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In a plethora of physical situations, one can distinguish a mediator—a system that couples other, non-
interacting, systems. Often, the mediator itself is not directly accessible to experimentation, yet it is
interesting and sometimes crucial to understand if it admits nonclassical properties. An example of this
sort that has recently been enjoying considerable attention is that of two quantum masses coupled via a
gravitational field. It has been argued that the gain of quantum entanglement between the masses indicates
nonclassicality of the states of the whole tripartite system. Here, we focus on the nonclassical properties
of the involved interactions rather than the states. We derive inequalities the violation of which indicates
noncommutativity and nondecomposability (open-system generalization of noncommuting unitaries) of
interactions through the mediators. The derivations are based on properties of general quantum formalism
and make minimalistic assumptions about the studied systems; in particular, the interactions can remain
uncharacterized throughout the assessment. Furthermore, we also present conditions that solely use corre-
lations between the coupled systems, excluding the need to measure the mediator. Next, we show that the
amount of violation places a lower bound on suitably defined degree of nondecomposability. This makes
the methods quantitative and at the same time experiment ready. We give applications of these techniques
in two different fields: for detecting the nonclassicality of gravitational interaction and in bounding the
Trotter error in quantum simulations.
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I. INTRODUCTION

Mediated interactions are very common and often the
mediators are practically inaccessible to direct experimen-
tation. For example, consider a system of unpaired spins
interacting via spin chains in solids [1]. The bulk mea-
surements of magnetic properties are argued to be solely
determined by the unpaired spins at the end of the chain,
making the chain experimentally inaccessible. As another
example, consider light modes interacting via mechanical
membranes [2]. In this case, usually it is only the light that
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is being monitored. Furthermore, fundamentally electric
charges are coupled via an electromagnetic field, etc. All
these scenarios share a common structure in which systems
A and B do not interact directly but are solely coupled via
a mediator system, M (see Fig. 1). Already at this general
level, one can ask about the properties of the mediator that
can be deduced from the dynamics of the coupled systems.

In this line of study, methods have been proposed to wit-
ness the nonclassicality of the state of the mediator from
the correlation dynamics of the coupled probes. In particu-
lar, conditions have been derived under which the gain of
quantum entanglement implies that the mediator must have
explored nonorthogonal states during the dynamics [3,4].
Similar ideas, applied to more general models than the
canonical quantum formalism, have been used to argue that
the entanglement gain between quantum masses witnesses
nonclassical gravity [5,6] and have motivated a number of
concrete proposals aimed at experimental demonstration of
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FIG. 1. Mediated interactions. (a) Systems A and B are cou-
pled via mediator M , i.e., the underlying Hamiltonian is HAM +
HBM and it explicitly excludes direct coupling between the
systems, i.e., HAB. We present methods based on correlations
showing that the interaction Hamiltonians do not commute, i.e.,
the tripartite dynamics cannot be understood as a sequence of
interactions via HAM and then HBM or in reverse order. We also
quantify this noncommutativity by providing a lower bound on
a suitable norm of the commutator [HAM , HBM ]. These notions
are generalized to open systems and we emphasize that the
tools make minimalistic assumptions about the whole setup. (b)
We extend these techniques to cases in which the mediator is
nonaccessible. They are based on correlations in system AB only
and show that the tripartite dynamics cannot be understood as
a sequence of interactions described by dynamical maps �AM
and �BM or in reverse order. We also quantify this form of
nondecomposability.

gravity-induced entanglement (see, e.g., Refs. [7–17]). A
considerable advantage of these methods is due to the min-
imalistic assumptions that they make about the physical
systems involved. They are independent of the initial state,
the dimensions of the involved systems, or the explicit
form of interactions and they also work in the presence
of local environments. Accordingly, they are applicable in
a variety of fields (see, e.g., Refs. [18,19] for examples in
quantum biology and solid-state physics, respectively).

Here, we move on from the nonclassicality of states
and develop tools to quantify the amount of nonclassical-
ity of mediated interactions, while retaining minimalistic
assumptions about the considered physical systems. The
notion of nonclassicality that we employ is given by the
commutativity of interaction Hamiltonians in the case of
closed dynamics, which generalizes to the decomposability
of dynamical maps, which also encompasses open systems.
Arguments supporting this choice are given in Sec. II. A
method to detect the presence of such nonclassicality was
first presented in Ref. [20] but it was only qualitative, i.e.,
it could only witness the presence of noncommutativity.
It is intriguing that the methods mentioned earlier, aimed
at the nonclassicality of states, are also at this qualitative
level at the present moment. Our main contribution here

is the development of methods to quantify the amount of
nonclassicality. We derive conditions that lower bound the
norm of the commutator as well as a suitably defined dis-
tance to decomposable maps. These conditions are of two
types and the structure of the paper reflects this division.
In Sec. III, we assume that the mediator is accessible to
experimentation and in Sec. IV, the derived conditions use
only data measured on the probes. Nontrivial bounds are
derived for any continuous correlation measure. Hence, it
is again expected that the methods presented are applicable
in a variety of fields. We provide two examples.

The first one is in the field of quantum simulations.
Suzuki-Trotter expansion is a common way to sim-
ulate arbitrary sums of local Hamiltonians (see, e.g.,
Refs. [21,22]). It has recently been shown that the number
of Trotter steps needed to obtain the required simulation
error scales with the spectral norm of the commutator [23].
We link this norm to the correlations in the system, show-
ing a quantitative relation between the complexity of the
simulation and the amount of correlations.

As the second example, the methods detect and mea-
sure the noncommutativity of the gravitational interaction
coupling two quantum masses. The idea of detecting the
nonclassicality of gravitational interaction has been dis-
cussed very recently in Ref. [24] but there the notion
of nonclassicality is different, based on the impossibil-
ity of simulating the dynamics via local operations and
classical communication. Within the quantum formalism,
local operations are modeled by arbitrary local channels
and classical communication by sequences of dephasing
channels connecting the communicating parties. In the tri-
partite setting of two masses and gravitational field, this
means the following sequence: λAM , DEPHASING(M), λBM ,
DEPHASING(M), etc. In principle, different dephasing maps
could even be performed in different bases. In contradis-
tinction, the definition that we adopt in the present work
deals with dynamics that are continuous in time and defines
classicality at the level of Hamiltonians, as their commuta-
tivity. This implies an effective picture in which a quantum
mediator is transmitted between “communicating” parties,
but only one way. So, in the tripartite setting, this means
UAM UBM or in reverse order. For other ways of reveal-
ing that the evolution cannot be understood in terms of
classical (gravitational) field, see also Refs. [25,26], and
for general arguments that any system capable of cou-
pling to a quantum system must itself be quantized, see,
e.g., Ref. [27]. Our tools show that correlations between
the masses exclude gravity as a form of interaction with
commuting particle-field couplings.

