Ek

λ
W† |χ〉 |k〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

W† |χk⊥〉

= i
Ek

λ

⎛

⎝−i
Ek

λ
|χ〉 |k〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χk⊥〉
⎞

⎠+ i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

V |χk⊥〉

=
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χ〉 |k〉 + i
Ek

λ

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χk⊥〉 + i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

V |χk⊥〉
(

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2
)

|χ〉 |k〉 = i
Ek

λ

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χk⊥〉 + i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

V |χk⊥〉

−i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χ〉 |k〉 = Ek

λ
|χk⊥〉 + V |χk⊥〉

V |χk⊥〉 = −Ek

λ
|χk⊥〉 − i

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χ〉 |k〉

RV |χk⊥〉 = i
Ek

λ
|χk⊥〉 +

√

1−
∣∣∣∣
Ek

λ

∣∣∣∣

2

|χ〉 |k〉 . (E7)

Hence we obtain Eq. (37) as required. We have corrected the extra factors of i included in Ref. [24]. Note that the rest of
the reasoning in Ref. [24] is correct.

APPENDIX F: BETTI NUMBER AND SPECTRAL
GAP CALCULATIONS

The purpose of this section is to prove Propositions 1,
2, 3, and 4. In this section, we will work with reduced
homology. This is identical to regular homology, except
that we have an extra one-dimensional space C−1 and an
extra boundary map ∂0 : C0 → C−1, which maps every
vertex (0-simplex) to the unique basis vector of C−1.
This has the effect that the reduced homology H0 is
equal to the number of connected components minus
one, rather than simply the number of connected compo-
nents. The rest of the homology groups Hk for k > 0 are
unchanged.

Definition 9.—Given two simplicial complexes X and
Y, define their join X ∗ Y to be the simplicial complex
consisting of faces σ ⊗ τ := σ ∪ τ for all σ ∈ X , τ ∈ Y.

We observe that K(m, k) = K(m, k − 1) ∗ K(m, 1).
Moreover, the homology of the join is given by the well-
known Kunneth formula.

Lemma 7.—(Kunneth formula)

H̃k(X ∗ Y) =
⊕

i+j=k−1

H̃i(X )⊗ H̃j (Y) (F1)

=⇒ β̃k(X ∗ Y) =
∑

i+j=k−1

β̃i(X )β̃j (Y). (F2)
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We would also like to relate the Laplacian of X ∗ Y to
the Laplacians of X and Y.

Lemma 8.—Let σ ∈ X be an i-simplex and τ ∈ Y a j -
simplex with i+ j = k − 1. Then

�X ∗Y
k (σ ⊗ τ) = (�X

i σ)⊗ τ + σ ⊗ (�Y
j τ). (F3)

Proof.—Let us work in the graded algebra C−1 ⊕ C0 ⊕
C1 ⊕ . . . . We have

� = ∂†∂ + ∂∂†

∂(σ ⊗ τ) = (∂σ )⊗ τ + (−1)|σ |σ ⊗ (∂τ )
∂†(σ ⊗ τ) = (∂†σ)⊗ τ + (−1)|σ |σ ⊗ (∂†τ)

=⇒ �(σ ⊗ τ) = (�σ)⊗ τ + σ ⊗ (�τ) �

Corollary 1.—Let spec� denote the set of eigenvalues
of �.

spec�X ∗Y
k =

⋃

i+j=k−1

spec�X
i + spec�Y

j . (F4)

Here the plus notation for sets means A+ B = {a+ b : a ∈
A, b ∈ B}.

Proof.—Use Lemma 8 and let σ ∈ CX
i and τ ∈ CY

j be
eigenchains of �X

i and �Y
j , respectively. �

Proposition 6.—(Restatement of Proposition 1.)
The (k − 1)th Betti number of (the clique complex of)

K(m, k) is

βk−1 = (m− 1)k. (F5)

Proof.—K(m, k) = K(m, k − 1) ∗ K(m, 1) and the Betti
numbers of K(m, 1) are (m− 1, 0, 0, . . . ). Thus by
induction using the Kunneth formula, we have βk−1 =
(m− 1)k. �

Proposition 7.—(Restatement of Proposition 2.)
The combinatorial Laplacian �k−1 = ∂†

k−1∂k−1 + ∂k∂
†
k

of (the clique complex of) K(m, k) has spectral gap

λmin = m. (F6)

Proof.—Again K(m, k) = K(m, k − 1) ∗ K(m, 1). The
spectrum of the �K(m,1)

0 is 0 with multiplicity m− 1, and
m with multiplicity 1. Thus by induction using Corollary
1, the spectrum of �K(m,k)

k−1 is (ignoring multiplicities)
{0, m, 2m, . . . , km}. This gives λmin = m. �

Proposition 8.—(Restatement of Proposition 3.)
The Rips complex described in Sec. IV C has (2k − 1)th

Betti number given by

β2k−1(S) = (m− 1)k =
( n

2k
− 1
)k

. (F7)

Proof.—The Betti numbers of R1(Si) are (m−
1, 0, . . . ). Furthermore, R1(S) = R1(S0) ∗ · · · ∗ R1(Sk−1).
Thus by the Kunneth formula β2k−1(S) = (m− 1)k. �

Proposition 9.—(Restatement of Proposition 4.)
The Rips complex described in Sec. IV C has a combi-

natorial Laplacian �k = ∂†
k ∂k + ∂k+1∂

†
k+1 with a constant

spectral gap λmin.
Proof.—Consider first the Laplacian �Si

k of R1(Si). Say
it has smallest eigenvalue c. Then by induction using
Corollary 1, the smallest eigenvalue of �S

k is also c. �

1. Perturbations of K(m, k) and smaller spectral gaps

In Sec. IV D, we introduced a novel classical algorithm
that, in conjunction with Apers et al.’s algorithm [36], sig-
nificantly enhances classical runtimes in the domain where
quantum algorithms achieve polynomial runtimes. More-
over, these classical algorithms can potentially operate in
polynomial time, contingent on the required precision for
estimating the Betti number, provided the spectral gap
of the combinatorial Laplacian is sufficiently large. In
this section, we study perturbations of the graph K(m, k)
(defined in the previous section) that lead to a smaller
spectral gap. These perturbations render the classical algo-
rithms inefficient, regardless of the precision needed for
the Betti-number estimation, though they do not impair the
efficiency of the quantum algorithm. Additionally, these
perturbations also show that the speedups are robust, in the
sense of a much larger class of graphs having a guaranteed
speedup.

We will denote our perturbed family of graphs K ′(m, k).
Recall that K(m, k) consisted of k clusters, each with m
vertices. There were no edges within the clusters, and all
edges between vertices in different clusters were included.
Let G′ be the graph consisting of m vertices with a sin-
gle edge. Thus G′ consists of a single edge, and m− 2
additional completely disconnected vertices. Let K ′(m, k)
consist of k clusters, where each cluster is a copy of G′.
Likewise, we include all edges between clusters. In other
words, we obtain an instance of K ′ by adding a single edge
to each of the clusters, which were originally independent
sets.

Lemma 9.—The (k − 1)th Betti number of the clique
complex of K ′(m, k) is

βk−1 = (m− 2)k .

Lemma 10.—The (k − 1)th combinatorial Laplacian
�k−1 of the clique complex of K ′(m, k) has smallest
nonzero eigenvalue

λmin = 2,

and largest eigenvalue

λmax = 2mk = 2n.
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Proof.—First, note that the clique complex of K(m, k)
is the k-fold join of the clique complex of the graph G′
consisting of m vertices with a single edge between two of
the vertices. Next, use the Kunneth formula and Corollary
1. Finally, note that the zeroth combinatorial Laplacian of
Cl(G′) is

�0 =

⎛

⎜⎜⎜
⎝

2 0 1 1 . . .

0 2 1 1 . . .

1 1 1 1 . . .

1 1 1 1 . . .

. . . . . . .

⎞

⎟⎟⎟
⎠

.

The spectrum of �0 is thus 0 with multiplicity m− 2, 2
with multiplicity m, and 2m with multiplicity 1. �

Corollary 2.—The (k − 1)th combinatorial Laplacian
�k−1 of the clique complex of K ′(n/k, k) has normalized
spectral gap

γ = λmin

λmax
= 1

n
.

In short, when k = c× log(n) the graph K ′(m, k) has
an inverse polynomial spectral gap, as opposed to an
inverse logarithmic spectral gap as in the case for K(m, k).
This key distinction amplifies the disparities in runtime
between the quantum and classical algorithms. Notably,
the quantum algorithm (still) attains a superpolynomial
speedup over its classical counterparts, even in scenarios
where only a constant level of additive precision for the
normalized Betti number is required.

Next, we demonstrate the potential for even broader
generalization of these perturbations. Consider the m-
vertex graph G′′ that is a disjoint union of m/2 edges (i.e.,
there are no isolated vertices), and let K ′′(m, k) be the
k-fold join of G′′.

Lemma 11.—The spectrum of the (k − 1)th combinato-
rial Laplacian of the clique complex of K ′′(m, k) is

spec�k−1 =
{
λi,j ,

∣∣ i+ j + 
 = k

}
,

where

λi,j ,
 = 0× i+ 2× j + m× 

and they have multiplicities

multiplicity[i, j , 
] =
(

n
i, j , 


)
×
(m

2
− 1
)i
×
(m

2

)j
× 1
.

Proof.—The 0th combinatorial Laplacian of G′′ is

�0(Cl(G′′)) =

⎛

⎜⎜⎜
⎝

2 0 1 1 . . .

0 2 1 1 . . .

1 1 2 0 . . .

1 1 0 2 . . .

. . . . . . .

⎞

⎟⎟⎟
⎠

.

A quick computation reveals that �0 has a spectrum

spec
(
�0(Cl(G′′))

)

= {0 (with multiplicity m/2− 1),

2 (with multiplicity m/2), m (with multiplicity 1)} .

Following this observation, the lemma follows from the
application of Corollary 1. �

Corollary 3.—The (k − 1)th combinatorial Laplacian
�k−1 of the clique complex of K ′′(n/k, k) has normalized
spectral gap

γ = λmin

λmax
= 2

n
.

Again, the graph K ′′(m, k) has an inverse polynomial
spectral gap, as opposed to an inverse logarithmic spec-
tral gap. In particular, the quantum algorithm (still) attains
a superpolynomial speedup over its classical counterparts,
even in scenarios where only a constant level of additive
precision for the normalized Betti number is required. In
conclusion, adding a single edge or m/2 edges to each clus-
ter within K(m, k) does not change the superpolynomial
quantum speedup that it exhibits.

APPENDIX G: DEQUANTIZATION USING
PATH-INTEGRAL MONTE CARLO

Previously, we argued that the cases where TDA can
potentially have a superpolynomial advantage relative to
classical approaches is in cases where the clique density is
high. In such cases sampling in our quantum algorithm is
efficient and eigendecomposition is inefficient. However,
we will see here that this is not necessarily the case and that
there are cases where the clique density is high wherein
randomized classical algorithms can achieve scaling that
is polynomially equivalent to quantum algorithms. This
will show that the conditions for a substantial improvement
using quantum TDA are potentially even more subtle than
previous work suggests.