II. CLASSICALITY AND DECOMPOSABILITY

Let us start with closed systems and explain our choice
of the notion of classicality and its relation to the properties
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of dynamical maps. In this work, classical mediated inter-
actions are defined by commuting Hamiltonians HAM and
HBM (see Fig. 1). A high-level motivation for this choice
comes from the fact that in classical mechanics, all observ-
ables commute; hence a classical mediator would have all
its couplings to other systems commuting. The commu-
tativity can also be motivated starting with the notion of
classical states as those admitting vanishing quantum dis-
cord [28], or vanishing coherence in the case of a single
system [29], and asking for the evolution that preserves
this form of classicality. The vanishing discord means that
the whole tripartite state can be measured on the mediator
without disturbing the total state. Mathematically, the state
has a block-diagonal form and we assume that at all times
there exists a single “preferred” basis of the mediator.
We show in Appendix A that such dynamics are gener-
ated if and only if the Hamiltonian has a block-diagonal
form too, with the same basis on the mediator. Since,
here, we consider systems with global Hamiltonian H =
HAM + HBM , the state classicality is preserved when both
HAM and HBM are block diagonal with the same basis on
system M , i.e., both Hamiltonians commute [HAM , HBM ] =
0. Furthermore, for commuting nondegenerate HAM and
HBM , the total Hamiltonian admits only product eigenstates
and out-of-time-ordered correlators vanish at all times, as
shown in Appendix A.

A closely related notion is that of decomposability. A
tripartite unitary U is decomposable if there exist unitaries
UAM and UBM such that

U = UBM UAM . (1)

Intuitively, decomposable unitaries are those that can be
simulated by first coupling one of the systems to the medi-
ator M and then coupling the other. One can picture that
the mediator particle is being transmitted between A and B,
which are in separate laboratories, making this setting sim-
ilar to that in Refs. [30–36]. Although the Suzuki-Trotter
formula shows that any unitary can be approximated by a
sequence of Trotter steps, decomposable unitaries are spe-
cial because we can implement the exact unitary with only
a single Trotter step. For its relation to the notion of locality
in quantum field theory, see Ref. [37].

Clearly, for classical interactions [HAM , HBM ] = 0, the
unitary operator U(t) = e−itH is decomposable for all t. But
there exist unitaries that are decomposable and yet are not
generated by a classical interaction. A concrete example is
given in Appendix A 4 and relies on the fact that the unitary
can be written as U = UBM UAM , but there exist no uni-
taries VAM and VBM such that the sequence VAM VBM would
be equal to U. This example already suggests that decom-
posability has to be augmented with commutativity of
decompositions to be equivalent to the classicality of inter-
actions, a fact that we prove in Appendix A 5. Therefore,

the unitary generated by classical interactions is contin-
uously decomposable, with the added property that the
decomposition must commute, i.e., [UAM (t), UBM (t)] = 0
for all t. Accordingly, it is irrelevant whether we define the
decomposition order as UBM UAM or UAM UBM .

Decomposability naturally extends to open systems. In
this case, the evolution is described by a map λ giving the
state of the system at time t, i.e., ρ = λ(ρ0). We say that
a tripartite map λ is decomposable if there exist maps λAM
and λBM such that

λ(ρ) = λBMλAM (ρ), (2)

for every ρ. In Appendix A 6, we discuss the consistency of
this definition and the one based on unitaries. As expected,
a unitary operator is decomposable if and only if the corre-
sponding unitary map is decomposable (general maps are
not required).

It is this general notion of decomposability that we
will exclude and measure the degree of its exclusion in
the coming sections. A number of similar concepts have
been introduced before and it is instructive to compare
the decomposability with them and note where the novelty
is. So-called divisibility asks whether map � can be writ-
ten as �1�2, where neither �1 nor �2 are unitaries [38].
A stronger notion of completely positive (cp) divisibility,
studied in the context of Markovian dynamics [39,40], asks
whether map �t can be written as the sequence of com-
pletely positive maps �t = Vt,s�s. Interestingly, the set of
cp-divisible maps is not convex [38]. The decomposability
that we study here has a specific multipartite structure that
has been considered only in Refs. [20,41], which is clearly
significant from a physics perspective.

III. ACCESSIBLE MEDIATOR

We first present methods that utilize correlations mea-
sured on all three subsystems and devote Sec. IV to elim-
inating measurements on the mediator. The basic idea is
that correlations between subsystem A and subsystems MB
together should be bounded in the case of decomposable
dynamics because they are effectively established via a
process in which the mediator is being transmitted from
A to B only once. It is therefore expected that the corre-
lations are bounded by the “correlation capacity” of the
mediator, i.e., maximal correlations to the mediator alone.
Such inequalities for distance-based correlation measures
have been derived in Ref. [20] and could also be obtained
by manipulating the results of Refs. [3,41]. Our contribu-
tion in this section is a generalization to any continuous
correlation measure and then quantification of nondecom-
posability based on the amount of violation of the derived
criterion.
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A. Detecting nondecomposability

Let us take a correlation quantifier Q that is monotonic
under local operations. In Appendix B, we show that the
bound in terms of the correlation capacity holds when we
additionally assume that the initial state is of the form
ρ0 = ρAM ⊗ ρB. For such an initial state, the correlations
generated by a decomposable map λ admit

QA:MB(λ(ρ0)) ≤ sup
σAM

QA:M (σAM ), (3)

where the bound is derived for any correlation measure Q
that is monotonic under local processing. Here, σAM ranges
over all possible joint states of AM . Exchanging the roles
of A and B gives rise to another inequality, and the exper-
imenter should choose the one that is violated to detect
nondecomposability. This bound is already nontrivial, as
we now demonstrate by showing that the maximally entan-
gling map cannot be decomposable. Consider the initial
product state |000〉 and assume that systems A and B are
of higher dimension than the mediator, i.e., dA = dB > dM .
As an exemplary entanglement measure, take the relative
entropy of entanglement, E. It is known that its maximum
depends on the dimension of the smaller Hilbert space,
i.e., supσAM

EA:M (σAM ) = log dM . According to Eq. (3), no
decomposable evolution can produce more entanglement
than log dM . This holds for entanglement EA:MB as well
as for EA:B due to the monotonicity of relative entropy
under partial trace. Since the dimensions of A and B are
larger than the dimension of the mediator, a maximally
entangled state between AB cannot be produced by any
decomposable map.

Of course, we are interested in extending Eq. (3) to
an arbitrary initial state, making the method independent
of it. To achieve this aim, we use continuity arguments.
Many correlation measures, including relative-entropy-
based quantifiers [42], all distance-based measures [43], or
convex-roof extensions of asymptotically continuous func-
tions [44], admit a version of continuity in which there
exists an invertible monotonically nondecreasing function,
g, such that |Q(x)− Q(y)| ≤ g(d(x, y)), where d is a con-
tractive distance and lims→0 g(s) = 0. This is a refinement
of the notion of uniform continuity, where we can bound
how much the function varies when we perturb the input.
A notable example is logarithmic negativity [45], which is
not asymptotically continuous and yet fulfills this notion of
continuity. For simplicity, we shall call such functions gd
continuous. We prove in Appendix B that correlation quan-
tifiers that are gd continuous are bounded in decomposable
dynamics as follows:

QA:MB(λ(ρ0)) ≤ sup
σAM

QA:M (σAM )+ IAM :B(ρ0), (4)

where IAM :B(ρ) = infσAM ⊗σB g(d(ρ, σAM ⊗ σB)) is a mea-
sure of the total correlations in the state ρ across the

partition AM : B. Indeed, from the properties of g and d, it
is easy to verify that this quantity is monotonic under local
operations and that it is zero if and only if ρ is a product
state across the AM : B partition. Again, an independent
inequality is obtained by exchanging A and B.

This bound is also nontrivial and its violation has been
demonstrated in Ref. [46], which focused on negativity as
a concrete correlation (entanglement) measure. The system
under consideration involved two cavity modes, A and B,
coupled via two-level atom M . This scenario is particu-
larly well suited to demonstrate the violation, because the
dimension of the mediator is as small as it can be, whereas
the dimensions of the probes are in principle unbounded.

B. Measuring nondecomposability

Having established witnesses of nondecomposability,
we now argue that the amount of violation of Eq. (4)
quantifies the nondecomposability. As a measure of non-
decomposability, we propose a minimal operator distance
from an arbitrary map � to the set of decomposable maps,
which we denote as DEC:

dDEC(�) = inf
λ∈DEC

D(�, λ). (5)

We shall refer to this quantity as the “degree of nondecom-
posability.” The operator distance D in its definition could
be chosen as the one induced by the distance on states

D(�1,�2) = sup
σ

d(�1(σ ),�2(σ )), (6)

where �1 and �2 are arbitrary maps and σ is any state
from the domain of the map. In Appendix B, we demon-
strate that violation of Eq. (4) lower bounds the degree of
nondecomposability as follows:

dDEC(�) ≥ g−1(QA:MB(�(ρ0))− B(ρ0)), (7)

where B(ρ0) is the right-hand side of Eq. (4). Accordingly,
any violation of the decomposability criterion in terms of
correlations sets a nontrivial lower bound on the distance
between the dynamical map and the set of decomposable
maps.

C. Quantum simulations

As the first application of the introduced measure, sup-
pose that we would like to simulate the dynamics generated
by the Hamiltonian H = HAM + HBM . (In fact, this analy-
sis can be generalized to any 2-local Hamiltonian.) Quan-
tum simulators implement a dynamic close to the desired
one by truncating the Suzuki-Trotter formula to r Trotter
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steps

e−itH ≈
(

e−i t
r HAM e−i t

r HBM
)r

. (8)

The error of this approximation can be quantified by the
spectral norm (the largest singular value),

∥∥∥e−itH −
(

e−i t
r HAM e−i t

r HBM
)r∥∥∥

∞
, (9)

and it has been shown in Ref. [23] that in order to make
this error smaller than ε, the number of Trotter steps has to
scale with the norm of the commutator,

r = O
(

t2

ε
|| [HAM , HBM ] ||∞

)
. (10)

Our aim is to provide a lower bound on the commutator
norm in terms of correlations and in this way bound the
number of required Trotter steps. Recall, after Ref. [23],
that for a single Trotter step, we have

||U − UAM UBM ||∞ ≤ t2

2
|| [HAM , HBM ] ||∞,

where U = e−itH and, e.g., UAM = e−itHAM . We need to link
our methods to the spectral norm. For finite-dimensional
systems, all metrics generate the same topology [47], i.e.,
for any two distances d1 and d2, there exists a constant C
such that

1
C

d2(ρ, σ) ≤ d1(ρ, σ) ≤ C d2(ρ, σ). (11)

In particular, there exists a constant that relates any dis-
tance to the trace distance dtr(ρ, σ) = 1

2 ||ρ − σ ||1. There-
fore, if a correlation quantifier on finite-dimensional sys-
tems is gd continuous with respect to the trace distance,
it is also gd continuous with respect to any other dis-
tance d. Furthermore, since the trace distance is contrac-
tive, Eq. (4) holds for any distance on finite-dimensional
systems, at the cost of constants in function g. Accord-
ingly, let us consider the distance induced by the spectral
norm d∞(ρ, σ) = ||ρ − σ ||∞. We call the corresponding
operator distance D∞(�1,�2) and the degree of nonde-
composability dDEC

∞ (�). For the connection to the Trotter
error, we note the following:

dDEC
∞ (U) ≤ D∞(U, UAM UBM ) ≤ 2||U − UAM UBM ||∞,

(12)

where the first inequality follows from the fact that dDEC
∞ (U)

is the shortest distance to the set of decomposable maps
and UAM UBM is a particular decomposable map. The sec-
ond inequality is proven in Appendix B 1. Combining the

two inequalities, we obtain dDEC
∞ (U) ≤ t2 ‖[HAM , HBM ]‖∞.

A concrete example relating the mutual information in
a state to the number of Trotter steps is provided in
Appendix B 2.

We have therefore shown a direct link between correla-
tions in the system and the number of Trotter steps that one
needs to keep the simulation error small. The amount of
violation of Eq. (4) lower bounds the degree of nondecom-
posability and hence the spectral norm of the commutator
and, accordingly, sets the number of required Trotter steps.
Conversely, if it is possible to simulate U with r Trotter
steps to precision ε, Eq. (10) shows that the commutator
norm is bounded and consequently Eq. (12) implies that
the correlations QA:MB admit an upper bound.

IV. INACCESSIBLE MEDIATOR

An interesting opportunity arises where the nonclassi-
cality of evolution through a mediator could be witnessed
without measuring the mediator. Here, we show that this
is indeed possible. We start by introducing the necessary
concepts and the related mathematical tools and then we
present witnesses of nondecomposable evolution based on
measurements on AB only. Finally, we establish measures
of nondecomposability together with their experimentally
friendly lower bounds.

A. Marginal maps

In order to detect nonclassicality of interactions solely
through the correlations between the coupled objects, we
need the notion of “marginals” of decomposable maps. We
propose to introduce it via a related concept of dilation. A
dilation of a map� : X → X is an ancillary state σR and a
map �̃ : XR → XR acting on the system and ancilla, such
that

�(ρ) = TrR(�̃(ρ ⊗ σR)), (13)

for all ρ. Accordingly, our aim is to exclude the exis-
tence of a decomposable dilation of the dynamics that
are observed on systems AB. In principle, the existence
of dilations may depend on the dimension of the Hilbert
space of the mediator, which motivates us to introduce
decomposable m-dilation as follows. A map� : AB → AB
has a decomposable m-dilation if there exists a dilation
�̃ : ABM → ABM such that �̃ is decomposable and the
dimension of the mediator satisfies dM ≤ m. We denote the
set of all maps with a decomposable m-dilation as DEC(m).

With these definitions, we can state our goal precisely:
we wish to infer whether a map on AB admits any decom-
posable m-dilation and we wish to do this via measure-
ments of correlations only. If no decomposable dilation
exists, we conclude that the interaction generating the map
is nonclassical.
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B. Detecting nondecomposability

It turns out that one can obtain an interesting condition
that witnesses nondecomposability as a simple corollary to
Eq. (4). In Appendix C, we prove that any gd-continuous
correlation measure Q admits the following bound under
the evolution generated by λ ∈ DEC(m):

QA:B(ρt) ≤ sup
σXM

QX :M (σXM )+ IA:B(ρ0), (14)

where ρt = λ(ρ0) and we emphasize that λ ∈ DEC(m) acts
on AB only. The supremum on the right-hand side runs
over all AM or BM states with dM ≤ m and IA:B(ρAB) =
infσA⊗σB g(d(ρAB, σA ⊗ σB)) measures the total correla-
tions across A : B. Note that if the correlation measure that
we use is not gd continuous, we can still obtain a witness of
nondecomposability assuming that we start with a product
state. For example, this could be ensured without having
access to M by preparing the AB systems in a pure product
state.