As discussed in the main body, our dequantization looks
at imaginary-time simulations of the Hermitian operator
B̃2

G = B2
G + (1− P)γmin, where BG is the square of the

constrained Dirac operator, i.e., the combinatorial Lapla-
cian, and the projector selects all input states that are valid
simplices. Given an upper bound on the sparsity s of the
combinatorial Laplacian, we can obtain the decomposi-
tion B̃2

G =
∑D

p=1 cpHp , where Hp is one sparse, Hermitian
and unitary, and D = O(s2), in polynomial time using dis-
tributed graph coloring algorithms. These algorithms also
let us compute the position of the nonzero matrix element
in row x of Uα using a number of queries to B2

G that scales
as O(log∗(D)) [45]. We will provide explicit bounds on
the sparsity of the combinatorial Laplacian in a subsequent
section.
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In order to set up the relevant path integrals, we must
first employ a Trotter decomposition. This allows us to
represent the exponential in terms of exponentials of the
one-sparse matrices, which can then be simulated through
randomization. This leads us to the conclusion that

e−B̃2
Gt = (e−B̃2

Gt/r)r =
⎛

⎝
D∏

p=1

e−cp Hp t/2r
1∏

p=D

e−cp Hp t/2r

+ O
((∑

p |cp |
)3t3

r3

)⎞

⎠

r

. (G1)

As Hp is Hermitian, it has a complete set of eigenvec-
tors. Since Hp is also one sparse and as such matrices
can be written as the direct sum of irreducible one- and
two-dimensional matrices, we can parameterize the eigen-
vectors to respect the structure of the two-dimensional
space via

Hp |λp ,ν〉 = λp ,ν |λp ,ν〉 . (G2)

Note that each eigenvector |λp ,ν〉 is such that 〈p〉 λp ,ν is
nonzero for only two different computational basis vectors.

Note that the first term on the rhs of Eq. (G1) con-
tains 2rD terms. If we introduce a vector of indices p =
{1, . . . , r, 1, . . . , r, . . . , r} with 2rD entries denoted by pi,
we can express the expectation of the exponential of the
boundary operator as (H stands for the Haar average)

E
H
|ψ〉

(
2rD∏

i=1

e−cpi Hpi t/2r

)

:= EH 〈ψ |
(

2rD∏

i=1

e−cpi Hpi t/2r

)

|ψ〉 .

(G3)

Next we set up our path integrals by selecting sets of 2rD
indices that correspond to the eigenstates that we transition
to in the path integral. We denote such a path via the vector
� where �j corresponds to the index of the j th eigenstate
in the path. Using this notation we can insert resolutions
of the identity of the form

∑
�j
|λpj ,�j 〉 〈λpj ,�j | consisting

of the eigenvectors |λpj ,�j 〉 of each Upj in between each of
the 2rD terms and defining ρ = |ψ〉 〈ψ | gives

E
H
|ψ〉

(
2rD∏

i=1

e−cpi Hpi t/2r

)

= EH Tr

(

ρ

2rD∏

i=1

e−cpi Hpi t/2r

)

= EH Tr

⎛

⎝ρ
∑

�1,...,�2rD

exp

(

−
∑

i=1

λpi,�i t/2r

)

|λp1,�1〉 〈λp1,�1 | · · · |λp2rD ,�2rD〉 〈λp2rD ,�2rD |
⎞

⎠

= EH Tr

⎛

⎝ρ
∑

�1,...,�2rD

exp

(

−
∑

i=1

λpi,�i t/2r

)

W(�) |λp1,�1〉 〈λp2rD ,�2rD |
⎞

⎠

= EH Tr

(

ρ E�

exp
(−∑i=1 λpi,�i t/2r

)
W(�) |λp1,k1〉 〈λp2rD ,k2rD |

Pr(�)

)

= EH E�Tr

(

ρ
exp
(−∑i=1 λpi,�i t/2r

)
W(�) |λp1,�1〉 〈λp2rD ,�2rD |

Pr(�)

)

= 1
dk−1

E�Tr

(
exp
(−∑i=1 λpi,�i t/2r

)
W(�) |λp1,�1〉 〈λp2rD ,�2rD |

Pr(�)

)

= 1
dk−1

E�

⎛

⎝
exp
(
−λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/2r
)

W(�)δ�1,�2rD

Pr(�)

⎞

⎠ , (G4)

where we have defined for convenience the quantity

W(�) = 〈λp1,�1 |λp2,�2〉 · · · 〈λp2rD−1,�2rD−1 |λp2rD ,�2rD〉 , (G5)

with � = [�1, . . . ,�2rD]. In the fourth line, we divided and multiplied by a probability Pr(�) to express the sum as an
average, which allows us to use importance sampling to minimize the variance via a judicious choice of Pr(�). In the
last line, we used the fact that p2rD = p1 for the symmetric Trotter formula.
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If we wish to estimate this value by sampling, the primary driver of the complexity will be the estimation of the
expectation value through the sample mean, which corresponds to the optimal unbiased estimator of the population mean.
The number of samples scales with the variance of the set that one averages over and the variance over � of the above
Haar expectation is then simply

V�

(
1

dk−1
Tr

(
exp
(−∑i=1 λpi,�i t/2r

)
W(�) |λp1,�1〉 〈λp2rD ,�2rD |

Pr(�)

))

= 1
d2

k−1

∑

�1,...,�2rD−1

exp
(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
)
|W(�)|2δ�1,�2rD

Pr(�)