As an example of using this criterion, note that the max-
imally entangling maps we have discussed before cannot
have any decomposable m-dilation for m < min(dA, dB).
A question emerges as to whether there exist evolutions
that do not admit decomposable m-dilation even when the
dimension of the mediator is unbounded. This is indeed
the case. We show in Appendix C 1 that a SWAP opera-
tion on two objects (even two qubits) has no decomposable
m-dilation for any m. This leads to the conclusion that
classical interactions cannot produce a SWAP. The intuitive
reason behind this statement is that it takes at least two
steps to implement swapping with dA = dB = dM . We first
exchange A and M , then we exchange B and M , and we still
must exchange A and M again to complete the implemen-
tation. In fact, any AB interaction can be implemented in
two steps by first exchanging A and M , applying the inter-
action on BM , and finally swapping A and M back. The
conclusion becomes less unexpected once we realize that
SWAP is a highly entangling operation. For example, Alice
and Bob can entangle their laboratories by starting with
each having local Bell pairs

∣∣ψ−
AA′

〉 ⊗ ∣∣ψ−
BB′

〉
and swapping

the AB subsystems.
We wish to give a little more insight into the structure

of maps with decomposable dilations. Clearly, the sets are
nested: DEC(m) ⊆ DEC(m + 1). In fact, the inclusions are
strict, as we show in Appendix C 2.

C. Measuring nondecomposability

In the spirit of Sec. III B, we would like to extend Eq. (7)
to bound the distance to DEC(m) based solely on correla-
tions measured on systems AB. Of course, the ABM opera-
tor distance to DEC and the AB operator distance to DEC(m)
are closely related. For contractive distances d on states,
we have D(�ABM , λABM ) ≥ D(�AB, λAB), which unfortu-
nately is the opposite of what we need. To overcome this,

we use the so-called completely bounded variant of the
operator distance [48]:

D(�1,�2) = sup
σXY

d((�1 ⊗ 1Y)(σ ), (�2 ⊗ 1Y)(σ )), (15)

where �1,�2 : X → X and Y is a finite-dimensional sys-
tem. The benefit of the completely bounded operator dis-
tance is that it behaves nicely on dilations. This makes it
easier to jump from the distance to DEC to the distance to
DEC(m). Indeed, the completely bounded distance can be
written in terms of the dilations as follows:

D(�1,�2) = inf
�̃i

D(�̃1, �̃2). (16)

On the one hand, for contractive distances on states, the
left-hand side cannot be larger than the right-hand side.
On the other, the bound can be achieved by an exemplary
dilation �̃i = �i ⊗ 1.

As a measure of nondecomposability that we will link
to the violation of Eq. (14), we propose the analogue of
the degree of nondecomposability written in terms of the
completely bounded distance:

DDEC(m)(�AB) = inf
λAB∈DEC(m)

D(�AB, λAB). (17)

With these concepts and tools, it is proven in Appendix C
that the amount of violation of Eq. (14) lower bounds the
quantity just introduced:

DDEC(m)(�AB) ≥ g−1(QA:B(ρt)− B(ρ0)), (18)

where B is the right-hand side of Eq. (14). Note that all
these quantities involve states and maps on AB only.

D. Nonclassical gravity

Our second application of these methods is in foun-
dations. A prime example of an inaccessible mediator is
a mediating field. The methods described above allow
us to make conclusions about the field from the behav-
ior of objects coupled through it. Gravitational interaction
is especially interesting from this perspective, as there is
no direct experimental evidence of its quantum proper-
ties today. As discussed in Sec. I, observation of quantum
entanglement between gravitationally coupled masses is
a plausible near-future experiment closing this gap [49].
In this section, we show that our methods allow a con-
cise derivation of the nonclassicality witnesses presented
in the literature [3,5,6] and lead to new conclusions about
the interactions that can be drawn from the observation of
considerable gravitational entanglement.

Assume first a completely classical situation in which
both states and interactions are classical. Recall that within
our framework, this means a zero-discord state at all times,
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DAB|M = 0 (with one and the same basis on the mediator at
all times), and dynamical maps admitting decomposable
dilations. As the correlation measure, consider quantum
entanglement, measured by the relative entropy of entan-
glement. Then, the amount of entanglement A : B that can
be produced via these classical maps is

EA:B(ρt) ≤ sup
σXM

EX :M (σX :M )+ IA:B(ρ0), (19)

where the supremum is over all the states of AM or BM
allowed in the theory; here, dM ≤ m and DAB|M = 0. It is
reasonable to assume that the initial state in the labora-
tory will be close to a product state and we therefore take
IA:B(ρ0) = 0. Furthermore, all states admitting DAB|M = 0
are disentangled across A : M and B : M and therefore the
supremum is also zero. We therefore arrive at the con-
clusion that entanglement A : B cannot grow and hence
observation of any gain implies nonclassical states or
nonclassical interactions or both.

If we assume that the interactions are classical (decom-
posable) but the state might have nonzero discord, then
entanglement still satisfies the bound in Eq. (19). There-
fore, the observation of a nonzero value of EA:B means that
the supremum on the right-hand side is at least equal to this
observed value, i.e., the mediator must be capable of being
entangled to A or B, and in fact to AB due to monotonic-
ity, to at least the degree that has been measured. Note that
this is stronger than saying that the mediator needs to be
discorded.

Finally, by violating the bound in Eq. (19), it is possible
to demonstrate in the laboratory that unknown interactions
are not decomposable. We stress that it is not sufficient to
demonstrate that entanglement grows: we have to demon-
strate that the entanglement is above a certain threshold.
This threshold depends on the dimension of the media-
tor and we therefore ask how high entanglement can be
generated by gravity. The answer depends on the con-
crete setup via which gravitational interaction is studied. If
we take two nearby harmonically trapped masses initially
prepared in squeezed states with squeezing parameters sA
and sB, it has been shown that the gravitational entangle-
ment in terms of logarithmic negativity can be as large
as Emax

A:B = |sA + sB|/ ln 2, which holds for large squeez-
ing [8]. Since, in principle, si → ∞, this already shows
that gravity cannot be understood as a classical interaction
with any finite-dimensional mediator. More practically, the
highest optical squeezing achieved today is sA,B = 1.73
[50] and assuming that it can be transferred to mechani-
cal systems gives entanglement Emax

A:B ≈ 5 ebits (entangled
bits), which would restrict still possible decomposable
dilations to use mediators with dimension m > 25. It is
rather unlikely that this amount of entanglement will be
observed in the near future, as the time it takes the dis-
cussed system to reach Emax

A:B in the absence of dissipation

is tmax = πωL3/4Gm, independently of high squeezing,
where L is the separation between the masses and ω is the
frequency of the trapping potential [8]. For Laser Inter-
ferometer Gravitational Wave Observatory (LIGO)–like
parameters of masses in the order of m ∼ 1 kg, ω ∼ 0.1
Hz and L ∼ 1 cm, this time is already in the order of
hours and dissipation pushes it further, to tens of hours.
Yet, a violation of the unit bound, and hence disproval of
classical interactions via a two-level system, which would
already be interesting, could be achieved within a second
[5,8,11,50].

Another route would be to use gravity to execute dynam-
ics that by other means are known to be nondecomposable.
For example, we have shown below Eq. (14) that maxi-
mally entangling maps do not admit decomposable dila-
tions for dM ≤ min(dA, dB). The schemes in Refs. [5,6]
indeed use gravity to implement maximal entanglement
but only between two-level quantum systems encoded in
the path degree of freedom. It would therefore be interest-
ing to determine whether gravity could be used to maxi-
mally entangle masses in more paths. Along the same line,
we have shown that SWAP does not admit any decompos-
able dilation, even with an infinite-dimensional mediator.
Interestingly, Ref. [24] argues that gravity could imple-
ment the SWAP gate. In addition, the time it takes to
implement the gate is twice as long as the time it takes
to implement the maximally entangling unitary, showing
that it is not much more demanding than the entanglement-
based method. This provides an alternative witness of
quantum properties of gravitational interaction that does
not rely on the dimension of the mediator.

V. CONCLUSIONS

We have proposed notions of classicality of mediated
interactions (commutativity of Hamiltonians and decom-
posability of dynamical maps) and introduced their math-
ematical measures. Our main results are inequalities in
terms of any continuous correlation quantifiers with the
property that their violations place lower bounds on the
amount of introduced nonclassicality. These quantitative
methods are therefore experiment ready and applicable in
a variety of physical situations due to the minimalistic
assumptions under which they are derived. As examples,
we have shown that accurate simulations of dynamics
with high correlations necessarily require a large number
of Trotter steps and that gravitational interaction cannot
be understood with the help of commuting particle-field
couplings.
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APPENDIX A: CLASSICALITY AND
DECOMPOSABILITY

1. Classical states

For completeness, let us start with elementary rela-
tions. A state is said to be classical (or incoherent) if
it is diagonal in a preferred basis {|m〉}. A multipartite
state is called quantum classical (qc)—or admits vanish-
ing discord, DAB|M = 0—if it can be written as ρqc =∑

m ρAB|m ⊗
m, where 
m = |m〉 〈m| is the projector on
the preferred basis and the systems are enumerated as in
Fig. 1. In words, the whole tripartite state explores only
one basis in the Hilbert space of the mediator. Let us intro-
duce a measurement map along the preferred basis, 
, the
action of which on an arbitrary input state is to produce
an average postmeasurement state: 
(ρ) = ∑

m
mρ
m.
A state ρ is qc if and only if ρ = 
(ρ). Alternatively,
the definition of classicality can be phrased in terms of
commutation with the basis elements.

Proposition 1.—Let 
(X ) = ∑
m
mX
m be a projec-

tion map, where 
m
m′ = δmm′
m. Then,

X = 
(X ) ⇐⇒ ∀m, [X ,
m] = 0. (A1)

Proof.—The “if” direction is trivial. For the “only if”
direction, consider the following argument:

X
m = 
mX , (A2)

X
m = 
mX
m, (A3)

X =
∑

m


mX
m = 
(X ), (A4)

where we have multiplied the first equation by
m from the
right and used 
2

m = 
m, and then we have summed the

second equation over m and used the completeness relation∑
m
m = 1. �

2. Classical interactions

The definition of classicality of interactions in terms of
commutativity is justified by the following proposition.
It shows that the Hamiltonians preserving classicality of
states are invariant under dephasing in the preferred basis.
The commutativity is then a corollary.

Proposition 2.—Let H be a time-independent Hamilto-
nian. Then, H = 
(H), if and only if for any classical
initial state ρ0, ρt = e−itHρ0eitH is also classical.

Proof.—For the “only if” direction, let us write the
assumption explicitly:

e−itHρ0eitH = 

(
e−itHρ0eitH )

, (A5)

e−itH [ρ0, H ]eitH = 

(
e−itH [ρ0, H ]eitH )

, (A6)

where the second line is the time derivative of the first one
and ρ0 denotes the initial (classical) state. By evaluating at
t = 0, we find that the commutator is invariant:

[ρ0, H ] = 
([ρ0, H ]) . (A7)

In particular, taking ρ0 = 
m shows that for all the basis
states:

[
m, H ] = 
([
m, H ]) = 0, (A8)

where the last equation is simple to verify. Applying
Proposition 1 proves the claim.

For the “if” direction, from the assumption, the Hamilto-
nian has the block form H = ∑

m hm ⊗
m, where hm acts
on all the systems other than the mediator. In this case, the
orthonormality of the preferred basis implies

e±itH =
∑

m

e±ithm ⊗
m. (A9)

Accordingly, the initially classical mediator stays classical
at all times and the remaining systems evolve conditionally
depending on the state of the mediator. �

In the case of the tripartite systems that we consider,
where H = HAM + HBM , this shows that classicality is pre-
served when both HAM and HBM are block diagonal with
the same basis on system M , i.e., they commute.

3. Simple eigenstates

As another argument to justify our definition of clas-
sicality, we show that it constrains the eigenstates of the
Hamiltonian to be fully product, at least when the local
terms are nondegenerate.

Proposition 3.—Let HAM , HBM be nondegenerate
Hamiltonians. Then, [HAM , HBM ] = 0 implies that H =
HAM + HBM can be diagonalized with fully product states.
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Proof.—Let us assume that [HAM , HBM ] = 0. Note that
when a Hermitian matrix A has a nondegenerate spec-
trum, then all eigenvectors of A ⊗ 1 must be of the form
|ψA〉 ⊗ |ψB〉, where |ψA〉 is an eigenvector of A and |ψB〉
is an arbitrary vector. Since [HAM , HBM ] = 0 implies that
there is a common eigenbasis between HAM and HBM ,
this means that there exists a common eigenbasis for H =
HAM + HBM that is a product on A : MB and AM : B at the
same time, which proves the claim. �

4. One-way decomposability

The following proposition gives an example of decom-
posable unitary that nevertheless cannot be generated by
classical interactions.