−
⎛

⎝ 1
dk−1

E�

⎛

⎝
exp
(
−λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/2r
)

W(�)δ�1,�2rD

Pr(�)

⎞

⎠

⎞

⎠

2

≤ 1
d2

k−1

∑

�1,...,�2rD−1

exp
(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
)
|W(�)|2δ�1,�2rD

Pr(�)
. (G6)

There are many probability distributions that we could
choose to sample from to minimize the variance in
Eq. (G6). The most straightforward distribution to choose,
and the appropriate one to pick in the limit of short t, is a
uniform distribution. However, in practice the eigenvalues
in the sum may have wildly varying sizes and so the impor-
tance of each of the different paths can swing substantially.
A more natural choice to make for the probability of
drawing each path is

Pr(�) =
exp
(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
)
δ�∈S�

∑
�∈S� exp

(
−2λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/r
) ,

(G7)

where S� is the set of valid paths with 2rD vertices such
that each edge corresponds to a path of connected eigen-
vectors for the one-sparse matrices used in the decomposi-
tion of B̃2

G.
The central challenge in employing this formula is to

estimate the value of the sums over the values of �i. As the
Hj in used in the derivation are Hermitian and unitary, we
have that

λpi,�i = ±cpi . (G8)

Furthermore, the one-sparse decomposition is chosen in
such a way that the matrix elements are all off diagonal
with the exception of any diagonal matrix that appears
in the decomposition. This can be seen explicitly using

the discussion of the Jordan-Wigner representation of the
Dirac operator. This means that each eigenvector couples
to at most two eigenvectors. At most one term is diagonal
in the standard Trotter decomposition of the Dirac operator
[45]. A simple combinatorial argument therefore leads to
the conclusion that the total number of valid paths is at
most dk−122r(D−1)−1.

Given this choice, the normalization constant (which
is analogous to a partition function) can be expressed
(assuming that the diagonal element is always pi = D) as

∑

�∈G

exp

(

−2λp1,�1 t/r−
2rD−1∑

i=2

λpi,�i t/r

)

= dk−122rD−1−r cosh(2cp1 t/r)
2rD−1∏

i=2

(cosh(cpi t/r)δpi �=D

+ δpi=De−λpi ,�i t/r/2). (G9)

This can be computed using O(poly(rD)) arithmetic oper-
ations and so does not ruin the efficiency of the algorithm.
Note that were the sum over the W(�) terms considered
instead, then the result would be computationally difficult
to compute as these terms generate correlations that would
prevent us from performing an independent sum for each
of the factors.

The variance σ 2 over the values of k chosen in the path
integrals for the expression for the Haar average is then
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σ 2 = 1
d2

k−1

⎛

⎝
∑

�∈S�

|W(�)|2
⎞

⎠

⎛

⎝
∑

�∈S�

exp

(

−2λp1,�1 t/r−
2rD−1∑

i=2

λpi,�i t/r

)⎞

⎠

− 1
d2

k−1

∣∣∣∣∣∣

∑

�∈S�

exp

(

−λp1,�1 t/r−
2rD−1∑

i=2

λpi,�i t/2r

)

W(�)

∣∣∣∣∣∣

2

≤ 22rDe2Dt maxi λpi ,�i

dk−1
≤ 22rD(1/δ)2D maxi |λpi ,�i |/γmin

dk−1
. (G10)

This shows that the variance after making this substitu-
tion is precisely equal to the gap in the Cauchy-Schwarz
inequalty in the latter sum. This suggests that in certain
cases where the Cauchy-Schwarz inequality is tight, the
variance may be extremely small given that we have the
ability to sample from the distribution Pr(�).

1. Metropolis-Hastings algorithm

Outside of specific cases such as graphs, it is difficult in
general to sample from the probability distribution Pr(�) to
employ the above variance reduction strategy. It is there-
fore necessary to provide a general method to obtain these
samples if we wish to understand how we could address
the problem more generally. One way to address the issue
of how to sample from the distribution Pr(�) is to use
the Metropolis-Hastings algorithm. The idea behind the
algorithm is to design a Markov chain whose stationary
distribution equals our choice of Pr(�).

We first start with a connected, undirected graph on the
set of all possible states �1,�2, . . . ,�2rD−1 which represent
the “paths” involved in our Trotter decomposition. Each
vertex of the graph then represents one possible collection
of values for �1, . . . ,�2rD−1.

At each vertex a, we therefore select a neighbor with
probability 1/(2rD− 1). Since the degree may be less than
2rD− 1 at a given vertex, the walk may remain at that
vertex as there is a nonzero probability of no edge being
selected. To account for such situations, we have the fol-
lowing rules: if a neighboring vertex b is selected and the
probability of transitioning

pb := Pr(�)b = exp

(

−2λp1,�(b)1
t/r−

2rD−1∑

i=2

λpi,�
(b)
i

t/r

)

(G11)

is at least as great as the probability of remaining pa :=
Pr(�)a, we transition to b. If pb < pa, then we transition
to b with probability pb/pa, where b ∈ N (a) with N (a)
referring to the neighbors of a and

pb

pa
=

exp
(
−2λp1,�(b)1

t/r−∑2rD−1
i=2 λpi,�

(b)
i

t/r
)

exp
(
−2λp1,�(a)1

t/r−∑2rD−1
i=2 λpi,�

(a)
i

t/r
) . (G12)

Otherwise, we remain at a with probability 1− pb/pa.
Defining

pab := 1
R

min
(

1,
pb

pa

)
(G13)

and

paa := 1−
∑

b�=a

pab, (G14)

we can easily verify papab = pbpba. By the fundamen-
tal theorem of Markov chains [53], it follows that the
stationary probabilities are pa as needed.