Proposition 4.—There are no two-qubit unitaries
VAM , VBM such that UAM UBM = VBM VAM , where

UAM = 1√
2
(1 + iZAXM ) , (A10)

UBM = 1√
2
(1 + iZBZM ) , (A11)

and Z and X denote Pauli matrices.
Proof.—We prove by contradiction. Suppose that there

exist unitaries VAM , VBM such that UAM UBM = VBM VAM .
Note that we can write UAM , UBM as

UAM = |0〉 〈0|A ⊗ 1√
2
(1M + iXM )

+ |1〉 〈1|A ⊗ 1√
2
(1M − iXM ) , (A12)

UBM = |0〉 〈0|B ⊗ 1√
2
(1M + iZM )

+ |1〉 〈1|B ⊗ 1√
2
(1M − iZM ) . (A13)

Therefore, the product UAM UBM is given by

|00〉 〈00|AB ⊗ 1
2
(1 + iXM + iYM + iZM )

+ |01〉 〈01|AB ⊗ 1
2
(1 + iXM − iYM − iZM )

+ |10〉 〈10|AB ⊗ 1
2
(1 − iXM − iYM + iZM )

+ |11〉 〈11|AB ⊗ 1
2
(1 − iXM + iYM − iZM ) . (A14)

Observe that we can always write VAM = ∑1
i,j =0 |i〉 〈j |A ⊗

VA,ij
M for some matrices VA,ij

M and similarly for VBM . How-
ever, because we have assumed VBM VAM = UAM UBM and

the AB part in Eq. (A14) is expressed solely in terms of
projectors, we can express VBM VAM as

VBM VAM =
∑

i,j

|ij 〉 〈ij |AB ⊗ VB,jj
M VA,ii

M , (A15)

where each product VB,jj
M VA,ii

M is a unitary on M . Comparing
Eqs. (A14) and (A15), we find that

VB,00
M VA,00

M = 1
2
(1 + iXM + iYM + iZM ) , (A16)

VB,11
M VA,00

M = 1
2
(1 + iXM − iYM − iZM ) , (A17)

VB,00
M VA,11

M = 1
2
(1 − iXM − iYM + iZM ) , (A18)

VB,11
M VA,11

M = 1
2
(1 − iXM + iYM − iZM ) . (A19)

However, this leads to the contradiction

(
0 1

−1 0

)
=

(
VB,00

M VA,00
M

) (
VB,11

M VA,00
M

)†

=
(

VB,00
M VA,11

M

) (
VB,11

M VA,11
M

)†
=

(
0 −1
1 0

)
,

(A20)

which completes the proof. �

5. Classicality and commuting decompositions

Here, we show the relation between the classicality of an
interaction and decomposability of the corresponding uni-
tary. In particular, we show the equivalence between the
classicality [HAM , HBM ] = 0 and the existence of a contin-
uous commuting decomposition U(t) = UAM (t)UBM (t) =
UBM (t)UAM (t).

Proposition 5.—A one-parameter continuous group of
unitaries U(t) = e−itH has a commuting decomposition
U(t) = UBM (t)UAM (t) = UAM (t)UBM (t) such that the map
t �→ (UAM (t), UBM (t)) is continuous if and only if there
exist Hamiltonians HAM and HBM such that H = HAM +
HBM and [HAM , HBM ] = 0.

Proof.—Using the Baker-Campbell-Haussdorf (BCH)
formula [52], one easily sees that if such HAM , HBM exists,
then U(t) = e−itHAM e−itHBM = e−itHBM e−itHAM , showing that
the unitary has a continuous commuting decomposition.

To show the other direction, suppose that the
unitary e−itH has a continuous commuting decom-
position. Now, let us take t small enough such
that ‖UAM (t)− 1‖∞ , ‖UBM (t)− 1‖∞ < 1. This ensures
that HAM = i log UAM (t)/t, HBM = i log UBM (t)/t can be
defined through the power series for a matrix log-
arithm. Using the series representation log (1 − X ) =
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−∑∞
n=1(1/n)X

n, we note that these interaction
Hamiltonians must commute:

[HAM , HBM ] = − 1
t2

[log UAM , log UBM ]

= − 1
t2

[ ∞∑
n=1

(1 − UAM )
n

n
,

∞∑
m=1

(1 − UBM )
m

m

]

= 0. (A21)

Using the BCH formula, we obtain

e−itH = e−itHAM e−itHBM = e−it(HAM +HBM ). (A22)

Differentiating the above expression with respect to t and
using the identity (d/dt)e(tA)

∣∣
t=0 = A shows that H =

HAM + HBM , which proves the claim. �

6. Consistency

Let us start by recalling the two definitions of decom-
posability given in the main text.

Definition 1 (unitary).—Let U be a unitary acting on a
tripartite system HA ⊗ HB ⊗ HM . U is decomposable if
there exist unitaries UAM , UBM such that

UABM = UBM UAM . (A23)

Definition 2 (map).—Let λ be a map acting on a tripartite
system HA ⊗ HB ⊗ HM . λ is decomposable if there exist
maps λAM and λBM such that

λ(ρ) = λBMλAM (ρ). (A24)

The following proposition shows that these two defini-
tions are consistent.

Proposition 6.—A unitary U is decomposable if and
only if the map λ(ρ) = UρU† is decomposable.

Proof.—If U is decomposable, choosing λAM (ρ) =
UAMρU†

AM and λBM (ρ) = UBMρU†
BM shows that λ is also

decomposable.
To show the other implication, suppose that there exist

two maps λAM and λBM such that UρU† = λBMλAM (ρ).
It is enough to show that we can choose the maps λAM
and λBM to be unitaries. This is indeed possible by the
following argument. Since UρU† = λBMλAM (ρ), we see
that σ �→ U†λBM (σ )U is a completely positive trace-
preserving (CPTP) inverse of λAM . Since the only CPTP
maps that have a CPTP inverse are unitaries [53], we con-
clude that λAM must be a unitary map. The fact that λBM is
also unitary follows from λBM (ρ) = Uλ†

AM (ρ)U
†. �

Another question regarding the consistency between the
two definitions concerns unitary dilations: is decompos-
ability of a map equivalent to the existence of a decompos-
able unitary dilation? This would be desirable, since this

would imply that any decomposable map is generated by
some “classical” interaction on a larger system. Here, we
show that the implication holds in at least one direction.

Proposition 7.—Let λ be a decomposable map. Then,
there exists a Stinespring dilation of λ,

λ(ρABM ) = TrRUABMR(ρABM ⊗ σR)U
†
ABMR, (A25)

such that UABMR is decomposable.
Proof.—Since λ is decomposable, there exist maps λAM

and λBM such that λ = λBMλAM . Let us denote a Stine-
spring dilation of λAM as

λAM (ρAM ) = TrRAUAMRA(ρAM ⊗ σRA)U
†
AMRA

, (A26)

where RA is the purifying system for λAM . Similarly,
λBM must have a dilation with purifying system RB.
We prove the claim by identifying R = RARB, UABMR =
UBMRBUAMRA , and σR = σRA ⊗ σRB . �

7. Out-of-time-ordered correlator

Finally, we comment on the notion of the out-of-time-
ordered correlator (OTOC) and its relation to the decom-
posability. The OTOC is often used to study the spread
of correlations in a many-body system [54,55]. Given two
observables V and W (usually chosen to be commuting at
time t = 0), the OTOC is defined as

C(t) = −Tr
(
ρβ ([V, W(t)])2

)
, (A27)

where ρβ is the thermal state at inverse temperature β
and W(t) = e−iHtWeiHt. Intuitively, it measures the effect
of time evolution on the commutator between two ini-
tially commuting observables. We show that the OTOC
witnesses the nondecomposability, providing an alterna-
tive to our methods. In particular, let us choose V as an
observable on system A and W on system B. Let us assume
that the dynamics are decomposable, i.e., for any t, there
exist UAM and UBM such that e−iHt = UBM UAM . Noting
that [W, UAM ] = 0, an explicit calculation shows that

[V, W(t)] =
[
V, UBM WU†

BM

]
(A28)

= UBM [V, W] U†
BM , (A29)

which is zero, since V and W act on different subsystems.
Therefore, the measurement of a nonzero OTOC can wit-
ness the nondecomposability of the dynamics. It remains
to be shown whether such an approach can be extended to
quantify the degree of nondecomposability.

APPENDIX B: ACCESSIBLE MEDIATOR

The following proposition proves the “correlation-
capacity” bound when the initial state is product ρ0 =
ρAM ⊗ ρB.
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Proposition 8.—Let λ be a decomposable map. Any
correlation measure satisfies

QA:MB(λ(ρAM ⊗ ρB)) ≤ sup
σAM

QA:M (σAM ). (B1)

Proof.—By assumption, λ = λBMλAM . The bound fol-
lows solely from monotonicity of correlations under local
operations:

QA:MB(λ(ρAM ⊗ ρB)) = QA:MB(λBMλAM (ρAM ⊗ ρB))

≤ QA:MB(λAM (ρAM ⊗ ρB)). (B2)

Since Q is monotonic under local operations, it must
be invariant under invertible local operations. In partic-
ular, adding or discarding an uncorrelated system does
not change the value of Q. In our case, system B is
completely uncorrelated and therefore QA:MB(λAM (ρAM ⊗
ρB)) = QA:M (λAM (ρAM )). Of course, the last quantity is
upper bounded by the supremum over all states. �

For a general initial state, we have the following bound
by continuity.

Proposition 9.—Let λ be a decomposable map and
let ρ be any tripartite quantum state. Any gd-continuous
correlation measure satisfies

QA:MB(λ(ρ)) ≤ sup
σAM

QA:M (σAM )+ IAM :B(ρ), (B3)

where IAM :B(ρ) = infσAM ⊗σB g(d(ρ, σAM ⊗ σB)) is a mea-
sure of total correlations in the state ρ across the partition
AM : B.

Proof.—We bound the difference in correlations
between an arbitrary state and the product state using
gd-continuity:

|QA:MB(λ(ρ))− QA:MB(λ(σAM ⊗ σB))|
≤ g(d(λ(ρ), λ(σAM ⊗ σB)))

≤ g(d(ρ, σAM ⊗ σB)), (B4)

where in the last line we have used the fact that g is mono-
tonic and d contractive. The derived inequality holds for
any σAM ⊗ σB—in particular, for the one achieving the
infimum of IAM :B(ρ)—leading to

QA:MB(λ(ρ)) ≤ QA:MB(λ(σAM ⊗ σB))+ IAM :B(ρ). (B5)

In the last step, we use Proposition 8 to bound the first term
on the right. �

In order to simplify the notation, let us denote the bound
on correlations due to decomposable dynamics as B(ρ) =
supσAM

QA:M (σAM )+ IAM :B(ρ) and the state at time t as
ρt = �(ρ0).

Proposition 10.—The degree of nondecomposability
dDEC(�) is lower bounded as follows:

dDEC(�) ≥ g−1(QA:MB(ρt)− B(ρ0)). (B6)

Proof.—We will prove the theorem by combining the
continuity bounds with the statement of Proposition 9.
Consider a fixed, but arbitrary, decomposable map λ. Due
to gd-continuity, we write

QA:MB(ρt)− QA:MB(λ(ρ0)) ≤ |QA:MB(ρt)− QA:MB(λ(ρ0))|
≤ g(d(ρt, λ(ρ0))). (B7)

We rearrange and use the bound in Proposition 9:

QA:MB(ρt) ≤ QA:MB(λ(ρ0))+ g(d(ρt, λ(ρ0)))

≤ B(ρ0)+ g(d(ρt, λ(ρ0))). (B8)

The amount of violation is now brought to the left-hand
side and below we use the fact that g is invertible and
take the supremum over states ρ0 to identify the degree
of nondecomposability:

QA:MB(ρt)− B(ρ0) ≤ g(d(ρt, λ(ρ0)))

g−1(QA:MB(ρt)− B(ρ0)) ≤ d(ρt, λ(ρ0)),

g−1(QA:MB(ρt)− B(ρ0)) ≤ dDEC(�), (B9)

which proves the claim. �

1. Spectral norm

We link the operator norm of unitary maps with the
spectral distance between them.

Lemma 1.—Let U, V be unitaries. Then D∞(U, V) ≤
2 ‖U − V‖∞.

Proof.—By simple algebra, we verify

UρU†−VρV† = 1
2
(U − V)ρ(U + V)† (B10)

+ 1
2
(U + V)ρ(U − V)†, (B11)

where ρ is a density matrix. Taking the spectral norm on
both sides, we obtain
∥∥UρU†−VρV†

∥∥
∞ (B12)

=
∥∥∥∥

1
2
(U − V)ρ(U + V)†+1

2
(U + V)ρ(U − V)†

∥∥∥∥
∞
(B13)

≤ 1
2

∥∥(U−V)ρ(U+V)†
∥∥

∞ + 1
2

∥∥(U+V)ρ(U−V)†
∥∥

∞
(B14)
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≤ ‖U − V‖∞ ‖ρ‖∞ ‖U + V‖∞ (B15)

≤ 2 ‖U − V‖∞ , (B16)

where we have used the triangle inequality and submul-
tiplicativity of the spectral norm, ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞.
Using the bounds ‖ρ‖∞ ≤ ‖ρ‖1 = 1 and ‖U + V‖∞ ≤
‖U‖∞ + ‖V‖∞ = 2 on the last inequality finishes the
proof. �

2. Correlations and the number of Trotter steps

As a concrete illustration, let us relate the mutual infor-
mation in a state to number of Trotter steps needed. In
this case, we can use continuity bounds for von Neumann
entropy to conclude that if 1

2 ‖ρ − σ‖1 = ε, then [56,57]

|IA:MB(ρ)− IA:MB(σ )| ≤ 2ε log (dAdM dB − 1)+ 3η(ε),
(B17)

where η(x) = −x log x − (1 − x) log (1 − x) is the binary
entropy. We now bound the first term using ε ≤ √

ε, recall-
ing that ε is small, and the second term using η(ε) ≤ √

ε

to arrive at

|IA:MB(ρ)− IA:MB(σ )| ≤ 5 log (dAdM dB)
√
ε. (B18)

Furthermore, since ‖X ‖1 ≤ rankX · ‖X ‖∞, we have

|IA:MB(ρ)− IA:MB(σ )| ≤ C
√‖ρ − σ‖∞, (B19)

where C = 5
√

2 log (dAdM dB)
√

dAdM dB is a dimension-
dependent constant. This means that we can choose g(s) =
C

√
s to show that mutual information is gd continuous

with respect to the spectral distance and the inverse is
g−1(s) = (s/C)2 when s ≥ 0. Combining this with the
discussion in Sec. III C and Proposition 10, we finally
obtain
(

IA:MB
(
e−itHρ0eitH

) − B (ρ0)

C

)2

≤ t2 ‖[HAM , HBM ]‖∞ ,

(B20)

when IA:MB
(
e−itHρ0eitH

) ≥ B (ρ0). This means that the
number of Trotter steps needed to guarantee an ε error is

r ≥ O

((
IA:MB

(
e−itHρ0eitH

) − B (ρ0)
)2

ε

)
. (B21)

Note that while we have used some relaxations to derive
this bound, we still obtain nontrivial quantitative state-
ments relating the correlations in the system and the com-
mutator norm. In particular, while the quadratic power in
the mutual information is suboptimal, a linear bound can-
not exist due to the tightness of the entropic continuity
bounds.