The cost of computing the ratio pb/pa is O(rD) arith-
metic operations, which coincides with the cost of per-
forming an update. The number of such updates needed
to reach δ error from the stationary distribution, where δ
is the total variational distance (TVD) from the stationary
distribution desired, is

T∗ ∈ O
(

log(1/δ)
γM

)
, (G15)

where γM := 1− λ2 is the eigenvalue gap of for the tran-
sition matrix p . This implies that the number of arithmetic
operations needed to sample from a distribution that is δ
close to the stationary distribution is in

O
(

rDlog(1/δ)
γM

)
. (G16)

If one samples from a distribution, P′, that is δ

close to the intended distribution P then the expec-
tation value of any function f is |∑j (P(j )f (j ))−∑

j (P
′(j )f (j ))| ≤ δmax |f (j )|. Similarly, the variance

obeys |∑j P′(j )f (j )2 − (∑j P′(j )f (j ))2| ≤ V(f )+
O(δmax |f (j )|2). Thus if we want the error in the mean
to be less than some error εM , we require
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δ = εM/max |f (j )|. (G17)

Note that in our situation

|f | =
∣∣∣∣∣∣

exp
(
−λp1,�1 t/r−∑2rD−1

i=2 λpi,�i t/2r
)

W(�)

Pr(�)

∣∣∣∣∣∣
, (G18)

where r is the number time steps needed in the Trotterization procedure to attain a desired Trotter error εT. Further, we
have the following bound:

∑

�1,...,�2rD−1

∣∣∣∣∣
W(�) exp

(

−2λp1,�1 t/r−
2rD−1∑

i=2

λpi,�i t/r

)∣∣∣∣∣

≤
√ ∑

�1,...,�2rD−1

|W(�)|2
√√√√
∑

�∈S�

exp

(

−4λp1,�1 t/r− 2
2rD−1∑

i=2

λpi,�i t/r

)

. (G19)

Note that when we sum over a specific pi,�i in |W(�)|2,
we get 1 since the eigenvectors are orthonormal. Perform-
ing all 2rD− 2 sums therefore gives 1 from all the inner
products and the last sum involving the (2rD− 1)th index
gives a factor of dk−1. Additionally, each λpi,�i can either
be positive or negative but is upper bounded by ‖B̃2

G‖max ≤
‖B̃2

G‖∞ = γmax, i.e., the largest eigenvalue of B̃2
G. We can

then bound fmax as follows:

|f | ≤ fmax ≤ dk−1e2γmaxtD2r(D−1/2). (G20)

2. Trotter error in path integration

From Corollary 12 of Ref. [54], the multiplicative Trot-
ter error m for a pth-order Trotter formula is asymptotically
bounded by

O
(

α

(
t
r

)p+1

exp

(
2t
r
ϒ

�∑


=1

‖H
‖
))

, (G21)

where the operator H is decomposed into a sum of � terms,

α =
∑


1,
2,...,
p+1=1

‖[H
p+1 , . . . , [H
2 , H
1 ] · · · ]‖, (G22)

and ϒ is the number of “stages” of the formula. For the
symmetric Trotter-Suzuki formula, ϒ = 2(5)q−1 for a TS
formula of order 2q, where q = 1 and p = 2 for our case.
� = 2rD and α can be upper bounded by

α ≤ (2rD)4 max
p
(cp)

3 ≤ 8rDγ 3
max . (G23)

Since this is the short time multiplicative error bound for
simulating an operator for time t/r, we want to bound
the resulting error when simulating for large t. To this
end, note that if we have an operator A we approximate
by an operator B up to some multiplicative error m, then
B = A(I + mC) where C is an operator such that ‖C‖ ≤ 1,
and m is a constant. Then

‖B‖r ≤ (‖A‖(I + m‖C‖)r ≤ ‖A‖r

⎛

⎝1+
r∑

q=1

(m‖C‖)q
(

r
q

)⎞

⎠

≤ ‖A‖r

⎛

⎝1+
r∑

q=1

mq
(

r
q

)⎞

⎠ ≤ ‖A‖r

⎛

⎝1+
r∑

q=1

(
mre

q

)q
⎞

⎠

≤ ‖A‖r

⎛

⎝1+
r∑

q=1

(mre)q

⎞

⎠ ≤ ‖A‖r
(

1+ mre
1− mre

)
. (G24)
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Therefore, the long-time multiplicative error is bounded
by mre/(1− mre) and we would like this to be less than
some desired error εT > 0. This implies that we must have
mre ≤ εT/(1+ εT) ≤ εT. In our context, A = etH/r, B is an
approximation to A as given by a Trotter formula, and m
is the short-time multiplicative Trotter error bound cited
above.

Using the bound on m and substituting in the parameters
relevant for our situation, we have

mre ≤ eα
t3

r2 exp

(
4t
r

2rD∑


=1

‖H
‖
)

≤ εT. (G25)

If r ≥ 4t
ln 2

∑

 ‖H
‖, then

mre ≤ 2eα
t3

r
≤ 2eα

t3

r2 ≤ εT, (G26)

which implies that

r = t max

{(
4etα
εT

)1/2

,
4

ln 2

∑




‖H
‖
}

. (G27)

The former term dominates asymptotically, so we will
henceforth take r ∈ � (t (4etα/εT)

1/2).
The systematic error in the estimate of the expectation

value from the Trotter-Suzuki formula and the finite-length
Markov chain is at most

‖e−B̃2
Gt‖εT + εM := εTM . (G28)

The total number of operations needed to draw a single
sample from the distribution with bias at most εTM is from
Eq. (G16) in

O
(

rDlog(1/δ)
γM

)
= O
(√

αt3/2Dlog(fmax/εM )√
εTγM

)
.