APPENDIX C: INACCESSIBLE MEDIATOR

First, we derive a necessary condition on maps admitting
a decomposable m-dilation.

Proposition 11.—A gd-continuous correlation measure
Q admits the following bound under the evolution gener-
ated by λ ∈ DEC(m):

QA:B(λ(ρAB)) ≤ sup
σAM

QA:M (σAM )+ IA:B(ρAB), (C1)

where the supremum is over all AM states with the dimen-
sion dM ≤ m and IA:B(ρAB) = infσA⊗σB g(d(ρAB, σA ⊗ σB))

measures the total correlations across A : B.
Proof.—Consider the following argument:

QA:B(λ(ρAB)) ≤ QA:MB(λ̃(ρAB ⊗ σM ))

≤ sup
σAM

QA:M (σAM )+ IAM :B(ρAB ⊗ σM )

= sup
σAM

QA:M (σAM )+ IA:B(ρAB), (C2)

where the first line follows from the monotonicity of Q and
the existence of a decomposable m-dilation, the second line
restates Proposition 9 restricted to an m-dimensional medi-
ator, and the last line follows from the fact that tracing out
an uncorrelated particle is a reversible process and hence
we have equality. �

Note that we have assumed that any map with a decom-
posable dilation starts with the joint ABM state of a product
form ρAB ⊗ σM . Although this is a restrictive condition, it
has been shown that this is essentially the only consistent
choice if we require that the dynamics can start from any
AB state and the assignment is linear [58].

Next, we show that the violation of the inequality
provides a bound on the degree of nondecomposability.

Proposition 12.—The degree of nondecomposability
satisfies the following lower bound:

DDEC(m)(�AB) ≥ g−1(QA:B(�AB(ρAB))− B(ρAB)),

where B is the two-particle version of the bound B,

B(ρAB) = sup
σAM

QA:M (σAM )+ IA:B(ρAB),

and the supremum over σAM assumes that the dimension of
the mediator satisfies dM ≤ m.

Proof.—Consider a fixed but arbitrary dilation �̃ of the
map�AB and a decomposable map λ̃ (acting on all subsys-
tems) that is a dilation of the map λAB ∈ DEC(m). The same
steps as in Proposition 10 and Eqs. (B7) and (B8) lead to
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the following inequality:

g−1(QA:B(�(ρAB))− B(ρAB)))

≤ d(�̃(ρAB ⊗ σM ), λ̃(ρAB ⊗ σM )), (C3)

where we have used monotonicity and the definition
of dilation to write QA:B(�(ρAB)) ≤ QA:MB(�̃(ρAB ⊗ σM ))

and invariance of total correlations under tracing out
an uncorrelated system in the bound B, which there-
fore becomes B. The left-hand side is accordingly fully
expressed in terms of bipartite quantities and we now
similarly bound the right-hand side.

To show the claim, it is enough to show that the dis-
tance on the right-hand side gives a lower bound to the
degree of nondecomposability. By taking the supremum
over ρAB, the right hand side is upper bounded by the
operator distance:

sup
ρAB

d(�̃(ρAB ⊗ σM ), λ̃(ρAB ⊗ σM )) ≤ D(�̃, λ̃), (C4)

where the inequality is due to the optimization over states
of AB only, not over all three systems. Analogous reasons
show that the operator distance is upper bounded by the
completely bounded distance

D(�̃, λ̃) ≤ D(�̃, λ̃). (C5)

This time, because the right-hand side involves addi-
tional optimization over the ancillary states. Finally,
note that this reasoning holds for any dilation and
the best bound is obtained by taking the dilations
producing the infimum: infλAB∈DEC(m) inf�̃,λ̃D(�̃, λ̃) =
infλAB∈DEC(m)D(�AB, λAB). �

With these tools, we now investigate the structure of
maps that admit decomposable m-dilations.

1. Nondecomposability of swapping

Proposition 13.—The map SWAP on two qubits has no
decomposable m-dilation, for any m.

Proof.—We will prove this by contradiction. Suppose
that SWAP has a decomposable m-dilation. Let us compare
the action of SWAP on |00〉AB and on |01〉AB. By definition,
there exist two maps, λAM and λBM , and some initial state
σM such that

|00〉 〈00|AB = SWAP(|00〉 〈00|AB)

= TrMλBMλAM (|00〉 〈00|AB ⊗ σM ) , (C6)

|10〉 〈10|AB = SWAP(|01〉 〈01|AB)

= TrMλBMλAM (|01〉 〈01|AB ⊗ σM ) . (C7)

Let us define σ 0
AM = λAM (|0〉 〈0|A ⊗ σM ). By Eqs. (C6)

and (C7), we have

|0〉 〈0|A = TrBSWAP(|00〉 〈00|AB)

= TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

)
, (C8)

|1〉 〈1|A = TrBSWAP(|01〉 〈01|AB)

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
. (C9)

But because λBM is trace preserving and TrB factors out
when applied to product states, we have

TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

) = TrBM
(|0〉 〈0|B ⊗ σ 0

AM

)

= TrMσ
0
AM

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
.

(C10)

Combining this with Eqs. (C8) and (C9), we obtain

|0〉 〈0|A = TrBMλBM
(|0〉 〈0|B ⊗ σ 0

AM

)
(C11)

= TrBMλBM
(|1〉 〈1|B ⊗ σ 0

AM

)
(C12)

= |1〉 〈1|A , (C13)

which is clearly a contradiction. �

2. Strict inclusions

Proposition 14.—The inclusion DEC(m) � DEC(m + 1)
is strict for all m.

Proof.—Let us fix m and take dA = dB > dM = m. Let
λm(ρAB) = TrM SWAPBMλAM (ρAB ⊗ |0〉 〈0|M ), where λAM
is a maximally entangling map. By this construction, λm
has a decomposable m-dilation, i.e., λm ∈ DEC(m). Choos-
ing ρAB = |00〉 〈00|AB and Q to be the relative entropy of
entanglement, we obtain EA:B(λm(ρAB)) = log m, whereas
by Proposition 11, for all maps λ ∈ DEC(m − 1) we have
(recall that ρAB is product)

EA:B(λ(ρAB)) ≤ sup
σAM

EA:M (σAM )+ IA:B(ρAB) (C14)

= log (m − 1). (C15)

Therefore, λm �∈ DEC(m − 1), and the claim is shown. �
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