(G29)

Next taking εM = εTM/2 and similarly for ‖e−B̃2
Gt‖εT, we

have that the number of operations needed to draw a
sample with the required bias is in

O
⎛

⎝

√
‖e−B̃2

Gt‖αt3/2Dlog(fmax/εTM )√
εTMγM

⎞

⎠ . (G30)

Finally, if we set the error εTMH to be the error also
including the bias in the mean estimate of dim ker�k
from having t = log(1/ε)/γ , we have, after choosing both

sources of error to be equal, that the systematic error can
be made less than εTMH using a number of operations in

Õ
⎛

⎝

√
‖e−B̃2

G log(1/εTMH )/γ ‖αD log(fmax/εTMH )√
εTMHγMγ

3/2
min

⎞

⎠

⊆ Õ
(

D
√
αlog(fmax/εTMH )√
εTMHγMγ

3/2
min

)

. (G31)

3. Sample bounds

We finally need to consider the sampling error εS that
arises from taking only a finite number of samples. Stan-
dard probabilistic arguments show that the number of
samples NS needed to achieve a given εS scales as σ 2/ε2

S .
The mean-squared error ε2 is then

ε2 = ε2
S + ε2

TMH . (G32)

As before, we choose to make the two contributions to
the error equal. There is a final source of complexity that
needs to be considered though. Algorithm 1 begins by
drawing a valid (k − 1)-simplex to start at to ensure that
we are within the space of interest. This means that we
need to randomly draw vertices until we find a vertex that
is in a k-clique. The probability of drawing such a sim-
plex is |Clk(G)|/|Hk|, which is the clique density for the
graph. Thus with high probability, a number of samples
proportional to the reciprocal of this will be needed. Each
such sample requires clique detection, which is argued in
Sec. III B scales as O(|E|) up to logarithmic terms in k.
This leads us to a cost of

Nop ∈ Õ
(
|E|dk−1σ

2

|Clk(G)|ε2 +
D
√
α log(fmax/ε)

ε5/2

σ 2

γMγ
3/2
min

)

.

(G33)

We now substitute α, fmax for variables related directly to
the properties of the combinatorial Laplacian. We substi-
tute t ≥ log(1/ε)/γmin throughout and drop subdominant
logarithmic terms. Firstly, from Eq. (G23) we get

α ≤ 8rDγ 3
max ∈ �̃

(
Dt3/2α1/2γ 3

max

ε1/2

)

=⇒ √
α ∈ �̃

(

D
γ 3

max

γ
3/2
min ε

1/2

)

. (G34)

This bound on
√
α, Eq. (G27), and the fact that B̃2

G is
positive semidefinite imply

r ∈ Õ
(
‖e−B̃2

Gt/2‖√αt3/2/
√
ε
)
= Õ (Dγ 3

max/εγ
3
min

)
.

(G35)
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From Eq. (G20), the logarithm scales as

log
(

fmax

ε

)
∈ �̃
(

log(dk−1)+ D2γ 3
max

γ 3
minε

)
. (G36)

The prior bound on the variance in Eq. (G10) evaluates to

σ 2 ≤ 22rD(1/ε)2D maxi |λpi ,�i |/γmin

dk−1
,

∈ 2O(D2κ3/ε))(1/ε)2Dκ

dk−1
, (G37)

where we have defined the following quantity, which is analogous to the condition number for the Dirac operator restricted
to Hk, κ = γmax/γmin (and neglecting the kernel). Substituting these expressions in Eq. (G33) then implies the number of
operations for the algorithm obeys

Nop ∈ Õ
( |E|dk−1σ

2

|Clk(G)|ε2 +
D4σ 2γ 3

max

γ 3
minε

3γM

(
log(dk−1)D−2 + γ 3

max

γ 3ε

))
,

∈ Õ
(
σ 2

ε2

( |E|dk−1

|Clk(G)| +
D4

γM

κ3

ε

(
log(dk−1)D−2 + κ3

ε

)))
. (G38)

In the event we assume the worst-case bound on the variance, the total number of operations is in

Nop ∈ Õ
(

2O(D2κ3/ε))

dk−1ε2+2Dκ

( |E|dk−1

|Clk(G)| +
D4

γM

κ3

ε

(
log(dk−1)D−2 + κ3

ε

)))

. (G39)

This shows that under worst-case scenario scaling for the
variance, our algorithm is efficient if Dκ is polylogarithmic
in n, κ/ε is a constant and γ−1

M and the inverse density of
cliques are polynomial in n.

While the above restrictions on the situations where
the classical randomized algorithm is efficient are sig-
nificant, they do imply that the TDA algorithm can be
efficient even in cases where dk−1 =

(n
k

)
is exponentially

large provided the graph is clique dense. This possibility
is not obvious if one compares only to classical algorithms
like diagonalization, which scales polynomially with the
dimension.

Finally, the number of operations varies in Eq. (G38)
with the variance of the path integrals, which we upper
bound with an exponential in D. While this scaling may
seem prohibitive in the case where the graph is nearly com-
plete, the variance bound in this case is extremely loose
and using a particular bound designed for this scenario
yields much better scaling as we will see later.

4. Analysis

In order to give bounds on the sparsity of the combina-
torial Laplacian, we first need to define a few terms. Let
K be a simplicial complex with N vertices. The up-degree

of a k-simplex σ ∈ K , denoted by degU(σ ), is the num-
ber of k + 1-simplices in K that σ is in the boundary
of. The lower-degree or down-degree of σ , denoted by
degL(σ ), is the number of k − 1-simplices in K that are
in the boundary of σ . If two k-simplices σ1, σ2 ∈ K both
contain a k − 1-simplex in their boundary, they are said
to be lower adjacent. If σ1, σ2 are in the boundary of a
k + 1-simplex, they are said to be upper adjacent. Lemma
3.2.4 of Ref. [55] shows that if σ1, σ2 are distinct and lower
adjacent, their common (k − 1)-simplex is σ1 ∩ σ2 and is
unique if it exists. Similarly, Lemma 3.2.2 of Ref. [55]
shows that if σ1 and σ2 are upper adjacent, their common
(k + 1)-simplex is unique.

The down degree of a k-simplex σ ∈ K is always k + 1
for any simplicial complex simply because any k-simplex
contains

(k+1
k

) = k + 1-simplices of dimension k − 1 in its
boundary. Its up-degree is less trivial to determine, but can
be bounded as follows.

Proposition 10.—Let K be a simplicial complex with N
vertices and let σ be a k-simplex in K . The up-degree of
σ is bounded by min{N − k − 1, d}, where d is maximum
(up) degree of all the vertices in K .

Proof.—The most simple argument is that the up-degree
is bounded by the number of possible ways to extend a k-
simplex to a k + 1-simplex by adding another point. Since
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we have N − k − 1 other points to choose from, the up-
degree is bounded by this quantity.

A more rigorous argument is to consider the largest
eigenvalue of the combinatorial Laplacian �k = ∂†

k ∂k +
∂k+1∂

†
k+1 has the bound λmax(�k) ≤ N [56]. The diago-

nal matrix elements of �k are given in Theorem 3.3.4 of
Ref. [55] as degU(σi)+ k + 1 for all the k-simplices σi ∈
K when k > 0. Since �k is a real symmetric matrix, the
Courant-Fischer theorem [57] and the preceding bound on
its largest eigenvalue together imply degU(σ )+ k + 1 ≤
N , which in turn shows degU(σ ) ≤ N − k − 1.

Another trivial upper bound is simply given by the maxi-
mal (up) degree d of any vertex v in the simplicial complex
K . This is because the vertex added to a k-simplex to turn
it into a (k + 1)-simplex has to be connected to all vertices
in the k-simplex. The number of vertices connected to all
the vertices in the k-simplex is upper bounded by d. Hence
we may take degU(σ ) ≤ min{N − k − 1, d}. �

Proposition 11.—∂k has row-sparsity equal to min{N −
k − 1, d} and column sparsity equal to k + 1. �k has row
and column sparsity bounded by (k + 1)(N − k − 1).

Proof.—With the same notation as above, ∂k acts on the
vector space of k-simplices in K with the standard basis
vectors corresponding to the k-simplices themselves. It has
column sparsity equal to the down degree of any k-simplex
in K , i.e., k + 1, because ∂k has nonzero elements in a
column corresponding to a fixed k-simplex only when a
k − 1-simplex is the boundary of that k-simplex.

Its row sparsity however is given by the largest up-
degree of all k-simplices in K and from the preceding
discussion is bounded by min{N − k − 1, d}. As �k is
Hermitian, the column and row sparsity of �k coincide
and equals the maximum of the number of k-simplices c′
such that c ∩ c′ is a (k − 1)-simplex and c ∪ c′ is not a
(k + 1)-simplex for all k-simplices c (see Theorem 3.3.4
of Ref. [55]). A trivial upper bound for this is (k + 1)(N −
k − 1) (note that this is precisely the product of the bounds
given for the up and lower degrees earlier). This is because
in order to construct for a given c a c′ as above, we can
remove any of the k + 1 vertices from c and add any of the
(N − k − 1) vertices not in c to form c′. �

Note however that tighter bounds can be achieved by
also using the largest degree d of a vertex, e.g., another
upper bound on the sparsity is O(kd). Thus we can set
D = O(k2d2) or D = O(k2(N − k)2) for the number of
terms D in the one-sparse decomposition of the combina-
torial Laplacian depending on if d or N − k − 1 is smaller
[see the discussion preceding Eq. (G1)].

We now consider a few cases where our algorithm can
run efficiently. Our first example will be the extreme case
where the input to the algorithm is the completely discon-
nected graph on N points. The only nonzero Betti number
of the associated clique complex in this case is β0 =
N . Since dim ker(�0) = β0 = N , �0 is the N × N zero
matrix and κ is undefined. We therefore cannot directly

use the preceding asymptotic expressions for the number
of samples required. The analysis is simple if we refer to
the general formula for σ 2 in Eq. (G10) however.

Proposition 12.—Let K be the completely disconnected
graph on N vertices. The variance of the path-integral
Monte Carlo sampling procedure for the Betti numbers of
K is 0.

Proof.—In this case, λ = 0 for all the eigenvalues of
�0. We can choose the standard basis vectors for the N -
dimensional vector space of 0-simplices, where each basis
vector corresponds to a 0-simplex, as the eigenvectors of
�0. Then W(�) is merely a product of Kronecker delta
functions. There are precisely N valid paths (loops) for the
Markov chain corresponding to each of the N vertices, so∑

�∈S� W(�) =∑�∈S� |W(�)|2 =
∑

�∈S� = N . The vari-
ance then reduces to σ 2 = N 2/d2

0 − N 2/d2
0 = 0. �

Even though the variance is precisely 0 for this case, we
do not have a priori knowledge of the structure of the input
graph from the standpoint of this algorithm, aside from an
upper bound on the degree of the vertices. We possess only
access to it via oracle queries that verify whether a col-
lection of vertices forms a k-clique. Therefore, we cannot
conclude anything definite about the Betti numbers with
only a single sample in this situation as the zero variance
result might suggest, unless given an additional promise
that the least upper bound is a fixed value or 0.

Another simple case is when the input is a complete
graph on N = n+ 1 points.

Proposition 13.—Let K be the clique complex of the
complete graph on N = n+ 1 vertices. The variance of the
path-integral Monte Carlo sampling procedure for the Betti
numbers of K is 0.

Proof.—The clique complex of this graph corresponds
to an n-simplex. Again from Theorem 3.3.4 of Ref. [55],
(�k)ii = degU(σi)+ k + 1 and the off-diagonal entries are
either 0 or ±1 if k > 0. We argue that in this case, all the
off-diagonal entries are 0. From the same theorem, it suf-
fices to show that for a fixed k-simplex σi, the sum of the
number of other upper adjacent simplices and other non-
lower adjacent simplices must equal

(n+1
k+1

)− 1 (since�k is
a
(n+1

k+1

)× (n+1
k+1

)
matrix).

We first calculate the up-degree of any k-simplex in
our n-simplex. The number of (k + 1)-simplices in an n-
simplex is

(n+1
k+2

)
. The number of k-simplices in a (k +

1)-simplex is k + 2. The number of k-simplices in an
n-simplex is

(n+1
k+1

)
. Intuitively, we can determine the up-

degree by finding the number of k-simplices contained in
the boundary of all (k + 1)-simplices and dividing by the
actual number of k-simplices in an n-simplex to account
for overcounting. This quantity is precisely

(k + 2)
(n+1

k+2

)

(n+1
k+1

) = n− k
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and we thus get that the diagonal entries of�k are all equal
to n+ 1 when k > 0 (note that this saturates the bound
on the up-degree of a k-simplex in any simplicial complex
given earlier with N = n+ 1).

Now fix a particular k-simplex σ in the n-simplex. We
want to count the number of other k-simplices that are
not lower adjacent to σ . σ has k + 1-simplices of dimen-
sion k − 1 in its boundary. From the above result, each
of these (k − 1)-simplices has up-degree n− (k − 1) =
n− k + 1. Then the number of potential lower adjacent k-
simplices is (k + 1)(n− k + 1). But by the uniqueness of
common upper simplices, we have counted σ k + 1 times,
one for each of the (k − 1)-simplices in the boundary of
σ . Thus the number of other lower adjacent simplices is
(k + 1)(n− k + 1)− (k + 1) = (k + 1)(n− k). Thus the
number of other k-simplices not lower adjacent to σ is(n+1

k+1

)− (k + 1)(n− k)− 1. On the other hand, the num-
ber of other k-simplices that are upper adjacent to σ is
given by multiplying the up-degree n− k of σ , which gives
the number of k + 1-simplices that are upper adjacent to
σ , by the number of k-simplices in each k + 1-simplex,
which is k + 2. But this overcounts σ by n− k, so (n−
k)(k + 2)− (n− k) = (n− k)(k + 1). The sum of this and(n+1

k+1

)− (k + 1)(n− k)− 1 is clearly
(n+1

k+1

)− 1, so the only
nonzero entries in �k are the diagonal ones when k > 0.

When k = 0, Theorem 3.3.4 in Ref. [55] shows the diag-
onal entries of �0 are the degree of the vertices in our
n-simplex, which is precisely n. It also implies all the
off-diagonal entries are 0 since every vertex is upper adja-
cent in an n-simplex. Thus in either the k = 0 or k > 0
case, �k is proportional to the identity. We can then set
D = r = 1 in Eq. (G10) and the number of valid paths
summed over is precisely dk. By an analogous reason-
ing to the completely disconnected case,

∑
�∈S� W(�) =

∑
�∈S� |W(�)|2 =

∑
�∈S� = dk and

σ 2 = e−2tλ
(

d2
k

d2
k
− d2

k

d2
k

)
= 0,

where λ = n+ 1 when k > 0 and λ = n when k = 0. �
Analogous arguments on needing a promise on the least

upper bound on the degree of the vertices hold as in the
case of the completely disconnected graph above.

More can be said of κ in restricted cases. For instance,
it is known that orientable simplicial complexes of dimen-
sion d ≤ 2 have κ ∈ O(n2

k), where nk denotes the number
of k-simplices and 0 ≤ k ≤ 2, and it is further conjectured
that κ ∈ O(n2/d

k ) in most cases [14]. This latter bound is
quite favorable for high-dimensional simplices, i.e., when
d ∼ n and with the approximation that nk ∼ 2n. Unfortu-
nately, it is difficult to give tight bounds on γM and σ 2 in
Eq. (G38) for arbitrary simplicial complexes. Though the
Perron-Frobenius theorem applied to stochastic matrices

implies 0 < γM ≤ 1 [57], its scaling with the other param-
eters of relevance are unknown.

While we do not ultimately expect this classical TDA
method to be efficient generically, the above discussions
show there exist sufficient conditions under which it can
be used to extract Betti numbers in polynomial time with-
out suffering from a generic exponential dependence on
the number of data points characteristic of other classi-
cal TDA algorithms. Furthermore, it creates uncertainty
about the necessary and sufficient conditions for an expo-
nential advantage for quantum TDA as the cases where
this algorithm has an exponential advantage relative to the
deterministic classical algorithm are analogous to those for
the quantum algorithm. This means that an identification of
clear cases where exponential advantage is likely remains
an important open problem within the domain of quantum
algorithms for TDA.
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